
INCORPORATION OF THE GENERALIZED TSK

MODELS IN MODEL PREDICTIVE CONTROL

 By

HAOXIAN CHEN

 Bachelor of Engineering in Automation

East China University of Science and Technology

Shanghai, China

2009

 Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
MASTER OF SCIENCE

 December, 2011

ii

INCORPORATION OF THE GENERALIZED TSK

MODELS IN MODEL PREDICTIVE CONTROL

 Thesis Approved:

Dr. R. Russell Rhinehart

 Thesis Adviser

Dr. Joshua D. Ramsey

Dr. Heather Fahlenkamp

 Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

ACKNOWLEDGEMENTS

This has been a journey. Much grace has been received, and many thanks need to

be sent.

Foremost I would like to express my sincere appreciation to my research advisor,

Dr. R. Russell Rhinehart whose patience, kindness, guidance, insight and encouragement

has always been a shining lamp during my studies. His love and enthusiasm for research

greatly inspired me to explore and discover, to “Do, not study”. He challenges me when I

am not making my best efforts. He is also a great example for me both as a teacher and a

researcher. Lastly, I am very grateful to him for the financial support while pursuing my

education at OSU.

I thank my committee members, Dr. Joshua D. Ramsey and Dr. Heather

Fahlenkamp for their insightful comments and suggestions as well as warming support

and encouragement.

I want to thank my former labmate Dr. Ming Su for his coaching and inspiration. I

am also thankful to Mr. Anand Govindarajan, Ms. Upasana Sridhar and Ms. Ting Huang

for their generous support and continuous input on my research. Without my fellow

labmates’ insightful discussion and sharing, the compilation of this thesis would have

been extremely complicated and difficult.

A special thanks to my friend and mentor Dr. Steven Moore. His patient guidance

and wise mentorship are ready all the time.

I wish to extend my thanks to the Amoco Foundation for its financial support.

Finally, I would like to thank Ms. Li Zhou for her endless understanding and

support at those hard times. Most importantly, I wish to thank my parents, Qiaosheng

iv

Chen and Zhifang Pu for their unconditional love and support in every way possible

throughout my study in the U.S. and beyond. To them I dedicate this thesis.

Thank God, who has made all things possible, and made me the person that I am

today.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Overview ..1
 1.2 Literature Survey ...4

 1.2.1 Model Predictive Control ..4
 1.2.2 Modeling Approaches ...4
 1.2.3 NMPC Applications ..6
 1.2.4 Optimization Methods for NMPC ..8
 1.2.5 Input Training Signal for Model Generation ..9

 1.3 Summary ..9

II. GTSK MODEL BASED MPC ..11

 2.1 GTSK modeling Approach ..11

 2.1.1 Overview ...11
 2.1.2 Order Determination and Antecedent Variable Selection18
 2.1.3 Estimation of Parameter Values ..21
 2.1.4 GTSK Modeling Procedure Summary ..29

 2.2 NMPC Methodology ..29
 2.3 Leapfrogging Optimization Approach in GTSK MPC34

III. EXPERIMENTAL METHOD ...36

 3.1 Experimental System ...35
 3.2 GTSK Model Development ...39

 3.2.1 Sawtooth Input Training Signal ..39
 3.2.2 GTSK Model Generation and Evaluation ...40

vi

Chapter Page

IV. RESULTS AND DISCUSSION ..45

 4.1 Disturbance Rejection ..45
 4.2 Set point Tracking ..46
 4.3 Constraint Handling ...47
 4.4 Environmental Effect Handling ...51

V. CONCLUSION AND RECOMMENDATIONS...53

 7.1 Conclusion ...53
 7.2 Recommendations ..54

REFERENCES ..55

APPENDIX ..58

vii

LIST OF TABLES

Table Page

Table 3.1 Process Coefficients ...37
Table 3.2 GTSK Model Coefficients ...42
Table 3.3 Comparison of sum-squared deviation (SSD) ...44

viii

LIST OF FIGURES

Figure Page

Figure 2.1 Two-Dimension Antecedent ...13
Figure 2.2 The ellipsoid contour of TA ...14
Figure 2.3 Antecedent space partition and representation ...15
Figure 2.4 A rotated local region covered by a horizontal or vertical ellipsoid15
Figure 2.5 A rotated local region covered by a rotated ellipsoid16
Figure 2.6 A GTSK model in a two dimension antecedent space21
Figure 2.7 Partitioned antecedent space for the GTSK model in Figure 2.622
Figure 2.8 Illustration of a SRP ...23
Figure 2.9 The algorithm solving the SPR...27
Figure 2.10 A local region in an antecedent space ..28
Figure 2.11 General Structure of NMPC ...30
Figure 2.12 The Process Response and the Prediction and the MV sequence32
Figure 2.13 The Logic of the NMPC Algorithm ...33
Figure 2.14 Leapfrogging Mechanism ...35
Figure 3.1 CV responses to MV equal-step-changes ...38
Figure 3.2 Input training signals ..39
Figure 3.3The sawtooth-pattern input (a) and process response (b)41
Figure 3.4 GTSK model prediction and process response ...43
Figure 3.5 SOPDT model prediction and process response ..44
Figure 4.1 Control performance of disturbance rejection ..46
Figure 4.2 Control performance for set point tracking without environmental

 effects ...47
Figure 4.3 Demonstration of the impact of hard constraints on the MV48
Figure 4.4 Demonstration of the impact of hard constraints on the rate-of-change

 of MV ...49
Figure 4.5 Demonstration of the impact of soft constraints on the CV50
Figure 4.6 Demonstration of the impact of soft constraints on the auxiliary variable .51
Figure 4.7 Control performance for set point tracking with environmental effects52

1

CHAPTER I

INTRODUCTION

1.1 Overview

Due to the complexity of chemical processes, and quality and environmental

requirements in process operations, advanced process control strategies have been widely used in

the industry to fulfill control needs. Model predictive control (MPC), also referred to as moving

horizon control (MHC), has become the most effective and attractive advanced control strategy in

process industries [1-3]. The term MPC does not designate any kind of specific control strategy

but rather a family of control approaches based on the same philosophy. In general, it makes

explicit use of a model of the process to obtain a sequence of control signals by optimizing

predictions of the process. Therefore, the model is the essential element of an MPC controller.

Linear models were used to predict the process dynamic behavior in the initial industrial

MPC applications, and remain most common today[3]. MPC approaches using linear models are

called linear model predictive control (LMPC). LMPC was rapidly developed and well accepted

in both academia and industry over the past three decades. Some successful commercialization of

LMPC, e.g. Dynamic Matrix Control (DMC) and Model Predictive Heuristic Control (MPHC)

have enjoyed great popularity in the industry, especially in the area of process control[2].

However, most batch and continuous processes in chemical and petro-chemical industries are

2

nonlinear. Furthermore, efficiency demands and manufacturing flexibility in today’s plants often

drive process over a wide region, often very close to the operation boundaries. Considering these

facts, linear MPC strategies may not always provide satisfactory performance for many industrial

applications. Therefore, nonlinear model predictive control (NMPC) is drawing more attention

with respect to both theoretical and application aspects[3].

A sizable number of studies on new NMPC algorithms and related industrial application

were reported in the past 15 years[2]. In general, the NMPC used in these works has a nonlinear

predictive model and is a direct and intuitive extension of LMPC. Unlike LMPC which is based

on linear dynamic models, NMPC makes use of nonlinear models to address the issue of process

nonlinearity and frequently changing operating region. With a better understanding of process

nonlinearity, nonlinear models are expected to improve the control performance of MPC.

However, approaches to develop adequate nonlinear models from plant testing data are usually

complicated. The complexity of nonlinear models also adds computational burden to model

prediction and dynamic optimization of NMPC.

There are three main types of models that are used to represent general nonlinear process

in the area of nonlinear model predictive control: first principles models, empirical models and

grey box approaches. Among these three, the empirical modeling approach is the most popular

modeling method for NMPC controller development and applications according to the survey of

the recent studies[3].

The Takagi-Sugeno-Kang (TSK)[4] fuzzy model, as a type of empirical model, has been

used to represent complex systems in many recent NMPC publications. In this work, a new

generalized TSK modeling approach, which is referred to as GTSK (generalized TSK)

modeling[5], is used in the nonlinear model generation, and as the modeling approach for the

predictive controller.

3

The GTSK modeling approach was developed based on the TSK fuzzy model

representation. It proposed a more efficient TSK model with the generalized rule antecedent

structure. By reducing antecedent dimension and introducing a more flexible antecedent structure,

the number of rules was significantly reduced in this new TSK structure model. The innovation of

GTSK model will alleviate the computational burden of an NMPC, and be qualified for on-line

applications.

A novel global optimization method, the Leapfrogging technique[6], is also used to

further improve the NMPC’s computational efficiency. Another innovation in this work is a new

test input signal design in the model generation part. Instead of using a skyline function to

generate the test signal, the “sawtooth” pattern is used as the input to generate the GTSK model.

 In this work, these three innovations are demonstrated to work effectively by simulation.

The experimental system is a nonlinear process simulator, in which the NMPC algorithm was

embedded. The virtual process in this simulator is fourth-order-plus-dead-time (FOPDT) process

with a nonlinear gain and the environmental effect (noise and disturbance). It is subject to both

soft and hard constraints – soft on both the controlled and the auxiliary variable, and hard on both

the limits and rate of change of the manipulated variable. The NMPC performance is evaluated

via several simulation experiments, which involved constraint handling, interactions and process

nonlinearity.

This study features simulation demonstration. Extending the use of GTSK model in MPC

to the multi-input-multi-output system, or implementing the MPC with GTSK model on the real

systems, like the heat exchanger or distillation column, is considered to be done to demonstrate

its effectiveness on the real process and prepare it for future applications.

4

1.2 Literature Survey

1.2.1 Model Predictive Control

The term Model Predictive Control (MPC) describes a class of control algorithms that

regulate the future process behavior by explicitly using a predictive process model[7]. Based on

past measurements and given future control signals, the MPC algorithm can predict the future

dynamic behavior of the process through the model. At each time interval, MPC calculates an

optimal sequence of future control signals to drive the process to a set point over a finite horizon.

The first control signal of the sequence is then applied on the process at each step[3].

In general, the model predictive problem is formulated as solving on-line a finite horizon

optimal control problem subject to system dynamics and constraints[1]. A MPC controller is

usually comprised of three parts, the predictive process model, the constrained optimizer, and the

model adjustment[8].

1.2.2 Modeling Approaches

 The nonlinear predictive model is most critical part in NMPC. Many efforts were made to

explore suitable modeling approaches for nonlinear system representation and application in

NMPC. In general, three main types of models are used to represent general nonlinear process in

the area of nonlinear model predictive control. They are known as first principles models,

empirical models and semi-empirical (grey box) approaches[8].

 The first principle model comes directly from balance equations, i.e., material balance,

energy balance, momentum balance, together with the hydraulic and thermodynamic information

of the process[3, 8]. The first principle model contains the information of process characteristics,

and provides deep understanding of the process mechanics. However, constructing a first

principle model is usually complicated and costly, sometimes even infeasible. The complexity of

5

the first principle model could also cause computational difficulties in incorporating it into a

NMPC[8].

In contrast to a first principle model, an empirical model treats the process as a black box

and fits itself to the process data[9]. The modeling method assumes that the characteristics of the

process are embedded in the given process data. Comparing to a first principle model, an

empirical model usually does not provide information on the mechanics of the process.

Between the first principle model and the empirical model is the grey box model. A grey

box model is developed by combining the first principle and empirical approaches. For instance,

some parameters in a first principle model are unavailable but can be estimated by an empirical

approach. Or, in an empirical model, some parameters can be determined by the knowledge of the

process characteristics, such as the structure of the model, or the order of the process[8].

Among these three, empirical modeling is now widely used for NMPC application. Its

simplicity and data-oriented feature benefit both model development and NMPC computation.

Neural Network (NNs)[10] is one of the most popular empirical modeling

approaches[11]. Neural Network, also called artificial Neural Network, have an inherent ability to

approximate any nonlinear function to an arbitrary degree of accuracy[12]. Coupled with

appropriate training techniques, Neural Network has been very successful in many NMPC

applications and commercial products[3].

Fuzzy model is another type of empirical model that has been widely used. The recent

development of fuzzy system attracts many attempts of incorporating fuzzy modeling techniques

intro MPC from both researchers and practitioners[13]. Takagi-Sugeno (TS) fuzzy model, which

was first introduced by Takagi and Sugeno in 1985[14], has been applied on function

approximation, stability analysis, and controller synthesis over the last twenty years or so[13]. TS

model defines a set of fuzzy rules to describe a nonlinear system. A number of local linear models,

6

defined by the rules, are smoothly blended by fuzzy membership functions to represent the global

system. In 1988, Sugeno and Kang proposed a new method to improve the structure identification

of a TS type model[4], which is then referred as TSK model. TS or TSK models are recognized as

universal approximators[15], which are able to describe any nonlinear behavior with a

sufficiently flexible structure.

