MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA

dc.contributor.advisorPitale, Ameya
dc.contributor.authorWagh, Siddhesh
dc.contributor.committeeMemberSchmidt, Ralf
dc.contributor.committeeMemberParthasarathy, Ramkumar
dc.contributor.committeeMemberPrzebinda, Tomasz
dc.contributor.committeeMemberRoche, Alan
dc.date.accessioned2019-08-08T20:10:29Z
dc.date.available2019-08-08T20:10:29Z
dc.date.issued2019-08-01
dc.date.manuscript2019-07-25
dc.description.abstractMuto, Narita and Pitale construct counterexamples to the Generalized Ramanujan Conjecture for GL(2,B) over the division quaternion algebra B with discriminant two via a lift from SL(2). In this dissertation, I characterize the image of this lift in terms of the Fourier coefficients. The previous methods of Maass, Kohnen or Kojima do not apply here, hence I approached this problem via a combination of classical and representation theory techniques to identify the image. Crucially, I used the Jacquet Langlands correspondence described by Badulescu and Renard to characterize the representations.en_US
dc.identifier.urihttps://hdl.handle.net/11244/321131
dc.languageenen_US
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectNumber Theoryen_US
dc.subjectAutomorphic formsen_US
dc.subjectRepresentation Theoryen_US
dc.subjectMaass formsen_US
dc.thesis.degreePh.D.en_US
dc.titleMAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRAen_US
ou.groupCollege of Arts and Sciences::Department of Mathematicsen_US
shareok.orcid0000-0002-9415-0880en_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2019_Wagh_Siddhesh_Dissertation.pdf
Size:
488.94 KB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
2019_Wagh_Siddhesh_Dissertation.tex
Size:
115.65 KB
Format:
Tex/LateX document
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: