(Multi-)Persistent Homology and Topological Robotics

dc.contributor.advisorÖzaydın, Murad
dc.contributor.authorLi, Wenwen
dc.contributor.committeeMemberDocampo Álvarez, Roi
dc.contributor.committeeMemberJablonski, Michael
dc.contributor.committeeMemberHavlicek, Joseph
dc.contributor.committeeMemberKramar, Miroslav
dc.contributor.committeeMemberRemling, Christian
dc.date.accessioned2023-05-05T17:30:51Z
dc.date.available2023-05-05T17:30:51Z
dc.date.issued2023-05-12
dc.date.manuscript2023-04-01
dc.description.abstractAfter developing the relevant background and proving some general results in the early chapters, the main novel content of this thesis is the computation of the $i$-th homology groups of the second configuration spaces of metric graphs $\mathsf{Star_k}$ and $\hat{\mathcal{H}}_{m,n}$, with two restraint parameters. These configuration spaces are filtered by the poset $(\mathbb{R},\leq)^{\op}\times(\mathbb{R},\leq)$. We study the persistence modules $PH_i((\mathsf{Star_k})^2_{-,-};\mathbb{F})$ and $PH_i((\hat{\mathcal{H}}_{m,n})_{-,-}^2;\mathbb{F})$ where $i=0,1$, since higher homology vanishes for these spaces. Next, we construct a new representation over the poset given by the hyperplane arrangement of the configuration spaces of the finite graph. There is no loss of information when we restrict to the poset of chambers because the functor $PH_i(-)$ factors through the poset of chambers. Using this machinery and the homology groups we calculated, we find the direct sum decomposition of the $2$-parameter persistence modules $PH_i((\mathsf{Star_k})^2_{-,-};\mathbb{F})$ and $PH_i((\hat{\mathcal{H}}_{m,n})_{-,-}^2;\mathbb{F})$, where each summand is indecomposable. In particular, we show that $PH_0((\hat{\mathcal{H}}_{m,n})_{-,-}^2;\mathbb{F})$ and $PH_1((\hat{\mathcal{H}}_{m,n})_{-,-}^2;\mathbb{F})$ can be written as a direct sum of polytope modules.en_US
dc.identifier.urihttps://shareok.org/handle/11244/337559
dc.languageen_USen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMathematics.en_US
dc.subjectTopological Data Analysisen_US
dc.subjectConfiguration Spaceen_US
dc.subjectMultiparameter Persistence Theoryen_US
dc.thesis.degreePh.D.en_US
dc.title(Multi-)Persistent Homology and Topological Roboticsen_US
ou.groupDodge Family College of Arts and Sciences::Department of Mathematicsen_US
shareok.nativefileaccessrestricteden_US
shareok.orcid0009-0002-6232-250Xen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023_Li_Wenwen_Dissertation.pdf
Size:
804.77 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: