Loading...
Thumbnail Image

Date

Dec-18

Journal Title

Journal ISSN

Volume Title

Publisher

Oklahoma Department of Transportation (ODOT) is committed to protect and enhance human and natural environment while developing a safe, economical, and effective transportation system. The first objective of this research was to evaluate the availability of the recycled materials and develop strategies for increasing use of recycled materials in ODOT transportation construction projects. In this objective, an extensive literature search was conducted to acquire information pertaining to properties, current practices, and available field investigations of the commonly used recycled materials. Use of recycled concrete aggregate in concrete paving mixtures (RCA-CPM) was determined to be the major focus in this research as applications of RCA-CPM by ODOT and other DOTs have been reported as a sustainable and durable construction practice. Subsequently, a review of the key findings pertaining to RCA material properties and effects of RCA on portland cement concrete pavement (PCCP) performance was performed. Additionally, a life cycle assessment addressing all the three aspects of sustainability (i.e., economic, social, and environmental) was performed to do a comparative assessment between RCA-PCCP and plain PCCP and project the benefits of using RCA-CPM. The second objective was to evaluate the long-term performance of existing PCCP made with RCA in Oklahoma. A jointed plain concrete pavement (JPCP) and a continuously reinforced concrete pavement (CRCP) section were selected and evaluated through various tests covering different aspects, which includes visual survey, determination of mechanical properties, petrographic examination, and evaluation of the existing base through falling weight deflectometer (FWD). From the lab and field studies, it was verified that good base support, strong load transfer, and shorter joint spacing are essential design considerations for JPCP made of RCA-PCC. CRCP using effective anti-corrosion measures might be more suitable for implementing RCA-PCC; CRCP could better protect the base from erosion caused by higher differential energy and help restrain high drying and thermal volume change of RCA-PCC.

Description

Keywords

Citation

DOI

Related file

Notes