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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Overview  

Due to the complexity of chemical processes, and quality and environmental 

requirements in process operations, advanced process control strategies have been widely used in 

the industry to fulfill control needs. Model predictive control (MPC), also referred to as moving 

horizon control (MHC), has become the most effective and attractive advanced control strategy in 

process industries [1-3]. The term MPC does not designate any kind of specific control strategy 

but rather a family of control approaches based on the same philosophy. In general, it makes 

explicit use of a model of the process to obtain a sequence of control signals by optimizing 

predictions of the process. Therefore, the model is the essential element of an MPC controller. 

Linear models were used to predict the process dynamic behavior in the initial industrial 

MPC applications, and remain most common today[3]. MPC approaches using linear models are 

called linear model predictive control (LMPC).  LMPC was rapidly developed and well accepted 

in both academia and industry over the past three decades. Some successful commercialization of 

LMPC, e.g. Dynamic Matrix Control (DMC) and Model Predictive Heuristic Control (MPHC) 

have enjoyed great popularity in the industry, especially in the area of process control[2]. 

However, most batch and continuous processes in chemical and petro-chemical industries are
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nonlinear. Furthermore, efficiency demands and manufacturing flexibility in today’s plants often 

drive process over a wide region, often very close to the operation boundaries. Considering these 

facts, linear MPC strategies may not always provide satisfactory performance for many industrial 

applications. Therefore, nonlinear model predictive control (NMPC) is drawing more attention 

with respect to both theoretical and application aspects[3]. 

A sizable number of studies on new NMPC algorithms and related industrial application 

were reported in the past 15 years[2]. In general, the NMPC used in these works has a nonlinear 

predictive model and is a direct and intuitive extension of LMPC. Unlike LMPC which is based 

on linear dynamic models, NMPC makes use of nonlinear models to address the issue of process 

nonlinearity and frequently changing operating region. With a better understanding of process 

nonlinearity, nonlinear models are expected to improve the control performance of MPC. 

However, approaches to develop adequate nonlinear models from plant testing data are usually 

complicated. The complexity of nonlinear models also adds computational burden to model 

prediction and dynamic optimization of NMPC.  

There are three main types of models that are used to represent general nonlinear process 

in the area of nonlinear model predictive control: first principles models, empirical models and 

grey box approaches. Among these three, the empirical modeling approach is the most popular 

modeling method for NMPC controller development and applications according to the survey of 

the recent studies[3]. 

The Takagi-Sugeno-Kang (TSK)[4] fuzzy model, as a type of empirical model, has been 

used to represent complex systems in many recent NMPC publications. In this work, a new 

generalized TSK modeling approach, which is referred to as GTSK (generalized TSK) 

modeling[5], is used in the nonlinear model generation, and as the modeling approach for the 

predictive controller.  
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The GTSK modeling approach was developed based on the TSK fuzzy model 

representation. It proposed a more efficient TSK model with the generalized rule antecedent 

structure. By reducing antecedent dimension and introducing a more flexible antecedent structure, 

the number of rules was significantly reduced in this new TSK structure model. The innovation of 

GTSK model will alleviate the computational burden of an NMPC, and be qualified for on-line 

applications. 

A novel global optimization method, the Leapfrogging technique[6], is also used to 

further improve the NMPC’s computational efficiency. Another innovation in this work is a new 

test input signal design in the model generation part. Instead of using a skyline function to 

generate the test signal, the “sawtooth” pattern is used as the input to generate the GTSK model. 

 In this work, these three innovations are demonstrated to work effectively by simulation. 

The experimental system is a nonlinear process simulator, in which the NMPC algorithm was 

embedded. The virtual process in this simulator is fourth-order-plus-dead-time (FOPDT) process 

with a nonlinear gain and the environmental effect (noise and disturbance). It is subject to both 

soft and hard constraints – soft on both the controlled and the auxiliary variable, and hard on both 

the limits and rate of change of the manipulated variable. The NMPC performance is evaluated 

via several simulation experiments, which involved constraint handling, interactions and process 

nonlinearity. 

This study features simulation demonstration. Extending the use of GTSK model in MPC 

to the multi-input-multi-output system, or implementing the MPC with GTSK model on the real 

systems, like the heat exchanger or distillation column, is considered to be done to demonstrate 

its effectiveness on the real process and prepare it for future applications. 
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1.2 Literature Survey 

1.2.1 Model Predictive Control 

The term Model Predictive Control (MPC) describes a class of control algorithms that 

regulate the future process behavior by explicitly using a predictive process model[7]. Based on 

past measurements and given future control signals, the MPC algorithm can predict the future 

dynamic behavior of the process through the model. At each time interval, MPC calculates an 

optimal sequence of future control signals to drive the process to a set point over a finite horizon. 

The first control signal of the sequence is then applied on the process at each step[3].  

In general, the model predictive problem is formulated as solving on-line a finite horizon 

optimal control problem subject to system dynamics and constraints[1]. A MPC controller is 

usually comprised of three parts, the predictive process model, the constrained optimizer, and the 

model adjustment[8]. 

1.2.2 Modeling Approaches 

 The nonlinear predictive model is most critical part in NMPC. Many efforts were made to 

explore suitable modeling approaches for nonlinear system representation and application in 

NMPC. In general, three main types of models are used to represent general nonlinear process in 

the area of nonlinear model predictive control. They are known as first principles models, 

empirical models and semi-empirical (grey box) approaches[8].  

 The first principle model comes directly from balance equations, i.e., material balance, 

energy balance, momentum balance, together with the hydraulic and thermodynamic information 

of the process[3, 8]. The first principle model contains the information of process characteristics, 

and provides deep understanding of the process mechanics. However, constructing a first 

principle model is usually complicated and costly, sometimes even infeasible. The complexity of 
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the first principle model could also cause computational difficulties in incorporating it into a 

NMPC[8]. 

In contrast to a first principle model, an empirical model treats the process as a black box 

and fits itself to the process data[9]. The modeling method assumes that the characteristics of the 

process are embedded in the given process data. Comparing to a first principle model, an 

empirical model usually does not provide information on the mechanics of the process.  

Between the first principle model and the empirical model is the grey box model. A grey 

box model is developed by combining the first principle and empirical approaches. For instance, 

some parameters in a first principle model are unavailable but can be estimated by an empirical 

approach. Or, in an empirical model, some parameters can be determined by the knowledge of the 

process characteristics, such as the structure of the model, or the order of the process[8].   

Among these three, empirical modeling is now widely used for NMPC application. Its 

simplicity and data-oriented feature benefit both model development and NMPC computation.  

Neural Network (NNs)[10] is one of the most popular empirical modeling 

approaches[11]. Neural Network, also called artificial Neural Network, have an inherent ability to 

approximate any nonlinear function to an arbitrary degree of accuracy[12]. Coupled with 

appropriate training techniques, Neural Network has been very successful in many NMPC 

applications and commercial products[3]. 

Fuzzy model is another type of empirical model that has been widely used. The recent 

development of fuzzy system attracts many attempts of incorporating fuzzy modeling techniques 

intro MPC from both researchers and practitioners[13]. Takagi-Sugeno (TS) fuzzy model, which 

was first introduced by Takagi and Sugeno in 1985[14], has been applied on function 

approximation, stability analysis, and controller synthesis over the last twenty years or so[13]. TS 

model defines a set of fuzzy rules to describe a nonlinear system. A number of local linear models, 
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defined by the rules, are smoothly blended by fuzzy membership functions to represent the global 

system. In 1988, Sugeno and Kang proposed a new method to improve the structure identification 

of a TS type model[4], which is then referred as TSK model. TS or TSK models are recognized as 

universal approximators[15], which are able to describe any nonlinear behavior with a 

sufficiently flexible structure.   

1.2.3 NMPC Applications 

Neural Network model and fuzzy model are two of the most popular empirical models 

used in NMPC applications. The recent development of NMPC using these two types of models 

was reviewed in the following section. 

1.2.3.1 Neural Network (NN) Model based NMPC 

Georgieva and Azevedo (2011)[16] practiced a model predictive control based on 

recurrent neural network models. Two types of regression NN models which were identified to be 

suitable for the model predictive control were proposed. A sugar crystallization process case 

study was conducted to test the NN-based MPC and its performance. 

Al Seyab and Cao (2007)[17] developed an efficient algorithm to train general 

differential recurrent neural network (DRNN), which could be directly used as the modeling 

approach for nonlinear model predictive control. This novel training algorithm is based on the 

efficient Levenberg-Marquardt method, which is combined with the automatic differentiation 

method. In this work, the trained NN can give an accurate approximation at different sampling 

time without the re-training. A two-CTSR process is used as a case study to demonstrate the 

benefit of using this algorithm and the improved control performance. 

A novel MPC algorithm using a grouped-neural network (GNN) model was presented by 

Ou and Rhinehart (2003)[8, 9, 18]. GNN modeling is introduced as an approach for nonlinear 
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long-range prediction by less computational effort. The NN model comprises of a group of sub-

models, which are independent and run in parallel. Instead of predicting over a certain-range 

horizon, each sub-model provides prediction of one process output at one selected future point, 

reducing the computational burden. The implementation of proposed GNN MPC on a nonlinear, 

multivariable, constrained pilot-scale distillation unit is demonstrated with the controller 

performance test. 

1.2.3.2 Fuzzy Model based NMPC 

Eliasi, Davliu and Menhaj (2006)[19] developed an adaptive TSK fuzzy model based 

predictive controller to control the water level of nuclear steam generators. A recursive estimation 

algorithm was employed to tune the parameters of the TSK model at each time step. The control 

performance for tracking the step and ramp reference trajectories and against the stream flow rate 

change was demonstrated. The proposed NMPC was also compared to the PI controller and 

showed better performance. 

A rule-adaptive fuzzy NMPC using TS type model was designed for a multivariable 

heating system by Roy, Mann and Hawlader (2005)[20]. The goal of this work is to design a 

MPC algorithm to control temperatures at three locations in the soil sample using three heat 

sources at the outer surface of the soil cell. The soil-heating system is modeled using a general-

purpose ABAQUS Finite Element program. Under the TS type fuzzy model structure, an adaptive 

mechanism was used to handle the time-variant behavior of the process. The control performance 

was compared with a classical non-adaptive fuzzy MPC. 

Huang, Lou, Gong and Edgar (2000)[21] introduced a fuzzy model predictive control 

approach using TS modeling methodology. The nonlinear process system is described by a fuzzy 

convolution model that consists of a number of  linear fuzzy models. In the controller design,  a 

two-layered iterative optimization process was employed to minimize prediction errors and 



8 

 

control energy. This two-layer design avoids extensive on-line nonlinear optimization and permits 

the design of a controller based on linear control theory. Nevertheless, the hierarchical control 

design leads to more modeling and optimization computation, as well as the complexity of the 

controller structure. 

Mahfouf, Linkfens and Abbod (2000)[22] proposed a TSK model based Generalized 

Predictive Control (GPC) type MPC. The proposed fuzzy modeling approach is based on a 

Controlled Auto-Regressive Integrated Moving Average (CARIMA) model structure. An 

adaptive control scheme was integrated with the proposed control algorithm. Controller's 

performance and application on the binary distillation column and the Continuous Stirred Tank 

Reactor (CSTR) system were tested.  

1.2.4 Optimization Methods for NMPC 

In a MPC controller, a set of optimal MV values which drive the process to the desired 

set point without violating constraints need to be computed at each sampling time. This dynamic 

optimization must be solved on-line, which has always been a challenge for researchers and 

practitioners. 

