
DEVELOPMENT AND VALIDATION OF AN
UNSTEADY PANEL CODE TO MODEL

AIRFOIL AEROMECHANICAL RESPONSE

By

AARON M. MCCLUNG

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the degree of
MASTER OF SCIENCE

July 2004

DEVELOPMENT AND VALIDATION OF AN
UNSTEADY PANEL CODE TO MODEL

AIRFOIL AEROMECHANICAL RESPONSE

By

AARON M. MCCLUNG

Approved as to style and content by:

Eric A. Falk, Chair

Andrew S. Arena, Member

Gary E. Young, Member

Dean, Graduate College

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

NOTATION . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Goals . 1
1.2 Organization . 1

2. FUNDAMENTALS . 3

2.1 Governing Equations . 3

2.1.1 Continuity . 3
2.1.2 Momentum . 5
2.1.3 Navier-Stokes . 6
2.1.4 Euler . 6

2.2 Potential Flow . 7

2.2.1 Velocity Potential . 7
2.2.2 Superposition . 7
2.2.3 Boundary Conditions . 8

2.3 Theorems And Relations . 9

2.3.1 Bernoulii . 9
2.3.2 Coefficient of Pressure . 9

2.4 Angular Velocity, Vorticity, and Circulation . 10

2.4.1 Motion of a Fluid Element . 10
2.4.2 Angular Velocity and Vorticity . 10

iii

2.4.3 Circulation . 11
2.4.4 Kelvin’s Theorem . 11

3. PANEL CODES . 13

3.1 Non-lifting Body . 13

3.1.1 Discretization . 15

3.2 Lifting Body . 18

3.2.1 Kutta Condition . 19
3.2.2 Equations . 19

3.3 Time-Dependent Solutions . 23

3.3.1 Frame of Reference . 23
3.3.2 Wake . 23
3.3.3 Unsteady Kutta Condtion . 24

3.3.3.1 Basu-Hancock . 25
3.3.3.2 Ardonceau . 27

3.3.4 Method of Solution . 27

4. CODE DESCRIPTION . 30

4.1 Frame of Reference . 30
4.2 Gust Model . 30

4.2.1 Deformation . 31
4.2.2 Airfoil-Gust Interaction . 32

4.2.2.1 Determining Gust Element Condition . 34
4.2.2.2 Case One . 35
4.2.2.3 Implementation . 38
4.2.2.4 Case Two . 39

4.2.3 Convection . 40
4.2.4 Gust Influence on the Airfoil . 42

4.3 Free Response . 43

4.3.1 Model . 43
4.3.2 Solution . 45

iv

4.4 Forced Response . 46

5. CODE VERIFICATION . 47

5.1 Wagner . 47

5.1.1 Description . 47
5.1.2 Solution . 49
5.1.3 Comparison . 49

5.2 Theodorsen . 53

5.2.1 Description . 53
5.2.2 Solution . 54
5.2.3 Comparison . 55

5.2.3.1 Pure Pitching . 55
5.2.3.2 Pure Plunging . 62
5.2.3.3 Combined Pitching and Plunging . 68
5.2.3.4 Discussion . 70

5.3 Sears Periodic Gust . 73

5.3.1 Description . 73
5.3.2 Solution . 74
5.3.3 Comparison . 74

5.3.3.1 Modified No-Flow Boundary Condition . 75
5.3.3.2 Vortex Sheet Gust Model . 76

5.4 Kussner’s Sharp Edge Gust . 86

5.4.1 Description . 86
5.4.2 Solution . 87
5.4.3 Comparison . 87

5.4.3.1 Transient Panel Code Solution . 88
5.4.3.2 Single and Double Gust Sheets . 89

5.5 Free Response . 95

5.5.1 Solution . 95
5.5.2 Comparison . 99

v

6. FORCED RESPONSE . 106

6.1 Description . 106

7. SUMMARY AND CONCLUSIONS . 110

7.1 Validation . 110
7.2 Extension . 111
7.3 Discussion and Recommendations . 112
7.4 Contributions of Present Work . 112

BIBLIOGRAPHY . 113

APPENDICES

A. UVPM . 114

A.1 Revision 120 . 114

B. COMMON FILES . 145

B.1 Common Variables Declarations . 145

B.1.1 lengths.inc . 145
B.1.2 airfoil.inc . 145
B.1.3 calc.inc . 146
B.1.4 const.inc . 146
B.1.5 debug.inc . 146
B.1.6 file.inc . 146
B.1.7 forces.inc . 147
B.1.8 freeresp.inc . 147
B.1.9 freevort.inc . 148
B.1.10 gau.inc . 148
B.1.11 graph.inc . 148
B.1.12 iterative.inc . 149
B.1.13 motion.inc . 149
B.1.14 param.inc . 149
B.1.15 phi.inc . 149
B.1.16 relax.inc . 150
B.1.17 strengths.inc . 150
B.1.18 velocities.inc . 150
B.1.19 wake.inc . 150
B.1.20 wakepannel.inc . 151

vi

B.1.21 graph cons.inc . 151

C. INPUT FILES . 152

C.1 Configuration File . 152
C.2 Airfoil Coordinates . 153
C.3 Motion History . 154
C.4 Free Stream Vortices . 154

D. GRAPHICS ROUTINES . 156

D.1 Plotting Routines . 156

D.1.1 Compare Data r10 . 156

D.2 Animation Routines . 161

D.2.1 Animate r21 . 161

vii

LIST OF FIGURES

Figure Page

3.1 Airfoil modeled with a continuous source sheet. 14

3.2 Airfoil discretized into constant strength source elements. 15

3.3 Constant Strength Panel Discretization . 17

4.1 Influence of a Vortex sheet located in the Freestream flow compared to the
Freestream influence. 31

4.2 Deformation of a vortex sheet approaching the airfoil leading edge. 32

4.3 Case One: Gust element straddling the airfoil. 33

4.4 Case Two: Gust element endpoint convected into the airfoil. 34

4.5 Airfoil leading edge vs. the airfoil forward-most node. 36

4.6 Gust element split about the leading edge with the upstream stagnation
point on the lower airfoil surface at time tk+1. 37

4.7 Gust element split about the leading edge with the upstream stagnation
point on the lower airfoil surface at time tk+2. 37

4.8 Gust element split about the upstream stagnation point. 38

4.9 Interpolation to determine the time of Gust-Airfoil impact. 39

4.10 Gust element convection along the upper airfoil surface. 40

4.11 Gust element convection along the upper airfoil surface. 42

4.12 Pitching and Plunging Airfoil . 43

5.1 Flat plate at time t = 0 . 48

viii

5.2 Solutions for the approximate Wagner function, Eq. (5.3), and the
approximate Kussner function, Eq. (5.19) . 50

5.3 Normalized lift for the NACA 0006, 0010, and 0014 airfoils at α0 = 1 deg
using a normalized time step of 0.005 compared to Eq. (5.3) 51

5.4 Normalized lift on a NACA 0010 at α0 = 1, 2, and 4 deg using a normalized
time step of 0.010 compared to Eq. (5.3) . 51

5.5 Normalized lift on a NACA 0010 at α0 = 2 deg computed using
non-dimensionalized time steps of 0.005, 0.075, and 0.010 compared to
Eq. (5.3) . 52

5.6 Notation used to describe the Theodorsen pitching and plunging flat plate
53

5.7 Cl vs. Time for NACA 0006, 0010, and 0014 airfoils pitching about the
quarter-chord at a reduced frequency of k = 0.25 and amplitude of
ᾱ = 2 deg . 56

5.8 Cmle
vs. Time for NACA 0006, 0010, and 0014 airfoils pitching about the

quarter-chord at a reduced frequency of k = 0.25 and amplitude of
ᾱ = 2 deg . 57

5.9 Cmea vs. Time for NACA 0006, 0010, and 0014 airfoils pitching about the
quarter-chord at a reduced frequency of k = 0.25 and amplitude of
ᾱ = 2 deg . 57

5.10 Cl vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at a
reduced frequency of k = 0.25 and amplitudes of ᾱ = 1, 2, and 4 deg 58

5.11 Cmle
vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at a

reduced frequency of k = 0.25 and amplitudes of ᾱ = 1, 2, and 4 deg 58

5.12 Cmea vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at a
reduced frequency of k = 0.25 and amplitudes of ᾱ = 1, 2, and 4 deg 59

5.13 Cl vs. Time for a NACA 0010 airfoil pitching at reduced frequencies of k =
0.25 and 0.75 with an amplitude of ᾱ = 2 deg . 60

5.14 Cmle
vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at

reduced frequencies of k = 0.25 and 0.75 with an amplitude of ᾱ = 2 deg
60

ix

5.15 Cmea vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at
reduced frequencies of k = 0.25 and 0.75 with an amplitude of ᾱ = 2 deg
61

5.16 Cl vs. Time for NACA 0006, 0010, and 0014 airfoils plunging at a reduced
frequency of k = 0.25 and an amplitude of h̄ = 0.025 62

5.17 Cmle
vs. Time for NACA 0006, 0010, and 0014 airfoils plunging at a reduced

frequency of k = 0.25 and an amplitude of h̄ = 0.025 63

5.18 Cmea vs. Time for NACA 0006, 0010, and 0014 airfoils plunging at a reduced
frequency of k = 0.25 and an amplitude of h̄ = 0.025 63

5.19 Cl vs. Time for a NACA 0010 airfoil plunging at a reduced frequency of k =
0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050 . 64

5.20 Cmle
vs. Time for a NACA 0010 airfoil plunging at a reduced frequency of

k = 0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050 65

5.21 Cmea vs. Time for a NACA 0010 airfoil plunging at a reduced frequency of
k = 0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050 65

5.22 Cl vs. Time for a NACA 0010 airfoil plunging at reduced frequencies of k =
0.25 and 0.75 and an amplitude of h̄ = 0.025 . 66

5.23 Cmle
vs. Time for a NACA 0010 airfoil plunging at reduced frequencies of

k = 0.25 and 0.75 and an amplitude of h̄ = 0.025 . 67

5.24 Cmea vs. Time for a NACA 0010 airfoil plunging at reduced frequencies of
k = 0.25 and 0.75 and an amplitude of h̄ = 0.025 . 67

5.25 Cl vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4 at
k = 0.25, ᾱ = 1, 2, and 4 deg, and h̄ = 0.025. 68

5.26 Cmle
vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4

at k = 0.25, ᾱ = 1, 2, and 4 deg, and h̄ = 0.025. 69

5.27 Cmea vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4
at k = 0.25, ᾱ = 1, 2, and 4 deg, and h̄ = 0.025. 69

5.28 Cl vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4 at
k = 0.25, ᾱ = 2 deg, and h̄ = 0.010, 0.025, and 0.050. 70

x

5.29 Cmle
vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4

at k = 0.25, ᾱ = 2 deg, and h̄ = 0.010, 0.025, and 0.050. 71

5.30 Cmea vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4
at k = 0.25, ᾱ = 2 deg, and h̄ = 0.010, 0.025, and 0.050. 71

5.31 Stationary plate of infinitesimal thickness with periodic transverse gust 73

5.32 Cl vs. Time for the Sears solution compared to the alternate panel code
solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence
of a sinusoidal gust with a reduced frequency of k = 0.25 and a gust
amplitude of w̄ = 0.01 . 76

5.33 Cmle
vs. Time for the Sears solution compared to the alternate panel code

solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence
of a sinusoidal gust with a reduced frequency of k = 0.25 and a gust
amplitude of w̄ = 0.01 . 77

5.34 Cl vs. Time for the Sears solution compared to the alternate panel code
solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence
of a sinusoidal gust with a reduced frequency of k = 1.0 and a gust
amplitude of w̄ = 0.01 . 77

5.35 Cmle
vs. Time for the Sears solution compared to the alternate panel code

solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence
of a sinusoidal gust with a reduced frequency of k = 1.0 and a gust
amplitude of w̄ = 0.01 . 78

5.36 Cl vs. Time for the Sears solution compared to the alternate panel code
solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence
of a sinusoidal gust with a reduced frequency of k = 4.0 and a gust
amplitude of w̄ = 0.01 . 78

5.37 Cmle
vs. Time for the Sears solution compared to the alternate panel code

solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence
of a sinusoidal gust with a reduced frequency of k = 4.0 and a gust
amplitude of w̄ = 0.01 . 79

5.38 Cl vs. Time for the Sears solution compared to the panel code solution for
NACA 0010 airfoil under the influence of a periodic freestream gust with
a reduced frequency of k = 1.0 and gust amplitude of w̄ = 0.01, sampled
at 6 times the reduced frequency. 80

xi

5.39 Cmle
vs. Time for the Sears solution compared to the panel code solution for

NACA 0010 airfoil under the influence of a periodic freestream gust with
a reduced frequency of k = 1.0 and gust amplitude of w̄ = 0.01, sampled
at 6 times the reduced frequency. 80

5.40 Gust sheet circulation per unit length vs. initial x/c location for a periodic
freestream gust with a reduced frequency of k = 1.0 and gust amplitude
of w̄ = 0.01, sampled at 6 times the reduced frequency. 81

5.41 Visualization showing the location of the airfoil, wake, gust sheets, and
selected x2 velocities in the top panel, instantaneous Cp vs. x/c in the
lower left panel, and Cl vs. t in the lower right panel. 82

5.42 Cl vs. Time for the Sears solution compared to the panel code solution for
NACA 0010 airfoil under the influence of a periodic freestream gust with
a reduced frequency of k = 1.0 and gust amplitude of w̄ = 0.01, sampled
at 4 times the reduced frequency. 83

5.43 Cmle
vs. Time for the Sears solution compared to the panel code solution for

NACA 0010 airfoil under the influence of a periodic freestream gust with
a reduced frequency of k = 1.0 and gust amplitude of w̄ = 0.01, sampled
at 4 times the reduced frequency. 83

5.44 Gust sheet circulation per unit length vs. initial x/c location for a periodic
freestream gust with a reduced frequency of k = 1.0 and gust amplitude
of w̄ = 0.01, sampled at 4 times the reduced frequency. 84

5.45 Visualization at t = 2.0 showing the location of the airfoil, wake, gust sheets,
and selected x2 velocities in the top panel, instantaneous Cp vs. x/c in
the lower left panel, and Cl vs. t in the lower right panel. 85

5.46 Stationary plate of infinitesimal thickness with sharp edge transverse gust 86

5.47 Transient lift solutions normilized by the corresponding steady state lift for
NACA 0008, 0010, and 0012 airfoils oriented at at α0 = 1 deg relative to
the time-averaged freestream computes using a normalized time step of
0.005 compared to Eq. (5.19) . 89

5.48 Cl for a single gust sheet of strength γ = −0.02 propagating across a NACA
0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream
computed using a time step of 0.010 compared to the Kussner sharp edge
gust with an amplitude of w̄ = 0.01. 90

xii

5.49 Cmle
for a single gust sheet of strength γ = −0.02 propagating across a

NACA 0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream
computed using a time step of 0.010 compared to the Kussner sharp edge
gust with an amplitude of w̄ = 0.01. 91

5.50 Visualization at t = 2.0 showing the location of the airfoil, wake, gust sheets,
and selected x2 velocities in the top panel, instantaneous Cp vs. x/c in
the lower left panel, and Cl vs. t in the lower right panel. 92

5.51 Cl for a pair of gust sheets of strength γ = -0.02 and 0.02 propagating across
a NACA 0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream
computed using a time step of 0.010 compared to the Kussner sharp edge
gusts with amplitudes of w̄ = 0.01 and -0.01. 93

5.52 Cmle
for a pair of gust sheets of strength γ = -0.02 and 0.02 propagating

across a NACA 0010 airfoil oriented at α0 = 0.0 to the time-averaged
freestream computed using a time step of 0.010 compared to the Kussner
sharp edge gusts with amplitudes of w̄ = 0.01 and -0.01. 93

5.53 Visualization at t = 4.0 showing the location of the airfoil, wake, gust sheets,
and selected x2 velocities in the top panel, instantaneous Cp vs. x/c in
the lower left panel, and Cl vs. t in the lower right panel. 94

5.54 Pitch history for the panel code free response simulation above, at, and
below the predicted flutter boundary. 100

5.55 Plunge history for the panel code free response simulation above, at, and
below the predicted flutter boundary. 101

5.56 Cl history for the panel code free response simulation above, at, and below
the predicted flutter boundary. 101

5.57 Cmle
history for the panel code free response simulation above, at, and below

the predicted flutter boundary. 102

5.58 Plunge vs. Pitch for the panel code free response simulation above, at, and
below the predicted flutter boundary. 102

5.59 Determining modal damping for pitch. 103

5.60 Determining modal damping for plunge. 104

5.61 Normalized modal damping vs. freestream velocity for the panel code
solution compared to the p-k method. 104

xiii

5.62 Normalized modal frequency vs. freestream velocity for the panel code
solution compared to the p-k method. 105

6.1 Pitch history for the panel code forced response simulation above, at, and
below the predicted flutter boundary. 107

6.2 Plunge history for the panel code forced response simulation above, at, and
below the predicted flutter boundary. 108

6.3 Cl history for the panel code forced response simulation above, at, and below
the predicted flutter boundary. 108

6.4 Cmle
history for the panel code forced response simulation above, at, and

below the predicted flutter boundary. 109

6.5 h/c vs. α for the panel code forced response simulation above, at, and below
the predicted flutter boundary. 109

xiv

NOTATION

Φ Velocity Potential
ρ Density
Γ Total circulation strength
γ Circulation strength per unit length
λ Source strength per unit length
Λ Total source strength
n Normal Vector
V Velocity Vector
q Velocity Vector
rij Radius from poing j to point i
mc.v. Mass of fluid inside the control volume
mout Mass flux out of a control volume
min Mass flux into a control volume
p Momentum
a Acceleration
F Force
ds Differential along a surface
f Body force
τij Fluid shear stress
p Pressure
µ Viscocity coefficient
δij Kronecker delta function
ω Angular velocity of a fluid element
ζ Vorticity of a fluid element
L Lift
Cl Coefficient of Lift
Cd Coefficient of Drag
Cm Coefficient of Moment
c Chord, length of the airfoil section
b Semi-chord = c

2

s = Ut/b, Semi-chord location
fi Body Force
τij Fluid Shear Stress
Qh = −L, Generalized force along the +z-axis
Qα = My, Generalized moment about the elastic axis
m Mass

xv

h Vertical translation of the airfoil, positive for deflection along the -z-axis
α Angle between the airfoil centerline and the mean freestream flow
Iα Mass moment of inertial per unit span about axis x = ba
Sα = mbxα, Static mass imbalance per unit span about axis x = ba

ωh =
√
Kh/m, uncoupled natural frequency in bending

ωα =
√
Kα/Iα, uncoupled natural frequency in torsion

Kh Bending spring stiffness
Kα Torsional spring stiffness
k = ωb/U , Reduced frequency

xvi

CHAPTER 1

INTRODUCTION

Aeroelastic condsiderations affect a wide range of disciplines. With respect to turboma-

chinery, particularly the area of high-cycle fatigue, aerodynamic forcing of internal compo-

nents due to rotor-stator interactions can significantly impact engine life-cycle and mainte-

nance requirements.

To better understand the influence of aerodynamic damping, on high-cycle fatigue, the

influence of aerodynamic damping on forced structural response must first be be examined.

As a first step towards this goal, this thesis develops a computational tool through which the

influence of aerodynamic damping can be isolated and systematically studied.

1.1 Goals

The goal of this thesis is to develop and validate a computation tool which will enable

the systematic investigation into wake induced stuctural responce. The computational tool

is based loosely on a Hess-Smith [5] type unsteady panel code written by Ron Hugo [7, 9]

which has been modified to include a freestream gust model and an airfoil structural model.

By incorporating the capability to model arbitrary freestream gusts into the unsteady panel

code, and coupling the panel code with a structural model, the time-domain response of a

body due to an arbitrary freestream disturbance can be computed.

1.2 Organization

This thesis is presented in five parts. The first part is an overview of the governing fluid

dynamic equations and the derivation of velocity potential which governs the inviscid and

1

incompressible flowfield, as well as the derivation and description of related theorems and

concepts which are necessary for the formulation of the numeric solution. The second part

describes the formulation of two dimensional panel methods in three sections, starting with

the formulation to solve the steady-state flowfield about a non-lifting body, adding the Kutta

condition to solve the steady-state flowfield about a lifting body, and then accounting for

time-dependent effects to solve the time-dependent flowfield about a lifting-body undergoing

arbitrary motion. The third part of the thesis expands on the time-dependent panel method

formulation by adding a freestream gust model which represents time dependent freestream

pertubations using discrete vortex elements, and a two degree of freedom structural model

which allows the responce of an arbitrary body due to aerodynamic forcing to be determined.

The fourth part compares the developed panel code against classic analytic solutions for

unsteady aerodynamics, and the last part demonstrates the application of the developed

panel code to a forced responce problem using a solution which couples the freestream gust

model with the structural model.

2

CHAPTER 2

FUNDAMENTALS

Before panel codes are discussed, this chapter defines several relations and terms used

throughout the later discussion. The first section in the present chapter discusses the deriva-

tion of basic governing equations for fluid flow. The second section discusses potential flow

and applies basic governing equations to the solution of potential flowfields. The last two

sections relate terms and definitions used later in this thesis.

2.1 Governing Equations

The fundamental equations governing fluid flow are derived here from the relationships

between density, momentum, and energy, and their time rates of change inside a control-

volume.

2.1.1 Continuity

The continuity equation relates the time rate of change of mass inside a control-volume

to the mass flux through the control-surface. The integral form of the continuity equation

can be derived by beginning with a statement of mass inside a control-volume, such as

mc.v. =

�
c.v.

ρ dV (2.1)

Based on Eq. (2.1), the time rate of change of mass inside the control-volume, ∂mc.v./∂t, is

given by

∂mc.v.

∂t
=

∂

∂t

�
c.v.

ρ dV (2.2)

3

Mass flux through the control-surface can also be stated as

ṁin − ṁout = −
�

c.s.

ρqini dS (2.3)

If mass is conserved, the net mass flux through the control-surface must equal the time rate of

change of the mass within the control-volume, leading to the integral form of the continuity

equation [8].

∂

∂t
mc.v. =

∂

∂t

�
c.v.

ρ dV = −
�

c.s.

ρqini dS = ṁin − ṁout (2.4)

The divergence theorem states that given a vector qi, the integral of the normal compo-

nent of qi relative to the control-surface equals the integral of the gradient of qi inside the

corresponding control-volume.

�
c.s.

qini dS =

�
c.v.

∂

∂xi
qi dV (2.5)

By applying Eq. (2.5) to the integral form of the conservation equation, Eq. (2.4), the

following simplification can be made

�
c.s.

ρqini dS =

�
c.v.

∂

∂xi
(ρqi) dV (2.6)

Thus, Eq. (2.4) can be reduced to

∂

∂t

�
c.v.

ρ dV +

�
c.v.

∂

∂xi
(ρqi) dV = 0 (2.7)

or �
c.v.

(
∂

∂t
ρ+

∂

∂xi

(ρqi)

)
dV = 0 (2.8)

Since the volume integral in Eq. (2.8) must equal zero for any arbitrary control-volume, it

must also hold that

∂

∂t
ρ+

∂

∂xi
(ρqi) = 0 (2.9)

producing the differential form of the continuity equation [8].

4

2.1.2 Momentum

The momentum equation relates the time rate of change of fluid momentum through a

control-volume to the forces acting on the control-volume. Momentum is a vector quantity,

pj, defined by the product of mass and the corresponding velocity vector.

pj = mqj (2.10)

For a control-volume, the summation of forces acting on the volume equal the time rate of

change of the control-volume momentum.

∑
c.v.

Fj =
∂

∂t
(mqj)c.v. (2.11)

When Eq. (2.11) is incorporated with the continuity equation, Eq. (2.4) becomes

∑
c.v.

Fj =
∂

∂t
(mqj)c.v. =

∂

∂t

�
c.v.

ρqj dV +

�
c.s.

ρqjqini dS (2.12)

Forces acting on the control-volume may be either body forces, surface forces, or both.

∑
c.v.

Fbodyj
=

�
c.v.

ρfj dV (2.13)

∑
c.s.

Fsurfacej
=

�
c.s.

τijni dS (2.14)

Thus, substituting Eqs. (2.12) –(2.14) into Eq. (2.11) gives the integral form of the momen-

tum equation.

∂

∂t

�
c.v.

ρqj dV +

�
c.s.

ρqjqini dS =

�
c.v.

ρfj dV +

�
c.s.

τijni dS (2.15)

Applying the divergence theorem to Eqs. (2.12) and (2.14) allows simplification of Eq. (2.15)

�
c.s.

ρqjqini dS =

�
c.v.

∂

∂xi

(ρqjqi) dV (2.16)

5

�
c.s.

τijni dS =

�
c.v.

∂

∂xi

τij dV (2.17)

�
c.v.

(
∂

∂t
(ρqj) +

∂

∂xi
(ρqjqi) − ρfj − ∂

∂xi
τij

)
dV = 0 (2.18)

Again, since the volume integral must equal zero for any arbitrary control-volume, it holds

that

∂

∂t
(ρqj) +

∂

∂xi
(ρqjqi) = ρfj +

∂

∂xi
τij (2.19)

producing the differential form of the momentum equation.

2.1.3 Navier-Stokes

If the assumption is made that the fluid is Newtonian (i.e. the stress components τij are

linearly related to the derivatives ∂qi/∂xj), then the following substitution has been widely

accepted

τij = −
(
p+

2

3
µ
∂qk
∂xk

)
δij + µ

(
∂qi
∂xj

+
∂qj
∂xi

)
(2.20)

Thus, Eq. (2.20) can be substituted into Eq. (2.19), giving conservative form of the Navier-

Stokes relation [8].

∂

∂t
(ρqj) +

∂

∂xi
(ρqjqi) = ρfi − ∂

∂xj

(
p+

2

3
µ
∂qk
∂xk

)
+

∂

∂xi

[
µ

(
∂qi
∂xj

+
∂qj
∂xi

)]
(2.21)

2.1.4 Euler

Depending on the flow regime, the Navier-Stokes equations can be simplified. For exam-

ple, low-speed flow about a thin airfoil outside of the boundary layer can be assumed to be

incompressible, ρ = constant, and inviscid, µ = 0, if the airfoil is at a conservative angle of

attack and large Reynolds Numbers. With these two assumptions, Eq. (2.21) simplifies to

the Euler equation.

∂

∂t
qj +

∂

∂xi
(qjqi) = fj +

1

ρ

∂p

∂xj
(2.22)

6

2.2 Potential Flow

The potential flow assumption is of interest here because it describes the flow regime

examined in the current investigation.

2.2.1 Velocity Potential

If a flowfield can be considered incompressible, then the continuity equation, Eq. (2.9),

simplifies to ∂qi/∂xi = 0. If the flowfield is also inviscid, µ = 0, then vorticity in the flowfield

must remain constant with respect to time, ∂ζ/∂t = 0. Given these assumptions, a scaler

potential function Φ exists that is a solution to the Laplace equation describing the flowfield

∂2

∂x2
j

Φ = 0 (2.23)

The potential function, Φ, is often denoted the velocity potential because the velocity field

is equal to the gradient of Φ.

qj =
∂

∂xj
Φ (2.24)

Inversely, the potential at any point, P , in the flowfield can be calculated from any arbitrary

reference point, P0, by integrating the velocity field along any path between P0 and P

Φ(x1, x2, x3) =

� P

P0

x1 dx1 + x2 dx2 + x3 dx3 =

� P

P0

∂Φ

∂x1
dx1 +

∂Φ

∂x2
dx2 +

∂Φ

∂x3
dx3 (2.25)

Note that with the assumptions of irrotationality and incompressibility, the integrand of Eq.

(2.25) is an exact differential, and as such the potential is independent of the integration

path. [8]

2.2.2 Superposition

Because the velocity potential describes the potential flowfield, and is the solution to the

Laplace equation, it holds that [1]:

7

1. Any irrotational incompressible flow has a velocity potential and stream func-

tion (for two-dimensional flow) that both satisfy Laplace’s equation.

2. Conversely, any solution of Laplace’s equation represents the velocity poten-

tial or stream function (two-dimensional) for an irrotational, incompressible

flow.

Since the Laplace equation is a second-order, linear, partial differential equation, it holds

that the sum of two or more particular solutions is also a valid solution. Thus, a complex

flowfield with a total potential Φ can be modeled as the superposition of multiple potential

solutions, Φk, giving

Φ =
∑

Φk (2.26)

2.2.3 Boundary Conditions

Since solving the Laplace equation is a boundary value problem, applying the correct

boundary conditions is essential. The two physical phenomon considered here are the no-

flow boundary condition at the fluid-body interface, and the farfield condition forcing body-

induced disturbances to decay to zero strength far from the body. There are two types

of boundary condition formulations, the “direct” Neumann boundary condition, and the

“indirect” Dirichlet boundary condition. The Dirichlet boundary condition is not explained

here because it is not employed in this investigation. See References [1] and [8] for a full

explanation.

The Neumann boundary condition specifies the normal velocity on the fluid-body bound-

ary must equal zero,

∂Φ

∂n
= 0 (2.27)

and the potential field due to the presence of the body must be negligible in the farfield

(r → ∞).

lim
r→∞

(Φbody) = 0 (2.28)

8

2.3 Theorems And Relations

2.3.1 Bernoulii

To compute pressure in a potential flow, the relation between potential and velocity, qj =

∂Φ/∂xj , and the assumption of a conservative body force with potential E, fj = −∂E/∂xj ,

are substituted in to the Euler equation, Eq. (2.22).

∂

∂xj

(
E +

p

ρ
+
qj

2

2
+
∂Φ

∂t

)
= 0 (2.29)

Thus, upon spatial integration

E +
p

ρ
+
qj

2

2
+
∂Φ

∂t
= C(t) (2.30)

where C(t) is a spatially independent constant over the entire flowfield, but is a function of

time. This is the Bernoulli equation [8]. Because the left hand side of Eq. (2.30) is constant

over the entire flowfield at a given point in time, pressure and velocity can be compared at

different points in the flow if the potential is known.

2.3.2 Coefficient of Pressure

The pressure coefficient is a non-dimensional parameter relating pressure between two

different locations in a flowfield.

Cp =
p∞ − p
1
2
ρqj2

∞
(2.31)

Using the Bernoulli equation, Eq. (2.30), the pressure difference in Eq. (2.31) becomes

p∞ − p = ρ

[
E +

qj
2

2
+
∂Φ

∂t

]
∞
− ρ

[
E +

qj
2

2
+
∂Φ

∂t

]
p

(2.32)

If care is taken with the choice of reference point, denoted by ∞, such that it exists at a

location in the farfield not influenced by any body-induced disturbances, then the change in

potential with time can be neglected at the reference point.

9

∂Φ∞
∂t

= 0 (2.33)

If the reference point is also chosen such that the difference in the body forces is negligible,

E∞ = Ep (2.34)

then Eq. (2.32) reduces to

p∞ − p = ρ

[
qj

2
∞
2

− qj
2
p

2
− ∂Φp

∂t

]
(2.35)

Dividing the pressure difference by the free stream dynamic pressure, 1
2
ρqj

2
∞, Eq. (2.35)

becomes

Cp = 1 − qj
2
p

qj2
∞

− 2

qj2
∞

∂Φp

∂t
(2.36)

2.4 Angular Velocity, Vorticity, and Circulation

2.4.1 Motion of a Fluid Element

Motion of a fluid element is comprised of translation, rotation, and deformation, where

each type of motion is usually caused by different phenomena in the flowfield. Translation is

caused by a uniform velocity, where all parts of the element move at the same velocity, dis-

allowing deformation and rotation. Rotation and deformation occur when velocity gradients

exist across the element, as can be the case when viscous effects are not negligible.

2.4.2 Angular Velocity and Vorticity

The angular velocity of a fluid element relates to the element deformation caused by

a velocity gradient. Generally these velocity gradients are caused by shear stresses. The

angular velocity of a fluid element, ωi, is defined as the curl of the velocity vector, or

ωi = −1

2
εijk

∂qj
∂xk

(2.37)

10

Another measure of fluid angular velocity, used to simplify several equations, is vorticity,

defined as twice the angular velocity.

ζi = 2ωi = −εijk
∂qj
∂xk

(2.38)

2.4.3 Circulation

Circulation, Γ, is a measure of the vorticity in a fluid region, and equals the integral of

the vorticity normal to a surface, S.

Γ =

�
S

ζini dS (2.39)

By substituting the definition of vorticity, Eq. (2.38), into Equation (2.39) and using Stokes

Theorm [8], �
S

−εijk
∂qj
∂xk

ni dS =

�
C

qi dxi (2.40)

circulation can be defined as

Γ =

�
C

qi dxi (2.41)

2.4.4 Kelvin’s Theorem

Kelvin’s theorem relates the time rate of change of circulation in a potential flow inside

a closed region C. Simply stated, it states that the time rate of change of circulation in a

closed fluid region must equal zero,

DΓ

Dt
= 0 (2.42)

or the total circulation of a closed fluid region is constant with time.

In the case of a lifting body, the body carries some bound circulation related to the body

lift. If the body is at steady state, then lift and circulation are constant with time, and Eq.

(2.42) is satisfied. For a body that is not at steady state, lift and circulation are functions of

time. Therfore, to satisfy Eq. (2.42), another source of equal and opposite circulation must

11

exist in the closed region. From physical observations, the additional circulation is known to

be confined to a wake behind the body, Γwake, giving

DΓ

Dt
=

(Γbody + Γwake)

∆t
= 0 (2.43)

12

CHAPTER 3

PANEL CODES

This chapter describes the solution of two-dimensional potential flowfields using the

Smith-Hess panel method [5]. The description starts with the solution of the flowfield about a

non-lifting body, incorporates the Kutta condition to account for bound circulation, and then

incorporates time-dependent effects to solve for time-dependent flowfields using the method

of Basu and Hancock [3] as modified by Ardonceau [2].

The solution of the inviscid and incompressible flowfield about a non-lifting body repre-

sents the fundamental case to which a panel method can be applied. It also provides a starting

point to describe the basic implementation of the panel method which will be expanded upon

for the later lifting-body and time-dependent solutions.

3.1 Non-lifting Body

As described earlier, the inviscid and incompressible flowfield about a non-lifting body

can be described by a potential field, which is the combination of the body and freestream

potentials.

Φ = Φbody + Φ∞ (3.1)

To model the body potential, a distributed strength source sheet (of strength λ(s)) is

placed along the fluid-body interface, s, as illustrated in Figure 3.1. This allows the body

potential at an arbitrary point in the flow, P (x1, x2), to be computed in terms of the potential

due to the source sheet.

13

Figure 3.1. Airfoil modeled with a continuous source sheet.

Φbody(P) =

�
s

λ(s)

2π
ln r ds (3.2)

Correspondingly, of freestream flow is uniform, parallel to the x1-axis, and the origin is a

reference point where Φ∞(0, 0) = 0, the potential due to the freestream at point P is

Φ∞(P) = qj∞xj (3.3)

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1), gives the total potential at point P due to

both the body and freestream.

Φ(P) =

�
s

λ(s)

2π
ln r ds+ qj∞xj (3.4)

The only unknown parameter in Eq. (3.4) is the body source distribution, λ(s). However,

by applying the no-flow Neumann boundary condition from Eq. (2.27),

qjnj = nj
∂Φ

∂xj

= 0 (3.5)

14

Figure 3.2. Airfoil discretized into constant strength source elements.

to the total potential at the fluid-body interface,

nj
∂Φ

∂xj
=

�
s

nj
∂

∂xj

λ(s)

2π
ln r ds+ qj∞nj = 0 (3.6)

the unknown source distribution can be determined. Unfortunately, solving Eq. (3.6) for the

source distribution is a non-trivial exercise for all but the simplest geometries. However, by

applying geometric simplifications, determining the body source distribution as a function of

body geometry and freestream conditions can be reduced to solving a set of linear equations.

3.1.1 Discretization

By discretizing the continuous source distribution, shown in Figure 3.1, into a series of

straight segments, or panels, as shown in Figure 3.2, Eq. (3.6) may be reduced to a set of

dependent linear equations. For this discussion, each panel represents a unique distributed

source element having a constant source strength along the length of the element. A further

simplification is made in that the no-flow boundary condition is not enforced at all locations

15

on the body. Rather, the no-flow boundary conditions are applied to a single location, or

collocation point, at the midpoint of each panel, as shown in Figure 3.2.

By discretizing the body into N panels, numbered clockwise from panel 1 at the lower

body trailing-edge to panel N at the upper body trailing edge, the potential at the collocation

point of any panel, panel α, can be determined as a function of freestream potential, body

geometry, and panel strength distribution along the body. In this manner, the potential on

panel α due to a source element on panel β and the freestream is

Φαβ =
λβ

2π

�
β

ln rαβ dsβ + qj∞xjα (3.7)

The potential on panel α due to the entire body can be calculated using superposition. Thus,

the potential on panel α due to the entire body is the sum of the potential due to the N

panels on the body.

Φα =
N∑

β=1

(
λβ

2π

�
β

ln rαβ dsβ

)
+ qj∞xjα (3.8)

Applying the no-flow boundary condition, Eq. (2.27), to Eq. (3.8) gives the normal velocity

on panel α due to the body and freestream.

qnα =

N∑
β=1

(
λβ

2π

�
β

∂

∂nβ
ln rαβ dsβ

)
+ qj∞njα = 0 (3.9)

As in Eq. (3.6), the source strengths in Eq. (3.9) are the unknown. However, because the

parameters in the integrand of Eq. (3.9) are based strictly on body geometry, the integral can

be replaced by a geometric influence coefficient, aαβ , which represents the geometric influence

of panel β on panel α.

aαβ =
1

2π

�
β

∂

∂nα

ln rαβ dsβ (3.10)

Using the influence coefficient method, the no-flow normal condition on panel α, given pre-

viously in Eq. 3.9 becomes
N∑

β=1

(λβ aαβ) = −qj∞njα (3.11)

16

Figure 3.3. Constant Strength Panel Discretization

Equation (3.11) is the basis for a set of linear equations relating the unknown panel source

strengths λβ to the no-flow boundary condition. This system of equations begins with the

influence matrix, Aαβ , which is made up of the influence coefficients, aαβ , based only on the

body geometry.

Aαβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 ... a1N

a21 a22 ... a2N

...

aN1 aN2 ... aNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.12)

The element strengths for each panel are stored in the column vector xβ.

xβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

...

λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.13)

17

Finally, the column vector Bα represents normal velocity components at the collocation point

not induced by the body, such as the freestream normal velocity.

Bα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−qj∞nj1

−qj∞nj2

...

−qj∞njN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.14)

Combined, these matrices and vectors form a system of equations Aαβxβ = Bα, or

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 ... a1N

a21 a22 ... a2N

...

aN1 aN2 ... aNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

...

λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−qj∞nj1

−qj∞nj2

...

−qj∞njN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.15)

the solution of which is trivial, or non-unique, describing the potential-flow about the non-

lifting body. In physical terms, the trivial solution does not include the effects of bound

circulation about the body, and therefore does not model lift.

3.2 Lifting Body

To model the effects of lift and bound circulation about a body, additional constraints

must be considered. To model bound circulation on the body, a set of constant strength vortex

panels, each of the same strength, are added to the existing source panel discretization. Since

each vortex panel has the same strength, only a single variable must be added to the set of

linear equations modeling the non-lifting solution. The additional variable necessitates an

additional constraint to solve for the vortex panel strength. This additional constraint is

provided by the Kutta condition, which is based on observations of physical flow phenomena

about a lifting body, or airfoil, with a sharp trailing-edge.

18

3.2.1 Kutta Condition

The Kutta condition is a means to relate possible potential-flow solutions about a body to

observed physical flow characteristics, thereby generating a unique solution for the flowfield.

The general definition of the Kutta condition specifies that the flow must detach from the

airfoil at the airfoil trailing-edge and that the trailing-edge has zero loading [8]. The afore-

mentioned potential-flow solution described for the non-lifting body possess a trailing-edge

singularity, thus the Kutta condition as specified can not be satisfied at the airfoil trailing-

edge. For a lifting body, a commonly used first approximation is employed in which the zero

loading condition is enforced on the panels adjacent to the airfoil trailing-edge.

For a discretized airfoil, the condition of zero trailing-edge loading is approximately sat-

isfied by specifying equal pressure on the airfoil upper and lower trailing-edge panels. The

unsteady Bernoulli equation, Eq. (2.30), is used to relate the fluid flow on the upper, u, and

lower, l, panels, giving [
p

ρ
+
q2
j

2
+
∂Φ

∂t

]
l

=

[
p

ρ
+
q2
j

2
+
∂Φ

∂t

]
u

(3.16)

For a steady-state flow, the time-dependent potential terms can be neglected in Eq. (3.16),

and the condition of equal pressure simplifies to the specification of equal flow velocity on

the airfoil upper and lower trailing-edge panels.

qjl
= qju (3.17)

Thus, Eq. (3.17) provides the additional constraint necessary to solve for the unique panel

strengths on the airfoil in a steady-state flow.

3.2.2 Equations

Placing vortex panels along the airfoil does not change the no-flow boundary condition

described in Eq. (2.27), but the potential at panel α due to panel β and the freestream must

now include the influence of the discreyized vortex sheet.

19

Φαβ =
λβ

2π

�
β

ln rαβ dsβ − γ

2π

�
β

θαβ dsβ (3.18)

Accordingly, the potential at panel α due to the N source panels, N vortex panels, and the

freestream influence along the body becomes

Φα =
N∑

β=1

(
λβ

2π

�
β

ln rαβ dsβ

)
− γ

N∑
β=1

(
1

2π

�
β

θαβ dsβ

)
+ qj∞xjα (3.19)

Hence, the normal velocity on panel α due to the N panels and freestream can be writen in

terms of the potential gradient normal to the body at panel α

qnα =

N∑
β=1

(
λβ

2π

�
β

∂

∂nα
ln rαβ dsβ

)
− γ

N∑
β=1

(
1

2π

�
β

∂

∂nα
θαβ dsβ

)
+ qj∞njα = 0 (3.20)

Again, the integrand for the circulatory term in Eq. (3.20) is based solely on body geometry

and therefore may be calculated as a geometric influence coefficient, bα, representing the

influence of the N discretized vortex panels on panel α.

bα = −
N∑

β=1

(
1

2π

�
β

∂

∂nα
θαβ dsβ

)
(3.21)

Substituting the influence coefficients, Eq. (3.10) and Eq. (3.21), the no-flow boundary

condition gives
N∑

β=1

(λβ aαβ) + γ bα = −qj∞njα (3.22)

Equation (3.22) still provides N equations, but there are now N + 1 variables (N source

strengths, λα, and one vortex strength, γ) describing the potential field about the lifting

body. The Kutta condition, Eq. (3.17), provides the N + 1’th condition needed to solve the

linear system of equations for the source and vortex strengths.

Using the no-flow boundary condition to simplify the Kutta condition (i.e. all flow on the

trailing-edge panels must be tangential) the tangential flow velocity on panel α can calculated

20

in terms of the potential gradient along the body. The tangential flow velocity on panel α

due to panel β and the freestream is therefore

qsαβ
=
λβ

2π

�
β

∂

∂sβ
ln rαβ dsβ +

γ

2π

�
β

∂

∂sα
θαβ dsβ + qj∞sj (3.23)

giving a tangential flow velocity on panel α due to all N body panels of

qsα =
N∑

β=1

(
λβ

2π

�
β

∂

∂sα
ln rαβ dsβ

)
+ γ

N∑
β=1

(
1

2π

�
β

∂

∂sα
θαβ dsβ

)
+ qj∞sj (3.24)

Examining Eq. (3.24), two new influence coefficients are introduced, cαβ, the tangential flow

component along panel α due to source panel β

cαβ =
1

2π

�
β

∂

∂sα

ln rαβ dsβ (3.25)

and dα, the tangential flow component along panel α due to the N body vortex panels.

dα =

N∑
β=1

(
1

2π

�
β

∂

∂sα
θαβ dsβ

)
(3.26)

Rewriting the steady-state Kutta condition, Eq. (3.17), in terms of the geometric influence

coefficients,

qsl
=

N∑
β=1

(λβ c1β) + γ d1 =

N∑
β=1

(λβ cNβ) + γ dN = qsu (3.27)

and rearranging to position the terms on the left hand side,

n∑
j=1

(λj (cnj − c1j)) + γ (dn − d1) = 0 (3.28)

gives the Kutta condition in a suitable form to incorporate into the system of linear equations,

Eq. (3.15).

21

Rewriting Eq. (3.15) to include the vortex influence and the Kutta condition, the Aαβ

matrix becomes,

Aαβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 ... a1N b1

a21 a22 ... a2N b2

...

aN1 aN2 ... aNN bN

(cN1 − c11) (cN2 − c12) ... (cNN − c1N) (dN − d1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.29)

the xβ vector becomes,

xj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

...

λN

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.30)

and the Bα vector becomes,

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−qj∞nj1

−qj∞nj2

...

−qj∞njN

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.31)

Combining Eqs. (3.29), through (3.31) gives the linear system of equations which model the

flowfield about the lifting body,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 ... a1N b1

a21 a22 ... a2N b2

...

aN1 aN2 ... aNN bN

(cN1 − c11) (cN2 − c12) ... (cNN − c1N) (dN − d1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

...

λN

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−qi∞ni1

−qi∞ni2

...

−qi∞niN

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.32)

22

providing a unique solution to the flowfield which includes the effects of lift and bound

circulation in the solution.

3.3 Time-Dependent Solutions

The non-lifting and lifting body solutions described in Sections 3.1 and 3.2 provide meth-

ods to model steady-state flowfields about a body in a uniform freestream flow. If the body

is in motion relative to the freestream, or if the freestream includes perturbations about its

time-average mean, assumptions neglecting time-dependent terms are no longer valid and a

time-dependent solution methodology must be found.

The basic formulation of a time-dependent solution is similar to that of the lifting body

solution; i.e. the body is discretized using source and vortex panel discretization, the no-flow

boundary condition provides N linear equations, and the Kutta condition provides the one

additional relation necessary to formulate a unique lifting-body solution. The difference be-

tween the time-dependent and steady-state solutions is the application of the Kutta condition

and the incorporation of a model to account for the airfoil wake.

The following method describes a solution for the time-dependent flowfield about an airfoil

in motion relative to the influence of an otherwise uniform freestream flow.

3.3.1 Frame of Reference

The choice of coordinate system and reference frame determine the complexity of the

mathematical model. For this discussion, the no-flow boundary condition is calculated in a

body-fixed coordinate system that is allowed to translate and pitch in the global reference

frame with velocity qjrel
and pitch rate Ω.

3.3.2 Wake

In a viscous solution for attached flow over an airfoil, a low energy boundary layer along

the airfoil is shed into the freestream flow from the airfoil trailing edge to form the airfoil

wake. The wake represents a pertubation of the freestream flow aft of the airfoil due to the

23

flow about the airfoil. The wake is significant because it can have a profound influence on the

flow about the airfoil, even as the wake convects with the freestream. Since viscous effects are

neglected in a potential-flow solution, an airfoil wake must be modeled in a way representing

the effect of shed bound circulation to satisfy the Kelvin theorm. As such, the wake is often

called a “time history” because it represents the change in bound circulation on the airfoil

with time.

Because the inviscid wake represents the change in bound circulation on the airfoil with

time, or the shed circulation, it is possible to model the wake using a set of discrete vortex

elements. Basu and Hancock [3] use a set of point vortices and a single constant strength

vortex panel to model the inviscid time-dependent wake. The strength and orientation of

the wake vortex panel, or wake panel, play a key roll in satisfying the time-dependent Kutta

condition (explained in detail later in this chapter). The the strength of the wake panel is

dependent on the amount of circulation shed by the airfoil between time steps, and wake

panel orientation is determined by the Kutta condition.

After the Kutta condition has been satisfied, calculations necessary to determine the time-

dependent flowfield solution have been performed, and any necessary post solution calcula-

tions have been completed, all wake vortices are convected with the local flow in preparation

for the next time step. The wake panel is not convected with the local flow, however, rather

the wake panel is replaced by a single point vortex of strength equal to the shed circulation

from the previous timestep. This new point vortex is then allowed to convect with the local

flow. In this manner, the wak panel and point vortices model shed circulation from the airfoil,

which in turn can influence the flow about the airfoil.

3.3.3 Unsteady Kutta Condtion

The specification of the time-dependent Kutta condition is similar to the steady-state

specification described in Section 3.2.1. The difference is in the application of the time-

dependent Kutta condition, which can no longer neglect time-dependent terms in the un-

24

steady Bernoulli equation relating pressures on the upper and lower airfoil trailing-edge pan-

els. The inclusion of time-dependent terms means that the time-dependent Kutta condition

is a quadratic equation which must be solved iteratively.

Two applications of the time-dependent Kutta condition are described below, the method

of Basu and Hancock [3], and the modification of that method by Ardonceau [2] used in the

current investigation.

3.3.3.1 Basu-Hancock

Basu and Hancock propose that “...there is no definitive statement of the Kutta condition

for a steady airfoil, each mathematical model requiring its own consistent ‘Kutta’ condition

to ensure a unique solution...” [3] Based on that statement, the assumption that the flow

separates from the airfoil at the airfoil trailing-edge, zero loading exists across the shed

vorticity at the trailing-edge, and zero loading occurs across the trailing-edge elements of the

airfoil, Basu and Hancock propose the folowing mathematical model for the Kutta condition.

This model determines the orientation, θk, length, ∆k, and strength, (γw)k, of the wake panel

at time tk.

Beginning with the unsteady Bernoulli equation applied at the airfoil trailing-edge panels

[
p

ρ
+
q2
j

2
+
∂Φ

∂t

]
l

=

[
p

ρ
+
q2
j

2
+
∂Φ

∂t

]
u

(3.33)

and specifying equal pressure at the trailing-edge,

pl − pu

ρ
=
q2
ju

2
− q2

jl

2
+
∂Φu

∂t
− ∂Φl

∂t
= 0 (3.34)

a quadratic relation develops for the flow velocity on the upper and lower airfoil trailing-

edge panels. Because the velocity relation is not linear, an iterative solution is necessary to

determine the orientation and strenth of the wake panel which satisfies the Kutta condition.

25

Using the Kelvin theorem, Eq (2.42), the rate of change of circulation about the airfoil

must be balanced by the rate of change of the shed circulation in its wake,

∆k (γw)k

∆t
= −∂Γ

∂t
= −Γk−1 − Γk

∆t
(3.35)

or the change in circulation about the airfoil from tk−1 to tk must be balanced by an equal

and opposite circulation about the wake panel.

∆k (γw)k = Γk − Γk−1 (3.36)

The rate of change of potential across the airfoil trailing-edge is related to the rate of change

in circulation by

∂ (Φl − Φu)

∂t
=
∂Γ

∂t
(3.37)

Therefore, substituting Eq. (3.37) into Eq. (3.34) relates the upper and lower trailing-edge

velocities to the rate of change of circulation about the airfoil.

q2
ju
− q2

jl

2
+

Γk − Γk−1

tk − tk−1
= 0 (3.38)

Substituting Eq. (3.36) into Eq. (3.38) gives the circulation strength about the wake panel

in terms of trailing-edge panels velocities and wake panel length.

(γw)k =
(tk − tk−1) (q2

l − q2
u)

2∆k

(3.39)

Wake panel orientation is determined by local velocity on the wake panel, neglecting the

effect of the wake panel on itself,

tan θk =
(q1w)k

(q2w)k

(3.40)

and wake panel length is proportional to the magnitude of the local velocity and the time

step.

∆k = (qjw)k (tk − tk−1) (3.41)

26

3.3.3.2 Ardonceau

Ardonceau proposed a modification to Basu and Hancock’s Kutta condition based on

experimental studies [2]. The modified solution method is nearly identical to that of Basu

and Hancock, but the wake panel geometry is altered. Instead of allowing the wake panel

to change both orientation and length, the wake panel orientation is fixed along the bisector

between the upper and lower trailing-edge panels.

θk =
θu + θl

2
(3.42)

The length of the Ardonceau wake panel then equals the average of the trailing-edge panel

velocities porportional to the time step.

∆k =
1

2
(qju + qjl

)k (tk − tk−1) (3.43)

The calculation of wake panel strength is the same as Eq. (3.39).

3.3.4 Method of Solution

Regardless of the mathematical formulation of the unsteady Kutta condition, the solution

methods are the same. As in the steady-state solutions, the N source strengths, one vortex

strength, and freestream along the body are related through the no-flow boundary condition

which gives a system of N linear equations. As outlined above, however, the Kutta condition

becomes a quadratic relation in an unsteady flow which must be solved using an iterative

techique.

The no-flow boundary condition for the time-dependent solution also includes induced

velocity terms due to body motion relative to the freestream and induced velocity terms due

to the airfoil wake. Modifying Eq. (3.22) to include the effects of body rotation,

qjrotation
= Ω × rα (3.44)

27

body translation,

qjtranslation
= qjrel

(3.45)

and the influence of the wake panel and point vortices,

qjwake
= γw bαN+1 +

k−1∑
β=1

Γβ

(
∂

∂nα

θαβ

2π

)
(3.46)

the time dependent no-flow relation becomes

N∑
β=1

(λβ aαβ) + γ

N∑
β=1

bαβ + γw bαN+1 +

k−1∑
β=1

Γβ

(
∂

∂nα

θαβ

2π

)
+ (qj∞ + Ω × rα + qjrel

)njα = 0

(3.47)

Rearranging to place all non-source terms on the right hand side gives

N∑
β=1

(λβ aαβ) = −γ
N∑

β=1

bαβ−γw bαN+1−
k−1∑
β=1

Γβ

(
∂

∂nα

θαβ

2π

)
−(qj∞ + Ω × rα + qjrel

)njα (3.48)

Note that Eq. (3.48) is very similar to Eq. (3.11) but with extra terms on the right hand

side. Therefore, rewriting Eq. (3.14) to include the new terms of Eq. (3.48) gives

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ ∑N
β=1 b1β − γw b1N+1 −

∑k−1
β=1 Γβ

(
∂

∂n1

θ1β

2π

)
− (qj∞ + Ω × r1 + qjrel

)nj1

−γ ∑N
β=1 b2β − γw b2N+1 −

∑k−1
β=1 Γβ

(
∂

∂n2

θ2β

2π

)
− (qj∞ + Ω × r2 + qjrel

)nj2

...

−γ ∑N
β=1 bNβ − γw bNN+1 −

∑k−1
β=1 Γβ

(
∂

∂nN

θNβ

2π

)
− (qj∞ + Ω × rN + qjrel

)njN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(3.49)

Substituting Eq. (3.49) for Eqs. (3.14) in Eq. (3.15) gives a linear system of equations for

the time-dependent solution.

28

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 ... a1n

a21 a22 ... a2n

...

an1 an2 ... ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

...

λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ ∑N
β=1 b1β − γw b1N+1 −

∑k−1
β=1 Γβ

(
∂

∂n1

θ1β

2π

)
− (qj∞ + Ω × r1 + qjrel

)nj1

−γ ∑N
β=1 b2β − γw b2N+1 −

∑k−1
β=1 Γβ

(
∂

∂n2

θ2β

2π

)
− (qj∞ + Ω × r2 + qjrel

)nj2

...

−γ ∑N
β=1 bNβ − γw bNN+1 −

∑k−1
β=1 Γβ

(
∂

∂nN

θNβ

2π

)
− (qj∞ + Ω × rN + qjrel

)njN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.50)

An iterative solution scheme is used to find the unique solution satisfying both the system

of N linear equations and one quadratic relation.

The iterative Kutta condition assumes initial values for the wake panel orientation, length,

and circulation strength at the initialization of the simulation. The inital values are used in

the solution of N linear equations to determine the strength of the body source elements.

The calculated body source strengths are then used to recalculate the orientation, length,

and circulation strength of the wake panel, and the process is repeated until the orientation,

length, and circulation strength of the wake panel meet a given convergence criteria.

29

CHAPTER 4

CODE DESCRIPTION

To facilitate investigations into the interaction between elastic airfoil response and ar-

bitrary aerodynamic forcing, two components are added to the time-dependent panel code

described in Section 3.3. The first component is a gust model originally proposed by Basu

and Hancock [3] which uses singularity elements to model the influence of a sharp edge gust.

The second component is a structural model which, when coupled with the aerodynamic

model, determines the airfoil responce to aerodynamic forcing. This chapter describes the

gust and structural models, as well as their implementation and integration into the unsteady

panel code.

4.1 Frame of Reference

The source and vortex elements modeling the airfoil, wake, and freestream perturbations

are tracked in a Lagrangian reference frame. The origin of this reference frame is located at

the leading edge of the undisturbed airfoil, with the airfoil trailing edge lying on the x1 axis.

4.2 Gust Model

The gust model uses singularity elements to induce velocity perturbations about an oth-

erwise uniform freestream flow. Because this investigation is initially interested in the effect

of transverse velocity perturbations, or perturbations perpendicular to the time-averaged

freestream flow, the gust is modeled by a set of vortex sheets. For this discussion, a vortex

sheet will be defined as a collection of vortex elements, each sharing at least one end point

with a neighboring vortex element. Collectively, these vortex elements produce a continuous

30

Figure 4.1. Influence of a Vortex sheet located in the Freestream flow compared to the
Freestream influence.

vorticity “sheet” that convects with the freestream flow. Each vortex sheet possess a finite

amount of bound circulation that remains constant with time, and is initially distributed

evenly along the length of the sheet. The influence of a single gust sheet in the freestream

flow is shown in Figure 4.1.

By placing gust sheets into the flowfield prior to initialization of the simulation, and spec-

ifying a time-invariant total circulation about each gust sheet, Kelvin’s Theorm is implicitly

satisfied. Thus, the Kutta condition discussed in Section 3.3 remains valid.

4.2.1 Deformation

The key to properly modeling the transverse gust, such that the gust responds to the

influence of the airfoil and its wake, lies in modeling gust convection. To allow the gust sheet

to deform and react to the influence of the airfoil, wake, and other elements in the flowfield,

each gust sheet is discretized into a finite number of panels, or elements. At the end of each

computational time step, the gust sheet is convected by propagating the endpoints of each

gust element with the local fluid flow. In this manner, the gust sheet is alowed to deform

31

Figure 4.2. Deformation of a vortex sheet approaching the airfoil leading edge.

due to local velocity gradients in the flow. Figure 4.2 illustrates the deformation of a gust

sheet as it approaches the airfoil leading edge. Because the total bound circulation about

each gust element is time-invariant, the influence of each gust element on the surrounding

fluid flow is a function of element length.

4.2.2 Airfoil-Gust Interaction

Each gust sheet initialized upstream of the airfoil eventually encounters the airfoil as it

convects with the freestream flow. Since the gust sheet provides aerodynamic forcing for

forced-response simulations, proper modeling of airfoil-gust interaction is a critical aspect of

the overall gust model.

To properly model gust sheet influence on the airfoil, the gust sheet must propagate

around the airfoil, not propagate through the airfoil. Therefore, the continous gust sheet

must be “split” when the gust sheet encounters the forward-most edge of the airfoil, allowing

one section of the sheet to convect across the upper airfoil surface and the other to convect

32

Figure 4.3. Case One: Gust element straddling the airfoil.

along the lower airfoil surface. Techniques used to determine if and when a gust sheet must

be split, and methods used to split each gust sheet are described below.

Two distinct cases can arise when a gust sheet reaches the airfoil. Case One involves

a gust element straddling the airfoil leading edge. In this case, one endpoint attempts to

convect above the airfoil while the other endpoint convects below, as illustrated in Figure

4.3. To maintain the no-flow boundary condition, the gust element straddling the airfoil must

be split into two separate elements, one ending on the upper airfoil surface and one ending

on the lower airfoil surface. The two “new” elements must also posses a combined bound

circulation equal to the bound circulation of the original gust element to satisfy Kelvin’s

theorem.

Case Two involves a gust element, or pair of elements sharing an endpoint, where the

endpoint attempts to convect into the airfoil interior, as illustrated in Figure 4.4. To maintain

the no-flow boundary condition, the erroneous endpoint must be to the either the upper or

lower airfoil surface. In this case, no new gust elements are created, and each affected elements

retains its original bound circulation.

33

Figure 4.4. Case Two: Gust element endpoint convected into the airfoil.

In each case, once the erroneous elements have been relocated to the airfoil surface, the

element endpoints lying on the airfoil surface are convected along the airfoil at the surface

tangential velocity, until the gust element propagates past the airfoil trailing edge.

4.2.2.1 Determining Gust Element Condition

To ensure a gust sheet does not breach the airfoil interior, the following conditions are

checked for each gust element after it is convected in preparation for the next time step.

1. Does the gust element currently terminate on the airfoil surface?

2. Is either element endpoint located between the airfoil leading and trailing edges in the

x1 direction?

3. Is one element endpoint located above the airfoil while the other is located below the

airfoil in the x2-direction?

4. Is either gust element endpoint located inside the airfoil surface?

34

Based on the four conditions, the state of the gust element with respect to the airfoil

can be determined. If condition 1 is true, the gust element must be convected along the

airfoil at the surface tangential velocity instead of the local flow velocity. If condition 1

is false and conditions 2 and 3 are true, the gust element is an example of Case One and

must be split. If condition 1 is false and conditions 2 and 4 are true, the gust element is an

example of Case Two and the element endpoint must be relocated to the airfoil surface. If

conditions 1 through 4 are false, the gust element is located in the freestream and no gust

sheet modifications are required.

4.2.2.2 Case One

Case One involves splitting a gust element straddling the airfoil, as illustrated in Figure

4.3, and determining the bound circulation about the split gust elements. Because the airfoil

may be at some arbitrary orientation relative to the time-averaged freestream flow, the airfoil

leading-edge node may not be the airfoil node the gust sheet first encounters, therefore the

term “forward most” edge, or node, will be defined as the node closest to the gust when the

gust impacts the airfoil. In addition, depending on airfoil orientation and the influence of

the freestream (including the gust), the upstream stagnation point on the airfoil may not

correspond to either the forward-most airfoil node or the airfoil leading edge. This distinction

is subtle, as illustrated in Figure 4.5. The variance in x1 location between the leading edge

and stagnation point may only be a few hundredths of a chord length, but the influence of

this variance on resulting airfoil forcing can be significant.

For example, consider the case where a gust element is split about the airfoil leading

edge at time tk+1, but the upstream stagnation point on the airfoil does not correspond

to the airfoil leading edge. If the upstream stagnation point is located on the lower airfoil

surface, the gust element ending on the lower surface between the airfoil leading edge and the

upstream stagnation point will convect towards the airfoil leading edge at time tk+2 instead

of towards the airfoil trailing edge, as desired. This process is depicted in Figures 4.6 and

35

Figure 4.5. Airfoil leading edge vs. the airfoil forward-most node.

4.7. In fact, the lower gust element will eventually propagate around the leading edge and

convect towards the airfoil trailing edge along the upper surface. This will stretch the gust

element through the airfoil, invalidating the no-flow boundary condition.

A similar circumstance occurs if the gust element is simply split about the upstream

stagnation point. For example, if the upstream stagnation point does not correspond to the

leading edge, but rather lies on the lower airfoil surface, the gust element propagating above

the airfoil will stretch through the airfoil and end on the lower airfoil surface, as illustrated

in Figure 4.8. The upper gust element will eventually propagate around the airfoil leading

edge before it propagates towards the trailing edge along the upper airfoil surface, as desired,

but this gives the gust element an undue influence on the airfoil as it propagates around the

airfoil leading edge and will invalidate the no-flow boundary condition.

Because the upstream stagnation point and the forward-most node both exhibit large

influences on the gust element, gust elements straddling the airfoil leading edge are split about

both the forward-most airfoil node and the upstream stagnation point. In this manner, if the

upstream stagnation point is located on the lower airfoil surface, the lower gust element will

36

Figure 4.6. Gust element split about the leading edge with the upstream stagnation point
on the lower airfoil surface at time tk+1.

Figure 4.7. Gust element split about the leading edge with the upstream stagnation point
on the lower airfoil surface at time tk+2.

37

Figure 4.8. Gust element split about the upstream stagnation point.

convect along the airfoil from the upstream stagnation point while the upper gust element will

convect along the airfoil from the forward-most airfoil node, and visa versa for an upstream

stagnation point located on the upper airfoil surface. In most cases, this distinction is

negligible, but the method ensures that split gust elements will not convect towards the

airfoil leading edge, or stretch through the airfoil surface.

4.2.2.3 Implementation

As mentioned, once it has been determined that a gust element straddles the airfoil, the

element must be split into two “new” elements, one convecting above the airfoil and one

convecting below the airfoil. Because the unsteady panel code models the flowfield using

discrete time steps, it is unlikely that the instant a gust element impacts the forward-most

airfoil node will correspond exactly to a panel code time step. Therefore, an interpolation

routine is employed to accurately determine the instant in time a gust element impacts the

forward-most airfoil node, as illustrated in Figure 4.9. It is necessary to know this time

because, for example, if a gust element impact occurs at midway between timesteps, the

38

Figure 4.9. Interpolation to determine the time of Gust-Airfoil impact.

element should be convected along the airfoil during the remaining amount of the time step

after being split. In addition to accurately determining the instant in time that a gust

element impacts the airfoil, the interpolation routine also provides information regarding

what percentage of the original gust element should convect above and below the airfoil.

Knowing these percentages is necessary so proper fractions of the original bound circulation

can be assigned to each “new” gust element, thereby maintaining a constant total circulation

in the flow.

4.2.2.4 Case Two

Case Two involves a gust element, or pair of elements, possessing an endpoint that con-

vects into the closed airfoil surface, as illustrated in Figure 4.4. This is the less common of the

two cases, and for a simulation with a suitably small time step only occurs if the initial gust

sheet contains an element possessing an endpoint close to the x1 axis. Therfore, in an effort

to simplify the panel code, this case is controled through well considered initial discretization

of the gust sheet.

39

Figure 4.10. Gust element convection along the upper airfoil surface.

4.2.3 Convection

For a gust element ending on the airfoil surface, the endpoint on the surface is convected

at the surface tangential velocity instead of the local flow velocity. Because the airfoil itself

is discretized into a set of discrete panels and the no-flow boundary condition is enforced

only at each panel midpoint, a gust element endpoint convected at the local flow velocity

could convect into the airfoil surface, or off the airfoil surface into the freestream flow. Basu

and Hancock [3] calculated the surface tangential velocity at the gust element endpoint by

interpolating tangential velocities across adjacent airfoil panels. The interpolated surface

tangential velocity value was then multiplied by the local time step to find the distance the

element endpoint should convect along the airfoil surface. This method provides a good

first aproximation for coarse airfoil discretizations, but fails for finely discretized airfoils in

locations where a large velocity gradient exists between adjacent panels, such as at the airfoil

leading edge.

To acount for large tangential velocity gradients, an alternate method of convecting a gust

element along the airfoil surface has been developed. This alternate method estemates the

40

amount time nessisary to convect the gust endpoint along a surface panel based on the length

of the surface panel and the surface tangential velocity at the panel midpoint. The estimated

time to convect the gust element endpoint to the end of the surface panel is compared to the

amount of time remaining in the computational timestep. Based on whether the estimated

time is greater than the remaning time step, a decision is made to convect the endpoint a

fractional distance along the surface panel, based on the surface tangential velocity and the

remaining time step, or to convect the endpoint to the end of the current surface panel, and

repeat the time estimation on the next surface panel.

For example, to convect the gust element endpoint initially located at some location

along Panel a, as depicted in Figure 4.10, the distance between the gust endpoint and the

downstream node of Panel a is used with the surface tangential velocity at the midpoint

of Panel a to estimate the amount of time necessary to convect the gust endpoint to the

downstream node of Panel a. If the estimated time to convect the gust endpoint to the

end of Panel a is less than the local time step, ∆t, or for convenience, the time remaining,

tr, then the gust endpoint is relocated to the downstream airfoil node shared by Panels a

and b, and the estimated time is subtracted from tr. In this manner, using the lengths of

Panels b, c, and d, along with their respective tangential velocities, the time necessary to

convect the gust endpoint across Panels b, c, and d is estimated to be greater than tr, but

the time necessary to convect the gust endpoint across only Panels b and c is less than tr.

Thus, the gust endpoint is relocated to the shared airfoil node between Panels c and d, and

the estimated time to convect the gust endpoint across Panels b and c is subtracted from tr.

Because the time necessary to convect across Panel d is greater than tr, the gust endpoint

is relocated a fractional distance along Panel d, as determined using the surface tangential

velocity at the midpoint of Panel d and tr.

41

Figure 4.11. Gust element convection along the upper airfoil surface.

4.2.4 Gust Influence on the Airfoil

Since the gust sheet is composed of singularity elements, each with an influence propor-

tional to 1/r, the influence of a gust element ending on the airfoil depends on the proximity

of the element endpoint to an airfoil collocation point. If a gust element ends on a collocation

point, r approaches zero and the influence of that gust element becomes infinite. This skews

the flowfield solution in a non-physical manner. Basu and Hancock [3] prevented this pos-

sibility by replacing the each gust element ending on the airfoil with a pair of “imaginary”

elements, illustrated in Figure 4.11. The two imaginary gust elements share the freestream

endpoint with the original gust element, but instead of terminating at some location along

an airfoil panel, airfoil panel a, with the original gust element, the imaginary element pair

terminate at corresponding endpoints of airfoil panel a. The imaginary elements share the

bound circulation of the original gust element in a manner dependent on the location of the

original element endpoint on panel a. As such, the influence of the gust continues to prop-

agate across the airfoil surface but the possibility of discontinuities arrising due to a gust

element coexisting with an airfoil colocation point is eliminated.

42

Figure 4.12. Pitching and Plunging Airfoil

4.3 Free Response

The inclusion of an airfoil structural model enables the unsteady panel code to model

time-dependent airfoil response due to arbitrary and self-induced aerodynamic forcing.

4.3.1 Model

The airfoil structural model is a two degree of freedom (TDOF) spring-mass system

allowing coupled airfoil motion in rotation and translation, or pitch and plunge. Figure

4.12 shows a basic schematic detailing parameters important to the model. The equations

governing two-dimensional body motion in terms of sectional characteristic and generalized

external forces are

mḧ + Sαα̈ +mω2
hh =Qh (4.1a)

Sαḧ+ Iαα̈ + Iαω
2
αα =Qα (4.1b)

For a thin airfoil, the generalized external forces correspond to aerodynamic lift and moment

about the elastic axis.

43

Qh = − L (4.2a)

Qα =My (4.2b)

For compatibility with the developed unsteady panel code, which calculates non-dimensional

forces and moments through integration of instantanious surface-pressure coefficents, Eq.

(4.1) is non-dimensionalized with respect to chord, freestream velocity, time, and mass.

The resulting non-dimensional equations of motion are then rewritten in terms of the non-

dimensional sectional characteristics, such as density ratio, µ, radius of gyration, rα, static

imbalance, xα, reduced bending frequency, kh, reduced pitching frequency, kα, normalized

plunge, ĥ, normalized pitch, α̂, and non-dimensional time, t̂.

µĥ′′ +
xαµ

2
α̂′′ + µk2

hĥ =
2

π
Cl (4.3a)

xαµ

2
ĥ′′ +

r2
αµ

4
α̂′′ +

r2
αµk

2
α

4
α̂ =

2

π
Cmy (4.3b)

Expressing Eq. (4.3) in matrix notation,

[
M

]{
X

}′′
+

[
K

]{
X

}
=

{
F

}
(4.4)

where

44

[
M

]
=

⎡
⎢⎣ µ xαµ

2

xαµ
2

r2
αµ
4

⎤
⎥⎦ (4.5a)

[
K

]
=

⎡
⎢⎣µk2

h 0

0 r2
αµk2

α

4

⎤
⎥⎦ (4.5b)

{
X

}
=

⎧⎪⎨
⎪⎩
ĥ

α̂

⎫⎪⎬
⎪⎭ (4.5c)

{
F

}
=

2

π

⎧⎪⎨
⎪⎩

Cl

Cmy

⎫⎪⎬
⎪⎭ (4.5d)

The second derivative in Eq. (4.4) can be isolated on the LHS,

{
X

}′′
=

[
M

]−1{
F

}
−
[
M

]−1 [
K

]{
X

}
(4.6)

allowing the equations of motion to be writen as a set of coupled first order ordinary differ-

ential equations.

{
X

}′
=

{
Y

}
(4.7a){

Y

}′
=

[
M

]−1{
F

}
−
[
M

]−1 [
K

]{
X

}
(4.7b)

Airfoil orientation and position at time tk+1 is determined by solving Eq. (4.7) with a fourth-

order Runge-Kutta method using non-dimensional aerodynamic forces computed at time tk.

4.3.2 Solution

The aerodynamic solution and TDOF structural model are coupled directly in the devel-

oped unsteady panel method to calculate free and forced response of an arbitrary thin airfoil.

The non-dimensional forces and moments calulated at each time step are used as inputs to

the structural model, predicting airfoil orientation and position at the next time-step. The

45

new airfoil position and orientation are used to calculate new non-dimensional aerodynamic

forces, and the process is repeated.

4.4 Forced Response

By coupling the gust model described in Section 4.2 and the structural model described

in Section 4.3, airfoil responce to arbitrary gust induced forcing can be modeled. As will

be shown in Chapter 5, the influence of multiple gust sheets can be superimposed to model

periodic freestream disturbance having arbitrary shapes, frequencies, and amplitudes. Thus,

airfoil responce due to external forcing can be systematically studied by varying the charac-

teristics of the freestream gust.

46

CHAPTER 5

CODE VERIFICATION

To verify the accuracy and applicability of the developed panel code, a set of test cases

were examined. These test cases compare unsteady panel code simulations with fundamental

problems in unsteady aerodynamics having known analytical or computational solutions.

In this manner, the accuracy and applicability of the panel code is established prior to its

extension to problems of interest not having known solutions.

5.1 Wagner

The Wagner problem, one of the fundamental problems in unsteady aerodynamics, ex-

plores the lift response of a flat plate to a flowfield which is instantaneously accelerated

from one equilibrium state to another. The problem demonstrates the effect of body wake

development on lift and moment during transition between equilibrium states.

5.1.1 Description

Consider a stationary flat plate, or airfoil of infinitesimal thickness, at some angular

orientation relative to a freestream flow, α0, illustrated in Figure 5.1. At time t < 0, the

magnitude of the freestream relative to the flat plate is zero, q∞ = 0. Since the no-flow

boundary condition is implicitly satisfied, the body produces zero lift, and perhaps more

importantly, carries zero bound circulation. At time t = 0, the freestream instantaneously

accelerates to a finite non-zero velocity, q∞ = c. By applying the unsteady Kutta condition

and no-flow boundary condition discussed in Section 3.3, a lifting solution can be found for

the flat plate.

47

Figure 5.1. Flat plate at time t = 0

It should be recalled from Section 3.3 that the body wake for an inviscid solution represents

shed bound vorticity from the body which is necessary to satisfy Kelvin’s theorem. As such,

the shed vorticity magnitude in the wake at time t = 0 equals the magnitude of the bound

circulation change about the body, but in the opposite direction. The shed circulation caused

by the flowfield transition between equilibrium states is often called a “starting vortex”

because the magnitude of this vortex is significantly greater then the rest of the wake. Shed

vorticity in the wake produces an aerodynamic downwash on the body, influencing the no-

flow boundary condition. Wake influence on lift is normally of a small magnitude relative to

the freestream and the relative body motion, but in the case of a starting vortex where the

shed circulation magnitude is on the same order as the bound circulation about the body, the

wake-induced downwash suppresses lift generation on the body. As such, the starting vortex

significantly influences lift development on the body until the starting vortex propagates into

the far field.

48

5.1.2 Solution

By modeling the induced body wake as a continuous vortex sheet of varying strength,

originating at the body trailing edge and oriented parallel to the freestream flow, Wagner [4]

developed a time-accurate solution for lift on an instantaneously accelerated flat plate.

L = 2πbρq2α0φ (s) (5.1)

This solution depends on a modified Bessel function known as the Wagner function, φ (s).

φ (s) =
1

2πi

� ∞

−∞

C (k)

k
eiks dk (5.2)

An approximate representation [4] of the Wagner function has been computed as,

φ (s) ≈ 1 − 0.165e−0.0455s − 0.335e−0.3s (5.3)

the solution of which is shown in Figure 5.2, along with the solution to the approximate

Kussner function described in Section 5.4.

5.1.3 Comparison

To assist verification of the developed panel code, lift solutions for thin symmetric airfoils

computed using the panel code are compared the Wagner lift solution for a flat plate. Panel

code solutions were obtained for instantaneously accelerated NACA 0006, 00010, and 0014

airfoils oriented at α0 = 1, 2, and 4 deg relative to a uniform freestream in the x1 direction.

Solutions were computed using non-dimensionalized time steps of 0.005, 0.075, and 0.010,

corresponding to 4000, 3000, and 2000 computational iterations, respectively. Calculated

lift coefficients for each simulation were normalized by corresponding steady-state lift values,

allowing a comparison to the Wagner function, Eq. (5.3).

Note that differing fundamental assumptions between the panel code and the Wagner

solution affect direct comparison of the results. For example, the Wagner solution assumes

49

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

s

φ(
s)

Approximate Wagner
Approximate Kussner

Figure 5.2. Solutions for the approximate Wagner function, Eq. (5.3), and the approximate
Kussner function, Eq. (5.19)

the body wake is a continous vortex sheet convecting at the mean freestream velocity, while

the panel code discretizes the wake into a set of discrete vortices convecting at the local

velocity. Also, the Wagner solution models a flat plate with negligible thickness, while the

panel code models a thin symmetric airfoil.

Figure 5.3 compares panel code solutions for airfoils of different thicknesses to the Wagner

function. The panel code solutions in Figure 5.3 are computed for NACA 0006, 0010, and 0014

airfoils at α0 = 1 deg using a normalized time step of 0.005. As airfoil thickness decreases,

the panel solutions approach the Wagner function.

Figure 5.4 compares panel code solutions for a single airfoil at several orientation angles

to the Wagner function. Panel code solutions in Figure 5.4 are computed for a NACA 0010

airfoil at α0 = 1, 2, and 4 deg using a normalized time step of 0.010. As Figure 5.4 shows,

airfoil orientation does not have a discernable effect on normalized lift.

Figure 5.5 compares panel code simulations for a single airfoil thickness and orientation

but at varying normalized time steps. Panel code solutions in Figure 5.5 are computed for a

50

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C
l/C

l ss

t

NACA 0006
NACA 0010
NACA 0014
Wagner

Figure 5.3. Normalized lift for the NACA 0006, 0010, and 0014 airfoils at α0 = 1 deg using
a normalized time step of 0.005 compared to Eq. (5.3)

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C
l/C

l ss

t

α = 1
α = 2
α = 4
Wagner

Figure 5.4. Normalized lift on a NACA 0010 at α0 = 1, 2, and 4 deg using a normalized
time step of 0.010 compared to Eq. (5.3)

51

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C
l/C

l ss

t

dt = 0.005
dt = 0.075
dt = 0.010
Wagner

Figure 5.5. Normalized lift on a NACA 0010 at α0 = 2 deg computed using non-
dimensionalized time steps of 0.005, 0.075, and 0.010 compared to Eq. (5.3)

NACA 0010 airfoil at α0 = 2 deg using non-dimensionalized time steps of 0.005, 0.075, and

0.010. The panel code solutions show no significant dependence on the selected normalized

time steps.

Since neither time step nor orientation significantly affects the panel code solutions, dif-

ferences between the panel code and Wagner solutions can be attributed primarily to airfoil

thickness effects. Despite their differences, however, good overall agreement exists between

the two lift solutions.

52

Figure 5.6. Notation used to describe the Theodorsen pitching and plunging flat plate

5.2 Theodorsen

The Theodorsen problem, or the problem of a periodically pitching and plunging airfoil

in an otherwise steady uniform freestream flow, demonstrates the effect of body motion and

time-dependent wake on unsteady lift and moments.

5.2.1 Description

For an airfoil translating and rotating relative to an otherwise uniform freestream flow,

induced flow perturbations near the airfoil surface due to its relative motion can be signif-

icant. For an airfoil undergoing periodic translational and rotational relative motion, the

influence of the induced surface flow perturbation is a function of motion frequency and

amplitude. In addition to motion induced flow perturbations, wake circulation will induce

velocity perturbations which also influence the unsteady airfoil lift and moment as a function

of motion frequency and amplitude. Figure 5.6 illustrates common notation used to describe

the Theodorsen problem.

53

5.2.2 Solution

Using conformal mapping techniques and a wake model similar to that employed in the

Wagner solution, Theodorsen developed an analytic solution for lift and moment on a flat

plate undergoing periodic pitching and plunging. The solution relates induced lift and mo-

ment on a flat plate to reduced frequency of the relative motion.

L = LNC + LC C (k) (5.4)

M = MNC +MC C (k) (5.5)

Note that the Theodorsen lift and moment solutions separate non-circulatory terms, the

irrotational component of lift and moment due to body motion,

LNC = πρb2
[
ḧ+ Uα̇ − baα̈

]
(5.6)

MNC = πρb2
[
baḧ− Ub

(
1

2
− a

)
α̇− b2

(
1

8
− a2

)
α̈

]
(5.7)

from circulatory terms, the rotational component of lift and moment necessitated by the

Kutta condition.

LC = 2πρUb

[
ḣ+ Uα + b

(
1

2
− a

)
α̇

]
(5.8)

MC = 2πρUb2
(
a+

1

2

)[
ḣ + Uα + b

(
1

2
− a

)
α̇

]
(5.9)

The distinction between non-circulatory and circulatory terms is of importance because cir-

ulatory terms depend on motion reduced frequency, as related through the Theodorsen func-

tion.

C (k) =
H2

1 (k)

H2
1 (k) + iH2

0 (k)
(5.10)

54

Combining Eqs. (5.6) through (5.8) with Eqs. (5.4) and (5.5) produces time-dependent

Theodorsen lift and moment equations for a flat plate undergoing periodic pitching and

plunging relative to the freestream flow.

L = πρb2
[
ḧ+ Uα̇ − baα̈

]
+ 2πρUb

[
ḣ + Uα + b

(
1

2
− a

)
α̇

]
C (k) (5.11)

My =πρb2
[
baḧ− Ub

(
1

2
− a

)
α̇− b2

(
1

8
− a2

)
α̈

]
+

2πρUb2
(
a+

1

2

)[
ḣ+ Uα + b

(
1

2
− a

)
α̇

]
C (k)

(5.12)

5.2.3 Comparison

To further assist verification of the unsteady panel code, namely the effects of relative

body motion, computed solutions for thin symetric airfoils undergoing periodic pitching,

periodic plunging, and periodic pitching and plunging are compared to the corresponding

Theodorsen solution for a flat plate. As with comparisons to the Wagner function, the effects

of thickness and wake model limit direct comparison between the panel code and analytic

solutions.

5.2.3.1 Pure Pitching

Panel code solutions for NACA 0006, 0010, and 0014 airfoils pitching relative to the

freestream flow were computed for reduced frequencies of k = 0.25 and 0.75 and amplitudes

of ᾱ = 1, 2, and 4 deg about the airfoil quarter-chord location. Time-dependent lift and

moment for a flat plate undergoing similar motion were also computed using Eqs. (5.11) and

(5.12).

Figures 5.7 through 5.9 demonstrate the effect of airfoil thickness on panel code lift and

moment solutions, as compared to the Theodorsen solution. Panel code solutions in Figures

5.7 through 5.9 were computed for NACA 0006, 0010, and 0014 airfoils pitching at a reduced

frequency of k = 0.25 and an amplitude of ᾱ = 2 deg.

55

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
l

t

Theodorsen
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0014

Figure 5.7. Cl vs. Time for NACA 0006, 0010, and 0014 airfoils pitching about the quarter-
chord at a reduced frequency of k = 0.25 and amplitude of ᾱ = 2 deg

For pure pitching at small reduced frequencies, airfoil thickness exhibits a small influence

on the phase between the panel code and Theodorsen lift solutions as well as the amplitude

ratio of the two solutions. However, both amplitude and phase of the panel code solution

approach the Theodorsen solution as airfoil thickness decreases.

Figures 5.10 through 5.12 shows the relative agreement between the panel code lift and

moment to the Theodorsen solution, for a range of pitching amplitudes. Panel code solutions

for Figures 5.10 through 5.12 were computed for a NACA 0010 airfoil pitching at a reduced

frequency of k = 0.25, and pitching amplitudes of ᾱ = 1, 2, and 4 deg. For pure pitching

at a constant reduced frequency, pitching amplitude does not appear to exhibit a significant

influence on either the phase between the panel code and Theodorsen lift solutions or the

lift ratio between the two solutions. The lift ratio, computed as the maximum panel code

lift coefficent divided by the maximum Theodorsen lift coefficient, remains constant around

1.08 for the pitching amplitudes computed.

56

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
m

le

t

Theodorsen
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0014

Figure 5.8. Cmle
vs. Time for NACA 0006, 0010, and 0014 airfoils pitching about the

quarter-chord at a reduced frequency of k = 0.25 and amplitude of ᾱ = 2 deg

0 2 4 6 8 10 12 14 16 18 20

−0.02

−0.01

0

0.01

0.02

0.03

C
m

ea

t

Theodorsen
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0014

Figure 5.9. Cmea vs. Time for NACA 0006, 0010, and 0014 airfoils pitching about the
quarter-chord at a reduced frequency of k = 0.25 and amplitude of ᾱ = 2 deg

57

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
l

t

Theodorsen α = 1
UVPM α = 1
Theodorsen α = 2
UVPM α = 2
Theodorsen α = 4
UVPM α = 4

Figure 5.10. Cl vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at a
reduced frequency of k = 0.25 and amplitudes of ᾱ = 1, 2, and 4 deg

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

C
m

le

t

Theodorsen α = 1
UVPM α = 1
Theodorsen α = 2
UVPM α = 2
Theodorsen α = 4
UVPM α = 4

Figure 5.11. Cmle
vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at a

reduced frequency of k = 0.25 and amplitudes of ᾱ = 1, 2, and 4 deg

58

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
m

ea

t

Theodorsen α = 1
UVPM α = 1
Theodorsen α = 2
UVPM α = 2
Theodorsen α = 4
UVPM α = 4

Figure 5.12. Cmea vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at a
reduced frequency of k = 0.25 and amplitudes of ᾱ = 1, 2, and 4 deg

Figures 5.13 through 5.15 show the relative agreement of the panel code lift and moment

solutions to the Theodorsen solution, for a range of reduced frequencies. Panel code solutions

in Figures 5.13 through 5.15 are a NACA 0010 airfoil pitching at reduced frequencies of k =

0.25 and 0.75 with a pitching amplitude of ᾱ = 2 deg. For pure pitching at a constant

amplitude, reduced frequency does not appear to exhibit an influence on the phase between

the panel code and Theodorsen lift solutions, but does appear to influence the amplitude ratio

between the two solutions. It appears that the pase between the panel code and Theodorsen

lift solutions remains constant as reduced frequency varies, however, the amplitude ratio

between the panel code and Theodorsen lift solution decreases as reduced frequency increases.

59

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
l

t

Theodorsen k = 0.25
UVPM k = 0.25
Theodorsen k = 0.75
UVPM k = 0.75

Figure 5.13. Cl vs. Time for a NACA 0010 airfoil pitching at reduced frequencies of k =
0.25 and 0.75 with an amplitude of ᾱ = 2 deg

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

C
m

le

t

Theodorsen k = 0.25
UVPM k = 0.25
Theodorsen k = 0.75
UVPM k = 0.75

Figure 5.14. Cmle
vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at

reduced frequencies of k = 0.25 and 0.75 with an amplitude of ᾱ = 2 deg

60

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
m

ea

t

Theodorsen k = 0.25
UVPM k = 0.25
Theodorsen k = 0.75
UVPM k = 0.75

Figure 5.15. Cmea vs. Time for a NACA 0010 airfoil pitching about the quarter-chord at
reduced frequencies of k = 0.25 and 0.75 with an amplitude of ᾱ = 2 deg

61

0 2 4 6 8 10 12 14 16 18 20
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

C
l

t

Theodorsen
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0014

Figure 5.16. Cl vs. Time for NACA 0006, 0010, and 0014 airfoils plunging at a reduced
frequency of k = 0.25 and an amplitude of h̄ = 0.025

5.2.3.2 Pure Plunging

The unsteady panel code was used to generate solutions for NACA 0006, 0010, and 0014

airfoils plunging at reduced frequencies of k = 0.25 and 0.75 with plunging amplitudes of

h̄ = 0.010, 0.025, and 0.050 relative to the mean freestream flow. Time-dependent lift and

moment for a flat plate undergoing similar motion were also computed using Eqs. (5.11) and

(5.12). The half-chord was used to calculate moments about the elastic axis.

Figures 5.16 through 5.18 demonstrate the effect of airfoil thickness on panel code lift

and moment solutions, as compared to the Theodorsen solution. Panel code solutions in

Figures 5.16 through 5.18 were computed for NACA 0006, 0010, and 0014 airfoils plunging

at a reduced frequency of k = 0.25 and amplitude of h̄ = 0.025. For pure plunging at small

reduced frequencies, as in the case of pure pitching, airfoil thickness exhibits a small influence

on the phase between the panel code and Theodorsen lift solutions as well as the amplitude

ratio of the two solutions. However, both amplitude and phase of the panel code solution

approach the Theodorsen solution as airfoil thickness decreases.

62

0 2 4 6 8 10 12 14 16 18 20

−0.01

−0.005

0

0.005

0.01

C
m

le

t

Theodorsen
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0014

Figure 5.17. Cmle
vs. Time for NACA 0006, 0010, and 0014 airfoils plunging at a reduced

frequency of k = 0.25 and an amplitude of h̄ = 0.025

0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6

x 10
−3

C
m

ea

t

Theodorsen
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0014

Figure 5.18. Cmea vs. Time for NACA 0006, 0010, and 0014 airfoils plunging at a reduced
frequency of k = 0.25 and an amplitude of h̄ = 0.025

63

0 2 4 6 8 10 12 14 16 18 20

−0.1

−0.05

0

0.05

0.1

0.15

C
l

t

Theodorsen h = 0.010
UVPM h = 0.010
Theodorsen h = 0.025
UVPM h = 0.025
Theodorsen h = 0.050
UVPM h = 0.050

Figure 5.19. Cl vs. Time for a NACA 0010 airfoil plunging at a reduced frequency of k =
0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050

Figures 5.19 through 5.21 show the relative agreement between the panel code lift and

moment solution to the Theodorsen solution for different plunging amplitudes. Panel code

solutions in Figures 5.19 through 5.21 were computed for a NACA 0010 airfoil plunging at

a reduced frequency of k = 0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050. As is the

case for pure pitching, for pure plunging at a constant reduced frequency, pitching amplitude

does not appear to exhibit a significant influence on either the phase between the panel code

and Theodorsen lift solutions or the lift ratio between the two solutions. The amplitude ratio

remains constant around 0.99 for the plunging amplitudes computed.

Figures 5.22 though 5.24 show relative agreement between the panel code lift and moment

solution to the Theodorsens solution at different reduced frequencies. Panel code solutions

in Figures 5.22 though 5.24 were computed for a NACA 0010 airfoil plunging at reduced

frequencies of k = 0.25 and 0.75 and amplitude of h̄ = 0.025. As is the case for pure pitching,

for pure plunging at a constant amplitude, reduced frequency does not appear to exhibit an

influence on the phase between the panel code and Theodorsen lift solutions, but does appear

64

0 2 4 6 8 10 12 14 16 18 20

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

C
m

le

t

Theodorsen h = 0.010
UVPM h = 0.010
Theodorsen h = 0.025
UVPM h = 0.025
Theodorsen h = 0.050
UVPM h = 0.050

Figure 5.20. Cmle
vs. Time for a NACA 0010 airfoil plunging at a reduced frequency of

k = 0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050

0 2 4 6 8 10 12 14 16 18 20

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

C
m

ea

t

Theodorsen h = 0.010
UVPM h = 0.010
Theodorsen h = 0.025
UVPM h = 0.025
Theodorsen h = 0.050
UVPM h = 0.050

Figure 5.21. Cmea vs. Time for a NACA 0010 airfoil plunging at a reduced frequency of
k = 0.25 and amplitudes of h̄ = 0.010, 0.025, and 0.050

65

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
l

t

Theodorsen k = 0.25
UVPM k = 0.25
Theodorsen k = 0.75
UVPM k = 0.75

Figure 5.22. Cl vs. Time for a NACA 0010 airfoil plunging at reduced frequencies of k =
0.25 and 0.75 and an amplitude of h̄ = 0.025

to influence the amplitude ratio between the two solutions. It appears that the pase between

the panel code and Theodorsen lift solutions remains constant as reduced frequency varies,

however, the amplitude ratio between the panel code and Theodorsen lift solution decreases

as reduced frequency increases.

66

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

C
m

le

t

Theodorsen k = 0.25
UVPM k = 0.25
Theodorsen k = 0.75
UVPM k = 0.75

Figure 5.23. Cmle
vs. Time for a NACA 0010 airfoil plunging at reduced frequencies of k =

0.25 and 0.75 and an amplitude of h̄ = 0.025

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
m

ea

t

Theodorsen k = 0.25
UVPM k = 0.25
Theodorsen k = 0.75
UVPM k = 0.75

Figure 5.24. Cmea vs. Time for a NACA 0010 airfoil plunging at reduced frequencies of
k = 0.25 and 0.75 and an amplitude of h̄ = 0.025

67

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
l

t

Theodorsen α = 1 h = 0.025
UVPM α = 1 h = 0.025
Theodorsen α = 2 h = 0.025
UVPM α = 2 h = 0.025
Theodorsen α = 4 h = 0.025
UVPM α = 4 h = 0.025

Figure 5.25. Cl vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4 at
k = 0.25, ᾱ = 1, 2, and 4 deg, and h̄ = 0.025.

5.2.3.3 Combined Pitching and Plunging

Because solutions for an airfoil undergoing combined pitching and plunging motion rep-

resent a superposition of solutions for pure pitching and pure plunging, which have already

been examined, this section will use a subset of the previously examined test cases to demon-

strate that the panel code properly models combined pitching and plunging. It is expected

that the same observations on the effects of amplitude and reduced frequency for the pure

pitching and pure plunging cases will hold for the combined pitching and plunging.

Figures 5.25 through 5.27 demonstrate the relative agreement between the panel code lift

and moment solutions and the Theodorsen solution. Panel code solutions in Figures 5.25

through 5.27 are for a NACA 0010 airfoil pitching and plunging about the quarter-chord at

a reduced frequency of k = 0.25 with amplitudes of ᾱ = 1, 2, and 4 deg, and h̄ = 0.025.

Figures 5.28 through 5.30 demonstrate the relative agreement between the panel code

lift and moment solutions and the Theodrsen solution. Panel code solutions in Figures 5.28

through 5.30 are for a NACA 0010 airfoil pitching and plunging about the quarter-chord at

68

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

C
m

le

t

Theodorsen α = 1 h = 0.025
UVPM α = 1 h = 0.025
Theodorsen α = 2 h = 0.025
UVPM α = 2 h = 0.025
Theodorsen α = 4 h = 0.025
UVPM α = 4 h = 0.025

Figure 5.26. Cmle
vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4

at k = 0.25, ᾱ = 1, 2, and 4 deg, and h̄ = 0.025.

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
m

ea

t

Theodorsen α = 1 h = 0.025
UVPM α = 1 h = 0.025
Theodorsen α = 2 h = 0.025
UVPM α = 2 h = 0.025
Theodorsen α = 4 h = 0.025
UVPM α = 4 h = 0.025

Figure 5.27. Cmea vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4
at k = 0.25, ᾱ = 1, 2, and 4 deg, and h̄ = 0.025.

69

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
l

t

Theodorsen α = 1 h = 0.010
UVPM α = 1 h = 0.010
Theodorsen α = 1 h = 0.025
UVPM α = 1 h = 0.025
Theodorsen α = 1 h = 0.050
UVPM α = 1 h = 0.050

Figure 5.28. Cl vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4 at
k = 0.25, ᾱ = 2 deg, and h̄ = 0.010, 0.025, and 0.050.

a reduced frequency of k = 0.25 with a amplitudes of ᾱ = 1 deg and h̄ = 0.010, 0.025, and

0.050.

5.2.3.4 Discussion

As observed in the pure pitching and pure plunging examples, the panel code solution

showed small variations in both phase and amplitude as compared to the Theodorsen solution.

It was also shown that these small variations were dependent only on airfoil thickness and

reduced frequency.

Since the variations do not do not show a dependence on motion amplitude, the variation

between the two solutions may be attributed to differences inherent in the wake models. As

described earlier, the Theodorsen solution models the shed bound vorticity as a continuous

vortex sheet of variable strength, released from the undisturbed airfoil trailing edge. The

vortex sheet then convects with the time-averaged freestream flow, essentially confining the

vortex sheet to the x1 axis. The panel code models the shed circulation as a set of discrete

vortex elements, released from the airfoil trailing edge location at each time step. The discrete

70

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
m

le

t

Theodorsen α = 1 h = 0.010
UVPM α = 1 h = 0.010
Theodorsen α = 1 h = 0.025
UVPM α = 1 h = 0.025
Theodorsen α = 1 h = 0.050
UVPM α = 1 h = 0.050

Figure 5.29. Cmle
vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4

at k = 0.25, ᾱ = 2 deg, and h̄ = 0.010, 0.025, and 0.050.

0 2 4 6 8 10 12 14 16 18 20

−0.02

−0.01

0

0.01

0.02

0.03

C
m

ea

t

Theodorsen α = 1 h = 0.010
UVPM α = 1 h = 0.010
Theodorsen α = 1 h = 0.025
UVPM α = 1 h = 0.025
Theodorsen α = 1 h = 0.050
UVPM α = 1 h = 0.050

Figure 5.30. Cmea vs. Time for a NACA 0010 airfoil pitching and plunging about x = c/4
at k = 0.25, ᾱ = 2 deg, and h̄ = 0.010, 0.025, and 0.050.

71

vortex elements are allowed to convect with the instantaneous local flowfield, and thus the

wake is allowed to deform in time. By convecting the wake at the local velocity and allowing

the wake to deform, the panel code wake model induces a different influence on the airfoil

than the Theodorsen wake model, which would be dependent on reduced frequency.

72

Figure 5.31. Stationary plate of infinitesimal thickness with periodic transverse gust

5.3 Sears Periodic Gust

The Sears periodic gust problem examines time-dependent lift and moment generated

on a stationary airfoil under the influence of a time-averaged uniform freestream flow with

sinusoidal transverse velocity perturbations, or transverse gusts.

5.3.1 Description

Consider a stationary airfoil immersed in a freestream flow where the time-averaged flow is

aligned with the airfoil chord. If the airfoil is symmetric, it will not generate lift. However, if a

transverse velocity perturbation is introduced into the freestream, the velocity perturbation

will induce a local time-dependent angle of attack change on the airfoil that will induce

unsteady lift. The Sears gust problem investigates the influence of periodic transverse velocity

perturbations on unsteady lift and moment generated on a flat plate.

73

5.3.2 Solution

By assuming the transverse gust is not influenced by the presence of the airfoil, i.e. the

“frozen gust” approximation, the downwash induced by the gust on the airfoil as a function

of time can be writen as

w = w̄eiω(t− x
U) = w̄eik(s−x∗) (5.13)

Using a wake model similar to that of Wagner and Theodorsen, the relation for wake induced

downwash on the airfoil as a function of reduced gust frequency is given by the Sears function.

S (k) =
2

πk [H2
0 (k) − iH2

1 (k)]
(5.14)

Modifying the no-flow boundary condition to include both gust and wake induced downwash,

Sears lift and moment solutions for a flat plate under the influence of a sinusoidal transverse

gust become

L = 2πρUw̄beiωt S (k) (5.15)

My = L

(
1

2
+ a

)
b (5.16)

5.3.3 Comparison

The panel code can implement two separate methods to model a periodic transverse gust.

The first method, refered to later as the modified panel code, accounts for the influence of the

periodic gust directly by modifying the implementation of the no-flow boundary condition

on the airfoil surface. The modified boundary condition includes the influence of the velocity

pertubation by replacing the constant freestream velocity term with a time and position

dependent function. This time and position dependent function must then be included in

every other calculation which depends on the freestream velocity, such as the computation

of unsteady surface pressures and the convection routines used to convect wake elements

with the local flowfield. The application of this method to other problems, such as forced

responce, is limited because gust influence on the airfoil is directly modeled as a function of

74

time and location in the flowfield, and as such does not allow for gust deformation due to

body or wake influences.

The second method employs the gust model descibed in Section 4.2. To use this dis-

crete gust model, the continuous periodic gust is discretized into a set of gust sheets which

propagate across the airfoil at the local flow velocity. This method does not require modifica-

tions to the original no-flow boundary condition since the gust sheet is composed of constant

strength vortex elements whose influence was included in the original no-flow boundary con-

dition. Since the gust sheets convect with the local flowfield, this method allows for gust

deformation due to body and wake influences. The comparison of this method to the Sears

solution is only limited by the discretization of the continuous periodic gust into a corre-

sponding gust sheet representation. As such, care must be taken in choosing the method

of discretization, since different representations of the same continuous gust will result in

different lift and moment solutions.

5.3.3.1 Modified No-Flow Boundary Condition

Figures 5.32 through 5.37 demonstrate the effect of airfoil thickness on panel code lift and

moment solutions as compared to the Sears lift and moment solutions for reduced frequencies

of k = 0.25, 1.0, and 4.0. Panel code solutions in Figures 5.32 through 5.37 were computed

for NACA 0006, 0010, 0012, and 00014 airfoils under the influence of a continuous sinusoidal

gust having an amplitude of w̄ = 0.01 using the modified no-flow boundary condition.

Airfoil thickness exhibits a small influence on the phase between the modified panel code

and Sears lift solutions as well as the amplitude ratio of the two solutions. The difference

in amplitude of the lift solution computed by the panel code is attributed to the effects

of airfoil thickness, because the solutions approach, but do not reach the Sears solution

as airfoil thickness decreases. It is interesting to note that the amplitude ratio, computed

as the maximum panel code lift coefficent divided by the maximum Sears lift coefficent,

remains constant at roughly 0.7 for a NACA 0010 airfoil regardless of reduced frequency. The

75

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

C
l

t

Sears k = 0.25 w = 0.01
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0012
UVPM NACA 0014

Figure 5.32. Cl vs. Time for the Sears solution compared to the alternate panel code
solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence of a sinusoidal
gust with a reduced frequency of k = 0.25 and a gust amplitude of w̄ = 0.01

influence of reduced frequency on the phase of the solutions is more dramatic. The phase

of the modified panel code solution lags the Sears solution at small reduced frequencies, and

shifts such that it leads at higher reduced frequencies. Because the amplitude ratio does not

appear to be influenced by reduced frequency, it is assumed that differences in wake models,

as discussed in Section 5.2.3.4, are responsible for the phase shift with reduced frequency.

5.3.3.2 Vortex Sheet Gust Model

Figures 5.38 and 5.39 compares lift and moment coefficents calculated by the panel code

utilizing the freestream gust model to a corresponding Sears solution. Panel code solutios

in Figures 5.38 and 5.39 were computed for a NACA 0010 airfoil oriented at α0 = 0.0 deg

to the time-averaged freestream. The gust, having a reduced frequency of k = 1.0 and

amplitude of w̄ = 0.01, was modeled using a set of six gust sheets per gust period for five

and a half periods upstream of the airfoil. The strength of each gust sheet is based on the

velocity pertubation at the gust sheet’s initial x1 location in the flowfield. Figure 5.40 shows

76

0 2 4 6 8 10 12 14 16 18 20

−0.02

−0.01

0

0.01

0.02

0.03

C
m

le

t

Sears k = 0.25 w = 0.01
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0012
UVPM NACA 0014

Figure 5.33. Cmle
vs. Time for the Sears solution compared to the alternate panel code

solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence of a sinusoidal
gust with a reduced frequency of k = 0.25 and a gust amplitude of w̄ = 0.01

0 2 4 6 8 10 12 14 16 18 20

−0.04

−0.02

0

0.02

0.04

0.06

C
l

t

Sears k = 1.00 w = 0.01
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0012
UVPM NACA 0014

Figure 5.34. Cl vs. Time for the Sears solution compared to the alternate panel code
solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence of a sinusoidal
gust with a reduced frequency of k = 1.0 and a gust amplitude of w̄ = 0.01

77

0 2 4 6 8 10 12 14 16 18 20
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

C
m

le

t

Sears k = 1.00 w = 0.01
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0012
UVPM NACA 0014

Figure 5.35. Cmle
vs. Time for the Sears solution compared to the alternate panel code

solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence of a sinusoidal
gust with a reduced frequency of k = 1.0 and a gust amplitude of w̄ = 0.01

0 1 2 3 4 5 6 7 8 9 10
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

C
l

t

Sears k = 4.00 w = 0.01
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0012
UVPM NACA 0014

Figure 5.36. Cl vs. Time for the Sears solution compared to the alternate panel code
solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence of a sinusoidal
gust with a reduced frequency of k = 4.0 and a gust amplitude of w̄ = 0.01

78

0 1 2 3 4 5 6 7 8 9 10
−0.01

−0.005

0

0.005

0.01

0.015

C
m

le

t

Sears k = 4.00 w = 0.01
UVPM NACA 0006
UVPM NACA 0010
UVPM NACA 0012
UVPM NACA 0014

Figure 5.37. Cmle
vs. Time for the Sears solution compared to the alternate panel code

solution for NACA 0006, 0010, 0012, and 0014 airfoils under the influence of a sinusoidal
gust with a reduced frequency of k = 4.0 and a gust amplitude of w̄ = 0.01

circulation strength per unit length about each gust sheet relative to the initial x1 location of

the sheet. One drawback to the use of the discrete gust model is that the gust sheets do not

produce a sinusoidal velocity pertubation. The induced pertubation due to the gust sheets

closely resembles a set of sharp edge gusts, as shown in Figure 5.41. Figure 5.41 combines

a visualization of the location of the airfoil, wake, and gust sheets in the top panel, the

instantaneous pressure coefficients along the airfoil in the lower left panel, and the coefficent

of lift time-history in the lower right panel. Velocity vectors representing the freestream

velocity in the x2 direction, sampled at locations upstream of the airfoil along the x1 axis

and scaled by a factor of 100, have been added to the location plot in the top panel.

The lift coefficent computed by the panel code shown in Figure 5.38 overshoots the lift

coefficient predicted by the Sears solution. This overshoot is due to the discretization of the

continuous gust. The maximum velocity pertubation, w̄, induced by the of the set of gust

sheets is closer to 0.02 than 0.01, as shown by the velocity vectors in Figure 5.41. Therefore,

a second simulation was computed for using a different discretization of the freestream gust.

79

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

C
l

t

UVPM k = 1.00 w = 0.01
Sears phi = 0235 w = 0.01
Sears phi = 0235 w = 0.02

Figure 5.38. Cl vs. Time for the Sears solution compared to the panel code solution for
NACA 0010 airfoil under the influence of a periodic freestream gust with a reduced frequency
of k = 1.0 and gust amplitude of w̄ = 0.01, sampled at 6 times the reduced frequency.

0 2 4 6 8 10 12 14 16 18 20
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

C
m

le

t

UVPM k = 1.00 w = 0.01
Sears phi = 0235 w = 0.01
Sears phi = 0235 w = 0.02

Figure 5.39. Cmle
vs. Time for the Sears solution compared to the panel code solution for

NACA 0010 airfoil under the influence of a periodic freestream gust with a reduced frequency
of k = 1.0 and gust amplitude of w̄ = 0.01, sampled at 6 times the reduced frequency.

80

−35 −30 −25 −20 −15 −10 −5 0
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x / c

(
v

/ V
∞

)
 ,

(
γ

)

v / V∞
γ
k

Figure 5.40. Gust sheet circulation per unit length vs. initial x/c location for a periodic
freestream gust with a reduced frequency of k = 1.0 and gust amplitude of w̄ = 0.01, sampled
at 6 times the reduced frequency.

The alternate gust discretization uses a set of four gusts sheets per gust period for five

and a half periods upstream of the airfoil. Again, the panel code solution was computed for

a NACA 0010 airfoil oriented at α0 = 0.0 deg to the time-averaged freestream. Figures 5.42

and 5.43 compare the lift and moment coefficents calculated by the panel code utilizing the

new freestream gust discretization to the Sears solution. Figure 5.44 shows the circulation

strength per unit length about each gust sheet in relation to the initial x1 location of the

sheet, as well as the amplitude of the velocity pertubation induced by the continuous gust

sheet. Figure 5.45 shows the same visualization as Figure 5.41, including the velocity vectors

representing the freestream velocity in the x2 direction.

Using four gust sheets per gust period to discretize the continuous gust does not produce

the graduated velocity pertubation which is possible by using a larger number of gust sheets

per gust period, but the maximum velocity pertubation does match the maximum value of

the continuous pertubation. As such, the the lift and moment coefficients closely match the

coefficients predicted by the Sears solution.

81

Figure 5.41. Visualization showing the location of the airfoil, wake, gust sheets, and selected
x2 velocities in the top panel, instantaneous Cp vs. x/c in the lower left panel, and Cl vs. t
in the lower right panel.

82

0 2 4 6 8 10 12 14 16 18 20

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

C
l

t

UVPM k = 1.00 w = 0.01
Sears phi = 0235 w = 0.01

Figure 5.42. Cl vs. Time for the Sears solution compared to the panel code solution for
NACA 0010 airfoil under the influence of a periodic freestream gust with a reduced frequency
of k = 1.0 and gust amplitude of w̄ = 0.01, sampled at 4 times the reduced frequency.

0 2 4 6 8 10 12 14 16 18 20
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

C
m

le

t

UVPM k = 1.00 w = 0.01
Sears phi = 0235 w = 0.01

Figure 5.43. Cmle
vs. Time for the Sears solution compared to the panel code solution for

NACA 0010 airfoil under the influence of a periodic freestream gust with a reduced frequency
of k = 1.0 and gust amplitude of w̄ = 0.01, sampled at 4 times the reduced frequency.

83

−35 −30 −25 −20 −15 −10 −5 0
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

x / c

(
v

/ V
∞

)
 ,

(
γ

)

v / V∞
γ
k

Figure 5.44. Gust sheet circulation per unit length vs. initial x/c location for a periodic
freestream gust with a reduced frequency of k = 1.0 and gust amplitude of w̄ = 0.01, sampled
at 4 times the reduced frequency.

Alternate methods of discretizing the continuous gust are possible, and a higher order dis-

cretization could be used which would provide a closer match to the Sears solution. However,

it has been shown that the gust model can be used to model periodic freestream perturba-

tions in a manner which allows the gust to deform due to the influence of the airfoil and

airfoil wake.

84

Figure 5.45. Visualization at t = 2.0 showing the location of the airfoil, wake, gust sheets,
and selected x2 velocities in the top panel, instantaneous Cp vs. x/c in the lower left panel,
and Cl vs. t in the lower right panel.

85

Figure 5.46. Stationary plate of infinitesimal thickness with sharp edge transverse gust

5.4 Kussner’s Sharp Edge Gust

The Kussner sharp edge gust problem examines the lift and moment development on an

airfoil in response to the a sudden change of incidence induced by a sharp edged transverse

velocity perturbation. As with the Wagner problem, described section 5.1, the Kussner sharp

edge gust demonstrates the effect of the body wake development on the airfoil lift and moment

during the transition between equilibrium states.

5.4.1 Description

The Kussner sharp edge gust is an extension of the Sears periodic gust problem descibed

in Section 5.3, but models a single gust propagating across the airfoil instead of the periodic

gust. Using the same problem formulation, the sharp edge gust is modeled as a Fourier

combination of the periodic gust. In this manner, the Kussner solution can be described

using the same notation as the Sears problem

86

5.4.2 Solution

The solution for the Kussner sharp edge gust also starts with the influence of the velocity

pertubation on the body, but in this case the sharp edge gust is modeled using a Fourier

integral of the Sears periodic gust.

wg =
w̄

2π

� ∞

−∞

ei kU
b (t− b

U
− x

U)

ik
dk =

w̄

2π

� ∞

−∞

eik(s−1)

ik
dk (5.17)

This means the influence of the wake on the airfoil lift and moment in response to the sharp

edged gust is a Fourier integral of the Sears function, Eq. (5.14). This is commonly refered

to as the Kussner function.

ψ (s) =
1

2πi

� ∞

−∞

S (k) eik(s−1)

k
dk (5.18)

The Kussner function represents the ratio of instantaneous lift to the steady-state lift after

the gust has past the airfoil. A commonly used approximation for the Kussner function is,

ψ (s) ≈ 1 − 0.500e−0.130s − 0.500e−s (5.19)

as is shown in Figure 5.2. Using Eqs. (5.17) and (5.18), lift and moment on a flat plate under

the influence of a sharp edge gust is

L = 2πρUw0b · ψ (s) (5.20)

My = L

(
1

2
+ a

)
b (5.21)

5.4.3 Comparison

The effect of a single sharp edge gust is analagous to the Wagner problem described in

Section 5.1. Both problems examine the influence of wake development on lift and moment

87

buildup for an airfoil transitioning between equilibrium states. In the case of the Wagner

problem, the change in equilibrium states is due to a change in the freestream velocity

magnitude relative to an airfoil held at a constant non-zero angle of attack, while in the case

of the Kussner problem, the change in equilibrium is due to a change in the relative angle of

attack between an airfoil held at a constant orientation and the mean freestream flow due to

the influence of a sharp edged gust.

The Kussner problem provides a second verification of the gust model descibed in Section

4.2. As was shown in Figures 5.41 and 5.45, the influence of a set of gust sheets is analogous

to the influence of a set of superimposed sharp edge gusts. Here, the influence of a single

gust sheet, and a pair of gust sheets, will be compared to the Kussner solution.

5.4.3.1 Transient Panel Code Solution

To assist verification of the developed panel code, computed solutions for lift on thin

symetrical airfoils are compared to predicted lift due to Kussners sharp edge gust. The panel

code generated transient solutions for NACA 0006, 00010, and 0014 airfoils oriented at α0 =

1, 2, and 4 deg relative to a uniform freestream parallel to the x1 direction. Solutions were

computed using non-dimensionalized time steps of 0.005, 0.075, and 0.010 corresponding to

4000, 3000, and 2000 iterations, respectively. Calculated lift coefficient for each simulation

were normalized by corresponding steady-state lift values, allowing a comparison to the

Kussner function, Eq. (5.19). It should be noted that these are the same panel code solutions

used in the Wagner comparison presented in Section 5.1.3.

Figure 5.47 compares panel code solutions for airfoils of different thicknesses to the Kuss-

ner function. The panel code solutions are computed for NACA 0008, 0010, and 0012 airfoils

at α0 = 1 deg using a normalized time step of 0.005. As in the case of the Wagner problem,

the panel code solutions approach the Kussner function as airfoil thickness decreases

88

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C
l/C

l ss

t

NACA 0008
NACA 0010
NACA 0012
Kussner

Figure 5.47. Transient lift solutions normilized by the corresponding steady state lift for
NACA 0008, 0010, and 0012 airfoils oriented at at α0 = 1 deg relative to the time-averaged
freestream computes using a normalized time step of 0.005 compared to Eq. (5.19)

Since it was shown in Figures 5.4 and 5.5 that orientation and time step have a negligible

infuence on the panel code solution, the comparisons for variying orientation and time step

will be omitted here.

5.4.3.2 Single and Double Gust Sheets

Figures 5.48 and 5.49 compare the lift and moment coefficients for a single gust sheet

initiated three chord lengths upstream of a NACA 0010 airfoil to the lift coefficient predicted

by the corresponding Kussner solution. The panel code solution was computed for α0 = 0

using a non-dimensional time step of 0.010. The gust sheet possessed a bound circulation

per unit length of γ = -0.02, corresponding to the Kussner solution for a gust strength of

w̄ = 0.01.

Figure 5.50 shows a visualization of the location of the airfoil, wake, and gust sheets in

the top panel, the instantaneous pressure coefficients along the airfoil in the lower left panel,

and the coefficent of lift time-history in the lower right panel. Velocity vectors representing

89

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

t

C
l

Single Gust Sheet
Kussner Solution

Figure 5.48. Cl for a single gust sheet of strength γ = −0.02 propagating across a NACA
0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream computed using a time step
of 0.010 compared to the Kussner sharp edge gust with an amplitude of w̄ = 0.01.

the freestream velocity in the x2 direction, sampled at locations in the flowfield and scaled

by an arbitrary factor have been added to the location plot in the top panel.

The panel code solution for a single gust sheet shows good agreement with the shape of

the predicted Kussner solution, but has an offset in lift an moment due to the influence of

the gust as it approaches the airfoil. It turns out that the initial influence can be negated

by using a pair of gust sheets of equal but opposite circulation strength. This pair of gust

sheets closely model the influence of two sharp edged gusts offset by some period of time.

Figures 5.51 and 5.52 compare the lift and moment coefficients for a pair of gust sheets

initiated at three and five chord lengths upstream of a NACA 0010 airfoil to the corresponding

Kussner solution. The panel code solution was computed for α0 = 0 using a non-dimensional

time step of 0.010. The gust sheets possesed bound circulation per unit length of γ = -0.02

and 0.02, respectively, corresponding to a Kussner solution for gust strengths of w̄ = 0.02

and -0.02 located at τ = 3 and 5.

90

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

t

C
m

le

Single Gust Sheet
Kussner Solution

Figure 5.49. Cmle
for a single gust sheet of strength γ = −0.02 propagating across a NACA

0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream computed using a time step
of 0.010 compared to the Kussner sharp edge gust with an amplitude of w̄ = 0.01.

