Post-migration seismic data conditioning methods on a merged dataset

dc.contributor.advisorBedle, Heather
dc.contributor.authorBlanco Dufau, Pamela
dc.contributor.committeeMemberPranter, Matthew
dc.contributor.committeeMemberCarpenter, Brett
dc.date.accessioned2024-05-01T14:45:49Z
dc.date.available2024-05-01T14:45:49Z
dc.date.issued2024-05-11
dc.date.manuscript2024-04-26
dc.description.abstractAnalyzing amplitude anomalies in seismic data requires a comprehensive understanding of the geological context and the accuracy of the seismic image to faithfully represent the subsurface. Over the past four decades, numerous surveys in mature basins like the US Gulf of Mexico have undergone reprocessing and merging to enhance imaging quality. While this reprocessing primarily aims to optimize imaging for historical targets, it may yield suboptimal results for current objectives, such as identifying and characterizing shallow targets mandated by government regulations to prevent oil blowouts. The merging of seismic data volumes demands careful attention during processing, as the different volumes are often acquired at different times with different hardware, acquisition geometries, and exploration objectives. If insufficient care is taken, significant differences in the amplitude and spectra of the merged survey components can pose challenges when used as input for machine learning techniques or seismic attribute studies. To address discrepancies in the Matagorda Island merged survey, we implemented spectral balancing followed by structure-oriented filtering. Spectral balancing equalizes high and low frequencies, creating a more uniform frequency spectrum. Structure-oriented filtering eliminates random and cross-cutting coherent noise while preserving structural and stratigraphic features. This workflow ameliorates the discrepancies between the areas covered by the individual surveys, resulting in a more consistent interpretation across the seam between the two surveys. However, the application of this workflow posed a challenge in improving features observed at the tuning frequency and also exacerbating the high-frequency noise due to the presence of footprint, thus resulting in a more challenging interpretation of faults and fractures in some areas.en_US
dc.identifier.urihttps://hdl.handle.net/11244/340258
dc.languageen_USen_US
dc.subjectSpectral balanceen_US
dc.subjectStructure-oriented filteringen_US
dc.subjectSeismic data conditioningen_US
dc.subjectMerged dataseten_US
dc.thesis.degreeMaster of Scienceen_US
dc.titlePost-migration seismic data conditioning methods on a merged dataseten_US
ou.groupMewbourne College of Earth and Energy::School of Geosciencesen_US
shareok.nativefileaccessrestricteden_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024_Blanco Dufau_Pamela_Thesis.pdf
Size:
5.93 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections