Loading...
Thumbnail Image

Date

2023-08-04

Journal Title

Journal ISSN

Volume Title

Publisher

Radar system calibration is vital for ensuring optimal performance, especially in weather radars that have stringent requirements for co-polarization mismatch. In-field calibration is essential, particularly for mobile weather radars, as environmental conditions can vary between deployments. Traditionally, conventional far-field ranges or airborne systems such as helicopters and aircraft have been used to measure and calibrate radar systems. However, in recent years, Unmanned Aerial Systems (UAS) have emerged as a cost-effective and flexible alternative for antenna measurement and radar calibration. Previous studies have demonstrated the feasibility of using UAS for far-field antenna measurements across various operating frequencies. These works have achieved high accuracy in characterizing and calibrating polarimetric weather radar systems, meeting critical requirements such as co-polarization mismatch below 0.1 dB and cross-polarization isolation below -45 dB. However, existing UAS-based systems are complex to operate, requiring multiple equipment both on the UAS and the ground station. They are primarily limited to one-way transmission from the UAS to the AUT and lack the capability to switch between RX and TX measurements or H- and V-polarization without physical modifications. The objective of this thesis is to develop a lightweight and self-contained front-end system for UAS-based in-situ antenna characterization. This system will eliminate the need for additional RF instruments on the ground, providing remote real-time control to switch between RX and TX modes in both V- and H-polarization. It will also facilitate the transmission and reception of measurement data over long distances, enabling far-field measurements beyond 120 m. The proposed system aims to address the limitations of existing UAS-based calibration systems, offering a sophisticated and accurate solution for measuring the strictest radar systems. By developing a versatile and lightweight front-end system, this research seeks to advance the field of UAS-based antenna characterization and contribute to the improvement of radar calibration techniques.

Description

Keywords

UAS Antenna Measurements, Radar Calibration and Validation, Antenna Radiation Pattern Characterization, Software Defined Radio (SDR) Application in UAS RF Systems

Citation

DOI

Related file

Notes

Sponsorship

Collections