Show simple item record

dc.contributor.authorPuckette, Michael
dc.contributor.authorTang, Yuhong
dc.contributor.authorMahalingam, Ramamurthy
dc.date.accessioned2019-08-21T22:01:28Z
dc.date.available2019-08-21T22:01:28Z
dc.date.issued2008-04-23
dc.identifieroksd_puckette_transcriptomicc_2008
dc.identifier.citationPuckette, M., Tang, Y., & Mahalingam, R. (2008). Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions. BMC Plant Biology, 8(1). https://doi.org/10.1186/1471-2229-8-46
dc.identifier.urihttps://hdl.handle.net/11244/321197
dc.description.abstractBackground: Tropospheric ozone, the most abundant air pollutant is detrimental to plant and animal health including humans. In sensitive plant species even a few hours of exposure to this potent oxidant (200-300 nL. L-1) leads to severe oxidative stress that manifests as visible cell death. In resistant plants usually no visible symptoms are observed on exposure to similar ozone concentrations. Naturally occurring variability to acute ozone in plants provides a valuable resource for examining molecular basis of the differences in responses to ozone. From our earlier study in Medicago truncatula, we have identified cultivar Jemalong is ozone sensitive and PI 464815 (JE154) is an ozone-resistant accession. Analyses of transcriptome changes in ozone-sensitive and resistant accession will provide important clues for understanding the molecular changes governing the plant responses to ozone.
dc.description.abstractResults: Acute ozone treatment (300 nL L-1 for six hours) led to a reactive oxygen species (ROS) burst in sensitive Jemalong six hours post-fumigation. In resistant JE154 increase in ROS levels was much reduced compared to Jemalong. Based on the results of ROS profiling, time points for microarray analysis were one hour into the ozone treatment, end of treatment and onset of an ozone-induced ROS burst at 12 hours. Replicated temporal transcriptome analysis in these two accessions using 17 K oligonucleotide arrays revealed more than 2000 genes were differentially expressed. Significantly enriched gene ontologies (GOs) were identified using the Cluster Enrichment analysis program. A striking finding was the alacrity of JE154 in altering its gene expression patterns in response to ozone, in stark contrast to delayed transcriptional response of Jemalong. GOs involved in signaling, hormonal pathways, antioxidants and secondary metabolism were altered in both accessions. However, the repertoire of genes responding in each of these categories was different between the two accessions. Real-time PCR analysis confirmed the differential expression patterns of a subset of these genes.
dc.description.abstractConclusion: This study provided a cogent view of the unique and shared transcriptional responses in an ozone-resistant and sensitive accession that exemplifies the complexity of oxidative signaling in plants. Based on this study, and supporting literature in Arabidopsis we speculate that plants sensitive to acute ozone are impaired in perception of the initial signals generated by the action of this oxidant. This in turn leads to a delayed transcriptional response in the ozone sensitive plants. In resistant plants rapid and sustained activation of several signaling pathways enables the deployment of multiple mechanisms for minimizing the toxicity effect of this reactive molecule.
dc.formatapplication/pdf
dc.languageen_US
dc.publisherBioMed Central
dc.rightsThis material has been previously published. In the Oklahoma State University Library's institutional repository this version is made available through the open access principles and the terms of agreement/consent between the author(s) and the publisher. The permission policy on the use, reproduction or distribution of the material falls under fair use for educational, scholarship, and research purposes. Contact Digital Resources and Discovery Services at lib-dls@okstate.edu or 405-744-9161 for further information.
dc.titleTranscriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions
osu.filenameoksd_puckette_transcriptomicc_2008.pdf
dc.description.peerreviewPeer reviewed
dc.identifier.doi10.1186/1471-2229-8-46
dc.description.departmentBiochemistry and Molecular Biology
dc.type.genreArticle
dc.type.materialText
dc.subject.keywordscluster analysis
dc.subject.keywordscyclopentanes
dc.subject.keywordsflavonoids
dc.subject.keywordsgene expression profiling
dc.subject.keywordsgene expression regulation, plant
dc.subject.keywordsgenes, plant
dc.subject.keywordsmedicago truncatula
dc.subject.keywordsoligonucleotide array sequence analysis
dc.subject.keywordsoxylipins
dc.subject.keywordsozone
dc.subject.keywordsplant leaves
dc.subject.keywordsreactive oxygen species
dc.subject.keywordsreverse transcriptase polymerase chain reaction
dc.subject.keywordssalicylic acid
dc.subject.keywordscyclopentanes
dc.subject.keywordsflavonoids
dc.subject.keywordsoxylipins
dc.subject.keywordsreactive oxygen species
dc.subject.keywordsozone
dc.subject.keywordsjasmonic acid
dc.subject.keywordssalicylic acid


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record