Show simple item record

dc.contributor.advisorSchmidt, Ralf
dc.contributor.authorRoy, Manami
dc.date.accessioned2019-07-25T16:18:08Z
dc.date.available2019-07-25T16:18:08Z
dc.date.issued2019-08-01
dc.identifier.urihttps://hdl.handle.net/11244/321046
dc.description.abstractThere is a lifting from a non-CM elliptic curve $E/\mathbb{Q}$ to a cuspidal paramodular newform $f$ of degree $2$ and weight $3$ given by the symmetric cube map. We find a description of the level of $f$ in terms of the coefficients of the Weierstrass equation of $E$. In order to compute the paramodular level, we need a detailed description of the local representations $\pi_p$ of $\GL(2,\mathbb{Q}_p)$ attached to $E/\mathbb{Q}_p$, where $\pi\cong\bigotimes\limits_p\pi_p$ is the cuspidal automorphic representation of $\GL(2,\mathbb{A}_{\mathbb{Q}})$ associated with $E/\mathbb{Q}$. We use the available description of the local representations of $\GL(2,\mathbb{Q}_p)$ attached to $E$ for $p \ge 5$ and determine the local representation of $\GL(2,\mathbb{Q}_3)$ attached to $E$. In fact, we study the representations of $\GL(2, K)$ attached to $E/K$ for any non-archimedean local field $K$ of characteristic $0$ and residue characteristic $3$.en_US
dc.languageen_USen_US
dc.subjectelliptic curvesen_US
dc.subjectparamodular formsen_US
dc.subjectsymmetric cube liftingen_US
dc.titleELLIPTIC CURVES AND PARAMODULAR FORMSen_US
dc.contributor.committeeMemberDunn, Anne
dc.contributor.committeeMemberLifschitz, Lucy
dc.contributor.committeeMemberPitale, Ameya
dc.contributor.committeeMemberRoche, Alan
dc.date.manuscript2019-06-25
dc.thesis.degreePh.D.en_US
ou.groupCollege of Arts and Sciences::Department of Mathematicsen_US
shareok.nativefileaccessrestricteden_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record