Show simple item record

dc.contributor.advisorMaterer, Nicholas
dc.contributor.authorHoneycutt, Wesley T.
dc.date.accessioned2018-03-13T18:15:46Z
dc.date.available2018-03-13T18:15:46Z
dc.date.issued2017-05
dc.identifier.urihttps://hdl.handle.net/11244/54540
dc.description.abstractThis is a description of the design of a low-power, low-cost networked array of sensors for the remote monitoring of carbon dioxide and methane. The goal was to create a scalable self-powered two-dimensional array for the detection of these gases in a large area. The sensor selection, electronic design, and data communication was studied and optimized to allow for multiple units to form a self-assembling network for acre-scale coverage with minimal human intervention. The final electronic design of the solar-powered units is flexible, providing a foundation for future field deployable remote monitoring devices. Sensors were selected for this application from commercially available models based on low-power, low-cost, market availability, detection range, and accuracy around the global baseline criteria. For environmental monitoring, carbon dioxide sensors are characterized near 400 ppm and methane from 2 to 200 ppm. For both gases, exertions up to several 1000 pm were examined to mimic large releases. An Xbee mesh network of radios was utilized to coordinate the individual units in the array, and the data was transferred in real-time over the cellular network to a dedicated server. The system was tested at a site north of the Oklahoma State campus, an unmanned airfield east of Stillwater, OK, and an injection well near Farnsworth, TX. Data collected from the Stillwater test sites show that the system is reliable for baseline gas levels. The gas injection well site was monitored as a potential source of carbon dioxide and methane leaks due to the carbon dioxide injection process undertaken there for carbon sequestration and enhanced oil recovery efforts. The sensors are shown to be effective at detecting gas concentration at the sites and few possible leak events are detected.
dc.formatapplication/pdf
dc.languageen_US
dc.rightsCopyright is held by the author who has granted the Oklahoma State University Library the non-exclusive right to share this material in its institutional repository. Contact Digital Library Services at lib-dls@okstate.edu or 405-744-9161 for the permission policy on the use, reproduction or distribution of this material.
dc.titleDevelopment and applications of chemical sensors for the detection of atmospheric carbon dioxide and methane
dc.contributor.committeeMemberApblett, Allen
dc.contributor.committeeMemberFennell, Christopher J.
dc.contributor.committeeMemberWhite, Jeffrey L.
dc.contributor.committeeMemberLey, Tyler
osu.filenameHoneycutt_okstate_0664D_15216.pdf
osu.accesstypeOpen Access
dc.type.genreDissertation
dc.type.materialText
thesis.degree.disciplineChemistry
thesis.degree.grantorOklahoma State University


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record