In most industrial applications of NMPC, the optimization problem is described as linear 

program (LP), quadratic program (QP) or nonlinear program (NLP), depending on the type of 

model and the performance expectation[23]. Newton type methods, such as sequential Quadratic 

Programming (SQP) and Interior Point Methods, are often used to solve nonlinear problems[24, 

25]. 

A multi-step Newton-type algorithm developed by De Oliveira and Biegler (1995, 

1994)[26], named QPKWIK, is used by Aspen’s Target MPC product. This method has the 

advantage that intermediate solutions, although not optimal, are guaranteed feasible[2]. Diehl, 

Bock, Nagy and Findeisen (2002)[24] proposed a direct multiple shooting method with a real-
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time embedding strategy. The application of a deterministic global solution technique on NMPC 

is reported by Long, Polisetty and Gatzke (2005)[27]. The variable space is reduced using interval 

analysis techniques to achieve faster convergence. Ghaemi, Sun and Kolmanovsky (2009)[28] 

introduced Integrated Perturbation Analysis and Sequential Quadratic Programming (InPA-SQP) 

approach, for the MPC implementation. It synergistically combines the solutions derived using 

perturbation analysis and SQP to solve the optimization problem with initial state perturbation 

and input/state constraints. 

1.2.5 Input Training Signal for Model Generation 

Successful empirical model development requires selecting a sufficiently good input 

training signal. In the area of system identification, the binary signal, the frequency sweep and the 

multisine are the most commonly used signals[29]. 

For chemical process control, conventionally, model used in MPC applications are 

identified through a series of step tests. As summarized in[2, 7], Pseudo-Random Binary 

Sequence (PRBS) tests are also used in most industrial MPC technologies. In some recent works, 

Filtered Gaussian White Noise with random amplitude and variation between two periods of the 

stimulus is used as input training singles. It is referred as “skyline function” signal in GTSK 

approach, which uses it in the development and testing of models[5].  

The sawtooth function used in this work is a signal that jumps or drops to the halfway of 

a random level, and then ramps to that level at the end of a period of random length. 

1.3 Summary 

The GTSK model has advantages over a TSK model and other fuzzy type models 

because of fewer model equations and parameters, which provides a computational advantage in 

both model generation and model use[5]. Leapfrogging is a multi-player optimizer with a global 
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aspect. It has advantages over linear and single trial solution optimizers of finding the global 

solution in nonlinear applications. It also has advantages over other multi-particle optimizers in 

computational simplicity and speed of convergence[6]. Sawtooth provides a wider coverage over 

the whole range of the input training signal. Applying these innovations on NMPC is expected to 

alleviate the computational burden for on-line applications and improve model accuracy, which 

should enhance the overall control performance.    
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CHAPTER II 
 

 

GTSK Model Based MPC 

 

2.1 GTSK modeling Approach[5]* 

 A summary of GTSK modeling approach and its innovation over TSK method is given in 

Section 2.1.1. The details on developing a GTSK model are presented in the following sections. 

2.1.1 Overview 

In contrast to first-principles modeling, GTSK modeling is an empirical (black-box) 

modeling technique, which fits itself to the input-output data obtained from the process. As a type 

of TSK model, it is a subset of novel fuzzy logic-based modeling methodologies, where a 

nonlinear process system is divided into a number of linear or nearly linear subsystems. 

To reduce the complexity of a TSK model, two innovations were introduced[5] in the 

generalized TSK modeling approach. In a GTSK model, only nonlinear variables are included in 

the rule antecedent to reduce its dimension. Additionally, an extra degree of freedom is 

introduced to cover an antecedent space more efficiently. 

 

 

 

*Reference citations in headings indicated that substantial portions are duplicated or modified 
from that reference 
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2.1.1.1 Dimension Reduction in the Antecedent  

In a GTSK model, only nonlinear variables are included in the rule antecedent to reduce 

the antecedent dimension. This is the first innovation of the GSTK approach. Consider a single-

input-single-output (SISO) dynamic process, with dynamic orders ny, nu, pure time delay d, and 

an additive disturbance e(t). The system is represented by 

                                 (2.1)   

where y(t) and u(t) are process responses and process input at time t. d is the pure time delay, 

while f is a nonlinear function. 

A rule could be described by a TSK model as below 

( ) ( )( )
( ) ( ) ( ) ( )

( )
( )

1 1

1 1

1 1
1

1 1
0 1

 y 1 is     u  is  

y u

1

r r
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r r r

r r r ny
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r r r r nu
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t A t nu d A

z t k z t d

z a z a z

z b b z b z
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THEN A B

A
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+ +

− −

− − −

− − −

− ⋅⋅⋅ − −

= + −

= + + ⋅⋅ ⋅+

= + + ⋅⋅ ⋅+
             (2.2)                                                                                   

where, 1
rA  is the fuzzy subset for y(t-1) in the rule and z is the backshift operator. The expression 

( ) ( )1 11 is      is r r
ny nuy t A u t nu d AAND AND + +− ⋅⋅⋅ − −

is the antecedent of the rule, and the variables y(t-1), …, 

y(t-ny), u(t-d),…,u(t-nu-d) are antecedent variables. The consequent of the rule is a local linear 

model ( ) ( ) ( ) ( )1 1r r rz y t k z u t d− −= + −A B
. 

However, in a TSK model, all the regressors in the rule consequent are also in the rule 

antecedent, which leads the antecedent dimension to be same as the problem dimension and 

causes the complexity of a TSK model. In a GTSK model, only the variables appearing 

( )
( ) ( )
( ) ( )

( )
1 , , ,

, ,

y t y t ny
y t f e t

u t d u t nu d

− ⋅⋅ ⋅ − 
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nonlinearly were included in the antecedent.  This is the first of two innovations introduced by the 

GTSK modeling. The simplified rule is defined by 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( )
( )
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1 1

1 1
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(2.3) 

where the antecedent dimension is reduced to ay+bu+1 (ay <ny and bu< nu ). In Equation 

(2.3)y(t-1) … y(t-ay), u(t-d) …. u(t-bu-d) are then antecedent variables. They are collected in an 

antecedent vector c(t). Regressors in the consequent are collected in consequent vector x(t). 

2.1.1.1 Generalized Antecedent Structure 

The second innovation proposed by the GTSK modeling approach is a generalized 

antecedent structure. This new structure substitutes the combinatorial antecedent structure in the 

TSK rule in Equation (2.4) by a more flexible one. One more degree of freedom is introduced to 

improve the covering efficiency of each rule. 

Given a two dimensional antecedent with equal number of fuzzy sets for each antecedent 

variable, a typical combinatorial antecedent space partition is illustrated in Figure 2.1. 9 rules 

result from the combinations of 3 fuzzy sets for each antecedent variable (ci , i=1, 2) 

 
��

� 1 2 3 

c2 ��
�

 4 

5 

6 

 
��

� 7 8 9 

  ��
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�
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   c1 
 

Figure 2.1 Two-Dimension Antecedent 

β 
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where c1 , c2 are antecedent variables.��

�, ��
�, ��

� are fuzzy sets of each antecedent variable ci.1, 

2, …., 9 is the number of rule. Each rule has a local linear model  ( ) ( ) ( ) ( )1 1r r rz y t k z u t d− −= + −A B
, as 

stated in Equation (2.3).  

 If points α and β are both in region 5, but α is nearly as close to region 1, 2, 4. Then the 

rule applied on point β would be only rule 5, while the model value calculation for point α would 

be also influenced by rules 1, 2, 4. The belongingness of a point to each rule is evaluated by a 

membership function. 

If Gaussian membership functions are applied and the product operator is used for the 

AND conjunction in Equation (2.3), each rule of the antecedent could be evaluated by the truth of 

antecedent (TA) 

2 2
1 1 2 2

1 2

c o c o

TA e σ σ
   − −

− −   
   =     (2.4) 

 
where TA is an ellipsoid centering at (o1,o2) with width of σ1 by σ2. A possible contour plot of TA 

is shown below 

 

Figure 2.2 The ellipsoid contour of TA 

In Figure 2.2, the highest value of TA =1 is reached at the centroid. The further out is the 

contour, the smaller the TA. The value of TA can be interpreted as the belongingness of a data 

point to a local region.  

1c

2c

1o

2o



 

Consequently, the two dimensional antecedent structure shown in Figure 2.1could be 

represented by horizontal and vertical ellipsoids, as

Figure 2.3 Antecedent space partition and representation

A more compact fuzzy model can be constructed by 

local behavior. Figure 2.3 (b) shows a possible partition afte

the partition method which is aligned with the regressor axes in Figure 2.3 becomes inefficient as 

shown in Figure 2.4, where neither horizontal nor vertical ellipsoids provide an efficient 

representation of the underlying local region represented by either the rotated “space” of 

correlated variables or irregular polygons. 

Figure 2.4 A rotated local 

To solve this problem, the GTSK approach chooses to 

local region, which is shown in Figure 2.5.

2c

15 

Consequently, the two dimensional antecedent structure shown in Figure 2.1could be 

horizontal and vertical ellipsoids, as shown in Figure 2.1 (a).  

 

(a)   (b) 

Figure 2.3 Antecedent space partition and representation 

A more compact fuzzy model can be constructed by merging regions that exhibit similar 

Figure 2.3 (b) shows a possible partition after merging some regions. However, 

the partition method which is aligned with the regressor axes in Figure 2.3 becomes inefficient as 

where neither horizontal nor vertical ellipsoids provide an efficient 

representation of the underlying local region represented by either the rotated “space” of 

correlated variables or irregular polygons.  

 

A rotated local region covered by a horizontal or vertical ellipsoid

To solve this problem, the GTSK approach chooses to rotate the ellipsoid

local region, which is shown in Figure 2.5. 

1c

2c

1c

Consequently, the two dimensional antecedent structure shown in Figure 2.1could be 

merging regions that exhibit similar 

r merging some regions. However, 

the partition method which is aligned with the regressor axes in Figure 2.3 becomes inefficient as 

where neither horizontal nor vertical ellipsoids provide an efficient 

representation of the underlying local region represented by either the rotated “space” of 

orizontal or vertical ellipsoid 

rotate the ellipsoid to cover the 
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Figure 2.5 A rotated local region covered by a rotated ellipsoid 

 The rotation is mathematically addressed by one more degree of freedom. the parameters 

σ in Equation (2.4) are replaced by a symmetric positive semi-definite matrix P, which is shape 

matrix in this work, and redefines the truth of antecedent by 

( ) ( )T

TA e
− − −

=
c o P c o

                                                      (2.5) 

where o is the vector representing the centroid with dimension of nc, and the dimension for the 

shape matrix P is nc by nc. 

2.1.1.1 GTSK Model Representation 

In general, the nonlinear model in Equation (2.1) could be described in the following 

linear time-varying format  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

0

1 ny

nu

y t k t a t y t a t y t ny

b t u t d b t u t nu d e t

= + − + + − +

− + + − − +

L

L                             (2.6) 

A compact form to represent Equation (2.6) is 

( ) ( ) ( ) ( )Ty t t t e t= +x θ
                              (2.7) 

with  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 0

1, 1 , , , , ,

, , , , , ,

T

T

ny nu

t y t y t ny u t d u t nu d

t k t a t a t b t b t

= − − − − −  

 =  

x

θ

L L

L L
 

where x(t) is the regressor vector and θ(t) is the parameter vector. Coefficients k(t), a(t) 

and b(t) are time-varying variables.  

Based on Equation (2.3), a GTSK model is defined as below using the generalized 

antecedent structure.  

1
1 1 1 1

M
M M M M

( (t)   R ( , )) THEN (t) (t)

( (t)   R ( , )) THEN (t) (t)

is in y

is in y

∧

∧

=

=

IF c o P θ x

IF c o P θ x

  

  

M

                           (2.8) 

where

i

y
∧

is output from the local model in rule i 

The final computation of the GTSK model in Equation (2.8) is defined by 

iM
i

i=1

y(t)= w (t) y (t)
∧ ∧

∑
                                                     (2.9) 

where
iw (t) are the weights of the local models. In this work, 

iw (t) is defined as the normalized 

truth of the antecedent (TA) 

i
i

M
i

i=1

TA (t)
w (t)=

TA (t)∑
                                                       (2.10) 

where TA can be calculated by Equation (2.5) 

 

 



18 

 

2.1.2 Order Determination and Antecedent Variable Selection 

The first step in modeling is variable selection. This work first determines the orders, ny 

and nu, and delay d for a nonlinear dynamic system as defined in Equation (2.1). The value of ny, 

nu and d give the set of consequent variables in Equation (2.8). Antecedent variables are then 

selected from the consequent variables. 

A. Nonlinearity Representation Methodology  

Once θ(t) in Equation (2.7) is determined, the orders, ny and nu, and delay dare then 

defined accordingly. A exponential weighting method[30], represented byEquation (2.11), is used 

to recursively estimate θ(t).  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

ˆˆ 1

1 1

ˆ ˆ ˆ1

1
1 1

T

T

T

y t t t

t t t t t t

t t t y t y t

t t t t t

α

α

−

= −

= − − +

= − − −

= − − −

x θ

K P x x P x

θ θ K

P P K x P
                      (2.11) 

where ( )ˆ 1t −θ  is the parameter value estimates at t-1, ŷ(t) is the one-step-ahead prediction of y(t) 

using ( )ˆ 1t −θ , K(t) is the gain used and correct ( )ˆ 1t −θ  to ( )ˆ tθ based on the prediction error, P(t) 

records the covariance of ( )ˆ tθ . 

In Equation (2.11), α is the tuning factor, termed as ‘forgetting factor’, which has to be 

chosen for a balanced performance for nonlinearity adaptation and parameter estimation precision. 

The GTSK modeling approach uses α =0.95 and finds results are relatively insensitive to its 

choice. 

In this work, the resultant regressor vector x(t) and output y(t) are reorganized in a 

“spatial” order to minimize the change in coefficient values during the recursive estimation. The 

reordering procedure is termed as Sequential Nearest Neighbor Rearrangement (SNNR).By 



19 

 

reducing the parameter variation, the SNNR is able to reduce the mean squared error (MSE) of 

one-step-ahead prediction.  

B. Order Determination by Regressor Selection 

In this work, the order determination starts by selecting regressors with user-given value 

of possible maximum ny, nu and d. Then, a number of candidate regressors are generated by 

Equation (2.9) and denoted as [x1(t) x2(t) x3(t)… xm(t)xrandom(t)]. Regressors of x1(t),…,xm(t) are 

lagged y(t) and u(t) as shown in the regressor vector x(t). Regressor xrandom is a regressor 

comprised of random number that presumably contains no meaningful information on y(t).At 

first, each of m+1 regressors, x1(t), x2(t),  x3(t)… xm(t)xrandom(t), is tried. The trial starts with time-

sequence data (y(t),[xi(t)]), where y(t) is the output and xi(t) (i=1,…,m+1) in bracket is the trial 

regressor. A SNNR is then conducted on xi(t) to get rearranged data set (ysnnr(k), [xsnnr,i(k)]). The 

exponentially weighted recursive estimation in Equation (2.11) is then applied to the rearranged 

data. The one-step-ahead prediction error on ysnnr (k) is used to evaluate the prediction quality of 

each regressor, xi(t). The evaluation criteria is the following Final Prediction Error (FPE) 

index[31] 

( )
1

2
N L

k L

L np
FPE k

L np
ε

− +

=

+
=

− ∑  

4

1
L

α
=

−
                                                              (2.12) 

where ε(k) is the one-step-ahead prediction residual in Equation(2.11) for SNNR rearranged data, 

np is the number of regressors, L is related to the ‘forgetting factor’ α.  

After the first round of estimation and evaluation, the regressor with the minimum FPE is 

selected. For instance, if x2 is selected, there will be other m regressors to be tried. For each tried 

regressor xi(t) (i≠2), the time-sequence data is (y(t), [x2(t), xi(t)]), where the bracket contains the 
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already selected regressors, x2(t) and the trial regressor xi(t). A SNNR is then applied on [x2(t) 

xi(t)] to get rearranged data (ysnnr(k), [xsnnr,2(k) xsnnr,i(k)]). Equation (2.11) is conducted then to get 

the one-step-ahead prediction error on ysnnr(k). The quality of [x2(t) xi(t)] combination is then 

evaluated using FPE. The regressor combination with the minimum FPE is kept.  

The selection continues until either the minimum FPE for a selected set increased with 

respect to the previous set, or the xrandom(t) is selected. The injection of a random regressor is used 

as a stopping criterion[32]. The selection of xrandom(t) signifies that the rest of candidates are less 

influential on y than a random  pattern. 

Values of ny, nu and d could be easily defined by a selected set of consecutive regressors, 

for instance, [y(t-1), y(t-2), u(t-1), u(t-2)], due to implicit constraint on the model structure. 

However, absences could exist in selected regressors such as [y(t-1) y(t-4) u(t-1) u(t-3)], which 

does not correspond a set of ny, nu and d. For database management simplicity, in GTSK 

modeling, if the situation with absence occurs, a further comparison is executed on different order 

values. For the illustrated example, an exhaustive comparison is conducted on possible values of 

ny=1, 2, 3 or 4 combined the possible values of nu=0, 1, or 2, with d = 1. 

After this procedure, consequent variables (x1,…,xnx) are determined as the selected 

regressors(y(t-1) … y(t-ny), u(t-d) …. u(t-nu-d)). 

C. Nonlinear Component Detection 

To detect the regressors that are affecting the output nonlinearly, which are then used as 

antecedent variables, the similar technique for order determination is used. In GTSK modeling, 

antecedent variables (c1,...,cnc) are defined as a subset of the (x1,…,xnx). There are 2nx-1 subsets in 

(x1,…,xnx) excluding the empty one. Each subset is considered as a candidate (c1,...,cnc), on which 

the SNNR is again conducted and a corresponding FPE is computed. The subset with minimum 

FPE is selected as (c1,...,cnc), which are (y(t-1) … y(t-ay), u(t-d) …. u(t-bu-d)) in Equation(2.3) 
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2.1.3 Estimation of Parameter Values 

Once the consequent variables (x1,…,xnx) and antecedent variables (c1,...,cnc) are 

determined, the next task is to determine the antecedent structure as well as the parameter values 

in each rule. 

A. Methodology 

Figure 2.6 illustrates a GTSK model with a two-dimension antecedent structure. 

 

Figure 2.6 A GTSK model in a two dimension antecedent space  

If underlying rule regions are given, the parameter estimation problem will be easy to 

solve. In the GTSK approach, rule regions are generated out of an antecedent space by partition. 

An illustrating example for Figure 2.6 is shown below, where four regions are defined by three 

linear splitting boundaries (dashed lines).  

 



 

Figure 2.7 Partitioned antecedent space for the GTSK

Once a rule region is determined, an ellipsoid can be defined to cover it, as shown in 

Figure 2.6. The GTSK approach 

partition of the antecedent space. T

to solve a splitting and regression problem (SRP). 

B. Solving Splitting and Regression Problem

An example of one stage in SRP on a two dimensional antecedent space 

Figure 2.8. The objective is to minimize the modeling error of the partitioned data by the two 

linear models by placing a linear separation boundary (the bold dashed line) in the antecedent 

space, which results in two subspaces 

linear models shown use all relevant regressors, not just the two (

nonlinear behavior. The separation boundary is chosen to be linear, and is a function of the 

variables, of which only c1 and 
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Figure 2.7 Partitioned antecedent space for the GTSK model in Figure 2.6

Once a rule region is determined, an ellipsoid can be defined to cover it, as shown in 

Figure 2.6. The GTSK approach determines the number and shapes of regions by a recursive 

partition of the antecedent space. The fundamental step to obtain an antecedent 

and regression problem (SRP).  

B. Solving Splitting and Regression Problem 

An example of one stage in SRP on a two dimensional antecedent space 

he objective is to minimize the modeling error of the partitioned data by the two 

linear models by placing a linear separation boundary (the bold dashed line) in the antecedent 

space, which results in two subspaces A and B. Each subspace has a local linear

linear models shown use all relevant regressors, not just the two (c1 and c2) 

nonlinear behavior. The separation boundary is chosen to be linear, and is a function of the 

and c2 are illustrated here. 

in Figure 2.6 

Once a rule region is determined, an ellipsoid can be defined to cover it, as shown in 

determines the number and shapes of regions by a recursive 

to obtain an antecedent space partition is 

An example of one stage in SRP on a two dimensional antecedent space is illustrated in 

he objective is to minimize the modeling error of the partitioned data by the two 

linear models by placing a linear separation boundary (the bold dashed line) in the antecedent 

. Each subspace has a local linear model. The two 

) chosen to express 

nonlinear behavior. The separation boundary is chosen to be linear, and is a function of the ci 
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Figure 2.8 Illustration of a SRP 

The belongingness of data sample to subspace A is determined by l(t) and φ(t) as below 

( ) ( ) ( )0 1 1 2 2l t s s c t s c t= + +                  (2.13) 

( )
( )
( )

0, 0

1, 0

l t
t

l t
ϕ

 <
= 

≥
    (2.14) 

where s0, s1, s2 defines a separation boundary ( ) ( )0 1 1 2 2 0s s c t s c t+ + =  in Figure 2.8. The value of l(t) 

is 2 2
1 2s s+  times of the distance of a point, [c1(t), c2(t)] to the linear separation boundary , which is 

( ) ( ) 2 2
0 1 1 2 2 1 2/d s s c t s c t s s= + + + . However, Equation (2.14) implies that only the sign of l(t) matters. 

In Figure 2.8, the points in category A have negative values for l(t) while B category has positive 

l(t).  

In Figure 2.8, two local linear models are  

( ) ( ) ( )
( ) ( ) ( )

0 1 1

0 1 1

a
nx nx

b
nx nx

y t a a x t a x t

y t b b x t b x t

= + + +

= + + +

L

L
                  (2.15) 

Combing Equation (2.14) with the Equation (2.15), the output is then computed by 

( ) ( )( ) ( ) ( ) ( )ˆ 1 a by t t y t t y tϕ ϕ= − +                   (2.16) 

The SRP can be then solved by minimizing the following performance index J 

( )2

, ,
1

min
N

t

J tε
=

=∑
a b s

                  (2.17) 

c1 

c2 

 

A 

B 

( ) ( ) ( )0 1 1
b

nx nxy t b bx t b x t= + + +L

( ) ( )0 1 1 2 2 0s s c t s c t+ + =

( ) ( ) ( ) ( )0 1 1
a

nx nxy t a t ax t a x t= + + +L

d 
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where, ε(t) = y(t) - ŷ(t) is the residual, and parameter values to be estimated include a and b in 

Equation (2.15), and s in Equation (2.13), 

The GTSK approach solves the SRP by a heuristic suboptimal method based on the 

assumption that there are two local linear models. Given a separation defined by s, it results in a 

split of data [y C X] into A and B regions as [yA CA XA] and [yB CB XB]  

( ) ( )

( ) ( )

( ) ( )2 2

with

1

1

: 0, ; : 0,

Ta a
A

Tb b
B

y y N

y y N

N Nσ σ

= +

= +

 =  

 =  

A A A

B B B

A

B

A A B B

y X a e

y X b e

y

y

e I e I

L

L

               (2.18) 

where, y is the vector collecting all N sample outputs, C is a N by nc matrix consisting of N rows 

of antecedent variables, and X is a N by nx matrix consisting of N rows of consequent variables. 

XA and XB are two disjoint subsets of X. The corresponding model parameters a and b are 

estimated by 

( )
( )

1

1

ˆ

ˆ

T T

T T
B

−

−

=

=

A A A A

B B B

a X X X y

b X X X y

          (2.19) 

the residual for model A could then be evaluated by 

ˆ= −A A Aε y X a         (2.20) 

after some algebraic operations, Equation (2.20) is expressed in terms of eA by 

( )( )1T T−
= −A A A A A Aε I X X X X e

            

(2.21) 

the quadratic performance criterion is then evaluated and expressed in terms of XA and σA by 

( )( )1 2

T

T T
A

J E

Tr σ
−

 =  

= −

A A A

A A A A

ε ε

I X X X X
                  

(2.22) 
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in the same manner, the performance criterion for model B is described by 

( )( )1 2T TJ Tr σ
−

= −B B B B B BI X X X X , then the quadratic performance is expressed in terms of σA and σB 

by 

J J J= +A B

     

(2.23) 

which could be viewed as a weighted combination of 2σA
and 2σ B

. The weights are determined by 

the trace function on XA and XB, which are NA-nx-1 and NB-nx-1 respectively. Since nx is often 

negligible to NA and NB, Equation (2.23) is converted to 

2 2J N Nσ σ= +A A B B

         

(2.24) 

where, based on Equation (2.24), NA and NB are defined by 

( ) ( )
1 1

,
N N

B
t t

N t N N tϕ ϕ
= =

= = −∑ ∑A

               

(2.25) 

additionally, the unknown 2σA
and 2σ B

are to be replaced by their estimates by  

( ) ( )( ) ( )

( )( ) ( )( ) ( )( )

22

1 1

22

1 1

ˆ

ˆ 1 1

N N

t t

N N

B
t t

t y t t

t y t t

σ ϕ µ ϕ

σ ϕ µ ϕ

= =

= =

 = − 

 = − − − 

∑ ∑

∑ ∑

A A

B                     

(2.26) 

where µA and µB are unknown means of yA and yB in model A and B. Substituting Equations (2.25 

- 2.26) into Equation (2.23), J is then described by 

( ) ( )( ) ( )( ) ( )( )2 2 22

1

1
N

t

J t y t t y tϕ µ ϕ µ
=

= − + − −∑ A B

                          

(2.27) 

where, there are N+2 decision variables, N belongingness values, and µA and µB. Since the φ(t) s 

not coupled with any φ(τ) (t≠τ), it can be solved individually by 

( )
( )( )

( )( ) ( )( )

2

2 2

y t
t

y t y t

µ
ϕ

µ µ

−
=

− + −

B

A B
                  

(2.28) 
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Combining Equations (2.28) and (2.27) defines J in terms of µA and µB only by 

( )( ) ( )( )
( )( ) ( )( )

2 2

2 2
1

N

t

y t y t
J

y t y t

µ µ

µ µ=

− −
=

− + −
∑ A B

A B
                   

(2.29) 

the objective function in Equation (2.29) has only two decision variables µA and µB. Once J is 

minimized, φ(t) is determined by Equation (2.28) and automatically lies between 0 and 1. The 

resultant φ(t) takes any value within 0 and 1 instead of 0 and 1 only. The following Equation 

(2.30) will convert the φ(t) to a two-value indicator (0,1) 

( )
( )
( )

0, 0.5

1, 0.5

t
t

t

ϕ
ϕ

ϕ

 <
= 

≥
            

(2.30) 

which assigns each data sample to either region A or B. Notice that the φ(t)from Equations (2.28) 

and (2.30) is not confined to a linear separation boundary defined in Equation (2.13). In order to 

let the indicator values be subject to a linear separation boundary, the following support vector 

machine (SVM) [33] is then solved to find the linear separation parameters s based on φ(t) from 

Equation (2.30) 

( ) ( )
( ) ( )

2

0 1 1

0 1 1

0 1 1

minimize 

subject to

1 , 1

1, 1

, 0

A AN Nnc
a b

k i j
k i j

a
nc nc i A

b
nc nc j B

a a
i i

s r

s s c i s c i i N

s s c j s c j j N

ξ ξ

ξ

ξ

ξ ξ

= = =

 
+ + 

 

+ + + ≥ − =

+ + + ≤ − =

≥

∑ ∑ ∑

L L

L L                    

(2.31) 

The solved sis then applied to Equations (2.13) and (2.14) to update φ(t), which is now 

confined a linear separation boundary. The resultant φ(t) defines a split, [yA CA XA] and [yB CB 

XB]. Then a and b are estimated by Equation (2.19). It then is able to evaluate residuals εA and εB 

explicitly by Equation (2.20). The indicator values are then updated by minimizing the following 

J with replacement of (y(t) - µA) and (y(t) - µB) in Equation (2.27) by εA(t) and εB(t) 
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( ) ( ) ( )( ) ( )
22 2 2

1

1
N

t

J t t t tϕ ε ϕ ε
=

= + −∑ A B

                  

(2.32) 

where, φ(t) is solved by  

( ) ( ) ( ) ( )( )2 2 2
B A Bt t t tϕ ε ε ε= +

              

(2.33) 

The new φ(t)is then converted to 0 and 1 by Equation (2.30) and the SVM is solved again. 

Subsequently, a and b are re-estimated. 

This successive substitution procedure to solve the SRP is summarized in the following 

flowchart.  

 

Figure 2.9 The algorithm solving the SPR 

The algorithm stops when the change of φ(t)in two consecutive steps is very small. The 

antecedent space is progressively partitioned until no rule region can be further divided.    

 
SRP 

Solve μA and μB (2.29) 

Solve φ(t) (2.28) 

Solve a SVM for s (2.31) 

Compute φ(t) (2.13), (2.14) 

Estimate a and b (2.19) 

Solve φ(t) (2.32) 

Converge 

END 

No 

Yes 
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C. Rule Antecedent Identification 

Given a partitioned antecedent space, the rule of each local region needs to be defined. 

This can be interpreted as the estimation of the centroid and shape factors of the best ellipsoids to 

cover each region. A method which also considers the quality of reach data point is used in the 

GTSK approach. 

 The quality is related to the prediction error for each data sample. The solid dots in Fig. 8 

represent data points with relatively small residuals from their linear model, Equation (2.18), 

while the circles represent data points with relatively larger residuals.  

 

 
Figure 2.10 A local region in an antecedent space 

 
Only data samples with smaller residuals are used to estimate the antecedent parameters. 

The importance of each data point is weighted by β, which is defined as  

( ) ( )( )2
exp

Tr r r r r
i iN ε ε= −β ε             (2.34) 

 
where Nr is the number of data points in region r. The script (r, i) represents the i th data in region r. 

r
iβ reaches the highest value at 1 when r

iε is zero. 

The centroid or is estimated by 

1 1

r rN N
r r r r

i i i
i i

β β
= =

=∑ ∑o c           (2.35) 

 
and the matrix Pr is defined by its inverse 
 

1c

2c
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( ) ( )( )1

1 1

P
r rN NTr r r r r r r

i i i i
i i

β β
−

= =

= − −∑ ∑c o c o                   (2.36) 

Then the rules of local regions, TAs can be defined by Equation 2.5. 

2.1.4 GTSK Modeling Procedure Summary 
 

The above procedure for converting input-output data to a GTSK model is summarized as 

follows: 

Step 1. Determine dynamic orders, ny, nu and delay d by using the SNNR to rearrange data, 

recursive estimation (Equation (2.11)) to process rearranged data, and the FPE ((Equation (2.12)) 

to evaluate a particular choice of regressor set.  

Step 2. Determine antecedent variables (c1,...,cnc) from consequent variables (x1,…,xnx)  

Step 3. Recursively partition the antecedent space by solving a series of SRPs. Note, the 

parameter values in the consequent model were determined by Equation (2.19) in Step 3.  

Step 4. Determine antecedent parameters, centroid and shape matrix for each rule antecedent.  

2.2 NMPC Methodology 

The NMPC proposed in this work is designed to find an optimized sequence of present 

and future controller outputs (u) to minimize the deviation between a process response prediction 

and a given reference trajectory for a number of future steps over a time horizon on the order of 

the process settling time.  

The general structure of NMPC or receding horizon control implemented in this work is 

shown in Figure2.11 
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Figure 2.11 General Structure of NMPC 

where ysp is the steady-state set point (SP) of controlled variable (CV) yp, yspbias is the biased set 

point. u is the manipulated variable (MV). The controller block is comprised of the GTSK model 

and the optimizer.  

In this NMPC application, the GTSK model is used to forecast the future process 

response based on the knowledge of past CVs and MVs. The function of the optimizer is to 

minimize the distance between the predicted future trajectory of process response and the desired 

future trajectory, which is also called reference trajectory.  

At time t, the current time in the process operation, the process response prediction y(t+i) 

is calculated for each discrete sampling time for a long horizon into the  future (i=1,....N). The 

length of the prediction horizon, N, is a controller tuning variable defined by user. However, it 

should be extend sufficiently beyond the dead-time of the process, θ, as well as the inverse 

process range. The predicted process response is determined by a nonlinear model of the NMPC, 

which is the GTSK model in this work.  

Since a process model mismatch (pmm) exists, a feedback correction is necessary for 

compensating the pmm and removing the steady state offset. In this work, a biased set point is 

introduced as the adjustment. It is defined by Equation (2.37), where pmm stands for the 

difference between the present process output and model prediction. 

Setpoint
Adjustment

Reference 
Trajectory  
Calculation

Controller
ysp

Process
yspbias r u yp

Yp



31 

 

yspbias sp=y - pmm
                                                       

(2.37)                                                                               

The reference trajectory, r(t) applied in this work is a first-order approximation from the 

current model value, y(t) towards a biased set point, yspbias(t). It is defined by 

w spbias

d r(t)
τ +r(t)=y (t)

dt
                                                (2.38)                                                        

which can be also represented in a discrete time formation as below 

t 1 t t
w w

spbias 

∆t ∆t- -
τ τr = (1- e )y +(e )r+                                        (2.39)                                                  

where ∆t is the sampling time interval, τw  is a tuning parameter of the reference trajectory.  

In this NMPC control scheme, the controller output scenario (the future sequence of MV 

values) is “known” within the control horizon to minimize the sum squared deviation (SSD) of 

process response prediction from reference trajectory.  

The controller output scenario in this work is designed to be a sequence of three step-and-

hold values. Each of them covers 25%, 25% and 50% of the control horizon, respectively. 

Nevertheless, only the first step of the MV sequence is implemented as the controller output at 

instant time, t. Figure 2.12 illustrates an example of the MV sequence and process response 

prediction in the future. In this simulation, the process is initialized at the steady state of the 

controlled variable (CV) =7. The controller is in the MAN mode with the MV of 50% at the 

beginning. It switches to AUTO mode at 5 Minutes. At t=10, the set point is changed from 7 to 3. 

The MV goes to zero initially after the set point change. Figure 2.12 is a snapshot at t=14 which 

shows post events and future projections. 
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(a) 

 
(b) 

Figure 2.12 The Process Response and the Prediction (a) and the MV sequence (b) 

The nonlinear model embedded in the optimizer is the GTSK model. At the very 

beginning of the control horizon, the GTSK model is initialized using the past CV and MV values 

as the regressors. Once a model prediction value is calculated by the GTSK model for the next 

time step, it is stored as a “past CV” value for next sampling time prediction. The controller 
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output values used as the regressors are delivered from the trial solution of MVs, which is 

determined by optimizer. The estimated process response for the whole range of the control 

horizon is calculated by this recurrent prediction approach.   

A new optimization technique called Leapfrogging [6] is employed in this work. With a 

global aspect, the leapfrogging technique can efficiently find the global optima for multi-optima 

problems. In this work, it searches and determines the MV sequence that minimizes the sum of 

squared deviations between a process response prediction and a given reference trajectory for the 

control horizon at each sampling time. 

The logic of the NMPC algorithm is illustrated in the following flow chart. 

 

Figure 2.13 The Logic of the NMPC Algorithm 

Set Target y(t)

Calculate reference trajectory R

Guess u(t) sequence

Predict  �(t) over the horizon

Calculate the deviation (SSD) 
between � and R

Minimize SSD
(Optimization)

1st step of best 
u(t) to implement
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2.3 Leapfrogging Optimization Approach in GTSK MPC 

In a MPC controller, a set of optimal MV values which drive the process toward the 

desired set point  along the reference trajectory without violating constraints need to be computed 

at each sampling time.  

Recently, a new optimization approach named leapfrogging is proposed by Rhinehart, Su 

and Sridhar (2010)[6]. With the characteristics of direct search and random starts, it can 

efficiently find the global optima for multi-optima problems. Considering its simplicity and 

efficiency for global optimization, which will greatly enhance the online application performance 

of the NMPC controller, the leapfrogging optimizer is employed in this work.  

The leapfrogging technique starts with a random located set of trial solutions (termed 

players) within the feasible decision variable (DV) space. Infeasible regions may be defined by 

either DV, OF or auxiliary functions. At each iteration, the player with the worst objective 

function (OF) value is relocated to a random position within its DV-space reflection on the other 

side of the player with the best OF value. Figure 2.1 illustrates the leapfrogging mechanism. 
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Figure 2.14 Leapfrogging Mechanism 

The repulsion of vacated sites is another innovative attribute of this technique. Influenced 

by the synoptic topographic knowledge, a history of positions of recently vacated sites in DV-

space is used to mildly repulse the leap-to position away from the recently vacated sites. 

In this work, the controller calls the embedded leapfrogging optimizer to search and determine 

the MVs sequence that minimizes the sum of squared deviations between a process response 

prediction and a given reference trajectory for the control horizon at each sampling time. 

worst player

best player

reflected window



36 

 

CHAPTER III 
 

 

EXPERIMENTAL METHOD 

 

3.1 Experimental System 

In this study, the experimental system is a process simulator, in which the NMPC 

controller was implemented on a primary process (y) and an auxiliary process (z). The primary 

process in this simulator is fourth-order-plus-dead-time (FOPDT) process with a nonlinear gain 

and the environmental effect (noise and disturbance). The process gain (Kp) is one over the square 

root of the manipulated variable u(t), which is also the input of the controlled variable y(t). 

The FOPDT process is represented as  

p
1K = 

u(t)  

1
1 1 p

d y (t)
τ +y (t)=K  u(t)

dt  

2
2 2 1

d y (t)
τ +y (t)=y (t)

dt                                                         (3.1) 

3
3 3 2

d y (t)
τ +y (t)=y (t) + D

dt
 

4 3

d y(t)
τ +y(t)=y (t - )

dt
θ  
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where yi(t) is the process response of each lag,��  is the time constant,  D is the external 

disturbance, θ is the dead-time, dt is the sampling interval. The coefficient values are shown in 

Table 3.1 

 

Table 3.1 Process Coefficients 

Parameter Value (minute) 

�� 1 

�� 2 

�� 2 

�� 3 

θ 3 

dt 0.2 

 

 

Figure 3.1 shows the nonlinear dynamic behavior of the process. The input u(t) has a 

minimum value of 0 and a maximum value of 100. Consequently, the process response y(t) 

ranges from 0 to 10. In Figure 3.1, a step change of u(t) from 0 to 20 leads to a y(t) change of 

about 4.5. However, y(t) increases from about 9 to 10 when a same increment was made on u(t) 

from 80 to 100. Due to the nonlinearity of the process, equal changes in u(t) lead to diminishing 

changes in y(t). 
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Figure 3.1 CV responses to MV equal-step-changes 

The noise used in the simulation is generated by Box-Muller method[34]. It is normally 

and independently distributed with zero mean and a standard deviation of sigma (σ), which is 

referred to as NID (0, sigma). The noise equation is  

Noise Noise 1 2NID (0, ) -2 Ln(r ) sin(2πr )σ =σ ⋅
                            

(3.2) 

where σ
��
� is 0.2, r1 and r2 are uniformly distributed random number between 0 and 1.  

The external disturbance is simulated by an autoregressive-moving-average (ARMA) 

type model which is first order in response. The model that driven by a NID(o, σ��
� ) noise 

signal generates autocorrelated time series data  as disturbance. It is represented as 

Dist Dist

d D(t)
τ +D(t)= NID (0, )

dt
σ                                         (3.3) 

Where D(t) is the disturbance, ����� is 5, σ��
�  is 0.25. 

The auxiliary process variable z(t) is a first-order response to u(t), which is represented as  

z z

d z(t)
τ +z(t)=K  u(t)

dt                                                        (3.4)
 

where �� is 2.67, Kz  is 0.9. 
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3.2 GTSK Model Development 

The GTSK approach converts the time varying input and output data generated by the 

process simulator to a GTSK model. As presented in Chapter 2, y(t-1) … y(t-ny), u(t-d) …. u(t-nu-

d) were determined as the consequent variables, and then the antecedent variables were  selected 

from them.  The antecedent space was recursively partitioned into several regions. The antecedent 

parameters, centroid and shape matrix were determined by GTSK modeling technique 

subsequently. 

3.2.1 Sawtooth Input Training Signal 

In the modeling phase, a “sawtooth function” is chosen to generate the input training 

signal. As shown in Figure 3.2, it jumps or drops to the halfway of a random level, and then 

ramps to that level at the end of a period of random length.“Skyline function” is another 

commonly used training signal, which jumps or drops to a random level and holds for a random 

time interval within certain limits. Compared to “skyline function”, the sawtooth function covers 

wider range of the input data by the random located ramp, and is thought to provide a more 

complete basis for obtaining empirical process response models. 

 

(a)                                                                     (b) 

Figure 3.2 Input training signals 
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3.2.2 GTSK Model Generation and Evaluation 

The training data used in this work is plotted in Figure 3.3, which shows the input signal 

u(t) by the sawtooth function and the process response y(t). The range of process response value 

is 0 to 10, while the range of input signal value is 0 to 100%. The process was initialized at zero.  
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(b) 

Figure 3.3 The sawtooth-pattern input (a) and process response (b) 

The GTSK model in this work has y(t-1), y(t-2), y(t-3), and u(t-20) as regressors, among 

which u(t-20) is the only antecedent variable. The model, which has 12 local models, is 

represented by following equations. Table 3.2 shows the values of 84 coefficients in total. 
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1

12

y (t) =  y(t -1) +  y(t - 2) + y(t -3) +  u(t - 20)

y (t) =  y(t -1) +  y(t - 2) +  y(t -3) + u(t - 20)

1 1 1 1 1
1 2 3 4 5

12 12 12 12 12
1 2 3 4 5

θ  + θ  θ θ  θ

θ  + θ θ θ θ  

∧

∧

M

 

i
i

i

2-( u(t - 20)-Center )
TA (t)= EXP( )

Width                                          (3.5) 

i
i

12
i

i=1

TA (t)
w (t)=

TA (t)∑
 

12 i
i

i=1

y(t)= w (t) y (t)
∧ ∧

∑
 

Table 3.2 GTSK Model Coefficients 

Model No. θ1 θ2 θ3 θ4 θ5 Center Width* 

1 0.380729 0.374544 0.279718 0.276694 0.002959 76.5624 0.0197 

2 0.198491 0.289056 0.38512 0.259525 0.005471 56.4061 0.0614 

3 0.03796 0.412064 0.185464 0.335465 0.023535 3.8624 0.2644 

4 0.374987 0.30784 0.399311 0.188244 0.00371 16.8419 0.4129 

5 0.318991 0.219484 0.401633 0.30176 0.004533 47.916 1.2644 

6 0.190683 0.184169 0.401888 0.337867 0.004275 8.2903 0.9606 

7 0.129525 0.371462 0.27109 0.285711 0.008859 30.4761 0.1612 

8 0.254841 0.348019 0.301008 0.279506 0.003807 23.3493 0.2459 

9 0.234811 0.404955 0.225322 0.310266 0.003447 44.0831 0.3508 

10 0.074481 0.334408 0.327454 0.263228 0.010187 38.0753 0.377 

11 0.039623 0.242396 0.305287 0.316081 0.035061 13.3275 2.5599 

12 -0.04174 0.300432 0.416675 0.229603 0.018498 11.3618 3.0833 
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In this work, because some of the width values were so small that there was no model 

information in between centers, all the width values are adjusted to be 30% to provide a better 

coverage on the antecedent of each local model. 

The GTSK model prediction, ŷGTSK, is shown in Figure 3.4; comparing it with the process 

response in the same plot. The two curves are barely distinguishable. To provide a comparison, a 

second-order-plus-dead-time (SOPDT) model is generated by the conventional regression 

approach, which the process-model mismatch is obvious, indicating the benefit of the GTSK 

model. Figure 3.5 shows the SOPDT model prediction ŷSOPDT. 

 

Figure 3.4 GTSK model prediction and process response 
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Figure 3.5 SOPDT model prediction and process response 

The model performance is evaluated by the sum squared deviation (SSD) from the 

process response y to the prediction ŷ. The SSD from model to process of two models was 

compared in Table 3.3 

Table 3.3 Comparison of sum-squared deviation (SSD) 

 GTSK model SOPDT model 

SSD 159 2057 

 

According to both the SSD and plot comparison, the GTSK model prediction not only 

shows a much smaller deviation from the process than the SOPDT model, but also fits the process 

“very well”. This result indicates that the GTSK model is a well-qualified model for the nonlinear 

MPC. 
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

 

To evaluate the performance of a GTSK MPC controller, seven sets of dynamic control 

simulations were run. The performance of disturbance rejection, set point tracking, constraint 

handling, comprehensive environmental effect (both noise and disturbance) handling and manual 

to automatic transfer was tested. In all simulations, the process was initialized at the steady state 

of CV=7 with the MV of 50%. It operates in the MAN mode for 5 minutes before it was 

transferred to the AUTO mode (except the disturbance rejection test). 

4.1 Disturbance Rejection 

The GTSK-MPC control performance for the disturbance rejection is illustrated in Figure 

4.1. Set point is maintained at 7, and noise was not introduced to the process. The disturbance 

was added to the second-order response of the process. To demonstrate the controller ability to 

handle the disturbance, the test was carried out under both MAN and AUTO modes of the 

controller. From 0 to 40 minutes, the controller is in MAN mode with the MV of 50%. After the 

disturbance was removed, the process was not back to the set point. After the time of 40 minutes, 

the controller was switched to AUTO mode, and trying to bring the disturbed process back to set 

point. It is shown that the process was regulated successfully and brought back to the set point at 

about 80 Minutes. The control performance was measured by the sum squared deviation (SSD) of 
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CV from set point. The SSD is 21.85 when the controller is in MAN mode. Within the next 40 

minutes, when it is in AUTO mode, the SSD is reduced to 5.82. 

 

Figure 4.1 Control performance of disturbance rejection 

4.2 Set point Tracking 

Figure 4.2 illustrates the control performance for set point tracking.  In this test, there is 

no environmental effect added to the process. The controller showed a strong set point tracking 

ability. It took the process about 30 minutes to settle down when the set point stepped either up or 

down. The controller also responded quickly and effectively with a moderate aggressiveness. In 

spite of process nonlinearity (Kp changes by about 2:1 over the range), the process responses to 

the SP = 3 and SP =9 values are similar, demonstrating control effectiveness. 
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Figure 4.2 Control performance for set point tracking without environmental effects 

4.3 Constraint Handling 

Figures 4.3 to 11 illustrate the impact of the different types of constraints. In each test, 

two sets of set point step change from 7 to 3 were made to compare the constrained and 

unconstrained conditions. During the first simulation period from 0 to70 minutes, the process was 

simulated with the constraints. Then the constraints were removed at 70 minutes. The second 

parts of the simulation were carried out without the constraint. The four types of constraints were 

all tested individually.  

Figure 4.3 shows the control performance when hard constraints were introduced. In this 

test, the MV was constrained with an upper limit of 100% and a lower limit of 10%. At about 10 

minutes, the set point was changed to 3, and the controller began to push the MV to its lower 

limit of 10% trying to bring the CV to the set point. The CV reached the steady state value which 

is greater than the set point at about 40 minutes. As soon as the set point returned to 7, t=70, the 

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)



48 

 

MV changes. There was no windup at the constraint. Once the constraint was removed, the MV 

could go below 10% so that the CV reached the set point of 3. 

 

Figure 4.3 Demonstration of the impact of hard constraints on the MV 

Figure 4.4 is a demonstration of the impact of hard constraints on the rate-of-change of 

MV. The limit on the rate-of-change of MV is 1% per sampling interval. Under the constrained 

condition, the MV gradually moved down after the set point change. In contrast, during the 

subsequent unconstrained period, the MV jumped straight down immediately when the set point 

was changed. 
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Figure 4.4 Demonstration of the impact of hard constraints on the rate-of-change of MV 

Figure 4.5 demonstrates the impact of soft constraints on the value of the CV. The “legal” 

operation range of the CV was set as 3.2 to 10. If the CV violates the constraints, a penalty is 

added to SSD so that the optimizer is subject to the soft constraints on the CV. Comparing the 

different process responses to the same set point step change, Figure 4.5 shows that, under the 

constrained condition, the controller was not able to drive the CV to the set point 3, which is 

below the lower limit 3.2. Therefore, the soft constraint successfully influenced the controller’s 

“decisions”. 
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Figure 4.5 Demonstration of the impact of soft constraints on the CV 

The auxiliary variable was added to the process in the test shown in Figure 4.6. The lower 

limit of the auxiliary variable is 15. The optimizer is subject to the soft constraints on the 

auxiliary variable. It is shown that the controller sacrificed its performance to avoid violating the 

soft constraints on the auxiliary variable. Due to the optimization objective, the CV did not reach 

the set point, but achieved a balance between the control performance and the penalty of violating 

the soft constraints.  
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Figure 4.6 Demonstration of the impact of soft constraints on the auxiliary variable 

4.4 Environmental Effect Handling 

When environmental effects are added to the process, the control performance for 

handling this comprehensive situation is shown in Figure 4.7. The four types of the constraints 

presented above are also applied in this test. In Figure 4.7, the process tracks the set point change 

well even under the influence of both noise and disturbance. The disturbance was introduced at 7 

minutes. It is shown that there is same amplitude of the noise and wandering of CV at both set 

point = 3 and set point = 9. However, the amplitude of MV wandering at set point = 3 is about 

twice larger than that at set point = 9. This is attributed to the nonlinearity of the process. 
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Figure 4.7 Control performance for set point tracking with environmental effects 
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CHAPTER V 
 

 

CONCLUSION AND RECOMMENDATIONS 

 

7.1 Conclusion 

1. The use of a GTSK model and Leapfrogging as an optimizer were demonstrated as effective 

for nonlinear model predictive control.  

2. The nonlinear model is firstly developed by using GTSK approach. The prediction accuracy of 

the GTSK model was illustrated and quantified by a comparison with SOPDT model. The GTSK 

model was much better. 

3. A fourth-order-plus-dead-time (FOPDT) process simulator with nonlinear gain and the 

environmental effect (noise and disturbance) is used as the experimental system, in which the 

NMPC control algorithm was embedded. The SIMO process was subject to soft constraints on the 

controlled and auxiliary variables, and hard constraints on both the limits and rate of change of 

the manipulated variable.   

4. The performance of GTSK MPC controller is evaluated via seven sets of dynamic control 

simulation. The controller showed desirable performance for disturbance rejection, set point 

tracking, constraint handling, and comprehensive environmental effect handling. 

5. The controller has a bump-less transition from MAN to AUTO mode. 
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6. The controller does not wind up when the process was constrained.    

7.2 Recommendations 

Recommendations for future work are: 

1. Extend the use of GTSK model in MPC to the multi-input-multi-output (MIMO) process 

simulator with a more realistic and representative chemical engineering unit operation 

process. 

2. Implement the GTSK MPC controller on the real system, like the heat exchanger or 

distillation column in the Unit Operations Laboratory. 

3. Investigate the reason GTSK approach gives such low width of the rule antecedent. 

4. Investigate the merits of the sawtooth signal over the skyline signal. 

5. Evaluate the use of the GTSK model for control applications to alternate nonlinear modeling 

approaches. Consider ease of use, computational burden, robustness, understandability, and 

other technical and human attributes. 
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APPPENDIX 
 

 

The methodologies of the nonlinear simulator, the GTSK MPC, and the Leapfrogging 

optimizer are described in Chapter 2. This section lists the Excel VBA code of the simulation 

system. 

A.1 Excel VBA code of the simulation system 

Sub main() 

'   The main subroutine calls each function or subroutine, keeping events organized 

'   As you add features, do not code them in the Main, but place them in subroutines 

'   or functions for the main sub to call 

 

    If Cells(9, 13) = "N" Then Application.ScreenUpdating = False 

 

    Call initialize                     'Input values and initialize states 

     

    For SimTimeCounter = 0 To 650      'Simulation time counter 

        Call events                     'Manage events and user-desired changes 

        Call process                    'Process responds with a measurement 

        SimTime = dt * SimTimeCounter   'Process simulation time interval is complete 

        Call control                   'Controller responds with action 

        Call evaluate                   'Determine goodness metrics 

        Call output                     'Display results 

    Next SimTimeCounter 

     

 Application.ScreenUpdating = True 

 

End Sub 

'' 

Sub process() 

'   This is the simulator for the real process.  In real life this is the physical process. 

'   You would not be able to know any of these equations or variable values. 
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'   This is not in deviation variables. 

 

    If u > 0 Then 

        kp = u ^ (-0.5)     'Process gain is designed so that y_ss=10 when u=100%, and y-ss=0 when 

u=0 

    Else 

        kp = 0 

    End If 

    If Environment = "ON" Then 

        dist = lambdadist * sigmadistdriver * Sqr(-2 * Log(Rnd())) * Sin(twopi * Rnd()) + Clambdadist 

* dist 

    Else 

        dist = 0 

    End If 

    j = j + 1                                                       'Pointer for storage 

    If j = 21 Then j = 1                                            'Array max is 20th element 

    y4 = (dt / taup4) * y3 + (1 - dt / taup4) * y4                  'Process lags are calculated 

    y3 = (dt / taup3) * (y2 + dist) + (1 - dt / taup3) * y3 

    y2 = (dt / taup2) * y1 + (1 - dt / taup2) * y2                  'In reverse order, so that ... 

    y1 = (dt / taup1) * kp * u + (1 - dt / taup1) * y1                  'each uses prior old value. 

    yhold(j) = y4 + sigmameasurement * Sqr(-2 * Log(Rnd())) * Sin(twopi * Rnd())   'Add 

NID(0,sigma) noise 

    k = j - delay                                                   'Pointer for delay read 

    If k < 1 Then k = 20 + (j - delay) 

    yp = yhold(k) 

    yprocess(SimTimeCounter) = yp 

    zAuxiliaryProcess = 0.075 * 0.9 * u + 0.925 * zAuxiliaryProcess 'Simple representation for the 

auxiliary process 

 

End Sub 

' 

' 

Sub SOPDT_Model_P2N() 

' SOPDT model  Past to Now 

' Note: Model is in deviation variables, starts at zero with a zero slope, and 

'   is influenced by the deviation in u from the initial u value 

' This increments the model by one time step each control interval. 

 

    If SimTimeCounter = 0 Then 

        YmodelP2N = YmBase 

    ElseIf SimTimeCounter < 21 And SimTimeCounter > 0 Then 

        YmodelP2N = yP2N(SimTimeCounter - 1)                                  'when counter<36, yP2N=initial 
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    ElseIf SimTimeCounter > 20 Then 

        yt1 = yP2N(SimTimeCounter - 1)                          'deliever values of regressors 

        yt2 = yP2N(SimTimeCounter - 2) 

        yt3 = yP2N(SimTimeCounter - 3) 

        Ut = MV(SimTimeCounter - 20) 

           

        numerator = 0 

        denominator = 0 

         

        For iLM = 1 To 12 

            theta1 = matrix(iLM, 1)                              'read parameters 

            theta2 = matrix(iLM, 2) 

            theta3 = matrix(iLM, 3) 

            theta4 = matrix(iLM, 4) 

            theta5 = matrix(iLM, 5) 

             'Truth 

            center = matrix(iLM, 6) 

            

            ylm = theta1 + theta2 * yt1 + theta3 * yt2 + theta4 * yt3 + theta5 * Ut 'local model value 

                                                   

            Ta = Exp(-(Ut - center) ^ 2 / 30)        'truth value 

           

            numerator = numerator + ylm * Ta 

            denominator = denominator + Ta 

        Next iLM 

            If denominator > 0 Then 

                YmodelP2N = numerator / denominator 

            Else 

                YmodelP2N = yP2N(SimTimeCounter - 1) 

            End If 

    End If 

    yP2N(SimTimeCounter) = YmodelP2N 

    zAuxiliaryP2N = 0.1 * 0.8 * u + 0.9 * zAuxiliaryP2N 

End Sub 

' 

' 

Sub SOPDT_Model_N2F_SSD() 

' SOPDT model  Now to Future. 

