Show simple item record

dc.contributor.authorYadav, Vineet
dc.date.accessioned2014-04-17T19:54:24Z
dc.date.available2014-04-17T19:54:24Z
dc.date.issued2011-07-01
dc.identifier.urihttps://hdl.handle.net/11244/10093
dc.description.abstractAluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.
dc.formatapplication/pdf
dc.languageen_US
dc.publisherOklahoma State University
dc.rightsCopyright is held by the author who has granted the Oklahoma State University Library the non-exclusive right to share this material in its institutional repository. Contact Digital Library Services at lib-dls@okstate.edu or 405-744-9161 for the permission policy on the use, reproduction or distribution of this material.
dc.titleSpark Plasma Sintering of Aluminum Matrix Composites
dc.typetext
osu.filenameYadav_okstate_0664M_11599.pdf
osu.collegeEngineering, Architecture, and Technology
osu.accesstypeOpen Access
dc.description.departmentMechanical & Aerospace Engineering
dc.type.genreThesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record