Mapping annual forest cover in sub-humid and semi-arid Regions through analysis of Landsat and PALSAR imagery

dc.creatorQin, Yuanwei
dc.creatorXiao, Xiangming
dc.creatorWang, Jie
dc.creatorDong, Jinwei
dc.creatorEwing, Kayti
dc.creatorHoagland, Bruce
dc.creatorHough, Daniel J.
dc.creatorFagin, Todd D.
dc.creatorZou, Zhenhua
dc.creatorGeissler, George L.
dc.creatorXian, George Z.
dc.creatorLoveland, Thomas R.
dc.date.accessioned2016-11-18T20:56:52Z
dc.date.available2016-11-18T20:56:52Z
dc.date.issued2016-11-10
dc.description.abstractAccurately mapping the spatial distribution of forests in sub-humid to semi-arid regions over time is important for forest management but a challenging task. Relatively large uncertainties still exist in the spatial distribution of forests and forest changes in the sub-humid and semi-arid regions. Numerous publications have used either optical or synthetic aperture radar (SAR) remote sensing imagery, but the resultant forest cover maps often have large errors. In this study, we propose a pixel- and rule-based algorithm to identify and map annual forests from 2007 to 2010 in Oklahoma, USA, a transitional region with various climates and landscapes, using the integration of the L-band Advanced Land Observation Satellite (ALOS) PALSAR Fine Beam Dual Polarization (FBD) mosaic dataset and Landsat images. The overall accuracy and Kappa coefficient of the PALSAR/Landsat forest map were about 88.2% and 0.75 in 2010, with the user and producer accuracy about 93.4% and 75.7%, based on the 3270 random ground plots collected in 2012 and 2013. Compared with the forest products from Japan Aerospace Exploration Agency (JAXA), National Land Cover Database (NLCD), Oklahoma Ecological Systems Map (OKESM) and Oklahoma Forest Resource Assessment (OKFRA), the PALSAR/Landsat forest map showed great improvement. The area of the PALSAR/Landsat forest was about 40,149 km2 in 2010, which was close to the area from OKFRA (40,468 km2), but much larger than those from JAXA (32,403 km2) and NLCD (37,628 km2). We analyzed annual forest cover dynamics, and the results show extensive forest cover loss (2761 km2, 6.9% of the total forest area in 2010) and gain (3630 km2, 9.0%) in southeast and central Oklahoma, and the total area of forests increased by 684 km2 from 2007 to 2010. This study clearly demonstrates the potential of data fusion between PALSAR and Landsat images for mapping annual forest cover dynamics in sub-humid to semi-arid regions, and the resultant forest maps would be helpful to forest management.en_US
dc.description.peerreviewYesen_US
dc.description.sponsorshipThis study was supported in part by research grants from the National Institute of Food and Agriculture, U.S. Department of Agriculture (2013-69002), the National Science Foundation (NSF) EPSCoR program (OIA-1301789), and the Department of the Interior, United States Geological Survey to AmericaView (G14AP00002).en_US
dc.format.extent19 pages
dc.format.extent7,203,614 bytes
dc.format.mediumapplication.pdf
dc.identifier.doi10.3390/rs8110933en_US
dc.identifier.urihttp://hdl.handle.net/11244/46912
dc.languageen_USen_US
dc.relation.requiresAdobe Acrobat Reader
dc.subject.lcshForest canopies -- Remote sensingen_US
dc.subject.lcshArid regions forestry -- Oklahomaen_US
dc.subject.lcshForest mapping -- Oklahomaen_US
dc.titleMapping annual forest cover in sub-humid and semi-arid Regions through analysis of Landsat and PALSAR imageryen_US
dc.typeArticleen_US
dc.typetext
ou.groupCollege of Arts and Sciences::Department of Microbiology and Plant Biologyen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-08-00933.pdf
Size:
6.87 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description: