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Abstract

There is a lifting from a non-CM elliptic curve E/Q to a cuspidal paramodular newform

f of degree 2 and weight 3 given by the symmetric cube map. We find a description of

the level of f in terms of the coefficients of the Weierstrass equation of E. In order to

compute the paramodular level, we need a detailed description of the local representa-

tions πp of GL(2,Qp) attached to E/Qp, where π ∼=
⊗
p

πp is the cuspidal automorphic

representation of GL(2,AQ) associated with E/Q. We use the available description of

the local representations of GL(2,Qp) attached to E for p ≥ 5 and determine the local

representation of GL(2,Q3) attached to E. In fact, we study the representations of

GL(2, K) attached to E/K for any non-archimedean local field K of characteristic 0

and residue characteristic 3.

xi



Chapter 1

Introduction

1.1 Motivation and the problem

Ramakrishnan and Shahidi proved a lifting from a non-CM elliptic curve E over Q to a

Siegel cusp form f of degree 2 and weight 3 in [35]. Behind this lifting from elliptic curves

over Q to Siegel cusp forms of degree 2, there is a functorial transfer of automorphic

representations of GL(2) known as the symmetric cube transfer (or the symmetric cube

lifting) proven by Kim and Shahidi in [19]. See Chapter 3 for a description of the

symmetric cube lifting given by the symmetric cube map (3.1). Before proving the

symmetric cube lifting of automorphic representations from GL(2) to GL(4), Kim and

Shahidi have studied the symmetric cube L-functions attached to nonmonomial cuspidal

representations of GL(2) over an arbitrary number field in [17] and proved that these

symmetric cube L-functions are entire. In order to understand the symmetric cube

lifting in the classical setting from elliptic curves to Siegel modular forms, one needs to

study the representation theoretic phenomena behind it.

Our goal is to better understand the Siegel cusp forms of degree 2 coming from the

symmetric cube lifting using some recent results which were not available at that time.

In order to study Siegel modular forms, it is important to specify a congruence subgroup.

Some natural questions are: Which congruence subgroup should we consider to study

the Siegel modular forms coming from the symmetric cube lifting? What is the level of

1



a Siegel modular form obtained by this transfer with respect to a specific congruence

subgroup? We consider holomorphic Siegel modular forms of degree 2 with respect to

the paramodular group of level M ,

K(M) = Sp(4,Q) ∩
[ Z MZ Z Z

Z Z Z M−1Z
Z MZ Z Z
MZ MZ MZ Z

]
. (1.1)

We explain why we focus on the paramodular group instead of any other congruence

subgroups of GSp(4,Q) in Section 3.5.

Holomorphic Siegel modular forms of degree 2 with respect to the paramodular group

of some level are known as paramodular forms of degree 2. The study of paramodular

forms has received special attention in the literature in recent years. Paramodular

forms are well behaved and interesting objects in many ways; for example, there is a

theory of old- and newforms [36], and cuspidal newforms admit a strong multiplicity

one theorem [43]. Paramodular forms of weight 2 are also the ones appearing in the

famous paramodular conjecture formulated in [6]. The paramodular conjecture proposes

that every abelian surface A over Q of conductor M with End(A) ∼= Z corresponds to

a paramodular newform of level M . There is some computational evidence to support

this conjecture. For instance, Poor and Yuen have classified Siegel modular cusp forms

of weight 2 for the paramodular group K(p) for primes p < 600 and noticed that it

is consistent with the paramodular conjecture in [34]. There is also a local theory of

paramodular fixed vectors, developed in [37], with properties similar to the familiar local

newform theory for GL(2).

At first, we study the vector-valued holomorphic Siegel modular forms of degree 2

coming from holomorphic non-CM newforms on GL(2) via the symmetric cube transfer.

Then we focus on the scalar valued cuspidal paramodular forms of degree 2 coming from

non-CM elliptic curves over Q in order to get a definite formula for the level of the

paramodular forms coming via the symmetric cube lifting.

2



1.2 Main results and strategies

The main results of this thesis can be divided into two categories: “local results” and

“global results”. By local results we mean local representation theoretic results. In

Chapter 4, we study the local representations of GL(2, K) attached to elliptic curves

over a non-archimedean local field K of characteristic zero. Finding a definite charac-

terization of the local representations of GL(2, K) associated to elliptic curves over K

is of independent interest; here we use the description of the local representations of

GL(2,Qp) attached to elliptic curves over Qp to calculate the level of the paramodu-

lar form attached to an elliptic curve over Q. A description of local representations of

GL(2, K) attached to elliptic curves E/K is available in [39] when E has good or po-

tential multiplicative reduction. When elliptic curves E/K have additive but potential

good reduction with the residual characteristic of K strictly greater than 3, a similar

description can be found in [50]. In this work, we find a description of the local represen-

tations of GL(2, K) attached to elliptic curves E/K in terms of the Weierstrass equations

of E when the residual characteristic of K is 3 and E has additive but potential good

reduction. In Chapter 5, we investigate the symmetric cube of local representations of

GL(2, K) coming from elliptic curves E/K.

We study the global results related to the automorphic representations of GSp(4)

and the Siegel modular forms of degree 2 coming from the symmetric cube lifting in

Chapter 3 and Chapter 6. Note that, attached to every non-CM elliptic curve, there is

a cuspidal automorphic representation of GL(2,AQ). Similarly, Siegel cusp forms (es-

pecially cuspidal paramodular forms) of degree 2 are related to cuspidal automorphic

representations of GSp(4,AQ) (see Section 3.5.1). We first study the symmetric cube

transfer of cuspidal automorphic representations from GL(2,AQ) to GSp(4,AQ) in The-

orem 3.2.1. This theorem is reproduced from Theorem A′ in [35], but we give a new

3



proof using some recent techniques. Then, using the connection between non-CM elliptic

curves (resp. Siegel cusp forms) and cuspidal automorphic representations of GL(2,AQ)

(resp. GSp(4,AQ)), we prove results about the paramodular forms coming from non-CM

elliptic curves over Q via the sym3 lifting in Chapter 6. The following result is one of

our main global results from Chapter 6. We write ΓC(s) = 2(2π)−sΓ(s) with Γ being

the usual gamma function.

Theorem 6.2.2. Let E be a non-CM elliptic curve over Q given by the global minimal

Weierstrass equation of the form (2.71) with coefficients in Z and conductor N . Let

∆ be the discriminant attached to the given Weierstrass equation and vp be the p-adic

valuation. Let ∆′ = 3−v3(∆)∆. Suppose that E has good or multiplicative reduction at

p = 2. Then there is a cuspidal paramodular newform f of degree 2, weight 3 and level

M with the following properties:

(i) The level M of f is given by M = N
∏
p|N

vp(∆)6≡0 mod 4

p2.

(ii) The completed spin L-function L(s, f) attached to f is given by

L(s, f) = ΓC

(
s+

3

2

)
ΓC

(
s+

1

2

) ∏
p<∞

Lp(s, f),

where Lp(s, f) = Lp(s, E, sym3) for all places p. If p|N , then

Lp(s, f) =



1
1−p−3/2−s if E has split multiplicative reduction at p,

1
1+p−3/2−s if E has non-split multiplicative reduction at p,

1
(1−αp−s)(1−α−1p−s)

if j(E) ∈ Zp and vp(∆) ≡ 0 mod 4,

1 otherwise.

4



Here, α is an element of C× such that |α| = 1. If the following condition is satisfied

j(E) ∈ Zp, vp(∆) ≡ 0 mod 4, and


(p− 1)vp(∆) 6≡ 0 mod 12 if p ≥ 5,(

∆′

3

)
= −1 if p = 3,


then α = i (the fourth root of unity).

(iii) The Atkin-Lehner eigenvalues of f at the finite places are given by

ηp =


−1 if p | N, and E has split mult. red. at p or satisfies (1.2),

w(E/Q3) if 3 | N, p = 3 and E satisfies S
′
6 or S

′′
6 ,

1 otherwise,

where S
′
6, S

′′
6 are defined in Table 4.1 and the condition (1.2) is given by

j(E) ∈ Zp and


vp(∆) ≡ 0 mod 4, (p− 1)vp(∆) 6≡ 0 mod 12 if p ≥ 5,

vp(∆) ≡ 2 mod 4,
(

∆′

3

)
= −1 if p = 3,

 . (1.2)

The quantity w(E/Q3) appearing in part (iii) of the theorem is the local root number

of E/Q3; one can compute this quantity using Theorem 1.1 of [24]. The L-function

L(s, f) in the theorem satisfies the functional equation L(s, f) = ε(s, f)L(1 − s, f),

where ε(s, f) = −
∏

p<∞ ηp. For examples, see Tables 6.2 and 6.3.

To calculate the level M of f , and the Atkin-Lehner eigenvalues ηp and the local L-

factors of f at the bad primes p | N , we use the local data like the conductor, the L-factor

and the ε-factor of sym3(πp) from Chapter 5, where π ∼= ⊗p≤∞πp is the cuspidal automor-

phic representation of GL(2,AQ) attached to E/Q. Note that, sym3(π) ∼= ⊗p≤∞sym3(πp)

is the cuspidal automorphic representation of GSp(4,AQ) associated to f . So, this work

is mainly based on the local and global representation theory of GL(2) and GSp(4).

5



Chapter 2

Preliminaries

In this chapter we give a quick introduction to the objects of our study and we also

provide a short summary of the key concepts and results that we use later.

2.1 Algebraic groups of study

The reductive algebraic groups we consider in this thesis are the following:

(i) The general linear group

GL(n) := {g ∈M(n× n) : det(g) 6= 0} .

The kernel of the determinant map det : GL(n) → GL(1) is the special linear group

SL(n). We mostly consider GL(2), GL(4) and SL(2) for our purpose.

(ii) The group of symplectic similitudes

GSp(4) :=
{
g ∈ GL(4) : tgJg = λ(g)J for λ(g) ∈ GL(1)

}
, J =

[
1

1
−1

−1

]
, (2.1)

where J is a symplectic form given by the above matrix. The function λ is called the

multiplier homomorphism. The kernel of this function is the symplectic group Sp(4)

and we have the following exact sequence

1→ Sp(4)→ GSp(4)
λ−−→ GL(1)→ 1.

6



Also, we use the group PGSp(4) := GSp(4)/Z, where Z is the center of GSp(4).

Note 2.1.1. Sometimes we consider GSp(4) with respect to the symplectic form J =[
1

1
−1
−1

]
. This version of GSp(4) is called the classical version of GSp(4). There is

an isomorphism between these two different versions of GSp(4) given by the map which

interchanges the first two rows and the first two columns of any matrix.

(iii) The split orthogonal group

SO(5) :=
{
g ∈ SL(5) : tgJg = J for some λ(g) ∈ GL(1)

}
, J =

[
1

1
1

1
1

]
. (2.2)

It is a well known fact that as algebraic groups PGSp(4) ∼= SO(5).

2.1.1 Parabolic subgroups of GSp(4)

The group GSp(4) is one of the main focuses of our study. In order to study induced rep-

resentations of GSp(4), it is important to know the shapes of all its parabolic subgroups.

There are three different conjugacy classes of parabolic subgroups of GSp(4): the Borel

subgroup B, the Siegel parabolic subgroup P and the Klingen parabolic subgroup Q.

The parabolic subgroups of GSp(4) with the symplectic form J =

[
1

1
−1

−1

]
have the

following shapes

B =
[ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

]
, P =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

]
, Q =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

]
. (2.3)

In GSp(4) with the symplectic form J =

[
1

1
−1
−1

]
, they have the following shapes

B =
[ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗

]
, P =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

]
, Q =

[ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

]
. (2.4)

7



2.1.2 Congruence subgroups of GSp(4, K)

Let K be a non-archimedean field of characteristic zero with residual characteristic p.

Let oK be the ring of integers of K, and let p be the maximal ideal of oK . In this thesis,

we consider the vectors in a certain family of representations of GSp(4, K) fixed by the

following compact open subgroups of GSp(4, K).

(i) The paramodular group of level pn

K(pn) :=
{
g ∈ GSp(4, K) : det(g) ∈ o×K

}
∩

[
oK oK oK p−n

pn oK oK oK
pn oK oK oK
pn pn pn oK

]
. (2.5)

(ii) The Siegel congruence subgroup of level pn

Γ0(pn) := GSp(4, oK) ∩
[ oK oK oK oK

oK oK oK oK
pn pn oK oK
pn pn oK oK

]
. (2.6)

(iii) The principal congruence subgroup of level pn

Γ(pn) := GSp(4, oK) ∩

[
1+pn pn pn pn

pn 1+pn pn pn

pn pn 1+pn pn

pn pn pn 1+pn

]
. (2.7)

2.2 Non-archimedean local representations

Let K be a non-archimedean local field of characteristic zero. Let oK be the ring of

integers of K, and let p be the maximal ideal of oK . Let $K be a generator of p and

k = oK/p be the residue field of K of order q. Let ν be the normalized absolute value

on K such that ν($K) = q−1.

Let G be the group of K-points of an algebraic group defined over K. Then G is a

locally compact totally disconnected topological group. All representations from now on

will be on a complex vector space. A representation (π, V ) of G is a complex vector

8



space V along with a homomorphism

π : G→ Aut(V ), (2.8)

where Aut(V ) denotes the invertible C-linear endomorphism of V . We say that V is

the representation space or the space of the representation. We denote a representation

simply by π or sometimes just by V , whichever is convenient. If dim(V ) < ∞, then

we say π is a finite dimensional representation. Otherwise, we say π is an infinite

dimensional representation. In this text we are only concerned about infinite dimensional

representations of G.

Definition 2.2.1. A representation (π, V ) of G is called smooth if for every vector

v ∈ V , the stabilizer StabG(v) := {g ∈ G : π(g)v = v} of v in G is open.

Definition 2.2.2. A representation (π, V ) of G is called admissible if it is smooth and

for each compact open subgroup K ′ of G, the space V K′ of vectors fixed by K ′ given by

V K′ = {v ∈ V : π(k′)v = v for all k′ ∈ K ′} is finite dimensional.

We say a subspace W of V is G-invariant if {π(g)w : g ∈ G,w ∈ W} ⊆ W .

Definition 2.2.3. An admissible representation (π, V ) of G is called irreducible if

the only G-invariant subspaces of V are 0 and V . We say π is reducible if π is not

irreducible.

An irreducible constituent or irreducible subquotient of a smooth representation (π, V )

of G is an irreducible representation of G isomorphic to W/W ′ where W ′ ⊂ W are G-

invariant subspaces of V . A character of G is a smooth one-dimensional representation

of G, i.e., a continuous homomorphism from G to C×.

Definition 2.2.4. A representation (π, V ) of G is called unitary if there is a non-

degenerate G-invariant Hermitian form on the representation space V .
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Definition 2.2.5. Let V ∗ = HomC(V,C) be the space of linear functionals on V . Then

the representation (π∗, V ∗) of G given by

(π∗(g)f)(v) = f(π(g−1)v), (2.9)

where g ∈ G, f ∈ V ∗ and v ∈ V is not necessarily smooth. Let V ∨ be the subspace of V ∗

consisting all f ∈ V ∗ such that the stabilizer stabG(f) of f under the action of G as in

(2.9) is open. Then (π∨, V ∨) with the action of G as in (2.9) is a smooth representation

of G, called the contragredient representation.

Definition 2.2.6. For any representation (π, V ) of G and a character χ : K× → C×,

one can form a twist (π⊗ χ, V ) of the representation π, where the action of G on V is

given by

(π ⊗ χ)(g)v = χ(det(g))π(g)v. (2.10)

Given two representations (π1, V1) and (π2, V2) of a group G, a linear map T : V1 → V2

satisfying T ◦ π1(g) = π2(g) ◦ T for all g ∈ G is called an intertwining map. We have

the following well-known result about intertwining operators on irreducible admissible

representations of G.

Theorem 2.2.7 (Schur’s Lemma). Let (π, V ) be an irreducible admissible representation

of a totally disconnected locally compact group G and let T : V → V be an intertwining

operator for π. Then there exists a complex number c such that T (v) = cv for all v ∈ V .

An immediate and useful consequence of Schur’s Lemma is that the center Z of G

acts by scalars on an irreducible admissible representation (π, V ) of G. So, there is a

character ωπ : Z → C×, called the central character of (π, V ), such that

π(z)(v) = ωπ(z)v for z ∈ Z, v ∈ V. (2.11)
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2.2.1 Induced representations

One of the well-known ways of constructing representations of G is by inducing a rep-

resentation of a closed subgroup H of G. Let Cc(G) be the complex vector space of all

locally constant, compactly supported complex valued functions on G. Suppose G is

unimodular, i.e., every left Haar measure of G is also a right Haar measure of G. Let

H = MU be a closed subgroup of G such that G/H is compact; here M , U are also

closed such that M normalizes U and M ∩ U = 1. Then U is also unimodular. Now we

fix a Haar measure du on U . For h ∈ H and u ∈ U , we define δH(h) to be the positive

number such that for all f ∈ Cc(U),

∫
U

f(h−1uh)du = δH(h)

∫
U

f(u)du.

We call δH(h) : H → C× the modular character of H. Let (σ,W ) be a smooth represen-

tation of M where H = MU . Then the representation (IndGH(σ), V ) of G induced from

σ is called a normalized induced representation of G, where V is given by

V :=
{
f : G→ W |f(mug) = δH(m)

1
2σ(m)f(g) for m ∈M,u ∈ U, g ∈ G

}
, (2.12)

and the action G on V is defined as

(
IndGH(σ)(g′)f

)
(g) = f(gg′) for all g, g′ ∈ G. (2.13)

When H = MU is a parabolic subgroup of G where M is the Levi subgroup of H and

U is the unipotent radical, we call this induction process a parabolic induction.

11



2.2.2 Representations of GL(2, K)

In this section we discuss the infinite dimensional irreducible admissible representations

of G = GL(2, K). Some general references for this section are [7] and [9]. As parabolic

subgroup, we have the standard Borel subgroup B consisting of upper triangular ma-

trices. Let χ1 and χ2 be characters of K×. Let V (χ1, χ2) be the space of the stan-

dard induced representation π(χ1, χ2) of G consisting of all locally constant functions

f : GL(2, K)→ C with the property

f ([ a bd ]g) = |ad−1|
1
2χ1(a)χ2(d)f(g) for all g ∈ G, a, d ∈ K×, b ∈ K. (2.14)

The action of G on V (χ1, χ2) is given by right translations as in (2.13). The induced

representation π(χ1, χ2) is admissible, but, not always irreducible, and the central char-

acter of π(χ1, χ2) is χ1χ2. It is a well-known fact that π(χ1, χ2) is irreducible if and only

if χ1χ
−1
2 6= ν±1. In that case π(χ1, χ2) is called a principal series representation and

denoted by χ1 × χ2.

The induced representation π(χν
1
2 , χν−

1
2 ) is reducible and has two constituents. The

unique irreducible quotient is χ-twist of the trivial representation, which is finite dimen-

sional. The unique irreducible infinite dimensional subrepresentation is called a special

representation or a twisted Steinberg representation, which we denote by χStGL(2).

Specifically, when χ = 1, i.e., the induced representation is π(ν
1
2 , ν−

1
2 ), the unique ir-

reducible subrepresentation is called the Steinberg representation which we denote

by StGL(2). So, all special representations are obtained as twists of a single one, the

Steinberg representation. We have the following result regarding isomorphisms between

induced representations.

Theorem 2.2.8. The irreducible admissible representations χ1 × χ2 and µ1 × µ2 of

GL(2, K) are equivalent if and only if χ1 and χ2 are equal to µ1 and µ2 in some order.
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There is one more kind of infinite dimensional irreducible representations of GL(2, K),

known as the supercuspidal representations. Every irreducible representation that is not

a subquotient of some π(χ1, χ2) is called supercuspidal. There is an important class of

supercuspidal representations of GL(2, K) known as dihedral supercuspidal rep-

resentations. We denote a dihedral supercuspidal representation by ωF,ξ, which is

associated with a quadratic field extension F/K and a character ξ of F× that is not

trivial on the kernel of the norm map NF/K from F× to K×. We will give an explicit

description of dihedral supercuspidal representations in Section 2.4 in terms of its Lang-

lands parameter. The central character of a dihedral supercuspidal representation ωF,ξ

of GL(2, K) is ξ|K× · χF/K , where χF/K is the quadratic character of K× associated to

the quadratic extension F/K such that χF/K
(
NF/K(F×)

)
= 1. The following is a very

useful fact about the dihedral supercuspidal representations of GL(2, K) with trivial

central character. We will use this remark quite often in this article.

Remark 2.2.9. The central character of the dihedral supercuspidal representation ωF,ξ

of GL(2, K) is ξ|K× · χF/K, where χF/K is the quadratic character of K× associated to

the quadratic extension F/K such that χF/K
(
NF/K(F×)

)
= 1. Here NF/K is the norm

map from F× to K×. If ωF,ξ has trivial central character, i.e., ξ|K× · χF/K = 1, then by

evaluating ξ at NF/K(y) for any y ∈ F×, we get ξσ = ξ−1 on F×.

Conductors, L-factors and ε-factors.

There is some important data associated to each type of irreducible admissible represen-

tations of GL(2, K) which are used when we study connections between local represen-

tation theory and theory of modular forms. For an integer n ≥ 0, we define a congruence

subgroup Γ0(pn) of GL(2, K) as follows

Γ0(pn) =
[ oK oK
pn oK

]
∩GL(2, oK). (2.15)
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Definition 2.2.10. Let (π, V ) be an infinite-dimensional irreducible admissible repre-

sentation of GL(2, K). Let n ≥ 0 be the minimal integer such that the space V Γ0(pn) of

vectors fixed by Γ0(pn) is nonzero. We say the conductor a(π) of π is n. If a(π) = 0,

we say π is unramified; otherwise it is ramified.

An important fact is that the dimension of V Γ0(pa(π)) is 1. A vector in V Γ0(pa(π)) is

called a new vector (or a local newform), and is analogous to the notion of newform

in the theory of modular forms. For a character χ of K×, we say that χ has conductor

a(χ) = n if n is the smallest non-negative integer such that χ|1+pnoK = 1. Now we

give a list of the conductors a(π) for the infinite-dimensional irreducible admissible

representations of GL(2, K).

• For a principal series representation π = χ1 × χ2, a(π) = a(χ1) + a(χ2).

• For a twist of the Steinberg representation π = χStGL(2), a(π) = 2a(χ) if χ is

ramified and a(π)=1 if χ is unramified.

• For a supercuspidal representation π, we know a(π) ≥ 2.

To the infinite-dimensional irreducible admissible representations π of GL(2, K) one can

associate certain functions called L-factors L(s, π) and ε-factors ε(s, π, ψ), where ψ is

an additive character of K. One can define L(s, π) and ε(s, π, ψ) using the theory of

zeta integrals; see Chapter 6 in [14] or Chapter 4 in [7]. For the purpose of this text,

we emphasize another way of assigning the conductor, the L-factor and the ε-factor to

π using its L-parameter and the local Langlands correspondence. We discuss this in

Section 2.5.

2.2.3 Representations of GSp(4, K)

Now we consider the infinite dimensional irreducible admissible representations of G =

GSp(4, K). Some good references for this section are [37] and [40]. There are two
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classes of irreducible admissible representations of GSp(4, K). The first class consists of

all those representations that can be obtained as subquotients of parabolically induced

representations from one of the parabolic subgroups B, P and Q as in (2.3). Sally and

Tadić have classified these representations in [40] (also see section 2.2 in [37]). The

representations in the first class are also known as non-supercuspidal representations of

GSp(4, K). The second class consists of all the other representations; these are called

supercuspidal . The supercuspidal representations of GSp(4, K) are not classified as well

as in the case of GL(2, K), even for odd characteristic. Here we give a summary of the

non-supercuspidal representations of GSp(4, K); these are separated into eleven groups

as in Table A.1 of [37]. Each group contains irreducible constituents of a parabolically

induced representation of GSp(4, K). If an irreducible non-supercuspidal representation

π of GSp(4, K) is a constituent of the parabolically induced representation of Group #,

where “#” is the name of a group in Table A.1 of [37], then we say π belongs to the

group # or π is a “Type # representation” or sometimes we just say π is of Type #.

Borel-induced representations. Every element h of the Borel subgroup B can be

written in the form

h =

[ a ∗ ∗ ∗
b ∗ ∗
cb−1 ∗

ca−1

]
, with a, b, c ∈ K×. (2.16)

Let χ1, χ2 and σ be characters of K×, and consider the character of B given by

[ a ∗ ∗ ∗
b ∗ ∗
cb−1 ∗

ca−1

]
7→ χ1(a)χ2(b)σ(c). (2.17)

Then the normalized Borel-induced representation of GSp(4, K) obtained by the char-

acter (2.17) of B is denoted by χ1 × χ2 o σ and the representation space consists of all

locally constant functions f : GSp(4, K)→ C× such that

f

([ a ∗ ∗ ∗
b ∗ ∗
cb−1 ∗

ca−1

]
g

)
= |a2b||c|−

3
2χ1(a)χ2(b)σ(c)f(g) for all g ∈ GSp(4, K). (2.18)
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The group GSp(4, K) acts on this space by right translations as defined in (2.13). All

the irreducible constituents of Borel-induced representations of the form χ1×χ2 oσ are

listed within group I to VI in the Table A.1 of [37]. The central character of χ1×χ2 oσ

is χ1χ2σ
2.

Siegel-induced representations. Every element h of the Siegel parabolic subgroup

P can be written in the form

h = [ A ∗
λA′ ], with A ∈ GL(2), λ ∈ K× and A′ = [ 0 1

1 0 ] tA−1[ 0 1
1 0 ]. (2.19)

Let (π, V ) be an admissible representation of GL(2, K) and σ be a character of K×, and

consider the representation of P on V given by

[ A ∗
λA′ ] 7→ σ(λ)π(A). (2.20)

Then the normalized Siegel-induced representation of GSp(4, K) obtained from this

representation (2.20) of P is denoted by π o σ and the representation space consists of

all locally constant functions f : GSp(4, K)→ V such that

f ([ A ∗
λA′ ]g) = |det(A)λ−1|

3
2σ(λ)π(A)f(g) for all g ∈ GSp(4, K). (2.21)

Again, the group GSp(4, K) acts on this space by right translations as defined in (2.13).

All the irreducible constituents of Siegel-induced representations of the form π o σ are

listed within group X and XI in the Table A.1 of [37]. The central character of π o σ is

ωπσ
2, where ωπ is the central character of π.

Klingen-induced representations. Every element h of the Klingen subgroup Q can

be written in the form

h =
[
λ ∗ ∗
A ∗
λ−1det(A)

]
, with A ∈ GL(2), λ ∈ K×. (2.22)
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Let (π, V ) be an admissible representation of GL(2, K) and χ be a character of K×, and

consider the representation of Q on V given by

[
λ ∗ ∗
A ∗
λ−1det(A)

]
7→ χ(λ)π(A). (2.23)

Then the normalized Klingen-induced representation of GSp(4, K) obtained from the

representation (2.23) of Q is denoted by χo π and the representation space consists of

all locally constant functions f : GSp(4, K)→ V such that

f
([

λ ∗ ∗
A ∗
λ−1det(A)

]
g
)

= |λ2det(A)−1|χ(λ)π(A)f(g) for all g ∈ GSp(4, K). (2.24)

As before, GSp(4, K) acts on this space by right translations as defined in (2.13). All

the irreducible constituents of Klingen-induced representations of the form χ o π are

listed within group VII to IX in the Table A.1 of [37]. The central character of χo π is

χωπ, where ωπ is the central character of π.

2.3 Archimedean local representations

In this section we review some features of representations of the real reductive group

GSp(4,R) that we use in Section 3.5 when we talk about the connection between Siegel

modular forms and automorphic representations of GSp(4,AQ). Mainly we focus on a

class of lowest weight representations of Sp(4,R) which appears as the infinite component

in the automorphic representation attached to a holomorphic Siegel modular form. Our

main references for this section are [21], [42].
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2.3.1 Root System of Sp(4,R)

We consider GSp(4,R) and Sp(4,R) with the symplectic form J =

[
1

1
−1
−1

]
. The Lie

algebra of Sp(4,R) is given by

g =
{
X ∈M(4,R) : tXJ + JX = 0

}
.

The standard maximal compact subgroup K of Sp(4,R) is given by

K =
{[

A B
−B A

]
∈ GL(4,R) : A tA+B tB = 1, A tB = B tA

}
.

We have K ∼= U(2) via the isomorphism
[
A B
−B A

]
7→ A + iB. The Lie algebra k of K is

given by

k =
{[

A B
−B A

]
∈M(4,R) : A = −tA,B = tB

}
.

This is also the 1-eigenspace of the Cartan involution θX = −tX. The (−1)-eigenspace

is

p =
{[

A B
−B A

]
∈M(4,R) : A = tA,B = tB

}
,

so that g = k⊕ p. The complexification pC of p decomposes as pC = pC+ ⊕ pC−, where

pC± = {
[

A ±iA
±iA −A

]
∈M(4,R) : A = tA}.

Then we have [kC, pC±] ⊂ pC± and gC = pC+ ⊕ kC ⊕ pC−. A basis of k is given by

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]
,

[
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

]
,

[
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

]
.
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Let h be the Cartan subalgebra spanned by the first two elements. The corresponding

analytic subgroup H consists of all elements of the form

H = {

[
cos(θ) sin(θ)

cos(θ′) sin(θ′)
− sin(θ) cos(θ)

− sin(θ′) cos(θ′)

]
: θ, θ′ ∈ R/2πiZ}. (2.25)

We consider the following basis for the complexification kC,

Z = −i
[

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
, Z ′ = −i

[
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]
, N+ =

1

2

[
0 1 0 −i
−1 0 −i 0
0 i 0 1
i 0 −1 0

]
, N− =

1

2

[
0 1 0 i
−1 0 i 0
0 −i 0 1
−i 0 −1 0

]
.

Then [Z,N±] = ±N± and [Z ′, N±] = ∓N±. The Cartan subgroup hC of gC is spanned

by Z and Z
′
. Let (hC)′ := HomC(hC,C). We define gλ := {X ∈ gC : [H,X] =

λ(H)X for all λ ∈ (hC)′}. The set ∆ of all roots is defined as ∆ := {λ ∈ (hC)′ : gλ 6=

0}. We identify an element λ ∈ hC with the pair of complex numbers (λ(Z), λ(Z ′)).

Moreover, we call λ ∈ (hC)′ an analytically integral element of (hC)′ if λ(Z), λ(Z ′) ∈ Z.

If we restrict λ to h then the linear map (λ(Z), λ(Z ′)) is the derivative of the character

[
cos(θ) sin(θ)

cos(θ′) sin(θ′)
− sin(θ) cos(θ)

− sin(θ′) cos(θ′)

]
7→ eiλ(Z)θ+iλ(Z′)θ′ (2.26)

of the group H. Let E be the R-subspace of (hC)′ spanned by the root vectors ±(1,−1),

±(0, 2), ±(2, 0) and ±(1, 1). Here, ±(1,−1) are the compact roots and others are non-

compact roots. The roots form a root system of type B2 in E. The space (ib)′ appearing

in Theorem 9.20 of [21] is our Euclidean space E. Figure 2.1 shows the roots and the

analytically integral elements on the plane. An element λ ∈ E is called non-singular if

〈λ, α〉 6= 0 for all roots α ∈ ∆, i.e., if λ does not lie on a wall in Figure 2.1. Suppose Rλ

denotes the reflection in the hyperplane perpendicular to the root vector λ. Let W be

the Weyl group of this root system, i.e., W = 〈Rλ : λ ∈ ∆〉. Let WK be the compact

Weyl group generated by the reflection in the hyperplane perpendicular to the root
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(1,−1).

2.3.2 Minimal K-type and representations of GSp(4,R)

There is an equivalence class of irreducible representations of K ∼= U(2) associated to

each analytically integral element λ = (λ1, λ2) ∈ E with λ1 ≥ λ2, we call it the minimal

K-type and denote it by V(λ1,λ2). We refer to (λ1, λ2) as the highest weight of V(λ1,λ2), and

to any non-zero v0 ∈ V(λ1,λ2) with this weight as a highest weight vector, i.e., N+v0 = 0.

A representation π of Sp(4,R) is by definition a Harish-Chandra module, i.e., π is

a (g, K) module. Let Sp(4,R)± be the subgroup of GSp(4,R) where µ(g) ∈ {±1}.

It contains Sp(4,R) with index 2. Its standard maximal compact subgroup K± :=

{diag(1, 1,−1,−1)} n K. As explained on pg. 4 of [42], a K-type V(λ1,λ2) of Sp(4,R)

with λ2 6= −λ1 induces to a K±-type of Sp(4,R)± and the K-type V(λ,−λ) extends to

two different K±-types V +
(λ,−λ) and V −(λ,−λ) of Sp(4,R)±. A representation of Sp(4,R)±

is a (g, K±) module. A representation of GSp(4,R) is a (g′, K±) module which is a

natural extension of the representation of Sp(4,R)±. Here g′ ∼= R⊕ g is the Lie algebra

of GSp(4,R).

A representation π of Sp(4,R) or Sp(4,R)± or GSp(4,R) is admissible, if each of

its K-types occurs with finite multiplicity. In this case we can write π as π =
⊕

mλVλ,

where λ = (λ1, λ2) runs over analytically integral elements of E with λ1 ≥ λ2, and mλ is

the multiplicity with which Vλ occurs in π. If mλ 6= 0 and λ is closer to the origin than

any other λ′ with mλ′ 6= 0, then we call Vλ or simply λ a minimal K-type.

Discrete series representations of Sp(4,R).

Harish-Chandra parameterized the discrete series representations Xλ of Sp(4,R) by an-

alytically integral and non-singular elements λ ∈ E, modulo the action of the compact

Weyl group of WK . For such a Harish-Chandra parameter λ of Xλ, the lowest

K-type of the corresponding discrete series representation is given by the Blattner pa-
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Figure 2.1: The root vectors and the holomorphic discrete series representation with
minimal K-type Λ = (3, 3).

rameter Λ = λ + δnc − δc, where δnc (resp. δc) is half of the sum of the non-compact

(resp. compact) positive roots; here “positive” means with respect to the Weyl chamber

in which λ lies. The Harish-Chandra parameter λ of a discrete series representation Xλ

is in one of the regions 1, 2, 3 or 4 as showed in Figure 2.1.

• If λ is in region 1 (and non-singular, and analytically integral), then we call Xλ

a holomorphic discrete series representation and it has minimal K-type Λ =

λ+ (1, 2). If λ = (k − 1, k − 2) with k ≥ 3, then Λ = (k, k), a one-dimensional K-type.