1.2.3 NMPC Applications

Neural Network model and fuzzy model are two of the most popular empirical models

used in NMPC applications. The recent development of NMPC using these two types of models

was reviewed in the following section.

1.2.3.1 Neural Network (NN) Model based NMPC

Georgieva and Azevedo (2011)[16] practiced a model predictive control based on

recurrent neural network models. Two types of regression NN models which were identified to be

suitable for the model predictive control were proposed. A sugar crystallization process case

study was conducted to test the NN-based MPC and its performance.

Al Seyab and Cao (2007)[17] developed an efficient algorithm to train general

differential recurrent neural network (DRNN), which could be directly used as the modeling

approach for nonlinear model predictive control. This novel training algorithm is based on the

efficient Levenberg-Marquardt method, which is combined with the automatic differentiation

method. In this work, the trained NN can give an accurate approximation at different sampling

time without the re-training. A two-CTSR process is used as a case study to demonstrate the

benefit of using this algorithm and the improved control performance.

A novel MPC algorithm using a grouped-neural network (GNN) model was presented by

Ou and Rhinehart (2003)[8, 9, 18]. GNN modeling is introduced as an approach for nonlinear

7

long-range prediction by less computational effort. The NN model comprises of a group of sub-

models, which are independent and run in parallel. Instead of predicting over a certain-range

horizon, each sub-model provides prediction of one process output at one selected future point,

reducing the computational burden. The implementation of proposed GNN MPC on a nonlinear,

multivariable, constrained pilot-scale distillation unit is demonstrated with the controller

performance test.

1.2.3.2 Fuzzy Model based NMPC

Eliasi, Davliu and Menhaj (2006)[19] developed an adaptive TSK fuzzy model based

predictive controller to control the water level of nuclear steam generators. A recursive estimation

algorithm was employed to tune the parameters of the TSK model at each time step. The control

performance for tracking the step and ramp reference trajectories and against the stream flow rate

change was demonstrated. The proposed NMPC was also compared to the PI controller and

showed better performance.

A rule-adaptive fuzzy NMPC using TS type model was designed for a multivariable

heating system by Roy, Mann and Hawlader (2005)[20]. The goal of this work is to design a

MPC algorithm to control temperatures at three locations in the soil sample using three heat

sources at the outer surface of the soil cell. The soil-heating system is modeled using a general-

purpose ABAQUS Finite Element program. Under the TS type fuzzy model structure, an adaptive

mechanism was used to handle the time-variant behavior of the process. The control performance

was compared with a classical non-adaptive fuzzy MPC.

Huang, Lou, Gong and Edgar (2000)[21] introduced a fuzzy model predictive control

approach using TS modeling methodology. The nonlinear process system is described by a fuzzy

convolution model that consists of a number of linear fuzzy models. In the controller design, a

two-layered iterative optimization process was employed to minimize prediction errors and

8

control energy. This two-layer design avoids extensive on-line nonlinear optimization and permits

the design of a controller based on linear control theory. Nevertheless, the hierarchical control

design leads to more modeling and optimization computation, as well as the complexity of the

controller structure.

Mahfouf, Linkfens and Abbod (2000)[22] proposed a TSK model based Generalized

Predictive Control (GPC) type MPC. The proposed fuzzy modeling approach is based on a

Controlled Auto-Regressive Integrated Moving Average (CARIMA) model structure. An

adaptive control scheme was integrated with the proposed control algorithm. Controller's

performance and application on the binary distillation column and the Continuous Stirred Tank

Reactor (CSTR) system were tested.

1.2.4 Optimization Methods for NMPC

In a MPC controller, a set of optimal MV values which drive the process to the desired

set point without violating constraints need to be computed at each sampling time. This dynamic

optimization must be solved on-line, which has always been a challenge for researchers and

practitioners.

In most industrial applications of NMPC, the optimization problem is described as linear

program (LP), quadratic program (QP) or nonlinear program (NLP), depending on the type of

model and the performance expectation[23]. Newton type methods, such as sequential Quadratic

Programming (SQP) and Interior Point Methods, are often used to solve nonlinear problems[24,

25].

A multi-step Newton-type algorithm developed by De Oliveira and Biegler (1995,

1994)[26], named QPKWIK, is used by Aspen’s Target MPC product. This method has the

advantage that intermediate solutions, although not optimal, are guaranteed feasible[2]. Diehl,

Bock, Nagy and Findeisen (2002)[24] proposed a direct multiple shooting method with a real-

9

time embedding strategy. The application of a deterministic global solution technique on NMPC

is reported by Long, Polisetty and Gatzke (2005)[27]. The variable space is reduced using interval

analysis techniques to achieve faster convergence. Ghaemi, Sun and Kolmanovsky (2009)[28]

introduced Integrated Perturbation Analysis and Sequential Quadratic Programming (InPA-SQP)

approach, for the MPC implementation. It synergistically combines the solutions derived using

perturbation analysis and SQP to solve the optimization problem with initial state perturbation

and input/state constraints.

1.2.5 Input Training Signal for Model Generation

Successful empirical model development requires selecting a sufficiently good input

training signal. In the area of system identification, the binary signal, the frequency sweep and the

multisine are the most commonly used signals[29].

For chemical process control, conventionally, model used in MPC applications are

identified through a series of step tests. As summarized in[2, 7], Pseudo-Random Binary

Sequence (PRBS) tests are also used in most industrial MPC technologies. In some recent works,

Filtered Gaussian White Noise with random amplitude and variation between two periods of the

stimulus is used as input training singles. It is referred as “skyline function” signal in GTSK

approach, which uses it in the development and testing of models[5].

The sawtooth function used in this work is a signal that jumps or drops to the halfway of

a random level, and then ramps to that level at the end of a period of random length.

1.3 Summary

The GTSK model has advantages over a TSK model and other fuzzy type models

because of fewer model equations and parameters, which provides a computational advantage in

both model generation and model use[5]. Leapfrogging is a multi-player optimizer with a global

10

aspect. It has advantages over linear and single trial solution optimizers of finding the global

solution in nonlinear applications. It also has advantages over other multi-particle optimizers in

computational simplicity and speed of convergence[6]. Sawtooth provides a wider coverage over

the whole range of the input training signal. Applying these innovations on NMPC is expected to

alleviate the computational burden for on-line applications and improve model accuracy, which

should enhance the overall control performance.

11

CHAPTER II

GTSK Model Based MPC

2.1 GTSK modeling Approach[5]*

 A summary of GTSK modeling approach and its innovation over TSK method is given in

Section 2.1.1. The details on developing a GTSK model are presented in the following sections.

2.1.1 Overview

In contrast to first-principles modeling, GTSK modeling is an empirical (black-box)

modeling technique, which fits itself to the input-output data obtained from the process. As a type

of TSK model, it is a subset of novel fuzzy logic-based modeling methodologies, where a

nonlinear process system is divided into a number of linear or nearly linear subsystems.

To reduce the complexity of a TSK model, two innovations were introduced[5] in the

generalized TSK modeling approach. In a GTSK model, only nonlinear variables are included in

the rule antecedent to reduce its dimension. Additionally, an extra degree of freedom is

introduced to cover an antecedent space more efficiently.

*Reference citations in headings indicated that substantial portions are duplicated or modified
from that reference

12

2.1.1.1 Dimension Reduction in the Antecedent

In a GTSK model, only nonlinear variables are included in the rule antecedent to reduce

the antecedent dimension. This is the first innovation of the GSTK approach. Consider a single-

input-single-output (SISO) dynamic process, with dynamic orders ny, nu, pure time delay d, and

an additive disturbance e(t). The system is represented by

 (2.1)

where y(t) and u(t) are process responses and process input at time t. d is the pure time delay,

while f is a nonlinear function.

A rule could be described by a TSK model as below

() ()()
() () () ()

()
()

1 1

1 1

1 1
1

1 1
0 1

 y 1 is u is

y u

1

r r
ny nu

r r r

r r r ny
ny

r r r r nu
nu

t A t nu d A

z t k z t d

z a z a z

z b b z b z

IF AND AND

THEN A B

A

B

+ +

− −

− − −

− − −

− ⋅⋅⋅ − −

= + −

= + + ⋅⋅ ⋅+

= + + ⋅⋅ ⋅+
 (2.2)

where, 1
rA is the fuzzy subset for y(t-1) in the rule and z is the backshift operator. The expression

() ()1 11 is is r r
ny nuy t A u t nu d AAND AND + +− ⋅⋅⋅ − −

is the antecedent of the rule, and the variables y(t-1), …,

y(t-ny), u(t-d),…,u(t-nu-d) are antecedent variables. The consequent of the rule is a local linear

model () () () ()1 1r r rz y t k z u t d− −= + −A B
.

However, in a TSK model, all the regressors in the rule consequent are also in the rule

antecedent, which leads the antecedent dimension to be same as the problem dimension and

causes the complexity of a TSK model. In a GTSK model, only the variables appearing

()
() ()
() ()

()
1 , , ,

, ,

y t y t ny
y t f e t

u t d u t nu d

− ⋅⋅ ⋅ − 
= +  − ⋅⋅ ⋅ − − 

13

nonlinearly were included in the antecedent. This is the first of two innovations introduced by the

GTSK modeling. The simplified rule is defined by

() ()
() ()

() () () ()

()
()

1

1 1

1 1

1 1
1

1 1
0 1

y 1 is y is

 u is u is

y u

1

r r
ay

r r
ay ay bu

r r r

r r r ny
ny

r r r r nu
nu

t A t ay A

t d A t bu d A

z t k z t d

z a z a z

z b b z b z

AND AND AND
IF

AND AND

THEN A B

A

B

+ + +

− −

− − −

− − −

 − ⋅⋅ ⋅ −
 
 − ⋅⋅ ⋅ − − 

= + −

= + + ⋅⋅⋅+

= + + ⋅⋅⋅ +

(2.3)

where the antecedent dimension is reduced to ay+bu+1 (ay <ny and bu< nu). In Equation

(2.3)y(t-1) … y(t-ay), u(t-d) …. u(t-bu-d) are then antecedent variables. They are collected in an

antecedent vector c(t). Regressors in the consequent are collected in consequent vector x(t).

2.1.1.1 Generalized Antecedent Structure

The second innovation proposed by the GTSK modeling approach is a generalized

antecedent structure. This new structure substitutes the combinatorial antecedent structure in the

TSK rule in Equation (2.4) by a more flexible one. One more degree of freedom is introduced to

improve the covering efficiency of each rule.

Given a two dimensional antecedent with equal number of fuzzy sets for each antecedent

variable, a typical combinatorial antecedent space partition is illustrated in Figure 2.1. 9 rules

result from the combinations of 3 fuzzy sets for each antecedent variable (ci , i=1, 2)

��

� 1 2 3

c2 ��
�

 4

5

6

��

� 7 8 9

 ��
� ��

�
 ��

�

 c1

Figure 2.1 Two-Dimension Antecedent

β

α

14

where c1 , c2 are antecedent variables.��

�, ��
�, ��

� are fuzzy sets of each antecedent variable ci.1,

2, …., 9 is the number of rule. Each rule has a local linear model () () () ()1 1r r rz y t k z u t d− −= + −A B
, as

stated in Equation (2.3).

 If points α and β are both in region 5, but α is nearly as close to region 1, 2, 4. Then the

rule applied on point β would be only rule 5, while the model value calculation for point α would

be also influenced by rules 1, 2, 4. The belongingness of a point to each rule is evaluated by a

membership function.

If Gaussian membership functions are applied and the product operator is used for the

AND conjunction in Equation (2.3), each rule of the antecedent could be evaluated by the truth of

antecedent (TA)

2 2
1 1 2 2

1 2

c o c o

TA e σ σ
   − −

− −   
   = (2.4)

where TA is an ellipsoid centering at (o1,o2) with width of σ1 by σ2. A possible contour plot of TA

is shown below

Figure 2.2 The ellipsoid contour of TA

In Figure 2.2, the highest value of TA =1 is reached at the centroid. The further out is the

contour, the smaller the TA. The value of TA can be interpreted as the belongingness of a data

point to a local region.

1c

2c

1o

2o

Consequently, the two dimensional antecedent structure shown in Figure 2.1could be

represented by horizontal and vertical ellipsoids, as

Figure 2.3 Antecedent space partition and representation

A more compact fuzzy model can be constructed by

local behavior. Figure 2.3 (b) shows a possible partition afte

the partition method which is aligned with the regressor axes in Figure 2.3 becomes inefficient as

shown in Figure 2.4, where neither horizontal nor vertical ellipsoids provide an efficient

representation of the underlying local region represented by either the rotated “space” of

correlated variables or irregular polygons.

Figure 2.4 A rotated local

To solve this problem, the GTSK approach chooses to

local region, which is shown in Figure 2.5.

2c

15

Consequently, the two dimensional antecedent structure shown in Figure 2.1could be

horizontal and vertical ellipsoids, as shown in Figure 2.1 (a).

(a) (b)

Figure 2.3 Antecedent space partition and representation

A more compact fuzzy model can be constructed by merging regions that exhibit similar

Figure 2.3 (b) shows a possible partition after merging some regions. However,

the partition method which is aligned with the regressor axes in Figure 2.3 becomes inefficient as

where neither horizontal nor vertical ellipsoids provide an efficient

representation of the underlying local region represented by either the rotated “space” of

correlated variables or irregular polygons.

A rotated local region covered by a horizontal or vertical ellipsoid

To solve this problem, the GTSK approach chooses to rotate the ellipsoid

local region, which is shown in Figure 2.5.

1c

2c

1c

Consequently, the two dimensional antecedent structure shown in Figure 2.1could be

merging regions that exhibit similar

r merging some regions. However,

the partition method which is aligned with the regressor axes in Figure 2.3 becomes inefficient as

where neither horizontal nor vertical ellipsoids provide an efficient

representation of the underlying local region represented by either the rotated “space” of

orizontal or vertical ellipsoid

rotate the ellipsoid to cover the

16

Figure 2.5 A rotated local region covered by a rotated ellipsoid

 The rotation is mathematically addressed by one more degree of freedom. the parameters

σ in Equation (2.4) are replaced by a symmetric positive semi-definite matrix P, which is shape

matrix in this work, and redefines the truth of antecedent by

() ()T

TA e
− − −

=
c o P c o

 (2.5)

where o is the vector representing the centroid with dimension of nc, and the dimension for the

shape matrix P is nc by nc.

2.1.1.1 GTSK Model Representation

In general, the nonlinear model in Equation (2.1) could be described in the following

linear time-varying format

() () () () () ()
() () () () ()

1

0

1 ny

nu

y t k t a t y t a t y t ny

b t u t d b t u t nu d e t

= + − + + − +

− + + − − +

L

L (2.6)

A compact form to represent Equation (2.6) is

() () () ()Ty t t t e t= +x θ
 (2.7)

with

17

() () () () ()

() () () () () ()1 0

1, 1 , , , , ,

, , , , , ,

T

T

ny nu

t y t y t ny u t d u t nu d

t k t a t a t b t b t

= − − − − −  

 =  

x

θ

L L

L L

where x(t) is the regressor vector and θ(t) is the parameter vector. Coefficients k(t), a(t)

and b(t) are time-varying variables.

Based on Equation (2.3), a GTSK model is defined as below using the generalized

antecedent structure.

1
1 1 1 1

M
M M M M

((t) R (,)) THEN (t) (t)

((t) R (,)) THEN (t) (t)

is in y

is in y

∧

∧

=

=

IF c o P θ x

IF c o P θ x

M

 (2.8)

where

i

y
∧

is output from the local model in rule i

The final computation of the GTSK model in Equation (2.8) is defined by

iM
i

i=1

y(t)= w (t) y (t)
∧ ∧

∑
 (2.9)

where
iw (t) are the weights of the local models. In this work,

iw (t) is defined as the normalized

truth of the antecedent (TA)

i
i

M
i

i=1

TA (t)
w (t)=

TA (t)∑
 (2.10)

where TA can be calculated by Equation (2.5)

18

2.1.2 Order Determination and Antecedent Variable Selection

The first step in modeling is variable selection. This work first determines the orders, ny

and nu, and delay d for a nonlinear dynamic system as defined in Equation (2.1). The value of ny,

nu and d give the set of consequent variables in Equation (2.8). Antecedent variables are then

selected from the consequent variables.

A. Nonlinearity Representation Methodology

Once θ(t) in Equation (2.7) is determined, the orders, ny and nu, and delay dare then

defined accordingly. A exponential weighting method[30], represented byEquation (2.11), is used

to recursively estimate θ(t).

() () ()

() () () () () ()()
() () () () ()()

() () () () ()()

1

ˆˆ 1

1 1

ˆ ˆ ˆ1

1
1 1

T

T

T

y t t t

t t t t t t

t t t y t y t

t t t t t

α

α

−

= −

= − − +

= − − −

= − − −

x θ

K P x x P x

θ θ K

P P K x P
 (2.11)

where ()ˆ 1t −θ is the parameter value estimates at t-1, ŷ(t) is the one-step-ahead prediction of y(t)

using ()ˆ 1t −θ , K(t) is the gain used and correct ()ˆ 1t −θ to ()ˆ tθ based on the prediction error, P(t)

records the covariance of ()ˆ tθ .

In Equation (2.11), α is the tuning factor, termed as ‘forgetting factor’, which has to be

chosen for a balanced performance for nonlinearity adaptation and parameter estimation precision.

The GTSK modeling approach uses α =0.95 and finds results are relatively insensitive to its

choice.

In this work, the resultant regressor vector x(t) and output y(t) are reorganized in a

“spatial” order to minimize the change in coefficient values during the recursive estimation. The

reordering procedure is termed as Sequential Nearest Neighbor Rearrangement (SNNR).By

19

reducing the parameter variation, the SNNR is able to reduce the mean squared error (MSE) of

one-step-ahead prediction.

B. Order Determination by Regressor Selection

In this work, the order determination starts by selecting regressors with user-given value

of possible maximum ny, nu and d. Then, a number of candidate regressors are generated by

Equation (2.9) and denoted as [x1(t) x2(t) x3(t)… xm(t)xrandom(t)]. Regressors of x1(t),…,xm(t) are

lagged y(t) and u(t) as shown in the regressor vector x(t). Regressor xrandom is a regressor

comprised of random number that presumably contains no meaningful information on y(t).At

first, each of m+1 regressors, x1(t), x2(t), x3(t)… xm(t)xrandom(t), is tried. The trial starts with time-

sequence data (y(t),[xi(t)]), where y(t) is the output and xi(t) (i=1,…,m+1) in bracket is the trial

regressor. A SNNR is then conducted on xi(t) to get rearranged data set (ysnnr(k), [xsnnr,i(k)]). The

exponentially weighted recursive estimation in Equation (2.11) is then applied to the rearranged

data. The one-step-ahead prediction error on ysnnr (k) is used to evaluate the prediction quality of

each regressor, xi(t). The evaluation criteria is the following Final Prediction Error (FPE)

index[31]

()
1

2
N L

k L

L np
FPE k

L np
ε

− +

=

+
=

− ∑

4

1
L

α
=

−
 (2.12)

where ε(k) is the one-step-ahead prediction residual in Equation(2.11) for SNNR rearranged data,

np is the number of regressors, L is related to the ‘forgetting factor’ α.

After the first round of estimation and evaluation, the regressor with the minimum FPE is

selected. For instance, if x2 is selected, there will be other m regressors to be tried. For each tried

regressor xi(t) (i≠2), the time-sequence data is (y(t), [x2(t), xi(t)]), where the bracket contains the

20

already selected regressors, x2(t) and the trial regressor xi(t). A SNNR is then applied on [x2(t)

xi(t)] to get rearranged data (ysnnr(k), [xsnnr,2(k) xsnnr,i(k)]). Equation (2.11) is conducted then to get

the one-step-ahead prediction error on ysnnr(k). The quality of [x2(t) xi(t)] combination is then

evaluated using FPE. The regressor combination with the minimum FPE is kept.

The selection continues until either the minimum FPE for a selected set increased with

respect to the previous set, or the xrandom(t) is selected. The injection of a random regressor is used

as a stopping criterion[32]. The selection of xrandom(t) signifies that the rest of candidates are less

influential on y than a random pattern.

Values of ny, nu and d could be easily defined by a selected set of consecutive regressors,

for instance, [y(t-1), y(t-2), u(t-1), u(t-2)], due to implicit constraint on the model structure.

However, absences could exist in selected regressors such as [y(t-1) y(t-4) u(t-1) u(t-3)], which

does not correspond a set of ny, nu and d. For database management simplicity, in GTSK

modeling, if the situation with absence occurs, a further comparison is executed on different order

values. For the illustrated example, an exhaustive comparison is conducted on possible values of

ny=1, 2, 3 or 4 combined the possible values of nu=0, 1, or 2, with d = 1.

After this procedure, consequent variables (x1,…,xnx) are determined as the selected

regressors(y(t-1) … y(t-ny), u(t-d) …. u(t-nu-d)).

C. Nonlinear Component Detection

To detect the regressors that are affecting the output nonlinearly, which are then used as

antecedent variables, the similar technique for order determination is used. In GTSK modeling,

antecedent variables (c1,...,cnc) are defined as a subset of the (x1,…,xnx). There are 2nx-1 subsets in

(x1,…,xnx) excluding the empty one. Each subset is considered as a candidate (c1,...,cnc), on which

the SNNR is again conducted and a corresponding FPE is computed. The subset with minimum

FPE is selected as (c1,...,cnc), which are (y(t-1) … y(t-ay), u(t-d) …. u(t-bu-d)) in Equation(2.3)

21

2.1.3 Estimation of Parameter Values

Once the consequent variables (x1,…,xnx) and antecedent variables (c1,...,cnc) are

determined, the next task is to determine the antecedent structure as well as the parameter values

in each rule.

A. Methodology

Figure 2.6 illustrates a GTSK model with a two-dimension antecedent structure.

Figure 2.6 A GTSK model in a two dimension antecedent space

If underlying rule regions are given, the parameter estimation problem will be easy to

solve. In the GTSK approach, rule regions are generated out of an antecedent space by partition.

An illustrating example for Figure 2.6 is shown below, where four regions are defined by three

linear splitting boundaries (dashed lines).

Figure 2.7 Partitioned antecedent space for the GTSK

Once a rule region is determined, an ellipsoid can be defined to cover it, as shown in

Figure 2.6. The GTSK approach

partition of the antecedent space. T

to solve a splitting and regression problem (SRP).

B. Solving Splitting and Regression Problem

An example of one stage in SRP on a two dimensional antecedent space

Figure 2.8. The objective is to minimize the modeling error of the partitioned data by the two

linear models by placing a linear separation boundary (the bold dashed line) in the antecedent

space, which results in two subspaces

linear models shown use all relevant regressors, not just the two (

nonlinear behavior. The separation boundary is chosen to be linear, and is a function of the

variables, of which only c1 and

22

Figure 2.7 Partitioned antecedent space for the GTSK model in Figure 2.6

Once a rule region is determined, an ellipsoid can be defined to cover it, as shown in

Figure 2.6. The GTSK approach determines the number and shapes of regions by a recursive

partition of the antecedent space. The fundamental step to obtain an antecedent

and regression problem (SRP).

B. Solving Splitting and Regression Problem

An example of one stage in SRP on a two dimensional antecedent space

he objective is to minimize the modeling error of the partitioned data by the two

linear models by placing a linear separation boundary (the bold dashed line) in the antecedent

space, which results in two subspaces A and B. Each subspace has a local linear

linear models shown use all relevant regressors, not just the two (c1 and c2)

nonlinear behavior. The separation boundary is chosen to be linear, and is a function of the

and c2 are illustrated here.

in Figure 2.6

Once a rule region is determined, an ellipsoid can be defined to cover it, as shown in

determines the number and shapes of regions by a recursive

to obtain an antecedent space partition is

An example of one stage in SRP on a two dimensional antecedent space is illustrated in

he objective is to minimize the modeling error of the partitioned data by the two

linear models by placing a linear separation boundary (the bold dashed line) in the antecedent

. Each subspace has a local linear model. The two

) chosen to express

nonlinear behavior. The separation boundary is chosen to be linear, and is a function of the ci

23

Figure 2.8 Illustration of a SRP

The belongingness of data sample to subspace A is determined by l(t) and φ(t) as below

() () ()0 1 1 2 2l t s s c t s c t= + + (2.13)

()
()
()

0, 0

1, 0

l t
t

l t
ϕ

 <
= 

≥
 (2.14)

where s0, s1, s2 defines a separation boundary () ()0 1 1 2 2 0s s c t s c t+ + = in Figure 2.8. The value of l(t)

is 2 2
1 2s s+ times of the distance of a point, [c1(t), c2(t)] to the linear separation boundary , which is

() () 2 2
0 1 1 2 2 1 2/d s s c t s c t s s= + + + . However, Equation (2.14) implies that only the sign of l(t) matters.

In Figure 2.8, the points in category A have negative values for l(t) while B category has positive

l(t).

In Figure 2.8, two local linear models are

() () ()
() () ()

0 1 1

0 1 1

a
nx nx

b
nx nx

y t a a x t a x t

y t b b x t b x t

= + + +

= + + +

L

L
 (2.15)

Combing Equation (2.14) with the Equation (2.15), the output is then computed by

() ()() () () ()ˆ 1 a by t t y t t y tϕ ϕ= − + (2.16)

The SRP can be then solved by minimizing the following performance index J

()2

, ,
1

min
N

t

J tε
=

=∑
a b s

 (2.17)

c1

c2

A

B

() () ()0 1 1
b

nx nxy t b bx t b x t= + + +L

() ()0 1 1 2 2 0s s c t s c t+ + =

() () () ()0 1 1
a

nx nxy t a t ax t a x t= + + +L

d

24

where, ε(t) = y(t) - ŷ(t) is the residual, and parameter values to be estimated include a and b in

Equation (2.15), and s in Equation (2.13),

The GTSK approach solves the SRP by a heuristic suboptimal method based on the

assumption that there are two local linear models. Given a separation defined by s, it results in a

split of data [y C X] into A and B regions as [yA CA XA] and [yB CB XB]

() ()

() ()

() ()2 2

with

1

1

: 0, ; : 0,

Ta a
A

Tb b
B

y y N

y y N

N Nσ σ

= +

= +

 =  

 =  

A A A

B B B

A

B

A A B B

y X a e

y X b e

y

y

e I e I

L

L

 (2.18)

where, y is the vector collecting all N sample outputs, C is a N by nc matrix consisting of N rows

of antecedent variables, and X is a N by nx matrix consisting of N rows of consequent variables.

XA and XB are two disjoint subsets of X. The corresponding model parameters a and b are

estimated by

()
()

1

1

ˆ

ˆ

T T

T T
B

−

−

=

=

A A A A

B B B

a X X X y

b X X X y

 (2.19)

the residual for model A could then be evaluated by

ˆ= −A A Aε y X a (2.20)

after some algebraic operations, Equation (2.20) is expressed in terms of eA by

()()1T T−
= −A A A A A Aε I X X X X e

(2.21)

the quadratic performance criterion is then evaluated and expressed in terms of XA and σA by

()()1 2

T

T T
A

J E

Tr σ
−

 =  

= −

A A A

A A A A

ε ε

I X X X X

(2.22)

25

in the same manner, the performance criterion for model B is described by

()()1 2T TJ Tr σ
−

= −B B B B B BI X X X X , then the quadratic performance is expressed in terms of σA and σB

by

J J J= +A B

(2.23)

which could be viewed as a weighted combination of 2σA
and 2σ B

. The weights are determined by

the trace function on XA and XB, which are NA-nx-1 and NB-nx-1 respectively. Since nx is often

negligible to NA and NB, Equation (2.23) is converted to

2 2J N Nσ σ= +A A B B

(2.24)

where, based on Equation (2.24), NA and NB are defined by

() ()
1 1

,
N N

B
t t

N t N N tϕ ϕ
= =

= = −∑ ∑A

(2.25)

additionally, the unknown 2σA
and 2σ B

are to be replaced by their estimates by

() ()() ()

()() ()() ()()

22

1 1

22

1 1

ˆ

ˆ 1 1

N N

t t

N N

B
t t

t y t t

t y t t

σ ϕ µ ϕ

σ ϕ µ ϕ

= =

= =

 = − 

 = − − − 

∑ ∑

∑ ∑

A A

B

(2.26)

where µA and µB are unknown means of yA and yB in model A and B. Substituting Equations (2.25

- 2.26) into Equation (2.23), J is then described by

() ()() ()() ()()2 2 22

1

1
N

t

J t y t t y tϕ µ ϕ µ
=

= − + − −∑ A B

(2.27)

where, there are N+2 decision variables, N belongingness values, and µA and µB. Since the φ(t) s

not coupled with any φ(τ) (t≠τ), it can be solved individually by

()
()()

()() ()()

2

2 2

y t
t

y t y t

µ
ϕ

µ µ

−
=

− + −

B

A B

(2.28)

26

Combining Equations (2.28) and (2.27) defines J in terms of µA and µB only by

()() ()()
()() ()()

2 2

2 2
1

N

t

y t y t
J

y t y t

µ µ

µ µ=

− −
=

− + −
∑ A B

A B

(2.29)

the objective function in Equation (2.29) has only two decision variables µA and µB. Once J is

minimized, φ(t) is determined by Equation (2.28) and automatically lies between 0 and 1. The

resultant φ(t) takes any value within 0 and 1 instead of 0 and 1 only. The following Equation

(2.30) will convert the φ(t) to a two-value indicator (0,1)

()
()
()

0, 0.5

1, 0.5

t
t

t

ϕ
ϕ

ϕ

 <
= 

≥

(2.30)

which assigns each data sample to either region A or B. Notice that the φ(t)from Equations (2.28)

and (2.30) is not confined to a linear separation boundary defined in Equation (2.13). In order to

let the indicator values be subject to a linear separation boundary, the following support vector

machine (SVM) [33] is then solved to find the linear separation parameters s based on φ(t) from

Equation (2.30)

() ()
() ()

2

0 1 1

0 1 1

0 1 1

minimize

subject to

1 , 1

1, 1

, 0

A AN Nnc
a b

k i j
k i j

a
nc nc i A

b
nc nc j B

a a
i i

s r

s s c i s c i i N

s s c j s c j j N

ξ ξ

ξ

ξ

ξ ξ

= = =

 
+ + 

 

+ + + ≥ − =

+ + + ≤ − =

≥

∑ ∑ ∑

L L

L L

(2.31)

The solved sis then applied to Equations (2.13) and (2.14) to update φ(t), which is now

confined a linear separation boundary. The resultant φ(t) defines a split, [yA CA XA] and [yB CB

XB]. Then a and b are estimated by Equation (2.19). It then is able to evaluate residuals εA and εB

explicitly by Equation (2.20). The indicator values are then updated by minimizing the following

J with replacement of (y(t) - µA) and (y(t) - µB) in Equation (2.27) by εA(t) and εB(t)

27

() () ()() ()
22 2 2

1

1
N

t

J t t t tϕ ε ϕ ε
=

= + −∑ A B

(2.32)

where, φ(t) is solved by

() () () ()()2 2 2
B A Bt t t tϕ ε ε ε= +

(2.33)

The new φ(t)is then converted to 0 and 1 by Equation (2.30) and the SVM is solved again.

Subsequently, a and b are re-estimated.

This successive substitution procedure to solve the SRP is summarized in the following

flowchart.

Figure 2.9 The algorithm solving the SPR

The algorithm stops when the change of φ(t)in two consecutive steps is very small. The

antecedent space is progressively partitioned until no rule region can be further divided.

SRP

Solve μA and μB (2.29)

Solve φ(t) (2.28)

Solve a SVM for s (2.31)

Compute φ(t) (2.13), (2.14)

Estimate a and b (2.19)

Solve φ(t) (2.32)

Converge

END

No

Yes

28

C. Rule Antecedent Identification

Given a partitioned antecedent space, the rule of each local region needs to be defined.

This can be interpreted as the estimation of the centroid and shape factors of the best ellipsoids to

cover each region. A method which also considers the quality of reach data point is used in the

GTSK approach.

 The quality is related to the prediction error for each data sample. The solid dots in Fig. 8

represent data points with relatively small residuals from their linear model, Equation (2.18),

while the circles represent data points with relatively larger residuals.

Figure 2.10 A local region in an antecedent space

Only data samples with smaller residuals are used to estimate the antecedent parameters.

The importance of each data point is weighted by β, which is defined as

() ()()2
exp

Tr r r r r
i iN ε ε= −β ε (2.34)

where Nr is the number of data points in region r. The script (r, i) represents the i th data in region r.

r
iβ reaches the highest value at 1 when r

iε is zero.

The centroid or is estimated by

1 1

r rN N
r r r r

i i i
i i

β β
= =

=∑ ∑o c (2.35)

and the matrix Pr is defined by its inverse

1c

2c

29

() ()()1

1 1

P
r rN NTr r r r r r r

i i i i
i i

β β
−

= =

= − −∑ ∑c o c o (2.36)

Then the rules of local regions, TAs can be defined by Equation 2.5.

2.1.4 GTSK Modeling Procedure Summary

The above procedure for converting input-output data to a GTSK model is summarized as

follows:

Step 1. Determine dynamic orders, ny, nu and delay d by using the SNNR to rearrange data,

recursive estimation (Equation (2.11)) to process rearranged data, and the FPE ((Equation (2.12))

to evaluate a particular choice of regressor set.

Step 2. Determine antecedent variables (c1,...,cnc) from consequent variables (x1,…,xnx)

Step 3. Recursively partition the antecedent space by solving a series of SRPs. Note, the

parameter values in the consequent model were determined by Equation (2.19) in Step 3.

Step 4. Determine antecedent parameters, centroid and shape matrix for each rule antecedent.

2.2 NMPC Methodology

The NMPC proposed in this work is designed to find an optimized sequence of present

and future controller outputs (u) to minimize the deviation between a process response prediction

and a given reference trajectory for a number of future steps over a time horizon on the order of

the process settling time.

The general structure of NMPC or receding horizon control implemented in this work is

shown in Figure2.11

30

Figure 2.11 General Structure of NMPC

where ysp is the steady-state set point (SP) of controlled variable (CV) yp, yspbias is the biased set

point. u is the manipulated variable (MV). The controller block is comprised of the GTSK model

and the optimizer.

In this NMPC application, the GTSK model is used to forecast the future process

response based on the knowledge of past CVs and MVs. The function of the optimizer is to

minimize the distance between the predicted future trajectory of process response and the desired

future trajectory, which is also called reference trajectory.

At time t, the current time in the process operation, the process response prediction y(t+i)

is calculated for each discrete sampling time for a long horizon into the future (i=1,....N). The

length of the prediction horizon, N, is a controller tuning variable defined by user. However, it

should be extend sufficiently beyond the dead-time of the process, θ, as well as the inverse

process range. The predicted process response is determined by a nonlinear model of the NMPC,

which is the GTSK model in this work.

Since a process model mismatch (pmm) exists, a feedback correction is necessary for

compensating the pmm and removing the steady state offset. In this work, a biased set point is

introduced as the adjustment. It is defined by Equation (2.37), where pmm stands for the

difference between the present process output and model prediction.

Setpoint
Adjustment

Reference
Trajectory
Calculation

Controller
ysp

Process
yspbias r u yp

Yp

31

yspbias sp=y - pmm

(2.37)

The reference trajectory, r(t) applied in this work is a first-order approximation from the

current model value, y(t) towards a biased set point, yspbias(t). It is defined by

w spbias

d r(t)
τ +r(t)=y (t)

dt
 (2.38)

which can be also represented in a discrete time formation as below

t 1 t t
w w

spbias

∆t ∆t- -
τ τr = (1- e)y +(e)r+ (2.39)

where ∆t is the sampling time interval, τw is a tuning parameter of the reference trajectory.

In this NMPC control scheme, the controller output scenario (the future sequence of MV

values) is “known” within the control horizon to minimize the sum squared deviation (SSD) of

process response prediction from reference trajectory.

The controller output scenario in this work is designed to be a sequence of three step-and-

hold values. Each of them covers 25%, 25% and 50% of the control horizon, respectively.

Nevertheless, only the first step of the MV sequence is implemented as the controller output at

instant time, t. Figure 2.12 illustrates an example of the MV sequence and process response

prediction in the future. In this simulation, the process is initialized at the steady state of the

controlled variable (CV) =7. The controller is in the MAN mode with the MV of 50% at the

beginning. It switches to AUTO mode at 5 Minutes. At t=10, the set point is changed from 7 to 3.

The MV goes to zero initially after the set point change. Figure 2.12 is a snapshot at t=14 which

shows post events and future projections.

32

(a)

(b)

Figure 2.12 The Process Response and the Prediction (a) and the MV sequence (b)

The nonlinear model embedded in the optimizer is the GTSK model. At the very

beginning of the control horizon, the GTSK model is initialized using the past CV and MV values

as the regressors. Once a model prediction value is calculated by the GTSK model for the next

time step, it is stored as a “past CV” value for next sampling time prediction. The controller

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

Y(t)

T (min)

Y(t) Reference Trajectory
Ymodel(t) Setpoint
Biased Setpoint

Control Horizon

Past Future

0

10

20

30

40

50

60

0 5 10 15 20 25 30

U(t)

T (min)

Past Future

Control Horizon

Three-step MVs Sequence

33

output values used as the regressors are delivered from the trial solution of MVs, which is

determined by optimizer. The estimated process response for the whole range of the control

horizon is calculated by this recurrent prediction approach.

A new optimization technique called Leapfrogging [6] is employed in this work. With a

global aspect, the leapfrogging technique can efficiently find the global optima for multi-optima

problems. In this work, it searches and determines the MV sequence that minimizes the sum of

squared deviations between a process response prediction and a given reference trajectory for the

control horizon at each sampling time.

