Show simple item record

dc.contributor.advisorCline, David
dc.contributor.authorZuykov, Anton
dc.date.accessioned2016-09-29T18:43:39Z
dc.date.available2016-09-29T18:43:39Z
dc.date.issued2015-07-01
dc.identifier.urihttps://hdl.handle.net/11244/45332
dc.description.abstractIn a very CPU/memory intensive field of photo-realistic computer graphics, various techniques are employed in the attempt to conserve resources. One group of such optimization methods is dedicated to optimizing a representation of hair systems, grass systems or any group of objects that can be looked at as a generalized hair system. A classical method of computing hair systems is to represent each hair as a spline in memory and then compute intersections with each of them. This method gives good results, but usually consumes large amounts of memory. Another problem is - visually doubling the density of hair quadruples memory consumption. Even when gigabytes of memory are available, a realistic hair scene, may overwhelm memory size, which may lead to an application crash or at least, to an I/O bottleneck and to increasing time of rendering. Another method is to compute a hair system procedurally inside of a specified volume. This produces a small memory foot-print, but makes animation difficult because individual hairs within the volume are not controllable. In this work we propose a hybrid approach, where a single hair particle represents a cylindrical volume, in which multiple hair fibers will be computed on-the-fly. This approach will produce a constant memory footprint for that cylindrical volume, regardless of how many individual hairs are computed and it will allow individual hairs to retain the behavior of that volume. As a result, a proposed approach provides a significant reduction in memory footprint while increasing the number of hairs being computed.
dc.formatapplication/pdf
dc.languageen_US
dc.rightsCopyright is held by the author who has granted the Oklahoma State University Library the non-exclusive right to share this material in its institutional repository. Contact Digital Library Services at lib-dls@okstate.edu or 405-744-9161 for the permission policy on the use, reproduction or distribution of this material.
dc.titleMemory Conserving Rendering Method for Hair/fur Systems in Computer Graphics
dc.typetext
dc.contributor.committeeMemberHeisterkamp, Douglas
dc.contributor.committeeMemberMayfield, Blayne
osu.filenameZuykov_okstate_0664M_14167.pdf
osu.accesstypeOpen Access
dc.description.departmentComputer Science
dc.type.genreThesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record