 

'       Initialize model and variables 

    Dim iN2F As Integer     'counter for future time increments 

    Dim yN2F(200) As Single 
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    Dim MVN2F(200) As Single 

 

    NOFE = NOFE + 1                     'Count number of function evaluations - a measure of work 

required by the optimizer 

    reference = yP2N(SimTimeCounter)          'Convert reference trajectory to deviation variables 

    SSD = 0 

    zAuxiliaryN2F = zAuxiliaryP2N 

     

    For iN2F = 1 To NControlHorizon 

        If SimTimeCounter + iN2F = 1 Then 

            ymodelN2F = yP2N(SimTimeCounter) 

        ElseIf SimTimeCounter + iN2F < 21 And SimTimeCounter + iN2F > 1 Then 

            ymodelN2F = yN2F(iN2F - 1)                                'when counter<36, yP2N=initial 

        ElseIf SimTimeCounter + iN2F > 20 Then 

         

            'special 

            MV(SimTimeCounter) = u1 

             

            ' define three MVs 

            If iN2F < 25 Then 

                MVN2F(iN2F) = u1 

            ElseIf iN2F < 50 And iN2F > 24 Then 

                MVN2F(iN2F) = u2 

            ElseIf iN2F < (NControlHorizon + 1) And iN2F > 49 Then 

                MVN2F(iN2F) = u3 

            End If 

            

            'deliever values of regressors 

            'yt1 

            If iN2F < 2 Then                                            'yt1 

                yt1 = yP2N(SimTimeCounter + iN2F - 1) 

            Else 

                yt1 = yN2F(iN2F - 1) 

            End If 

            'yt2 

            If iN2F < 3 Then                                            'yt2 

                yt2 = yP2N(SimTimeCounter + iN2F - 2) 

            Else 

                yt2 = yN2F(iN2F - 2) 

            End If 

            'yt3 

            If iN2F < 4 Then                                            'yt3 
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                yt3 = yP2N(SimTimeCounter + iN2F - 3) 

            Else 

                yt3 = yN2F(iN2F - 3) 

            End If 

            'u35 

            If iN2F < 21 Then                                            'u35 

                Ut = MV(SimTimeCounter + iN2F - 20) 

            Else 

                Ut = MVN2F(iN2F - 20) 

            End If 

            numerator = 0 

            denominator = 0 

             

            For iLM = 1 To 12 

                theta1 = matrix(iLM, 1)                              'read parameters 

                theta2 = matrix(iLM, 2) 

                theta3 = matrix(iLM, 3) 

                theta4 = matrix(iLM, 4) 

                theta5 = matrix(iLM, 5) 

                'Truth 

                center = matrix(iLM, 6) 

'                left = matrix(iLM, 7) 

'                right = matrix(iLM, 8) 

                 

                ylm = theta1 + theta2 * yt1 + theta3 * yt2 + theta4 * yt3 + theta5 * Ut 'local model 

value 

                Ta = Exp(-(Ut - center) ^ 2 / 30)                                        'truth value 

        

                numerator = numerator + ylm * Ta 

                denominator = denominator + Ta 

            Next iLM 

                 

            If denominator > 0 Then 

                ymodelN2F = numerator / denominator 

            Else 

                ymodelN2F = yN2F(iN2F - 1) 

            End If 

        End If 

         

        yN2F(iN2F) = ymodelN2F 

 

        reference = (dt / tauw) * yspBiasDeviation + (1 - dt / tauw) * reference   'deviation variable 
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        yProcessEstimate = ymodelN2F + pmmyf                         'Corrects the model value with pmm 

to estimate future CV 

        zAuxiliaryN2F = 0.1 * 0.8 * Ut + 0.9 * zAuxiliaryN2F 

        zProcessEstimate = zAuxiliaryN2F + pmmz                             'Corrects the model value with 

pmm to estimate future AuxV 

 

        SSD = SSD + ((reference - ymodelN2F) ^ 2) / (ECVSP ^ 2) + 

y_Constraint_Penalty(yProcessEstimate) / (ECVy ^ 2) + z_Constraint_Penalty(zProcessEstimate) / 

(ECVz ^ 2) 

        

        If display = "Yes" Then 

            Cells(iN2F + SimTimeCounter + 15, 2) = SimTime + dt * iN2F 

            Cells(iN2F + SimTimeCounter + 15, 6) = reference ' + YmInitial 

            Cells(iN2F + SimTimeCounter + 15, 4) = MVN2F(iN2F) ' + uinitial 

            Cells(iN2F + SimTimeCounter + 15, 5) = yN2F(iN2F) ' + YmInitial 

            Cells(iN2F + SimTimeCounter + 15, 7) = yspBiasDeviation ' + YmInitial 

             

        End If 

    Next iN2F 

    If display = "Yes" Then 

        Cells(SimTimeCounter + 14, 7) = "" 

        Cells(SimTimeCounter + 14, 4) = "" 

        Cells(SimTimeCounter + 14, 5) = "" 

        Cells(SimTimeCounter + 14, 6) = "" 

         

        Calculate                   'VBA command to update the active worksheet (updates graph) 

    End If 

     

End Sub 

' 

' 

Function y_Constraint_Penalty(yProcessEstimate) 

'   This function assesses a soft penalty if constraints on y are exceeded. 

'   Full y range is 0 to 10. 

'   In contrast to pushing model to biased setpoint, this compares biased model to limits. 

'       yProcessEstimate is the pmm-biased model N2F prediction value. 

 

    y_Constraint_Penalty = 0 

    yConstraintMin = 0 

    yConstraintMax = 10 

    If yProcessEstimate < yConstraintMin Then y_Constraint_Penalty = (yProcessEstimate - 

yConstraintMin) ^ 2 
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    If yProcessEstimate > yConstraintMax Then y_Constraint_Penalty = (yProcessEstimate - 

yConstraintMax) ^ 2 

 

End Function 

' 

' 

Function z_Constraint_Penalty(zProcessEstimate) 

'   This function assesses a soft penalty if constraints on Auxiliary Variable z are exceeded. 

'   Full x range is 0 to 100. 

'   In contrast to pushing model to biased setpoint, this compares biased model of z to limits. 

'       zProcessEstimate is the pmm-biased z-model N2F prediction value. 

 

    z_Constraint_Penalty = 0 

    zConstraintMin = 0 

    zConstraintMax = 100 

    If zProcessEstimate < zConstraintMin Then z_Constraint_Penalty = (zProcessEstimate - 

zConstraintMin) ^ 2 

    If zProcessEstimate > zConstraintMax Then z_Constraint_Penalty = (zProcessEstimate - 

zConstraintMax) ^ 2 

 

End Function 

' 

' 

Sub control() 

'   This is the controller. 

 

    If MODE = "MAN" Then            'In MANual mode 

        Call SOPDT_Model_P2N             'Call P2N model to update its states and delay array history 

of states 

        pmmy = yprocess(SimTimeCounter) - yP2N(SimTimeCounter)                    'Calculate pmmy 

        pmmyf = pmmylambda * pmmy + (1 - pmmylambda) * pmmyf         'filter pmmy 

        pmmz = zAuxiliaryProcess - zAuxiliaryP2N 

        yspbias = ysp - pmmyf                'Calculate a biased setpoint for display 

        u = u                               'User decides this value 

        If u > 100 Then u = 100             'But the human often needs to be regulated 

        If u < 0 Then u = 0 

        u1 = u 

        u2 = u 

        u3 = u 

    Else                            'In AUTOmatic mode 

        Call SOPDT_Model_P2N             'Call P2N model to get response to past u 

        pmmy = yprocess(SimTimeCounter) - yP2N(SimTimeCounter)                    'Calculate pmmy 
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        pmmyf = pmmylambda * pmmy + (1 - pmmylambda) * pmmyf         'filter pmmy 

        pmmz = zAuxiliaryProcess - zAuxiliaryP2N 

        yspbias = ysp - pmmyf                'Bias setpoint for model 

        Call Leapfrogging_Optimizer         'Calculate u1, u2, and u3 

        u = u1                              'Implement u1 

    End If 

                                 

'   Since optimizer will return a U value within constraints, the 0 to 100% override is not needed 

here. 

     

    If u > 100 Then u = 100          'override calculated extremes with what is implementable 

    If u < 0 Then u = 0 

     

    MV(SimTimeCounter) = u 

 

End Sub 

' 

' 

Sub initialize() 

'   Initializes variables, reads the input data 

 

    Randomize                           'Randomize the random number generator for noise 

    twopi = 2 * 3.14159265358979        'Constant in Box-Muller NID noise generation 

     

    dt = 0.2                    'Time interval (all time constants should be about 10 times larger) 

    SimTime = 0 

     

    taup1 = Cells(1, 6)         'Input process values (the controller or operator cannot know these) 

    If taup1 < 1 Then taup1 = 1 

    taup2 = Cells(2, 6) 

    If taup2 < 1 Then taup2 = 1 

    taup3 = Cells(3, 6) 

    If taup3 < 1 Then taup3 = 1 

    taup4 = Cells(4, 6) 

    If taup4 < 1 Then taup4 = 1 

     

    delay = Cells(5, 6) 

     

    If delay > 20 Then delay = 20 

    sigmameasurement = Cells(6, 6) 

     

    taudist = Cells(1, 14)      'Input disturbance characteristics 
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    sigmadist = Cells(2, 14) 

    dist = 0 

    Environment = "OFF" 

    lambdadist = dt / taudist 

    Clambdadist = 1 - lambdadist 

    sigmadistdriver = Sqr(2 / lambdadist - 1) * sigmadist 

     

    If Cells(1, 2) <> "GS" Then km = Cells(1, 2)           'Input operator-chosen controller (includes 

model) variable values 

    taum1 = Cells(2, 2) 

    If taum1 < 1 Then taum1 = 1 

    taum2 = Cells(2, 3) 

    If taum2 < 1 Then taum2 = 1 

    thetam = Cells(3, 2) 

    uBase = Cells(4, 2)         'Since linear SOPDT model is in deviation variables, need initial u 

    YmBase = Cells(5, 2)        'Since linear SOPDT model is in deviation variables, need y-SS that 

goes with initial u 

    tauw = Cells(6, 2) 

    If tauw < 1 Then tauw = dt 

    pmmylambda = Cells(7, 2) 

     

    u = 50                      'Initialize process and controller at an initial steady state 

    ysp = 7 

    yinitial = 7 

    y1 = yinitial 

    y2 = yinitial 

    y3 = yinitial 

    y4 = yinitial 

    yp = yinitial 

    For j = 1 To 20 

        yhold(j) = yinitial 

    Next j 

    pmmyf = 0 

    j = 0 

    dist = 0 

    zAuxiliaryProcess = 0.9 * u 

    zAuxiliaryP2N = 0.8 * u 

    zAuxiliaryN2F = zAuxiliaryP2N 

     

    MODE = "MAN"            'Initialize controller in manual 

     

    For i1 = 1 To 12 
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        For j1 = 1 To 6 

            matrix(i1, j1) = Cells(i1 + 1, j1 + 26) 

            'Cells(i + 20, j + 19) = matrix(i, j) 

        Next j1 

    Next i1 

     

    AUTOcount = 0           'Initialize evaluation variables 

    ISE = 0 

    Travel = 0 

    uold = u 

     

    ECVSP = 1           'Equal Concern Value for CV not being at the SP  (CV goes from 0 to 10) 

    ECVy = 0.1          'Equal Concern Value for CV violating a constraint 

    ECVz = 10           'Equal Concern Value for Aux Variable violating a constraint (AV goes from 0 to 

100) 

    ROCu = 75           'Rate of Change constraint on u 

     

    NControlHorizon = 100            'Initialize model N2F variables 

 

    ConvergenceThreshold = Cells(4, 17)      'Read RMS distance convergence criterion for 

optimizer 

 

    Call Clear_Old_Data             'Remove all past data from plot points 

 

    If Cells(8, 18) = "Y" Then 

        Cells(1, 18) = "Lo/Hi PN)" 

        Cells(1, 19) = "Player Num" 

        Cells(1, 20) = "OF Value" 

        Cells(1, 21) = "u1" 

        Cells(1, 22) = "u2" 

        Cells(1, 23) = "u3" 

    End If 

     

End Sub 

' 

' 

Sub output() 

'   Places all data on the worksheet for display 

 

    Cells(SimTimeCounter + 10, 2) = SimTime 

    Cells(SimTimeCounter + 10, 3) = yp 

    Cells(SimTimeCounter + 10, 4) = u 
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    Cells(SimTimeCounter + 10, 5) = YmodelP2N 

    Cells(SimTimeCounter + 10, 6) = ysp 

    Cells(SimTimeCounter + 10, 7) = yspbias 

    Cells(SimTimeCounter + 10, 9) = zAuxiliaryP2N 

     

    Cells(SimTimeCounter + 14, 2) = "" 

    Cells(SimTimeCounter + 14, 8) = "" 

    Cells(SimTimeCounter + 15, 8) = 0 

    Cells(SimTimeCounter + 16, 8) = 10 

     

    Cells(1, 10) = NISE 

    Cells(2, 10) = NTravel 

    Cells(1, 17) = MODE 

    Cells(2, 17) = Environment 

    Cells(5, 17) = Iteration 

    Cells(6, 17) = NOFE 

 

End Sub 

' 

' 

Sub evaluate() 

'   Calculate performance measures for controlled process 

 

    If MODE = "AUTO" Then 

        AUTOcount = AUTOcount + 1       'Count of samplings in AUTO when ISE and Travel are 

calculated 

        ISE = ISE + (ysp - yp) ^ 2      'Not really ISE because no dt multiplier.  Really SSE 

        NISE = ISE / AUTOcount          'Since no dt in ISE, divide ny count, not time. 

