Weighted Likelihood Estimation of ability in item response theory with tests of finite length /

dc.contributor.authorWarm, Thomas Albert,en_US
dc.date.accessioned2013-08-16T12:29:23Z
dc.date.available2013-08-16T12:29:23Z
dc.date.issued1985en_US
dc.description.abstractApplications of Item Response Theory, which depend upon its parameter invariance property, require that parameter estimates be unbiased. All current estimation methods produce statistically biased estimates of both item and ability parameters. A new method, Weighted Likelihood Estimation (WLE), is derived, and proved to be less biased than Maximum Likelihood Estimation (MLE) with the same asymptotic variance and normal distribution. WLE removes the first order bias term from MLE. Two Monte Carlo studies compare WLE with MLE and Bayesian Model Estimation (BME) of ability in conventional tests and tailored tests. The Monte Carlo studies favor WLE over MLE and BME on several criteria over a wide range of the ability scale.en_US
dc.format.extentxvii, 132 leaves :en_US
dc.identifier.urihttp://hdl.handle.net/11244/5356
dc.noteSource: Dissertation Abstracts International, Volume: 46-08, Section: B, page: 2863.en_US
dc.publisherThe University of Oklahoma.en_US
dc.subjectAbility Testing.en_US
dc.subjectExaminations.en_US
dc.subjectPsychology, Psychometrics.en_US
dc.thesis.degreePh.D.en_US
dc.titleWeighted Likelihood Estimation of ability in item response theory with tests of finite length /en_US
dc.typeThesisen_US
ou.groupCollege of Arts and Sciences::Department of Psychology
ou.identifier(UMI)AAI8524078en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
8524078.PDF
Size:
1.74 MB
Format:
Adobe Portable Document Format