Show simple item record

dc.contributor.advisorRhinehart, Robert Russell
dc.contributor.authorChen, Haoxian
dc.date.accessioned2014-04-16T03:07:12Z
dc.date.available2014-04-16T03:07:12Z
dc.date.issued2011-12-01
dc.identifier.urihttps://hdl.handle.net/11244/9624
dc.description.abstractThe generalized TSK (GTSK) modeling approach is proved to provide accurate model prediction and to alleviate the computational burden. The scope of this study is to incorporate the GTSK models in the nonlinear model predictive control (NMPC) to improve the overall performance and reliability of NMPC. A novel global optimization method, the Leapfrogging technique, is also used to further improve the NMPC's computational efficiency. Another innovation, the "sawtooth" pattern is used as input signal to generate the GTSK model. The experiments and tests are conducted on a nonlinear process simulation system, in which the NMPC control algorithm was embedded. The virtual process in this simulator is fourth-order-plus-dead-time (FOPDT) process with a nonlinear gain and the environmental effect (noise and disturbance). The controlled process is subject to both soft and hard constraints - soft on both the controlled and the auxiliary variable, and hard on both the limits and rate of change of the manipulated variable. The NMPC performance is evaluated via several simulation experiments, which involved constraint handling, interactions and process nonlinearity. The use of a GTSK model and Leapfrogging as an optimizer were demonstrated as effective for nonlinear model predictive control. The nonlinear model is firstly developed by using GTSK approach. The prediction accuracy of the GTSK model was illustrated and quantified by a comparison with SOPDT model. The GTSK model was much better. The performance of GTSK MPC controller is evaluated via seven sets of dynamic control simulation. The controller showed desirable performance for disturbance rejection, set point tracking, constraint handling, and comprehensive environmental effect handling.
dc.formatapplication/pdf
dc.languageen_US
dc.publisherOklahoma State University
dc.rightsCopyright is held by the author who has granted the Oklahoma State University Library the non-exclusive right to share this material in its institutional repository. Contact Digital Library Services at lib-dls@okstate.edu or 405-744-9161 for the permission policy on the use, reproduction or distribution of this material.
dc.titleIncorporation of the Generalized Tsk Models in Model Predictive Control
dc.typetext
dc.contributor.committeeMemberRamsey, Joshua D.
dc.contributor.committeeMemberFahlenkamp, Heather
osu.filenameChen_okstate_0664M_11781.pdf
osu.collegeEngineering, Architecture, and Technology
osu.accesstypeOpen Access
dc.description.departmentSchool of Chemical Engineering
dc.type.genreThesis
dc.subject.keywordschemical engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record