These are the discrete series representations generated by holomorphic Siegel modular

forms of weight k. For example, Figure 2.1 (shaded area) shows the holomorphic discrete

series representation of minimal K-type Λ = (3, 3), which corresponds to a holomorphic

Siegel modular form of weight 3 that we encounter in Section 6.

• If λ is in region 2 (and non-singular, and analytically integral), then we call Xλ

a large (or generic) discrete series representation and it has minimal K-type Λ =

λ + (1, 0). If λ is in region 3, then also we have a large discrete series representation.
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It is symmetric to the one in region 2 with respect to the diagonal running through the

root vectors N− to N+ in figure 2.1.

• If λ is in region 4 (and non-singular, and analytically integral), then we call Xλ a

antiholomorphic discrete series representation. The λ in region 4 is symmetric to the

one in region 1 with respect to the diagonal running through the root vectors N− to N+

in figure 2.1.

Limits of discrete series representations of Sp(4,R).

The limits of discrete series representations of Sp(4,R) are parameterized by analytically

integral and singular elements λ ∈ E of the forms (p, 0), (0,−p) or (p,−p) where p > 0

is an integer. When λ = (p, 0) with p > 0, there are two types of representations:

a holomorphic limit of discrete series representation X1
λ with minimal K-type Λ =

(p + 1, 2) and a large limit of discrete series representation X2
λ with minimal K-type

Λ = (p+1, 0). For λ = (0,−p) or (p,−p), we get an anitiholomorphic limit of discrete

series representation or a large limit of discrete series representation.

Non-tempered lowest weight representations of Sp(4,R).

For λ = (p, 1) there exists a lowest weight module Yλ with minimal K-type Λ = (p+1, 1)

(see Proposition 2.8 of [21]). This is a non-tempered representation, we call Yλ a non-

tempered lowest weight representation of Sp(4,R).

Representations of GSp(4,R).

Let λ = (λ1, λ2) and λ′ = (−λ2,−λ1) be two analytically integral (singular or non-

singular) elements in E. Let πλ and πλ′ be representations of Sp(4,R) parametrized by

λ and λ′ of type either discrete series, or limits of discrete series, or non-tempered lowest
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weight. Then πλ and πλ′ are conjugate via diag(1, 1,−1,−1) and we have

π = ind
Sp(4,R)±

Sp(4,R) (πλ) = ind
Sp(4,R)±

Sp(4,R) (πλ′), (2.27)

a representation of Sp(4,R)±. The restriction of π to Sp(4,R) decomposes into a direct

sum πλ⊕ πλ′ , i.e., its K-type is the combination of K-types of πλ and πλ′ . As explained

before, one can extend the representation (2.27) to a representation of GSp(4,R) ∼=

R>0 × Sp(4,R)± by letting R>0 act trivially.

For example, if λ is a non-singular, analytically integral element of E contained in

region 1, then λ′ is a non-singular, analytically integral element of E contained in region

4. In this case they generate the same representation of GSp(4,R) by (2.27), which

we call a holomorphic discrete series representation Xλ of GSp(4,R). If λ is a non-

singular, analytically integral element in region 2 or 3, then we get a large or generic

discrete series representation Xλ of GSp(4,R) by (2.27) .

2.3.3 Lowest weight representations

We say a representation π of GSp(4,R) is a lowest weight representation if it admits

a non-zero vector v such that X−v = 0, P1−v = 0 and P0−v = 0. In this case, the

highest weight vector v0 in any K-type contributing to v is then annihilated by the roots

(−1, 1), (0,−2), (−2, 0) and (1,−1). The possible lowest weight representations are the

holomorphic (limits of) discrete series and the non-tempered lowest weight modules.

We define the weight of one of these representations to be the pair of non-negative

integers (k, j) such that Λ = (k+j, k) is the minimal K-type. For each (k, j) ∈ Z>0×Z≥0

there exists a unique representation of GSp(4,R) of type holomorphic discrete series,

holomorphic limit of discrete series or the non-tempered lowest weight module with

weight (k, j). We denote this unique representation by Bk,j. It is a holomorphic discrete

series representation if k ≥ 3, a holomorphic limit of discrete series if k = 2, and
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non-tempered if k = 1. We get a uniform description of the L- and ε-factors of these

representations if we parametrize them by weight rather than by their Harish-Chandra

parameter. The lowest weight representations Bk,j are associated with the vector-valued

holomorphic Siegel modular forms of weight (k, j), we will discuss this in Section 3.5.

2.4 Weil-Deligne representations

In this section we recall some basic facts about representations of the Weil group and

the Weil-Deligne group. The main references for this section are [49], [39] and [22].

2.4.1 Non-archimedean case

As before, let K be a non-archimedean field of characteristic zero with residual charac-

teristic p. Let oK be the ring of integers of K, and let p be the maximal ideal of oK .

Let k = oK/p be the residue field of K of order q. Let Kun be the maximal unramified

extension of K inside K̄. Let W (K̄/K) be the Weil group of K. It is a subgroup of the

absolute Galois group Gal(K̄/K), fitting into the following diagram.

1 // IK // Gal(K̄/K) // Gal(k̄/k) // 1

1 // IK //

=

OO

W (K̄/K) //

OO

〈φ〉 //

OO

1

Here φ is the inverse of the Frobenius automorphism x → xq on the residue class field

extension k̄/k. We fix a pre-image Φ of φ in Gal(K̄/K); such a Φ is called an inverse

Frobenius element of Gal(K̄/K). Then by definition

W (K̄/K) =
⊔
n∈Z

ΦnIK , (2.28)
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where IK is the inertia group, which can be identified with the Galois group Gal(K̄/Kun).

The topology on W (K̄/K) is such that IK is an open subgroup, that the topology on

IK is the Krull topology inherited from Gal(K̄/K), and that left multiplication by Φ

is a homeomorphism. The Weil group comes equipped with the Artin isomorphism

K× ∼= W (K̄/K)ab. Our normalization is such that this isomorphism identifies Φ with a

uniformizer $K of K.

A representation of W (K̄/K) is a continuous homomorphism ϕ : W (K̄/K) →

GL(V ), where V is a finite-dimensional complex vector space. The continuity condi-

tion is equivalent to the requirement that ϕ be trivial on an open subgroup of IK . We

say that ϕ is ramified or unramified according as ϕ|IK is nontrivial or trivial. Let ω

be the one-dimensional representation of W (K̄/K) with the property ω(IK) = 1 and

ω(Φ) = q−1. Then ω corresponds to the normalized absolute value | · | on K× via the

Artin isomorphism K× ∼= W (K̄/K)ab.

The Weil-Deligne group W ′(K̄/K) is defined as W ′(K̄/K) = W (K̄/K) n C, with

the action of W (K̄/K) on C given by gzg−1 = ω(g)z for g ∈ W (K̄/K) and z ∈ C. A

representation of W ′(K̄/K) is a continuous homomorphism ϕ′ : W ′(K̄/K) → GL(V ),

where V is a finite-dimensional complex vector space, such that the restriction of ϕ′ to

C is complex analytic.

More important than to know the formal definition of the Weil-Deligne group is to

know the following fact about its representations. There is a one-to-one correspondence

between representations ϕ′ of W ′(K̄/K) and pairs (ϕ,N), where ϕ is a representation

of W (K̄/K) and N is a nilpotent endomorphism of V with the property

ϕ(g)Nϕ(g)−1 = ω(g)N. (2.29)

The relationship is that ϕ′|W (K̄/K) = ϕ and ϕ′(z) = exp(zN) for z ∈ C. If ϕ′ and the pair

(ϕ,N) are related in this way, we shall simply write ϕ′ = (ϕ,N). We could have defined
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the notion of “Weil-Deligne representation” as pairs (ϕ,N) without actually defining

the Weil-Deligne group. Since representations of the Weil group are naturally identified

with pairs (ϕ, 0), the notion of Weil-Deligne representation is an extension of the notion

of Weil group representation.

Here is the basic example for a representation which is honestly Weil-Deligne and

not Weil. Let e0, ..., en−1 be a basis of Cn. Define ϕ′ = (ϕ,N) by the following formulas

ϕ(g) = ω(g)jej, for g ∈ W (K̄/K), j = 0, ..., (n− 1).

and Nen−1 = 0, Nej = ej+1, j = 0, ..., (n− 2).

(2.30)

Then (2.29) is satisfied, so that we have indeed defined a Weil-Deligne representation.

This representation is denoted by sp(n) and called the special representation of dimension

n. In terms of matrices ϕ′ = (ϕ,N) has the following form

ϕ(g) =

 1
ω(g)

...
ω(g)n−1

, g ∈ W (K̄/K), N =

 0

1 0
... ...

1 0

. (2.31)

Though this is the standard definition of the special representation sp(n) as in [39], but

sometimes for simplicity of calculation we choose an equivalent form of sp(n) given as

follows

ϕ(g) =

 ω(g)n−1

...
ω(g)

1

, g ∈ W (K̄/K), N =

 0 1
... ...

1

0

. (2.32)

We call a representation ϕ′ = (ϕ,N) of W ′(K̄/K) admissible if ϕ(Φ) is a semisimple

linear transformation. We say ϕ′ is indecomposable if it cannot be written as a

direct sum of proper subspaces invariant under W ′(K̄/K). We say ϕ′ = (ϕ,N) is

irreducible if ϕ is irreducible and N = 0. It is a well known result that every admissible

indecomposable representation of W ′(K̄/K) is equivalent to a representation of the form
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ϕ ⊗ sp(n), where ϕ is an irreducible representation of W (K̄/K). Every admissible

representation ϕ′ of W ′(K̄/K) has a decomposition of the form

ϕ′ =
s⊗
j=1

(ϕj ⊗ sp(nj)) , (2.33)

where ϕj is an irreducible representation of W (K̄/K) and nj is a positive integer.

Imprimitive representations.

A representation of a group G is called primitive if it is not induced from a proper

subgroup. Otherwise it is called imprimitive. We shall describe an important class

of imprimitive irreducible representations of W (K̄/K). It turns out that the great

majority of irreducible representations of W (K̄/K) are imprimitive; exceptions occur

only in residual characteristic 2.

Let F be a quadratic extension of K. Then W (K̄/F ) ⊂ W (K̄/K) is a subgroup

of index 2. Let σ be any element of W (K̄/K) that does not lie in W (K̄/F ). Then σ

induces the non-trivial Galois automorphism of F/K. Let ξ be a character of W (K̄/F ).

The conjugate character ξσ of W (K̄/F ) is defined by ξ̄(x) = ξ(σxσ−1) for x ∈ W (K̄/F ).

Assume that ξ is regular, i.e., ξ 6= ξσ. The induced representation

ϕ = ind
W (K̄/K)

W (K̄/F )
(ξ) with ξ 6= ξσ, (2.34)

is irreducible. By Corollary (2.2.5.2) of [49], every irreducible representation of W (K̄/K)

is obtained in this way (with some quadratic extension F/K and some regular character

ξ of F×) if the residual characteristic of K is not 2. With respect to a suitable basis, ϕ

has the following matrix form,

ϕ(x) =
[
ξ(x)

ξσ(x)

]
, x ∈ W (K̄/F ), and ϕ(σ) =

[
1

ξ(σ2)

]
. (2.35)
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2.4.2 Archimedean case

The real Weil group WR is defined as WR = C× t jC×, where the multiplication on

C× is standard, and where j is an element satisfying j2 = −1 and jzj−1 = z̄ (complex

conjugation) for z ∈ C×. Here we have an exact sequence

1 −→ C× −→ WR −→ {±1} −→ 1 (2.36)

where the third map is determined by sending C× 7→ 1 and j 7→ −1.

A (semisimple) representation of WR is a continuous homomorphism WR → GL(n,C)

for some n such that its image consists entirely of semisimple elements. Basic facts about

WR are explained in [22]. Every semisimple representation of WR is fully reducible. An

irreducible semisimple representation of WR is either one- or two-dimensional. The

complete list of one-dimensional representations of WR is as follows:

ϕ+,t : reiθ 7→ r2t, j 7→ 1, (2.37)

ϕ−,t : reiθ 7→ r2t, j 7→ −1, (2.38)

where t ∈ C, and we write a non-zero complex number as reiθ with r ∈ R>0 and

θ ∈ R/2πZ. The two-dimensional representations of WR are precisely

ϕ`,t : reiθ 7→
[
r2tei`θ

r2te−i`θ

]
, j 7→

[
(−1)`

1

]
. (2.39)

Here ` is a positive integer and t ∈ C. Often, we will only consider the case t = 0; in

this case, we write ϕ± instead of ϕ±,0 and ϕ` instead of ϕ`,0.
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2.5 Langlands correspondence and L-parameter

In this section we discuss the local Langlands correspondence for GL(2) and GSp(4).

The main references for this section are [4], [49], [27] and [22].

2.5.1 Non-archimedean case

Let K be a non-archimedean field of characteristic zero and G be a split, connected,

reductive, linear, algebraic group over K. Some examples of such group are GL(n),

GSp(4). Let Ĝ be the dual group of G, which is a complex Lie group whose root system

is dual to that of G. For G = GL(n), Ĝ = GL(n,C) and for G = GSp(4), Ĝ = GSp(4,C).

Robert P. Langlands conjectured that there exists a bijection between equivalence

classes of admissible homomorphisms ϕ′ : W ′(K̄/K) → Ĝ and finite sets Π(ϕ′) of

isomorphism classes of irreducible admissible representations of G(K). This bijection

is known the local Langlands correspondence for G and satisfies certain desiderata; see

[4] and [27]. We say that ϕ′ is the Langlands parameter (or L-parameter) for each

irreducible admissible representation of G in the finite set Π(ϕ′). Sometimes we also call

the set Π(ϕ′) the L-packet of the admissible homomorphism ϕ′ of W ′(K̄/K).

The local Langlands correspondence for GL(n,K) is known; see [15] and [16]. In fact

in this case, there is a one-to-one correspondence between the isomorphism classes of

irreducible admissible representations π of GL(n,K) and the n-dimensional admissible

representations ϕ′ = (ϕ,N) of W ′(K̄/K). Here we list the L-parameters (ϕ,N) for the

infinite dimensional irreducible admissible representations π of GL(2, K). We identify

the characters of W (K̄/K) and K× via the Artin isomorphism K× ∼= W (K̄/K)ab.

• When π = χ1 × χ2, where χ1, χ2 are characters of K× with χ1χ
−1
2 6= | · |±1, the
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L-parameter is given by

ϕ(w) =
[
χ1(w)

χ2(w)

]
, w ∈ W (K̄/K) and N = 0. (2.40)

• When π = χStGL(2), where χ is a character of K×, the L-parameter is given by

ϕ(w) =

[
|w|

1
2 χ(w)

|w|−
1
2 χ(w)

]
, w ∈ W (K̄/K) and N =

[
0 1

0 0

]
. (2.41)

• When π is a supercuspidal representation, the L-parameter is an irreducible repre-

sentation of W (K̄/K) with N = 0. If π is a dihedral supercuspidal representation,

i.e., π = ωF,ξ, where F is a quadratic extension of K and a character ξ of F×,

then the L-parameter is ϕ = ind
W (K̄/K)

W (K̄/F )
(ξ) with ξ 6= ξσ as in (2.34), where ξ

is the character of W (K̄/F ) associated to ξ of F× via the Artin isomorphism

F× ∼= W (K̄/F )ab.

Fact 2.5.1. If the residual characteristic of K is not 2, then every supercuspidal rep-

resentation π of GL(2, K) is isomorphic to a dihedral supercuspidal representation π =

ωF,ξ, where F is a quadratic extension of K and a character ξ of F×. In this case π has

the following L-parameter as in (2.35)

ϕ(x) =
[
ξ(x)

ξσ(x)

]
, x ∈ W (K̄/F ), and ϕ(σ) =

[
1

ξ(σ2)

]
.

The local Langlands correspondence for GSp(4, K) is also known; see [12]. Let π

be an irreducible admissible representation of GSp(4, K) with the L-parameter ϕ′ :

W ′(K̄/K) → GSp(4,C). Since GSp(4,C) ⊂ GL(4,C), we can consider ϕ′ as an admis-

sible representation of W ′(K̄/K). The L-parameters for non-supercuspidal representa-
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tions of GSp(4, K) are listed in Section 2.4 of [37] (also see Table A.7 in [37]).

Conductor, L- and ε-factors of L-parameters

Suppose ϕ′ = (ϕ,N) is a representation of W ′(K̄/K) acting on the space V . Let Φ ∈

W (K̄/K) be an inverse Frobenius element, and let IK = Gal(K̄/Kun) ⊂ W (K̄/K) be

the inertia subgroup. Let VN = Ker(N) and V IK = {v ∈ V : ϕ(g)v = v for all g ∈ IK}

and V I
N = V I ∩ VN . Then the L-factor of ϕ′ is defined by

L(s, ϕ′) = det
(

1− q−sϕ(Φ)|V IN
)−1

, (2.42)

and the ε-factor of ϕ′ is defined by

ε(s, ϕ′, ψ) = ε(s, ϕ, ψ)det
(
−q−sϕ(Φ)|V I/V IN

)
, (2.43)

where ψ is an additive character of K with conductor (exponent) 0. These are the

definitions from p. 60 of [37].

Another important quantity attached to a representation ϕ′ of W ′(K̄/K) is a non-

negative integer called the conductor, denoted by a(ϕ′) and defined by

a(ϕ′) = a(ϕ) + dim(V I)− dim(V I
N), (2.44)

where a(ϕ) is the conductor of ϕ defined as in Section 10 of [39]. For general facts on

L-factors, ε-factors and conductors of Weil-Deligne representations ϕ′, see [49] and [39].

Note 2.5.2. Let π be an irreducible admissible representation of G(K), here we consider

G(K) to be either GL(2, K) or GSp(4, K). Let ϕ′ be the L-parameter of π. So, ϕ′ is an

admissible representation of W ′(K̄/K) and L-factor, ε-factor and conductor of ϕ′ are

defined as in (2.42), (2.43) and (2.44). Then, as a part of the desiderata of the local

Langlands correspondence for G(K), we have
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• The L-factor of π, L(s, π) = L(s, ϕ′).

• The ε-factor of π, ε(s, π, ψ) = ε(s, ϕ′, ψ).

• The conductor of π, a(π) = a(ϕ′).

In fact, all the representations in the L-packet Π(ϕ′) have the same conductor, L-factor,

and ε-factor.

As we discussed before in Section 2.2, there are other ways to define a(π), L(s, π)

and ε(s, π, ψ) for an irreducible admissible representation π of G(K). But, since it is

easier to calculate these local data for the L-parameter of π, we consider Note 2.5.2 as

the definitions for L(s, π), ε(s, π, ψ) and a(π).

For irreducible admissible representations of GL(2, K), one can find these local data

in Chapter 4 of [7]. Here, we mention the conductor formula of dihedral supercuspidal

representations of GL(2, K) since we use it multiple times in this text.

Conductor of a dihedral supercuspidal representation.

Suppose ϕ be an imprimitive representations of W (K̄/K) as defined in Section 2.4, i.e.,

ϕ = ind
W (K̄/K)

W (K̄/F )
(ξ) with ξ 6= ξσ, where F/K is a quadratic extension. Then we have the

following formula for the conductor a(ϕ) of ϕ (see VI.2 of [46]),

a(ϕ) = dim(ξ)d(F/K) + f(F/K)a(ξ), (2.45)

where dim(ξ) = 1, ξ being a character; d(F/K) is the discriminant of the field extension

F/K; f(F/K) is the residue class degree, and a(ξ) is the conductor of ξ.

Let π = ωF,ξ be a dihedral supercuspidal representation of GL(2, K). Then, as

discussed before, the L-parameter of π is an imprimitive representation. Hence, for
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residual characteristic of K odd, we have

a(ωF,ξ) =


2a(ξ) if F/K is unramified,

1 + a(ξ) if F/K is ramified.

(2.46)

Here, we consider ξ as a character of F× and a(ξ) is the smallest non-negative integer n

such that ξ|1+pnoF = 1.

For non-supercuspidal irreducible admissible representations of GSp(4, K), these lo-

cal data are listed in Tables A.8 and A.9 of [37].

2.5.2 Archimedean case

This case is quite similar to the non-archimedean case. Let G be a split linear reductive

group over R. The local Langlands correspondence is a bijection between admissible

homomorphisms ϕ : WR → Ĝ, where WR is the real Weil group, and L-packets of

irreducible, admissible representations of G(R).

For G = GL(2,R), the local Langlands correspondence is such that

ϕ`,t ←→ |det(·)|t ⊗D`, (2.47)

where |det(·)|t⊗D` is the irreducible representation of GL(2,R) with lowest weight `+1

and central character determined by a 7→ a2t, a > 0. Here ϕ`,t is the two dimensional

representation of WR defined in (2.39).

For G = GSp(4,R), the L-parameters for each irreducible admissible representation of

GSp(4,R) are listed in section 3 of [42]. Here we mention one case that would be useful

in Chapter 5. Let λ = (λ1, λ2) be a non-singular, analytically integral element in region

1 and λ′ = (λ1,−λ2) be a non-singular, analytically integral element in region 2 (see

figure 2.1). Then the holomorphic discrete series representation Xλ and the large or
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generic discrete series Xλ′ of GSp(4,R) form a 2-element L-packet and their common

L-parameter is the homomorphism WR → GSp(4,C) given by

reiθ 7→

[
ei(λ1+λ2)θ

ei(λ1−λ2)θ

e−i(λ1+λ2)θ

e−i(λ1−λ2)θ

]
, j 7→

[
(−1)λ1+λ2

(−1)λ1+λ2
1

1

]
. (2.48)

The representation Xλ is one of the possible lowest weight representations defined in

Section 2.3.3. The lowest weight representation π = Bk,j of weight (k, j) of GSp(4,R)

has the spin L-factor and ε-factor given by

L(s, π) = ΓC

(
s+

2k + j − 3

2

)
ΓC

(
s+

j + 1

2

)
and ε(s, π, ψ) = (−1)k+j. (2.49)

Here ΓC(s) = 2(2π)−sΓ(s) with Γ being the usual gamma function and ψ is the additive

character of R given by ψ(x) = e2πix.

2.6 Automorphic representations

In this section we discuss automorphic representations on the adelic group G(AQ). Our

primary references for this section are [5], [23] and [8].

2.6.1 Automorphic forms

Let AQ :=

{
a = (ap)p≤∞ ∈

∏
p≤∞

Qp : ap ∈ Zp for almost all p

}
. We define the topology

on AQ to be the one generated by the sets
∏
p≤∞

Up, where Up open is in Qp and Up =

Zp for almost all p. With this restricted direct product topology, AQ becomes a locally

compact topological ring. We call AQ the ring of adeles. Let G be a connected

reductive algebraic group over Q. We consider the adelized group

G(AQ) =

{
g = (gp)p≤∞ ∈

∏
p≤∞

G(Qp) : gp ∈ G(Zp) for almost all p

}
. (2.50)
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We denote G∞ to be the archimedean component, and G(Af ) be the non-archimedean

component of G(AQ) such that G(AQ) = G∞ × G(Af ). Let g be the (real) Lie algebra

of G∞, gC be the complexification of g and K∞ be a maximal compact subgroup of the

Lie group G∞. Let U(gC) be the universal enveloping algebra of gC and Z(gC) be the

center of U(gC). Let K be the open compact subgroup G(
∏
p<∞

Zp) of G(Af ).

We say that Φ : G(AQ) = G∞×G(Af )→ C is smooth if it is continuous and, when

viewed as a function of two arguments (x, y) in G∞ ×G(Af ) it is smooth in x for each

fixed y and is locally constant of compact support in y for each fixed x. Smoothness in

the archimedean variable ensures that we can act on Φ with the Lie algebra g via right

translation, i.e.,

(XΦ)(g) =
d

dt

∣∣∣∣
t=0

Φ (g exp(tX)) , for g ∈ G(AQ), X ∈ g. (2.51)

A smooth function Φ : G(AQ)→ C is called an automorphic form if

(i) Φ(γg) = Φ(g) for all g ∈ G(AQ) and γ ∈ G(Q).

(ii) Φ(gk) = Φ(g) for all k ∈ K1, where K1 is an open subgroup of K i.e., Φ is

right-invariant under G(Zp) for almost all primes p.

(iii) the span of the right translates of Φ by members of K∞ is finite-dimensional, i.e.,

the space spanned by all functions g → Φ(gh), where g ∈ G(AQ) and h ∈ K∞ is

finite-dimensional. This condition is known as K∞-finiteness.

(iv) there exists an ideal J of Z(gC) of finite codimension so that the action of J in the

G∞ variable of G∞×G(Af ) satisfies JΦ = 0. This is known as Z(gC)-finiteness.

(v) for each y ∈ G(Af ), the function x 7→ Φ(xy) on G∞ satisfies a certain slow-growth

condition.
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One should think of the property (i) as the actual automorphic property, and of

all the rest as additional regularity conditions. When G = GL(2), the property (i) of

automorphic forms is related to the transformation property (2.57) of classical modular

forms.

An automorphic form Φ is called a cusp form if Φ satisfies

Φ(zg) = χ(z)f(g) for all z ∈ Z(AQ), g ∈ G(AQ), (2.52)

for some (unitary) character χ of the center Z(Q)\Z(AQ) and

∫
N(Q)\N(AQ)

Φ(ng)dn = 0 (2.53)

for the unipotent radical N of every proper parabolic subgroup of G and for all g ∈

G(AQ). If Φ is a cusp form, then the condition (v) is equivalent to the condition that

|Φ| ∈ L2 (Z(AQ)G(Q)\G(AQ)) (see Theorem 7.3 [23]).

Note 2.6.1. The space A of automorphic forms is not invariant under right translations

by all of G(AQ). But we still have right translations by the groups K∞ and G(Af ), and

the action (2.51) of the Lie algebra g on A. So, the space A becomes a (g, K∞)-module

and a G(Af )-module, but, not an actual representation of G(AQ). We still address A as

a representation of G(AQ).

Now we define an automorphic representation of G(AQ) observing Note 2.6.1.

Definition 2.6.2. We say that (π, V ) is an automorphic representation of G(AQ)

if V is an irreducible subquotient of the space of automorphic forms A on G(AQ) with the

(g, K∞)- and G(Af )-module structures. An automorphic representation (π, V ) of G(AQ)

is called a cuspidal automorphic representation, if V is a subspace of the space of

cusp forms on G(AQ).
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There is an important result called the Tensor Product Theorem which states

that every irreducible and admissible representation π of G(AQ) can be written as

π ∼=
⊗
p≤∞

πp. (2.54)

with irreducible, admissible representations πp of the local groups G(Qp). The theorem

holds for any irreducible, admissible π and has nothing to do with π being automorphic.

A random choice of local representations πp will pretty much never lead to an auto-

morphic representation π. In fact, if π as in (2.54) is automorphic, and if we switch

out a single πp for another representation, then it is very likely that you have destroyed

the automorphic property. So, automorphy is a very special property. Also, The iso-

morphism (2.54) is abstract. All you know is that it intertwines the (g, K∞)-module

and G(Af )-module structures. The right hand side of (2.54) knows nothing about the

specific model of π.

We write an automorphic representation π of G(AQ) as π ∼= ⊗p≤∞πp for representa-

tions πp of G(Qp). When π is a cuspidal automorphic representation, we call the vectors

in the representation space of π cusp forms. Sometimes we call an automorphic represen-

tation π ∼=
⊗
p≤∞

πp a global representation of G and the πp’s the local components

of π.

Let π ∼= ⊗p≤∞πp be an irreducible admissible representation of G(AQ). Let r : Ĝ→

GL(n,C) be a homomorphism of Lie groups. Then we define the Langlands L-function

of π by

L(s, π, r) :=
⊗
p≤∞

L(s, πp, r), (2.55)

where L(s, πp, r) are the local L-factors of the representations πp of G(Qp). If the

local Langlands correspondence is known for G(Qp), then we can write L(s, πp, r) =

L(s, ϕ′p, r) = L(s, r ◦ ϕ′p), where ϕ′p is the L-parameter of πp and L(s, r ◦ ϕ′p) is defined

37



as in (2.42).

WhenG = GL(n) and r is the standard (identity) map on GL(n,C), we simply denote

L(s, π, r) by L(s, π). Similarly, when G = GSp(4) and r : GSp(4,C) ↪→ GL(4,C), we

simply write L(s, π, r) as L(s, π).

2.6.2 Langlands principle of functoriality

The Langlands principle of functoriality is a central conjecture in the Langlands program

that describes the relationships between automorphic objects living on two different

algebraic groups. Let G,H be two (split) reductive algebraic groups defined over Q.

Attached to the groups G and H are their dual groups Ĝ and Ĥ, which are complex

reductive Lie groups whose root systems are dual to those of G and H respectively. By

the principle of functoriality, every homomorphism of Lie groups Ĝ→ Ĥ should give rise

to a “lifting” of automorphic representations of G(AQ) to automorphic representations

of H(AQ) such that the L-functions of the automorphic representations of G(AQ) and

H(AQ) are connected. For a detailed description of the principle of functoriality, see

Section 9 and 10 in [23]. Here we give a few examples to illustrate the principle of

functoriality and we will see another example of functoriality in Section 3.2.

Example 2.6.3. Let G = GL(2) and H = GL(1). Then Ĝ = GL(2,C) and Ĥ = C×.

We have the following homomorphism of Lie groups

det : GL(2,C)→ GL(1,C) = C×.

Let π ∼= ⊗p≤∞πp be an automorphic representation of GL(2,AQ), where πp is a local

representation of GL(2,Qp). Then we get the following diagram using the local Langlands

correspondence for GL(2,Qp) and Q×p discussed in Section 2.5.

πp
LLC−−→

[
ϕp : W ′

Qp → GL(2,C)
]

det−−→
[
det ◦ ϕp : W ′

Qp → C×
]

LLC−−→ Πp. (2.56)
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Here we denote the Weil-Deligne group W ′(Q̄p/Qp) defined in Section 2.4 as W ′
Qp. Di-

agram (2.56) gives the characters Πp of Q×p for each prime p ≤ ∞. Then the Langlands

principle of functoriality predicts that Π ∼= ⊗p≤∞Πp is an automorphic representation

of A×Q. We have the following property of the local Langlands correspondence: if πp

corresponds to ϕp, then the central character ωπp of πp corresponds to det ◦ ϕp. Hence,

Π = ωπ, the central character of π and it is known that Π = ωπ is automorphic.

Example 2.6.4. Let G = GL(2) and H = GL(3). Then Ĝ = GL(2,C) and Ĥ =

GL(3,C). The symmetric square map given as follows is a homomorphism of Lie groups

sym2 : GL(2,C)→ GL(3,C)

a b

c d

 7→

a2 ab b2

2ac ad+ bc 2bd

c2 cd d2

 .

Let π ∼= ⊗p≤∞πp be an automorphic representation of GL(2,AQ). Then, using the local

Langlands correspondence for GL(2,Qp) and GL(3,Qp), the following diagram

πp
LLC−−→

[
ϕp : W ′

Qp → GL(2,C)
]

sym2

−−−→
[
sym2 ◦ ϕp : W ′

Qp → GL(3,C)
]

LLC−−→ Πp

gives representations Πp of GL(3,Qp). Again, the principle of functoriality predicts

Π ∼= ⊗p≤∞Πp is an automorphic representation of GL(3,AQ). This is a theorem due to

Gelbart and Jacquet (see [13]).

Now, let us discuss the relationship between L-functions of the automorphic repre-

sentations involved in the principle of functoriality. Let G,H be two (split) reductive

algebraic groups defined over Q and ρ : Ĝ→ Ĥ be a homomorphism of Lie groups. Sup-

pose that the principle of functoriality is true for this map ρ, i.e., an automorphic rep-

resentation π ∼= ⊗p≤∞πp of G(AQ) lifts to an automorphic representation Π ∼= ⊗p≤∞Πp

of H(AQ) via the diagram
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πp
LLC−−→

[
ϕp : W ′

Qp −→ Ĝ
]

ρ−−→
[
ρ ◦ ϕp : W ′

Qp −→ Ĥ
]

LLC−−→ Πp.

Then we have L(s,Π, r) = L(s, π, ρ ◦ r), where r : Ĥ → GL(n,C) is some Lie group

homomorphism. By definition (2.55), L(s, π, ρ ◦ r) =
⊗
p≤∞

L(s, πp, ρ ◦ r) and L(s,Π, r) =⊗
p≤∞

L(s,Πp, r). By the local Langlands correspondence for both the groups, we get

L(s,Πp, r) = L(s, r ◦ ρ ◦ ϕp) = L(s, πp, ρ ◦ r).

We have L(s,Π) = L(s, π, det) for Example 2.6.3, and L(s,Π) = L(s, π, sym2) for Ex-

ample 2.6.4.

2.7 Modular forms and Siegel modular forms

Classical modular forms have a deep connection with elliptic curves over Q, this con-

nection is famous as the modularity theorem. The theory of modular forms also has a

well-understood connection with automorphic representations of GL(2,AQ). There is

a general principle that “every modular form φ originates from an automorphic form

Φ on GL(2,AQ)”. The theory of Siegel modular forms is connected with automorphic

representations of GSp(4,AQ). We discuss the connection between classical Siegel cusp

forms and cuspidal automorphic representations of GSp(4,AQ) in Section 3.5.1.

In this chapter we review some definitions and useful facts related to modular forms

and Siegel modular forms. There are many good references in the literature for the

theory of modular forms and Siegel modular forms. For basic facts about classical

modular forms and Siegel modular forms we refer to [7], [25], [10], [1] and [20].

2.7.1 Modular forms

Let H be the complex upper half plane, i.e., H = {τ ∈ C : Im(τ) > 0}. For an integer

N > 0, we define Γ0(N) = {[ a bc d ] ∈ SL(2,Z) : c ≡ 0 mod N}, it is a congruence subgroup

40



of SL(2,Z). Note that Γ0(1) ∼= SL(2,Z).

Definition 2.7.1. Let k be an integer. A function φ : H → C is called a modular form

of weight k and level N if it satisfies the following conditions.

1. φ is holomorphic.

2. φ satisfies the transformation property

φ

(
aτ + b

cτ + d

)
= (cτ + d)kφ(τ) for all τ ∈ H and [ a bc d ] ∈ Γ0(N). (2.57)

3. Let (φ|kγ0)(τ) := (cτ + d)−kφ
(
aτ+b
cτ+d

)
for γ0 = [ a bc d ] ∈ SL(2,Z) and τ ∈ H. Then

φ|kγ0 satisfies some boundedness condition, i.e., for any γ0 ∈ SL(2,Z), φ|kγ0 ad-

mits a Fourier expansion of the form

(φ|kγ0)(τ) =
∞∑
n=0

cne
2πinτ
N =

∞∑
n=0

cnq
n
N , where qN = e

2πinτ
N . (2.58)

Let Mk(Γ0(N)) be the vector space of modular forms of weight k and level N . We call

φ ∈ Mk(Γ0(N)) a cusp form if the constant Fourier coefficient c0 = 0 in (2.58). Let

Sk(Γ0(N)) be the space of cusp forms of weight k and level N .

There exists a natural inner product on Sk(Γ0(N)), known as the Petersson inner

product. If φ1(τ), φ2(τ) ∈ Sk(Γ0(N)), then one can check that φ1(τ)φ2(τ)Im(τ)k is

invariant under the transformation τ 7→ aτ+b
cτ+d

for all [ a bc d ] ∈ Γ0(N). We define a measure

dτ on the upper half plane H as dτ = dxdy
y2

, where τ = x + iy ∈ H. The volume VΓ0(N)

of Γ0(N)\H is defined by VΓ0(N) =
∫

Γ0(N)\H dτ .

Definition 2.7.2. Let φ1, φ2 ∈ Sk(Γ0(N)). The Petersson inner product on Sk(Γ0(N))

is defined as

〈φ1, φ2〉 :=
1

VΓ0(N)

∫
Γ0(N)\H

φ1(τ)φ2(τ)Im(τ)kdτ. (2.59)
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There are natural linear transformations acting on spaces of modular forms, known

as the Hecke operators. We recall the definition of the Hecke operators on Mk(Γ0(N)).

Definition 2.7.3. Let m be a positive integer and φ(τ) =
∞∑
n=0

cnq
n ∈Mk(Γ0(N)). Then

we define the Hecke operator Tm by its action on φ as follows

(φ|Tm)(τ) :=
∞∑
n=0

 ∑
d|gcd(m,n)

dk−1c
(mn
d2

) qn. (2.60)

The action of the Hecke operator Tm on Sk(Γ0(N)) is stable, i.e., if φ ∈ Sk(Γ0(N))

then φ|Tm ∈ Sk(Γ0(N)). A modular form φ(τ) =
∞∑
n=0

cnq
n ∈ Mk(Γ0(N)) is called a

Hecke eigenform if it is a common eigenfunction of all the Hecke operators Tm. If

φ(τ) =
∞∑
n=0

cnq
n is such a Hecke eigenform, one can show that c1 6= 0 and we say φ is

normalized if c1 = 1.

If M | N then it is easy to see that Sk(Γ0(M)) ⊂ Sk(Γ0(N)). This implies some

modular forms in Sk(Γ0(N)) can come from lower level. In fact, for any d | N
M

, we have

the following map

Sk(Γ0(M)) −→ Sk(Γ0(N))

φ(τ) 7−→ φ(dτ).

We denote the space of “oldforms” at level N by Sold
k (Γ0(N)), which is the sum of the

images of these spaces for proper divisors M of N . The space of newforms at level N is

the orthogonal complement with respect to the Petersson inner product and denoted by

Snew
k (Γ0(N)). It is a well-known result that the space of newforms has a basis consisting

of normalized Hecke eigenforms. A cusp form φ ∈ Snew
k (Γ0(N)) is called a newform if

it is a normalized Hecke eigenform.

L-functions and functional equation for modular forms.
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For a cusp form φ(τ) =
∞∑
n=0

cnq
n ∈ Sk(Γ0(N)), the Hecke L-function Lar(s, φ) of φ (in

arithmetic normalization) is defined as

Lar(s, φ) =
∞∑
n=1

cn
ns

=
∏
p

Lar
p (s, φ) =

∏
p

1

1− cpp−s + pk−1−2s
. (2.61)

This series is convergent for Re(s) sufficiently large. The Hecke L-function of φ in

analytic normalization is defined as follows

L(s, φ) := Lar

(
s+

k

2
− 1

2
, φ

)
. (2.62)

The L-function Lar(s, φ) (resp. L(s, φ)) has a meromorphic continuation to all s, called

the completed L-function. Let ΓC(s) := 2(2π)−sΓ(s) with Γ being the usual gamma

function. Then the completed L-function of φ is defined as follows

In arithmetic nomalization : Λar(s, φ) = ΓC(s)Lar(s, φ). (2.63)

In analytic nomalization : Λ(s, φ) = ΓC

(
s+

k

2
− 1

2

)
L(s, φ). (2.64)

If φ is a cusp form, then Λar(s, φ) (resp. Λ(s, φ)) extends to an analytic function of s;

if φ is not cuspidal then Λar(s, φ) (resp. Λ(s, φ)) has simple poles at s = 0 and s = k

(resp. s = 1). Furthermore, it satisfies an equation, known as the functional equation,

given by

In arithmetic nomalization : Λar(s, φ) = (−1)k/2Λar(k − s, φ). (2.65)

In analytic nomalization : Λ(s, φ) = (−1)k/2Λ(1− s, φ). (2.66)

We mostly consider the L-function of a cusp form φ in analytic nomalization, since it

is easier to compare L(s, φ) with the L-function L(s, π) of the cuspidal automorphic
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representations π of GL(2,AQ) associated to φ. In fact, L(s, φ) = L(s, π). For a detailed

construction of the automorphic representation π of GL(2,AQ) associated with a modular

form φ, see Section 3.6 of [7] or Section 7 of [8].

2.7.2 Vector-valued Siegel modular forms

Following the notations in Section 3 of [42], we define Uj ∼= symj(C2) to be the space

of all complex homogeneous polynomials of total degree j in the two variables S and T .

For an integer k, let us define a representation (ηk,j, Uj) of GL(2,C) as follows

ηk,j(g)P (S, T ) = det(g)kP ((S, T )g) for all g ∈ GL(2,C) and P (S, T ) ∈ Uj. (2.67)

This is the irreducible representation detk × symj of GL(2,C). Let H2 be the Siegel

upper half space of degree 2, i.e., H2 consists of all symmetric complex 2 × 2 matrices

whose imaginary part is positive definite. Let GSp(4,R)+ be the group consisting of all

elements of GSp(4,R) with positive multiplier. Here we consider the the classical form

of GSp(4) as in Note 2.1.1. There is an action of GSp(4,R)+ on H2 given by

gZ = (AZ +B)(CZ +D)−1 for all Z ∈ H2 and [ A B
C D ] ∈ GSp(4,R)+. (2.68)

Let C∞k,j(H2) := {f : H2 → Uj such that f is smooth}. There is an action of GSp(4,R)+

on C∞k,j(H2) as follows

(f |k,jg)(Z) = µ(g)
k+j
2 ηk,j(CZ +D)−1f(gZ) for Z ∈ H2, g ∈ GSp(4,R)+. (2.69)

Here we have chosen the normalization factor µ(g)
k+j
2 such that the center of GSp(4,R)+

acts trivially. Let Γ′ be a congruence subgroup of Sp(4,Q). Then f : H2 → Uj is called a

Siegel modular form of degree 2 and weight (k, j) with respect to Γ′ if f is holomorphic
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and satisfies the following transformation property

f |k,jγ = f for all γ ∈ Γ′. (2.70)

Let Mk,j(Γ
′) be the space of Siegel modular forms of weight (k, j) with respect to the

congruence subgroup Γ′. We call f ∈Mk,j(Γ
′) a cusp form if

lim
λ→∞

(f |k,jg) ([ iλ τ ]) = 0 for all g ∈ Sp(4,Q), τ ∈ H.

Let Sk,j(Γ
′) be the space of Siegel cusp forms of degree 2 and weight (k, j) with respect

to the congruence subgroup Γ′. We consider the following congruence subgroups of

Sp(4,Q).

1. The principal congruence subgroup of level M :

Γ(M) =

[
1+MZ MZ MZ MZ
MZ 1+MZ MZ MZ
MZ MZ 1+MZ MZ
MZ MZ MZ MZ

]
∩ Sp(4,Z).

2. The Siegel congruence subgroup of level M :

Γ0(M) =

[
Z Z Z Z
Z Z Z Z
MZ MZ Z Z
MZ MZ Z Z

]
∩ Sp(4,Z).

3. The paramodular group of level M :

K(M) =

[ Z MZ Z Z
Z Z Z M−1Z
Z MZ Z Z
MZ MZ MZ Z

]
∩ Sp(4,Q).

We say a Siegel cusp form f of degree 2 and weight (k, j) has level M with respect

to a congruence subgroup Γ′(M) if f ∈ Sk,j(Γ′(M)). Here we consider Γ′(M) = Γ(M),

Γ0(M), or K(M) which are defined above.

Similar to the case of modular forms, one can define Hecke operators on Sk,j(Γ
′(M)).

The completed spin L-function for a Hecke eigenform f ∈ Sk,j(Γ′(M)) and its functional

equation are defined in Section 3.3 of [42] (also see Section 4.6 of [3]).

A Siegel modular form with respect to the paramodular group of some level is called

a paramodular form. There is a newform theory for the space of paramodular Hecke
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eigenforms of some weight (k, j) and level M , which is similar to the case of modular

forms (see [36]).

2.8 Elliptic curves

One of the primary objects of study in this thesis are elliptic curves. In this chapter we

discuss some basic facts about elliptic curves over a field K. Our main references for

this section are [39], [48] and [47]. The facts in Subsection 2.8.1 are for elliptic curves

over any field K, but in all other subsections we assume K to be a non-archimedean

local field of characteristic 0.

2.8.1 Weierstrass equations

Roughly speaking, elliptic curves are algebraic curves of genus one having a specified

base point. It is a well known fact that such curves can be written as the locus in P2 of a

cubic equation with only one point, the base point, on the line at∞ (see Proposition 3.1.

in [48]). So, an elliptic curve E defined over a field K has an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.71)

where a1, ..., a6 ∈ K. We should also remember that E always has an extra point

O = [0, 1, 0] out at infinity. This equation is called a Weierstrass equation. There are

some important quantities attached to a Weierstrass equation defined as follows

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6, b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4,

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6, (2.72)

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 =

c3
4 − c2

6

1728
,
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j(E) =
c3

4

∆
.

Definition 2.8.1. The quantity ∆ is the discriminant of the Weierstrass equation.

The class of ∆ in K×/K×12 is independent of the choice of Weierstrass equation. The

quantity j(E) is the j-invariant of the elliptic curve, which is an invariant up to

isogeny.

Note 2.8.2. Not all Weierstrass equations of the form (2.71) represent elliptic curves.

If a curve with an equation the form (2.71) has ∆ = 0, then that curve is called singular.

An elliptic curve is a non-singular curve. So, to be precise, an elliptic curve E has

a Weierstrass equation of the form (2.71) such that ∆ 6= 0 and it has an extra point

O = [0, 1, 0] out at infinity.

Suppose a curve given by a Weierstrass equation of the form (2.71) is singular and

f(x, y) = y2 + a1xy+ a3y− x3− a2x
2− a4x− a6. Then there exists a point P = (x0, y0)

satisfying f(P ) = 0, called a singular point, such that

∂f

∂x
(P ) = 0 and

∂f

∂y
(P ) = 0. (2.73)

Then there are α, β ∈ K̄ such that the Taylor series expansion of f(x, y) at P is of the

form

f(x, y)− f(x0, y0) = ((y − y0)− α(x− x0)) ((y − y0)− β(x− x0))− (x− x0)3. (2.74)

If α 6= β, then the point P is called a node and there are two tangent lines at P in this

case, which are (y− y0)−α(x−x0) and (y− y0)−β(x−x0). If α = β, then the point P

is called a cusp and in this case the tangent line at P is (y − y0)− α(x− x0). One can

easily graph the real locus of a Weierstrass equation. Some examples of elliptic curves

are given in Figure 2.2 and some examples of singular curves are given in Figure 2.3.
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Figure 2.2: Examples of elliptic curves.

Figure 2.3: Examples of singular curves.
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Minimal Weierstrass equations over local fields.

Suppose K is a non-archimedean local field of characteristic 0. Let oK be the ring of

integers of K and let v : K → Z be the normalized valuation on K. A Weierstrass

equation (2.71) of E/K is called minimal if v(∆) is minimized subject to the condition

that all ai are in oK . This minimal value of v(∆) is called the valuation of the minimal

discriminant of E. We have the following facts (see Remark 1.1 in Chapter VII of [48]):

• If all ai are in oK and v(∆) < 12, then the equation is minimal.

• If all ai are in oK and v(c4) < 4, then the equation is minimal.

• If all ai are in oK and v(c6) < 6, then the equation is minimal.

Every elliptic curve E/K has a minimal Weierstrass equation, and such an equation is

unique up to a change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t, where u ∈ o×K and r, s, t ∈ oK . (2.75)

Global minimal Weierstrass equations.

Suppose E is an elliptic curve over Q with a Weierstrass equation of the form (2.71)

and discriminant ∆. One can consider the same Weierstrass equation over Qp for each

prime p. Let ∆p be the discriminant of the Weierstrass equation over Qp. We start with

a Weierstrass equation of E/Q such that the Weierstrass equations over Qp are minimal

for each prime p. We define the minimal discriminant DE/Q of E/Q to be the ideal

DE/Q =
∏
p

pvp(∆p), where p is the maximal ideal of Zp and vp is the p-adic valuation.

Definition 2.8.3. A global minimal Weierstrass equation for E/Q is a Weierstrass

equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 such that ai are in Z and such that the

discriminant ∆ of the equation satisfies DE/Q = (∆).
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It is a well-known fact that every elliptic curve E over Q has a global minimal

Weierstrass equation (see Corollary 8.3 in [48]). Note that, if E/Q is given by a global

minimal Weierstrass equation with discriminant ∆, then vp(∆) is the valuation of the

minimal discriminant of E/Qp.

Isogenies and CM curves.

Let E1 and E2 be two elliptic curves. An isogeny φ from E1 to E2 is a morphism

(of algebraic curves) φ : E1 → E2 such that φ(O) = O. For an elliptic curve E, let

End(E) = {φ : E → E such that φ is an isogeny}. Then End(E) is a ring, it is called

the endomorphism ring of E. Suppose that char(K) = 0. Then the ring homomorphism

[ ] : Z −→ End(E)

m 7−→ [m]

is usually an isomorphism, i.e., End(E) ∼= Z. Here, [m] : E → E is the multiplication-

by-m map and O is the point at infinity. If End(E) is strictly larger than Z, then we say

that E has complex multiplication, or CM for short. If E is an elliptic curve such

that End(E) ∼= Z then we call E a non-CM elliptic curve.

2.8.2 Reduction types

Let K be a non-archimedean local field of characteristic zero with residual characteristic

p. Let oK be the ring of integers of K, and let p be the maximal ideal of oK . Suppose

that v : K → Z is the normalized valuation on K, and k = oK/p is the residue field of K

of order q. Let E/K be an elliptic curve. Assume that (2.71) is a minimal Weierstrass

equation for E/K. Consider the curve Ẽ/k given by

y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6, (2.76)
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where ãi denotes the image of ai in k. The equation (2.76) for Ẽ depends on the choice

of minimal Weierstrass equation for E, but (2.75) shows that any two such choices lead

to equations for Ẽ that are related by a standard change of coordinates over k. The

equivalence class of the curve Ẽ is called the reduction of E modulo p.

Definition 2.8.4. Let E/K be an elliptic curve, and let Ẽ/k be its reduction modulo p.

1. If Ẽ is non-singular (i.e., an elliptic curve over k), then E is said to have good

reduction (or stable reduction).

2. If Ẽ has a node, then E is said to have multiplicative reduction (or semi-stable

reduction). In this case, we have two different possibilities:

• If the slopes of the tangent lines at the node are in k, then E is said to have

split multiplicative reduction.

• If the slopes of the tangent lines at the node are not in k, then E is said to

have non-split multiplicative reduction.

3. If Ẽ has a cusp, then E is said to have additive reduction (or unstable reduc-

tion).

In cases 1 and 2, E is said to have bad reduction.

Given the minimal Weierstrass equation of E/K, we have the following standard re-

sults to read off the reduction type of E from its minimal Weierstrass equation (see

Proposition 5.1 in Chapter VII of [48]):

E has good reduction if and only if v(∆) = 0. (2.77)

E has multiplicative reduction if and only if v(∆) > 0 and v(c4) = 0. (2.78)

E has additive reduction if and only if v(∆) > 0 and v(c4) > 0. (2.79)
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In the case of bad reduction, let Ẽns be the open subvariety consisting of the non-singular

points of Ẽ. The reduction type can then also be characterized by the cardinality of

Ẽns(k). Namely

E has split multiplicative reduction if and only if #Ẽns(k) = q − 1. (2.80)

E has non-split multiplicative reduction if and only if #Ẽns(k) = q + 1. (2.81)

E has additive reduction if and only if #Ẽns(k) = q. (2.82)

Good reduction can also be characterized via the action of inertia. Let K̄ be an algebraic

closure of K and Let Gal(K̄/K) be the absolute Galois group of K. Let Kun be the

maximal unramified extension of K inside K̄ and IK = Gal(K̄/Kun) be the inertia

group. There is an exact sequence

1 −→ IK −→ Gal(K̄/K) −→ Gal(k̄/k) −→ 1. (2.83)

Hence, IK consists precisely of those elements of Gal(K̄/K) which act trivially on k̄.

Then we have the following criterion for good reduction.

Theorem 2.8.5 (Criterion of Néron-Ogg-Shafarevich). Let E/K be an elliptic curve.

Let ` be a prime different from the characteristic of k. The following statements are

equivalent.

1. E has good reduction.

2. The Tate module T`(E) is unramified, i.e., the inertia group IK acts trivially on

T`(E).

Reduction type after base extension.

When an elliptic curve E/K has bad reduction, it is often useful to know whether it
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attains good reduction over some extension of K. Here we list the reduction types

of E after its base change to a finite field extension of K. Given E/K and a finite

field extension K ′/K, we may consider E an elliptic curve over K ′. A given minimal

Weierstrass equation over K may no longer be a minimal equation over K ′, i.e., the

reduction type may change when extending the field of definition. The following theorem

is proved in VII.5 of [48].

Theorem 2.8.6 (Semistable Reduction Theorem). Let E/K be an elliptic curve.

1. Let K ′/K be a finite field extension. If E has either good or multiplicative reduction

over K, then it has the same reduction type over K ′.

2. There exists a finite extension K ′/K such that E has either good or multiplicative

reduction over K ′.

Definition 2.8.7. Let E/K be an elliptic curve.

(1) If there exists a finite extension K ′/K such that E has good reduction over K ′,

then E is said to have potential good reduction.

(2) If there exists a finite extension K ′/K such that E has multiplicative reduction

over K ′, then E is said to have potential multiplicative reduction.

By (1) of Theorem 2.8.6, each elliptic curve over K has either potential good or

potential multiplicative reduction. Moreover, a given elliptic curve E/K cannot have

both potential good and potential multiplicative reduction. Since if E would have good

reduction over K1 and multiplicative reduction over K2, then E would have both good

and multiplicative reduction over K1K2, by (2) of Theorem 2.8.6.

Theorem 2.8.8. Let E/K be an elliptic curve. Let ` be a prime different from the

characteristic of k. The following statements are equivalent.

(1) E/K has potential good reduction.
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(2) The j-invariant j(E) of E lies in oK.

(3) The inertia group IK acts on T`(E) via a finite quotient (i.e., the image of IK →

GL(2,Q`) is finite).

One can also read off the potential good or potential multiplicative reduction type of E

from its minimal Weierstrass equation using Theorem 2.8.8 (see Proposition VII.5.5 and

Corollary VII.7.3 of [48]), i.e., we have the following

E has potential multiplicative reduction if and only if j(E) 6∈ oK . (2.84)

E has potential good reduction if and only if j(E) ∈ oK . (2.85)

2.8.3 Relationship between Weil-Deligne and `-adic represen-

tations

We continue assuming that K is a non-archimedean local field of characteristic zero with

residual characteristic p and IK is the inertia group as defined in (2.83). Let k be the

residue field of K of order q. In this section we discuss how one can associate a Weil-

Deligne representation to an `-adic representation. This association plays an important

part to find the Weil-Deligne representation of W ′(K̄/K) attached to a given elliptic

curve over K. The main references for this section are [39] and [49].

Let ` be a prime different from the residual characteristic of K. An `-adic represen-

tation of Gal(K̄/K) is a continuous homomorphism

σ′` : Gal(K̄/K) −→ GL(V`), (2.86)

where V` is a finite-dimensional Q` vector space. There is a procedure to attach an `-adic

representation of Gal(K̄/K) to a complex representation of W ′(K̄/K). This construc-

tion will depend on the choice of a field embedding ι : Q` → C but the isomorphism class
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of the result will be independent of this choice. Hence, we fix such an embedding. Let σ′`

be a given `-adic representation, as in (2.86). The space of the associated Weil-Deligne

representation σ′`,ι will be the complex vector space C ⊗ι V`. There are two cases to

distinguish.

Case I: Assume that the image of the inertia group IK under the map (2.86) is finite.

Equivalently, σ′` is trivial on an open subgroup J of IK (which automatically is of finite

index). In this case we may simply compose the map (2.86) with the map GL(V`) →

GL (C⊗ι V`), and restrict the result to W (K̄/K). The resulting representation σ of the

Weil group is really continuous since it is trivial on J . In this case we can set σ′`,ι = (σ, 0).

Hence, in this case, σ′`,ι is actually a representation of the Weil group.

Case II: Assume that the image of the inertia group IK under the map (2.86) is

infinite. In this case one can prove that there is a canonical way to associate to σ′` a pair

(σ`, N`) consisting of a non-zero, nilpotent endomorphism N` of V` and a homomorphism

σ` : W (K̄/K)→ GL(V`) with the following properties:

• σ`(g)N`σ`(g)−1 = ω(g)N` for all g ∈ W (K̄/K). Recall from Section 2.4 that ω

is the one-dimensional representation of W (K̄/K) with the property ω(IK) = 1

and ω(Φ) = q−1, where Φ is an inverse Frobenius element in W (K̄/K). Note that

ω(g)N` makes sense, since ω(g) is always a rational number.

• σ`(IK) is finite. Equivalently, σ` is trivial on an open subgroup J of IK .

With this σ` and N` available, one can proceed as in case I. Composing σ` with the

map GL(V`) → GL (C⊗ι V`) gives a complex and continuous representation σ`,ι. And

N` can be lifted to a nilpotent endomorphism N`,ι of C ⊗ι V` via the map End(V`) →

End (C⊗ι V`). Then the pair (σ`,ι, N`,ι) satisfies the compatibility relation (2.29), and

hence defines a Weil-Deligne representation σ′`,ι.

Remark 2.8.9. The construction of the pair (σ`, N`) is done as follows. First, one

proves that there is a uniquely determined nilpotent endomorphism N` of V` with the
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property that

σ′`(i) = exp(t`(i)N`) (2.87)

for all i in an open subgroup J of IK. Here, t` : IK → Q` is a chosen non-trivial

continuous homomorphism (unique up to mutiplication by an element of Q×` ). Then

define

σ`(g) = σ′`(g)exp(−t`(i)N`), g = Φmi, m ∈ Z and i ∈ IK , (2.88)

where Φ is a chosen Frobenius element. Then σ`(IK) is finite, and one can show that

the relation σ`(g)N`σ`(g)−1 = ω(g)N` is automatically satisfied for all g ∈ W (K̄/K).

For a proof of the above remark, see (4.2.2) of [49] or (the student supplement to) [39].

2.8.4 The Weil-Deligne representation associated to an elliptic

curve

As before, let K be a non-archimedean local field of characteristic zero with residual

characteristic p and k be the residue field of K of order q. In this section, we describe

the process of finding the Weil-Deligne representation associated to an elliptic curve

E/K and we give a description the Weil-Deligne representation attached to E/K when

E has good reduction. In chapter 4, when the residual characteristic of K is odd, we

completely determine the Weil-Deligne representations associated to elliptic curves over

K with bad reduction. The main references for this section are [39] and [48].

Definition 2.8.10. Let E/K be an elliptic curve and let m ∈ Z with m ≥ 1. The

m-torsion subgroup of E, denoted by E[m], is the set of points of E of order m, i.e,

E[m] := {P ∈ E : [m]P = O} , (2.89)

where [m] : E → E is the multiplication-by-m map and O is the point at infinity.
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It is a well-known fact that E[m] ∼= Z
mZ ×

Z
mZ .

Definition 2.8.11. Let E/K be an elliptic curve and ` be a prime. The (`-adic) Tate

module of E is the group

T`(E) := lim←−−
n

E[`n], (2.90)

where the inverse limit being taken with respect to the natural maps E[`n+1]
[`]−−→ E[`n].

Now, let us assume that ` is a prime different from the residual characteristic of K. Then

T`(E) is a free Z`-module of rank 2, i.e., T`(E) ∼= Z` × Z`. There is a natural action of

Gal(K̄/K) on T`(E) induced by the action of Gal(K̄/K) on the `n-torsion points of E.

Then we have a natural representation σ` of Gal(K̄/K) on V`(E) = T`(E)⊗Q`. Let

σ′` : Gal(K̄/K) −→ GL(V`(E)∗) (2.91)

be the contragredient of σ`. Let σ′`,ι be the associated complex two-dimensional repre-

sentation of W ′(K̄/K) as described in the previous section. One can show that, up to

isomorphism, σ′`,ι is independent of the choice of ` and ι. We will therefore write σ′E for

σ′`,ι and call it the Weil-Deligne representation attached to E/K.

The case of good reduction.

Let E/K be an elliptic curve with good reduction. Let ` be a prime different from the

residual characteristic of K, and let σ′` be the `-adic representation of Gal(K̄/K) on E.

By Theorem 2.8.5, since E/K has good reduction, the action of Gal(K̄/K) on T`(E)

is unramified. Hence, the action of W ′(K̄/K) on T`(E) is completely determined by

σ′`(Φ), where Φ is an inverse Frobenius element. Now we will calculate det(σ′`(Φ)) and

tr(σ′`(Φ)) in order to find the characteristic polynomial of σ′`(Φ).

The determinant of Frobenius: For a non-negative integer n, consider the group

W (`n) of `n-th roots of unity in K̄. Via the maps W (`n+1)→ W (`n) defined as ζ 7→ ζ`,
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these groups form a projective system. The projective limit

T`(K) := lim←−−
n

W (`n), (2.92)

is called the Tate module of K. It is a Gal(K̄/K)-module in a natural way. Since ` is

different from the residual characteristic of K, we have W (`n) ∼= Z
`nZ and T`(K) ∼= Z`.

Hence, the Galois action gives rise to a character χ` : Gal(K̄/K) → Z×` . This is called

the cyclotomic character. By definition,

g(ζ) = ζχ`(g) for all ζ ∈ T`(K) and g ∈ Gal(K̄/K). (2.93)

Since the field extensionK(W (`n))/K is unramified, the inertia group IK acts trivially on

T`(K), i.e., χ` is an unramified representation. Since Φ ∈ Gal(K̄/K) induces the inverse

of the Frobenius map x→ xq on k̄ and the Galois group of the extension K(W (`n))/K

is generated by an element with the property ζ → ζq, it is easy to see that

χ`(Φ) = q−1. (2.94)

Now for the elliptic curve E/K, the Weil pairing is a bilinear, non-degenerate, Galois-

invariant map

T`(E)× T`(E) −→ T`(K). (2.95)

This pairing induces an isomorphism of Gal(K̄/K) modules
∧2 T`(E) ∼= T`(K). The

action of Gal(K̄/K) on the left hand side is the determinant of the Galois representation

σ′` on E. Hence we get det ◦ σ` = χ`, and consequently det ◦ σ′` = χ−1
` , where we recall

that σ′` denotes the contragredient of σ`. Then from (2.94), we get

det(σ′`(Φ)) = q. (2.96)
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The trace of Frobenius: Let Ẽ/k be the reduced curve. By our assumption of good

reduction, Ẽ is non-singular. Corollary II.6.4 and Proposition VII.3.1 of [48] therefore

imply that the reduction map E → Ẽ induces an isomorphism E[`n] ∼= Ẽ[`n] of the

`n-division points. In fact, these isomorphism, for all n, fit together to produce an

isomorphism of the Tate modules

T`(E) ∼= T`(Ẽ) and V`(E) ∼= V`(Ẽ). (2.97)

This isomorphism is Galois-invariant in the sense that if g ∈ Gal(K̄/K) induces the map

g̃ ∈ Gal(k̄/k), then the reduction of σ′E,`(g)(v) equals σ′
Ẽ,`

(g̃)(ṽ) for all v ∈ V`(E). In

particular,

tr
(
σ′E,`(g)

)
= tr

(
σ′
Ẽ,`

(g̃)
)

for all g ∈ Gal(k̄/k), (2.98)

here both sides are elements of Q`. Now, let g = Φ. Then, by definition, Φ̃ is the inverse

of the Frobenius map x→ xq on k̄. Let φ be the Frobenius isogeny on Ẽ (i.e., the map

(x, y) → (xq, yq))). Then σ′
Ẽ,`

(Φ̃−1) is φ` in the notation of [48], Proposition V.2.3 and

we get tr(φ`) = 1 + deg(φ) − deg(1 − φ). By Proposition II.2.11 of [48], deg(φ) = q.

As in the proof of Theorem V.1.1 of [48], we have deg(1 − φ) = #Ẽ(k), the number of

k-rational points on the reduced curve. Now, σ′
Ẽ,`

(Φ̃−1) and σ′
Ẽ,`

(Φ̃) have the same trace

since their matrix forms are conjugate of each other. Hence, using (2.98), we get

tr
(
σ′E,`(Φ)

)
= tr

(
σ′
Ẽ,`

(Φ̃)
)

= tr
(
σ′
Ẽ,`

(Φ̃−1)
)

= 1 + q −#Ẽ(k). (2.99)

Now, using (2.96) and (2.99), we get that the characteristic polynomial fE of σ′E,`(Φ) is

fE = 1−aX + qX2, where a = 1 + q−#Ẽ(k). Note that fE has coefficients in Z, which

is not evident from its definition. Let fE = (1− αX)(1− βX). Then α, β are algebraic

integers such that α+β = a and αβ = q. So, |α| = |β| = √q. It also follows that α = β̄.

Now, let σ′E = (σE, 0) be the Weil-Deligne representation attached to σ′E,`. Then
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σ′E is unramified, since σ′E,` is, and σ′E have the same characteristic polynomial as σ′E,`.

Summarizing, we obtain the following result.

Proposition 2.8.12. Let E/K be an elliptic curve with good reduction. Let Ẽ/k be the

reduced curve. Then the associated Weil-Deligne representation σ′E is of the form (σE, 0),

where (up to isomorphism) the representation σE of W (K̄/K) is given as follows:

1. σE is unramified, i.e., σE(IK) = 0.

2. σE(Φ) =
[
β
β̄

]
, where β is an algebraic integer with |β| =

√
q and β + β̄ = a.

Here, a = 1 + q −#Ẽ(k).

L-functions of elliptic curves.

The L-function (in arithmetic normalization) of an elliptic curve E/Q is given by

Lar(s, E) =
∏
p

Lar
p (s, E), (2.100)

where Lar
p (s, E) is the L-function (in arithmetic normalization) of the elliptic curve E/Qp

defined as

Lar
p (s, E) =

1

1− app−s + p1−2s
, where ap = 1 + p−#Ẽ(Fp). (2.101)

We consider the L-function L(s, E) of E/Q in analytic normalization given by L(s, E) :=

Lar(s − 1/2, E) =
∏
p

Lp(s, E). If σ′E/Qp is the Weil-Deligne representation attached to

E/Qp, then we have Lp(s, E) = Lp(s, σ
′
E/Qp), where Lp(s, σ

′
E/Qp) is the L-function of

σ′E/Qp as in (2.42). Let π = ⊗p≤∞πp be the automorphic representation of GL(2,AQ)

associated to E/Q. Then the local representation πp of GL(2,Qp) has the L-parameter

σ′E/Qp . So, we have the following identity

L(s, E) = L(s, π), i.e., Lp(s, E) = Lp(s, σ
′
E/Qp) = Lp(s, πp). (2.102)
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Also, by the modularity theorem, there exists a modular form φ of weight 2 associated

with E/Q such that L(s, E) = L(s, φ), where L(s, φ) is defined as in (2.62).

2.8.5 Kodaira-Néron types

Again, let us assume that K is a non-archimedean local field of characteristic zero with

residual characteristic p and k is the residue field of K of order q. In this section we

discuss some facts about the Kodaira-Néron types of elliptic curves over K. One of

the main result that we study in this section is that the Kodaira-Néron types of an

elliptic curve E/K can be determined from its Weierstrass equation. We also study the

relationship between the Kodaira-Néron type and the reduction type of an elliptic curve

E/K. Our primary references are Section C.15 of [48] and Chapter IV of [47].

Néron model and Tate’s algorithm.

Let E/K be an elliptic curve given by a minimal Weierstrass equation of the form (2.71)

with coefficients in oK . This equation can be used to define a scheme over Spec(oK).

The resulting scheme may not be nonsingular if E has bad reduction. By resolving the

singularity, we obtain a (smooth) group scheme E/oK whose generic fiber is E/K and

it satisfies a universal property known as the Néron mapping property. We call E/oK a

Néron model of E/K. Note that E/K always has a minimal proper regular model C/oK

defined as in Theorem 4.5 of [47]. Then, by Theorem 6.1 of [47], the Néron model E/oK

of an elliptic curve E/K exists and it is the largest subscheme of C/oK which is smooth

over oK . The generic fiber of C is E and the special fiber C̃ = C ×Spec(oK) Spec(k) of C

consists of one or more irreducible components with multiplicity. Then E is constructed

by removing from C all the irreducible components with multiplicity ≥ 2, all the singular

points on each component, and all the points where these components intersect (see

Remark 6.1.1 in [47] and Theorem 15.1 in [48]).

Consider the reduced curve Ẽ/k and the set of nonsingular points Ẽns(k) as in Sec-
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tion 2.8.2. We define E0(K) =
{
P ∈ E(K) : P̃ ∈ Ẽns(k)

}
. The classification of special

fibers C̃ helps to determine the special fiber Ẽ = E ×Spec(oK) Spec(k) of E and hence the

group E(K)/E0(K) (see Theorem 15.1 in [48]). Kodaira and Néron have classified all

possibilities for the special fiber C̃ and E(K)/E0(K) associated to a given elliptic curve

E/K and it is known as the Kodaira-Néron type of E/K. See Theorem 8.2 and

Table 4.1 of [47] for all the possible Kodaira-Néron types.

Tate has an algorithm, known as Tate’s algorithm, to compute the special fiber

C̃, i.e., the Kodaira-Néron type of a given elliptic curve E/K in terms of its Weierstrass

equation. See 9.4 from Section 9 of [47] for the detailed algorithm described in eleven

steps. Details of the algorithm are not needed for our study. But, we use the Kodaira-

Néron type of an elliptic curve E/K given in terms of its Weierstrass equation, in order

to compute the Weil-Deligne representation σ′E attached to E/K in Chapter 4.

Relationship between the Kodaira-Néron type and the reduction type.

We have discussed the reduction types of elliptic curves E over K in Section 2.8.2. Now,

we will see how the reduction type and the Kodaira-Néron type of E/K are related.

We relate these “two different Types” attached to E/K using their description given in

terms of the Weierstrass coefficients of E/K. Here we state the results without proofs,

we refer to Sections 9-11 of [47], and [33] for details.

1. E/K has good reduction if and only if the Kodaira-Néron type of E/K is Type

I0.

2. E/K has multiplicative reduction if and only if the Kodaira-Néron type of

E/K is Type In with n ≥ 1.

3. E/K has potential multiplicative reduction with the residual characteristic

of K being odd if and only if the Kodaira-Néron type of E/K is Type I∗n with

n ≥ 1.
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4. E/K has potential good reduction with the residual characteristic of K being

odd if and only if the Kodaira-Néron type of E/K is one of the Types I∗0, II,

II∗, III, III∗, IV or IV∗.
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Chapter 3

The symmetric cube lifting

In this chapter we introduce the symmetric cube map and discuss the lifting of

automorphic representations of GL(2) via the symmetric cube map. We call this “the

symmetric cube lifting”. We also discuss the local symmetric cube lifting in Section 3.3

and Siegel modular forms coming from this lifting in Section 3.5.

3.1 The symmetric cube map

Let V be the space of homogeneous polynomials of degree 3 in C[S, T ]. Then V has a

basis {S3, S2T, ST 2, T 3}. There is an action of GL(2,C) on V given by

[ a bc d ] · f(S, T ) = f(aS + cT, bS + dT ).

This action defines a four-dimensional irreducible representation of GL(2,C) and induces

a map f : GL(2,C)→ GL(V ) ∼= GL(4,C) given by

a b

c d

 f7−−→


a3 a2b ab2 b3

3a2c 2abc+a2d 2abd+b2c 3b2d

3ac2 2acd+bc2 2bcd+ad2 3bd2

c3 c2d cd2 d3

.
The image of f does not lie in GSp(4,C) since

f([ 1 b
1 ]) =

[
1 b b2 b3

1 2b 3b2

1 3b
1

]
=

[
1 b

1
1 3b

1

][
1 −b2 −2b3

1 2b 3b2
1

1

]
6∈ GSp(4,C),
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and f([ 1
c 1 ]) =

[
1
3c 1
3c2 2c 1
c3 c2 c 1

]
=

[
1
3c 1

1
c 1

][
1

1
3c2 2c 1
−2c3 −c2 1

]
6∈ GSp(4,C).

Note 3.1.1. Conjugating f([ a bc d ]) by a element of GL(4,C) gives us the same represen-

tation up to isomorphism and we can find an element A of GL(4,C) such that the image

of A · f([ a bc d ]) · A−1 lies in GSp(4,C).

Let us choose A =

[
1

1
1
−3

]
∈ GL(4,C). Then we get the following

(A · f · A−1) ([ 1 b
1 ]) =

[
1 b

1
1 −b

1

][
1 −b2 − 2

3
b3

1 2b −b2
1

1

]
∈ GSp(4,C),

(A · f · A−1) ([ 1
c 1 ]) =

[
1
3c 1

1
−3c 1

][
1

1
3c2 2c 1
6c3 3c2 1

]
∈ GSp(4,C).

Using the identity [ a bc d ] =
[

1
ca−1 1

]
[ a d ]

[
1 a−1b

1

]
, we get the following version of the sym-

metric cube map, denoted as sym3, and given by

sym3 : GL(2,C)→ GSp(4,C)

a b

c d

 7→


a3 a2b ab2 −1
3
b3

3a2c 2abc+ a2d 2abd+ b2c −b2d

3ac2 2acd+ bc2 2bcd+ ad2 −bd2

−3c3 −3c2d −3cd2 d3


. (3.1)

Note that, if g = [ a bc d ] ∈ SL(2,C) then sym3(g) ∈ Sp(4,C). Also, since we use (3.1) for

calculations over non-achimedean local fields of characteristic zero, here we choose the

symplectic form J =

[
1

1
−1

−1

]
for simplicity of calculations.
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3.2 Langlands functoriality for the symmetric cube

map

Here, a “lifting” means a functorial lift according to the Langlands principle of functori-

ality discussed in Section 2.6.2. We have the map sym3 : ĜL(2) = GL(2,C)→ ĜSp(4) =

GSp(4,C), which is a Lie group homomorphism. So the principle of functoriality pre-

dicts that an automorphic representation of GL(2,AQ) should “lift” to an automorphic

representation of GSp(4,AQ), i.e., the following diagram should hold:

{
GL(2,C) GSp(4,C)

sym3
}

Langlands
=======⇒
Functoriality

{
auto. rep. of auto. rep. of

GL(2,AQ) GSp(4,AQ)
sym3

lifting

}
.

(3.2)

Ramakrishnan and Shahidi [35] proved the following lifting from a cuspidal automorphic

representation GL(2,AQ) to a cuspidal automorphic representation GSp(4,AQ).

Theorem 3.2.1 (Ramakrishnan-Shahidi, 2007). Let π ∼=
⊗

p πp be a cuspidal automor-

phic representation of GL(2,AQ) defined by a holomorphic, non-CM newform φ of even

weight k ≥ 2 and level N with trivial central character. Then there exists a cuspidal au-

tomorphic representation Π ∼=
⊗

p Πp of GSp(4,AQ) with trivial central character, which

is unramified at any prime p not dividing N, such that

(i) Each non-archimedean component Πp is generic, with its parameter being sym3 of

the parameter of πp.

(ii) Π∞ is a holomorphic discrete series representation, with its parameter being sym3

of the archimedean parameter of π.

(iii) L(s,Π) = L(s, π, sym3).

Using some results that were not available at the time, we can now give a short proof

of Theorem 3.2.1 as follows:
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Proof. By the functorial symmetric cube transfer for cuspidal automorphic representa-

tions of GL(2,AQ) from [19], we get a unitary cuspidal automorphic representation µ =

⊗pµp of GL(4,AQ) with trivial central character from π such that L(s, µ) = L(s, π, sym3).

Also, µ has the following properties:

• µ is symplectic, i.e., the exterior square L-function L(s, µ,Λ2) has a pole at s = 1.

This is true because of the well known identity L(s, µ,Λ2) = L(s, π, sym4)ζ(s) and

the fact that L(s, π, sym4) has no zero at s = 1.

• µ is self-dual. This follows from the identity L(s, µ×µ) = L(s, µ,Λ2)L(s, µ, sym2)

and the facts that L(s, µ, sym2) has no zero at s = 1 and the Rankin-Selberg L-

function has a pole at s = 1 if and only if µ is isomorphic to its contragredient

µ∨.

These two properties are explained in detail in [35]. Now, since µ is a self-dual, symplec-

tic, unitary, cuspidal automorphic representation of GL(4,AQ), ψ = µ� 1 is an Arthur

parameter of general type for the group SO(5). Then by Arthur’s classification in [2],

there is a packet Πψ of cuspidal automorphic representations of SO(5,AQ) with ψ as

the Arthur parameter. Since SO(5) and PGSp(4) are isomorphic as algebraic groups,

a representation of SO(5,AQ) can be viewed as a representation of GSp(4,AQ) with

trivial central character. Furthermore, using Proposition 1.2.1 of [44], it follows that

there exists an element Π ∼= ⊗Πp in the packet Πψ such that each non-archimedean

local representation Πp is a generic representation and Π∞ is a holomorphic discrete

series representation. We choose such a representation Π in Πψ. So, we get a cuspidal

automorphic representation Π of GSp(4,AQ) with trivial central character which satis-

fies properties (i) and (ii) of Theorem 3.2.1. Also, it is evident from Lemma 1.3.1 of

[44] that the spin L-function of Π coincides with the standard L-function L(s, µ), i.e.,

L(s,Π) = L(s, µ) = L(s, π, sym3).
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Moreover, this sym3 lifting (3.2) is functorial at each place since the local Langlands

correspondence is true for GL(2,Qp) and GSp(4,Qp). So, we have the following diagram

πp
LLC−−→

[
ϕp : W ′

Qp → GL(2,C)
]

sym3

−−−→
[
sym3 ◦ ϕp : W ′

Qp → GSp(4,C)
]

LLC−−→ Πp.

We can specifically study the “local components” of the sym3 lifting, i.e., for an irre-

ducible and admissible representation πp of GL(2,Qp), we can consider the representa-

tions Πp of GSp(4,AQp) whose L-parameter is the same as the sym3 of the L-parameter

of πp. For the purposes of this paper, it is important to study the “local sym3 lift” at

each place, which we discuss in the next two sections.

3.3 Local sym3 lifting of non-archimedean parameter

of GL(2)

Let K be a non-achimedean local field of characteristic 0 and residual characteristic p,

and let v be the valuation on K. We denote by oK the ring of integers of K, and we

let p be the maximal ideal of oK . Let q be the number of elements of oK/p. We fix a

generator $K for the ideal p and $K is called the uniformizer. We write ν(x) or |x| for

the normalized absolute value of x; thus ν($K) = q−1. Let π be an infinite dimensional

irreducible admissible representation of GL(2, K). In this chapter, we look at the sym3

lifting of π. We consider sym3(π) as the L-packet on GSp(4, K) whose L-parameter is

the symmetric cube of the L-parameter of π.

Langlands parameter of sym3(π)

There are three types of irreducible admissible infinite dimensional representations of

GL(2, K). So, we compute the L-parameter of sym3(π) in three cases.

Case 1: Let π = χ1×χ2 be the principal series representation of GL(2, K), where χ1, χ2

are characters of K× such that χ1χ
−1
2 6= ν±1. Then, using the L-parameter of π in (2.40)

68



and the sym3 map in (3.1), we get the L-parameter (sym3(ϕ), N ′) of sym3(π) as follows

sym3(ϕ)(w) =

 χ3
1(w)

χ2
1χ2(w)

χ1χ2
2(w)

χ3
2(w)

, w ∈ W (K̄/K) and N ′ = 0 (3.3)

Note 3.3.1. Let us assume that π = χ1 × χ2 is a local component of a cuspidal au-

tomorphic representation on GL(2). Then, by the work of Kim and Shahidi in [18], a

well-known bound on the exponent of the character χ1χ
−1
2 is 2

9
. Hence, (χ1χ

−1
2 )2 6= ν±1

and (χ1χ
−1
2 )3 6= ν±1.

When π = χ1 × χ2 is associated to a cuspidal automorphic representation on GL(2),

using Note 3.3.1 and the local Langlands correspondence for GSp(4, K), we get

sym3(π) = χ2
1χ
−2
2 × χ1χ

−1
2 o χ3

2,

which is a type I representation of GSp(4, K) (see Section 2.4 of [37]).

Case 2: Let π = χStGL(2) be the (twisted) Steinberg representation of GL(2, K), where

χ is a character of K×. The L-parameter (ϕ,N) of π is as in (2.41). Using the sym3

map (3.1), we can find the L-parameter (sym3(ϕ), N ′) of sym3(π). Note that,

sym3(ϕ)(w) =

 χ3(w)|w|
3
2

χ3(w)|w|
1
2

χ3(w)|w|−
1
2

χ3|w|−
3
2

, w ∈ W (K̄/K)

To calculate the nilpotent part N ′ of the L-parameter of sym3(π), we note that N =

[ 0 1
0 0 ] ∈ gl(2,C), where gl(2,C) is the Lie algebra of GL(2,C). Here we have the following

diagram

exp(tN) ∈ GL(2,C) GL(4,C)

N ∈ gl(2,C) gsp(4,C)

sym3

d(sym3)|t=0exp
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Now, exp(tN) = [ 0 t
0 0 ] ∈ GL(2,C) and sym3(exp(tN)) =

[
1 t t2 − 1

3
t3

1 2t −t2
1 −t

1

]
. So, we get

N ′ = d
(
sym3(exp(tN))

)
|t=0 =

[
0 1 0 0
0 0 2 0
0 0 0 −1
0 0 0 0

]
∈ gsp(4,C).

Using the identity

[
1
2

1
2

1
1

][
0 1 0 0
0 0 2 0
0 0 0 −1
0 0 0 0

][
2

2
1

1

]
=

[
0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 0

]
, we get the L-parameter of

sym3(π) as follows

sym3(ϕ)(w) =

 χ3(w)|w|
3
2

χ3(w)|w|
1
2

χ3(w)|w|−
1
2

χ3|w|−
3
2

, w ∈ W (K̄/K), N ′ =

[
0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 0

]
.

(3.4)

Then, using the local Langlands correspondence for GSp(4, K), we get

sym3(π) = χ3StGSp(4,K),

which is of type IVa (see Section 2.4 of [37]).

Case 3: Let π be a supercuspidal representation of GL(2, K). When the residual

characteristic of K is odd, we have π = ωF,ξ, a dihedral supercuspidal representation,

where F/K is a quadratic extension and ξ is a character of F× and ξ 6= ξσ, σ is the

nontrivial element in Gal(F/K). Using the L-parameter of π in (2.35) and the sym3

map (3.1), we get the L-parameter of sym3(π) as follows

sym3(ϕ)(w) =

[
ξ3(w)

ξ2ξσ(w)

ξ(ξσ)2(w)

(ξσ)3(w)

]
,

sym3(ϕ)(σ) =

 − 1
3

(ξσ)(σ2)

(ξσ)2(σ2)

−3(ξσ)3(σ2)

.
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This parameter is a sum of the 2-dimensional representations given as follows

w 7→
[
ξ3(w)

(ξσ)3(w)

]
, σ 7→

[
− 1

3

−3(ξσ)3(σ2)

]
,

and w 7→
[
ξ2ξσ(w)

ξ(ξσ)2(w)

]
, σ 7→

[
(ξσ)(σ2)

(ξσ)2(σ2)

]
. (3.5)

Since [
1
− 1

3

][
− 1

3

−3(ξσ)3(σ2)

]
[ 1
−3 ] =

[
1

(ξσ)3(σ2)

]
,[

1
(ξσ)(σ2)

][ (ξσ)(σ2)

(ξσ)2(σ2)

][
1

(ξσ)−1(σ2)

]
=
[

1
(ξσ)3(σ2)

]
,

and (ξ2ξσ)(σ2) = ξ2(σ2)ξσ(σ2) = (ξσ)2(σ2)ξσ(σ2) = (ξσ)3(σ2), we get that the L-

parameter of sym3(π) as follows

ind
W (K̄/K)

W (K̄/F )
(ξ3)⊕ ind

W (K̄/K)

W (K̄/F )
(ξ2ξσ). (3.6)

We denote its L-packet sym3(ωF,ξ) as ωF,ξ3 ⊕ ωF,ξ2ξσ .

Now, we determine the representation type of sym3(ωF,ξ). We use the following remark.

Remark 3.3.2. indWK
WF

(ξ1) ∼= indWK
WF

(ξ2) if and only if ξ1 = ξ2 or ξ1 = ξσ2 .

Firstly, note that, ξ2ξσ = (ξ2ξσ)σ = (ξσ)2ξ if and only if ξ = ξσ. Since ξ 6= ξσ, we get

that ind
W (K̄/K)

W (K̄/F )
(ξ2ξσ) is always irreducible by Remark 3.3.2. So, we only need to check

whether ind
W (K̄/K)

W (K̄/F )
(ξ3) is reducible or irreducible. We have the following three cases:

(1) ind
W (K̄/K)

W (K̄/F )
(ξ3) is irreducible and isomorphic to ind

W (K̄/K)

W (K̄/F )
(ξ2ξσ).

(2) ind
W (K̄/K)

W (K̄/F )
(ξ3) is reducible.

(3) ind
W (K̄/K)

W (K̄/F )
(ξ3) is irreducible and not isomorphic to ind

W (K̄/K)

W (K̄/F )
(ξ2ξσ).

Case (1): Assume that ind
W (K̄/K)

W (K̄/F )
(ξ3) is irreducible and isomorphic to ind

W (K̄/K)

W (K̄/F )
(ξ2ξσ).

By Remark 3.3.2, this happens if and only if either ξ3 = ξ2ξσ or ξ3 = (ξ2ξσ)σ on F×.
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Now, ξ3 = ξ2ξσ if and only if ξ = ξσ, which is not true by our assumption. So,

ξ3 = (ξ2ξσ)σ, i.e., ξ2 = (ξ2)σ on F× if and only if ind
W (K̄/K)

W (K̄/F )
(ξ3) ∼= ind

W (K̄/K)

W (K̄/F )
(ξ2ξσ). By

the local Langlands correspondence for GSp(4, K), in this case the L-packet sym3(ωF,ξ)

is of type VIII. The representations in the L-packet sym3(ωF,ξ) are τ(S, ωF,ξ) (type

VIIIa) and τ(T, ωF,ξ) (type VIIIb) (see Sections 2.2 and 2.4 of [37]).

Moreover when a(π) = 2, the condition ξ2 = (ξσ)2 implies the representation ωF,ξ is

triply imprimitive (see Corollary 3.2 from [45]). So, sym3(ωF,ξ) is of type VIII if ωF,ξ is

a triply imprimitive representation with a(ωF,ξ) = 2.

Case (2): Assume that ind
W (K̄/K)

W (K̄/F )
(ξ3) is reducible. By Remark 3.3.2, this happens if

and only if ξ3 = (ξ3)σ. In this case, ind
W (K̄/K)

W (K̄/F )
(ξ3) = ϕ ⊕ ϕχF/K , for some character

ϕ : K× → C× and the unique quadratic character χF/K attached to F/K. Note that,

ξ3 factors through the norm NF/K and ξ3 = ϕ ◦ NF/K . So, the local parameter of

sym3(ωF,ξ) is of the form ϕχF/K ⊕ ind
W (K̄/K)

W (K̄/F )
(ξ2ξσ) ⊕ ϕ. Now, the central character of

ind
W (K̄/K)

W (K̄/F )
(ξ2ξσ) equals ξ2ξσ|K× ·χF/K = ξ3|K× ·χF/K = ϕ2 ·χF/K (since ξ3 = ϕ◦NF/K ⇔

ξ3|K× = ϕ2, because ξ3(x) = ϕ ◦ NF/K(x) = ϕ(x2) = ϕ2(x) for x ∈ K×). So, the L-

parameter of sym3(ωF,ξ) is of the form

w 7→


ϕχF/K(w)

ϕµ(w)

ϕ(w)

 , w ∈ W (K̄/K)

such that ϕµ = ind
W (K̄/K)

W (K̄/F )
(ξ2ξσ), where µ is an irreducible L-parameter of GL(2, K)

with det(µ) = χF/K . Then µ is the L-parameter of the representation ϕ−1 ⊗ ωF,ξ2ξσ =

ωF,ξ2ξσ(ϕ−1◦NF/K) = ωF,ξ2ξσξ−3 = ωF,ξ−1ξσ . By the local Langlands correspondence for

GSp(4, K), sym3(ωF,ξ) = ωF,ξ−1ξσ o ϕ is of type X (see Sections 2.2 and 2.4 of [37]).

Case (3): Let ind
W (K̄/K)

W (K̄/F )
(ξ3) be irreducible and not isomorphic to ind

W (K̄/K)

W (K̄/F )
(ξ2ξσ). By

Remark 3.3.2 and case (1), this happens if and only if ξ2 6= (ξ2)σ and ξ3 6= (ξ3)σ on
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F×. In this case by local Langlands correspondence for GSp(4, K), ind
W (K̄/K)

W (K̄/F )
(ξ3) ⊕

ind
W (K̄/K)

W (K̄/F )
(ξ2ξσ) corresponds to a supercuspidal representation of GSp(4, K), i.e.,

sym3(ωF,ξ) is supercuspidal.

The GL(2, K) representations we consider for the sym3 lifting have trivial central

character. In Table 3.1, we list the L-parameter and the representation type of the

L-packet sym3(π), where π is representation of GL(2, K) with trivial central character.

We also assume that π is a local component of a cuspidal automorphic representation on

GL(2). When π = ωF,ξ has trivial central character, by Remark 2.2.9, we have ξσ = ξ−1.

Let π be a representation of GL(2, K) with trivial central character. When p ≥ 3,

using the local parameters in (3.3), (3.4), (3.6), and Table A.9. from [37], we describe

the conductor a(sym3(π)) of sym3(π) in Table 3.2.

3.4 Local sym3 lifting of archimedean parameter of

GL(2)

To get the standard normalization at the archimedean place we should consider the

classical version of GSp(4,C). So, in this case we consider the following version of the

sym3 map

sym3 : GL(2,C)→ GSp(4,C)

[
a b

c d

]
7→


2abc+a2d 3a2c 2abd+b2c −b2d

a2b a3 ab2 − 1
3
b3

2acd+bc2 3ac2 2bcd+ad2 −bd2

−3c2d −3c3 −3cd2 d3

. (3.7)

Let π∞ be the discrete series representation of GL(2,R) of lowest weight k ≥ 2, i.e.,

π∞ = Dk. Then the L-parameter ϕk of π∞ is given by

ϕk : WR → GL(2,C)
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Table 3.1: L-parameter of sym3(π) for local representations π of GL(2, K).

Here we denote ind
W (K/K)

W (K/F )
(ξ) as indKF ξ. Also, µ is an irreducible L-parameter of GL(2, K)

with det(µ) = χF/K , and ϕ is a character of K× such that ξ3 = ϕ ◦NF/K .

GL(2, K) GSp(4, K) L-parameter Representation

representation L-packet of type of the

π sym3(π) sym3(π) L-packet sym3(π)

χ× χ−1 χ4 × χ2 o χ−3 χ3 ⊕ χ⊕ χ−1 ⊕ χ−3 I

χStGL(2) χ3StGSp(4) ν
3
2χ3 ⊕ ν 1

2χ3 ⊕ ν− 1
2χ3 ⊕ ν− 3

2χ3 IVa

ωF,ξ τ(S, ωF,ξ), ϕπ ⊕ ϕπ VIII

ξ4 = 1 on F× τ(T, ωF,ξ) ϕπ = indKF ξ

ωF,ξ ωF,ξ4 o ϕ ϕχF/K ⊕ ϕµ⊕ ϕ X

ξ6 = 1 on F× ϕµ = indKF ξ

ωF,ξ ωF,ξ ⊕ ωF,ξ3 indKF ξ ⊕ indKF ξ
3 Supercuspidal

ξ4 6= 1 on F×

ξ6 6= 1 on F×

Table 3.2: Conductor of sym3(π) for local representations π of GL(2, K).

π sym3(π) Condition on π a(π) a(sym3(π))

χ× χ−1 χ4 × χ2 o χ−3 2a(χ) 2a(χ3) + 2a(χ)

χStGL(2) χ3StGSp(4) χ is ram. 2a(χ) 4a(χ3)

χ is unr. 1 3

ωF,ξ ωF,ξ3 ⊕ ωF,ξ F/K is unr. 2a(ξ) 2a(ξ3) + 2a(ξ)

F/K is ram. a(ξ) + 1 a(ξ3) + a(ξ) + 2
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reiθ 7→

ei(k−1)θ

e−i(k−1)θ

 , j 7→

 (−1)k−1

1

 . (3.8)

Then, using the map in (3.7), we get

sym3(ϕk) : WR → GSp(4,C)

reiθ 7→

[
ei(k−1)θ

ei3(k−1)θ

e−i(k−1)θ

e−i3(k−1)θ

]

j 7→

 (−1)2(k−1)

− 1
3

(−1)3(k−1)

(−1)(k−1)

−3

.
Now, we have the following identity


(−1)

(k−1)
2

−
√
3

(−1)
− (k−1)

2

1√
3


 (−1)2(k−1)

− 1
3
(−1)3(k−1)

(−1)(k−1)

−3




(−1)
− (k−1)

2

− 1√
3

(−1)
(k−1)

2

−
√
3


=

 (−1)3(k−1)

(−1)3(k−1)

1
1

.

So, the L-parameter of the L-packet sym3(π∞) is given by

reiθ 7→

[
ei(k−1)θ

ei3(k−1)θ

e−i(k−1)θ

e−i3(k−1)θ

]
, j 7→

[
(−1)3(k−1)

(−1)3(k−1)

1
1

]
. (3.9)

One can easily see from (2.48) that (3.9) is the L-parameter of a discrete series represen-

tation of GSp(4,R). So, the L-packet sym3(π∞) contains a holomorphic discrete series

representation with the Harish-Chandra parameter (λ1, λ2) such that λ1 +λ2 = 3(k− 1)

and λ1−λ2 = (k−1), i.e., the Harish-Chandra parameter is (2k−2, k−1). Then, using

Table (44) in [42], the L-packet sym3(π∞) has a holomorphic discrete series represen-

tation of GSp(4,R) with the minimal K-type (λ1 + 1, λ2 + 2) = (2k − 1, k + 1). Using

the notation introduced in Section 2.3.3, this is Bk+1,k−2. It also has a large (or generic)

discrete series representation with the Harish-Chandra parameter (2k − 2,−k + 1).
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3.5 Siegel modular forms coming via the symmetric

cube lifting

We are interested in a classical version of Theorem 3.2.1 which associates a Siegel cusp

form to a non-CM cuspidal newform via the sym3 lifting. Moreover, we want to un-

derstand the level of the Siegel modular forms obtained by this lifting with respect to

different congruence subgroups.

3.5.1 Automorphic representations and Siegel modular forms

There is a well-understood procedure of associating automorphic representations of

GSp(4,AQ) with Siegel modular forms of degree 2. For a detailed description of this

procedure we refer to [3] and Section 3.2 of [42]. Here we would like to mention some

highlights of this connection.

Let Π ∼=
⊗

p Πp be a cuspidal automorphic representation of GSp(4,AQ), where Πp is

a representation of GSp(4,Qp). Let Vp be a model for Πp, so that V ∼= ⊗pVp, a restricted

tensor product. In order to get a holomorphic vector valued Siegel modular form, we

need to make an assumption that Π∞ is isomorphic to the lowest weight representation

Bk,j of weight (k, j) defined in Section 2.3.3. Then Π∞ contains the K-type V (k + j, k)

with multiplicity one. Let v∞ ∈ V∞ be a non-zero vector of weight (k + j, k) in this

K-type. For each finite prime p, let vp be a non-zero vector in Vp and Cp be an open-

compact subgroup of GSp(4,Qp) stabilizing vp. For almost all p, we may assume that

vp is the distinguished unramified vector and Cp = GSp(4,Zp). So, only for finitely

many primes p, we need to make a choice for vp and Cp. We will assume that the

multiplier maps µ : Cp → Z×p are surjective for all p. In this case, strong approximation

for Sp(4) implies that GSp(4,AQ) = GSp(4,Q)GSp(4,R)+
∏
p<∞

Cp. Also, by our choices,

⊗vp is a legitimate element in ⊗pVp and it corresponds to a cusp form Φ ∈ V via the
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isomorphism V ∼= ⊗pVp. Using the strong approximation of GSp(4,AQ) and properties

of the automorphic form Φ, we can find a vector valued Siegel cusp form f of weight

(k, j) and degree 2 with respect to the following congruence subgroup of Sp(4,Q)

Γ = GSp(4,Q) ∩GSp(4,R)+
∏
p<∞

Cp, (3.10)

which is associated to the given cuspidal automorphic representation Π of GSp(4,AQ)

such that L(s, f) = L(s,Π). Here L(s, f) is the completed spin L-function of f defined

in Section 3.3 of [42] and L(s,Π) =
∏

p≤∞ L(s,Πp) is the completed spin L-function of

Π. The spin L-factors L(s,Πp) of Πp for finite primes p are listed in [37] and the spin

L-factors L(s,Π∞) of Π∞ is given in (2.49). As in section 2.7.1, here also we consider

L(s, f) in the analytic normalization.

In the next subsections, we investigate the Siegel modular forms attached to Π =

sym3(π) with respect to different congruence subgroups Γ of Sp(4,Q) by making different

choices for Cp. We consider the compact open subgroups K(pn), Γ0(pn) and Γ(pn) of

GSp(4,Qp) defined in (2.5), (2.6) and (2.7) respectively. For these three choices of Cp,

we get Siegel modular forms with respect to the congruence subgroups K(M), Γ0(M)

and Γ(M) of Sp(4,Q) as defined in Section 2.7.2. These are classical versions of the

subgroups Cp with respect to the symplectic form J =

[
1

1
−1
−1

]
.

3.5.2 Level with respect to the principal congruence subgroup

Let π ∼= ⊗p≤∞πp and Π = sym3(π) ∼= ⊗p≤∞sym3(πp) as in Theorem 3.2.1. Ramakrishnan

and Shahidi considered the principal congruence subgroup level in [35]. They have

mentioned that the finite component Πf
∼= ⊗p<∞Πp of Π = sym3(π) has a non-zero

vector invariant under the principal congruence subgroup of level equal to the conductor

a(sym3(π)). Which means that for each p | a(π), there exists a non-zero vector invariant
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under the principal congruence subgroup Γ(pa(sym3(πp))). But, the conductor a(sym3(πp)

of sym3(πp) is not the minimal principal congruence level. In this subsection, we will

describe the minimal principal congruence level of sym3(πp) when sym3(πp) is a non-

supercuspidal representation.

First, we review the definition of depth of a representation defined by Moy-Prasad

in [30]. Let G be a connected reductive algebraic group defined over a non-archimedean

local field K. Let (π′, V ) be an irreducible admissible representation of G. Let B = B(G)

be the Bruhat-Tits building associated with G. Let Gx = {g ∈ G : g · x = x} be the

parahoric subgroup of G associated to a point x ∈ B. Moy and Prasad have defined a

decreasing filtration of subgroups of Gx denoted by Gx,r and indexed by the non-negative

real number r. Let G+
x,r := ∪s>rGx,s. Then Moy and Prasad showed that there exists

a smallest rational number r = ρ(π′) such that the space V G+
x,r is non-trivial for some

x ∈ B and they called it the depth of π′. For general references for this paragraph, see

[30] and [31].

Let ρ(sym3(πp)) be the depth of the representation sym3(πp) of GSp(4,Qp). When

the representation sym3(πp) of GSp(4,Qp) is non-supercuspidal, using Theorem 5.2 in

[31], and the fact that for a character χ, the depth ρ(χ) = max {a(χ)− 1, 0}, we list

ρ(sym3(πp)) in Table 3.3.

Fact 3.5.1. If πp is an essentially square integrable representation of GL(2,Qp) then

ρ(πp) = max
{
a(πp)−2

2
, 0
}

. This is a special case of a more general theorem in [28].

Now, we note the following from Table 3.2 and Table 3.3 using Fact 3.5.1.

1. If sym3(πp) = χ4×χ2oχ−3. Then a(sym3(πp)) = 2a(χ3)+2a(χ) and ρ(sym3(πp))+

1 = max {a(χ2), a(χ4), a(χ3), 1}.

2. If sym3(πp) = χ3StGSp(4), then a(sym3(πp)) = 4a(χ3) and ρ(sym3(πp)) + 1 =

max {a(χ3), 1}.
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Table 3.3: Depth ρ(sym3(πp)) of sym3(πp).

Here sym3(πp) is non-supercuspidal. F/Qp is the unramified quadratic extension and ξ
is the character of F×. Here, ϕ is a character of Q×p such that ξ3 = ϕ ◦NF/Qp .

sym3(πp) Condition on πp ρ(sym3(πp))

χ4 × χ2 o χ−3 max {a(χ2)− 1, a(χ4)− 1, a(χ3)− 1, 0}

χ3StGSp(4) χ is ram. max {a(χ3)− 1, 0}

χ is unr. 0

ωF,ξ3 ⊕ ωF,ξ ξ4 = 1 on F× ρ(ωF,ξ)

ξ6 = 1 on F× max {ρ(ϕ), ρ(ωF,ξ4)}

3. Let sym3(πp) = ωF,ξ3 ⊕ ωF,ξ such that F/Qp is a quadratic extension and ξ is a

character of F× with ξσ = ξ−1. Let ξ4 = 1 on F×. By Table 3.1, sym3(πp) is of

type VIII. Then we have, a(sym3(πp)) = 2a(ωF,ξ) and using Fact 3.5.1,

ρ(sym3(πp)) + 1 = max

{
a(ωF,ξ)− 2

2
+ 1, 1

}
= max

{
a(ωF,ξ)

2
, 1

}
.

4. Let sym3(πp) = ωF,ξ3 ⊕ ωF,ξ such that F/Qp is a quadratic extension and ξ is

a character of F× with ξσ = ξ−1. Let ξ6 = 1 on F×. By Table 3.1, sym3(πp)

is of type X and sym3(πp) = ωF,ξ4 o ϕ, where ϕ is a character of Q×p such that

ξ3 = ϕ ◦NF/Qp . Then, a(sym3(πp)) = a(ωF,ξ) + 2a(ϕ) and using Fact 3.5.1,

ρ(sym3(πp)) + 1 = max

{
a (ωF,ξ4)

2
, a(ϕ), 1

}
.

Considering all the cases above, we see that ρ(sym3(πp)) is an integer and

ρ(sym3(πp)) + 1 < a(sym3(πp)), (3.11)

79



when sym3(πp) is a non-supercuspidal representation of GSp(4,Qp).

Fact 3.5.2. Using Theorem 5.2 of [30] for G = GSp(4), one can check that for an

irreducible admissible representation (π′, V ) of GSp(4,Qp), if ρ(π′) is an integer then

n = ρ(π′) + 1 is the smallest integer n such that π′ admits a non-zero vector under the

principal congruence subgroup Γ(pn).

Then, using Fact 3.5.2 and (3.11), we get the following remark.

Remark 3.5.3. Let π ∼=
⊗

p πp be a cuspidal automorphic representation of GL(2,AQ)

defined by a holomorphic, non-CM newform φ of even weight k ≥ 2 and level N with

trivial central character. Then there exists a cuspidal automorphic representation Π ∼=⊗
p Πp of GSp(4,AQ) with trivial central character, which is unramified at any prime

p not dividing N , such that Π satisfies (i),(ii), (iii) of Theorem 3.2.1. If Πp is a non-

supercuspidal representation of GSp(4,Qp) for each prime p | N , then the minimal

principal congruence subgroup of level of Π is ρ(sym3(π)) + 1, i.e., the finite component

Πf
∼= ⊗p<∞Πp of Π has a non-zero vector invariant under principal congruence subgroup

of minimal level equal to ρ(sym3(π)) + 1. Here, ρ(sym3(π)) is the depth of sym3(π).

But, the principal congruence subgroups are not ideally suited for a correspondence

between cuspidal automorphic representations of GSp(4,AQ) and Siegel modular forms.

So, we will not consider the principal congruence subgroup further.

3.5.3 Level with respect to the Siegel congruence subgroup

As before, assume that π ∼= ⊗p≤∞πp and Π = sym3(π) = ⊗p≤∞sym3(πp) are as in

Theorem 3.2.1. Recall from Section 3.5.1 that in order to find the Siegel congruence

subgroup levels of the Siegel modular forms coming from the sym3 lifting, one needs

choose suitable vectors vp invariant under the Siegel congruence subgroup Γ0(pn) at

each prime p | a(π). So, one should study the space V0(n) of Γ0(pn) invariant vectors of

Πp = sym3(πp).
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First, we consider the space V0(2) for Πp = sym3(πp) where πp is a non-supercuspidal

representation of GL(2,Qp). It turns out that the space V0(2) is very large, which is

not ideal for choosing a good candidate vp ∈ V0(2) to construct a holomorphic Siegel

modular form. One of our sample results is the following when πp is a principal series

representation of GL(2,Qp).

Proposition 3.5.4. Let πp = χ×χ−1 with a(χ) = 1, where χ is a character of Q×p . So,

Πp = sym3(πp) = χ4 × χ2 o χ−3. Let V0(2) be the space of the Γ0(p2) invariant vectors

for the representation χ4 × χ2 o χ−3. Then

the dimension of V0(2) =



6 if χ2 is unramified,

3 if χ3 is unramified,

4 if χ4 is unramified and χ2 is ramified,

0 otherwise.

(3.12)

We omit the proof of this result since it is technical and not useful for our study

of Siegel modular forms coming from the sym3 lifting. Note that, V0(2) has a basis

consisting of fg : GL(2,Qp) → C×, where g is a representative of the double coset

B\g/Γ0(p2), defined as follows

fg(x) =


| a2b || c |− 3

2 χ4(a)χ2(b)χ−3(c) if x =

[ a
b
cb−1

ca−1

]
gk ∈ B · g · Γ0(p2),

0 otherwise.

Now the the Atkin-Lehner element η =

[ 1
−1

$2

−$2

]
of level p2 in GSp(4,Qp) acts on

the space V0(2) as Πp(η)(fg)(x) = fg(xη). This gives us an operator η : V0(2) → V0(2),

known as the Atkin-Lehner operator. Also, there is an endomorphism µ : V0(2)→ V0(2),
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known as the µ-operator, defined by

Πp(µ)(fg) =
∑

x,z∈Zp/pZp

Πp

([
1 x

1
1 −x

1

][
1

1 z$−1

1
1

])
fg +

∑
z∈Zp/pZp

Πp

([
1 z$−1

1
1

1

])
fg.

To find a suitable Γ0(p2)-invariant vector for sym3(πp) = χ4 × χ2 o χ−3, we have also

considered these two operators on the space V0(2) and computed the eigenvalues for

them. But in most of the cases, we did not find a unique eigenvector which can be used

for our purpose. As a conclusion of this subsection, we want to mention that the Siegel

congruence subgroup is not a suitable congruence subgroup to study the Siegel modular

forms coming from the sym3 lifting.

3.5.4 Level with respect to the paramodular group

In this subsection, we consider Siegel modular forms with respect to the paramodular

group. There is a well understood connection between paramodular forms and cuspi-

dal automorphic representations of GSp(4,AQ), and there is a nice newform theory for

paramodular forms (see [36, 37]). These facts were not available at the time Ramakrish-

nan and Shahidi proved the result on the sym3 lifting. Now, using Theorem 3.2.1 and

the paramodular newform theory we get the following result.

Corollary 3.5.5. Let φ be a non-CM cuspidal newform of even weight k ≥ 2 and level N

with trivial central character. Let π ∼=
⊗

p πp be the cuspidal automorphic representation

of GL(2,AQ) associated to φ. Then there exists a vector valued cuspidal paramodular

newform f of weight detk+1 × symk−2 and level equal to the conductor a(sym3(π)) of

sym3(π) such that L(s, f) = L(s, φ, sym3).

Proof. By Theorem 3.2.1, π lifts to a cuspidal automorphic representation Π = sym3(π)

of GSp(4,AQ) with trivial central character. Moreover, Π is a representation of type (G)

(see [44]) such that each non-archimedean component Πp is generic and the archimedean
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component Π∞ is a holomorphic discrete series representation. Then, by Theorem 4.4.1

from [37], there exists a paramodular vector of minimal level at each non-archimedean

place. Now, recall from Theorem 7.5.4 and Corollary 7.5.5 of [37] that the minimal

paramodular level of Πp at each finite place p is the conductor a(Πp) of Πp, and the

dimension of the space of paramodular vectors at the minimal level is 1. Since a(Π) =∏
p p

a(Πp), we get a paramodular newform f of level a(Π) = a(sym3(π)) associated

to the automorphic representation Π of GSp(4,AQ) such that L(s, f) = L(s,Π) (see

[42]). Using part (ii) of Theorem 3.2.1 we get L(s, f) = L(s,Π) = L(s, π, sym3) =

L(s, φ, sym3).

Also, one can easily see that the weight of f is detk+1×symk−2 by looking at the local

parameter at the archimedean place as in (3.9) and the last paragraph of Section 3.4.

This concludes the proof.

Remark 3.5.6. In order to construct holomorphic Siegel modular forms, we choose the

non-archimedean components of sym3(π) to be generic and the archimedean components

of sym3(π) to be holomorphic discrete series in Theorem 3.2.1 and Corollary 3.5.5. In

general, we consider sym3(πp) as the L-packet on GSp(4,Qp) whose L-parameter is the

symmetric cube of the L-parameter of πp. We can switch between generic and non-

generic in each component since sym3(π) is of type (G). But, when we study global

results, we make the specific choice of local representations in the L-packet as in Theo-

rem 3.2.1.

Figure 3.1 shows the liftings in Theorem 3.2.1 and Corollary 3.5.5. We want to find a

formula for the level M of the paramodular form f in terms of the data of the given

newform φ. Since M = a(sym3(π)) =
∏

p p
a(sym3(πp)), we need to calculate a(sym3(πp))

for each local representation πp of GL(2,Qp) attached to φ. Table 3.2 gives a formula

for the conductor a(sym3(πp) of sym3(πp) in terms of the conductor of some characters

that appear in sym3(πp).
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φ ∈ Snew
k (Γ0(N)) F ∈ Snew

k+1,k−2(K(M))

π ∼=
⊗
p

πp

on GL(2,A)

µ =
⊗
p

µp

on GL(4,A)

Π ∼=
⊗
p

Πp

on GSp(4,A)

The sym3 lifting

Functoriality for sym3

(Kim-Shahidi)

(using Arthur packets)

(Ramakrishnan-Shahidi)

Figure 3.1: Diagram illustrating the symmetric cube lifting.

Notice that we need a description of the character involved in the L-parameter of πp in

order to calculate a(sym3(πp)). So, the global question of finding the paramodular level

coming from the sym3 lifting leads to the local question of determining the representation

of GL(2,Qp) associated to a cusp form. In principle the paper [29] contains an algorithm

to determine the local representations attached to modular forms. However, the local

parameter of the output of the algorithm is not always obvious. So, we consider a

more specified problem, namely finding the level of the paramodular forms coming from

elliptic curves over Q through the sym3 lifting. For that, we need to find a detailed

description of the local representation πp of GL(2,Qp) from an elliptic curve E over Qp.

We discuss this in the next chapter.
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Chapter 4

Representations attached to elliptic curves

over a p-adic field

In this chapter we describe the representations associated to elliptic curves over a

p-adic field. For elliptic curves with potential multiplicative reduction, one can find

the associated representations for any p-adic field. If an elliptic curve has additive

but potential good reduction over a p-adic field with residual characteristic ≥ 5, the

associated representation is also known. The main focus of this chapter is to find a

detailed description of the representations attached to elliptic curves with additive but

potential good reduction over a non-archimedean local field of residual characteristic 3.

Let K be a non-archimedean local field of characteristic zero with residual charac-

teristic p. Let oK be the ring of integers of K, and let p be the maximal ideal of oK .

Let $K be a uniformizer of K. Suppose that v : K → Z is the normalized valuation on

K, and k = oK/p is the residue field of K of order q. Let Φ ∈ Gal(K̄/K) be an inverse

Frobenius element, Kun be the maximal unramified extension of K inside K̄, and IK

be the inertia group. Let E be an elliptic curve over K given by a minimal Weierstrass

equation of the form y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 as in (2.71). The discriminant

∆, the j-invariant j(E), and the constants c4, c6 are the usual quantities attached to

the Weierstrass equation given as in (2.72).

Let σ′E be the Weil-Deligne representation associated to E/K as described in Sec-

tion 2.8.4. Now, σ′E corresponds to an irreducible admissible representation πE of
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GL(2, K) by the local Langlands correspondence. Here we give a description of πE

when the given elliptic curve E/K has bad reduction. We separate our study into a few

sections depending on the reduction type of E.

4.1 Potential multiplicative reduction

If we assume E/K has potential multiplicative reduction, then c4 and c6 are non-zero

since j(E) 6∈ oK . Then we define the γ-invariant of E/K by

γ(E/K) = −c4

c6

∈ K×/K×2. (4.1)

This quantity is well defined and independent of the choice of the Weierstrass equation.

Let σ′E be the Weil-Deligne representation associated to E (see sections 13-15 in [39]),

which corresponds to an irreducible admissible representation πE of GL(2, K) by the local

Langlands correspondence. We want a description of the representation πE in terms of

the Weierstrass coefficients of E. When E has potential multiplicative reduction, we

have the following result from [39].

Theorem 4.1.1. Let K be any non-archimedean local field of characteristic zero. Let

E/K be an elliptic curve with potential multiplicative reduction, i.e., j(E) 6∈ oK. Then

the GL(2, K) representation πE associated to E is given by

πE = (γ(E/K), ·)StGL(2,K),

where (γ(E/K), ·) is the quadratic character of K× defined by the Hilbert symbol (·, ·).

Furthermore, we have one of the following cases:

• (γ(E/K), ·) is trivial if and only if E/K has split multiplicative reduction.
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• (γ(E/K), ·) is non-trivial and unramified if and only if E/K has non-split multi-

plicative reduction.

• (γ(E/K), ·) is ramified if and only if E/K has additive reduction.

4.2 Potential good reduction in residual character-

istic ≥ 5

When E has additive but potential good reduction and the residual characteristic of K

is greater than or equal to 5, the following results from [50] describe the representation

πE.

Theorem 4.2.1. Let K be a non-archimedean local field of characteristic zero with

residual characteristic ≥ 5. Let E/K be an elliptic curve with additive but potential good

reduction, i.e., j(E) ∈ oK. Assume that (q − 1)v(∆) ≡ 0 mod 12 and e = 12
gcd(v(∆),12)

.

Then the GL(2, K) representation πE associated to E is a principal series representation,

i.e., πE = χ× χ−1, where χ is a character of K× satisfying the following properties:

(i) The conductor a(χ) of χ is 1, i.e., χ is trivial on 1 + p,

(ii) χ|Wq−1 is trivial on the index e-subgroup W e
q−1, where Wq−1 is the group of (q−1)th

root of unity,

(iii) The character of Wq−1/W
e
q−1
∼= Z/eZ induced by χ has order e.

Furthermore, there is a unique such character when e = 2, and there are exactly two

such characters when e ∈ {3, 4, 6} which are inverses of each other.

Theorem 4.2.2. Let K be a non-archimedean local field of characteristic zero with

residual characteristic ≥ 5. Let E/K be an elliptic curve with additive but potential good

reduction, i.e., j(E) ∈ oK. Assume that (q − 1)v(∆) 6≡ 0 mod 12 and e = 12
gcd(v(∆),12)

.
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Then the corresponding GL(2, K) representation πE is a dihedral supercuspidal represen-

tation with trivial central character, i.e., πE = ωF,ξ, where F is the unramified quadratic

extension of K and ξ is a character of F× satisfying the following properties:

(i) The conductor a(ξ) of ξ is 1, i.e., ξ is trivial on 1 + pF ,

(ii) ξ|o×F has order e ∈ {3, 4, 6},

(iii) ξ($F ) = −1. Here, $F is a uniformizer of F chosen to be in K.

Furthermore, there are exactly two such characters which are Galois conjugates of each

other for each e.

4.3 Potential good reduction in residual character-

istic 3 and v(3) = 1

Assume that the residual characteristic of K is 3 and v(3) = 1. In Table 4.1, we define

a list of conditions on E in terms of the quantities v(c4), v(c6), and v(∆). This table is

reproduced from Table II of [33]. For i = 2 or 5, we define a condition Ri on E/K by

Ri : x3 − 3c4x− 2c6 ≡ 0 mod (27$i
K) for some x ∈ oK. (4.2)

If an elliptic curve E/K does not satisfy the condition Ri, then we denote it by “non Ri”

in Table 4.1. When K = Q3, v(c4) ≥ 2, and v(c6) = 3, the condition R2 is equivalent to

(c6/3
3)2 + 2 ≡ c4/3 mod 9. (4.3)

When K = Q3, v(c4) ≥ 4, and v(c6) = 6, the condition R5 is equivalent to

(c6/3
6)2 + 2 ≡ c4/3

3 mod 9. (4.4)
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There are also some conditions on the underlying field K in Table 4.1, called “reducibility

condition”, that determines whether the Galois representation attached to E is reducible

or irreducible. The exponent v(N) of the conductor N of the elliptic curve E appears

on the last column of Table 4.1. The list of conditions does not depend on v(N). In

fact v(N) can be determined in terms of the quantities v(c4), v(c6), and v(∆). For each

condition in Table 4.1, we describe the GL(2, K) representation πE associated to E. The

following lemma ensures that this way we get all the possible GL(2, K) representations

associated to an elliptic curve E/K with additive but potential good reduction.

Lemma 4.3.1. Let K be a non-archimedean local field of characteristic zero with residual

characteristic 3 and v(3) = 1. Suppose that E is an elliptic curve over K given by a

minimal Weierstrass equation of the form (2.71) with the coefficients in oK. Let ∆ be

the discriminant, and c4, c6 be the usual constants attached to the equation (2.71) as

defined in (2.72). Then the following statements are equivalent:

(i) E has additive but potential good reduction.

(ii) E satisfies one and only one of the conditions in Table 4.1.

Proof. The Kodaira-Néron type of E/K is one of the types described in Theorem 8.2 of

[48], and it can be determined in terms of the coefficients of (2.71) using Tate’s algorithm

(see our discussion in Section 2.8.5). Now, the proof follows from the following equivalent

steps:

E has additive but potential good reduction.

⇔ The j-invariant j(E) is integral, i.e., v (j(E)) ≥ 0. (See Proposition 5.5 in [47].)

⇔ 3v (c4) ≥ v(∆). (By definition of j(E) as in (2.72).)

⇔ The possible Kodaira-Néron types of E are I∗0, II, II
∗, III, III∗, IV, IV∗.

(By Tate’s algorithm. Also see Table II in [33].)

⇔ E satisfies one and only one of the conditions in Table 4.1. (By Table II in [33].)
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Assume that E/K has additive but potential good reduction, i.e., E satisfies one of

the conditions in Table 4.1. Let L/Kun be the smallest extension such that E/L has

good reduction. By the corollary after Lemme 3 of [26], we have

L = Kun(E[2],∆
1
4 ), (4.5)

where Kun(E[2]) is the splitting field of the polynomial on the right hand side of (2.71).

Now the kernel of σ′E : W (K̄/K) → GL(2,C) is Gal(K̄/L) (see section 2 of [38]). So,

σ′E : W (L/K) ∼= W (K̄/K)/Gal(K̄/L) → GL(2,C) is a faithful representation. Let

Λ = Gal(L/Kun). Then, we have

IK/Gal(K̄/L) ∼= Λ and W (L/K) = Λ o 〈Φ〉 , (4.6)

and

σ′E(IK) = σ′E(IK/Gal(K̄/L)) = σ′E(Λ) ∼= Λ. (4.7)

Remark 4.3.2. Since σ′E is a faithful representation of W (L/K), using (4.6) and (4.7)

we conclude that the order of σ′E|IK is |Λ|.

Also, we use the following remark in the proofs of the main theorems of this section.

Remark 4.3.3. A faithful two-dimensional semisimple complex representation of a

group is reducible if and only if the group is abelian. So, the Weil-Deligne represen-

tation σ′E associated to the given elliptic curve E/K is reducible if and only if W (L/K)

is abelian, i.e., the image of σ′E is abelian (also see Proposition 2 in [38]).

4.3.1 Principal series representations

The following theorem describes all possible principal series representations of GL(2, K)

coming from elliptic curves over K with additive but potential good reduction.
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Table 4.1: Table of conditions in terms of the quantities v(∆), v(c4), and v(c6).

Name of Reducibility v(∆) v(c4) v(c6) Additional Néron v(N)
condition condition condition type

P2 6 2 3 I∗0 2

3 ≥ 6

P4 −1 ∈ k×2 3 ≥ 2 3 R2 as in (4.2) III 2

2 ≥ 5

9 ≥ 4 6 R5 as in (4.2) III∗

4 ≥ 8

S4 −1 6∈ k×2 3 ≥ 2 3 R2 as in (4.2) III 2

2 ≥ 5

9 ≥ 4 6 R5 as in (4.2) III∗

4 ≥ 8

P3 ∆ ∈ K×2 4 2 3 II 4

12 5 8 II∗

S3 ∆ 6∈ K×2 4 2 3 II 4

12 5 8 II∗

P6 ∆ ∈ K×2 6 3 5 IV 4

10 4 6 IV∗

S6 ∆ 6∈ K×2 6 3 5 IV 4

10 4 6 IV∗

S
′
6 ∆ 6∈ K×2 3 ≥ 2 3 non R2 II 3

2 4

5 2 3 IV

9 ≥ 4 6 non R5 IV∗

4 7

11 4 6 II∗

S
′′
6 ∆ 6∈ K×2 5 ≥ 3 4 II 5

7 ≥ 4 5 IV

11 ≥ 5 7 IV∗

13 ≥ 6 8 II∗
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Theorem 4.3.4. Let K be a non-archimedean local field of characteristic zero with

residual characteristic 3 and v(3) = 1. Let E/K be an elliptic curve given by a minimal

Weierstrass equation of the form (2.71) with the coefficients in oK. Assume that E

satisfies one of the conditions in {P2,P4,P3,P6} as defined in Table 4.1. Then the

corresponding GL(2, K) representation πE is a principal series representation, i.e., πE =

χ× χ−1, where χ is a character of K× satisfying the following properties:

(i) If E satisfies the condition Pm, then χ|o×K has order m. Here, m ∈ {2, 3, 4, 6}.

(ii) The conductor a(χ) of χ is given by

a(χ) =


1 if E satisfies P2 or P4,

2 if E satisfies P3 or P6.

Furthermore, there is a unique such character on o×K when E satisfies P2, and there are

exactly two such characters on o×K when E satisfies P4, which are inverses of each other.

Before proving Theorem 4.3.4, we review a few facts about the correspondence be-

tween the set of characters of W (L/K) and the set of characters of K× using Artin

isomorphism. Here, we consider the following diagram.

K̄

IK L

Λ

Kun

〈Φ〉

K

Q3

(4.8)
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Suppose that, σ′E = χ ⊕ χ−1 where χ is a character of W (L/K). By Remark 4.3.2,

σ′E|IK = σ′E|Λ has order |Λ|. Then, using the proof of Théorème 1 of [26] (also see

Theorem 3.1 of [24]), one can see that Λ is always cyclic if E satisfies one of conditions

Pi, i ∈ {1, 2, 3, 4}. So, σ′E(Λ) has order |Λ| is the same as saying n = |Λ| is the smallest

integer n such that σ′E(w)n = 1 for all w ∈ Λ.

Fact 4.3.5. χ|Λ also has order |Λ|, i.e., n = |Λ| is the smallest integer n such that

χn = 1 on Λ.

Proof. We have the following matrix representation of σ′E:

σ′E(w) =

χ(w)

χ−1(w)

 , w ∈ W (L/K). (4.9)

Let m be the order of χ|Λ. Now,

χ(w)|Λ| = χ(w|Λ|) = 1 for all w ∈ Λ. (4.10)

So, m divides |Λ|. If possible, let m < |Λ|. Since order of χ|Λ = order of χ−1|Λ = m,

σ′E(w)m =

χ(w)

χ−1(w)


m

= 1. (4.11)

This is a contradiction since the order of σ′E|Λ is |Λ|. Hence, Fact 4.3.5 is true.

Next, we find the character of K× which corresponds to the character χ of W (L/K)
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using the following two commutative diagrams:

IK� _

��

// IK/(IK ∩W (K̄/L)) ∼= Λ� _

��
W (K̄/K)

χ◦p
33

p //W (K̄/K)/W (K̄/L) ∼= W (L/K)
χ // C×

(4.12)

o×K� _

��

∼ // p̄(IK)� _

��

IK
p̄oo

� _

��
K×

χ̂
11

∼
rK
//W (K̄/K)ab ∼= W (K̄/K)/W (K̄/K)c

χ̄

++

W (K̄/K)
p̄oo

χ◦p
��

C×

(4.13)

We start with the character χ : W (L/K) → C×. Using Diagram (4.12), we get the

character χ ◦ p of W (K̄/K). Here, p is the quotient map from W (K̄/K) to W (L/K).

Then using Diagram (4.13), we get the character χ̄ of W (K̄/K)ab such that χ̄◦ p̄ = χ◦p.

Here, p̄ is the quotient map from W (K̄/K) to W (K̄/K)ab. Then finally we get the

character χ̂ = χ̄ ◦ rK of K× which corresponds to the character χ of W (L/K). Here rK

is the Artin isomorphism. One can easily check that the following map

{Characters of W (L/K)} →
{

Characters of K×
}

χ 7→ χ̂.

(4.14)

is a homomorphism of groups of characters such that we have the following remark.

Remark 4.3.6. Assume that σ′E = χ⊕χ−1 be the Weil-Deligne representation associated

to E/K, where χ is a character of W (L/K). By the local Langlands correspondence,

πE = χ̂ × χ̂−1, where χ̂ is the character of K× corresponds to χ via (4.14). Then by

chasing the diagrams (4.12), (4.13), and using Fact 4.3.5 one can show that

1. χ̂−1 = χ̂−1.
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2. χ̂|o×K has order |Λ|.

For simplicity of notation, we denote the character χ̂ of K× by χ too.

Proof of Theorem 4.3.4. Suppose E satisfies the condition Pm for m ∈ {2, 3, 4, 6}.

By Théorème 1 of [26] (also see Theorem 3.1 of [24]), we have Λ ∼= Z/mZ. Now,

Proposition 3.2 of [24] implies that W (L/K) is abelian, i.e., the image of σ′E is abelian.

Then, using Remark 4.3.3 (also see Proposition 3.3 of [24]), we get σ′E
∼= χ⊕χ−1, where

χ is a character of W (L/K). By the local Langlands correspondence, the corresponding

GL(2, K) representation πE is the principal series representation χ×χ−1, where χ is the

corresponding character of K×. Using Remark 4.3.6 we see that χ|o×K has order m. From

Table 4.1, a(πE) = v(N) = 2 when E satisfies either P2 or P4, which implies a(χ) = 1.

In this case, we get an induced character χ : o×K/(1 + p) ∼= k× → C×. Note that k× is a

cyclic group of order 3n − 1, where K has degree n over Q3.

When E satisfies the condition P2, the induced character χ : k× → C× has order 2

and 2 | 3n − 1. There is only one element of order 2 in k×. So, the induced character is

the unique such character of order 2.

When E satisfies the condition P4, the induced character χ : k× → C× has order 4.

Since −1 ∈ k×2, k× contains the root of x2 + 1. Then the quadratic extension Q3(i) of

Q3 is contained in K.

K∣∣∣∣
Q3(i)∣∣∣∣2
Q3

So, 4 | 3n − 1. Now, there are exactly ϕ(4) = 2 elements of order 4 in k×. So, there are

exactly two such characters χ on o×K , which are inverses of each other.

Similarly, when E satisfies P3 or P6, a(πE) = v(N) = 4 from Table 4.1. So, a(χ) = 2
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in these two cases. Hence, we get all the cases of Theorem 4.3.4.

Corollary 4.3.7. Let E be an elliptic curve over Q3 given by a minimal Weierstrass

equation of the form (2.71) with the coefficients in Z3. Assume that E satisfies one of

the conditions in {P2,P3,P6} as defined in Table 4.1. Then the corresponding GL(2,Q3)

representation is a principal series representation, i.e., πE = χ × χ−1, where χ is a

character Q×3 satisfying the following properties:

(i) If E satisfies the condition Pm, then χ|Z×3 has order m with m ∈ {2, 3, 6}.

(ii) The conductor a(χ) of χ is given by

a(χ) =


1 if E satisfies P2,

2 if E satisfies P3 or P6.

(iii) Furthermore, there is a unique such character on Z×3 when E satisfies P2, and

there are exactly two such characters on Z×3 when E satisfies P3 or P6, which are

inverses of each other.

Proof. This corollary is a special case of Theorem 4.3.4 for K = Q3. So, most of the

statements follow from the proof of Theorem 4.3.4 except for the property (iii) when E

satisfies P3 or P6.

Note that when E satisfies P3 or P6, a(χ) = 2. So, the character χ|Z×3 induces a

character on Z×3 /(1 + 32Z3) ∼= (Z/9Z)×. Since (Z/9Z)× is cyclic group of order 6, there

are exactly ϕ(3) = 2 (resp. ϕ(6) = 2) elements of order 3 (resp. order 6) in (Z/9Z)×

which are inverses of each other. Now, if E satisfies the condition P3 (resp. P6), then the

character χ|Z×3 has order 3 (resp. order 6). Hence, there are exactly two such characters

on Z×3 when E satisfies P3 or P6. This completes the proof of the corollary.

Note: E/Q3 never satisfies P4 since −1 6∈ Q×2
3 .
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4.3.2 Supercuspidal representations

Let G be a group, and H be an index-2 subgroup of G. All representations of these

groups are assumed to be finite-dimensional and complex. Let σ ∈ G \ H, so that

G = H ∪ σH. If ξ is a representation of H, then the conjugate representation ξσ

is defined by ξσ(h) = ξ(σhσ−1). We denote the restriction functor by resGH and the

induction functor by indGH . Then we have the following result which we use to prove our

main theorem of this subsection.

Lemma 4.3.8. Let G be a group, and H be an index-2 subgroup of G. Let χ be the

unique non-trivial character of G/H. Let ϕ be an irreducible representation of G. Then

exactly one of the following holds

1. ϕ 6∼= ϕ⊗ χ and resGHϕ is irreducible. In that case indGH(resGH(ϕ)) = ϕ⊕ (ϕ⊗ χ).

2. ϕ ∼= ϕ ⊗ χ and resGHϕ = ξ ⊕ ξσ, where ξ is a representation of H. In that case

ξ 6∼= ξσ, and ϕ = indGH(ξ) = indGH(ξσ).

The following theorem describes all the supercuspidal representations of GL(2, K) asso-

ciated to elliptic curves over K with additive but potential good reduction.

Theorem 4.3.9. Let K be a non-archimedean local field of characteristic zero with

residual characteristic 3 and v(3) = 1. Let E/K be an elliptic curve given by a minimal

Weierstrass equation of the form (2.71) with the coefficients in oK. Assume that E

satisfies one of the conditions in {S4, S3, S6, S
′
6, S

′′
6} as defined in Table 4.1. Then the

associated GL(2, K) representation πE is a dihedral supercuspidal representation, i.e.,

πE = ωF,ξ, where F is a quadratic extension of K and ξ is a character of F× satisfying

the following properties:
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(i)

F =


K(i) is the unramified extension of K if E satisfies S4,

K(
√

∆) is the unramified extension of K if E satisfies S3 or S6,

K(
√

∆) is a ramified extension of K if E satisfies S
′
6 or S

′′
6 .

(ii) The conductor a(ξ) of ξ is given by

a(ξ) =


1 if E satisfies S4,

2 if E satisfies a condition in
{

S3, S6, S
′
6

}
,

4 if E satisfies S
′′
6 .

(iii) If E satisfies the condition Sm for m ∈ {3, 4, 6}, then ξ|o×F has order m. If E

satisfies the condition S
′
6 or S

′′
6 , then ξ|o×F has order 6.

(iv) ξ($F ) = −1 when E satisfies one of the conditions in {S4, S3, S6}. Here, $F is a

uniformizer of F chosen to be in K.

(v) In all cases, we have ξσ = ξ−1 on F×.

Furthermore, when E satisfies S4, there are exactly two such characters on o×F and they

are Galois conjugates of each other.

Suppose that σ′E = ind
W (L/K)
W (L/F ) (ξ) where ξ is a character of W (L/F ). We know

that σ′E is a faithful representation of W (L/K) with kernel Gal(K̄/L). Then σ′E|IF =

σ′E|IF /Gal(K̄/L) = σ′E|Gal(L/Fun) has order |Gal(L/F un)|. Here, we need to consider the

following two different diagrams depending on F being the unramified or a ramified
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quadratic extension of K.

K̄ = F̄

IK=IF L

Λ

Kun = F un

〈Φ〉

〈Φ2〉
F

〈σ〉

K

K̄ = F̄

IF L

ΛF un

Kun

〈Φ〉

F

K

(4.15)

Fact 4.3.10. ξ|Gal(L/Fun) also has order |Gal(L/F un)|.

One can prove this fact in a similar manner as we have proved Fact 4.3.5. Note that,

when F is unramified, Gal(L/F un) = Gal(L/Kun) = Λ. Before proving Theorem 4.3.9,

we find the character of F× which corresponds to the character ξ of W (L/F ) and show

the relationship between them using the following two commutative diagrams:

IF� _

��

// IF/(IF ∩W (K̄/L)) ∼= W (L/F un)� _

��
W (K̄/F )

ξ◦p
33

p //W (K̄/F )/W (K̄/L) ∼= W (L/F )
ξ // C×

(4.16)

o×F� _

��

// p̄(IF )� _

��

IFoo
� _

��
F×

ξ̂
11

∼=
rF
//W (K̄/F )ab ∼= W (K̄/F )/W (K̄/F )c

ξ̄

**

W (K̄/F )
p̄oo

ξ◦p
��

C×

(4.17)

Using Diagrams (4.16), (4.17) and the Artin isomorphism rF we get the character ξ̂ of

F× which corresponds to the character ξ of W (L/F ) and we have the following remark.
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Remark 4.3.11. Suppose σ′E = ind
W (L/K)
W (L/F ) ξ is the Weil-Deligne representation associ-

ated to E/K, where ξ is a character of W (L/F ). By the local Langlands correspondence,

πE = ωF,ξ̂ is a dihedral supercuspidal representation of GL(2, K), where ξ̂ is the character

of F× corresponds to ξ as above. Then ξ̂ satisfies the following properties

(1) ξ̂−1 = (ξ̂)−1

(2) ξ̂σ = (ξ̂)σ

(3) ξ̂|o×F has order |Gal(L/F un)|.

(4) The character

det(σ′E) : w 7→ ξ(w)ξσ(w), w ∈ W (L/F )

σ 7→ −ξ(σ2), σ ∈ W (L/K) \W (L/F )

of W (L/K) corresponds to the character ξ̂|K× · χF/K of K×, where χF/K is the

quadratic character of K× associated to the quadratic extension F/K.

For simplicity of notation, we denote the character ξ̂ of F× by ξ too.

Proof of Theorem 4.3.9. We prove the theorem in two cases.

Case 1: Suppose that E satisfies the condition Sm for some m ∈ {4, 3, 6}. Then by

Théorème 1 of [26] (also see Theorem 3.1 of [24]), we have Λ ∼= Z/mZ. For this case we

consider the diagram on the left of (4.15).

If E satisfies the condition S4, then −1 6∈ k×2. By Hensel’s lemma −1 ∈ o×K \o
×2
K . So,

the field F = K(i) is the unique unramified extension of K of degree 2. Now, W (L/K) =

Z/4Zo〈Φ〉 and Φ2 acts trivially on Z/4Z (since the non-trivial action of Φ on Z/4Z sends

1 7→ 3, 3 7→ 1, and fixes 0, 2). So, we get W (L/F ) = Z/4Z×〈Φ2〉. Note that σ′E is a two

dimensional faithful representation of W (L/K). Since −1 6∈ k×2, by Proposition 3.2 of

[24], W (L/K) is not abelian. Then, by Remark 4.3.3 (also see Proposition 3.3 of [24]),

σ′E is an irreducible representation. Now, since W (L/F ) is abelian, by Remark 4.3.3 and
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Lemma 4.3.8, res
W (L/K)
W (L/F ) (σ′E) = ξ ⊕ ξσ for some character ξ of W (L/F ) with ξ 6= ξσ and

σ′E = ind
W (L/K)
W (L/F ) (ξ). Here σ is an element of W (L/K) \W (L/F ). Hence, by the local

Langlands correspondence, πE = ωF,ξ, where ξ is the corresponding character of F× via

the Artin isomorphism.

From Table 4.1, v(N) = a(σ′E) = 2a(ξ) = 2, i.e., a(ξ) = 1. So, the assertion (ii) is

true. The property (iii) follows from Remark 4.3.11, i.e., ξ|o×F has order |Λ| = |Z/4Z| = 4.

For (iv), note that the representation πE has trivial central character. By Remark 2.2.9,

we have 1 = ξ|K×($K).χF/K($K) = ξ($K) · (−1) (since χF/K($K) = −1). Since F is

the unramified extension over K, we may assume $K = $F . Hence, ξ($F ) = −1. The

statement (v) is immediate from Remark 2.2.9.

When E satisfies S4, we have a uniqueness result. Since a(ξ) = 1, we get the induced

character ξ : o×F/(1 + pF ) → C× of order 4. Note that o×F/(1 + pF ) is a cyclic group of

order 32n − 1, where K has degree n over Q3, and 4 | 32n − 1. Now, there are exactly 2

elements of order 4 in o×F/(1 + pF ) which are inverses of each other. Since ξσ = ξ−1 and

ξσ 6= ξ, there are exactly two such characters in this case, which are Galois conjugates

of each other. The representation πE is a triply impritive representation, since

ξ2 = (ξσ)2 and a(πE) = 2 (see Corollary 3.2 from [45]). In fact by Theorem 4.1 from

[45], we see that πE is a unique such representation and q ≡ 3 mod 4 (i.e., n is odd).

Now assume that E satisfies the condition Sm for m = 3 or 6. In these two cases,

∆ 6∈ K×2 and v(∆) is even. So, ∆ = $2k · u for some u ∈ o×K \ oK×2. Hence, the

field F = K(
√

∆) = K(
√
u) is the unique unramified extension of K of degree 2. Since

∆ 6∈ K×2, by Proposition 3.2 of [24], W (L/K) = Z/mZo 〈Φ〉 is not abelian. Now, since

Φ2 acts trivially on Z/mZ, we have W (L/F ) = Z/mZ × 〈Φ2〉. Then, using a similar

argument as in the case of S4, πE = ωF,ξ where ξ is the corresponding character of F×.

The other assertions also follow from some similar arguments used in the case of S4.

Case 2: Suppose that E satisfies either the condition S
′
6 or S

′′
6 . Then by Théorème 1
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of [26] (also see Theorem 3.1 of [24]), we have Λ ∼= Z/3Z o Z/4Z. We will give a proof

for the condition S
′
6; the other case is similar. For this case we consider the diagram on

the right of (4.15). If E satisfies the condition S
′
6, then ∆ 6∈ K×2 and v(∆) is odd. So,

∆ = $2l+1 · u for some u ∈ o×K , and

K(
√

∆) =


K(
√
$) if u ∈ o×2

K ,

K(
√
$u) if u 6∈ o×2

K .

In either case, K(
√

∆) is a ramified extension of K of degree 2. By Proposition 3.2

of [24], W (L/K(
√

∆)) is abelian since ∆ ∈ K(
√

∆)×2. Let F = K(
√

∆). Since F un

is the compositum of F and Kun, we get Gal(Kun/K) ∼= Gal(F un/F ) = 〈Φ〉. Here we

consider an inverse Frobenius Φ ∈ Gal(F un/F ) as an image of an inverse Frobenius of

Gal(K̄/K) inside Gal(F un/F ). Now, Gal(L/F un) ∼= Z/6Z is the unique subgroup of

order 6 in Λ. Hence, we get W (L/F ) = Z/6Z × 〈Φ〉. Then, using a similar argument

as in case 1 we get πE = ωF,ξ, where the field F is a ramified quadratic extension of

K and ξ is the corresponding character of F×. For property (ii), we use the relation

v(N) = a(σ′E) = 1 + a(ξ) and Table 4.1. Also, one can prove the properties (iii) and (v)

using similar arguments as in case 1.

The following result is a special but more precise version of Theorem 4.3.9 for K = Q3.

Corollary 4.3.12. Let E be an elliptic curve over Q3 given by a minimal Weierstrass

equation of the form (2.71) with the coefficients in Z3. Assume that E satisfies one

of the conditions in {S4, S3, S6, S
′
6, S

′′
6} as defined in Table 4.1. Then the corresponding

GL(2,Q3) representation πE is a supercuspidal representation, i.e., πE = ωF,ξ, where F

is a quadratic extension of Q3 and ξ is a character of F× with the following properties:
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(i)

F =


Q3(i) is the unramified extension of Q3 if E satisfies S4,

Q3(
√

∆) is the unramified extension of Q3 if E satisfies S3 or S6,

Q3(
√

∆) is a ramified extension of Q3 if E satisfies S
′
6 or S

′′
6 .

(ii) The conductor a(ξ) of ξ is given by

a(ξ) =


1 if E satisfies S4,

2 if E satisfies a condition in
{

S3, S6, S
′
6

}
,

4 if E satisfies S
′′
6 .

(iii) If E satisfies the condition Sm for m ∈ {3, 4, 6}, then ξ|o×F has order m. If E

satisfies the condition S
′
6 or S

′′
6 , then ξ|o×F has order 6.

(iv) For all cases we have ξσ = ξ−1 on F×.

(v) Furthermore, when E satisfies one of the conditions in {S4, S3, S6, S
′
6}, there are

exactly two such characters on o×F which are Galois conjugates of each other. When

E satisfies S
′′
6 , there are exactly six such characters on o×F .

Note that most of the assertions of Corollary 4.3.12 follow from the proof of Theo-

rem 4.3.9 except for the property (v). We give a proof for the property (v) in the next

subsection using a few lemmas on the structures of some groups over a p-adic field.

4.3.3 Structures of some groups over a p-adic field

Lemma 4.3.13. Let F be any non-archimedean local field of characteristic 0. Then

oF/p
m
F
∼= (1 + pnF )/(1 + pn+m

F ) for n ≥ m ≥ 1.
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Proof. Consider the map oF
f−→ (1 + pnF )/(1 + pn+m

F ) such that f(x) = 1 +$n
Fx.

f(x+ y) = 1 +$n
F (x+ y)

= (1 +$n
Fx)(1 +$n

Fy)−$2n
F xy

= (1 +$n
Fx)(1 +$n

Fy)

(
1− $2n

F xy

(1 +$n
Fx)(1 +$n

Fy)

)
= (1 +$n

Fx)(1 +$n
Fy)

(
$2n
F xy

(1 +$n
Fx)(1 +$n

Fy)
∈ p2n

F ⊂ pn+m
F

)
= f(x)f(y).

So, f is a homomorphism. Clearly, f is surjective and its kernel is pmF . Hence, f defines

an isomorphism between oF/p
m
F and (1 + pnF )/(1 + pn+m

F ) for n ≥ m ≥ 1.

Lemma 4.3.14. Let F be a quadratic extension of Q3. Then the following exact sequence

1→ (1 + pF )/(1 + p2
F ) ∼= oF/pF

α−→ o×F/(1 + p2
F )

β−→ o×F/(1 + pF )→ 1

splits, i.e., o×F/(1+p2
F ) ∼= (1+pF )/(1+p2

F )×o×F/(1+pF ). Here α is defined by α(x) = x

and β is defined by β (x(1 + p2
F )) = x(1 + pF ).

Proof. Note that, o×F/(1 + pF ) is a cyclic group of order 32 − 1 (resp. 2) if F/Q3 is

unramified (resp. ramified). Let o×F/(1 + pF ) = 〈g(1 + pF )〉. Evidently, β is surjective

and β (g(1 + p2
F )) = g(1 + pF ). Now we have

o (g(1 + pF )) | o
(
g(1 + p2

F )
)

(here o(g) denotes the order of g.)

⇒ o
(
g(1 + p2

F )
)

= m · (3i − 1), where m | 3i and gcd(m, 3i − 1) = 1, i = 1, 2.

Then o (gm(1 + p2
F )) = (3i − 1) for i = 1 or 2. Let y = gm ∈ o×F .

We define, β′ : o×F/(1 + pF ) → o×F/(1 + p2
F ) by β′ (y(1 + pF )) = y(1 + p2

F ). Then

(β ◦ β′) (y(1 + pF )) = y(1 + pF ), i.e., β ◦ β′ = ido×F /(1+pF ). Hence, the given exact

sequence splits.
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Lemma 4.3.15. Let F be a ramified quadratic extension of Q3. Then the following

exact sequence

1→ (1 + pF )/(1 + p4
F )

α1−→ o×F/(1 + p4
F )

β1−→ o×F/(1 + pF )→ 1 (4.18)

splits, i.e., o×F/(1+p4
F ) ∼= (1+pF )/(1+p4

F )×o×F/(1+pF ). Here α1 is defined by α1(x) = x

and β1 is defined by β1 (x(1 + p4
F )) = x(1 + pF ).

Proof. Since gcd(2, |1 + pF/1 + p2
F |) = 1 and o×F/(1 + pF ) is a cyclic group of order 2,

one can give arguments similar as in the proof of Lemma 4.3.14 to show that (4.18)

splits.

Lemma 4.3.16. Let F = Q3(
√
−3). Then (1 + pF )/(1 + p4

F ) ∼= (Z/3Z)3.

Proof. In order to prove the statement, we count the number of elements of order 3 in

(1 + pF )/(1 + p4
F ). Since F is a ramified quadratic extension of Q3, vF (3) = 2. Let

3 = $2
Fu for some u ∈ o×F . Since F = Q3(

√
−3), without loss of generality, we can

choose $F =
√
−3. This implies u = −1. Let x = 1 + $Fy ∈ (1 + pF )/(1 + p4

F ) where

y ∈ oF . Then

x3 = 1 in (1 + pF )/(1 + p4
F )⇔ x3 ∈ 1 + p4

F .

⇔ (1 +$Fy)3 ∈ 1 + p4
F .

⇔ 1 +$3
Fy

3 + 3$Fy + 3$2
Fy

2 ∈ 1 + p4
F .

⇔ $3
Fy

3 +$3
Fuy ∈ p4

F .

⇔ y3 − y ∈ pF .

⇔ y(y − 1)(y + 1) ∈ pF .

The last statement is always true. Hence, (1 + pF )/(1 + p4
F ) ∼= (Z/3Z)3.
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Lemma 4.3.17. Suppose E/Q3 satisfies S
′′
6 from Table 4.1. Then the representation πE

of GL(2,Q3) associated to E/Q3 is πE = ωF,ξ with F = Q3(
√
−3).

Proof. When E satisfies S
′′
6 , by (i) of Corollary 4.3.12, we have πE = ωF,ξ with F =

Q3(
√

∆). To see that F = Q3(
√
−3), we need to consider the following possible values

of (v3(∆), v3(c4), v3(c6)) from Table 4.1 when E satisfies S
′′
6

(v3(∆), v3(c4), v3(c6)) ∈ {(5,≥ 3, 4), (7,≥ 4, 5), (11,≥ 5, 7), (13,≥ 6, 8)} (4.19)

and use the relation ∆ =
c34−c26
1728

. Here we check one of the cases. Assume that v3(∆) = 5,

v3(c4) ≥ 3 and v3(c6) = 4. We have c4 = 3mc′4 for m ≥ 3 and c6 = 34c′6, where

c′4, c
′
6 ∈ Z×3 . Then

∆ =
c3

4 − c2
6

1728
⇒ ∆ =

(3mc′4)3 − (34c′6)2

33 · 26
⇒ ∆ =

33mc′34 − 38c′26
33 · 26

.

⇒ 26∆ = 35
(
33m−8c′34 − c′26

)
⇒ 26 ∆

35
= 33m−8c′34 − c′26 . (33m−8c′34 − c′26 ∈ Z×3 .)

Since 33m−8c′34 ≡ 0 mod 3 and c′26 ≡ 1 mod 3, we get

∆

35
≡ −1 mod 3, i.e.,

∆

3v3(∆)
≡ −1 mod 3.

Similarly, one can check that 3−v3(∆)∆ ≡ −1 mod 3 for all other cases too. Hence,

F = Q3(
√
−3).

Proof of the property (v) in Corollary 4.3.12. We consider three cases.

Case 1: Assume that E satisfies S3 or S6. Then by the property (i), F = Q3(
√

∆) is

the unramified quadratic extension of Q3. Also, a(ξ) = 2 and the order of ξ|o×F is 3 or 6.

By Lemma 4.3.13, (1 + pF )/(1 + p2
F ) ∼= oF/pF has order 32. Since the characteristic

of F is 3, we get 3x = 0, for all x ∈ oF/pF . Then (1 +pF )/(1 +p2
F ) ∼= oF/pF ∼= (Z/3Z)2.
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Also, o×F/(1 + pF ) is the cyclic group of order 32 − 1 = 8. Using Lemma 4.3.14, we get

o×F/(1 + p2
F ) ∼= (Z/3Z)2 × Z/8Z. (4.20)

Since a(ξ) = 2, we get the induced character ξ : o×F/(1 +p2
F ) ∼= (Z/3Z)2×Z/8Z −→ C×.

Again, using Lemma 4.3.14, o×K/(1+p2) ∼= Z/3Z×Z/2Z. Now, o×K/(1+p2) ↪→ o×F/(1+p2
F )

(because o×K ∩ (1 + p2
F ) = (1 + p2)). Since χF/K is the unramified quadratic character of

K×, using Remark 2.2.9, ξ|o×K/(1+p2) = 1. Then, we get the induced character

ξ :
(
o×F/(1 + p2

F )
)
/
(
o×K/(1 + p2)

) ∼= Z/12Z −→ C× (4.21)

of order 3 or 6 when E satisfies S3 or S6 respectively. Now, Z/12Z has exactly 2 elements

of order 3 (resp. order 6), which are inverses of each other. So, using property (iv) in

Corollary 4.3.12, we conclude that there are exactly two such characters of order 3 (resp.

order 6) on o×F when E satisfies S3 (resp. S6), and they are Galois conjugates of each

other.

Case 2: Assume that E satisfies S
′
6. Then F = Q3(

√
∆) is a ramified quadratic

extension of Q3 and ξ is a character of F× such that the order of ξ|o×F is 6, and a(ξ) = 2.

Now, we have

oF/pF ∼= Z3/3Z3
∼= Z/3Z and o×F/(1 + pF ) ∼= (Z3/3Z3)× ∼= Z/2Z. (4.22)

So, by Lemma 4.3.14, o×F/(1 + p2
F ) ∼= Z/3Z× Z/2Z ∼= Z/6Z. Since a(ξ) = 2, we get the

induced character

ξ : o×F/(1 + p2
F ) ∼= Z/6Z −→ C× (4.23)

of order 6. There are exactly ϕ(6) = 2 elements of order 6 in Z/6Z, which are inverses

of each other. Hence, using property (iv) in Corollary 4.3.12, there are exactly two such
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characters of order 6 on o×F when E satisfies S
′
6, and they are Galois conjugates of each

other.

Case 3: Assume that E satisfies S
′′
6 . Then, by Lemma 4.3.17, F = Q3(

√
−3). In

this case, ξ is a character of F× such that the order of ξ|o×F is 6 and a(ξ) = 4. So,

we get the induced character ξ : o×F/(1 + p4
F ) −→ C×. Since o×F/(1 + pF ) ∼= Z/2Z,

using Lemma 4.3.15 and Lemma 4.3.16, we get o×F/(1 + p4
F ) ∼= Z/2Z × (Z/3Z)3. Now,

(1 + p)/(1 + p2) ↪→ (1 + pF )/(1 + p4
F ) (since p ∩ p4

F = p2). By corollary 3 of §V3 in [46],

1 + p = NF/K(1 + p2
F ). Since ξσ = ξ−1 on F×, we get ξ(1 + p) = ξ

(
NF/K(1 + p2

F )
)

= 1.

So, ξ|(1+p)/(1+p2) = 1, where (1 + p)/(1 + p2) ∼= Z/3Z. Then we get the following induced

character of order 6

ξ :
(
o×F/(1 + p4

F )
)
/
(
(1 + p)/(1 + p2)

) ∼= Z/2Z× (Z/3Z)2 −→ C×.

Also, ξ is nontrivial on (1+p3
F )/(1+p4

F ), since a(ξ) = 4. So, there are exactly 6 characters

ξ such that a(ξ) = 4, the order of ξ|o×F is 6, and ξσ = ξ−1 on F×. This completes the

proof of the property (v) of Corollary 4.3.12.

4.4 Potential good reduction in residual character-

istic 3 and v(3) > 1

Let K be a non-archimedean local field of characteristic 0 and residual characteristic 3.

Let oK be the ring of integers of K and p be the maximal ideal of oK . Let $K be a

generator of p and k = oK/p be the residue field of K of order q. Let v : K → Z be

the normalized valuation on K. Let E be an elliptic curve over K with additive but

potential good reduction. Let us assume that v(3) = λ > 1 in K, i.e., K is a ramified

extension of Q3.

Suppose that E/K is given by a Weierstrass equation of the form (2.71). The dis-
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criminant ∆, the j-invariant j(E), c4 and c6 are defined in terms of the Weierstrass

coefficients as in (2.72). In this section, we describe the representation πE of GL(2, K)

associated with E/K. In Table 4.2, we list all the possible Néron types of E/K in terms

of the quantities v(∆), v(c4) and v(c6). Similar as Lemma 4.3.1, in this case also we can

show that E has additive but potential good reduction if and only if E satisfies one and

only one of the conditions in Table 4.2. This table is reproduced from Table III of [33].

For i ∈ {2, 3, 5, 6}, the condition Ri in Table 4.2 is defined as follows

Ri : x3 − 3c4x− 2c6 ≡ 0 mod (27$i
K) for some x ∈ oK. (4.24)

If an elliptic curve E/K does not satisfy the condition Ri, then we denote it by “non

Ri” in Table 4.2. We now give a description of πE in terms of the Néron type of E/K in

Theorem 4.4.1, but, it is hard to describe πE in a simple way in terms of the Weierstrass

coefficients of E/K. The description is a bit complicated and not useful for our study,

so we skip the proof (one can give arguments similar as in the proofs of Theorem 4.3.4

and Theorem 4.3.9).

Theorem 4.4.1. Let K be a non-archimedean local field of characteristic 0 and residual

characteristic 3 such that v(3) > 1 in K. Let E be an elliptic curve over K given by

a minimal Weierstrass equation of the form (2.71). Let πE be the representation of

GL(2, K) attached to E/K. Suppose that E has additive but potential good reduction.

Then πE is one of the following

• If E has the Néron type I∗0, then πE = χ× χ−1 such that a(χ) = 1 and χ|2
o×K

= 1.

• If −1 ∈ k×2 and E has the Néron type III or III∗, then πE = χ × χ−1 such that

a(χ) = 1 and χ|4
o×K

= 1.

• If −1 6∈ k×2 and E has the Néron type III or III∗, then πE = ωF,ξ, where F = K(i)

is the unramified quadratic extension of K such that a(ξ) = 1 and ξ|4
o×F

= 1.
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Table 4.2: Néron types in terms of the quantities v(∆), v(c4), v(c6) when v(3) > 1.

Here λ = v(3), l = v(b2),m = v(b4), and E(a, b) =

{
inf (a, b) if a 6= b,

≥ a if a = b.

v(∆) v(c4) v(c6) Condition Values Néron v(N)

on c4, c6 of l,m type

6 E(2l, λ+ 2) 3l R3 1 ≤ l ≤ λ I∗0 2

λ+ 2 ≥ 3λ+ 3

3 E(2l, λ+ 1) 3l R2 1 ≤ l ≤ λ III 2

λ+ 1 ≥ 3λ+ 2

9 E(2l, λ+ 3) 3l R5 2 ≤ l ≤ λ+ 1 III∗

λ+ 3 ≥ 3λ+ 5

3m E(2l, λ+m) 3l non R2 1 ≤ m ≤ l ≤ λ II 3m

3m λ+m 3λ+ 1 1 ≤ m ≤ λ 3m

3l + 1 2l 3l 1 ≤ l ≤ λ 3l + 1

3λ+ 2 ≥ 2λ+ 1 3λ+ 1 3λ+ 2

3m E(2l, λ+m) 3l R5 non R6 4 ≤ m ≤ l + 1 ≤ λ+ 2 III∗ 3m− 8

3m λ+m 3λ+ 5 4 ≤ m ≤ λ+ 3 3m− 8

3l + 5 2l 3l 2 ≤ l ≤ λ+ 1 3l − 3

3λ+ 10 ≥ 2λ+ 4 3λ+ 5 3λ+ 2

3m E(2l, λ+m) 3l R2 non R3 2 ≤ m ≤ l ≤ λ IV 3m− 2

3m λ+m 3λ+ 2 2 ≤ m ≤ λ+ 1 3m− 2

3l + 2 2l 3l 1 ≤ l ≤ λ 3l

3λ+ 4 ≥ 2λ+ 2 3λ+ 2 3λ+ 2

3m E(2l, λ+m) 3l R3 non R5 3 ≤ m ≤ l + 1 ≤ λ+ 2 IV∗ 3m− 6

3m λ+m 3λ+ 4 3 ≤ m ≤ λ+ 2 3m− 6

3l + 4 2l 3l 2 ≤ l ≤ λ+ 1 3l − 2

3λ+ 8 ≥ 2λ+ 3 3λ+ 4 3λ+ 2
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• If ∆ ∈ K×2, v(∆) ≡ 0 mod 4 and E has one of the Néron types II, II∗, IV or IV∗,

then πE = χ× χ−1 such that χ|3
o×K

= 1 and a(χ) is given by (4.25).

a(χ) =



v(∆)
2

if the Néron type of E is II,

v(∆)−8
2

if the Néron type of E is II∗,

v(∆)−2
2

if the Néron type of E is IV,

v(∆)−6
2

if the Néron type of E is IV∗.

(4.25)

• If ∆ ∈ K×2, v(∆) ≡ 2 mod 4 and E has one of the Néron types II, II∗, IV or IV∗,

then πE = χ× χ−1 such that χ|6
o×K

and a(χ) is given by (4.25).

• If ∆ 6∈ K×2, v(∆) ≡ 0 mod 4 and E has one of the Néron types II, II∗, IV or IV∗,

then πE = ωF,ξ, where F = K(
√

∆) is the unramified quadratic extension of K

with ξ|3
o×F

= 1 and a(ξ) is given by the formula (4.25) with a(χ) replaced by a(ξ).

• If ∆ 6∈ K×2, v(∆) ≡ 2 mod 4 and E has one of the Néron types II, II∗, IV or IV∗,

then πE = ωF,ξ, where F = K(
√

∆) is the unramified quadratic extension of K

with ξ|6
o×F

= 1 and a(ξ) is given by the formula (4.25) with a(χ) replaced by a(ξ).

• If ∆ 6∈ K×2, v(∆) ≡ 1 mod 2 and E has one of the Néron types II, II∗, IV or IV∗,

then πE = ωF,ξ, where F = K(
√

∆) is a ramified quadratic extension of K such

that ξ|6
o×F

= 1 and a(ξ) is given by (4.26).

a(ξ) =



v(∆)− 1 if the Néron type of E is II,

v(∆)− 9 if the Néron type of E is II∗,

v(∆)− 3 if the Néron type of E is IV,

v(∆)− 7 if the Néron type of E is IV∗.

(4.26)
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Chapter 5

Symmetric cube of local representations at-

tached to elliptic curves

As before, let K be a non-achimedean local field of characteristic 0 and residual

characteristic p. Let oK be the ring of integers of K, and let p be the maximal ideal

of oK . Suppose that v : K → Z is the normalized valuation on K, and k = oK/p is

the residue field of K of order q. We fix a generator $K for the ideal p and $K is

called the uniformizer. We write ν(x) or |x| for the normalized absolute value of x; thus

ν($K) = q−1. Let πE be the irreducible, admissible representation of GL(2, K) attached

to an elliptic curve E over K such that it is a local component of a cuspidal automorphic

representation of GL(2). In this chapter, we study the L-packet sym3(πE). We have

discussed the local sym3 lifting in general in Section 3.3. But here we specifically study

the L-factor, ε-factor, and representation type of the L-packet sym3(πE) when πE is

attached to an elliptic curve E/K. We assume that v(3) = 1 if the residual characteristic

of K is 3.

5.1 Type of representation of sym3(πE)

In this section, we find the representation type of sym3(πE) in Table 5.1 and Table 5.2.

Here we use our discussion in Section 3.3 and Table 3.1 in order to determine the

representation type of sym3(πE). We consider three cases.
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Case I: Assume that E has potential multiplicative reduction over any p-adic field

K. Then, by Theorem 4.1.1, we have πE = (γ(E/K), ·)StGL(2), where (γ(E/K), ·) is

the quadratic character of K× defined by the Hilbert symbol (·, ·). Then sym3(πE) =

(γ(E/K), ·)StGSp(4). So, by Table 3.1, sym3(πE) is of type IVa. Thus we obtain the first

row of Table 5.1.

Case II: Assume that E has additive but potential good reduction over a p-adic field

K with p ≥ 3 and πE = χ × χ−1. Then we have sym3(πE) = χ4 × χ2 o χ−3. Then, by

Table 3.1, sym3(πE) is of type I. Thus we obtain the second row of Table 5.1 and the

first row of Table 5.2.

Case III: Assume that E has additive but potential good reduction over a p-adic field

K with p ≥ 3 and πE = ωF,ξ, where F is a quadratic extension of K and ξ is a character

of F× such that ξσ = ξ−1. Then, by Table 3.1, we have the following

• sym3(πE) is of type VIII and sym3(πE) = {τ(S, ωF,ξ), τ(T, ωF,ξ)} if and only if

ξ4 = 1 on F×.

• sym3(πE) is of type X and sym3(πE) = ωF,ξ4 o ϕ if and only if ξ6 = 1 on F×.

• sym3(πE) is supercuspidal if and only if ξ4 6= 1 and ξ6 6= 1 on F×.

Remark 5.1.1. Suppose that πE = ωF,ξ such that F/K is a quadratic extension and ξ

is a character of F×. Then ξ6 = 1 on F× if and only if the order of ξ is 6 and ξ4 = 1

on F× if and only if the order of ξ is 4.

Now we consider two cases. First, assume that F is the unramified extension of K.

Then we have ξ($F ) = −1. Since F× = 〈$F 〉 × o×F and ξ2($F ) = 1, we get ξ6 = 1 on

F× if ξ|3
o×F

= 1 or ξ|6
o×F

= 1, and we get ξ4 = 1 on F× if ξ|4
o×F

= 1. Thus we get the last

row of Table 5.1 when πE = ωF,ξ, and the entries in the last column of Table 5.2 when

E satisfies the condition Sm with m ∈ {3, 4, 6}.
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Table 5.1: Representation type of sym3(πE).

Here E has potential multiplicative reduction or E has additive but potential good
reduction with p ≥ 5. Here γ = γ(E/K) is the γ-invariant of E and (γ, ·) is the Hilbert
symbol and e = 12

gcd(12,v(∆))
. Also, ϕ is a character of K× such that ξ3 = ϕ ◦NF/K . For

a character ψ, the symbol o (ψ) denotes the order of ψ.

Condition GL(2, K) Extra GSp(4, K) Rep.

on rep. condition L-packet type of

E/K πE on πE sym3(πE) sym3(πE)

j(E) 6∈ o×K (γ, ·)StGL(2) (γ, ·)StGSp(4) IVa

j(E) ∈ o×K
(p−1)v(∆)≡0 mod 12

χ× χ−1

a(χ) = 1

o
(
χ|o×K

)
= e

χ4 × χ2 o χ−3 I

j(E) ∈ o×K
(p−1)v(∆)6≡0 mod 12

ωF,ξ
F/K is unr.
a(ξ) = 1

ξ($F ) = −1

o
(
ξ|o×F

)
= 3 ωF,ξ4 o ϕ X

o
(
ξ|o×F

)
= 4 {τ(S, ωF,ξ), τ(T, ωF,ξ)} VIII

o
(
ξ|o×F

)
= 6 ωF,ξ4 o ϕ X

Next, we assume that F is a ramified extension of K. Then the residual characteristic

of K is p = 3 and E satisfies the condition S
′
6 or S

′′
6 from Table 4.1. In this case, the

order of ξ|o×F is 6, but we do not have the exact value of ξ($F ). Here, we investigate

whether ξ6($F ) = 1 or not. Note that,

K× = 〈$K〉 × (1 + p)×Wq−1 and F× = 〈$F 〉 × (1 + pF )×Wq−1.
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Table 5.2: Representation type of sym3(πE) when E/K has additive but potential good
reduction and p = 3.

Here, ϕ is a character of K× such that ξ3 = ϕ ◦ NF/K . For a character ψ, the symbol
o (ψ) denotes the order of ψ.

Condition GL(2, K) Extra GSp(4, K) Representation

from rep. condition L-packet type of

Table 4.1 πE on K sym3(πE) sym3(πE)

Pm

m ∈ {2, 3, 4, 6}
χ× χ−1

a(χ) = 1

o
(
χ|o×K

)
= m

χ4 × χ2 o χ−3 I

S3
ωF,ξ

F/K is unr.
a(ξ) = 2

ξ($F ) = −1

o
(
ξ|o×F

)
= 3

ωF,ξ4 o ϕ X

S4
ωF,ξ

F/K is unr.
a(ξ) = 1

ξ($F ) = −1

o
(
ξ|o×F

)
= 4

{τ(S, ωF,ξ), τ(T, ωF,ξ)} VIII

S6
ωF,ξ

F/K is unr.
a(ξ) = 2

ξ($F ) = −1

o
(
ξ|o×F

)
= 6

ωF,ξ4 o ϕ X

S
′
6

ωF,ξ
F/K is ram.
a(ξ) = 2

o
(
ξ|o×F

)
= 6

−1 ∈ K×2 ωF,ξ4 o ϕ X

−1 6∈ K×2 ωF,ξ ⊕ ωF,ξ3 Supercuspidal

S
′′
6

ωF,ξ
F/K is ram.
a(ξ) = 4

o
(
ξ|o×F

)
= 6

−1 ∈ K×2 ωF,ξ4 o ϕ X

−1 6∈ K×2 ωF,ξ ⊕ ωF,ξ3 Supercuspidal
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Here, Wq−1 is the group of (q − 1)th root of unity. Note that o×K/(1 + p) ∼= Wq−1. Since

F/K is a ramified quadratic extension, so we also have o×F/(1 + pF ) ∼= Wq−1. Without

loss of generality, we may assume that NF/K($F ) = $K . Let σ($F ) = $Fyw for some

y ∈ 1 + pF and w ∈ Wq−1. Then we have the following result.

Lemma 5.1.2. Let K be a non-archimedean field of characteristic 0 and residual char-

acteristic 3. Let F be a ramified quadratic extension of K and σ be the non-trivial

element of Gal(F/K). Assume that σ($F ) = $Fyw, where w ∈ Wq−1 and y ∈ 1 + pF .

Then w = −1.

Proof. Firstly, we show that w ∈ {±1} and yσ(y) = 1 as follows.

We have $F = σ (σ($F )) = σ ($Fyw) = σ($F )σ(y)σ(w) = $Fywσ(y)σ(w).

⇒ yσ(y)wσ(w) = 1.

⇒ yσ(y)w2 = 1. (w = σ(w) since w ∈ Wq−1.)

⇒ w2 = 1 and yσ(y) = 1. (since (1 + pF ) ∩Wq−1 = 1.)

⇒ w ∈ {±1} and yσ(y) = 1.

Now, we prove the lemma by contradiction. Let us assume that w = 1. Then, σ($F ) =

$Fy with y ∈ 1 + pF , i.e., σ($F )
$F

∈ 1 + pF . Also, σ(w) = w for all w ∈ Wq−1 and

σ(y) ≡ y mod pF for all y ∈ 1 + pF . Then we get

σ ∈ R =

{
σ′ ∈ Gal(F/K) :

σ′(x)

x
≡ 1 mod pF for all x ∈ F×

}
, (5.1)

here R is the ramification group. Now, since F/K is a quadratic extension and the

residue characteristic of K is 3, we have gcd([F : K], 3) = 1. So, F is a tamely ramified

quadratic extension of K (see Definition 7.6 in [32]). Let V be the ramification field over

K, i.e., V is the intermediate field of F/K fixed by R. Since F/K is tamely ramified,

by Proposition 9.14 of [32], we get V = F . So, R is the trivial group in this case. This
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is a contradiction to (5.1). So, our assumption w = 1 was wrong. Hence w = −1.

Lemma 5.1.3. Let E be an elliptic curve over a non-archimedean field K of charac-

teristic 0 and residual characteristic 3. Suppose that E satisfies the condition S
′
6 or S

′′
6

in Table 4.1, so that the associated GL(2, K) representation is πE = ωF,ξ, where F is a

ramified quadratic extension of K and ξ is a character of F×. Then −1 ∈ K×2 if and

only if ξ6 = 1 on F×.

Proof. Using Lemma 5.1.2, we see that σ($F ) = −$Fy with y ∈ 1+pF . Now, the order

of ξ|o×F is 6. So, ξ6 = 1 on F× if and only if ξ6($F ) = 1. Now, note that

ξ6($F ) = 1⇔ ξ3($F ) = (ξ3)σ($F ) (since ξ−1 = ξσ.)

⇔ ξ3($F ) = ξ3 (σ($F )) (here σ is the non-trivial element in Gal(F/K).)

⇔ ξ3($F ) = ξ3 ($F ) ξ3 (y) ξ3 (−1)

⇔ ξ3($F ) = ξ3 ($F ) ξ3 (−1) (since a(ξ3) = 1.)

⇔ ξ3 (−1) = 1 (since ξ($F ) 6= 0.)

(5.2)

Let −1 ∈ K×2. Since ξ|6
o×F

= 1 and −1 ∈ o×2
F , so ξ3(−1) = 1. Then, by (5.2), ξ6 =

1 on F×. Conversely, let us assume −1 /∈ K×2. Since a(ξ3) = 1, we have ξ3|Wq−1 6= 1.

Now, ξ3|W 2
q−1

= 1 (since ξ|6
o×F

= 1) and Wq−1 = W 2
q−1 t (−1)W 2

q−1. So, ξ3(−1) = −1.

Hence, ξ6 6= 1 on F×. This concludes the lemma.

Hence, using Lemma 5.1.3, when E satisfies the condition S
′
6 or S

′′
6 in Table 4.1, sym3(πE)

is of type X if −1 ∈ K×2 and sym3(πE) is supercuspidal, if −1 /∈ K×2.

5.2 Conductor of sym3(πE)

In this section, we find the conductor a(sym3(πE)) of sym3(πE) in Table 5.3, Table 5.4

and Table 5.5 and list them in the following result.

117



Theorem 5.2.1. let K be a non-achimedean local field of characteristic 0 and residual

characteristic p, for any prime p. When the residual characteristic of K is 3, we assume

that v(3) = 1. Let E be an elliptic curve over K given by a minimal Weierstrass

equation of the form (2.71) with coefficients in oK. Let πE be the irreducible, admissible

representation of GL(2, K) attached E.

(i) If E/K has potential multiplicative reduction, then a(sym3(πE)) is given in Ta-

ble 5.3.

(ii) If E/K has additive but potential good reduction and p ≥ 5, then a(sym3(πE)) is

given in Table 5.4.

(iii) If E/K has additive but potential good reduction and p = 3, then a(sym3(πE)) is

given in Table 5.5.

Proof. (i) Assume that E has potential multiplicative reduction, i.e, j(E) 6∈ oK . By

Theorem 4.1.1, the representation πE of GL(2) attached to E is of the form πE =

(γ(E/K), ·)StGL(2). Then sym3(πE) has the L-parameter as in (3.4) and sym3(πE) =

(γ(E/K), ·)StGSp(4). Then, from Table 3.2, the conductor a(sym3(πE)) is given by

a(sym3(πE)) =


4a((γ(E/K), ·))3 if (γ(E/K), ·) is ramified,

3 if (γ(E/K), ·) is unramified.

Since the Hilbert symbol (γ(E/K), ·) takes value in {±1}, we have (γ(E/K), ·) =

(γ(E/K), ·)3. When E/K has additive but potential multiplicative reduction, it is well

known that (γ(E/K, ·) is ramified and a ((γ(E/K), ·)) is given by

a ((γ(E/K), ·)) =


1 for p ≥ 3,

2 or 3 for p = 2.
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Table 5.3: Conductor of sym3(πE) when E has potential multiplicative reduction.

Here γ = γ(E/K) is the γ-invariant of E/K and (·, ·) is the Hilbert symbol.

Condition GL(2, K) sym3(πE) Condition Prime a(πE) a(sym3(πE))

on E/K rep. πE on πE p

j(E) 6∈ o×K (γ, ·)StGL(2) (γ, ·)StGSp(4) (γ, ·)
is ram.

≥ 3 2 4

2 4 8

6 12

(γ, ·)
is unr.

1 3

Table 5.4: Conductor of sym3(πE) when E has additive but potential good reduction
and p ≥ 5.

For a character ψ, the symbol o (ψ) denotes the order of ψ.

Condition GL(2, K) sym3(πE) Condition a(πE) a(sym3(πE))

on E/K rep. πE on πE

j(E) ∈ o×K
(p−1)v(∆)≡0 mod 12

χ× χ−1

a(χ) = 1
χ4 × χ2 o χ−3 o

(
χ|o×K

)
= 2 2 4

o
(
χ|o×K

)
= 3 2 2

o
(
χ|o×K

)
= 4 2 4

o
(
χ|o×K

)
= 6 2 4

j(E) ∈ o×K
(p−1)v(∆)6≡0 mod 12

ωF,ξ
F/K is unr.
a(ξ) = 1

ξ($F ) = −1

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 3 2 2

(type X)

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 4 2 4

(type VIII)

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 6 2 4

(type X)
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Table 5.5: Conductor of sym3(πE) when E has additive but potential good reduction
and p = 3.

For a character ψ, the symbol o (ψ) denotes the order of ψ.

Condition GL(2, K) GSp(4, K) Condition a(πE) a(sym3(πE))

from rep. L-packet on

Table 4.1 πE sym3(πE) πE

P2 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 1 2 4

o
(
χ|o×K

)
= 2

P3 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 2 4 4

o
(
χ|o×K

)
= 3

P4 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 1 2 4

o
(
χ|o×K

)
= 4

P6 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 2 4 6

o
(
χ|o×K

)
= 6

S4 ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 1 2 4

F=K(i) (type VIII) ξ($F ) = −1

(unramified) o
(
ξ|o×F

)
= 4

S3 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 2 4 4

F=K(
√

∆) (type X) ξ($F ) = −1

(unramified) o
(
ξ|o×F

)
= 3

S6 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 2 4 6

F=K(
√

∆) (type X) ξ($F ) = −1

(unramified) o
(
ξ|o×F

)
= 6

S
′
6 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 2 3 5

F=K(
√

∆) (type X/s.c.) o
(
ξ|o×F

)
= 6

(ramified)

S
′′
6 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 4 5 7

F=K(
√

∆) (type X/s.c.) o
(
ξ|o×F

)
= 6

(ramified)
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Hence, we obtain the column of a(sym3(π)) of Table 5.3, i.e.,

a(sym3(πE)) =


4 if (γ(E/K), ·) is ramified and p ≥ 3,

8 or 12 if (γ(E/K), ·) is ramified and p = 2,

3 if (γ(E/K), ·) is unramified.

(ii) Let e = 12
gcd(12,v(∆))

. Assume that E has additive but potential good reduction, i.e,

j(E) ∈ oK . Then we consider the following two cases.

Case 1: Suppose that (q − 1)v(∆) ≡ 0 mod 12. By Theorem 4.2.1, the corresponding

GL(2, K) representation is of the form πE = χ × χ−1, where χ is a character of K×.

Then, using Table 3.1, we get sym3(πE) = χ4 × χ2 o χ−3. Then, from Table 3.2, the

conductor a(sym3(πE)) of sym3(πE) is given by a(sym3(πE)) = 2a(χ3) + 2a(χ). Now, by

Theorem 4.2.1, a(χ) = 1 and χe is unramified for e ∈ {2, 3, 4, 6}. When e = 2 or 4, we

have a(χ3) = a(χ), so we get a(sym3(πE)) = 4a(χ) = 4. When e = 3, a(sym3(πE)) =

2a(χ) = 2. When e = 6, note that χ3|o×K 6= 1, so we get 0 < a(χ3) ≤ a(χ) = 1. Since

the residual characteristic p of K is odd, we have 1 + p ⊂ o×2
K . Now, χ6|o×K = 1 implies

χ3|1+p = 1, i.e., a(χ3) = 1. So, a(sym3(πE)) = 4 when e = 6. Hence, we obtain the first

row of Table 5.4.

Case 2: Suppose that (q − 1)v(∆) 6≡ 0 mod 12. By Theorem 4.2.2, the corresponding

GL(2, K) representation is of the form πE = ωF,ξ, where F is the unramified quadratic

extension of K and ξ is a character of F× with ξσ = ξ−1. Also, the central character

of πE is trivial. Then, using Table 3.1, the local parameter of sym3(πE) is of the form

ind
W (K̄/K)

W (K̄/F )
(ξ)⊕ ind

W (K̄/K)

W (K̄/F )
(ξ3) and sym3(πE) = ωF,ξ ⊕ ωF,ξ3 . So, using Table 3.2, we get

a(sym3(πE)) = 2a(ξ3) + 2a(ξ).

By Theorem 4.2.2, in this case a(ξ) = 1 and ξe is unramified for e ∈ {3, 4, 6}. Clearly,

if e = 3, we have a(ξ3) = 0 and a(sym3(πE)) = 2 and if e = 4, a(sym3(πE)) = 4a(ξ) = 4.

Now, since the residual characteristic of F is also odd, we have 1 + pF ⊂ o×2
F . Since
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0 ≤ a(ξ3) ≤ a(ξ) and ξ|3
o×F
6= 1, using a similar argument as in case 1, it is easy to check

that a(ξ3) = 1 and a(sym3(πE)) = 4 if e = 6. This proves the second row of Table 5.4.

(iii) The proof of this part is similar to part (ii), so we skip some details. Here also we

consider two different cases.

Case 1: When E satisfies the condition Pm for m ∈ {2, 3, 4, 6}, by Theorem 4.3.4, the

GL(2, K) representation is of the form πE = χ×χ−1, where χ is a character of K× such

that χm is unramified. Also, a(χ) = 1 if E satisfies P2 or P4, and a(χ) = 2 if E satisfies P3

or P6. Then, by Table 3.2, sym3(πE) = χ4×χ2oχ−3 and a(sym3(πE)) = 2a(χ3)+2a(χ).

Now, using similar arguments as in case 1 of part (ii), we get a(sym3(πE)) = 4 when E

satisfies P2 or P4 or P3, and a(sym3(πE)) = 6 when E satisfies the condition P6. Hence,

we obtain the column of a(sym3(πE)) in Table 5.5 for the case πE = χ× χ−1.

Case 2: When E satisfies one of the conditions in {S4, S3, S6, S
′
6, S

′′
6}, by Theorem 4.3.9,

the corresponding GL(2, K) representation is of the form πE = ωF,ξ, where F is a

quadratic extension of K and ξ is a character of F× with ξσ = ξ−1. Then, using

Table 3.1, the local parameter of sym3(πE) is of the form ind
W (K̄/K)

W (K̄/F )
(ξ)⊕ ind

W (K̄/K)

W (K̄/F )
(ξ3)

and sym3(πE) = ωF,ξ ⊕ ωF,ξ3 . Now, we consider two cases.

Let F is the unramified quadratic extension of K. Then, from Table 3.2 we get

a(sym3(πE)) = 2a(ξ3) + 2a(ξ). By Theorem 4.3.9, F/K is unramified when E satisfies

the condition Sm for m ∈ {3, 4, 6}. In this case, the order of ξ|o×F is m with a(ξ) = 1 for

m = 4, and a(ξ) = 2 for m = 3 or 6. Then, using arguments similar to the case 2 of part

(ii), one can easily verify that a(sym3(πE)) = 4 when m = 3 or 4 and a(sym3(πE)) = 6

when m = 6.

Suppose that F is a ramified quadratic extension of K. From Table 3.2 we get

a(sym3(πE)) = a(ξ3)+a(ξ)+2. Now, by Theorem 4.3.9, F/K is ramified when E satisfies

either S
′
6 or S

′′
6 . In both these cases, the order of ξ|o×F is 6. Also, a(ξ) = 2 if E satisfies

the condition S
′
6 and a(ξ) = 4 if E satisfies the condition S

′′
6 . Now, 0 < a(ξ3) ≤ a(ξ) and
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ξ|3
o×F
6= 1. Again, we have 1 + pF ⊂ o×2

F . So, ξ3|1+pF = 1, i.e., a(ξ3) = 1. Hence we get

a(sym3(πE)) = 5 when E satisfies S
′
6 and a(sym3(πE)) = 7 when E satisfies S

′′
6 .

Thus, we obtain the column of a(sym3(πE)) in Table 5.5 when πE = ωF,ξ.

5.3 L-factor of sym3(πE)

In this section, we find the L-factor L(s, sym3(πE)) of sym3(πE) attached to an elliptic

curve E/K in Tables 5.6 and 5.7. We again consider three cases here.

Case I: Assume that E has potential multiplicative reduction over any p-adic field K.

Then we have πE = (γ(E/K), ·)StGL(2,K) and sym3(πE) = (γ(E/K), ·)StGSp(4,K), where

(γ(E/K), ·) is the quadratic character of K× defined by the Hilbert symbol (·, ·). Then,

by Table A.6 from [37], L(s, sym3(πE)) = L(s, ν
3
2 (γ(E/K), ·)). Recall that ν is the

normalized absolute value such that ν($K) = q−1. For a character χ of K×, the symbol

L(s, χ) is defined as follows

L(s, χ) =


(1− χ($K)q−s)−1 if χ is unramified,

1 if χ is ramified.

(5.3)

By Theorem 4.1.1, when E/K has split multiplicative reduction, (γ(E/K), ·) is trivial

and (γ(E/K), $K) = 1. When E/K has non-split multiplicative reduction, (γ(E/K), ·)

is the unique nontrivial and unramified character with (γ(E/K), $K) = −1 and when

E/K has additive but potential multiplicative reduction, (γ(E/K), ·) is ramified. So

using (5.3) we get

L(s, sym3(πE)) =


(1− q−s− 3

2 )−1 if (γ(E/K), ·) is trivial,

(1 + q−s−
3
2 )−1 if (γ(E/K), ·) is nontrivial and unramified,

1 if (γ(E/K), ·) is ramified.
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Thus we obtain the first row of Table 5.6.

Case II: Assume that E has additive but potential good reduction over a p-adic field

K with p ≥ 3 and πE = χ× χ−1. Then we have sym3(πE) = χ4 × χ2 o χ−3. Again, by

Table A.6 from [37], L(s, sym3(πE)) = L(s, χ)L(s, χ−1)L(s, χ3)L(s, χ−3). In this case, χ

is always ramified. So, we get a non-trivial L-factor only when a(χ3) = 0 and in that

case L(s, sym3(πE)) = L(s, χ3)L(s, χ−3). Thus we obtain the second row of Table 5.6

and the rows of Table 5.7 when πE = χ× χ−1.

Case III: Assume that E has additive but potential good reduction over a p-adic field

K with p ≥ 3 and πE = ωF,ξ, where F is a quadratic extension of K and ξ is a character

of F× such that ξσ = ξ−1. Then, using Table 3.1, the local parameter of sym3(πE) is of

the form ind
W (K̄/K)

W (K̄/F )
(ξ) ⊕ ind

W (K̄/K)

W (K̄/F )
(ξ3) and sym3(πE) = ωF,ξ ⊕ ωF,ξ3 . Using Property

(L2) in Section 8 of [39], we get

L(s, sym3(ωF,ξ)) = L(s, ind
W (K̄/K)

W (K̄/F )
(ξ))L(s, ind

W (K̄/K)

W (K̄/F )
(ξ3)) = L(s, ξ)L(s, ξ3). (5.4)

Since a(ξ) ≥ 1 for all cases, from (5.4) it is clear that L(s, sym3(πE)) is nontrivial if and

only if ξ3 is unramified. So, we get L(s, sym3(πE)) = 1 for all cases in Tables 5.6 and

5.7 when πE = ωF,ξ except for the case when πE = ωF,ξ such that F/K is unramified

and the order of ξ|o×F is 3.

Suppose that πE = ωF,ξ such that F/K is unramified and the order of ξ|o×F is 3. Since

F/K is unramified, we have $F = $K , and ξ($F ) = −1. So, we get ξ3($F ) = −1.

Also, the order qF of the residue field of F is equal to q2 in this case. Hence, we get

L(s, sym3(ωF,ξ)) =


(1− ξ3($F )q−sF )−1 = 1

1+q−2s if ξ3 is unramified,

1 otherwise.

Thus we obtain the last row of Table 5.6 and the rows of Table 5.7 when πE = ωF,ξ.
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Table 5.6: The spin L-factor of sym3(πE).

Here E has potential multiplicative reduction or E has additive but potential good
reduction with p ≥ 5. Here γ = γ(E/K) is the γ-invariant of E, where (·, ·) is the
Hilbert symbol. For a character ψ, the symbol o (ψ) denotes the order of ψ.

Condition GL(2, K) GSp(4, K) Condition L(s, sym3(πE))

on rep. L-packet on

E/K πE sym3(πE) πE

j(E) 6∈ oK (γ, ·)StGL(2) (γ, ·)StGSp(4) (γ, ·) 1

is ram.

(γ, ·) is 1
1−q−3/2−s

trivial

(γ, ·) is unr. 1
1+q−3/2−s

nontrivial

j(E) ∈ oK
(p−1)vp(∆)≡0 mod 12

χ× χ−1

a(χ) = 1

χ4 × χ2 o χ−3 o
(
χ|o×K

)
= 2 1

o
(
χ|o×K

)
= 3 L(s, χ3)L(s, χ−3)

o
(
χ|o×K

)
= 4 1

o
(
χ|o×K

)
= 6 1

j(E) ∈ oK
(p−1)vp(∆)6≡0 mod 12

ωF,ξ
F/K is unr.

a(ξ)=1

ξ($F )=−1

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 3 1

1+q−2s

(type X)

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 4 1

(type VIII)

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 6 1

(type X)
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Table 5.7: The spin L-factor of sym3(πE) when E has additive but potential good
reduction with p = 3.

For a character ψ, the symbol o (ψ) denotes the order of ψ.

Condition GL(2, K) GSp(4, K) Condition L(s, sym3(π))

from rep. L-packet on

Table 4.1 πE sym3(πE) πE

P2 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 1 1

o
(
χ|o×K

)
= 2

P3 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 2 L(s, χ3)L(s, χ−3)

o
(
χ|o×K

)
= 3

P4 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 1 1

o
(
χ|o×K

)
= 4

P6 χ× χ−1 χ4 × χ2 o χ−3 a(χ) = 2 1

o
(
χ|o×K

)
= 6

S4 ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 1 1

F=K(i) (type VIII) ξ($F ) = −1

(unramified) o
(
ξ|o×F

)
= 4

S3 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 2 1
1+q2s

F=K(
√

∆) (type X) ξ($F ) = −1

(unramified) o
(
ξ|o×F

)
= 3

S6 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 2 1

F=K(
√

∆) (type X) ξ($F ) = −1

(unramified) o
(
ξ|o×F

)
= 6

S
′
6 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 2 1

F=K(
√

∆) (type X/s.c.) o
(
ξ|o×F

)
= 6

(ramified)

S
′′
6 π = ωF,ξ ωF,ξ ⊕ ωF,ξ3 a(ξ) = 4 1

F=K(
√

∆) (type X/s.c.) o
(
ξ|o×F

)
= 6

(ramified)
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5.4 ε-factor of sym3(πE)

In this section, we find the ε-factor ε
(

1
2
, sym3(πE)

)
of sym3(πE) attached to an elliptic

curve E/K in Tables 5.8 and 5.9. We again consider three cases here.

Case I: When πE = (γ(E/K), ·)StGL(2), we have sym3(πE) = (γ(E/K), ·)StGSp(4). Then,

from Table A.9 in [37], we get

ε

(
1

2
, sym3(πE)

)
=


1 if (γ(E/K), ·) is ram,

−(γ(E/K), $K) if (γ(E/K), ·) is unr.

(5.5)

When (γ(E/K), ·) is non-trivial and unramified, (γ(E/K), $K) = −1. Thus, we obtain

the first row of Table 5.8.

Case II: When πE = χ×χ−1 we have sym3(πE) = χ4×χ2oχ−3. Then, from Table A.9 in

[37], we get ε
(

1
2
, sym3(πE)

)
= χ4(−1) = 1. Thus, we obtain the second row of Table 5.8

and the first row of Table 5.9. Case III: Let πE = ωF,ξ, where F is a quadratic character

of K and ξ is a character of F× such that ξσ = ξ−1. So, sym3(πE) = ωF,ξ ⊕ωF,ξ3 . Then,

using the property (ε2) in Section 11 of [39], we get

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, ωF,ξ

)
ε

(
1

2
, ωF,ξ3

)
and ε

(
1

2
, ωF,ξ

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ, ψ ◦ tr

)
.

(5.6)

Here, χF/K is the quadratic character of K× associated to the quadratic extension F/K

that factors through the norm map NF/K , tr is the trace map from F to K, and ψ is a

non-trivial additive character of K with the conductor (exponent) a(ψ) = 0. Calculation

of ε
(

1
2
, sym3(πE)

)
is a bit involved. We consider two separate cases.

Case 1: Suppose that F is the unramified quadratic extension of K. In this case, ξm is

unramified for m ∈ {3, 4, 6} and ξ($F ) = −1. Also, χF/K is the unramified quadratic
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Table 5.8: The ε-factor of sym3(πE).

Here E has potential multiplicative reduction or E has additive but potential good
reduction with p ≥ 5. Here γ = γ(E/K) is the γ-invariant of E, where (·, ·) is the
Hilbert symbol and e = 12

gcd(12,v(∆))
. For a character ψ, the symbol o (ψ) denotes the

order of ψ.

Condition GL(2, K) GSp(4, K) Condition ε
(

1
2
, sym3(πE)

)
on rep. L-packet on

E/K πE sym3(πE) πE

j(E) 6∈ oK (γ, ·)StGL(2) (γ, ·)StGSp(4) (γ, ·) 1

is ram.

(γ, ·) is −1

trivial

(γ, ·) is unr. 1

nontrivial

j(E) ∈ oK
(p−1)vp(∆)≡0 mod 12

χ× χ−1

a(χ) = 1

o
(
χ|o×K

)
= e

χ4 × χ2 o χ−3 1

j(E) ∈ oK
(p−1)vp(∆) 6≡0 mod 12

ωF,ξ
F/K is unr.

a(ξ)=1

ξ($F )=−1

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 3 −1

(type X)

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 4 1

(type VIII)

ωF,ξ ⊕ ωF,ξ3 o
(
ξ|o×F

)
= 6 1

(type X)
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Table 5.9: The ε-factor of sym3(πE) when E has additive but potential good reduction
with p = 3.

Here, ϕ is a character of K× such that ξ3 = ϕ ◦ NF/K . For a character ψ, the symbol
o (ψ) denotes the order of ψ.

Condition GL(2, K) GSp(4, K) Extra ε
(

1
2
, sym3(πE)

)
from representation L-packet condition

table 4.1 πE sym3(πE) on K

Pm

m ∈ {2, 3, 4, 6}
χ× χ−1

a(χ) = 1

o
(
χ|o×K

)
= m

χ4 × χ2 o χ−3 1

S3
ωF,ξ

F/K is unr.
a(ξ) = 2

ξ($F ) = −1

o
(
ξ|o×F

)
= 3

ωF,ξ ⊕ ωF,ξ3 1

(type X)

S4
ωF,ξ

F/K is unr.
a(ξ) = 1

ξ($F ) = −1

o
(
ξ|o×F

)
= 4

ωF,ξ ⊕ ωF,ξ3 1

(type VIII)

S6
ωF,ξ

F/K is unr.
a(ξ) = 2

ξ($F ) = −1

o
(
ξ|o×F

)
= 6

ωF,ξ ⊕ ωF,ξ3 −1

(type X)

S
′
6

ωF,ξ
F/K is ram.
a(ξ) = 2

o
(
ξ|o×F

)
= 6

ωF,ξ ⊕ ωF,ξ3 −1 ∈ K×4 ε(1
2
, πE)

(type X/s.c.) −1 ∈ K×2 \K×4 −ε(1
2
, πE)

−1 6∈ K×2 ε(1
2
, πE)

S
′′
6

ωF,ξ
F/K is ram.
a(ξ) = 4

o
(
ξ|o×F

)
= 6

ωF,ξ ⊕ ωF,ξ3 −1 ∈ K×4 ε(1
2
, πE)

(type X/s.c.) −1 ∈ K×2 \K×4 −ε(1
2
, πE)

−1 6∈ K×2 ε(1
2
, πE)
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character of K× with χF/K($K) = −1. So, we get ε
(

1
2
, χF/K , ψ

)
= 1 and

ε

(
1

2
, ωF,ξ

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ, ψ ◦ tr

)
= ε

(
1

2
, ξ, ψ ◦ tr

)
. (5.7)

The following result from [11] is useful for computing ε
(

1
2
, ξ, ψ ◦ tr

)
.

Lemma 5.4.1. Let F be a quadratic extension of K such that F = K(
√
u) with u ∈

K× \K×2. Let φ be any character of F× such that φ|K× = 1. Then the root number

W (φ) = ε

(
1

2
, φ, ψ

)
= φ(
√
u),

where ψ is a non-trivial additive character of F with the conductor (exponent) a(ψ) = 0.

Let χ be the unramified character of F× = 〈$F 〉 × o×F , such that χ($F ) = −1. Note

that, χ|K×($K) = −1 (since $F = $K) and χ|o×K = 1. Also, χF/K is the character of K×

such that χF/K |o×K = 1 and χF/K($K) = −1. Since K× = 〈$K〉 × o×K , so χ|K× = χF/K .

Now, since πE = ωF,ξ has trivial central character, by Remark 2.2.9, (ξ|K×).(χF/K) = 1.

This implies (ξ.χ)|K× = 1. Also, ψ ◦ tr is an additive character of F . Let f(F/K) be

the degree of the residue field extension, e(F/K) be the ramification index and d(F/K)

be the valuation of the discriminant of the field extension F/K. We have d(F/K) = 0

if F/K is unramified, and d(F/K) = 1 if F/K is ramified. Then, by Lemma 2.3 in [41],

the conductor (exponent) a(ψ ◦ tr) of ψ ◦ tr is given by

a(ψ ◦ tr) = e(F/K)a(ψ)− f(F/K)−1d(F/K) = 1 · 0− 2−1 · 0 = 0. (5.8)

Then, using Lemma 5.4.1, we get

ε

(
1

2
, ξ · χ, ψ ◦ tr

)
= (ξ · χ)(

√
u) = ξ(

√
u) · χ(

√
u). (5.9)
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On the other hand, using (3.2.6.3) in [49] for the unramified character χ of F×, we get

ε

(
1

2
, ξ · χ, ψ ◦ tr

)
= χ($F )a(ξ)ε

(
1

2
, ξ, ψ ◦ tr

)
= (−1)a(ξ)ε

(
1

2
, ξ, ψ ◦ tr

)
. (since χ($F ) = −1.)

(5.10)

Hence, using (5.7), (5.9) and (5.10), we get

ε

(
1

2
, πE

)
= ε

(
1

2
, ωF,ξ

)
= (−1)a(ξ)ξ(

√
u). (5.11)

Also, since ξ|K× .χF/K = 1, we have ξ3|K× .χ3
F/K = ξ3|K× .χF/K = (ξ3 · χ)|K× = 1. Then,

using Lemma 5.4.1 again for ξ3.χ, we get

ε

(
1

2
, ξ3.χ, ψ ◦ tr

)
= (ξ3.χ)(

√
u) = ξ3(

√
u).χ(

√
u) = ξ3(

√
u). (5.12)

Also, using (3.2.6.3) in [49] again we obtain

ε

(
1

2
, ξ3.χ, ψ ◦ tr

)
= χ($F )a(ξ3)ε

(
1

2
, ξ3, ψ ◦ tr

)
= (−1)a(ξ3)ε

(
1

2
, ξ3, ψ ◦ tr

)
. (since χ($F ) = −1.)

(5.13)

Then using (5.12) and (5.13) we get

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ3, ψ ◦ tr

)
= ε

(
1

2
, ξ3, ψ ◦ tr

)(
since χF/K is unr., so ε

(
1

2
, χF/K , ψ

)
= 1

)
= (−1)a(ξ3)ξ3(

√
u).

(5.14)
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Hence, using (5.6), (5.11) and (5.14),

ε

(
1

2
, sym3(πE)

)
= ((−1)a(ξ)ξ3(

√
u))((−1)a(ξ3)ξ(

√
u))

= (−1)a(ξ)+a(ξ3)ξ4(
√
u)

= (−1)a(ξ)+a(ξ3)ξ2(u) = (−1)a(ξ)+a(ξ3).

(5.15)

When K has residue characteristic p ≥ 5, using case 2 of the proof of (ii) in Theo-

rem 5.2.1, we get the following for e = 12
gcd(12,v(∆))

∈ {3, 4, 6}.

ε

(
1

2
, sym3(πE)

)
=


1 when the order of ξ is 4 or 6,

−1 when the order of ξ is 3.

(5.16)

When K has residue characteristic 3, using case 2 of the proof of (iii) in Theorem 5.2.1,

we get

ε

(
1

2
, sym3(πE)

)
=


1 when E satisfies S3 or S4,

−1 when E satisfies S6.

(5.17)

Thus, we obtain the last row of Table 5.8 when πE = ωF,ξ and the rows of Table 5.9

when E satisfies Sm for m ∈ {3, 4, 6}.

Case 2: Let F be a ramified quadratic extension of K. In this case, K has residue

characteristic 3 and E satisfies S
′
6 or S

′′
6 . In this case, the order of ξ|o×F is 6 and $K =

NF/K($F ). Also, by (5.2) of Lemma 5.1.3, we have the following

ξ6($F ) =


1 if − 1 ∈ K×2,

−1 if − 1 6∈ K×2.

(5.18)

So, ξ6 = 1 on F× if −1 ∈ K×2 and ξ12 = 1 on F× if −1 6∈ K×2. Now, we consider two

scenarios.
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First, let us assume −1 ∈ K×2. From Table 5.2, if −1 ∈ K×2, then sym3(πE) is of

type X. Then sym3(πE) has L-parameter form ϕχF/K⊕ϕµ⊕ϕ, where ϕµ = ind
W (K̄/F )

W (K̄/F )
(ξ)

with an irreducible parameter µ of GL(2, K) and ξ3 = ϕ◦NF/K . Now, ϕ2 = ξ|3K× = χF/K .

Note that, since ϕχF/K = ϕ−1, we get the following (see Section 12 of [39])

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, ϕ, ψ

)
ε

(
1

2
, ϕχF/K , ψ

)
= ϕ(−1). (5.19)

Then, using (5.6), we get (also see Table A.6 in [37])

ε

(
1

2
, sym3(πE)

)
= ϕ(−1)ε

(
1

2
, πE

)
. (5.20)

Now, −1 ∈ K×2, so ϕ2(−1) = χF/K(−1) = 1, i.e., ϕ(−1) ∈ {±1}. Note that, ϕ|o×K
has order 4 and ϕ|o×2

K
6= 1. Now, a(sym3(ωF,ξ3)) = a(ωF,ξ) + a(ωF,ξ3). Also, using the

conductor formula for type X from Table A.9 in [37], a(sym3(ωF,ξ3)) = a(ωF,ξ) + 2a(ϕ).

So, 2a(ϕ) = a(ωF,ξ3) = a(ξ3) + 1 = 2, i.e., a(ϕ) = 1. So, the induced character

ϕ : k× = oK/(1 + p) = 〈g〉 → C× has order 4 such that ϕ(g) = i. The kernel of this map

is 〈g4〉. Since −1 ∈ k×2, so −1 = g2m for some m ∈ N. Now if m is even, i.e., −1 ∈ 〈g4〉,

then ϕ(−1) = 1. If m is odd, i.e., −1 ∈ 〈g2〉 \ 〈g4〉, then ϕ(−1) = −1. Now, from

Hensel’s lemma it follows that −1 ∈ k×4 if and only if −1 ∈ K×4. So, we get ϕ(−1) = 1

if −1 ∈ K×4 and ϕ(−1) = −1 if −1 ∈ K×2 \K×4.

ε

(
1

2
, sym3(πE)

)
=


ε
(

1
2
, πE

)
if − 1 ∈ K×4,

−ε
(

1
2
, πE

)
if − 1 ∈ K×2 \K×4.

(5.21)

Next, let us assume −1 6∈ K×2. In this case, ξ12 = 1 on F× and ωF,ξ3 is a dihedral

supercuspidal representation of trivial central character. Also, a(ωF,ξ3) = a(ξ3) + 1 = 2.

Note that, (ξ3)2 is Galois invariant in this case, i.e., ξ6 = (ξ6)σ = (ξ6)−1 on F×, here

σ is the non-trivial element in Gal(F/K). So, by Corollary 3.2 in [45], ωF,ξ3 is a triply
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imprimitive representation. Also, we use the following remark to show that such a

representation exists and is unique when −1 6∈ K×2.

Remark 5.4.2. −1 6∈ K×2 if and only if f(K/Q3) is odd if and only if q ≡ 3 mod 4.

Using Remark 5.4.2 and Theorem 4.1 from [45] for ωF,ξ3 , we get that ωF,ξ3 ∼= ωF ′,µ,

where F ′ is the unramified extension of K and µ is a character of F ′× with the following

properties: µ($F ′) = −1, a(µ) = 1 and µ|4oF ′ = 1. Then, using some similar arguments

from Case 1, we get the following formula as in (5.11):

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, ωF ′,µ

)
= (−1)a(µ)µ(

√
u) = −µ(

√
u), (5.22)

where we are assuming F ′ = K(
√
u) for some u ∈ K× \ K×2. Let f ′ be the residue

field of F ′ and k be the residue field of K. Then f
′× ∼= F×q2 and k× ∼= F×q are cyclic

groups. Let f
′× = 〈g〉. Note that, the action of the Frobenius automorphism on gq+1 is

trivial since (gq+1)q = gq
2+q = gq+1 and gq

2−1 = (gq+1)q−1 = 1, so we have k× = 〈gq+1〉.

Also, gq+1 6∈ k×2. Without loss of generality, we choose u ∈ K× such that the residue

class of u in k× is gq+1 (it must be something in k× \ k×2 since u ∈ K× \K×2). So, we

may assume that, the residue class of
√
u ∈ F ′× is g

q+1
2 ∈ f ′×. By Theorem 4.1 from

[45], the induced character µ̄ on f
′× = o×F ′/1 + pF ′ is given by µ̄(g) = i, and we get the

character µ on F ′× by inflating µ̄ to a character of o×F ′ and extending to F ′× by setting

ξ($F ′) = −1. Using Remark 5.4.2, we get q+1
2
≡ 2 mod 4 and µ̄(g

q+1
2 ) = i

q+1
2 = −1. So,

we get µ(
√
u) = −1 Hence, when −1 6∈ K×2, we get

ε

(
1

2
, ωF,ξ3

)
= 1 and ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, πE

)
. (5.23)
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When is ε
(

1
2 , sym3(ωF,ξ)

)
= ε(1

2 , ωF,ξ) for F/K unramified?

Suppose that, the residual characteristic of K is ≥ 5 and the GL(2, K) representation πE

attached to an elliptic curve E/K is πE = ωF,ξ, where F/K is an unramified quadratic

extension and ξ is a character of F×. In this section we investigate the relationship

between ε
(

1
2
, sym3(ωF,ξ)

)
and ε

(
1
2
, , ωF,ξ

)
. Using (5.6) and (5.14), we have

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, ωF,ξ

)
ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, ωF,ξ

)
(−1)a(ξ3)ξ3(

√
u), (5.24)

where F = K(
√
u) with u ∈ K× \K×2 and ξ is a character on F×. When ξ|o×F has order

3, from (5.24) we get

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, πE

)
. (5.25)

When ξ|o×F has order m for m = 4 or 6, a(ξ3) = 1. Then, from (5.24) we get

ε

(
1

2
, sym3(πE)

)
= −ε

(
1

2
, ωF,ξ

)
ξ3(
√
u). (5.26)

Let k be the residue field of K of order q, i.e, k ∼= Fq. Then the residue field f of F

is isomorphic to Fq2 . Suppose that F×q2 = 〈g〉, then k× = F×q = 〈gq+1〉. Without loss

of generality, we choose u ∈ K× such that the residue class of u in k× is gq+1. So, we

may assume that, the residue class of
√
u ∈ F× is g

q+1
2 ∈ f×. Let ξ̄ be the induced

character on f× and we get the character ξ on F× by inflating ξ̄ to a character of o×F

and extending to F× by setting ξ($F ) = −1.

When ξ|o×F has order m for m = 4 or 6, the induced character ξ̄ also has order m.

There are exactly two characters of order m on f× for m = 4 or 6 and ξ̄ is given by
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ξ̄(g) = e
2πi
m or e−

2πi
m . We assume that ξ̄(g) = e

2πi
m . Then, we get

ξ̄3(g
q+1
2 ) = e

6πi(q+1)
2m . (5.27)

Now, ε
(

1
2
, ωF,ξ3

)
= −ξ3(

√
u) ∈ {±1}. So, ξ3(

√
u) ∈ {±1}. Also, note that, ξ3(

√
u) = 1

if ξ̄3(g
q+1
2 ) = 1 and ξ3(

√
u) = −1 if ξ̄3(g

q+1
2 ) = −1.

When m = 6, from (5.27) we get ξ̄3(g
q+1
2 ) = 1 if and only if q + 1 ≡ 0 mod 4 and

ξ̄3(g
q+1
2 ) = −1 if and only if q + 1 ≡ 2 mod 4. So, using (5.26) and (5.27), we get

ξ3(
√
u) =


1 if q ≡ 3 mod 4,

−1 if q ≡ 1 mod 4.

and

ε

(
1

2
, sym3(πE)

)
=


−ε
(

1
2
, πE

)
if q ≡ 3 mod 4,

ε
(

1
2
, πE

)
if q ≡ 1 mod 4.

(5.28)

When m = 4, we have ξ̄3(g
q+1
2 ) = i

3(q+1)
2 = (−i) q+1

2 . Then, by (5.26) and (5.27), we get

ξ3(
√
u) =


−1 if q ≡ 3 mod 8,

1 if q ≡ 7 mod 8.

and

ε

(
1

2
, sym3(πE)

)
=


ε
(

1
2
, πE

)
if q ≡ 3 mod 8,

−ε
(

1
2
, πE

)
if q ≡ 7 mod 8.

(5.29)

Remark 5.4.3. Suppose that the residual characteristic of K is 3 and v(3) = 1. If an

elliptic curve E/K satisfies the condition S3 from Table 4.1, then the GL(2, K) represen-

tation πE attached to E satisfies (5.25). If an elliptic curve E/K satisfies the condition
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S4 from Table 4.1, then the GL(2, K) representation πE attached to E satisfies (5.29).

One can show this using similar arguments as in the proofs of (5.25) and (5.29).

Another way of computing ε(1
2 , sym3(ωF,ξ)) when F/Q3 is ramified

Lemma 5.4.4. Suppose that E/Q3 satisfies the condition S
′′
6 from Table 4.1. Then the

GL(2,Q3) representation πE associated to E is πE = ωF,ξ such that

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, πE

)
.

Proof. If E satisfies S
′′
6 , then πE = ωF,ξ with F ∼= Q3(

√
−3) by Lemma 4.3.17. We have

ε

(
1

2
, sym3(ωF,ξ)

)
= ε

(
1

2
, ωF,ξ

)
ε

(
1

2
, ωF,ξ3

)
, (5.30)

where

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ3, ψ ◦ tr

)
. (5.31)

Here, ψ : Q3 → C× is an additive character defined by x 7→ e2πi{x}3 with conductor

(exponent) 0, i.e., ψ|Z3 = 1 and {x}3 denotes the 3-adic fractional part of x ∈ Q3. For

any x ∈ Q3, we have {x}3 = m
3n
∈ [0, 1) for some m satisfying 0 ≤ m ≤ pn − 1 and

x− {x}3 ∈ Z3.

Also, we have ξ|Q×3 · χF/Q3 = 1, where χF/Q3 is a ramified quadratic character of Q×3 .

Here, we assume $F =
√
−3. By corollary 3 of section V3 of [46], we get χF/Q3(1 +

3Z3) = χF/K (N(1 + p2
F ))⇒ χF/Q3|1+3Z3 = 1. Then we have the following (see (ε3) from
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Section 11 in [39])

ε

(
1

2
, χF/Q3 , ψ

)
= 3−

a(χF/Q3)
2

∫
3
−a(χF/Q3)Z×3

χ−1
F/Q3

(x)ψ(x)dx

= 3−
1
2

∫
3−1Z×3

χF/Q3(x)ψ(x)dx (since χF/Q3 is quadratic.)

= 3−
1
2

[∫
3−1(1+3Z3)

χF/Q3(x)ψ(x)dx+

∫
3−1(2+3Z3)

χF/Q3(x)ψ(x)dx

]
= 3−

1
2

[
χF/Q3(3

−1)

∫
(3−1+Z3)

ψ(x)dx+ χF/Q3(2 · 3−1)

∫
(2·3−1+Z3)

ψ(x)dx

]
= 3−

1
2χF/Q3(3)

[
ψ

(
1

3

)∫
Z3

ψ(x)dx+ χF/Q3(2)ψ

(
2

3

)∫
Z3

ψ(x)dx

]
.

Now, χF/Q3(3
−1) = χF/Q3(3) = χF/Q3(N(

√
−3)) = 1 and χF/Q3(2) = χF/Q3(−1) = −1

(since −1 ∈ W2 and χF/Q3|W2 6= 1). Also, ψ|Z3 = 1 and dx is the Haar measure giving

Z3 volume 1. So we get,

ε

(
1

2
, χF/Q3 , ψ

)
= 3−

1
2

[
ψ

(
1

3

)∫
Z3

dx− ψ
(

2

3

)∫
Z3

dx

]
= 3−

1
2

[
ψ

(
1

3

)
− ψ

(
2

3

)]
= 3−

1
2

[
e

2πi
3 − e

4πi
3

]
= i.

(5.32)

Now, we calculate ε
(

1
2
, ξ3, ψ ◦ tr

)
. Here, ψ ◦ tr is an additive character of F . By

Lemma 2.3 in [41], with the conductor (exponent) of ψ ◦ tr is given by

a(ψ ◦ tr) = e(F/Q3)a(ψ)− f(F/Q3)−1d(F/Q3) = 2 · 0− 1 · 1 = −1,

i.e., (ψ ◦ tr)|$−1
F oF

= 1. Since a(ψ ◦ tr) 6= 0, we can not calculate ε
(

1
2
, ξ, ψ ◦ tr

)
directly.

We need to find a character ψF of F such that ψcF = ψ ◦ tr for some c ∈ F× with

a(ψF ) = 0, i.e., we need to find an appropriate c ∈ F× such that ψF = (ψ ◦ tr)c
−1

has

conductor 0. Here, (ψ ◦ tr)c
−1

is defined as (ψ ◦ tr)c
−1

(x) := (ψ ◦ tr)(c−1x). We choose

c = $F . Then ψF = (ψ ◦ tr)$
−1
F has conductor 0, since ψF (x) = (ψ ◦ tr)($−1

F x) = 1 for
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all x ∈ oF . So, using Proposition (i) in Section 11 of [39] we get

ε

(
1

2
, ξ3, ψF

)
= ε

(
1

2
, ξ3, (ψ ◦ tr)$

−1
F

)
= ξ3($−1

F )ε

(
1

2
, ξ3, ψ ◦ tr

)
.

So, ε

(
1

2
, ξ3, ψ ◦ tr

)
= ξ3($F )ε

(
1

2
, ξ3, ψF

)
= ξ3($F ) · q−

a(ξ3)
2

F

∫
$
−a(ξ3)
F o×F

ξ−3(x)ψF (x)dx.

We have qF = 3. Also, since a(ξ3) = 1 and o×F/(1 + pF ) ∼= Z/2Z, we can write o×F =

(1 + pF )
⊔

2(1 + pF ). Then we get

ε

(
1

2
, ξ3, ψ ◦ tr

)
= ξ3($F ) · 3−

1
2

∫
$−1
F (1+pF )

ξ−3(x)(ψ ◦ tr)($−1
F x)dx

+ ξ3($F ) · 3−
1
2

∫
$−1
F ·2(1+pF )

ξ−3(x)(ψ ◦ tr)($−1
F x)dx

= ξ3($F ) · 3−
1
2 ξ−3($−1

F )

∫
$−1
F +oF

(ψ ◦ tr)($−1
F x)dx

+ ξ3($F ) · 3−
1
2 ξ−3(2$−1

F )

∫
2$−1

F +oF

(ψ ◦ tr)($−1
F x)dx

= ξ6($F ) · 3−
1
2

(ψ ◦ tr)($−2
F )

∫
oF

dx+ ξ−3(2)(ψ ◦ tr)(2$−2
F )

∫
oF

dx


= ξ6($F ) · 3−

1
2

(
(ψ ◦ tr)($−2

F )− (ψ ◦ tr)(2$−2
F )
)

(Since, ξ3(2) = −1)

= ξ6($F ) · 3−
1
2

(
ψ(2$−2

F )− ψ(4$−2
F )
)

(tr(a$−2
F ) = 2a$−2

F .)

= ξ6($F ) · 3−
1
2

(
ψ

(
−2

3

)
− ψ

(
−4

3

))
= −3−

1
2

(
e
−4πi

3 − e
−8πi

3

)
= −i. (ξ($2

F ) = ξ(−3) = χF/Q3(−3) = −1.)

Hence we get,

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ3, ψ ◦ tr

)
= i · (−i) = 1, (5.33)
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and

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, πE

)
. (5.34)

Lemma 5.4.5. Let E/Q3 satisfies the condition S
′
6 from Table 4.1. Then the GL(2,Q3)

representation πE associated to E is πE = ωF,ξ such that

F = Q3(
√

∆) = Q3

(√(
∆′

3

)
3

)
where ∆′ =

∆

3v3(∆)
, (5.35)

and

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, πE

)
.

Proof. If E/Q3 satisfies S
′
6, then πE = ωF,ξ, where F = Q3(

√
∆) is a ramified quadratic

extension of Q3. To see that F ∼= Q3(
√
−3) or Q3(

√
3) as in (5.35), one can use sim-

ilar arguments as in Lemma 4.3.17. One need to consider all the possible values of

(v3(∆), v3(c4), v3(c6)) from Table 4.1 when E satisfies S
′
6 and use the relation ∆ =

c34−c26
1728

to show that 3−v3(∆)∆ ≡ −1 or 1 mod 3. In this case, a(ξ) = 2, ξ|6
o×F

= 1, and a(ξ3) = 1.

Again, ε
(

1
2
, sym3(ωF,ξ)

)
= ε

(
1
2
, ωF,ξ

)
ε
(

1
2
, ωF,ξ3

)
, where

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ3, ψ ◦ tr

)
. (5.36)

Here, ψ : Q3 → C× is an additive character defined by x 7→ e2πi{x}3 with conductor

(exponent) 0, i.e., ψ|Z3 = 1. As before, {x}3 denotes the 3-adic fractional part of

x ∈ Q3. Also, χF/Q3 is a ramified quadratic character of Q×3 with χF/Q3|1+3Z3 = 1. Now,

we compute ε
(

1
2
, ωF,ξ3

)
in two cases.

Case 1: F ∼= Q3(
√
−3)

We assume that $F =
√
−3. So, NF/Q3($F ) = 3. Then, using a similar argument as in
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(5.32), we get

ε

(
1

2
, χF/Q3 , ψ

)
= i.

Now, we calculate ε
(

1
2
, ξ3, ψ ◦ tr

)
where ξ is any character of F×. We have a(ψ◦tr) = −1.

Now, ψF = (ψ ◦ tr)$
−1
F has conductor 0, since ψF (x) = (ψ ◦ tr)($−1

F x) = 1 for all x ∈ oF .

Using Proposition (i) in Section 11 of [39], we get

ε

(
1

2
, ξ3, ψF

)
= ε

(
1

2
, ξ3, (ψ ◦ tr)$

−1
F

)
= ξ3($−1

F )ε

(
1

2
, ξ3, ψ ◦ tr

)
. (5.37)

Then, we get

ε

(
1

2
, ξ3, ψ ◦ tr

)
= ξ3($F )ε

(
1

2
, ξ3, ψF

)
= ξ3($F ) · q−

a(ξ3)
2

F

∫
$
−a(ξ3)
F o×F

ξ−3(x)ψF (x)dx.

Since a(ξ3) = 1 and o×F/1 + pF ∼= Z/2Z, we can write o×F = (1 + pF )
⊔

2(1 + pF ). Then,

we get the following

ε

(
1

2
, ξ3, ψ ◦ tr

)
= ξ3($F ) · 3−

1
2

∫
$−1
F (1+pF )

ξ−3(x)(ψ ◦ tr)($−1
F x)dx

+ ξ3($F ) · 3−
1
2

∫
$−1
F ·2(1+pF )

ξ−3(x)(ψ ◦ tr)($−1
F x)dx

= ξ6($F ) · 3−
1
2

(ψ ◦ tr)($−2
F )

∫
oF

dx+ ξ−3(2)(ψ ◦ tr)(2$−2
F )

∫
oF

dx


= ξ6($F ) · 3−

1
2

(
ψ(tr($−2

F ))− ψ(tr(2$−2
F ))

)
(χF/Q3(2) = ξ3(2) = −1.)

= ξ6($F ) · 3−
1
2

(
ψ(2$−2

F )− ψ(4$−2
F )
)

(since tr(a$−2
F ) = 2a$−2

F .)

= ξ6($F ) · 3−
1
2

(
ψ

(
−2

3

)
− ψ

(
−4

3

))
.
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Since ξ($2
F ) = ξ(3) = −1, we get ξ($F ) ∈ {±i}. So, ξ6($F ) = −1. Then

ε

(
1

2
, ξ3, ψ ◦ tr

)
= −3−

1
2

(
e
−4πi

3 − e
−8πi

3

)
= −i.

So, we get

ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ3, ψ ◦ tr

)
= i · (−i) = 1. (5.38)

Case 2: F ∼= Q3(
√

3)

In this case, we assume $F =
√

3 and N($F ) = −3. Then

ε

(
1

2
, χF/Q3 , ψ

)
= 3−

a(χF/Q3)
2

∫
3
−a(χF/Q3)Z×3

χ−1
F/Q3

(x)ψ(x)dx

= 3−
1
2

∫
3−1Z×3

χF/Q3(x)ψ(x)dx (since χF/Q3 is quadratic.)

= 3−
1
2

[∫
3−1(1+3Z3)

χF/Q3(x)ψ(x)dx+

∫
3−1(2+3Z3)

χF/Q3(x)ψ(x)dx

]

= 3−
1
2

[
χF/Q3(3

−1)

∫
(3−1+Z3)

ψ(x)dx+ χF/Q3(2 · 3−1)

∫
(2·3−1+Z3)

ψ(x)dx

]
= 3−

1
2χF/Q3(3)

[
ψ

(
1

3

)∫
Z3

ψ(x)dx+ χF/Q3(2)ψ

(
2

3

)∫
Z3

ψ(x)dx

]
.

Now, χF/Q3(−3) = χF/Q3(N(
√

3)) = 1. So, χF/Q3(3) = χF/Q3(−3)χF/Q3(−1) = −1.

Also, χF/Q3(2) = χF/Q3(−1) = −1 (since −1 ∈ W2 and χF/Q3|W2 6= 1). So, we get

ε

(
1

2
, χF/Q3 , ψ

)
= 3−

1
2

[
−ψ

(
1

3

)∫
Z3

dx+ ψ

(
2

3

)∫
Z3

dx

]
= 3−

1
2

[
−e

2πi
3 + e

4πi
3

]
= −i.

Now, we calculate ε
(

1
2
, ξ3, ψ ◦ tr

)
in a similar way as in case 1. But, we need to be

careful about the fact that $F =
√

3 in this case. Using similar arguments as in case 1,
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we get

ε

(
1

2
, ξ3, ψ ◦ tr

)
= ξ6($F ) · 3−

1
2

(
ψ(2$−2

F )− ψ(4$−2
F )
)

= ξ6($F ) · 3−
1
2

(
ψ

(
2

3

)
− ψ

(
4

3

))
(this is different from case 1.)

= −3−
1
2

(
e

4πi
3 − e

8πi
3

)
= i (since ξ($F ) ∈ {±i} ⇒ ξ6($F ) = −1.)

⇒ ε

(
1

2
, ωF,ξ3

)
= ε

(
1

2
, χF/K , ψ

)
ε

(
1

2
, ξ3, ψ ◦ tr

)
= (−i) · i = 1.

Hence, in both of the cases we get,

ε

(
1

2
, sym3(πE)

)
= ε

(
1

2
, πE

)
. (5.39)

When E satisfies S
′
6 or S

′′
6 , one can also compute the epsilon factor ε(1

2
, ωF,ξ). It turns

out that ε(1
2
, ωF,ξ) depends on the choice of ξ($F ), and it can be either 1 or −1.
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Chapter 6

Main global results

In this chapter, we discuss the global results on the sym3 lifting of non-CM elliptic

curves over Q. These results are special and more precise versions of Theorem 3.2.1 and

Corollary 3.5.5 for non-CM elliptic curves. Let E be a non-CM elliptic curve over Q given

by the global minimal Weierstrass equation of the form (2.71) with coefficients in Z. The

discriminant ∆, the j-invariant j(E), and the quantities c4, c6 are the usual constants

given by (2.72). We can consider the same elliptic curve E over Qp for each prime

p. Let π ∼= ⊗pπp be the cuspidal automorphic representation of GL(2,AQ) with trivial

central character attached to E/Q. So, πp is an irreducible admissible representation of

GL(2,Qp) associated with E/Qp.

Using our discussion on local presentations πp of GL(2,Qp) in Chapter 4 and results

on the L-packet sym3(πp) of GSp(4,Qp) from Chapter 5, we study the representation

sym3(π) of GSp(4,AQ) and the associated paramodular form f in this chapter. Here we

have the following diagram:

E/Qp E/Q of conductor N f ∈ S3(K(M))

πp
π ∼=

⊗
p

πp

on GL(2,AQ)

sym3(πp) ∼=
⊗
p

sym3(πp)

on GSp(4,AQ)

sym3

Figure 6.1: The sym3 lifting from elliptic curves to paramodular forms.
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6.1 Paramodular level of sym3(π) attached to an el-

liptic curve over Q

Given the global minimal Weierstrass equation of a non-CM elliptic curve E/Q with

good or potential multiplicative reduction at p = 2, the following theorem gives an

algorithm for calculating the conductor N of E and the conductor of the automorphic

representation sym3(π), where π is the representation of GL(2,AQ) attached to E.

Theorem 6.1.1. Let π ∼= ⊗pπp be the cuspidal automorphic representation of GL(2,AQ)

with trivial central character attached to a non-CM elliptic curve E/Q given by the global

minimal Weierstrass equation of the form (2.71) with coefficients in Z. So, the conduc-

tor a(π) of π equals the conductor N of E. Suppose that E has good or potential mul-

tiplicative reduction at p = 2. Then there exists a cuspidal automorphic representation

Π ∼= ⊗pΠp of GSp(4,AQ) with trivial central character which is unramified at each prime

p not dividing N , such that

(i) Πp is a generic representation of GSp(4,Qp) at each finite prime p.

(ii) Π∞ is a holomorphic discrete series representation with minimal K-type (3, 3).

(iii) L(s,Π) = L(s, π, sym3) = L(s, E, sym3).

Moreover, the conductor of E and the conductor a(Π) of Π are as follows

N = a(π) =
∏
p|∆

pi and a(Π) =
∏
p|∆

pk, (6.1)

where the values of i, k are given in Table 6.1 for each p dividing the discriminant ∆ of

(2.71).

Proof. Most of the statements of the theorem including (i), (ii) follow from Theo-

rem 3.2.1. Note that Π∞ is the holomorphic discrete series representation of GSp(4,R)
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with minimal K-type Λ = (3, 3) as in the shaded region of Figure 2.1. Also, as a part

of the correspondence between E/Q and π, we have L(s, π) = L(s, E) (see (2.62)). So,

it follows that L(s, π, sym3) = L(s, E, sym3). Then, by (iii) of Theorem 3.2.1, we get

L(s,Π) = L(s, π, sym3) = L(s, E, sym3). Now, we only need to show that the con-

ductor N of E and the conductor a(Π) of Π = sym3(π) are given by (6.1). Since

N = a(π) = ⊗ppa(πp) and a(Π) = ⊗ppa(Πp), considering all possible values of a(πp) and

a(Πp) = a(sym3(πp)) from Tables 5.3, 5.4, and 5.5, we see that N and a(Π) are given by

(6.1) where i, k are given in Table 6.1. This concludes the proof.

Furthermore, if the conductor of a non-CM elliptic curve E/Q is given along with its

Weierstrass equation, then we have the following refinement of Theorem 6.1.1.

Corollary 6.1.2. Let π ∼= ⊗pπp be the cuspidal automorphic representation of GL(2,A)

attached to a non-CM elliptic curve E/Q given by the global minimal Weierstrass equa-

tion of the form (2.71) with coefficients in Z and the conductor N . Suppose that E has

good or multiplicative reduction at p = 2. Then Π = sym3(π) is a cuspidal automorphic

representation of GSp(4,AQ) with trivial central character, which is unramified at each

prime p not dividing N and satisfies the properties (i), (ii), (iii) as in Theorem 6.1.1.

Moreover, the conductor a (sym3(π)) of sym3(π) is given by

a
(
sym3(π)

)
= N

∏
p|N

vp(∆) 6≡0 mod 4

p2. (6.2)

Proof. Here, we only need to prove the formula (6.2) for a (sym3(π)). Note that, when

E has good or multiplicative reduction at p = 2, (6.2) is a consequence of the following

facts from Table 6.1.

k = i if and only if vp(∆) ≡ 0 mod 4.

k = i+ 2 if and only if vp(∆) 6≡ 0 mod 4.

(6.3)
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Table 6.1: Exponents i, k of p in N = a(π) and a(sym3(π)) respectively.

We use this table in Theorem 6.1.1 and Corollary 6.2.1. Here, e = 12
(vp(∆),12)

with vp
being the p-adic valuation.

Condition Condition i k Reduction type

on p | N on E of E at p

for any p vp(∆) > 0, 1 3 multiplicative

p || N vp(c4) = 0 reduction

for any p j(E) 6∈ Zp i = 2 if p ≥ 3 2i additive,

pi || N i ∈ {4, 6} if p = 2 potential

i ≥ 2 multiplicative

for p ≥ 5 j(E) ∈ Zp, 2 4 additive,

p2 || N e ∈ {2, 4, 6} potential good

for p ≥ 5 j(E) ∈ Zp, 2 2 additive,

p2 || N e = 3 potential good

for p = 3 j(E) ∈ Z3, 2 4 additive,

p2 || N E satisfies potential

P2 or S4 good

from Table 4.1

for p = 3 j(E) ∈ Z3, 3 5 additive,

p3 || N E satisfies S
′
6 potential

from Table 4.1 good

for p = 3 j(E) ∈ Z3, 4 4 additive,

p4 || N E satisfies potential

P3 or S3 good

from Table 4.1

for p = 3 j(E) ∈ Z3, 4 6 additive,

p4 || N E satisfies potential

P6 or S6 good

from Table 4.1

for p = 3 j(E) ∈ Z3, 5 7 additive,

p5 || N E satisfies S
′′
6 potential

from Table 4.1 good
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To see this, note that k = i in Table 6.1 precisely in the following cases:

1. j(E) ∈ Zp and e = 3 for p ≥ 5.

2. j(E) ∈ Z3 and E satisfies P3 or S3 from Table 4.1.

We have e = 12
(vp(∆),12)

= 3 if and only if vp(∆) ≡ 0 mod 4. Also, from Table 4.1, we

see that E satisfies P3 or S3 if and only if vp(∆) ≡ 0 mod 4. Hence, k = i if and only

if vp(∆) ≡ 0 mod 4. Moreover, observe that k = i + 2 in Table 6.1 for all other cases

except for the case when E has additive but potential multiplicative reduction at p = 2.

Since we have discarded this case here, we get k = i+ 2 if and only if vp(∆) 6≡ 0 mod 4.

This proves (6.3) and hence proves (6.2).

6.2 Level of paramodular forms attached to elliptic

curves over Q

Since there is a natural correspondence between the cuspidal automorphic representa-

tions of GSp(4,AQ) and paramodular forms as discussed in Section 3.5.4, we get the

following results on paramodular forms coming from non-CM elliptic curves over Q.

Corollary 6.2.1. Let E be a non-CM elliptic curve over Q given by the global minimal

Weierstrass equation of the form (2.71) with coefficients in Z. Suppose that E has good

or potential multiplicative reduction at p = 2. Then there is a cuspidal paramodular new-

form f of degree 2, weight 3, and level M such that L(s, f) = L(s, E, sym3). Moreover,

the conductor N of E and the level M of f are given by

N =
∏
p|∆

pi and M =
∏
p|∆

pk,

where the values of i, k are given in the Table 6.1 for p dividing the discriminant ∆ of

(2.71).
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Proof. Note that, by Theorem 6.1.1, E corresponds to a cuspidal automorphic rep-

resentation π of GL(2,AQ) of weight 2 and conductor N such that L(s, E, sym3) =

L(s, π, sym3). Then, using Corollary 3.5.5, there is a scalar valued cuspidal paramod-

ular newform f of degree 2, weight 3 such that L(s, f) = L(s, π, sym3). So, we get

L(s, f) = L(s, E, sym3). Also, by Corollary 3.5.5, the level M of f is equal to the con-

ductor a(sym3(π)) of sym3(π). Hence, by (6.1) of Theorem 6.1.1, we get the value of N

and M as stated above.

The next result is a special and more detailed version of Corollary 6.2.1. Here, we

assume that the conductor N of E is given and E has good or multiplicative reduction

at p = 2. We make such an assumption to get a compact formula for the paramodular

level M .

Theorem 6.2.2. Let E be a non-CM elliptic curve over Q given by the global minimal

Weierstrass equation of the form (2.71) with coefficients in Z and conductor N . Let

∆ be the discriminant attached to the given Weierstrass equation and vp be the p-adic

valuation. Let ∆′ = 3−v3(∆)∆. Suppose that E has good or multiplicative reduction at

p = 2. Then there is a cuspidal paramodular newform f of degree 2, weight 3 and level

M with the following properties:

(i) The level M of f is given by M = N
∏
p|N

vp(∆)6≡0 mod 4

p2.

(ii) The completed spin L-function L(s, f) attached to f is given by

L(s, f) = ΓC

(
s+

3

2

)
ΓC

(
s+

1

2

) ∏
p<∞

Lp(s, f),

149



where Lp(s, f) = Lp(s, E, sym3) for all places p. If p|N , then

Lp(s, f) =



1
1−p−3/2−s if E has split multiplicative reduction at p,

1
1+p−3/2−s if E has non-split multiplicative reduction at p,

1
(1−αp−s)(1−α−1p−s)

if j(E) ∈ Zp and vp(∆) ≡ 0 mod 4,

1 otherwise.

Here, α is an element of C× such that |α| = 1. If the following condition is satisfied

j(E) ∈ Zp, vp(∆) ≡ 0 mod 4, and


(p− 1)vp(∆) 6≡ 0 mod 12 if p ≥ 5,(

∆′

3

)
= −1 if p = 3,

 ,

then α = i (the fourth root of unity).

(iii) The Atkin-Lehner eigenvalues of f at the finite places are given by

ηp =


−1 if p | N, and E has split mult. red. at p or satisfies (6.4),

w(E/Q3) if 3 | N, p = 3 and E satisfies S
′
6 or S

′′
6 ,

1 otherwise,

where S
′
6, S

′′
6 are defined in Table 4.1 and the condition (6.4) is given by

j(E) ∈ Zp and


vp(∆) ≡ 0 mod 4, (p− 1)vp(∆) 6≡ 0 mod 12 if p ≥ 5,

vp(∆) ≡ 2 mod 4,
(

∆′

3

)
= −1 if p = 3,

 . (6.4)

Proof. Most parts of this theorem including the statement (i) follow from Corollary 6.1.2

and Corollary 6.2.1. Let π ∼= ⊗πp be the cuspidal automorphic representation of

GL(2,AQ) attached to E/Q. By Corollary 6.2.1, we have Lp(s, f) = L(s, sym3(πp)) for
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each prime p ≤ ∞. Since f is a paramodular form of scalar weight 3, the archimedean

component sym3(π∞) of sym3(π) is a holomorphic discrete series representation of weight

(3, 0). Then, using (2.49), we get

L∞(s, f) = L(s, sym3(π∞)) = ΓC

(
s+

3

2

)
ΓC

(
s+

1

2

)
. (6.5)

Now the assertion (ii) follows from (6.5), Table 5.6 and Table 5.7. It is a well-known fact

that the Atkin-Lehner eigenvalue ηp of f at a finite place p is equal to ε
(

1
2
, sym3(πp)

)
(see Corollary 7.5.5 in [37]). Note from Table 5.9 that ε

(
1
2
, sym3(π3)

)
= ε(1

2
, π3), when

E satisfies S
′
6 or S

′′
6 . Also, observe that w(E/Q3) = ε(1

2
, π3), where the local root

number w(E/Q3) can be computed from Theorem 1.1. of [24] in terms of the Weierstrass

coefficients of E. So, one can easily get the assertion (iii) using Table 5.8 and Table 5.9.

We have implemented some of our results in SAGE using data from LMFDB1. In

Table 6.2 and Table 6.3, we give a list of examples to illustrate Theorem 6.2.2 using our

SAGE program. To identify the local representations πp of GL(2,Qp) attached to an

elliptic curve E/Q at each prime p | N , we use the following result.

Remark 6.2.3. Let π ∼=
⊗
p≤∞

πp be the cuspidal automorphic representation of GL(2,AQ)

attached to a non-CM elliptic curve E/Q. For p ≥ 5, the symbol PSe (resp. SCe) in Ta-

ble 6.2 denotes the principal series representation χ× χ−1 (resp. dihedral supercuspidal

representation ωF,ξ) of GL(2,Qp) in Theorem 4.2.1 (resp. Theorem 4.2.2) such that χ|o×K
(resp. ξ|o×F ) has order e ∈ {2, 3, 4, 6}. Similarly, for p = 3, the symbols PSi, SCi, SC

′

6

and SC
′′

6 in Table 6.3 denote the representation of GL(2,Q3) in Theorem 4.3.4 or Theo-

rem 4.3.4 when E/Q3 satisfies Pi, Si, S
′
6, S

′′
6 respectively for i ∈ {3, 4, 6}. Also, St, Strm,

Stur denote the Steinberg representation, a ramified twist of Steinberg representation, an

unramified twist of Steinberg representation of GL(2,Qp) respectively.

1LMFDB - The L-functions and Modular Forms Database
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Table 6.2: Examples of paramodular forms coming from elliptic curves when 32 - N .

Here π ∼= ⊗pπp is the cuspidal automorphic representation of GL(2,AQ) associated to a non-
CM E/Q of conductor N and f is the paramodular newform of level M attached to E by
Theorem 6.2.2. Also, Πp = sym3(πp) are given by representation types, εp = ε(1/2, πp) and
ηp = ε(1/2,Πp). SCe, PSe, St, Strm are defined in Remark 6.2.3 and α is as in Theorem 6.2.2.

W.E. of E/Q N M p Lp(s, E) εp πp Lp(s, f) ηp Πp

y2 + xy =

x3 + x2 − 2x− 7
112 112 11 1 −1 SC3

1
1+11−2s −1 X

y2 + xy + y =

x3 + x2 − 30x− 76
112 114 11 1 −1 SC6 1 1 X

y2 + y =

x3 − x2 − 40x− 221
112 114 11 1 −1 Strm 1 1 IVa

y2 + y =

x3 − 7x+ 12 5 · 72 53 · 74 5 1
1−5−1/2−s −1 St 1

1−5−3/2−s −1 IVa

7 1 −1 SC4 1 1 VIII

y2 + y =

x3 + x2 − 8x+ 19 52 · 11 54 · 113 5 1 1 PS2 1 1 I

11 1
1−11−1/2−s −1 St 1

1−11−3/2−s −1 IVa

y2 + xy =

x3 − 393x− 3298 52 · 72 54 · 72 5 1 −1 PS4 1 1 I

7 1 1 PS3
1

(1−α7−s)(1−α−17−s) 1 I

y2 + xy + y =

x3 + x2 − 8x+ 6 52 · 72 54 · 74 5 1 −1 PS4 1 1 I

7 1 −1 PS6 1 1 I
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Table 6.3: Examples of paramodular forms coming from elliptic curves when 32 | N .

Here π ∼= ⊗pπp is the cuspidal automorphic representation of GL(2,AQ) associated to a non-
CM E/Q of conductor N and f is the paramodular newform of level M attached to E by
Theorem 6.2.2. Also, Πp = sym3(πp) are given by representation types, εp = ε(1/2, πp) and
ηp = ε(1/2,Πp). SCe, PSe, St, Stra are defined in Remark 6.2.3 and α is as in Theorem 6.2.2.

W.E. of E/Q N M p Lp(s, E) εp πp Lp(s, f) ηp Πp

y2 + xy =

x3 − x2 + 6x
2 · 32 · 5 23 · 34 · 53 2 1

1+2−1/2−s 1 Stur
1

1+2−3/2−s 1 IVa

3 1 1 SC4 1 1 VIII

5 1
1−5−1/2−s −1 St 1

1−5−3/2−s −1 IVa

y2 + xy + y =

x3 − x2 + 4x− 1
2 · 34 23 · 34 2 1

1−2−1/2−s −1 St 1
1−2−3/2−s −1 IVa

3 1 1 SC3
1

1+3−2s 1 X

y2 + xy =

x3 − x2 − 6x+ 8
2 · 34 23 · 36 2 1

1+2−1/2−s 1 Stur
1

1+2−3/2−s 1 IVa

3 1 1 SC6 1 −1 X

y2 + xy + y =

x3 − x2 − 5x+ 5
2 · 34 23 · 34 2 1

1−2−1/2−s −1 St 1
1−2−3/2−s −1 IVa

3 1 1 PS3
1

(1−α3−s)(1−α−13−s) 1 I

y2 + xy =

x3 − x2 + 3x− 1
2 · 34 23 · 36 2 1

1+2−1/2−s 1 Stur
1

1+2−3/2−s 1 IVa

3 1 −1 PS6 1 1 I

y2 + xy =

x3 − x2 − 3x+ 3
2 · 33 23 · 35 2 1

1+2−1/2−s 1 Stur
1

1+2−3/2−s 1 IVa

3 1 −1 SC
′
6 1 −1 SC

y2 + xy =

x3 − x2 + 3x+ 5
2 · 35 23 · 37 2 1

1+2−1/2−s 1 Stur
1

1+2−3/2−s 1 IVa

3 1 1 SC
′′
6 1 1 SC
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additive reduction, 51
adeles, 34
admissible representation, 9, 20, 26
analytically integral element, 19
Atkin-Lehner eigenvalues, 5, 150
Atkin-Lehner element, 81
automorphic form, 35
automorphic representation, 36

Blattner parameter, 21
Borel subgroup, 7
Borel-induced representations, 15

central character, 10
character, 9
compact Weyl group, 19
complex multiplication, 50
conductor, 14, 31
contragredient representation, 10
cusp, 47
cusp form, 36, 41, 45
cuspidal automorphic representation, 36

depth, 78
dihedral supercuspidal representation,

13
discrete series representation, 20
discriminant, 47

elliptic curves, 46
endomorphism ring, 50

γ-invariant, 86
global minimal Weierstrass equation, 49
global representation, 37
good reduction, 51

Harish-Chandra parameter, 20
Hecke eigenform, 42

imprimitive representations, 27
indecomposable representation, 26
induced representation, 11
intertwining map, 10
irreducible representation, 9, 26
isogeny, 50

j-invariant, 47

Klingen parabolic subgroup, 7
Klingen-induced representations, 16
Kodaira-Néron type, 62

L-factors, 31
L-functions

of automorphic representations, 37
of elliptic curves, 60
of modular forms, 43

L-packet, 29
L-parameter, 29
`-adic representation, 54
level, 8, 41, 45, 148
limits of discrete series representation,

22
local sym3 lift, 68
lowest weight representations, 23

m-torsion subgroup, 56
minimal K-type, 20
minimal Weierstrass equation, 49
modular from, 41
multiplicative reduction, 51

Néron model, 61
newform, 14, 42
node, 47
non-CM elliptic curve, 50
non-split multiplicative reduction, 51
non-supercuspidal representation, 15
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non-tempered lowest weight
representations, 22

parabolic induction, 11
parabolic subgroup, 7
parahoric subgroup, 78
paramodular form, 2, 45
paramodular group, 8
Petersson inner product, 41
potential good reduction, 53, 87
potential multiplicative reduction, 53,

86
principal congruence subgroup, 8
principal series representation, 12
principle of functoriality, 38

ramified, 14
reduced curve, 51

Schur’s Lemma, 10
semisimple representation, 28
Siegel congruence subgroup, 8
Siegel modular form, 44
Siegel parabolic subgroup, 7
Siegel-induced representations, 16

singular curve, 47
smooth representation, 9
special representation, 26
split multiplicative reduction, 51
Steinberg representation, 12
supercuspidal representation, 13, 15
sym3 lifting, 66
sym3 map, 65

Tate module, 57, 58
Tate’s algorithm, 62
triply impritive representation, 72, 101
twist of a representation, 10
twisted Steinberg representation, 12
type of a representation, 15

unitary representation, 9
unramified, 14

Weierstrass equation, 46, 85
weight, 23
Weil group, 24, 28
Weil pairing, 58
Weil-Deligne group, 25
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