Invariant vectors and level raising operators in representations of the p-adic group GL(3)

dc.contributor.advisorSchmidt, Ralf
dc.creatorHall, Catherine Ann
dc.date.accessioned2019-04-27T21:30:32Z
dc.date.available2019-04-27T21:30:32Z
dc.date.issued2012
dc.description.abstractEach irreducibel, admissible representation (&pi,V) of GL(n) over a non-archimedean local field F has associated fixed vector spaces VK(m), for K(m) a compact-open subgroup of GL(n). It is known that there exists some non-negative integer m such that dim(VK(m))=1 and, if m'<m, then dim(VK(m'))=0. Such an m is called the conductor of &pi which is denoted by c(&pi). If the represetation is also generic, an equation is given by Reeder for calculating the dimension of VK(m). In this paper, the dimension of VK(m) is determined when (&pi,V) is a non-generic representation of GL(3).
dc.description.abstractFor m&gec(&pi), an element of VK(m) is consideered to have level m. A non-zero element in VK(c(&pi)) is a local newform, elements of higher level are known as oldforms. Level raising operators are maps from VK(m) to VK(m+1) that lift an element from one level to the next. In this paper, level raising operators are presented for VK(m) associated to representations of GL(3) and the main theorem proves that, when applied to a local newform, these level raising opertors cna be used to obtain a set of basis elements for each level.
dc.description.abstractIn the generic case, the proof uses Whittaker functions, zeta integrals, Hecke operators and Satake parameters. For the non-generic case, it is shown that unramified characters of F play a role and the matrix of each level raising operator is used.
dc.format.extent72 pages
dc.format.mediumapplication.pdf
dc.identifier99250639202042
dc.identifier.urihttps://hdl.handle.net/11244/318856
dc.languageen_US
dc.relation.requiresAdobe Acrobat Reader
dc.subjectVector spaces
dc.subjectp-adic groups
dc.subjectp-adic analysis
dc.subjectLie groups
dc.thesis.degreePh.D.
dc.titleInvariant vectors and level raising operators in representations of the p-adic group GL(3)
dc.typetext
dc.typedocument
ou.groupCollege of Arts and Sciences::Department of Mathematics

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hall_ou_0169D_10805.pdf
Size:
356.51 KB
Format:
Adobe Portable Document Format