Date
Journal Title
Journal ISSN
Volume Title
Publisher
The stochastic job shop problem was solved using two genetic algorithms. The first was a stochastic constrained genetic algorithm to minimize total tardiness and to evaluate chromosomes using probability Gantt charting. The second was a stochastic constrained genetic algorithm to minimize total tardiness and to evaluate chromosomes using simulation. In these two algorithms, the fitness function was altered to a utility function defined as follows: Probability
The standard genetic algorithm has been modified to address the job shop problem by constraining the genes in the chromosomes during the genetic operators implementations to match general theoretical sequencing constraints.
When comparing the deterministic constrained and unconstrained genetic algorithms to minimize makespan, the constrained algorithm improved the average percentage error by 27.44%. Also, when the deterministic constrained and unconstrained genetic algorithms to minimize total tardiness were compared, the constrained algorithm improved the average percentage errors by 248.77%.