Show simple item record

dc.contributor.authorMichelle Q. Carteren_US
dc.contributor.authorKai Xueen_US
dc.contributor.authorMaria T. Brandlen_US
dc.contributor.authorFeifei Liuen_US
dc.contributor.authorLiyou Wuen_US
dc.contributor.authorJacqueline W. Louieen_US
dc.contributor.authorRobert E. Mandrellen_US
dc.contributor.authorJizhong Zhouen_US
dc.date.accessioned2015-01-23T17:17:40Z
dc.date.accessioned2016-03-30T15:31:06Z
dc.date.available2015-01-23T17:17:40Z
dc.date.available2016-03-30T15:31:06Z
dc.date.issued2012-09-05en_US
dc.identifier.citationCarter MQ, Xue K, Brandl MT, Liu F, Wu L, et al. (2012) Functional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formation. PLoS ONE 7(9): e44186. doi:10.1371/journal.pone.0044186en_US
dc.identifier.urihttps://hdl.handle.net/11244/14079
dc.descriptionWe thank J. D. Van Nostrand for technical support and Y. Deng for discussion on data analysis. The GeoChips and associated computational pipelines used in this study were supported by ENIGMA through the Office of Science, Office of Biological and Environmental Research, the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.en_US
dc.descriptionConceived and designed the experiments: MQC MTB JZ. Performed the experiments: MQC MTB FL LW JWL. Analyzed the data: MQC KX MTB FL LW JWL REM JZ. Contributed reagents/materials/analysis tools: MQC KX MTB FL LW JWL REM JZ. Wrote the paper: MQC KX MTB FL LW JWL REM JZ. Approved the final manuscript: MQC KX MTB FL LW JWL REM JZ.en_US
dc.description.abstractThe increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ∼ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species.en_US
dc.language.isoen_USen_US
dc.publisherPLos Oneen_US
dc.relation.ispartofseriesPLoS ONE 7(9):e44186en_US
dc.relation.urihttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044186en_US
dc.rightsAttribution 3.0 United Statesen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/us/en_US
dc.subjectPLOSen_US
dc.subjectPublic Library of Scienceen_US
dc.subjectOpen Accessen_US
dc.subjectOpen-Accessen_US
dc.subjectScienceen_US
dc.subjectMedicineen_US
dc.subjectBiologyen_US
dc.subjectResearchen_US
dc.subjectPeer-reviewen_US
dc.subjectInclusiveen_US
dc.subjectInterdisciplinaryen_US
dc.subjectAnte-disciplinaryen_US
dc.subjectPhysicsen_US
dc.subjectChemistryen_US
dc.subjectEngineeringen_US
dc.titleFunctional Metagenomics of Escherichia coli O157:H7 Interactions with Spinach Indigenous Microorganisms during Biofilm Formationen_US
dc.typeResearch Articleen_US
dc.description.peerreviewYesen_US
dc.description.peerreviewnoteshttp://www.plosone.org/static/editorial#peeren_US
dc.identifier.doi10.1371/journal.pone.0044186en_US
dc.rights.requestablefalseen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States