Show simple item record

dc.contributor.authorAdams, Henry D.
dc.contributor.authorBarron-Gafford, Greg A.
dc.contributor.authorMinor, Rebecca L.
dc.contributor.authorGardea, Alfonso A.
dc.contributor.authorBentley, Lisa Patrick
dc.contributor.authorLaw, Darin J.
dc.contributor.authorBreshears, David D.
dc.contributor.authorMcDowell, Nate G.
dc.contributor.authorHuxman, Travis E.
dc.date.accessioned2019-08-22T17:50:43Z
dc.date.available2019-08-22T17:50:43Z
dc.date.issued2017-11-17
dc.identifieroksd_adams_temperatureresp_2017-11-17
dc.identifier.citationAdams, H. D., Barron-Gafford, G. A., Minor, R. L., Gardea, A. A., Bentley, L. P., Law, D. J., ... Huxman, T. E. (2017). Temperature response surfaces for mortality risk of tree species with future drought. Environmental Research Letters, 12(11), Article 5014. https://doi.org/10.1088/1748-9326/aa93be
dc.identifier.urihttps://hdl.handle.net/11244/321221
dc.description.abstractWidespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.
dc.formatapplication/pdf
dc.languageen_US
dc.publisherIOP Publishing
dc.rightsThis material has been previously published. In the Oklahoma State University Library's institutional repository this version is made available through the open access principles and the terms of agreement/consent between the author(s) and the publisher. The permission policy on the use, reproduction or distribution of the material falls under fair use for educational, scholarship, and research purposes. Contact Digital Resources and Discovery Services at lib-dls@okstate.edu or 405-744-9161 for further information.
dc.titleTemperature response surfaces for mortality risk of tree species with future drought
osu.filenameoksd_adams_temperatureresp_2017-11-17.pdf
dc.description.peerreviewPeer reviewed
dc.identifier.doi10.1088/1748-9326/aa93be
dc.description.departmentPlant Biology, Ecology and Evolution
dc.type.genreArticle
dc.type.materialText
dc.subject.keywordsdrought
dc.subject.keywordstree mortality
dc.subject.keywordspinus edulis
dc.subject.keywordspinus ponderosa
dc.subject.keywordstemperature
dc.subject.keywordstree die-off
dc.subject.keywordsclimate change ecology


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record