Date
Journal Title
Journal ISSN
Volume Title
Publisher
Mammography imaging is a population-based breast cancer screening tool that has greatly aided in the decrease in breast cancer mortality over time. Although mammography is the most frequently employed breast imaging modality, its performance is often unsatisfactory with low sensitivity and high false positive rates. This is due to the fact that reading and interpreting mammography images remains difficult due to the heterogeneity of breast tumors and dense overlapping fibroglandular tissue. To help overcome these clinical challenges, researchers have made great efforts to develop computer-aided detection and/or diagnosis (CAD) schemes to provide radiologists with decision-making support tools. In this dissertation, I investigate several novel methods for improving the performance of a CAD system in distinguishing between malignant and benign masses.
The first study, we test the hypothesis that handcrafted radiomics features and deep learning features contain complementary information, therefore the fusion of these two types of features will increase the feature representation of each mass and improve the performance of CAD system in distinguishing malignant and benign masses. Regions of interest (ROI) surrounding suspicious masses are extracted and two types of features are computed. The first set consists of 40 radiomic features and the second set includes deep learning (DL) features computed from a pretrained VGG16 network. DL features are extracted from two pseudo color image sets, producing a total of three feature vectors after feature extraction, namely: handcrafted, DL-stacked, DL-pseudo. Linear support vector machines (SVM) are trained using each feature set alone and in combinations. Results show that the fusion CAD system significantly outperforms the systems using either feature type alone (AUC=0.756±0.042 p<0.05). This study demonstrates that both handcrafted and DL futures contain useful complementary information and that fusion of these two types of features increases the CAD classification performance.
In the second study, we expand upon our first study and develop a novel CAD framework that fuses information extracted from ipsilateral views of bilateral mammograms using both DL and radiomics feature extraction methods. Each case in this study is represented by four images which includes the craniocaudal (CC) and mediolateral oblique (MLO) view of left and right breast. First, we extract matching ROIs from each of the four views using an ipsilateral matching and bilateral registration scheme to ensure masses are appropriately matched. Next, the handcrafted radiomics features and VGG16 model-generated features are extracted from each ROI resulting in eight feature vectors. Then, after reducing feature dimensionality and quantifying the bilateral asymmetry, we test four fusion methods. Results show that multi-view CAD systems significantly outperform single-view systems (AUC = 0.876±0.031 vs AUC = 0.817±0.026 for CC view and 0.792±0.026 for MLO view, p<0.001). The study demonstrates that the shift from single-view CAD to four-view CAD and the inclusion of both deep transfer learning and radiomics features increases the feature representation of the mass thus improves CAD performance in distinguishing between malignant and benign breast lesions.
In the third study, we build upon the first and second studies and investigate the effects of pseudo color image generation in classifying suspicious mammography detected breast lesions as malignant or benign using deep transfer learning in a multi-view CAD scheme. Seven pseudo color image sets are created through a combination of the original grayscale image, a histogram equalized image, a bilaterally filtered image, and a segmented mass image. Using the multi-view CAD framework developed in the previous study, we observe that the two pseudo-color sets created using a segmented mass in one of the three image channels performed significantly better than all other pseudo-color sets (AUC=0.882, p<0.05 for all comparisons and AUC=0.889, p<0.05 for all comparisons). The results of this study support our hypothesis that pseudo color images generated with a segmented mass optimize the mammogram image feature representation by providing increased complementary information to the CADx scheme which results in an increase in the performance in classifying suspicious mammography detected breast lesions as malignant or benign.
In summary, each of the studies presented in this dissertation aim to increase the accuracy of a CAD system in classifying suspicious mammography detected masses. Each of these studies takes a novel approach to increase the feature representation of the mass that needs to be classified. The results of each study demonstrate the potential utility of these CAD schemes as an aid to radiologists in the clinical workflow.