Show simple item record

dc.contributor.authorJohn M. Tauberen_US
dc.contributor.authorPhillip A. Vanlandinghamen_US
dc.contributor.authorBing Zhangen_US
dc.date.accessioned2015-01-23T17:17:33Z
dc.date.accessioned2016-03-30T15:35:45Z
dc.date.available2015-01-23T17:17:33Z
dc.date.available2016-03-30T15:35:45Z
dc.date.issued2011-11-02en_US
dc.identifier.citationTauber JM, Vanlandingham PA, Zhang B (2011) Elevated Levels of the Vesicular Monoamine Transporter and a Novel Repetitive Behavior in the Drosophila Model of Fragile X Syndrome. PLoS ONE 6(11): e27100. doi:10.1371/journal.pone.0027100en_US
dc.identifier.urihttps://hdl.handle.net/11244/14070
dc.descriptionWe thank Drs. Yong Q. Zhang and Kendal Broadie for providing the w; dfmr183M/TM6B, Tb stock, and Dr. Thomas Jongens for providing the w; dfmr13/TM6C, Sb, wild-type rescue (Control) and frameshift rescue (FS) stocks. We also thank Dr. David Krantz for his advice on the use of acetic acid in dissolving reserpine and for providing the antibody to dVMAT, Drs. Michael Tranfaglia, Randy Hewes, Rosemary Knapp, and David McCauley for constructive comments on the manuscript, Dr. Lauren Ritterhouse for assistance in the statistical analysis of the data, Logan Cox for assistance on fly husbandry, and Emily Kumimoto, Rod Kumimoto, and Sunetra Das for their instruction and assistance with RNA isolation and real-time PCR. The MPEP drug was a generous gift of Dr. Michael Tranfaglia from the FRAXA Research Foundation. J.M.T. received the inaugural Vad Foundation Award for Outstanding Undergraduate Thesis for this research. We wish to thank Dr. Vijay Vad and his Foundation for his support.en_US
dc.descriptionConceived and designed the experiments: JMT BZ. Performed the experiments: JMT PAV. Analyzed the data: JMT PAV BZ. Contributed reagents/materials/analysis tools: JMT PAV BZ. Wrote the paper: JMT BZ. Edited the text: PAV.en_US
dc.description.abstractFragile X Syndrome (FXS) is characterized by mental impairment and autism in humans, and it often features hyperactivity and repetitive behaviors. The mechanisms for the disease, however, remain poorly understood. Here we report that the dfmr1 mutant in the Drosophila model of FXS grooms excessively, which may be regulated differentially by two signaling pathways. Blocking metabotropic glutamate receptor signaling enhances grooming in dfmr1 mutant flies, whereas blocking the vesicular monoamine transporter (VMAT) suppresses excessive grooming. dfmr1 mutant flies also exhibit elevated levels of VMAT mRNA and protein. These results suggest that enhanced monoamine signaling correlates with repetitive behaviors and hyperactivity associated with FXS.en_US
dc.language.isoen_USen_US
dc.publisherPLos Oneen_US
dc.relation.ispartofseriesPLoS ONE 6(11):e27100en_US
dc.relation.urihttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0027100en_US
dc.rightsAttribution 3.0 United Statesen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/us/en_US
dc.subjectPLOSen_US
dc.subjectPublic Library of Scienceen_US
dc.subjectOpen Accessen_US
dc.subjectOpen-Accessen_US
dc.subjectScienceen_US
dc.subjectMedicineen_US
dc.subjectBiologyen_US
dc.subjectResearchen_US
dc.subjectPeer-reviewen_US
dc.subjectInclusiveen_US
dc.subjectInterdisciplinaryen_US
dc.subjectAnte-disciplinaryen_US
dc.subjectPhysicsen_US
dc.subjectChemistryen_US
dc.subjectEngineeringen_US
dc.titleElevated Levels of the Vesicular Monoamine Transporter and a Novel Repetitive Behavior in the Drosophila Model of Fragile X Syndromeen_US
dc.typeResearch Articleen_US
dc.description.peerreviewYesen_US
dc.description.peerreviewnoteshttp://www.plosone.org/static/editorial#peeren_US
dc.identifier.doi10.1371/journal.pone.0027100en_US
dc.rights.requestablefalseen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States