Loading...
Thumbnail Image

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

In this dissertation, we consider parabolic (e.g. Ricci flow) and elliptic (e.g. p-harmonic equations) partial differential equations on Riemannian manifolds and use them to study geometric and topological problems. More specifically, to classify a special class of Ricci flow equations, we constructed a family of new entropy functionals in the sense of Perelman. We study the monotonicity of these functionals and use this property to prove that a compact steady gradient Ricci breather is necessarily Ricci-flat. We introduce a new approach to prove the monotonicity formula of Perelman's W -entropy functional and we construct similar entropy functionals on expanders from this new viewpoint. We prove that a large family of complete non-compact Riemannian manifolds cannot be stably minimally immersed into Euclidean space as a hypersurface which serves as a non-existence theorem considering the Generalized Bernstein Conjecture. We give another yet simpler proof for a theorem of do Carmo and Peng, concerning stable minimal hypersurfaces in Euclidean space with certain integral curvature condition. In the study of p-harmonic geometry, we develop a classification theory of Riemannian manifolds by using p-superharmonic functions in the weak sense. We gave sharp estimates as sufficient conditions for a p-parabolic manifold. By developing a Generalized Uniformization Theorem, a Generalized Bochner's Method, and an iterative method, we approach various geometric and variational problems in complete noncompact manifolds of general dimensions.

Description

Keywords

Differential equations, Partial., Riemannian manifolds., Ricci flow., Mathematics.

Citation

DOI

Related file

Notes

Sponsorship