Two-boundary centralizer algebras for q(n)

dc.contributor.advisorKujawa, Jonathan
dc.contributor.authorZhu, Jieru
dc.contributor.committeeMemberRoche, Alan
dc.contributor.committeeMemberLifschitz, Lucy
dc.contributor.committeeMemberForester, Max
dc.contributor.committeeMemberAbraham, Eric
dc.date.accessioned2018-07-20T18:20:51Z
dc.date.available2018-07-20T18:20:51Z
dc.date.issued2018-08
dc.date.manuscript2018
dc.description.abstractWe define the degenerate two boundary affine Hecke-Clifford algebra $\mathcal{H}_d$, and show it admits a well-defined $\mathfrak{q}(n)$-linear action on the tensor space $M\otimes N\otimes V^{\otimes d}$, where $V$ is the natural module for $\mathfrak{q}(n)$, and $M, N$ are arbitrary modules for $\mathfrak{q}(n)$, the Lie superalgebra of Type Q. When $M$ and $N$ are irreducible highest weight modules parametrized by a staircase partition and a single row, respectively, this action factors through a quotient of $\mathcal{H}_d$. Our second goal is to directly construct modules for this quotient, $\mathcal{H}^p_d$, using combinatorial tools such as shifted tableaux and the Bratteli graph. These modules belong to a family of modules which we call calibrated. Using the relations in $\mathcal{H}^p_d$, we also classifiy a specific class of calibrated modules. This result provides connection to a Schur-Weyl type duality: the irreducible summands of $M\otimes N\otimes V^{\otimes d}$ coincide with the combinatorial construction.en_US
dc.identifier.urihttps://hdl.handle.net/11244/301299
dc.languageen_USen_US
dc.subjectrepresentation theoryen_US
dc.thesis.degreePh.D.en_US
dc.titleTwo-boundary centralizer algebras for q(n)en_US
ou.groupCollege of Arts and Sciences::Department of Mathematicsen_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2018_Zhu_Jieru_Dissertation.pdf
Size:
658.67 KB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
2018_Zhu_Jieru_Dissertation.zip
Size:
1.92 MB
Format:
Unknown data format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: