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CHAPTERI|

INTRODUCTION

1.1 Overview

Due to the complexity of chemical processes, and quality and oemntal
requirements in process operations, advanced process comtredists have been widely used in
the industry to fulfill control needs. Model predictive contfdiRC), also referred to as moving
horizon control (MHC), has become the most effective and atteaativanced control strategy in
process industries [1-3]. The term MPC does not designate anypfkapkcific control strategy
but rather a family of control approaches based on the sanusggtly. In general, it makes
explicit use of a model of the process to obtain a sequencenafksignals by optimizing

predictions of the process. Therefore, the model is the essenti@intlef an MPC controller.

Linear models were used to predict the process dynamic belrava initial industrial
MPC applications, and remain most common today[3]. MPC approaskreslinear models are
called linear model predictive control (LMPC). LMPC wapidéy developed and well accepted
in both academia and industry over the past three decades. Saessfulccommercialization of
LMPC, e.g. Dynamic Matrix Control (DMC) and Model Predictideuristic Control (MPHC)
have enjoyed great popularity in the industry, especially inatle@ of process control[2].

However, most batch and continuous processes in chemical and lpstiwal industries are



nonlinear. Furthermore, efficiency demands and manufacturing flexitnliioday’s plants often
drive process over a wide region, often very close to the opetatiundaries. Considering these
facts, linear MPC strategies may not always provide aatisfy performance for many industrial
applications. Therefore, nonlinear model predictive control Py is drawing more attention

with respect to both theoretical and application aspects[3].

A sizable number of studies on new NMPC algorithms and relatedtirwapplication
were reported in the past 15 years[2]. In general, the NkB&@ in these works has a nonlinear
predictive model and is a direct and intuitive extension oPMUnlike LMPC which is based
on linear dynamic models, NMPC makes use of nonlinear models tesadtie issue of process
nonlinearity and frequently changing operating region. With a bettderstanding of process
nonlinearity, nonlinear models are expected to improve the contrédrpance of MPC.
However, approaches to develop adequate nonlinear models fromegsamg data are usually
complicated. The complexity of nonlinear models also adds computationd¢roto model

prediction and dynamic optimization of NMPC.

There are three main types of models that are used &segpirgeneral nonlinear process
in the area of nonlinear model predictive control: first principfeslels, empirical models and
grey box approaches. Among these three, the empirical modelingaapps the most popular
modeling method for NMPC controller development and applicatioosrding to the survey of

the recent studies[3].

The Takagi-Sugeno-Kang (TSK)[4] fuzzy model, as a type of écapimodel, has been
used to represent complex systems in many recent NMPC pidrikatn this work, a new
generalized TSK modeling approach, which is referred to asKG{ggneralized TSK)
modeling[5], is used in the nonlinear model generation, and as theingpdpbroach for the

predictive controller.



The GTSK modeling approach was developed based on the TSK fuzzyl mode
representation. It proposed a more efficient TSK model with #remglized rule antecedent
structure. By reducing antecedent dimension and introducing a more flamtblsedent structure,
the number of rules was significantly reduced in this new TSK structodelnirhe innovation of
GTSK model will alleviate the computational burden of an NMBQ be qualified for on-line

applications.

A novel global optimization method, the Leapfrogging techniquefSlalso used to
further improve the NMPC’s computational efficiency. Another inniovain this work is a new
test input signal design in the model generation part. Insteasingg a skyline function to

generate the test signal, the “sawtooth” pattern is used agpilted generate the GTSK model.

In this work, these three innovations are demonstrated to eff@dtively by simulation.
The experimental system is a nonlinear process simulator, ich wiie NMPC algorithm was
embedded. The virtual process in this simulator is fourth-gllsrdead-time (FOPDT) process
with a nonlinear gain and the environmental effect (noise anarloigsice). It is subject to both
soft and hard constraints — soft on both the controlled and the auxilidaipleaand hard on both
the limits and rate of change of the manipulated variable NMIBC performance is evaluated
via several simulation experiments, which involved constitzanidling, interactions and process

nonlinearity.

This study features simulation demonstration. Extending thefus& SK model in MPC
to the multi-input-multi-output system, or implementing the MPGW@TT SK model on the real
systems, like the heat exchanger or distillation column, isidemesl to be done to demonstrate

its effectiveness on the real process and prepare it for futuieatjmpis.



1.2 Literature Survey

1.2.1 Model Predictive Control

The term Model Predictive Control (MPC) describes a classoofrol algorithms that
regulate the future process behavior by explicitly using digtree process model[7]. Based on
past measurements and given future control signals, the &@Githm can predict the future
dynamic behavior of the process through the model. At each timevah MPC calculates an
optimal sequence of future control signals to drive the prdoesset point over a finite horizon.

The first control signal of the sequence is then applied on the procesh atep[3].

In general, the model predictive problem is formulatedo&srgy on-line a finite horizon
optimal control problem subject to system dynamics and cortsf{tHinA MPC controller is
usually comprised of three parts, the predictive process modeiptis¢rained optimizer, and the

model adjustment[8].

1.2.2 Modeling Approaches

The nonlinear predictive model is most critical part in NMPC. Manyrtsfisere made to
explore suitable modeling approaches for nonlinear system ratatse and application in
NMPC. In general, three main types of models are used tocsesyirgeneral nonlinear process in
the area of nonlinear model predictive control. They arewk as first principles models,

empirical models and semi-empirical (grey box) approaches[8].

The first principle model comes directly from balance equatioms, material balance,
energy balance, momentum balance, together with the hydraulib@mdodynamic information
of the process|3, 8]. The first principle model contains therination of process characteristics,
and provides deep understanding of the process mechanics. Howeveéructiogs a first

principle model is usually complicated and costly, sometiniea éfeasible. The complexity of



the first principle model could also cause computational diffesulin incorporating it into a

NMPCI8].

In contrast to a first principle model, an empirical modedtgehe process as a black box
and fits itself to the process data[9]. The modeling method assbatethe characteristics of the
process are embedded in the given process data. Comparing & prificiple model, an

empirical model usually does not provide information on the mechanics ofodespr

Between the first principle model and the empirical model igthg box model. A grey
box model is developed by combining the first principle and empiajgptoaches. For instance,
some parameters in a first principle model are unavailalieean be estimated by an empirical
approach. Or, in an empirical model, some parameters can be determined by the lenofileelg

process characteristics, such as the structure of the model, or the ohdepraicess|[8].

Among these three, empirical modeling is now widely used for NMPp@ication. Its

simplicity and data-oriented feature benefit both model development and NbtRitation.

Neural Network (NNs)[10] is one of the most popular empiricabdeling
approaches[11]. Neural Network, also called artificial Neuedindrk, have an inherent ability to
approximate any nonlinear function to an arbitrary degree of aggLigd. Coupled with
appropriate training techniques, Neural Network has been wegessful in many NMPC

applications and commercial products[3].

Fuzzy model is another type of empirical model that has beerywided. The recent
development of fuzzy system attracts many attempts of incomppfatzzy modeling techniques
intro MPC from both researchers and practitioners[13]. Takageo (TS) fuzzy model, which
was first introduced by Takagi and Sugeno in 1985[14], has been dapphiefunction
approximation, stability analysis, and controller synthesges the last twenty years or so[13]. TS
model defines a set of fuzzy rules to describe a nonlinear system.#enofocal linear models,

5



defined by the rules, are smoothly blended by fuzzy membership funtdiogsresent the global
system. In 1988, Sugeno and Kang proposed a new method to improve theestdecttification
of a TS type model[4], which is then referred as TSK model. TS or TSKIsaderecognized as
universal approximators[15], which are able to describe any nonlihehavior with a

sufficiently flexible structure.

1.2.3 NMPC Applications

Neural Network model and fuzzy model are two of the most pogutgrirical models
used in NMPC applications. The recent development of NMPC tisesg two types of models

was reviewed in the following section.

1.2.3.1 Neural Network (NN) Model based NMPC

Georgieva and Azevedo (2011)[16] practiced a model predictivérotobased on
recurrent neural network models. Two types of regression NN Imadhich were identified to be
suitable for the model predictive control were proposed. A sogestallization process case

study was conducted to test the NN-based MPC and its performance.

Al Seyab and Cao (2007)[17] developed an efficient algorithm &n tgeneral
differential recurrent neural network (DRNN), which could beedly used as the modeling
approach for nonlinear model predictive control. This novel itrgimlgorithm is based on the
efficient Levenberg-Marquardt method, which is combined with ab®matic differentiation
method. In this work, the trained NN can give an accurate appativin at different sampling
time without the re-training. A two-CTSR process is use@ asse study to demonstrate the

benefit of using this algorithm and the improved control performance.

A novel MPC algorithm using a grouped-neural network (GNN) ma@al presented by

Ou and Rhinehart (2003)[8, 9, 18]. GNN modeling is introduced as an appi@anonlinear



long-range prediction by less computational effort. The NN modeprees of a group of sub-
models, which are independent and run in parallel. Instead of pngdmter a certain-range
horizon, each sub-model provides prediction of one process outpne atelected future point,
reducing the computational burden. The implementation of proposed GNNoMRGonlinear,

multivariable, constrained pilot-scale distillation unit demonstrated with the controller

performance test.

1.2.3.2 Fuzzy M odel based NMPC

Eliasi, Davliu and Menhaj (2006)[19] developed an adaptive TSK fuzzgeimbased
predictive controller to control the water level of nuclear steamrgeors. A recursive estimation
algorithm was employed to tune the parameters of the TSK rab@elch time step. The control
performance for tracking the step and ramp reference wagxtind against the stream flow rate
change was demonstrated. The proposed NMPC was also compared toctmrdétler and

showed better performance.

A rule-adaptive fuzzy NMPC using TS type model was designedch fowultivariable
heating system by Roy, Mann and Hawlader (2005)[20]. The goal ©fahik is to design a
MPC algorithm to control temperatures at three locationthénsoil sample using three heat
sources at the outer surface of the soil cell. The soildgeaystem is modeled using a general-
purpose ABAQUS Finite Element program. Under the TS type fuzzy model s&uatuadaptive
mechanism was used to handle the time-variant behavior of thesprdthe control performance

was compared with a classical non-adaptive fuzzy MPC.

Huang, Lou, Gong and Edgar (2000)[21] introduced a fuzzy model predictivelcont
approach using TS modeling methodology. The nonlinear process sgadestribed by a fuzzy
convolution model that consists of a number of linear fuzzy motfethe controller design, a

two-layered iterative optimization process was employed toinmde prediction errors and



control energy. This two-layer design avoids extensive on-line nonlingarizgtion and permits
the design of a controller based on linear control theory. Neless, the hierarchical control
design leads to more modeling and optimization computation, as svéleacomplexity of the

controller structure.

Mahfouf, Linkfens and Abbod (2000)[22] proposed a TSK model based Geadral
Predictive Control (GPC) type MPC. The proposed fuzzy modepgyoach is based on a
Controlled Auto-Regressive Integrated Moving Average (CARJMmodel structure. An
adaptive control scheme was integrated with the proposed cagotithm. Controller's
performance and application on the binary distillation column an€tmtinuous Stirred Tank

Reactor (CSTR) system were tested.

1.2.4 Optimization Methodsfor NMPC

In a MPC controller, a set of optimal MV values which drive plhecess to the desired
set point without violating constraints need to be computedcat sempling time. This dynamic
optimization must be solved on-line, which has always been aenballfor researchers and

practitioners.

In most industrial applications of NMPC, the optimization peobis described as linear
program (LP), quadratic program (QP) or nonlinear program (Nd€Pending on the type of
model and the performance expectation[23]. Newton type methods, ssefuesntial Quadratic
Programming (SQP) and Interior Point Methods, are often usemlvi® 1Isonlinear problems[24,

25].

A multi-step Newton-type algorithm developed by De Oliveiral @iegler (1995,
1994)[26], named QPKWIK, is used by Aspen’s Target MPC product. Mkifiod has the
advantage that intermediate solutions, although not optimal, umargeed feasible[2]. Diehl,
Bock, Nagy and Findeisen (2002)[24] proposed a direct multiple shooitigod with a real-

8



time embedding strategy. The application of a deterministic biabation technique on NMPC
is reported by Long, Polisetty and Gatzke (2005)[27]. The variable spasskitsed using interval
analysis techniques to achieve faster convergence. Ghaemi, Suolamahovsky (2009)[28]

introduced Integrated Perturbation Analysis and Sequential QicaBragramming (INPA-SQP)
approach, for the MPC implementation. It synergistically consothe solutions derived using
perturbation analysis and SQP to solve the optimization gmoblith initial state perturbation

and input/state constraints.

1.251nput Training Signal for Model Generation

Successful empirical model development requires selecting fizieuly good input
training signal. In the area of system identification, the binary sigmafrequency sweep and the

multisine are the most commonly used signals[29].

For chemical process control, conventionally, model used in Mplications are
identified through a series of step tests. As summarizg ifl, Pseudo-Random Binary
Sequence (PRBS) tests are also used in most industrial &Raotogies. In some recent works,
Filtered Gaussian White Noise with random amplitude anctani between two periods of the
stimulus is used as input training singles. It is referredskgine function” signal in GTSK

approach, which uses it in the development and testing of models[5].

The sawtooth function used in this work is a signal that jumplsags to the halfway of

a random level, and then ramps to that level at the end of a period of randtm leng

1.3 Summary

The GTSK model has advantages over a TSK model and other fygeymodels
because of fewer model equations and parameters, which providespatational advantage in

both model generation and model use[5]. Leapfrogging is a plaijter optimizer with a global



aspect. It has advantages over linear and single trial @oloptimizers of finding the global
solution in nonlinear applications. It also has advantagesatkier multi-particle optimizers in
computational simplicity and speed of convergence[6]. Sawtooth peoaigéder coverage over
the whole range of the input training signal. Applying these inimmm&bn NMPC is expected to
alleviate the computational burden for on-line applicationsisapdove model accuracy, which

should enhance the overall control performance.

10



CHAPTERIII

GTSK Modd Based MPC

2.1 GTSK modeling Approach[5]*

A summary of GTSK modeling approach and its innovation over TSK metlypekis in

Section 2.1.1. The details on developing a GTSK model are presented in thinfpHections.

2.1.1 Overview

In contrast to first-principles modeling, GTSK modeling is arpieical (black-box)
modeling technique, which fits itself to the input-output data obtainedtfierprocess. As a type
of TSK model, it is a subset of novel fuzzy logic-based modeteghodologies, where a

nonlinear process system is divided into a number of linear or nearly $uesystems.

To reduce the complexity of a TSK model, two innovations wet®duced[5] in the
generalized TSK modeling approach. In a GTSK model, only nonlirseables are included in
the rule antecedent to reduce its dimension. Additionally, ara edtgree of freedom is

introduced to cover an antecedent space more efficiently.

*Reference citations in headings indicated that substantial portiodsigiieated or modified
from that reference

11



2.1.1.1 Dimension Reduction in the Antecedent

In a GTSK model, only nonlinear variables are included in uhe antecedent to reduce
the antecedent dimension. This is the first innovation ®GBTK approach. Consider a single-
input-single-output (SISO) dynamic process, with dynamic onagreiy pure time delay, and

an additive disturbanag(t). The system is represented by

y(t-1),---,y(t—ny),
u(t—d),--,u( t- nu-

y(t)= fL Ol)JJre(t) (2.1)

wherey(t) andu(t) are process responses and process input att.tiches the pure time delay,

while f is a nonlinear function.

A rule could be described by a TSK model as below

IF (y(t—l)isA{ AND --- AND Ut-nu-d) isA, .. )
THEN A" (z%)y(t)=K +B"(z')u(t d
A (zY)=1+d Z' 4+ § 2

B'(z')=Hf+14 z"+-+ B 2° (2.2

where, A s the fuzzy subset for y(t-1) in the rule and z is the badksbérator. The expression

—_— I r e —_— i
Y(t-1)isA AND - AND Ut nu- g is Ay is the antecedent of the rule, and the variap(e$), ...,

y(t-ny), u(t-d),...,u(t-nu-dare antecedent variables. The consequent of the ruleotsaklihear

A ()= K +B (2 g & g

model

However, in a TSK model, all the regressors in the ralesequent are also in the rule
antecedent, which leads the antecedent dimension to be satie poblem dimension and

causes the complexity of a TSK model. In a GTSK model, only thmbkes appearing

12



nonlinearly were included in the antecedent. This is the first of two inbogahtroduced by the

GTSK modeling. The simplified rule is defined by

y(t-1)isA’ AND --- AND y(t-ay) isA, AND

u(t—d) isAy,; AND - AND (t-bu-d) isA, pu1
THEN A"(z%)y(t)=K +B'(z")u(t d (2.3)
A (z‘l):l+ dzt 4+ 4, 7Y

Br(z‘l): h+4 z +--+ f, 2"

IF

where the antecedent dimension is reducedytebu+l1 (ay <ny and bu< nu). In Equation

(2.3y(t-1) ... y(t-ay), u(t-d) .... u(t-bu-@&re then antecedent variables. They are collected in an

antecedent vecta(t). Regressors in the consequent are collected in consequentyBctor

2.1.1.1 Generalized Antecedent Structure

The second innovation proposed by the GTSK modeling approach is algeuder
antecedent structure. This new structure substitutesothbicatorial antecedent structure in the
TSK rule in Equation (2.4) by a more flexible one. One more degfrfeeedom is introduced to

improve the covering efficiency of each rule.

Given a two dimensional antecedent with equal number of fuetsyfer each antecedent
variable, a typical combinatorial antecedent space partigidlustrated in Figure 2.1. 9 rules

result from the combinations of 3 fuzzy sets for each antecedent eggalit1, 2)

k|1 2 3
* 5
a
3|7 8 9
ct c? c3
C1

Figure 2.1Two-Dimension Antecedent

13



where ¢  c; are antecedent variableﬁ.cﬁ,c? are fuzzy sets of each antecedent variable

r{-1 _ I{ rs1
2, ...., 9 is the number of rule. Each rule has a local linear méo[él )y(t) B (Z )“ q, as

stated in Equation (2.3).

If pointsa andp are both in region 5, butis nearly as close to region 1, 2, 4. Then the
rule applied on point would be only rule 5, while the model value calculation for peiwbuld
be also influenced by rules 1, 2, 4. The belongingness of a poiatlorele is evaluated by a

membership function.

If Gaussian membership functions are applied and the product apisraiged for the
AND conjunction in Equation (2.3), each rule of the antecedent coulcbheatd by the truth of

antecedentTA)

2 2
()
TA=e' @/ \ 7

whereTA s an ellipsoid centering ab,(0,) with width of s; by o». A possible contour plot GfA

(2.4)

is shown below

A ——

C2 P \\
7 ~7 T TN \
{7 Ny

O, H— )
\ \\___// /

\\\_—’//
0, C

Figure 2.2 The ellipsoid contour of TA

In Figure 2.2, the highest value BA =1 is reached at the centroid. The further out is the
contour, the smaller th€A. The value ofTA can be interpreted as the belongingness of a data

point to a local region.

14



Consequently, the two dimensional antecedent streicshown in Figure 2.1could

represented blgorizontal and vertical ellipsoids, shown in Figure 2.1 (a).

\/'__\ Vi N\ — —
| | / \ \
C2| | G|l [ \
\ /\ /\ 1
\. N e \/
/ \ v N /| J
\/\\ //\J VAR / \./
Cl Cl

(a) (b)
Figure 2.3 Antecedent space partition and repraser

A more compact fuzzy model can be constructemerging regions that exhibit simil
local behaviorFigure 2.3 (b) shows a possible partition r merging some regions. Howev
the partition method which is aligned with the \egor axes in Figure 2.3 becomes inefficier
shown in Figure 2.4where neither horizontal nor vertical ellipsoidsoyde an efficien
representation of the underlying local region repreed by either the rotated “space”

correlated variables or irregular polygo

Figure 2.4A rotated locaregion covered by adnizontal or vertical ellipso

To solve this problem, the GTSK approach chooserotate the ellipsoi to cover the

local region, which is shown in Figure 2
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Figure 2.5 A rotated local region covered by a rotated ellipsoid

The rotation is mathematically addressed by one more @leffecedom. the parameters
o in Equation (2.4) are replaced by a symmetric positive slefimite matrixP, which is shape

matrix in this work, and redefines the truth of antecedent by

TA= & (¢-0) P(c-0) (2.5)

whereo is the vector representing the centroid with dimensioncpind the dimension for the

shape matrix P isc by nc.
2.1.1.1 GTSK Model Representation

In general, the nonlinear model in Equation (2.1) could be describdw ifoltowing

linear time-varying format

y(t)=k(t)+a() (t=1)+L +g,(9 Y + ny+
b (u(t-d)+L + B, () u t nu- g+ €} (2.6)

A compact form to represent Equation (2.6) is
y(t)=x"(t)8(t)+e(t) 2.7)

with
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x()=[Ly(t-D L y(t-n) . =L, & nu o]
[k(D).a(t.L .a,(0.B(YL ()]

D
—_
—
~—
Il

wherex(t) is the regressor vector afift) is the parameter vector. Coefficients k(t), a(t)

and b(t) are time-varying variables.

Based on Equation (2.3), a GTSK model is defined as below usingetteratjzed

antecedent structure.

AL
IF(c(t) is in R*@',PY)) THEN y (t)=0% (t)
M

M
IF(c(t) is in R™ @ ,PM)) THEN y (t)=6Mx (t) (2.8)

A

whereY is output from the local model in rule i
The final computation of the GTSK model in Equation (2.8) is defined by

YO= WOy O

(2.9)

Wherew ® are the weights of the local models. In this Wovr\{<,(t) is defined as the normalized
truth of the antecedent (TA)
TA (1)

M

2TA®

W (t)=

(2.10)

where TA can be calculated by Equation (2.5)
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2.1.2 Order Determination and Antecedent Variable Selection

The first step in modeling is variable selection. This windt fietermines the ordensy
andnu, and delayd for a nonlinear dynamic system as defined in Equation (2.1). The oéhy,
nu andd give the set of consequent variables in Equation (2.8). Antecedeables are then

selected from the consequent variables.

A. Nonlinearity Representation Methodology

Once0(t) in Equation (2.7) is determined, the orderg,andnu, and delaydare then
defined accordingly. A exponential weighting method[30], representeduation (2.11), is used

to recursively estimatet).

-1

%
K(t)=P (xT (t)P(t-2) x(t)+a)
6<t>=< > <t>(9<t> (t))
P(t)=—(P(t-1)~K ()" (1)P(t-1))

a (2.11)

whereg(t-1) is the parameter value estimates-afyi(t) is the one-step-ahead predictiony()
usinge(t-1), K(t) is the gain used and corragt-1) to 8(t)based on the prediction erré(t)

records the covariance é(t) .

In Equation (2.11)a is the tuning factor, termed as ‘forgetting factor’, whitas to be
chosen for a balanced performance for nonlinearity adapttidparameter estimation precision.
The GTSK modeling approach uses=0.95 and finds results are relatively insensitive to its

choice.

In this work, the resultant regressor veckt) and output y(t) are reorganized in a
“spatial” order to minimize the change in coefficient valaleiring the recursive estimation. The

reordering procedure is termed as Sequential Nearest Neighloraigement (SNNR).By
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reducing the parameter variation, the SNNR is able to redecmdlan squared error (MSE) of

one-step-ahead prediction.
B. Order Determination by Regressor Selection

In this work, the order determination starts by selectingessgrs with user-given value
of possible maximummy, nu andd. Then, a number of candidate regressors are generated by

Equation (2.9) and denoted ag(f) xo(t) Xs(t)... Xm(t)xrandon(t)]. Regressors oky(t),... xm(t) are

lagged y(t) and u(t) as shown in the regressor vectdt). Regressonandgom IS & regressor
comprised of random number that presumably contains no meaningfuhation ony(t).At

first, each ofmt+1 regressorsg(t), Xo(t), Xa(t)... Xm(t)xrandon(t), is tried. The trial starts with time-

sequence daty/(f),[x(1)]), wherey(t) is the output ane(t) (i=1,...,m+1) in bracket is the trial
regressor. A SNNR is then conductedxit) to get rearranged data S (K), [Xsnnr (K)]). The
exponentially weighted recursive estimation in Equation (2.11)eis #pplied to the rearranged
data. The one-step-ahead prediction erroysa(k) is used to evaluate the prediction quality of
each regressorx(t). The evaluation criteria is the following Final Predictiorrder(FPE)

index[31]

L+ np N-L+1

2 5 (9

FPE=

4
L=—— 2.12
1o (2.12)

whereg(K) is the one-step-ahead prediction residual in Equation(2. 11NlRSearranged data,

npis the number of regressotsis related to the ‘forgetting factod.

After the first round of estimation and evaluation, the regresgbrtiee minimum FPE is
selected. For instance,X¥fis selected, there will be otharregressors to be tried. For each tried
regressor;(t) (i£2), the time-sequence data y&t), [x.(t), x(t)]), where the bracket contains the

19



already selected regressoxgt) and the trial regressot(t). A SNNR is then applied oncft)
xi(t)] to get rearranged datgs((K), [Xsnnr.dK) Xsnor.(K)]). Equation (2.11) is conducted then to get
the one-step-ahead prediction error yamp(k). The quality of %(t) x(t)] combination is then

evaluated using FPE. The regressor combination with the minimum FPE.is kept

The selection continues until either the minimum FPE feelacted set increased with
respect to the previous set, or #igqn(t) is selected. The injection of a random regressor is used
as a stopping criterion[32]. The selectionx@fqon(t) signifies that the rest of candidates are less

influential ony than a random pattern.

Values ofny, nuandd could be easily defined by a selected set of consecutive segses
for instance, y(t-1), y(t-2), u(t-1), u(t-2)], due to implicit constraint on the model structure.
However, absences could exist in selected regressors siigit-Bsy(t-4) u(t-1) u(t-3)], which
does not correspond a set mf, nu and d. For database management simplicity, in GTSK
modeling, if the situation with absence occurs, a further comparison is exeowtdfitent order
values. For the illustrated example, an exhaustive comparisamasicted on possible values of

ny=1, 2, 3 or 4 combined the possible valueswsfo, 1, or 2, withd = 1.

After this procedure, consequent variablgsg.( X,) are determined as the selected

regressors(t-1) ... y(t-ny), u(t-d) .... u(t-nu-d)
C. Nonlinear Component Detection

To detect the regressors that are affecting the output naryinevhich are then used as
antecedent variables, the similar technique for order determinatiused. In GTSK modeling,
antecedent variables(...c,;) are defined as a subset of tlg.(. xx). There are »! subsets in
(X1,... Xny) €xcluding the empty one. Each subset is considered as a calfdidatg.), on which
the SNNR is again conducted and a corresponding FPE is computesLibdse with minimum
FPE is selected as,(...cno), which are y(t-1) ... y(t-ay), u(t-d) .... u(t-bu-dn Equation(2.3)
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2.1.3 Estimation of Parameter Values

Once the consequent variableg,.(.X,) and antecedent variable,(.c,) are
determined, the next task is to determine the antecedectuséras well as the parameter values

in each rule.
A. Methodology
Figure 2.6 illustrates a GTSK model with a two-dimension antecedantwse.

2 a7
Pu I

_ 2 _
_012 Og:IT\P |:P123 pjz_

s 3

\

J,’li‘l:ﬂz_\:li'l

Figure 2.6 A GTSK model in a two dimension antecedent space
If underlying rule regions are given, the parameter estimairoblem will be easy to
solve. In the GTSK approach, rule regions are generated aut afitecedent space by partition.
An illustrating example for Figure 2.6 is shown below, where fogiores are defined by three

linear splitting boundaries (dashed lines).

21



\
\

r g

-

\
\}
Y

\

-
i
I
!
1
i
!

Figure 2.7 Partitioned antecedent space for thek modelin Figure 2.1

Once a rule region is determined, an ellipsoid lbardefined to cover it, as shown
Figure 2.6. The GTSK approadetermines the number and shapes of regions byguasiee

partition of the antecedent spache fundamental stejp obtain an antecedespace patrtition is

to solve a splittingnd regression problem (SR

B. Solving Splitting and Regression Problem

An example of one stage in SRP on a two dimensianedcedent spads illustrated in
Figure 2.8. Tie objective is to minimize the modeling error bé tpartitioned data by the tv
linear models by placing a linear separation boondthe bold dashed line) in the antecec
space, which results in two subspaA andB. Each subspace has a local lit model. The two

linear models shown use all relevant regressorsjust the two c; andc,) chosen to express

nonlinear behavior. The separation boundary is @mde be linear, and is a function of g

variables, of which onlg, andc, are illustrated here.
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Y()=a(f+ax(1+L +ax(}

|

l /
N4
A sisgdrsg -0
Cy K)

Ca |

V() =R+hx(§+L +hox(})
Figure 2.8 lllustration of a SRP

The belongingness of data sample to subspasaletermined bi(t) andg(t) as below

I(t)=s,+s6(9)+sc() (2.13)
0, I(t)<O
(o(t)={1, (t)> 0 (2.14)

wheresy, s1, $; defines a separation boundabryqq( h+ s6(3=0 in Figure 2.8. The value oft)

is \/§+ ¢ times of the distance of a point; (), cx(t)] to the linear separation boundary , which is

d :‘sﬁ se(d+ s ¢ ﬂ/ [ 5+ %. However, Equation (2.14) implies that only the sigh{®fmatters.

In Figure 2.8, the points in category A have negative valud¢tfavhile B category has positive

10).

In Figure 2.8, two local linear models are

Y (t)=a+ax()+L + ax( )
Y (t)=h+hx(9+L + Box( )

Combing Equation (2.14) with the Equation (2.15), the output is then computed by

(2.15)

(1) =(1-(1)) Y () +(t) Y'(1) (2.16)

The SRP can be then solved by minimizing the following performance ihdex

min J :ZN:gz(t) (2.17)

ab,s
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where,&(t) = y(t) - $(t) is the residual, and parameter values to be estimatagi@elandb in

Equation (2.15), andin Equation (2.13),

The GTSK approach solves the SRP by a heuristic suboptimal meésedl on the
assumption that there are two local linear models. Giveparation defined by, it results in a

split of datay C X] into A andB regions asy[x Ca Xa] and ys Cg Xg]

Ya =X, a+e,

Vg =Xgb+eg

with (2.18)
. .

yA=|:ya(l) L y(N,)

Yo=[Y(Q) L y(N)]

e, :N(0,021); e :N(0,021)

where,y is the vector collecting aNl sample outputsC is aN by nc matrix consisting oN rows
of antecedent variables, aXdis aN by nx matrix consisting oN rows of consequent variables.
Xa and Xg are two disjoint subsets of. The corresponding model parametarsndb are

estimated by

8=(XiX,) X7y, (2.19)
b=(XIXs) XIye

the residual for mode\ could then be evaluated by
€=y, —X,a (2.20)

after some algebraic operations, Equation (2.20) is expressed in tegtrisyof

N :(I —XA(X;XA)_1XI\)eA (2.21)

the quadratic performance criterion is then evaluated and expragseahs ofX, andoa by

J, = E[s;aAJ

(2.22)
:Tr(l —xA(x;xA)’lx;)o—i
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the performance criterion for mo&el is described by

in the same manner,

J. :Tr(l _xB(xng)'lx;)gé, then the quadratic performance is expressed in termsaidog
by
J=3,+3 (2.23)
which could be viewed as a weighted combinatiogdnds2. The weights are determined by
the trace function oX, andXg, which areNa-nx-1 andNg-nx-1 respectively. Sincax is often

negligible toN, andNg, Equation (2.23) is converted to

J=N,02 + Nyo (2.24)
where, based on Equation (2.2M), andNg are defined by
N N
Na =D o(t), Ng=N=>o(1) (2.25)
t=1 t=1
additionally, the unknowms? and 2 are to be replaced by their estimates by
) N 2 N
52 = t)(y(t)- t

55 =3 [(1-0(0)(v(9)-)] /3 (1-0(0)

t=1
whereus andug are unknown means gf andyg in modelA andB. Substituting Equations (2.25

- 2.26) into Equation (2.23),is then described by
2 (2.27)

330 (040 (10 (0 (H)-1)

where, there arbl+2 decision variabled\ belongingness values, ang andug. Since thep(t) s

not coupled with any(z) (t#), it can be solved individually by

(2.28)
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Combining Equations (2.28) and (2.27) defides terms ofus andug only by

J:ZN: (y(t)-#Azz(y(t)-ﬂB)zz (2.29)
T (Y(t) =) +(Y() - 15)

the objective function in Equation (2.29) has only two decision asa, andus. Onced is
minimized, ¢(t) is determined by Equation (2.28) and automatically lies betWesmd 1. The
resultantp(t) takes any value within 0 and 1 instead of 0 and 1 only. Thewiolg Equation

(2.30) will convert thep(t) to a two-value indicator (0,1)

R @30

which assigns each data sample to either re§jionB. Notice that the(t)from Equations (2.28)
and (2.30) is not confined to a linear separation boundary defingduation (2.13). In order to
let the indicator values be subject to a linear separation bourtdarfgllowing support vector

machine (SVM) [33] is then solved to find the linear separatioanpeterss based orp(t) from

Equation (2.30)

nc Na Na
minimize )" s7 + r[Zgﬁa - Ze;f}
k=0 i=1 =1

subject to
$+86()+L + S G( 12147, =L N, (2.31)
$+86( )L + s 6 )<&7-1 =L N
&.67=0

The solvedsis then applied to Equations (2.13) and (2.14) to upd@jewhich is now
confined a linear separation boundary. The resultéihtdefines a split,yja Ca Xa] and s Cs
Xg]. Thena andb are estimated by Equation (2.19). It then is able to evaluatkia¢se, andeg
explicitly by Equation (2.20). The indicator values are then updatedifiynizing the following

J with replacement ofy(t) - «a) and ¢(t) - ug) in Equation (2.27) bya(t) andeg(t)
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3=3102 ()& (1) +(L-0(t)) &2(t) (2.32)

where,p(t) is solved by
o(t)=25(1)/(s2(1)+£3(1)) (2.33)
The newg(t)is then converted to 0 and 1 by Equation (2.30) and the SVM is sabed.

Subsequentlya andb are re-estimated.

This successive substitution procedure to solve the SRBnmimarized in the following

flowchart.

SRP

Solve ua and ug (2.29)

)

Solve ¢(t) (2.28)

v

» Solve a SVM for s (2.31)

!

Compute ¢@(t) (2.13), (2.14)

|

Estimateaand b (2.19)

'

Solve ¢(t) (2.32)

Converge

Figure 2.9 The algorithm solving the SPR

The algorithm stops when the changep(ijin two consecutive steps is very small. The

antecedent space is progressively partitioned until no rule region éarthsz divided.
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C. Rule Antecedent | dentification

Given a partitioned antecedent space, the rule of each |lggahneeeds to be defined.
This can be interpreted as the estimation of the centroidlaape factors of the best ellipsoids to
cover each region. A method which also considers the qualityagh data point is used in the

GTSK approach.

The quality is related to the prediction error for each data saiffifpesolid dots in Fig. 8
represent data points with relatively small residuals ftheir linear model, Equation (2.18),

while the circles represent data points with relativelydargsiduals.

»
»

Cl
Figure 2.10 A local region in an antecedent space

Only data samples with smaller residuals are used to éstthmantecedent parameters.

The importance of each data point is weightef byhich is defined as
pr-osfn(a (e ¢ 230

whereN' is the number of data points in regiorThe scriptK, i) represents th&' data in regiom.

B’ reaches the highest value at 1 wheis zero.

The centroidd’ is estimated by

o =304 S (2.35)

and the matri" is defined by its inverse
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N’

P =Sa(e o) o) /5 230

i=1

Then the rules of local regions, TAs can be defined by Equation 2.5.

2.1.4 GTSK Modeling Procedure Summary
The above procedure for converting input-output data to a GTSK model is suptrasiz

follows:

Step 1. Determine dynamic orders;, nu and delayd by using the SNNR to rearrange data,
recursive estimation (Equation (2.11)) to process rearrandadatal the FPE ((Equation (2.12))

to evaluate a particular choice of regressor set.
Step 2. Determine antecedent variabgs.(c..) from consequent variables (... X

Step 3. Recursively partition the antecedent space by solviegrias of SRPs. Note, the

parameter values in the consequent model were determined by Equationn(SES) 3.
Step 4. Determine antecedent parameters, centroid and shape matrik fadeaotecedent.
2.2 NMPC Methodology

The NMPC proposed in this work is designed to find an optimized segu# present
and future controller outputs (u) to minimize the deviatiamvben a process response prediction
and a given reference trajectory for a number of future stegrsaotime horizon on the order of

the process settling time.

The general structure of NMPC or receding horizon control imgiged in this work is

shown in Figure2.11
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ySE;. Setpoint Yspbias
Adjustment
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Figure 2.11 General Structure of NMPC

where Y, is the steady-state set point (SP) of controlled vari@®Ng Yy, YspoiasiS the biased set
point. u is the manipulated variable (MV). The controller blockasprised of the GTSK model

and the optimizer.

In this NMPC application, the GTSK model is used to forecastfilre process
response based on the knowledge of past CVs and MVs. The funttibe optimizer is to
minimize the distance between the predicted future trajeofqoyocess response and the desired

future trajectory, which is also called reference trajectory.

At time t, the current time in the process operation, theggsoesponse prediction y(t+i)
is calculated for each discrete sampling time for a longdorinto the future (i=1,....N). The
length of the prediction horizon, N, is a controller tuning vaeialefined by user. However, it
should be extend sufficiently beyond the dead-time of the proéess well as the inverse
process range. The predicted process response is determinedrdinaar model of the NMPC,

which is the GTSK model in this work.

Since a process model mismatch (pmm) exists, a feedbacktmorrex necessary for
compensating the pmm and removing the steady state offset. ldikisa biased set point is
introduced as the adjustment. It is defined by Equation (2.37), whene stands for the

difference between the present process output and model prediction.
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yspbias:y sp pmm (2.37

The reference trajectory, r(t) applied in this work isratforder approximation from the

current model valuegy(t) towards a biased set poigyiadt). It is defined by

- dr(t)
dt

+r(t):y spbia(t) (2)'38
which can be also represented in a discrete time formation as below

At _At
rt+1: (l- € %W )yspbiast +(e %W )rt (239

wheredt is the sampling time interval, is a tuning parameter of the reference trajectory.

In this NMPC control scheme, the controller output scenarioftioee sequence of MV
values) is “known” within the control horizon to minimize therssquared deviation (SSD) of

process response prediction from reference trajectory.

The controller output scenario in this work is designed to be a sequeihcee$tep-and-
hold values. Each of them covers 25%, 25% and 50% of the cdmdrizion, respectively.
Nevertheless, only the first step of the MV sequence iseimghted as the controller output at
instant time, t. Figure 2.12 illustrates an example of thé ddquence and process response
prediction in the future. In this simulation, the processiiialized at the steady state of the
controlled variable (CV) =7. The controller is in the MAN modehwthe MV of 50% at the
beginning. It switches to AUTO mode at 5 Minutes. At t=10, theaimt is changed from 7 to 3.
The MV goes to zero initially after the set point charijgure 2.12 is a snapshot at t=14 which

shows post events and future projections.
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Figure 2.12 The Process Response and the Prediction (a) and the MV selguence (

The nonlinear model embedded in the optimizer is the GTSK modetheAtvery
beginning of the control horizon, the GTSK model is initialized using the past CV ancaM¥&sv
as the regressors. Once a model prediction value is calcbhatdd GTSK model for the next

time step, it is stored as a “past CV” value for nexh@ang time prediction. The controller
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output values used as the regressors are delivered fromighadiution of MVs, which is
determined by optimizer. The estimated process response forhible vange of the control

horizon is calculated by this recurrent prediction approach.

A new optimization technique called Leapfrogging [6] is employeithimwork. With a
global aspect, the leapfrogging technique can efficiently fiedgiobal optima for multi-optima
problems. In this work, it searches and determines the MV segtleaicminimizes the sum of
squared deviations between a process response prediction and eefgvence trajectory for the

control horizon at each sampling time.

The logic of the NMPC algorithm is illustrated in the following flow ¢har

Set Targety(t)

Calculate reference trajectory R

Guess u(t) sequence
Predict y(t) over the horizon
Calculate the deviation (SSD)
between y and R
Minimize SSD
(Optimization)

1ststep of best

u(t) to implement

Figure 2.13 The Logic of the NMPC Algorithm
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2.3 Leapfrogging Optimization Approach in GTSK MPC

In a MPC controller, a set of optimal MV values which drithe process toward the
desired set point along the reference trajectory withouttinglaonstraints need to be computed

at each sampling time.

Recently, a new optimization approach named leapfrogging is propgdelbinehart, Su
and Sridhar (2010)[6]. With the characteristics of direct seamuth random starts, it can
efficiently find the global optima for multi-optima problems. Calesing its simplicity and
efficiency for global optimization, which will greatly enhanbe nline application performance

of the NMPC controller, the leapfrogging optimizer is employed in this work.

The leapfrogging technique starts with a random locatedfsetal solutions (termed
players) within the feasible decision variable (DV) spadcfeasible regions may be defined by
either DV, OF or auxiliary functions. At each iteration, thlayer with the worst objective
function (OF) value is relocated to a random position withilbisspace reflection on the other

side of the player with the best OF value. Figure 2.1 illustthtekeapfrogging mechanism.
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Figure 2.14 Leapfrogging Mechanism

The repulsion of vacated sites is another innovative attributesofeitiinique. Influenced
by the synoptic topographic knowledge, a history of positions ohtigceacated sites in DV-

space is used to mildly repulse the leap-to position away from thetlseeacated sites.

In this work, the controller calls the embedded leapfrogging apinio search and determine
the MVs sequence that minimizes the sum of squared deviationsdreta process response

prediction and a given reference trajectory for the control horizorchtssanpling time.

35



CHAPTER 111

EXPERIMENTAL METHOD

3.1 Experimental System

In this study, the experimental system is a process simulatomnhich the NMPC
controller was implemented on a primary process (y) andugitisaty process (z). The primary
process in this simulator is fourth-order-plus-dead-time (FORDdcess with a nonlinear gain
and the environmental effect (noise and disturbance). The proceskKgamane over the square

root of the manipulated variablgt), which is also the input of the controlled variaig.

The FOPDT process is represented as
AaAT

d ¥ (©)

" — —1y,()=K , u(®)

7, aY, (t)+y2(t)—y (t)
dt (3.1)

dy ()
B gt

+y )=y ) +D

dy(t)
dt

+y()=y4(t- 0)
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where yi(t) is the process response of each 1ags the time constant,D is the external
disturbancef is the dead-timedt is the sampling interval. The coefficient values are show

Table 3.1

Table 3.1 Process Coefficients

Parameter Value (minute)
T, 1
Ty 2
T3 2
Ty 3
0 3
dt 0.2

Figure 3.1 shows the nonlinear dynamic behavior of the protéssinput u(t) has a
minimum value of 0 and a maximum value of 100. Consequently, theegwraesponse y(t)
ranges from O to 10. In Figure 3.1, a step change of u(t) from O t@a#8 to a y(t) change of
about 4.5. However, y(t) increases from about 9 to 10 when a saraméntrwas made on u(t)
from 80 to 100. Due to the nonlinearity of the process, equal chamgés lead to diminishing

changes in y(t).
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Figure 3.1 CV responses to MV equal-step-changes

The noise used in the simulation is generated by Box-Muller mi@djodt is normally
and independently distributed with zero mean and a standard dewétsdgma 6), which is

referred to as NID (0, sigma). The noise equation is

NID (01 GNoise ) :GNoise\/ -2 Ln(rl ) ’ Sin(zrz) (3-2)

whereo,ise is 0.2,r1 andr, are uniformly distributed random number between 0 and 1.

The external disturbance is simulated by an autoregressiviegraverage (ARMA)
type model which is first order in response. The model that diiyea NID(0,0pis; ) Noise

signal generates autocorrelated time series data as disturbasceptesented as

rDistdst(t)m(t): NID (0, o, ) (3.3)

WhereD(t) is the disturbance,;; is 5,0p;st iS 0.25.

The auxiliary process variable z(t) is a first-order response to inihws represented as

T di(t)+z(t):K u(t)
Codt i (3.4)

wherert, is 2.67 K, is 0.9.
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3.2 GTSK Model Development

The GTSK approach converts the time varying input and output datrajed by the
process simulator to a GTSK model. As presented in ChaptérD,), ... y(t-ny), u(t-d) .... u(t-nu-
d) were determined as the consequent variables, and then thedanteegiables were selected
from them. The antecedent space was recursively partitioned intolsegaas. The antecedent
parameters, centroid and shape matrix were determined by GTSklimgodechnique

subsequently.

3.2.1 Sawtooth Input Training Signal

In the modeling phase, a “sawtooth function” is chosen to gengmataput training
signal. As shown in Figure 3.2, it jumps or drops to the halfwag aindom level, and then
ramps to that level at the end of a period of random lengiiittek function” is another
commonly used training signal, which jumps or drops to a randomdedeholds for a random
time interval within certain limits. Compared to “skyline ftinn”, the sawtooth function covers
wider range of the input data by the random located ramp, and ishthtmugrovide a more

complete basis for obtaining empirical process response models.

Sawtooth Function SkylineFunction

100 100

40 40

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 3.2 Input training signals
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3.2.2 GTSK Moded Generation and Evaluation

The training data used in this work is plotted in Figure @l8ch shows the input signal
u(t) by the sawtooth function and the process response y(tyahge of process response value

is 0 to 10, while the range of input signal value is 0 to 100%. The procegstadized at zero.

100
90 |

80 | ‘
70 |

60 |

u(t) 50

40 |

30 |

20 |

|

0 200 400 600 800 1000 1200 1400
T (min)

@)
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Figure 3.3 The sawtooth-pattern input (a) and process response (b)

The GTSK model in this work has y(t-1), y(t-2), y(t-3), and u(t@®yegressors, among
which u(t-20) is the only antecedent variable. The model, which1Ba$ocal models, is

represented by following equations. Table 3.2 shows the values of 84ieo¢ifia total.



AL
y () =6; +6; y(t-1) + 05 y(t-2) +9, y(t-3) 4 u(t-20)

M

A2

y (1) =67 + 0,7 y(t-1) +0, y(t-2) 40,7 y(t-3) 6% u(t-Q)

A (t)= ExpUL

W (t)=

20)- Center 3

TA (1)

12

2TA ()

Width

VO=Y WO O

)

Table 3.2 GTSK Model Coefficients

(3.5)

Model No.

01

0>

03

04

Os

Center

Width*

0.380729

0.374544

0.279718

0.276694

0.002959

76.5624

0.0197

0.198491

0.289056

0.38512

0.259525

0.005471

56.4061

0.0614

0.03796

0.412064

0.185464

0.335465

0.023535

3.8624

0.2644

0.374987

0.30784

0.399311

0.188244

0.00371

16.8419

0.4129

0.318991

0.219484

0.401633

0.30176

0.004533

47.916

1.2644

0.190683

0.184169

0.401888

0.337867

0.004275

8.2903

0.9606

0.129525

0.371462

0.27109

0.285711

0.008859

30.4761

0.1612

0.254841

0.348019

0.301008

0.279506

0.003807

23.3493

0.2459

© |00 N oo [0 | W NP

0.234811

0.404955

0.225322

0.310266

0.003447

44.0831

0.3508

[EnY
o

0.074481

0.334408

0.327454

0.263228

0.010187

38.0753

0.377

-
=

0.039623

0.242396

0.305287

0.316081

0.035061

13.3275

2.5599

AN
N

-0.04174

0.300432

0.416675

0.229603

0.018498

11.3618

3.0833
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In this work, because some of the width values were so Snadlthere was no model
information in between centers, all the width values are &djus be 30% to provide a better

coverage on the antecedent of each local model.

The GTSK model predictiofgrsk, is shown in Figure 3.4; comparing it with the process
response in the same plot. The two curves are barely distingigisfia provide a comparison, a
second-order-plus-dead-time (SOPDT) model is generated by theentmmal regression
approach, which the process-model mismatch is obvious, indicétindpanefit of the GTSK

model. Figure 3.5 shows the SOPDT model predictigrp+

10

Y(t) 5 I_I | .|| \ | I 'l | | [ ) | / | ' I-‘ |

f — — — Process Response

GTSK model prediction

0 200 400 600 800 1000 1200 1400
T(min)

Figure 3.4 GTSK model prediction and process response
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Figure 3.5 SOPDT model prediction and process response

The model performance is evaluated by the sum squared devi&&i) from the
process response y to the predictiopnThe SSD from model to process of two models was

compared in Table 3.3

Table 3.3 Comparison of sum-squared deviation (SSD)

GTSK model SOPDT model

SSD 159 2057

According to both the SSD and plot comparison, the GTSK modeicpoednot only
shows a much smaller deviation from the process than the SOPDT model, bus sleogrocess
“very well”. This result indicates that the GTSK modehiwell-qualified model for the nonlinear

MPC.
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CHAPTER IV

RESULTSAND DISCUSSION

To evaluate the performance of a GTSK MPC controller, sseenof dynamic control
simulations were run. The performance of disturbance rejed&tnpoint tracking, constraint
handling, comprehensive environmental effect (both noise and distaejldzarudling and manual
to automatic transfer was tested. In all simulations, theegswas initialized at the steady state
of CV=7 with the MV of 50%. It operates in the MAN mode for 5 misubzfore it was

transferred to the AUTO mode (except the disturbance rejection test

4.1 Digturbance Regjection

The GTSK-MPC control performance for the disturbancectigje is illustrated in Figure
4.1. Set point is maintained at 7, and noise was not introduced prdatess. The disturbance
was added to the second-order response of the process. To demmdhsti@ntroller ability to
handle the disturbance, the test was carried out under both 80/8NAUTO modes of the
controller. From 0 to 40 minutes, the controller is in MAN modédlie MV of 50%. After the
disturbance was removed, the process was not back to therdeAfter the time of 40 minutes,
the controller was switched to AUTO mode, and trying to bringltheirbed process back to set
point. It is shown that the process was regulated succesafudlprought back to the set point at

about 80 Minutes. The control performance was measured by the sum squaréochd@S&dd) of
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CV from set point. The SSD is 21.85 when the controller is in MAdde. Within the next 40

minutes, when it is in AUTO mode, the SSD is reduced to 5.82.

10 100
?|le—— MAN >| < AUTO —— |”
8 80
7 __/_\ /—\v_ 70
61 SSD=21.85 SSD=5.82 60

MO R et L---. P R U 50 U(t)
[N e
4 | Yeo=’" 40
) —Y()
3| Disturbance %
----- Setpoint
2 I 20
1t -~ U(t) 10
O = B [ ] N 0
0 10 20 30 40 50 60 70 80 90
T (min)

Figure 4.1 Control performance of disturbance rejection

4.2 Set point Tracking

Figure 4.2 illustrates the control performance for set paiking. In this test, there is
no environmental effect added to the process. The controllereshavgtrong set point tracking
ability. It took the process about 30 minutes to settle down when theisestepped either up or
down. The controller also responded quickly and effectively withoderate aggressiveness. In
spite of process nonlinearity giKChanges by about 2:1 over the range), the process responses to

the SP = 3 and SP =9 values are similar, demonstrating control effesivene
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Figure 4.2 Control performance for set point tracking without environmeffiégits

4.3 Constraint Handling

Figures 4.3 to 11 illustrate the impact of the different sypeconstraints. In each test,
two sets of set point step change from 7 to 3 were made tpatenthe constrained and
unconstrained conditions. During the first simulation period from 0 to70 nsinilie process was
simulated with the constraints. Then the constraints were enaty 70 minutes. The second
parts of the simulation were carried out without the constréhe four types of constraints were

all tested individually.

Figure 4.3 shows the control performance when hard constraintsntreuced. In this
test, the MV was constrained with an upper limit of 100% alwdvar limit of 10%. At about 10
minutes, the set point was changed to 3, and the controller begarsh the MV to its lower
limit of 10% trying to bring the CV to the set point. The @4ched the steady state value which

is greater than the set point at about 40 minutes. As sote agtt point returned to 7, t=70, the
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MV changes. There was no windup at the constraint. Once theaiohstas removed, the MV

could go below 10% so that the CV reached the set point of 3.

10 r 100
s {&— Hard Constraints < No Constraint > w0
on U(t) on U(t)

1 80

Y (1) 170

--------- Setpoint] €°

Y@) s u(t)

Hard Constraint

Threshold
2 \l/
| R : 1©
0 I‘ 0
0 20 40 60 80 100 120 140 160
T (min)

Figure 4.3 Demonstration of the impact of hard constraints on the MV

Figure 4.4 is a demonstration of the impact of hard constraints aatthef-change of
MV. The limit on the rate-of-change of MV is 1% per samplingrval. Under the constrained
condition, the MV gradually moved down after the set point changeomtrast, during the
subsequent unconstrained period, the MV jumped straight down immegdidieh the set point

was changed.
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Figure 4.4 Demonstration of the impact of hard constraints on the rate-ofeobialy

Figure 4.5 demonstrates the impact of soft constraints on the value of thd&€\egal”

operation range of the CV was set as 3.2 to 10. If the C\atemIthe constraints, a penalty is

added to SSD so that the optimizer is subject to the soft ciotstoan the CV. Comparing the

different process responses to the same set point step change, £5 shows that, under the

constrained condition, the controller was not able to drive the CiMetset point 3, which is

below the lower limit 3.2. Therefore, the soft constraint succegshfluenced the controller’s

“decisions”.
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Figure 4.5 Demonstration of the impact of soft constraints on the CV

The auxiliary variable was added to the process in the test shown ie BiguiThe lower
limit of the auxiliary variable is 15. The optimizer is sulbj¢o the soft constraints on the
auxiliary variable. It is shown that the controller sacriides performance to avoid violating the
soft constraints on the auxiliary variable. Due to the optinaaaibjective, the CV did not reach
the set point, but achieved a balance between the control perforarahtee penalty of violating

the soft constraints.
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Figure 4.6 Demonstration of the impact of soft constraints on the ayxiaaable

4.4 Environmental Effect Handling

When environmental effects are added to the process, the cpetformance for
handling this comprehensive situation is shown in Figure 4.7. The fows tfpgle constraints
presented above are also applied in this test. In Figure 4.7, tespitnacks the set point change
well even under the influence of both noise and disturbancedi$tuigbance was introduced at 7
minutes. It is shown that there is same amplitude of the notevandering of CV at both set
point = 3 and set point = 9. However, the amplitude of MV wandetirsgtapoint = 3 is about

twice larger than that at set point = 9. This is attributed to thereamity of the process.
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Figure 4.7 Control performance for set point tracking with environmentadteff
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CHAPTER YV

CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

1. The use of a GTSK model and Leapfrogging as an optimizer demonstrated as effective

for nonlinear model predictive control.

2. The nonlinear model is firstly developed by using GTSK approdwhpiiediction accuracy of
the GTSK model was illustrated and quantified by a comparistnS®PDT model. The GTSK

model was much better.

3. A fourth-order-plus-dead-time (FOPDT) process simulator withlimear gain and the
environmental effect (noise and disturbance) is used as tleziragptal system, in which the
NMPC control algorithm was embedded. The SIMO process was subject torstfacds on the
controlled and auxiliary variables, and hard constraints on botlintite nd rate of change of

the manipulated variable.

4. The performance of GTSK MPC controller is evaluatedseien sets of dynamic control
simulation. The controller showed desirable performance for distoebrejection, set point

tracking, constraint handling, and comprehensive environmental effectrigandli

5. The controller has a bump-less transition from MAN to AUTO mode.
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6. The controller does not wind up when the process was constrained.

7.2 Recommendations

Recommendations for future work are:

1. Extend the use of GTSK model in MPC to the multi-input-multi-outputMM) process
simulator with a more realistic and representative chdneogineering unit operation

process.

2. Implement the GTSK MPC controller on the real system, like heat exchanger or

distillation column in the Unit Operations Laboratory.

3. Investigate the reason GTSK approach gives such low width of the ratedant.

4. Investigate the merits of the sawtooth signal over the skylinelsigna

5. Evaluate the use of the GTSK model for control applications ¢éonalte nonlinear modeling
approaches. Consider ease of use, computational burden, robustnesstandaleitity, and

other technical and human attributes.
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APPPENDI X

The methodologies of the nonlinear simulator, the GTSK MPC, and the Leapfrogging
optimizer are described in Chapter 2. This section lists the Exc&lddBe of the simulation

system.

A.1 Excel VBA code of the simulation system

Sub main()
' The main subroutine calls each function or subroutine, keeping events organized
' Asyou add features, do not code them in the Main, but place them in subroutines
" or functions for the main sub to call
If Cells(9, 13) = "N" Then Application.ScreenUpdating = False

Call initialize 'Input values and initialize states

For SimTimeCounter =0 To 650 'Simulation time counter

Call events 'Manage events and user-desired changes

Call process 'Process responds with a measurement

SimTime = dt * SimTimeCounter 'Process simulation time interval is complete
Call control 'Controller responds with action

Call evaluate 'Determine goodness metrics

Call output 'Display results

Next SimTimeCounter

Application.ScreenUpdating = True

End Sub

Sub process()
' This is the simulator for the real process. In real life this is the physical process.
" You would not be able to know any of these equations or variable values.
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' This is not in deviation variables.

If u>0Then
kp=u”(-0.5) 'Process gain is designed so thaty_ss=10 when u=100%, and y-ss=0 when
u=0
Else
kp=0
End If
If Environment = "ON" Then
dist = lambdadist * sigmadistdriver * Sgr(-2 * Log(Rnd())) * Sin(twopi * Rnd()) + Clambdadist
* dist

Else
dist=0
End If
j=j+1 'Pointer for storage
Ifj=21Thenj=1 'Array max is 20th element
y4 = (dt / taup4) * y3 + (1 - dt / taup4) * y4 'Process lags are calculated
y3 = (dt / taup3) * (y2 + dist) + (1 - dt / taup3) * y3
y2 = (dt / taup2) * y1 + (1 - dt / taup2) * y2 'In reverse order, so that ...
y1 = (dt/taupl) *kp * u+ (1-dt/taupl) * y1 'each uses prior old value.

yhold(j) = y4 + sigmameasurement * Sqr(-2 * Log(Rnd())) * Sin(twopi * Rnd()) 'Add
NID(0,sigma) noise

k=j-delay 'Pointer for delay read

If k <1 Then k=20 + (j - delay)

yp = yhold(k)

yprocess(SimTimeCounter) = yp

zAuxiliaryProcess = 0.075 * 0.9 * u + 0.925 * zAuxiliaryProcess 'Simple representation for the
auxiliary process

End Sub

Sub SOPDT_Model_P2N()

' SOPDT model Pastto Now

' Note: Model is in deviation variables, starts at zero with a zero slope, and
" isinfluenced by the deviation in u from the initial u value

' This increments the model by one time step each control interval.

If SimTimeCounter =0 Then
YmodelP2N = YmBase
Elself SimTimeCounter < 21 And SimTimeCounter > 0 Then
YmodelP2N = yP2N(SimTimeCounter - 1) 'when counter<36, yP2N=initial
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Elself SimTimeCounter > 20 Then
ytl = yP2N(SimTimeCounter - 1) 'deliever values of regressors
yt2 = yP2N(SimTimeCounter - 2)
yt3 = yP2N(SimTimeCounter - 3)
Ut = MV(SimTimeCounter - 20)

numerator =0
denominator =0

ForilM =1To 12

thetal = matrix(iLM, 1) 'read parameters
theta2 = matrix(iLM, 2)

theta3 = matrix(iLM, 3)

thetad = matrix(iLM, 4)

theta5 = matrix(iLM, 5)

"Truth

center = matrix(iLM, 6)

ylm =thetal + theta2 * yt1 + theta3 * yt2 + thetad * yt3 + theta5 * Ut 'local model value

Ta = Exp(-(Ut - center) A 2 / 30) "truth value

numerator = numerator + ylm * Ta
denominator = denominator + Ta
Next iLM
If denominator >0 Then
YmodelP2N = numerator / denominator
Else
YmodelP2N = yP2N(SimTimeCounter - 1)
End If
End If
yP2N(SimTimeCounter) = YmodelP2N
zAuxiliaryP2N = 0.1 * 0.8 * u + 0.9 * zAuxiliaryP2N
End Sub

Sub SOPDT_Model_N2F_SSD()
'SOPDT model Now to Future.
' Initialize model and variables

Dim iN2F As Integer  'counter for future time increments
Dim yN2F(200) As Single
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Dim MVN2F(200) As Single

NOFE = NOFE + 1 'Count number of function evaluations - a measure of work
required by the optimizer

reference = yP2N(SimTimeCounter) 'Convert reference trajectory to deviation variables

SSD=0

zAuxiliaryN2F = zAuxiliaryP2N

For iN2F = 1 To NControlHorizon
If SimTimeCounter +iN2F =1 Then
ymodelN2F = yP2N(SimTimeCounter)
Elself SimTimeCounter + iN2F < 21 And SimTimeCounter + iN2F > 1 Then
ymodelN2F = yN2F(iN2F - 1) 'when counter<36, yP2N=initial
Elself SimTimeCounter + iN2F > 20 Then

'special
MV(SimTimeCounter) = ul

" define three MVs

If iIN2F < 25 Then
MVN2F(iN2F) = ul

Elself iN2F < 50 And iN2F > 24 Then
MVN2F(iN2F) = u2

Elself iN2F < (NControlHorizon + 1) And iN2F > 49 Then
MVN2F(iN2F) = u3

End If

'deliever values of regressors

'ytl

If IN2F <2 Then 'vtl
ytl = yP2N(SimTimeCounter + iN2F - 1)

Else
yt1 = yN2F(iN2F - 1)

End If

'yt2

If IN2F < 3 Then 'vt2
yt2 = yP2N(SimTimeCounter + iN2F - 2)

Else
yt2 = yN2F(iN2F - 2)

End If

'yt3

If IN2F < 4 Then 'vt3
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yt3 = yP2N(SimTimeCounter + iN2F - 3)
Else
yt3 = yN2F(iN2F - 3)
End If
'u35
If IN2F < 21 Then '"u35
Ut = MV(SimTimeCounter + iN2F - 20)
Else
Ut = MVN2F(iN2F - 20)
End If
numerator =0
denominator =0

ForitM=1To 12
thetal = matrix(iLM, 1) 'read parameters
theta2 = matrix(iLM, 2)
theta3 = matrix(iLM, 3)
theta4 = matrix(iLM, 4)
theta5 = matrix(iLM, 5)
"Truth
center = matrix(iLM, 6)
' left = matrix(iLM, 7)
' right = matrix(iLM, 8)

ylm =thetal + theta2 * yt1 + theta3 * yt2 + theta4d * yt3 + theta5 * Ut 'local model
value
Ta = Exp(-(Ut - center) A 2 / 30) 'truth value

numerator = numerator + ylm * Ta
denominator = denominator + Ta
Next iLM

If denominator >0 Then
ymodelN2F = numerator / denominator
Else
ymodelN2F = yN2F(iN2F - 1)
End If
End If

yN2F(iN2F) = ymodelN2F

reference = (dt / tauw) * yspBiasDeviation + (1 - dt / tauw) * reference 'deviation variable
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yProcessEstimate = ymodelN2F + pmmyf 'Corrects the model value with pmm
to estimate future CV

zAuxiliaryN2F = 0.1 * 0.8 * Ut + 0.9 * zAuxiliaryN2F

zProcessEstimate = zAuxiliaryN2F + pmmz 'Corrects the model value with
pmm to estimate future AuxV

SSD = SSD + ((reference - ymodelN2F) » 2) / (ECVSP ~ 2) +
y_Constraint_Penalty(yProcessEstimate) / (ECVy » 2) + z_Constraint_Penalty(zProcessEstimate) /
(ECVz A 2)

If display = "Yes" Then
Cells(iN2F + SimTimeCounter + 15, 2) = SimTime + dt * iN2F
Cells(iN2F + SimTimeCounter + 15, 6) = reference ' + Yminitial
Cells(iN2F + SimTimeCounter + 15, 4) = MVN2F(iN2F) ' + uinitial
Cells(iN2F + SimTimeCounter + 15, 5) = yN2F(iN2F) ' + Ymlnitial
Cells(iN2F + SimTimeCounter + 15, 7) = yspBiasDeviation ' + YmlInitial

End If

Next iN2F

If display = "Yes" Then
Cells(SimTimeCounter + 14, 7) = ""
Cells(SimTimeCounter + 14, 4) =""
Cells(SimTimeCounter + 14, 5) =""
Cells(SimTimeCounter + 14, 6) = ""

Calculate 'VBA command to update the active worksheet (updates graph)
End If

End Sub

Function y_Constraint_Penalty(yProcessEstimate)
" This function assesses a soft penalty if constraints on y are exceeded.

Full y range is 0 to 10.

In contrast to pushing model to biased setpoint, this compares biased model to limits.

yProcessEstimate is the pmm-biased model N2F prediction value.

y_Constraint_Penalty =0

yConstraintMin =0

yConstraintMax = 10

If yProcessEstimate < yConstraintMin Then y_Constraint_Penalty = (yProcessEstimate -
yConstraintMin) » 2
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If yProcessEstimate > yConstraintMax Then y_Constraint_Penalty = (yProcessEstimate -
yConstraintMax) » 2

End Function

Function z_Constraint_Penalty(zProcessEstimate)

" This function assesses a soft penalty if constraints on Auxiliary Variable z are exceeded.
" Full x range is 0 to 100.

In contrast to pushing model to biased setpoint, this compares biased model of z to limits.

zProcessEstimate is the pmm-biased z-model N2F prediction value.

z_Constraint_Penalty =0

zConstraintMin =0

zConstraintMax = 100

If zProcessEstimate < zConstraintMin Then z_Constraint_Penalty = (zProcessEstimate -
zConstraintMin) ~ 2

If zProcessEstimate > zConstraintMax Then z_Constraint_Penalty = (zProcessEstimate -
zConstraintMax) » 2

End Function

Sub control()
' This is the controller.

If MODE = "MAN" Then 'In MANual mode
Call SOPDT_Model_P2N 'Call P2N model to update its states and delay array history
of states
pmmy = yprocess(SimTimeCounter) - yP2N(SimTimeCounter) 'Calculate pmmy
pmmyf = pmmylambda * pmmy + (1 - pmmylambda) * pmmyf filter pmmy
pmmz = zAuxiliaryProcess - zAuxiliaryP2N
yspbias = ysp - pmmyf 'Calculate a biased setpoint for display
u=u 'User decides this value
If u>100 Then u =100 '‘But the human often needs to be regulated
Ifu<O0Thenu=0
ul=u
u2=u
ud=u
Else 'In AUTOmatic mode
Call SOPDT_Model_P2N 'Call P2N model to get response to past u
pmmy = yprocess(SimTimeCounter) - yP2N(SimTimeCounter) 'Calculate pmmy
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pmmyf = pmmylambda * pmmy + (1 - pmmylambda) * pmmyf filter pmmy
pmmz = zAuxiliaryProcess - zAuxiliaryP2N

yspbias = ysp - pmmyf 'Bias setpoint for model
Call Leapfrogging_Optimizer 'Calculate ul, u2, and u3
u=ul 'Implement ul

End If

' Since optimizer will return a U value within constraints, the 0 to 100% override is not needed
here.

If u>100 Then u =100 'override calculated extremes with what is implementable
Ifu<O0Thenu=0

MV(SimTimeCounter) = u

End Sub

Sub initialize()

Initializes variables, reads the input data

Randomize 'Randomize the random number generator for noise
twopi =2 * 3.14159265358979 'Constant in Box-Muller NID noise generation

dt=0.2 'Time interval (all time constants should be about 10 times larger)
SimTime =0
taupl = Cells(1, 6) 'Input process values (the controller or operator cannot know these)

If taupl <1 Thentaupl=1
taup2 = Cells(2, 6)
If taup2 <1 Thentaup2 =1
taup3 = Cells(3, 6)
If taup3 <1Thentaup3 =1
taup4 = Cells(4, 6)
If taup4 < 1 Then taup4 =1

delay = Cells(5, 6)

If delay > 20 Then delay = 20
sigmameasurement = Cells(6, 6)

taudist = Cells(1, 14)  'Input disturbance characteristics
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sigmadist = Cells(2, 14)

dist=0

Environment = "OFF"

lambdadist = dt / taudist

Clambdadist = 1 - lambdadist

sigmadistdriver = Sqr(2 / lambdadist - 1) * sigmadist

If Cells(1, 2) <> "GS" Then km = Cells(1, 2) 'Input operator-chosen controller (includes
model) variable values

taum1 = Cells(2, 2)

If tauml <1 Thentauml=1

taum2 = Cells(2, 3)

If taum2 <1 Then taum2=1

thetam = Cells(3, 2)

uBase = Cells(4, 2) 'Since linear SOPDT model is in deviation variables, need initial u

YmBase = Cells(5, 2) 'Since linear SOPDT model is in deviation variables, need y-SS that
goes with initial u

tauw = Cells(6, 2)

If tauw < 1 Then tauw = dt

pmmylambda = Cells(7, 2)

u=>50 'Initialize process and controller at an initial steady state
ysp=7
yinitial =7
y1 =yinitial
y2 = yinitial
y3 =yinitial
y4 = yinitial
yp = yinitial
Forj=1To 20
yhold(j) = yinitial
Next j
pmmyf=0
j=0
dist=0
zAuxiliaryProcess =0.9 * u
zAuxiliaryP2N =0.8 * u
zAuxiliaryN2F = zAuxiliaryP2N

MODE = "MAN" 'Initialize controller in manual

Foril=1To 12
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Forjl=1To6
matrix(il, j1) = Cells(il + 1, j1 + 26)
'Cells(i + 20, j + 19) = matrix(i, j)

Next j1
Next il
AUTOcount=0 'Initialize evaluation variables
ISE=0
Travel =0
uold =u
ECVSP=1 '‘Equal Concern Value for CV not being at the SP (CV goes from 0 to 10)
ECVy=0.1 'Equal Concern Value for CV violating a constraint
ECVz=10 'Equal Concern Value for Aux Variable violating a constraint (AV goes from 0 to
100)
ROCu =75 'Rate of Change constraint on u
NControlHorizon = 100 'Initialize model N2F variables

ConvergenceThreshold = Cells(4, 17)  'Read RMS distance convergence criterion for
optimizer

Call Clear_Old_Data 'Remove all past data from plot points

If Cells(8, 18) ="Y" Then
Cells(1, 18) = "Lo/Hi PN)"
Cells(1, 19) = "Player Num"
Cells(1, 20) = "OF Value"
Cells(1, 21) = "ul"

Cells(1, 22) = "u2"
Cells(1, 23) = "u3"
End If

End Sub

Sub output()

Places all data on the worksheet for display

Cells(SimTimeCounter + 10, 2) = SimTime
Cells(SimTimeCounter + 10, 3) = yp
Cells(SimTimeCounter + 10,4) = u
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Cells(SimTimeCounter + 10, 5) = YmodelP2N
Cells(SimTimeCounter + 10, 6) = ysp
Cells(SimTimeCounter + 10, 7) = yspbias
Cells(SimTimeCounter + 10, 9) = zAuxiliaryP2N

Cells(SimTimeCounter + 14, 2) =""
Cells(SimTimeCounter + 14, 8) = ""
Cells(SimTimeCounter + 15, 8) =0

Cells(SimTimeCounter + 16, 8) = 10

Cells(1, 10) = NISE

Cells(2, 10) = NTravel
Cells(1, 17) = MODE
Cells(2, 17) = Environment
Cells(5, 17) = Iteration
Cells(6, 17) = NOFE

End Sub

Sub evaluate()
' Calculate performance measures for controlled process

If MODE = "AUTQO" Then
AUTOcount = AUTOcount+1  'Count of samplings in AUTO when ISE and Travel are
calculated
ISE=ISE + (ysp-yp) *2 'Not really ISE because no dt multiplier. Really SSE
NISE = ISE / AUTOcount 'Since no dt in ISE, divide ny count, not time.
Travel = Travel + Abs(u - uold)

uold=u
NTravel = Travel / AUTOcount
End If
End Sub

Sub events()
' Trigger events for the system (process and controller) simulation

If SimTimeCounter = 25 Then
MODE = "AUTO"

ysp=7
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End If

If SimTimeCounter = 50 Then ysp = 3
If SimTimeCounter = 35 Then Environment = "ON"
If SimTimeCounter = 350 Then ysp =9

End Sub

Sub Clear_Old_Data()

Range("B10:K2010").Select
Selection.ClearContents

Range("R1:R5").Select
Selection.ClearContents

Range("S1:W43").Select
With Selection.Interior
.Pattern = xINone
.TintAndShade =0
.PatternTintAndShade =0
End With
Selection.ClearContents

Range("A1").Select

End Sub
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Sub Initialize_Leapfrogging Optimizer()

DVDimension =3
NumTeammates = 20
MovementL2H =1 'size of window on other side of low from high

PlayerNumber =1

PlayerPosition(1, PlayerNumber) = ul 'set player #1 as the previous best solution, which may
still be the best

PlayerPosition(2, PlayerNumber) = u2

PlayerPosition(3, PlayerNumber) = u3

Call Assign
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Call SOPDT_Model _N2F SSD ‘'determine the SSD result
PlayerOFValue(PlayerNumber) = SSD

For PlayerNumber = 2 To NumTeammates 'initialize player values - must be within feasible
region
Constraint = "Unassessed"
Do Until Constraint = "PASS"

ul=u+2*(Rnd()-0.5) * ROCu 'randomize ul for the player
PlayerPosition(1, PlayerNumber) = ul

u2 =ul+2*(Rnd()-0.5) * ROCu 'randomize u2 for the player
PlayerPosition(2, PlayerNumber) = u2

u3=u2+2*(Rnd()-0.5) * ROCu 'randomize u3 for the player

PlayerPosition(3, PlayerNumber) = u3
Call Assign
Call u_ConstraintTest
Loop
Call SOPDT_Model_N2F_SSD ‘'determine the SSD result
PlayerOFValue(PlayerNumber) = SSD
Next PlayerNumber

Call Find_High
Call Find_Low

If Cells(8, 18) = "Y" Then Call Show_Players

End Sub
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Sub Find_High()
" Search for player with highest OF value

LFHighpn = 1 + Int(NumTeammates * Rnd()) 'Random Assignment for initialization in case

floor is flat
OFhigh = PlayerOFValue(LFHighpn)
For PlayerNumber = 1 To NumTeammates 'search through all players
If PlayerOFValue(PlayerNumber) > OFhigh Then 'Reassign if worst

LFHighpn = PlayerNumber
OFhigh = PlayerOFValue(PlayerNumber)
End If
Next PlayerNumber
For DVNumber = 1 To DVDimension
HighPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn)

70



Next DVNumber

End Sub
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Sub Find_Low()

' Search for player with lowest OF value

LFLowpn =1 'start with PlayerNumber=1, if floor is flat, this serves as the

base for convergence

OFlow = PlayerOFValue(LFLowpn)
For PlayerNumber = 2 To NumTeammates
If PlayerOFValue(PlayerNumber) < OFlow Then 'Reassign if better
LFLowpn = PlayerNumber
OFlow = PlayerOFValue(LFLowpn)
End If
Next PlayerNumber
For DVNumber =1 To DVDimension
LowPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFLowpn)
Next DVNumber

End Sub
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Sub Leapfrogging Optimizer()
Relocate the player with the worst position to a random position to the other side of the best.
If desired reevaluate the best to avoid finding a fortuitous best ever in stochastic functions

NOFE =0
yspBiasDeviation = yspbias ' - YmBase
Call Initialize_Leapfrogging Optimizer
For Iteration =1 To 500
'relocate worst with the leapover the best
Constraint = "Unassessed"  'but must jump to an unconstrained area
PlayerNumber = LFHighpn

Do Until Constraint = "PASS"
For DVNumber = 1 To DVDimension
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PlayerLeapDelta(DVNumber) = LowPlayerPosition(DVNumber) -

HighPlayerPosition(DVNumber) 'difference between trial solutions with highest and lowest
OF values

HighPlayerPosition(DVNumber) = LowPlayerPosition(DVNumber) + MovementL2H * Rnd()
* PlayerLeapDelta(DVNumber) 'high (or infeasible) jumps to random position in window,

repelled by recent vacated spots

Next DVNumber

For DVNumber = 1 To DVDimension

PlayerPosition(DVNumber, LFHighpn) = HighPlayerPosition(DVNumber) 'reassign

position of former high individual to its new feasible location

Next DVNumber

Call Assign

Call u_ConstraintTest

Loop

Call Assign
SOPDT_Model_N2F_SSD
PlayerOFValue(LFHighpn) = SSD
'find the individual with the lowest OF value presently
If PlayerOFValue(LFHighpn) < OFlow Then 'If needed, reassign player with lowest OF value
OFlow = PlayerOFValue(LFHighpn)
For DVNumber =1 To DVDimension
LowPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn)
Next DVNumber
LFLowpn = LFHighpn
End If
'find the individual with the highest OF value presently
If PlayerOFValue(LFHighpn) > OFhigh Then 'we know which is high
OFhigh = PlayerOFValue(LFHighpn)
For DVNumber =1 To DVDimension
HighPlayerPosition(DVNumber) = PlayerPosition(DVNumber, LFHighpn)
Next DVNumber
If Cells(9, 18) ="Y" Then
PlayerNumber = LFLowpn

Call Assign
display = "Yes" 'Tell SOPDT N2F model to display the optimum results
Call SOPDT_Model_N2F_SSD
display = "No"
End If
Else
Call Find_High 'need to search for the new high
End If
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If Cells(8, 18) = "Y" Then Call Show_Players

dul = HighPlayerPosition(1) - LowPlayerPosition(1) 'Compute Convergence Metric
du2 = HighPlayerPosition(2) - LowPlayerPosition(2)

du3 = HighPlayerPosition(3) - LowPlayerPosition(3)

If Sqr((dul A~ 2 + du2 » 2 + du3 ~ 2) / 3) < ConvergenceThreshold Then Exit For

Next Iteration

If Cells(8, 18) = "Y" Then Call Show_Players

PlayerNumber = LFLowpn

Call Assign
display = "Yes" 'Tell SOPDT N2F model to display the optimum results
Call SOPDT_Model _N2F_SSD
display = "No"
End Sub
Sub Assign()

ul = PlayerPosition(1, PlayerNumber)
u2 = PlayerPosition(2, PlayerNumber)
u3 = PlayerPosition(3, PlayerNumber)

End Sub

Sub u_ConstraintTest()

Constraint = "PASS"

If ul > 99 Then Constraint = "FAIL"

If u2 >99 Then Constraint = "FAIL"

If u3 >99 Then Constraint = "FAIL"

If ul <1 Then Constraint = "FAIL"

If u2 <1 Then Constraint = "FAIL"

If u3 <1 Then Constraint = "FAIL"

If Abs(ul - u) > ROCu Then Constraint = "FAIL"
If Abs(u2 - ul) > ROCu Then Constraint = "FAIL"
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If Abs(u3 - u2) > ROCu Then Constraint = "FAIL"

" If Constraint = "FAIL" Then

' Cells(5, 18).Interior.Colorindex = 3
Else

' Cells(5, 18).Interior.Colorindex = 4
" EndIf

End Sub
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Sub Show_Players()

For PlayerNumber = 1 To NumTeammates
Cells(2 + PlayerNumber, 19) = PlayerNumber
Cells(2 + PlayerNumber, 20) = PlayerOFValue(PlayerNumber)
For DVNumber = 1 To DVDimension
Cells(2 + PlayerNumber, 20 + DVNumber) = PlayerPosition(DVNumber, PlayerNumber)
Next DVNumber
Next PlayerNumber

If LFHighpnold > 0 Then Cells(2 + LFHighpnold, 19).Interior.Colorindex = 0
Cells(2 + LFHighpn, 19).Interior.Colorindex = 3

LFHighpnold = LFHighpn

If LFLowpnold > 0 Then Cells(2 + LFLowpnold, 19).Interior.Colorindex =0
Cells(2 + LFLowpn, 19).Interior.Colorindex = 4

LFLowpnold = LFLowpn

Cells(3, 18) = LFLowpn
Cells(4, 18) = LFHighpn

End Sub
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