        Travel = Travel + Abs(u - uold) 

        uold = u 

        NTravel = Travel / AUTOcount 

    End If 

     

End Sub 

' 

' 

Sub events() 

'   Trigger events for the system (process and controller) simulation 

 

    If SimTimeCounter = 25 Then 

        MODE = "AUTO" 

        ysp = 7 
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    End If 

     

    If SimTimeCounter = 50 Then ysp = 3 

    If SimTimeCounter = 35 Then Environment = "ON" 

    If SimTimeCounter = 350 Then ysp = 9 

 

End Sub 

' 

' 

Sub Clear_Old_Data() 

 

    Range("B10:K2010").Select 

    Selection.ClearContents 

     

    Range("R1:R5").Select 

    Selection.ClearContents 

     

    Range("S1:W43").Select 

    With Selection.Interior 

        .Pattern = xlNone 

        .TintAndShade = 0 

        .PatternTintAndShade = 0 

    End With 

    Selection.ClearContents 

     

    Range("A1").Select 

 

End Sub 

' 

'   *********************************** 

Sub Initialize_Leapfrogging_Optimizer() 

 

    DVDimension = 3 

    NumTeammates = 20 

    MovementL2H = 1                'size of window on other side of low from high 

     

    PlayerNumber = 1 

    PlayerPosition(1, PlayerNumber) = u1    'set player #1 as the previous best solution, which may 

still be the best 

    PlayerPosition(2, PlayerNumber) = u2 

    PlayerPosition(3, PlayerNumber) = u3 

    Call Assign 
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    Call SOPDT_Model_N2F_SSD    'determine the SSD result 

    PlayerOFValue(PlayerNumber) = SSD 

     

    For PlayerNumber = 2 To NumTeammates    'initialize player values - must be within feasible 

region 

        Constraint = "Unassessed" 

        Do Until Constraint = "PASS" 

            u1 = u + 2 * (Rnd() - 0.5) * ROCu                    'randomize u1 for the player 

            PlayerPosition(1, PlayerNumber) = u1 

            u2 = u1 + 2 * (Rnd() - 0.5) * ROCu                     'randomize u2 for the player 

            PlayerPosition(2, PlayerNumber) = u2 

            u3 = u2 + 2 * (Rnd() - 0.5) * ROCu                     'randomize u3 for the player 

            PlayerPosition(3, PlayerNumber) = u3 

            Call Assign 

            Call u_ConstraintTest 

        Loop 

        Call SOPDT_Model_N2F_SSD    'determine the SSD result 

        PlayerOFValue(PlayerNumber) = SSD 

    Next PlayerNumber 

     

    Call Find_High 

    Call Find_Low 

     

    If Cells(8, 18) = "Y" Then Call Show_Players 

 

End Sub 

' 

'   ************************************** 

Sub Find_High() 

'   Search for player with highest OF value 

 

    LFHighpn = 1 + Int(NumTeammates * Rnd())    'Random Assignment for initialization in case 

floor is flat 

    OFhigh = PlayerOFValue(LFHighpn) 

    For PlayerNumber = 1 To NumTeammates                'search through all players 

        If PlayerOFValue(PlayerNumber) > OFhigh Then             'Reassign if worst 

            LFHighpn = PlayerNumber 

            OFhigh = PlayerOFValue(PlayerNumber) 

        End If 

    Next PlayerNumber 

    For DVNumber = 1 To DVDimension 

        HighPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn) 
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    Next DVNumber 

     

End Sub 

' 

'   ************************************** 

Sub Find_Low() 

'   Search for player with lowest OF value 

 

    LFLowpn = 1                                 'start with PlayerNumber=1, if floor is flat, this serves as the 

base for convergence 

    OFlow = PlayerOFValue(LFLowpn) 

    For PlayerNumber = 2 To NumTeammates 

        If PlayerOFValue(PlayerNumber) < OFlow Then              'Reassign if better 

            LFLowpn = PlayerNumber 

            OFlow = PlayerOFValue(LFLowpn) 

        End If 

    Next PlayerNumber 

    For DVNumber = 1 To DVDimension 

        LowPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFLowpn) 

    Next DVNumber 

 

End Sub 

' 

'   *********************************** 

Sub Leapfrogging_Optimizer() 

'   Relocate the player with the worst position to a random position to the other side of the best. 

'   If desired reevaluate the best to avoid finding a fortuitous best ever in stochastic functions 

 

    NOFE = 0 

     

    yspBiasDeviation = yspbias ' - YmBase 

     

    Call Initialize_Leapfrogging_Optimizer 

     

    For Iteration = 1 To 500 

                                    'relocate worst with the leapover the best 

    Constraint = "Unassessed"       'but must jump to an unconstrained area 

    PlayerNumber = LFHighpn 

    Do Until Constraint = "PASS" 

        For DVNumber = 1 To DVDimension 
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            PlayerLeapDelta(DVNumber) = LowPlayerPosition(DVNumber) - 

HighPlayerPosition(DVNumber)        'difference between trial solutions with highest and lowest 

OF values 

            HighPlayerPosition(DVNumber) = LowPlayerPosition(DVNumber) + MovementL2H * Rnd() 

* PlayerLeapDelta(DVNumber)          'high (or infeasible) jumps to random position in window, 

repelled by recent vacated spots 

        Next DVNumber 

        For DVNumber = 1 To DVDimension 

            PlayerPosition(DVNumber, LFHighpn) = HighPlayerPosition(DVNumber)        'reassign 

position of former high individual to its new feasible location 

        Next DVNumber 

        Call Assign 

        Call u_ConstraintTest 

    Loop 

 

    Call Assign 

    SOPDT_Model_N2F_SSD 

    PlayerOFValue(LFHighpn) = SSD 

                                        'find the individual with the lowest OF value presently 

    If PlayerOFValue(LFHighpn) < OFlow Then  'If needed, reassign player with lowest OF value 

        OFlow = PlayerOFValue(LFHighpn) 

        For DVNumber = 1 To DVDimension 

            LowPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn) 

        Next DVNumber 

        LFLowpn = LFHighpn 

    End If 

                                        'find the individual with the highest OF value presently 

    If PlayerOFValue(LFHighpn) > OFhigh Then     'we know which is high 

        OFhigh = PlayerOFValue(LFHighpn) 

        For DVNumber = 1 To DVDimension 

            HighPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn) 

        Next DVNumber 

        If Cells(9, 18) = "Y" Then 

            PlayerNumber = LFLowpn 

            Call Assign 

            display = "Yes"                 'Tell SOPDT N2F model to display the optimum results 

            Call SOPDT_Model_N2F_SSD 

            display = "No" 

        End If 

    Else 

        Call Find_High                  'need to search for the new high 

    End If 
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    If Cells(8, 18) = "Y" Then Call Show_Players 

 

    du1 = HighPlayerPosition(1) - LowPlayerPosition(1)          'Compute Convergence Metric 

    du2 = HighPlayerPosition(2) - LowPlayerPosition(2) 

    du3 = HighPlayerPosition(3) - LowPlayerPosition(3) 

    If Sqr((du1 ^ 2 + du2 ^ 2 + du3 ^ 2) / 3) < ConvergenceThreshold Then Exit For 

     

    Next Iteration 

       

    If Cells(8, 18) = "Y" Then Call Show_Players 

     

        PlayerNumber = LFLowpn 

        Call Assign 

        display = "Yes"                 'Tell SOPDT N2F model to display the optimum results 

        Call SOPDT_Model_N2F_SSD 

        display = "No" 

 

End Sub 

' 

'-------------------------------------------------------- 

Sub Assign() 

 

    u1 = PlayerPosition(1, PlayerNumber) 

    u2 = PlayerPosition(2, PlayerNumber) 

    u3 = PlayerPosition(3, PlayerNumber) 

  

End Sub 

' 

'-------------------------------------------------------- 

Sub u_ConstraintTest() 

 

    Constraint = "PASS" 

 

    If u1 > 99 Then Constraint = "FAIL" 

    If u2 > 99 Then Constraint = "FAIL" 

    If u3 > 99 Then Constraint = "FAIL" 

    If u1 < 1 Then Constraint = "FAIL" 

    If u2 < 1 Then Constraint = "FAIL" 

    If u3 < 1 Then Constraint = "FAIL" 

    If Abs(u1 - u) > ROCu Then Constraint = "FAIL" 

    If Abs(u2 - u1) > ROCu Then Constraint = "FAIL" 
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    If Abs(u3 - u2) > ROCu Then Constraint = "FAIL" 

 

'    If Constraint = "FAIL" Then 

'        Cells(5, 18).Interior.ColorIndex = 3 

'    Else 

'        Cells(5, 18).Interior.ColorIndex = 4 

'    End If 

     

End Sub 

' 

'   ************************ 

Sub Show_Players() 

 

    For PlayerNumber = 1 To NumTeammates 

        Cells(2 + PlayerNumber, 19) = PlayerNumber 

        Cells(2 + PlayerNumber, 20) = PlayerOFValue(PlayerNumber) 

        For DVNumber = 1 To DVDimension 

            Cells(2 + PlayerNumber, 20 + DVNumber) = PlayerPosition(DVNumber, PlayerNumber) 

        Next DVNumber 

    Next PlayerNumber 

     

    If LFHighpnold > 0 Then Cells(2 + LFHighpnold, 19).Interior.ColorIndex = 0 

    Cells(2 + LFHighpn, 19).Interior.ColorIndex = 3 

    LFHighpnold = LFHighpn 

    If LFLowpnold > 0 Then Cells(2 + LFLowpnold, 19).Interior.ColorIndex = 0 

    Cells(2 + LFLowpn, 19).Interior.ColorIndex = 4 

    LFLowpnold = LFLowpn 

     

    Cells(3, 18) = LFLowpn 

    Cells(4, 18) = LFHighpn 

 

End Sub 
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