The logic of the NMPC algorithm is illustrated in the following flow chart.

Figure 2.13 The Logic of the NMPC Algorithm

Set Target y(t)

Calculate reference trajectory R

Guess u(t) sequence

Predict �(t) over the horizon

Calculate the deviation (SSD)
between � and R

Minimize SSD
(Optimization)

1st step of best
u(t) to implement

34

2.3 Leapfrogging Optimization Approach in GTSK MPC

In a MPC controller, a set of optimal MV values which drive the process toward the

desired set point along the reference trajectory without violating constraints need to be computed

at each sampling time.

Recently, a new optimization approach named leapfrogging is proposed by Rhinehart, Su

and Sridhar (2010)[6]. With the characteristics of direct search and random starts, it can

efficiently find the global optima for multi-optima problems. Considering its simplicity and

efficiency for global optimization, which will greatly enhance the online application performance

of the NMPC controller, the leapfrogging optimizer is employed in this work.

The leapfrogging technique starts with a random located set of trial solutions (termed

players) within the feasible decision variable (DV) space. Infeasible regions may be defined by

either DV, OF or auxiliary functions. At each iteration, the player with the worst objective

function (OF) value is relocated to a random position within its DV-space reflection on the other

side of the player with the best OF value. Figure 2.1 illustrates the leapfrogging mechanism.

35

Figure 2.14 Leapfrogging Mechanism

The repulsion of vacated sites is another innovative attribute of this technique. Influenced

by the synoptic topographic knowledge, a history of positions of recently vacated sites in DV-

space is used to mildly repulse the leap-to position away from the recently vacated sites.

In this work, the controller calls the embedded leapfrogging optimizer to search and determine

the MVs sequence that minimizes the sum of squared deviations between a process response

prediction and a given reference trajectory for the control horizon at each sampling time.

worst player

best player

reflected window

36

CHAPTER III

EXPERIMENTAL METHOD

3.1 Experimental System

In this study, the experimental system is a process simulator, in which the NMPC

controller was implemented on a primary process (y) and an auxiliary process (z). The primary

process in this simulator is fourth-order-plus-dead-time (FOPDT) process with a nonlinear gain

and the environmental effect (noise and disturbance). The process gain (Kp) is one over the square

root of the manipulated variable u(t), which is also the input of the controlled variable y(t).

The FOPDT process is represented as

p
1K =

u(t)

1
1 1 p

d y (t)
τ +y (t)=K u(t)

dt

2
2 2 1

d y (t)
τ +y (t)=y (t)

dt (3.1)

3
3 3 2

d y (t)
τ +y (t)=y (t) + D

dt

4 3

d y(t)
τ +y(t)=y (t -)

dt
θ

37

where yi(t) is the process response of each lag,�� is the time constant, D is the external

disturbance, θ is the dead-time, dt is the sampling interval. The coefficient values are shown in

Table 3.1

Table 3.1 Process Coefficients

Parameter Value (minute)

�� 1

�� 2

�� 2

�� 3

θ 3

dt 0.2

Figure 3.1 shows the nonlinear dynamic behavior of the process. The input u(t) has a

minimum value of 0 and a maximum value of 100. Consequently, the process response y(t)

ranges from 0 to 10. In Figure 3.1, a step change of u(t) from 0 to 20 leads to a y(t) change of

about 4.5. However, y(t) increases from about 9 to 10 when a same increment was made on u(t)

from 80 to 100. Due to the nonlinearity of the process, equal changes in u(t) lead to diminishing

changes in y(t).

38

Figure 3.1 CV responses to MV equal-step-changes

The noise used in the simulation is generated by Box-Muller method[34]. It is normally

and independently distributed with zero mean and a standard deviation of sigma (σ), which is

referred to as NID (0, sigma). The noise equation is

Noise Noise 1 2NID (0,) -2 Ln(r) sin(2πr)σ =σ ⋅

(3.2)

where σ
��
� is 0.2, r1 and r2 are uniformly distributed random number between 0 and 1.

The external disturbance is simulated by an autoregressive-moving-average (ARMA)

type model which is first order in response. The model that driven by a NID(o, σ��
�) noise

signal generates autocorrelated time series data as disturbance. It is represented as

Dist Dist

d D(t)
τ +D(t)= NID (0,)

dt
σ (3.3)

Where D(t) is the disturbance, ����� is 5, σ��
� is 0.25.

The auxiliary process variable z(t) is a first-order response to u(t), which is represented as

z z

d z(t)
τ +z(t)=K u(t)

dt (3.4)

where �� is 2.67, Kz is 0.9.

0

20

40

60

80

100

0 50 100

U(t)

T (min)

0

2

4

6

8

10

0 50 100

Y(t)

T (min)

4.5

1

39

3.2 GTSK Model Development

The GTSK approach converts the time varying input and output data generated by the

process simulator to a GTSK model. As presented in Chapter 2, y(t-1) … y(t-ny), u(t-d) …. u(t-nu-

d) were determined as the consequent variables, and then the antecedent variables were selected

from them. The antecedent space was recursively partitioned into several regions. The antecedent

parameters, centroid and shape matrix were determined by GTSK modeling technique

subsequently.

3.2.1 Sawtooth Input Training Signal

In the modeling phase, a “sawtooth function” is chosen to generate the input training

signal. As shown in Figure 3.2, it jumps or drops to the halfway of a random level, and then

ramps to that level at the end of a period of random length.“Skyline function” is another

commonly used training signal, which jumps or drops to a random level and holds for a random

time interval within certain limits. Compared to “skyline function”, the sawtooth function covers

wider range of the input data by the random located ramp, and is thought to provide a more

complete basis for obtaining empirical process response models.

(a) (b)

Figure 3.2 Input training signals

0

20

40

60

80

100

0 200 400 600 800 1000

Sawtooth Function

0

20

40

60

80

100

0 200 400 600 800 1000

Skyline Function

40

3.2.2 GTSK Model Generation and Evaluation

The training data used in this work is plotted in Figure 3.3, which shows the input signal

u(t) by the sawtooth function and the process response y(t). The range of process response value

is 0 to 10, while the range of input signal value is 0 to 100%. The process was initialized at zero.

(a)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

U(t)

T (min)

41

(b)

Figure 3.3 The sawtooth-pattern input (a) and process response (b)

The GTSK model in this work has y(t-1), y(t-2), y(t-3), and u(t-20) as regressors, among

which u(t-20) is the only antecedent variable. The model, which has 12 local models, is

represented by following equations. Table 3.2 shows the values of 84 coefficients in total.

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400

Y(t)

T (min)

42

1

12

y (t) = y(t -1) + y(t - 2) + y(t -3) + u(t - 20)

y (t) = y(t -1) + y(t - 2) + y(t -3) + u(t - 20)

1 1 1 1 1
1 2 3 4 5

12 12 12 12 12
1 2 3 4 5

θ + θ θ θ θ

θ + θ θ θ θ

∧

∧

M

i
i

i

2-(u(t - 20)-Center)
TA (t)= EXP()

Width (3.5)

i
i

12
i

i=1

TA (t)
w (t)=

TA (t)∑

12 i
i

i=1

y(t)= w (t) y (t)
∧ ∧

∑

Table 3.2 GTSK Model Coefficients

Model No. θ1 θ2 θ3 θ4 θ5 Center Width*

1 0.380729 0.374544 0.279718 0.276694 0.002959 76.5624 0.0197

2 0.198491 0.289056 0.38512 0.259525 0.005471 56.4061 0.0614

3 0.03796 0.412064 0.185464 0.335465 0.023535 3.8624 0.2644

4 0.374987 0.30784 0.399311 0.188244 0.00371 16.8419 0.4129

5 0.318991 0.219484 0.401633 0.30176 0.004533 47.916 1.2644

6 0.190683 0.184169 0.401888 0.337867 0.004275 8.2903 0.9606

7 0.129525 0.371462 0.27109 0.285711 0.008859 30.4761 0.1612

8 0.254841 0.348019 0.301008 0.279506 0.003807 23.3493 0.2459

9 0.234811 0.404955 0.225322 0.310266 0.003447 44.0831 0.3508

10 0.074481 0.334408 0.327454 0.263228 0.010187 38.0753 0.377

11 0.039623 0.242396 0.305287 0.316081 0.035061 13.3275 2.5599

12 -0.04174 0.300432 0.416675 0.229603 0.018498 11.3618 3.0833

43

In this work, because some of the width values were so small that there was no model

information in between centers, all the width values are adjusted to be 30% to provide a better

coverage on the antecedent of each local model.

The GTSK model prediction, ŷGTSK, is shown in Figure 3.4; comparing it with the process

response in the same plot. The two curves are barely distinguishable. To provide a comparison, a

second-order-plus-dead-time (SOPDT) model is generated by the conventional regression

approach, which the process-model mismatch is obvious, indicating the benefit of the GTSK

model. Figure 3.5 shows the SOPDT model prediction ŷSOPDT.

Figure 3.4 GTSK model prediction and process response

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400

Y(t)

T(min)

Process Response

GTSK model prediction

44

Figure 3.5 SOPDT model prediction and process response

The model performance is evaluated by the sum squared deviation (SSD) from the

process response y to the prediction ŷ. The SSD from model to process of two models was

compared in Table 3.3

Table 3.3 Comparison of sum-squared deviation (SSD)

 GTSK model SOPDT model

SSD 159 2057

According to both the SSD and plot comparison, the GTSK model prediction not only

shows a much smaller deviation from the process than the SOPDT model, but also fits the process

“very well”. This result indicates that the GTSK model is a well-qualified model for the nonlinear

MPC.

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400

Y(t)

T(min)

Process Response

SOPDT model prediction

45

CHAPTER IV

RESULTS AND DISCUSSION

To evaluate the performance of a GTSK MPC controller, seven sets of dynamic control

simulations were run. The performance of disturbance rejection, set point tracking, constraint

handling, comprehensive environmental effect (both noise and disturbance) handling and manual

to automatic transfer was tested. In all simulations, the process was initialized at the steady state

of CV=7 with the MV of 50%. It operates in the MAN mode for 5 minutes before it was

transferred to the AUTO mode (except the disturbance rejection test).

4.1 Disturbance Rejection

The GTSK-MPC control performance for the disturbance rejection is illustrated in Figure

4.1. Set point is maintained at 7, and noise was not introduced to the process. The disturbance

was added to the second-order response of the process. To demonstrate the controller ability to

handle the disturbance, the test was carried out under both MAN and AUTO modes of the

controller. From 0 to 40 minutes, the controller is in MAN mode with the MV of 50%. After the

disturbance was removed, the process was not back to the set point. After the time of 40 minutes,

the controller was switched to AUTO mode, and trying to bring the disturbed process back to set

point. It is shown that the process was regulated successfully and brought back to the set point at

about 80 Minutes. The control performance was measured by the sum squared deviation (SSD) of

46

CV from set point. The SSD is 21.85 when the controller is in MAN mode. Within the next 40

minutes, when it is in AUTO mode, the SSD is reduced to 5.82.

Figure 4.1 Control performance of disturbance rejection

4.2 Set point Tracking

Figure 4.2 illustrates the control performance for set point tracking. In this test, there is

no environmental effect added to the process. The controller showed a strong set point tracking

ability. It took the process about 30 minutes to settle down when the set point stepped either up or

down. The controller also responded quickly and effectively with a moderate aggressiveness. In

spite of process nonlinearity (Kp changes by about 2:1 over the range), the process responses to

the SP = 3 and SP =9 values are similar, demonstrating control effectiveness.

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)

MAN AUTO

Disturbance

SSD=21.85 SSD=5.82

47

Figure 4.2 Control performance for set point tracking without environmental effects

4.3 Constraint Handling

Figures 4.3 to 11 illustrate the impact of the different types of constraints. In each test,

two sets of set point step change from 7 to 3 were made to compare the constrained and

unconstrained conditions. During the first simulation period from 0 to70 minutes, the process was

simulated with the constraints. Then the constraints were removed at 70 minutes. The second

parts of the simulation were carried out without the constraint. The four types of constraints were

all tested individually.

Figure 4.3 shows the control performance when hard constraints were introduced. In this

test, the MV was constrained with an upper limit of 100% and a lower limit of 10%. At about 10

minutes, the set point was changed to 3, and the controller began to push the MV to its lower

limit of 10% trying to bring the CV to the set point. The CV reached the steady state value which

is greater than the set point at about 40 minutes. As soon as the set point returned to 7, t=70, the

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)

48

MV changes. There was no windup at the constraint. Once the constraint was removed, the MV

could go below 10% so that the CV reached the set point of 3.

Figure 4.3 Demonstration of the impact of hard constraints on the MV

Figure 4.4 is a demonstration of the impact of hard constraints on the rate-of-change of

MV. The limit on the rate-of-change of MV is 1% per sampling interval. Under the constrained

condition, the MV gradually moved down after the set point change. In contrast, during the

subsequent unconstrained period, the MV jumped straight down immediately when the set point

was changed.

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)

Hard Constraints
on U(t)

No Constraint
on U(t)

Hard Constraint
Threshold

49

Figure 4.4 Demonstration of the impact of hard constraints on the rate-of-change of MV

Figure 4.5 demonstrates the impact of soft constraints on the value of the CV. The “legal”

operation range of the CV was set as 3.2 to 10. If the CV violates the constraints, a penalty is

added to SSD so that the optimizer is subject to the soft constraints on the CV. Comparing the

different process responses to the same set point step change, Figure 4.5 shows that, under the

constrained condition, the controller was not able to drive the CV to the set point 3, which is

below the lower limit 3.2. Therefore, the soft constraint successfully influenced the controller’s

“decisions”.

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)

Hard Constraints on
rate-of-change of

MV

No Constraint on
rate-of-change of

MV

50

Figure 4.5 Demonstration of the impact of soft constraints on the CV

The auxiliary variable was added to the process in the test shown in Figure 4.6. The lower

limit of the auxiliary variable is 15. The optimizer is subject to the soft constraints on the

auxiliary variable. It is shown that the controller sacrificed its performance to avoid violating the

soft constraints on the auxiliary variable. Due to the optimization objective, the CV did not reach

the set point, but achieved a balance between the control performance and the penalty of violating

the soft constraints.

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)

Soft Constraints
on Y(t)

No Constraint
on Y(t)

Soft Constraint
Threshold

3.2

51

Figure 4.6 Demonstration of the impact of soft constraints on the auxiliary variable

4.4 Environmental Effect Handling

When environmental effects are added to the process, the control performance for

handling this comprehensive situation is shown in Figure 4.7. The four types of the constraints

presented above are also applied in this test. In Figure 4.7, the process tracks the set point change

well even under the influence of both noise and disturbance. The disturbance was introduced at 7

minutes. It is shown that there is same amplitude of the noise and wandering of CV at both set

point = 3 and set point = 9. However, the amplitude of MV wandering at set point = 3 is about

twice larger than that at set point = 9. This is attributed to the nonlinearity of the process.

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

U(t)Y(t)

T (min)

Y(t)
Setpoint

U(t)
Z(t)

Soft Constraints
on AV

No Constraint
on AV

Soft Constraint
Threshold

15

52

Figure 4.7 Control performance for set point tracking with environmental effects

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

U(t)Y(t)

T (min)

Y(t)

Setpoint

U(t)

53

CHAPTER V

CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

1. The use of a GTSK model and Leapfrogging as an optimizer were demonstrated as effective

for nonlinear model predictive control.

2. The nonlinear model is firstly developed by using GTSK approach. The prediction accuracy of

the GTSK model was illustrated and quantified by a comparison with SOPDT model. The GTSK

model was much better.

3. A fourth-order-plus-dead-time (FOPDT) process simulator with nonlinear gain and the

environmental effect (noise and disturbance) is used as the experimental system, in which the

NMPC control algorithm was embedded. The SIMO process was subject to soft constraints on the

controlled and auxiliary variables, and hard constraints on both the limits and rate of change of

the manipulated variable.

4. The performance of GTSK MPC controller is evaluated via seven sets of dynamic control

simulation. The controller showed desirable performance for disturbance rejection, set point

tracking, constraint handling, and comprehensive environmental effect handling.

5. The controller has a bump-less transition from MAN to AUTO mode.

54

6. The controller does not wind up when the process was constrained.

7.2 Recommendations

Recommendations for future work are:

1. Extend the use of GTSK model in MPC to the multi-input-multi-output (MIMO) process

simulator with a more realistic and representative chemical engineering unit operation

process.

2. Implement the GTSK MPC controller on the real system, like the heat exchanger or

distillation column in the Unit Operations Laboratory.

3. Investigate the reason GTSK approach gives such low width of the rule antecedent.

4. Investigate the merits of the sawtooth signal over the skyline signal.

5. Evaluate the use of the GTSK model for control applications to alternate nonlinear modeling

approaches. Consider ease of use, computational burden, robustness, understandability, and

other technical and human attributes.

55

REFERENCES

[1] R. Findeisen and F. Allgöwer, "An introduction to nonlinear model predictive control,"
2002.

[2] J. Qin and T. Badgwell, "A survey of industrial model predictive control technology,"
Control Engineering Practice, vol. 11, pp. 733-764, 2003.

[3] E. Camacho and C. Bordons, "Nonlinear Model Predictive Control: An Introductory
Review," ed, 2007, pp. 1-16.

[4] M. Sugeno and G. T. Kang, "Structure identification of fuzzy model," Fuzzy Sets and
Systems, vol. 28, pp. 15-33, 1988.

[5] M. Su and R. R. Rhinehart, "A generalized TSK model with a novel rule antecedent
structure: Structure identification and parameter estimation," Computers &
Chemical Engineering, vol. 34, pp. 1199-1219, 2010.

[6] M. S. a. U. M. S. R. Russell Rhinehart, "Leapfrogging and Synoptic Leapfrogging – a
new optimization approach," Submitted to: European Journal of Operations Research,
03-23 2010.

[7] S. J. Qin and T. A. Badgwell, "An overview of nonlinear model predictive control
applications," Nonlinear Model Predictive Control, pp. 369-392, 2000.

[8] J. Ou, "Grouped neural network model-predictive control and its experimental distillation
application," Oklahoma State University Ph.D., Oklahoma State University, United
States -- Oklahoma, 2001.

[9] J. Ou and R. R. Rhinehart, "Grouped-neural network modeling for model predictive
control," ISA transactions, vol. 41, pp. 195-202, 2002.

[10] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural network design: PWS Pub., 1996.

[11] M. Azlan Hussain, "Review of the applications of neural networks in chemical process
control--simulation and online implementation," Artificial Intelligence in Engineering,
vol. 13, pp. 55-68, 1999.

[12] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are
universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.

[13] G. Feng, "A survey on analysis and design of model-based fuzzy control systems," Fuzzy

56

Systems, IEEE Transactions on, vol. 14, pp. 676-697, 2006.

[14] T. Takagi and M. Sugeno, "Fuzzy identification of system and its applications to
modelling and control," Äj, vol. 2, p. 5.

[15] B. Kosko, "Fuzzy systems as universal approximators," IEEE transactions on computers,
pp. 1329-1333, 1994.

[16] P. Georgieva and S. Feyo de Azevedo, "Neural networks for model predictive control,"
2011, pp. 111-118.

[17] R. Al Seyab and Y. Cao, "Differential recurrent neural network based predictive control,"
Computers & Chemical Engineering, vol. 32, pp. 1533-1545, 2008.

[18] J. Ou and R. R. Rhinehart, "Grouped neural network model-predictive control," Control
Engineering Practice, vol. 11, pp. 723-732, 2003.

[19] H. Eliasi, H. Davilu, and M. Menhaj, "Adaptive fuzzy model based predictive control of
nuclear steam generators," Nuclear engineering and design, vol. 237, pp. 668-676, 2007.

[20] P. K. Roy, G. K. Mann, and B. C. Hawlader, "Fuzzy rule-adaptive model predictive
control for a multivariable heating system," 2005, pp. 260-265.

[21] Y. Huang, H. H. Lou, J. Gong, and T. F. Edgar, "Fuzzy model predictive control," Fuzzy
Systems, IEEE Transactions on, vol. 8, pp. 665-678, 2000.

[22] M. Mahfouf, D. Linkens, and M. Abbod, "Adaptive fuzzy TSK model-based predictive
control using a CARIMA model structure," Chemical Engineering Research and Design,
vol. 78, pp. 590-596, 2000.

[23] M. Morari, "Model predictive control: past, present and future* 1," Computers &
Chemical Engineering, vol. 23, pp. 667-682, 1999.

[24] M. Diehl, H. Ferreau, and N. Haverbeke, "Efficient numerical methods for nonlinear
MPC and moving horizon estimation," Nonlinear Model Predictive Control, pp. 391-417,
2009.

[25] P. Deuflhard, Newton methods for nonlinear problems: affine invariance and adaptive
algorithms vol. 35: Springer Verlag, 2004.

[26] N. De Oliveira and L. T. Biegler, "An extension of Newton-type algorithms for nonlinear
process control* 1," Automatica, vol. 31, pp. 281-286, 1995.

[27] C. Long, P. Polisetty, and E. Gatzke, "Nonlinear model predictive control using
deterministic global optimization," Journal of Process Control, vol. 16, pp. 635-643,
2006.

57

[28] R. Ghaemi, J. Sun, and I. V. Kolmanovsky, "An integrated perturbation analysis and
sequential quadratic programming approach for model predictive control," Automatica,
vol. 45, pp. 2412-2418, 2009.

[29] C. R. O’NEILL, "Improved System Identification for Aeroservoelastic Predictions,"
Citeseer, 2003.

[30] P. Young, Recursive estimation and time-series analysis: Springer Berlin, 1984.

[31] L. Ljung, System Identification: Theory for the User: Pearson Education, 1998.

[32] A. J. Miller, Subset selection in regression: Chapman & Hall/CRC, 2002.

[33] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning. New York:
Springer, 2001.

[34] G. E. P. Box and M. E. Muller, "A note on the generation of random normal deviates,"
The Annals of Mathematical Statistics, vol. 29, pp. 610-611, 1958.

58

APPPENDIX

The methodologies of the nonlinear simulator, the GTSK MPC, and the Leapfrogging

optimizer are described in Chapter 2. This section lists the Excel VBA code of the simulation

system.

A.1 Excel VBA code of the simulation system

Sub main()

' The main subroutine calls each function or subroutine, keeping events organized

' As you add features, do not code them in the Main, but place them in subroutines

' or functions for the main sub to call

 If Cells(9, 13) = "N" Then Application.ScreenUpdating = False

 Call initialize 'Input values and initialize states

 For SimTimeCounter = 0 To 650 'Simulation time counter

 Call events 'Manage events and user-desired changes

 Call process 'Process responds with a measurement

 SimTime = dt * SimTimeCounter 'Process simulation time interval is complete

 Call control 'Controller responds with action

 Call evaluate 'Determine goodness metrics

 Call output 'Display results

 Next SimTimeCounter

 Application.ScreenUpdating = True

End Sub

''

Sub process()

' This is the simulator for the real process. In real life this is the physical process.

' You would not be able to know any of these equations or variable values.

59

' This is not in deviation variables.

 If u > 0 Then

 kp = u ^ (-0.5) 'Process gain is designed so that y_ss=10 when u=100%, and y-ss=0 when

u=0

 Else

 kp = 0

 End If

 If Environment = "ON" Then

 dist = lambdadist * sigmadistdriver * Sqr(-2 * Log(Rnd())) * Sin(twopi * Rnd()) + Clambdadist

* dist

 Else

 dist = 0

 End If

 j = j + 1 'Pointer for storage

 If j = 21 Then j = 1 'Array max is 20th element

 y4 = (dt / taup4) * y3 + (1 - dt / taup4) * y4 'Process lags are calculated

 y3 = (dt / taup3) * (y2 + dist) + (1 - dt / taup3) * y3

 y2 = (dt / taup2) * y1 + (1 - dt / taup2) * y2 'In reverse order, so that ...

 y1 = (dt / taup1) * kp * u + (1 - dt / taup1) * y1 'each uses prior old value.

 yhold(j) = y4 + sigmameasurement * Sqr(-2 * Log(Rnd())) * Sin(twopi * Rnd()) 'Add

NID(0,sigma) noise

 k = j - delay 'Pointer for delay read

 If k < 1 Then k = 20 + (j - delay)

 yp = yhold(k)

 yprocess(SimTimeCounter) = yp

 zAuxiliaryProcess = 0.075 * 0.9 * u + 0.925 * zAuxiliaryProcess 'Simple representation for the

auxiliary process

End Sub

'

'

Sub SOPDT_Model_P2N()

' SOPDT model Past to Now

' Note: Model is in deviation variables, starts at zero with a zero slope, and

' is influenced by the deviation in u from the initial u value

' This increments the model by one time step each control interval.

 If SimTimeCounter = 0 Then

 YmodelP2N = YmBase

 ElseIf SimTimeCounter < 21 And SimTimeCounter > 0 Then

 YmodelP2N = yP2N(SimTimeCounter - 1) 'when counter<36, yP2N=initial

60

 ElseIf SimTimeCounter > 20 Then

 yt1 = yP2N(SimTimeCounter - 1) 'deliever values of regressors

 yt2 = yP2N(SimTimeCounter - 2)

 yt3 = yP2N(SimTimeCounter - 3)

 Ut = MV(SimTimeCounter - 20)

 numerator = 0

 denominator = 0

 For iLM = 1 To 12

 theta1 = matrix(iLM, 1) 'read parameters

 theta2 = matrix(iLM, 2)

 theta3 = matrix(iLM, 3)

 theta4 = matrix(iLM, 4)

 theta5 = matrix(iLM, 5)

 'Truth

 center = matrix(iLM, 6)

 ylm = theta1 + theta2 * yt1 + theta3 * yt2 + theta4 * yt3 + theta5 * Ut 'local model value

 Ta = Exp(-(Ut - center) ^ 2 / 30) 'truth value

 numerator = numerator + ylm * Ta

 denominator = denominator + Ta

 Next iLM

 If denominator > 0 Then

 YmodelP2N = numerator / denominator

 Else

 YmodelP2N = yP2N(SimTimeCounter - 1)

 End If

 End If

 yP2N(SimTimeCounter) = YmodelP2N

 zAuxiliaryP2N = 0.1 * 0.8 * u + 0.9 * zAuxiliaryP2N

End Sub

'

'

Sub SOPDT_Model_N2F_SSD()

' SOPDT model Now to Future.

' Initialize model and variables

 Dim iN2F As Integer 'counter for future time increments

 Dim yN2F(200) As Single

61

 Dim MVN2F(200) As Single

 NOFE = NOFE + 1 'Count number of function evaluations - a measure of work

required by the optimizer

 reference = yP2N(SimTimeCounter) 'Convert reference trajectory to deviation variables

 SSD = 0

 zAuxiliaryN2F = zAuxiliaryP2N

 For iN2F = 1 To NControlHorizon

 If SimTimeCounter + iN2F = 1 Then

 ymodelN2F = yP2N(SimTimeCounter)

 ElseIf SimTimeCounter + iN2F < 21 And SimTimeCounter + iN2F > 1 Then

 ymodelN2F = yN2F(iN2F - 1) 'when counter<36, yP2N=initial

 ElseIf SimTimeCounter + iN2F > 20 Then

 'special

 MV(SimTimeCounter) = u1

 ' define three MVs

 If iN2F < 25 Then

 MVN2F(iN2F) = u1

 ElseIf iN2F < 50 And iN2F > 24 Then

 MVN2F(iN2F) = u2

 ElseIf iN2F < (NControlHorizon + 1) And iN2F > 49 Then

 MVN2F(iN2F) = u3

 End If

 'deliever values of regressors

 'yt1

 If iN2F < 2 Then 'yt1

 yt1 = yP2N(SimTimeCounter + iN2F - 1)

 Else

 yt1 = yN2F(iN2F - 1)

 End If

 'yt2

 If iN2F < 3 Then 'yt2

 yt2 = yP2N(SimTimeCounter + iN2F - 2)

 Else

 yt2 = yN2F(iN2F - 2)

 End If

 'yt3

 If iN2F < 4 Then 'yt3

62

 yt3 = yP2N(SimTimeCounter + iN2F - 3)

 Else

 yt3 = yN2F(iN2F - 3)

 End If

 'u35

 If iN2F < 21 Then 'u35

 Ut = MV(SimTimeCounter + iN2F - 20)

 Else

 Ut = MVN2F(iN2F - 20)

 End If

 numerator = 0

 denominator = 0

 For iLM = 1 To 12

 theta1 = matrix(iLM, 1) 'read parameters

 theta2 = matrix(iLM, 2)

 theta3 = matrix(iLM, 3)

 theta4 = matrix(iLM, 4)

 theta5 = matrix(iLM, 5)

 'Truth

 center = matrix(iLM, 6)

' left = matrix(iLM, 7)

' right = matrix(iLM, 8)

 ylm = theta1 + theta2 * yt1 + theta3 * yt2 + theta4 * yt3 + theta5 * Ut 'local model

value

 Ta = Exp(-(Ut - center) ^ 2 / 30) 'truth value

 numerator = numerator + ylm * Ta

 denominator = denominator + Ta

 Next iLM

 If denominator > 0 Then

 ymodelN2F = numerator / denominator

 Else

 ymodelN2F = yN2F(iN2F - 1)

 End If

 End If

 yN2F(iN2F) = ymodelN2F

 reference = (dt / tauw) * yspBiasDeviation + (1 - dt / tauw) * reference 'deviation variable

63

 yProcessEstimate = ymodelN2F + pmmyf 'Corrects the model value with pmm

to estimate future CV

 zAuxiliaryN2F = 0.1 * 0.8 * Ut + 0.9 * zAuxiliaryN2F

 zProcessEstimate = zAuxiliaryN2F + pmmz 'Corrects the model value with

pmm to estimate future AuxV

 SSD = SSD + ((reference - ymodelN2F) ^ 2) / (ECVSP ^ 2) +

y_Constraint_Penalty(yProcessEstimate) / (ECVy ^ 2) + z_Constraint_Penalty(zProcessEstimate) /

(ECVz ^ 2)

 If display = "Yes" Then

 Cells(iN2F + SimTimeCounter + 15, 2) = SimTime + dt * iN2F

 Cells(iN2F + SimTimeCounter + 15, 6) = reference ' + YmInitial

 Cells(iN2F + SimTimeCounter + 15, 4) = MVN2F(iN2F) ' + uinitial

 Cells(iN2F + SimTimeCounter + 15, 5) = yN2F(iN2F) ' + YmInitial

 Cells(iN2F + SimTimeCounter + 15, 7) = yspBiasDeviation ' + YmInitial

 End If

 Next iN2F

 If display = "Yes" Then

 Cells(SimTimeCounter + 14, 7) = ""

 Cells(SimTimeCounter + 14, 4) = ""

 Cells(SimTimeCounter + 14, 5) = ""

 Cells(SimTimeCounter + 14, 6) = ""

 Calculate 'VBA command to update the active worksheet (updates graph)

 End If

End Sub

'

'

Function y_Constraint_Penalty(yProcessEstimate)

' This function assesses a soft penalty if constraints on y are exceeded.

' Full y range is 0 to 10.

' In contrast to pushing model to biased setpoint, this compares biased model to limits.

' yProcessEstimate is the pmm-biased model N2F prediction value.

 y_Constraint_Penalty = 0

 yConstraintMin = 0

 yConstraintMax = 10

 If yProcessEstimate < yConstraintMin Then y_Constraint_Penalty = (yProcessEstimate -

yConstraintMin) ^ 2

64

 If yProcessEstimate > yConstraintMax Then y_Constraint_Penalty = (yProcessEstimate -

yConstraintMax) ^ 2

End Function

'

'

Function z_Constraint_Penalty(zProcessEstimate)

' This function assesses a soft penalty if constraints on Auxiliary Variable z are exceeded.

' Full x range is 0 to 100.

' In contrast to pushing model to biased setpoint, this compares biased model of z to limits.

' zProcessEstimate is the pmm-biased z-model N2F prediction value.

 z_Constraint_Penalty = 0

 zConstraintMin = 0

 zConstraintMax = 100

 If zProcessEstimate < zConstraintMin Then z_Constraint_Penalty = (zProcessEstimate -

zConstraintMin) ^ 2

 If zProcessEstimate > zConstraintMax Then z_Constraint_Penalty = (zProcessEstimate -

zConstraintMax) ^ 2

End Function

'

'

Sub control()

' This is the controller.

 If MODE = "MAN" Then 'In MANual mode

 Call SOPDT_Model_P2N 'Call P2N model to update its states and delay array history

of states

 pmmy = yprocess(SimTimeCounter) - yP2N(SimTimeCounter) 'Calculate pmmy

 pmmyf = pmmylambda * pmmy + (1 - pmmylambda) * pmmyf 'filter pmmy

 pmmz = zAuxiliaryProcess - zAuxiliaryP2N

 yspbias = ysp - pmmyf 'Calculate a biased setpoint for display

 u = u 'User decides this value

 If u > 100 Then u = 100 'But the human often needs to be regulated

 If u < 0 Then u = 0

 u1 = u

 u2 = u

 u3 = u

 Else 'In AUTOmatic mode

 Call SOPDT_Model_P2N 'Call P2N model to get response to past u

 pmmy = yprocess(SimTimeCounter) - yP2N(SimTimeCounter) 'Calculate pmmy

65

 pmmyf = pmmylambda * pmmy + (1 - pmmylambda) * pmmyf 'filter pmmy

 pmmz = zAuxiliaryProcess - zAuxiliaryP2N

 yspbias = ysp - pmmyf 'Bias setpoint for model

 Call Leapfrogging_Optimizer 'Calculate u1, u2, and u3

 u = u1 'Implement u1

 End If

' Since optimizer will return a U value within constraints, the 0 to 100% override is not needed

here.

 If u > 100 Then u = 100 'override calculated extremes with what is implementable

 If u < 0 Then u = 0

 MV(SimTimeCounter) = u

End Sub

'

'

Sub initialize()

' Initializes variables, reads the input data

 Randomize 'Randomize the random number generator for noise

 twopi = 2 * 3.14159265358979 'Constant in Box-Muller NID noise generation

 dt = 0.2 'Time interval (all time constants should be about 10 times larger)

 SimTime = 0

 taup1 = Cells(1, 6) 'Input process values (the controller or operator cannot know these)

 If taup1 < 1 Then taup1 = 1

 taup2 = Cells(2, 6)

 If taup2 < 1 Then taup2 = 1

 taup3 = Cells(3, 6)

 If taup3 < 1 Then taup3 = 1

 taup4 = Cells(4, 6)

 If taup4 < 1 Then taup4 = 1

 delay = Cells(5, 6)

 If delay > 20 Then delay = 20

 sigmameasurement = Cells(6, 6)

 taudist = Cells(1, 14) 'Input disturbance characteristics

66

 sigmadist = Cells(2, 14)

 dist = 0

 Environment = "OFF"

 lambdadist = dt / taudist

 Clambdadist = 1 - lambdadist

 sigmadistdriver = Sqr(2 / lambdadist - 1) * sigmadist

 If Cells(1, 2) <> "GS" Then km = Cells(1, 2) 'Input operator-chosen controller (includes

model) variable values

 taum1 = Cells(2, 2)

 If taum1 < 1 Then taum1 = 1

 taum2 = Cells(2, 3)

 If taum2 < 1 Then taum2 = 1

 thetam = Cells(3, 2)

 uBase = Cells(4, 2) 'Since linear SOPDT model is in deviation variables, need initial u

 YmBase = Cells(5, 2) 'Since linear SOPDT model is in deviation variables, need y-SS that

goes with initial u

 tauw = Cells(6, 2)

 If tauw < 1 Then tauw = dt

 pmmylambda = Cells(7, 2)

 u = 50 'Initialize process and controller at an initial steady state

 ysp = 7

 yinitial = 7

 y1 = yinitial

 y2 = yinitial

 y3 = yinitial

 y4 = yinitial

 yp = yinitial

 For j = 1 To 20

 yhold(j) = yinitial

 Next j

 pmmyf = 0

 j = 0

 dist = 0

 zAuxiliaryProcess = 0.9 * u

 zAuxiliaryP2N = 0.8 * u

 zAuxiliaryN2F = zAuxiliaryP2N

 MODE = "MAN" 'Initialize controller in manual

 For i1 = 1 To 12

67

 For j1 = 1 To 6

 matrix(i1, j1) = Cells(i1 + 1, j1 + 26)

 'Cells(i + 20, j + 19) = matrix(i, j)

 Next j1

 Next i1

 AUTOcount = 0 'Initialize evaluation variables

 ISE = 0

 Travel = 0

 uold = u

 ECVSP = 1 'Equal Concern Value for CV not being at the SP (CV goes from 0 to 10)

 ECVy = 0.1 'Equal Concern Value for CV violating a constraint

 ECVz = 10 'Equal Concern Value for Aux Variable violating a constraint (AV goes from 0 to

100)

 ROCu = 75 'Rate of Change constraint on u

 NControlHorizon = 100 'Initialize model N2F variables

 ConvergenceThreshold = Cells(4, 17) 'Read RMS distance convergence criterion for

optimizer

 Call Clear_Old_Data 'Remove all past data from plot points

 If Cells(8, 18) = "Y" Then

 Cells(1, 18) = "Lo/Hi PN)"

 Cells(1, 19) = "Player Num"

 Cells(1, 20) = "OF Value"

 Cells(1, 21) = "u1"

 Cells(1, 22) = "u2"

 Cells(1, 23) = "u3"

 End If

End Sub

'

'

Sub output()

' Places all data on the worksheet for display

 Cells(SimTimeCounter + 10, 2) = SimTime

 Cells(SimTimeCounter + 10, 3) = yp

 Cells(SimTimeCounter + 10, 4) = u

68

 Cells(SimTimeCounter + 10, 5) = YmodelP2N

 Cells(SimTimeCounter + 10, 6) = ysp

 Cells(SimTimeCounter + 10, 7) = yspbias

 Cells(SimTimeCounter + 10, 9) = zAuxiliaryP2N

 Cells(SimTimeCounter + 14, 2) = ""

 Cells(SimTimeCounter + 14, 8) = ""

 Cells(SimTimeCounter + 15, 8) = 0

 Cells(SimTimeCounter + 16, 8) = 10

 Cells(1, 10) = NISE

 Cells(2, 10) = NTravel

 Cells(1, 17) = MODE

 Cells(2, 17) = Environment

 Cells(5, 17) = Iteration

 Cells(6, 17) = NOFE

End Sub

'

'

Sub evaluate()

' Calculate performance measures for controlled process

 If MODE = "AUTO" Then

 AUTOcount = AUTOcount + 1 'Count of samplings in AUTO when ISE and Travel are

calculated

 ISE = ISE + (ysp - yp) ^ 2 'Not really ISE because no dt multiplier. Really SSE

 NISE = ISE / AUTOcount 'Since no dt in ISE, divide ny count, not time.

 Travel = Travel + Abs(u - uold)

 uold = u

 NTravel = Travel / AUTOcount

 End If

End Sub

'

'

Sub events()

' Trigger events for the system (process and controller) simulation

 If SimTimeCounter = 25 Then

 MODE = "AUTO"

 ysp = 7

69

 End If

 If SimTimeCounter = 50 Then ysp = 3

 If SimTimeCounter = 35 Then Environment = "ON"

 If SimTimeCounter = 350 Then ysp = 9

End Sub

'

'

Sub Clear_Old_Data()

 Range("B10:K2010").Select

 Selection.ClearContents

 Range("R1:R5").Select

 Selection.ClearContents

 Range("S1:W43").Select

 With Selection.Interior

 .Pattern = xlNone

 .TintAndShade = 0

 .PatternTintAndShade = 0

 End With

 Selection.ClearContents

 Range("A1").Select

End Sub

'

' ***********************************

Sub Initialize_Leapfrogging_Optimizer()

 DVDimension = 3

 NumTeammates = 20

 MovementL2H = 1 'size of window on other side of low from high

 PlayerNumber = 1

 PlayerPosition(1, PlayerNumber) = u1 'set player #1 as the previous best solution, which may

still be the best

 PlayerPosition(2, PlayerNumber) = u2

 PlayerPosition(3, PlayerNumber) = u3

 Call Assign

70

 Call SOPDT_Model_N2F_SSD 'determine the SSD result

 PlayerOFValue(PlayerNumber) = SSD

 For PlayerNumber = 2 To NumTeammates 'initialize player values - must be within feasible

region

 Constraint = "Unassessed"

 Do Until Constraint = "PASS"

 u1 = u + 2 * (Rnd() - 0.5) * ROCu 'randomize u1 for the player

 PlayerPosition(1, PlayerNumber) = u1

 u2 = u1 + 2 * (Rnd() - 0.5) * ROCu 'randomize u2 for the player

 PlayerPosition(2, PlayerNumber) = u2

 u3 = u2 + 2 * (Rnd() - 0.5) * ROCu 'randomize u3 for the player

 PlayerPosition(3, PlayerNumber) = u3

 Call Assign

 Call u_ConstraintTest

 Loop

 Call SOPDT_Model_N2F_SSD 'determine the SSD result

 PlayerOFValue(PlayerNumber) = SSD

 Next PlayerNumber

 Call Find_High

 Call Find_Low

 If Cells(8, 18) = "Y" Then Call Show_Players

End Sub

'

' **************************************

Sub Find_High()

' Search for player with highest OF value

 LFHighpn = 1 + Int(NumTeammates * Rnd()) 'Random Assignment for initialization in case

floor is flat

 OFhigh = PlayerOFValue(LFHighpn)

 For PlayerNumber = 1 To NumTeammates 'search through all players

 If PlayerOFValue(PlayerNumber) > OFhigh Then 'Reassign if worst

 LFHighpn = PlayerNumber

 OFhigh = PlayerOFValue(PlayerNumber)

 End If

 Next PlayerNumber

 For DVNumber = 1 To DVDimension

 HighPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn)

71

 Next DVNumber

End Sub

'

' **************************************

Sub Find_Low()

' Search for player with lowest OF value

 LFLowpn = 1 'start with PlayerNumber=1, if floor is flat, this serves as the

base for convergence

 OFlow = PlayerOFValue(LFLowpn)

 For PlayerNumber = 2 To NumTeammates

 If PlayerOFValue(PlayerNumber) < OFlow Then 'Reassign if better

 LFLowpn = PlayerNumber

 OFlow = PlayerOFValue(LFLowpn)

 End If

 Next PlayerNumber

 For DVNumber = 1 To DVDimension

 LowPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFLowpn)

 Next DVNumber

End Sub

'

' ***********************************

Sub Leapfrogging_Optimizer()

' Relocate the player with the worst position to a random position to the other side of the best.

' If desired reevaluate the best to avoid finding a fortuitous best ever in stochastic functions

 NOFE = 0

 yspBiasDeviation = yspbias ' - YmBase

 Call Initialize_Leapfrogging_Optimizer

 For Iteration = 1 To 500

 'relocate worst with the leapover the best

 Constraint = "Unassessed" 'but must jump to an unconstrained area

 PlayerNumber = LFHighpn

 Do Until Constraint = "PASS"

 For DVNumber = 1 To DVDimension

72

 PlayerLeapDelta(DVNumber) = LowPlayerPosition(DVNumber) -

HighPlayerPosition(DVNumber) 'difference between trial solutions with highest and lowest

OF values

 HighPlayerPosition(DVNumber) = LowPlayerPosition(DVNumber) + MovementL2H * Rnd()

* PlayerLeapDelta(DVNumber) 'high (or infeasible) jumps to random position in window,

repelled by recent vacated spots

 Next DVNumber

 For DVNumber = 1 To DVDimension

 PlayerPosition(DVNumber, LFHighpn) = HighPlayerPosition(DVNumber) 'reassign

position of former high individual to its new feasible location

 Next DVNumber

 Call Assign

 Call u_ConstraintTest

 Loop

 Call Assign

 SOPDT_Model_N2F_SSD

 PlayerOFValue(LFHighpn) = SSD

 'find the individual with the lowest OF value presently

 If PlayerOFValue(LFHighpn) < OFlow Then 'If needed, reassign player with lowest OF value

 OFlow = PlayerOFValue(LFHighpn)

 For DVNumber = 1 To DVDimension

 LowPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn)

 Next DVNumber

 LFLowpn = LFHighpn

 End If

 'find the individual with the highest OF value presently

 If PlayerOFValue(LFHighpn) > OFhigh Then 'we know which is high

 OFhigh = PlayerOFValue(LFHighpn)

 For DVNumber = 1 To DVDimension

 HighPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn)

 Next DVNumber

 If Cells(9, 18) = "Y" Then

 PlayerNumber = LFLowpn

 Call Assign

 display = "Yes" 'Tell SOPDT N2F model to display the optimum results

 Call SOPDT_Model_N2F_SSD

 display = "No"

 End If

 Else

 Call Find_High 'need to search for the new high

 End If

73

 If Cells(8, 18) = "Y" Then Call Show_Players

 du1 = HighPlayerPosition(1) - LowPlayerPosition(1) 'Compute Convergence Metric

 du2 = HighPlayerPosition(2) - LowPlayerPosition(2)

 du3 = HighPlayerPosition(3) - LowPlayerPosition(3)

 If Sqr((du1 ^ 2 + du2 ^ 2 + du3 ^ 2) / 3) < ConvergenceThreshold Then Exit For

 Next Iteration

 If Cells(8, 18) = "Y" Then Call Show_Players

 PlayerNumber = LFLowpn

 Call Assign

 display = "Yes" 'Tell SOPDT N2F model to display the optimum results

 Call SOPDT_Model_N2F_SSD

 display = "No"

End Sub

'

'--

Sub Assign()

 u1 = PlayerPosition(1, PlayerNumber)

 u2 = PlayerPosition(2, PlayerNumber)

 u3 = PlayerPosition(3, PlayerNumber)

End Sub

'

'--

Sub u_ConstraintTest()

 Constraint = "PASS"

 If u1 > 99 Then Constraint = "FAIL"

 If u2 > 99 Then Constraint = "FAIL"

 If u3 > 99 Then Constraint = "FAIL"

 If u1 < 1 Then Constraint = "FAIL"

 If u2 < 1 Then Constraint = "FAIL"

 If u3 < 1 Then Constraint = "FAIL"

 If Abs(u1 - u) > ROCu Then Constraint = "FAIL"

 If Abs(u2 - u1) > ROCu Then Constraint = "FAIL"

74

 If Abs(u3 - u2) > ROCu Then Constraint = "FAIL"

' If Constraint = "FAIL" Then

' Cells(5, 18).Interior.ColorIndex = 3

' Else

' Cells(5, 18).Interior.ColorIndex = 4

' End If

End Sub

'

' ************************

Sub Show_Players()

 For PlayerNumber = 1 To NumTeammates

 Cells(2 + PlayerNumber, 19) = PlayerNumber

 Cells(2 + PlayerNumber, 20) = PlayerOFValue(PlayerNumber)

 For DVNumber = 1 To DVDimension

 Cells(2 + PlayerNumber, 20 + DVNumber) = PlayerPosition(DVNumber, PlayerNumber)

 Next DVNumber

 Next PlayerNumber

 If LFHighpnold > 0 Then Cells(2 + LFHighpnold, 19).Interior.ColorIndex = 0

 Cells(2 + LFHighpn, 19).Interior.ColorIndex = 3

 LFHighpnold = LFHighpn

 If LFLowpnold > 0 Then Cells(2 + LFLowpnold, 19).Interior.ColorIndex = 0

 Cells(2 + LFLowpn, 19).Interior.ColorIndex = 4

 LFLowpnold = LFLowpn

 Cells(3, 18) = LFLowpn

 Cells(4, 18) = LFHighpn

End Sub

VITA

Haoxian Chen

Candidate for the Degree of

Master of Science

Thesis: INCORPORATION OF THE GENERALIZED TSK MODELS IN MODEL

PREDICTIVE CONTROL

Major Field: Chemical Engineering

Biographical:

Education:

• Completed the requirements for the Master of Science in Chemical

Engineering at Oklahoma State University (OSU), Stillwater, Oklahoma in
December, 2011.

• Completed the requirements for the Bachelor of Engineering in Automation
at East China University of Science and Technology, Shanghai, China in
2009.

Experience:

• Research Assistant for Dr. R. Russell Rhinehart, OSU, August 2009-

December 2011.

• Teaching Assistant to Dr. Lionel M. Raff, OSU, August 2010 - December
2010.

• Teaching Assistant to Dr. Jan Wagner, OSU, January 2011 - May 2011.

Professional Memberships:

• Omega Chi Epsilon, OSU Chapter.

• International Society of Automation (ISA), OSU Chapter.

• American Institute of Chemical Engineers (AIChE), OSU Chapter

ADVISER’S APPROVAL: Dr. R. Russell Rhinehart

Name: Haoxian Chen Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: INCORPORATION OF THE GENERALIZED TSK MODELS IN

MODEL PREDICTIVE CONTROL

Pages in Study: 74 Candidate for the Degree of Master of Science

Major Field: Chemical Engineering

Scope and Method of Study:

The generalized TSK (GTSK) modeling approach is proved to provide accurate
model prediction and to alleviate the computational burden. The scope of this study is to
incorporate the GTSK models in the nonlinear model predictive control (NMPC) to
improve the overall performance and reliability of NMPC. A novel global optimization
method, the Leapfrogging technique, is also used to further improve the NMPC’s
computational efficiency. Another innovation, the “sawtooth” pattern is used as input
signal to generate the GTSK model. The experiments and tests are conducted on a
nonlinear process simulation system, in which the NMPC control algorithm was
embedded. The virtual process in this simulator is fourth-order-plus-dead-time (FOPDT)
process with a nonlinear gain and the environmental effect (noise and disturbance). The
controlled process is subject to both soft and hard constraints – soft on both the controlled
and the auxiliary variable, and hard on both the limits and rate of change of the
manipulated variable. The NMPC performance is evaluated via several simulation
experiments, which involved constraint handling, interactions and process nonlinearity.

Findings and Conclusions:

The use of a GTSK model and Leapfrogging as an optimizer were demonstrated
as effective for nonlinear model predictive control. The nonlinear model is firstly
developed by using GTSK approach. The prediction accuracy of the GTSK model was
illustrated and quantified by a comparison with SOPDT model. The GTSK model was
much better. The performance of GTSK MPC controller is evaluated via seven sets of
dynamic control simulation. The controller showed desirable performance for disturbance
rejection, set point tracking, constraint handling, and comprehensive environmental effect
handling.