Figure 5.53 shows a visualization of the location of the airfoil, wake, and gust sheets in

the top panel, the instantaneous pressure coefficients along the airfoil in the lower left panel,

and the coefficent of lift time-history in the lower right panel. Velocity vectors representing

the freestream velocity in the x2 direction, sampled at locations in the flowfield and scaled

by an arbitrary factor have been added to the location plot in the top panel.

The agreement shown between the panel code solutions utilizing the freestream gust model

and the Kussner solutions for superimposed sharp edged gusts provides a second verification

of the freestream gust model.

91

Figure 5.50. Visualization at t = 2.0 showing the location of the airfoil, wake, gust sheets,
and selected x2 velocities in the top panel, instantaneous Cp vs. x/c in the lower left panel,
and Cl vs. t in the lower right panel.

92

0 1 2 3 4 5 6 7 8 9 10

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t

C
l

Single Gust Sheet
Kussner Solution

Figure 5.51. Cl for a pair of gust sheets of strength γ = -0.02 and 0.02 propagating across
a NACA 0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream computed using a
time step of 0.010 compared to the Kussner sharp edge gusts with amplitudes of w̄ = 0.01
and -0.01.

0 1 2 3 4 5 6 7 8 9 10
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

t

C
m

le

Single Gust Sheet
Kussner Solution

Figure 5.52. Cmle
for a pair of gust sheets of strength γ = -0.02 and 0.02 propagating across

a NACA 0010 airfoil oriented at α0 = 0.0 to the time-averaged freestream computed using a
time step of 0.010 compared to the Kussner sharp edge gusts with amplitudes of w̄ = 0.01
and -0.01.

93

Figure 5.53. Visualization at t = 4.0 showing the location of the airfoil, wake, gust sheets,
and selected x2 velocities in the top panel, instantaneous Cp vs. x/c in the lower left panel,
and Cl vs. t in the lower right panel.

94

5.5 Free Response

The responce of an elastic airfoil to aerodynamic forcing is a phenomenon which is of

interest to a wide range of aerodynamic fields. Flutter, the divergent structural responce

due to self induced aerodynamic forcing, has been well studied because of its impact on

the design of aircraft, turbo-machinery, and civil structures. Several analytic techniques

have been developed which provide a means to predict the flutter boundary, the point at

which the damping of at least one mode goes to zero correponding to the transition from a

stable to an unstable aeroelastic system. [10, 11, 4, 6] The flutter boundary is of interest

here because it provides a means to correlate the time-domain panel code solution with the

classical frequency-domain techniques used to predict the onset of flutter.

Classical frequency-domain techniques based on the work of Theodorsen [10, 11], assume

that body motion at the flutter boundary is harmonic. Thus, the problem of finding the flutter

boundary reduces to finding the flight conditions which produce harmonic body motion. The

assumption of harmonic motion has the added benefit in that it allows for the use of linear or

quasi-steady aerodynamic models, which when coupled with the equations of motion, results

in a eigen-value problem. Classical techniques are limited in that they only identify the

location of the flutter boundary and do not accurately predict modal dampening for flight

conditions which are not close to the flutter boundary.

The p-k method [6], which is utilized for this validation, combines an arbitrary aerody-

namic model with a structural model incorporating modal dampening. This allows for the

responce of the system at a variety of flight conditions to be estimated, as well as the de-

termination of the flutter boundary. The flutter boundary correlates to the flight condition

where dampening for at least one of the structural modes goes to zero.

5.5.1 Solution

The p-k method starts with the equations of motion given in Eq. (4.1), restated here

with suitable substitutions for convenience.

95

mḧ+mbxαα̈ + khh = − L (5.22a)

mbxαḧ+ Iαα̈+ kαα =My (5.22b)

Assuming harmonic motion,

α = ᾱeνt (5.23a)

h = h̄eνt (5.23b)

L = L̄eiωt (5.23c)

My = M̄ye
iωt (5.23d)

and rewriting the moment about the elastic axis in terms of Lift and the moment about the

quarter chord,

My = M c
4

+ b

(
1

2
+ a

)
L (5.24)

the equations of motion become

mν2h̄eνt +mbxαν
2ᾱeνt + khh̄e

νt = − L̄eiωt (5.25a)

mbxαν
2h̄eνt + Iαν

2ᾱeνt + kαᾱe
νt =M̄ c

4
eiωt + b

(
1

2
+ a

)
L̄eiωt (5.25b)

The forcing functions in terms of coefficent representations of lift and moment are

L̄ =
L

eiωt
= −πρ∞b3ω2

[
lh (k,M∞)

h̄

b
+ lα (k,M∞) ᾱ

]
(5.26a)

M̄ c
4

=
M c

4

eiωt
= πρ∞b4ω2

[
m c

4 h
(k,M∞)

h̄

b
+m c

4 α
(k,M∞) ᾱ

]
(5.26b)

where the coefficents in terms of the Theodorsen periodic lift and moment are

96

lh (k,M∞) =1 − i2C (k)

k
(5.27a)

lα (k,M∞) = − 2C (k)

k2
− i (1 − 2a)C (k)

k
− i

k
− a (5.27b)

m c
4 h

(k,M∞) =
1

2
(5.27c)

m c
4 α

(k,M∞) = − i

k
+

1

8
− a

2
(5.27d)

Simplifying Eq. (5.25) by eiωt and rewriting the forcing function in terms of Eq. (5.26) gives

mν2h̄ +mbxαν
2ᾱ + khh̄ =πρ∞b3ω2

[
lh (k,M∞)

h̄

b
+ lα (k,M∞) ᾱ

]
(5.28a)

mbxαν
2h̄ + Iαν

2ᾱ + kαᾱ =πρ∞b4ω2

[
m c

4 h
(k,M∞)

h̄

b
+m c

4 α
(k,M∞) ᾱ

]
−

πρ∞b4ω2

[
1

2
+ a

] [
lh (k,M∞)

h̄

b
+ lα (k,M∞) ᾱ

] (5.28b)

where ν = iω. Simplifying Eq. (5.28) and collecting terms

[
mν2 + kh

πρ∞b3ω2

]
h̄+

[
mbxαν

2

πρ∞b3ω2

]
ᾱ =

[
lh (k,M∞)

h̄

b
+ lα (k,M∞) ᾱ

]
(5.29a)[

mbxαν
2

πρ∞b4ω2

]
h̄+

[
Iαν

2 + kα

πρ∞b4ω2

]
ᾱ =

[
m c

4 h
(k,M∞)

h̄

b
+m c

4 α
(k,M∞) ᾱ

]
−[

1

2
+ a

] [
lh (k,M∞)

h̄

b
+ lα (k,M∞) ᾱ

] (5.29b)

for which appropriate substitutions are made gives.

[
p2µV 2 + µσ2 − lhV

2k2
] h̄
b

+
[
p2µxαV

2 − lαV
2k2
]
ᾱ = 0 (5.30a)[

p2µxαV
2 −m c

4 h
V 2k2 +

(
1

2
+ a

)
lhV

2k2

]
h̄

b
+[

p2µr2
αV

2 + µr2
α −m c

4 α
V 2k2 +

(
1

2
+ a

)
lαV

2k2

]
ᾱ = 0

(5.30b)

97

Equation (5.30) can be rewriten in matrix form

⎡
⎢⎣N1 N2

N3 N4

⎤
⎥⎦
⎛
⎜⎝ h̄

b

ᾱ

⎞
⎟⎠ =

⎛
⎜⎝0

0

⎞
⎟⎠ (5.31)

where the coeffients Ni are

N1 =p2µV 2 + µσ2 − lhV
2k2 (5.32a)

N2 =
mbxαν

2

πρ∞b3ω2
(5.32b)

N3 =p2µxαV
2 −m c

4 h
V 2k2 +

(
1

2
+ a

)
lhV

2k2 (5.32c)

N4 =p2µr2
αV

2 + µr2
α −m c

4 α
V 2k2 +

(
1

2
+ a

)
lαV

2k2 (5.32d)

The only non-trivial solution to Eq. (5.31) is when the determinant of N = 0 and p = ik.

det

⎡
⎢⎣N1 N2

N3 N4

⎤
⎥⎦ = 0 (5.33)

This values of p which satisfy the non-trivial solution can be found for a given flight condition

through an iterative method.

1. Assume an initial value for reduced frequency k

2. Calculate forcing based on k and M∞

3. Calculate p by solving det [N] = 0

4. Set k = � (p)

5. Repeat step 2 through 4 until the values of p and k converge

98

In this manner, the frequency of forced osscilation and modal dampening can be determined

for a range of flight conditions, and this trend can be used to determine the flutter boundary

by finding the flight condition for which modal dampening for any mode goes to zero, or

� (p) = 0.

5.5.2 Comparison

To verify the panel code structural model, the flutter boundary as computed from a set

of time-domain panel code solutions is compared to the flutter boundary estimated using the

frequency-domain p-k method.

The first step in determining the flutter boundary for either solution method is specifying

the sectional structural charictarisics of the airfoil to be modeled. The structural character-

istics are specified using the following non-dimensional parameters; axis location, a, radius

of gyration, rα, static unbalance, xα, denity ratio, µ, pitching natural frequency, ωα, and

plunging natural frequency, ωh.

Given a set of structural charictaristics, the flutter boundary is estimated using the p-

k method as outlined in Section 5.5.1. This estimated flutter boundary is then used as a

reference point for a set of panel code solutions modeling freestream velocity at, above, and

below the estimated flutter velocity. Modal frequency and damping is then calculated from

the airfoil motion history for each panel code solution. Thus, the flutter boundary can be

found by determining the freestream velocity where modal damping for at least one mode

goes to zero.

Two methods can be used Thus, to model different “flight” conditions about the flutter

boundary, the reduced modal freqiencies are varied by a value of 2% in a range between 90%

and 110% of the estimated flutter boundary.

The flutter boundary was estimated for a NACA 0007 airfoil with the following structural

charictarisics; a = −1/5, ra = 0.48, xa = 0.10, µ = 20.0, and ωh/ωα = 2/5. Using the p-

k method, the flutter boundary was found at a freestream velocity of Uf = 2.17, which

99

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

α

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.54. Pitch history for the panel code free response simulation above, at, and below
the predicted flutter boundary.

corresponds to a reduced pitching frequency of kα = 0.92 and reduced pitching frequency of

kh = 0.36.

Panel code solutions were computed at reduced frequencies ranging from 90% to 110%

of the reduced pitching and plunging frequencies in steps of 0.02%. Each simulation was

initiated as a transient solution with the airfoil initially oriented at α0 = 1 deg relative to the

time-averaged freestream flow, and computed using a non-dimensional time step of 0.01 for

4000 iterations.

Figures 5.54 through 5.58 show the time history of pitch, plunge, lift and moment coef-

ficents, and plunge vs. pitch. Panel code simulations in Figures 5.54 through 5.58 represent

the solution for reduced frequencies at 90%, 100%, and 110% of the reduced frequencies at

the flutter boundary. It can be observed from Figures 5.54 and 5.55 that the panel code

flutter boundary will be at a lower freestream velocity than predicted by the p-k method.

To determine modal damping, the assumption is made that the motion is harmonic close

to the flutter boundary. Therefore, pitch and plunge can be approximated by the following

100

0 5 10 15 20 25 30 35 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

h

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.55. Plunge history for the panel code free response simulation above, at, and
below the predicted flutter boundary.

0 5 10 15 20 25 30 35 40
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

C
l

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.56. Cl history for the panel code free response simulation above, at, and below
the predicted flutter boundary.

101

0 5 10 15 20 25 30 35 40
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

C
m

le

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.57. Cmle
history for the panel code free response simulation above, at, and below

the predicted flutter boundary.

−6 −4 −2 0 2 4 6

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

h/
c

α

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.58. Plunge vs. Pitch for the panel code free response simulation above, at, and
below the predicted flutter boundary.

102

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

ln
(α

)

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.59. Determining modal damping for pitch.

equations.

α (t) = α0 exp (ηαt) sin (kαt) (5.34)

h (t) = h0 exp (ηht) sin (kht) (5.35)

By assuming damped harmonic motion, the damping factor corresponds to the slope of the

line through the local maxima of ln (α (t)) and ln (h (t)). Figures 5.59 and 5.60 show the

natural log of the local maxima for pitch and plunge.

Figures 5.61 and 5.62 show modal damping and frequency normalized by the reduced

pitching frequency as a function of freestream velocity for both the panel code solutions and

the p-k method. The panel code solution differs from the p-k method in that it predicts

the flutter boundary at a slightly smaller freestream velocity, and both modal damping and

frequency coalesce at the flutter boundary.

Differences between the two solutions are to be expected due to the nature of the solutions.

The panel code is a non-linear aerodynamic solver while the p-k method is based on the

Theodorsen solution, which is the subject of Section 5.2. The p-k method assumes harmonic

103

0 5 10 15 20 25 30 35 40
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

ln
(h

/c
)

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 5.60. Determining modal damping for plunge.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

U

η
/ ω

α

torsion
p−k
bending
p−k

Figure 5.61. Normalized modal damping vs. freestream velocity for the panel code solution
compared to the p-k method.

104

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

Ω
 /

ω
α

torsion
p−k
bending
p−k

Figure 5.62. Normalized modal frequency vs. freestream velocity for the panel code solution
compared to the p-k method.

motion while the panel makes no assumption of mode shape except in the calculation of

modal damping. Despite these differences, the panel code shows a good agreement as to

location of the flutter boundary with the p-k method.

105

CHAPTER 6

FORCED RESPONSE

This chapter provides a brief examination of airfoil forced responce as modeled by the

panel code.

6.1 Description

The panel code models forced responce by combining the freestream gust model described

in Section 4.2 with the structural model described in Section 4.3. The freestream gust model

was shown to model a periodic freestream disturbance comparable to the Sears periodic gust

in Section 5.3. It was also shown that the influence of the gust model is highly dependent

on the discretization of the freestream gust into representative gust sheets. The structural

model was shown to predict the self excited flutter boundary when coupled with the panel

code aerodynamic model in Section 5.5.

Using the combined models, a set of panel code solutions were computed to determine

the response of an airfoil close to its flutter boundary to the influence of a set of freestream

gusts possesing a gust frequency at intervals about the airfoil reduced pitching frequency.

The solutions were computed for an NACA 0007 airfoil with the same structural charic-

taristics as were used to verify the flutter boundary in Section 5.5. As in Section 5.5, each

simulation was initiated as a transient solution and computed using a non-dimensional time

step of 0.01, however, the airfoil was given an initial orientation of α0 = 0 deg relative to the

time-averaged freestream flow. Each simulation used the same freestream gust discretization

of four gust sheets per gust period as used in Section 5.3, but the gust period was varied for

each simulaiton to force the airfoil at its reduced pitching frequency.

106

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4

6

8

10

α

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 6.1. Pitch history for the panel code forced response simulation above, at, and below
the predicted flutter boundary.

Figures 6.1 through 6.5 show the time history of pitch, plunge, lift and moment coefficents,

and plunge vs. pitch for the forced responce solutions. Panel code solutions in Figures

6.1 through 6.5 represent the solution for a NACA 0007 airfoil having reduced pitching

and plunging frequencies of 90%, 100%, and 110% of the reduced frequencies at the flutter

boundary under the influence of a periodic freestream gust with a gust frequency corresponds

to the airfoil pitching frequency.

Without performing a comprehensive study into airfoil responce due to a preiodic gust, no

conclusions will be drawn about the accuracy of the time domain motion, however, the breif

study does show that the freestream gust model can be coupled with the airfoil structural

model to produce airfoil responce due to external aerodynamic forcing.

107

0 5 10 15 20 25 30 35 40
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

h

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 6.2. Plunge history for the panel code forced response simulation above, at, and
below the predicted flutter boundary.

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

C
l

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 6.3. Cl history for the panel code forced response simulation above, at, and below
the predicted flutter boundary.

108

0 5 10 15 20 25 30 35 40

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

C
m

le

t

kα * 0.90

kα * 1.00

kα * 1.10

Figure 6.4. Cmle
history for the panel code forced response simulation above, at, and below

the predicted flutter boundary.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

h/
c

α

kα * 0.90

kα * 1.00

kα * 1.10

Figure 6.5. h/c vs. α for the panel code forced response simulation above, at, and below
the predicted flutter boundary.

109

CHAPTER 7

SUMMARY AND CONCLUSIONS

An unsteady panel code has been developed as a computational tool to investigate the

influence of aerodynamic damping on airfoil aeromechanical response. The inclusion of a

freestream gust model enables the panel code to simulate freestream gust perturbations of

arbitrary shape and magnitude. The inclusion of a TDOF structural model also enables the

panel code to model structural response due to both self-induced and gust-induced aerody-

namic forcing.

7.1 Validation

The panel code was compared to classic problems in unsteady aerodynamics having known

analytic solutions. The panel code compared favorably to the Wagner solution for an instanta-

neous change in airfoil attitude. This comparison demonstrated the effect of proper modeling

of the unsteady Kutta condition and wake model on lift development.

The panel code also compared favorably to the Theodorsen solution for a pitching and

plunging airfoil. Small variations in phase and amplitude were observed between the panel

code and Theodorsen lift solutions, but the differences were reasonable considering the sepa-

rate wake model formulations and airfoil thickness influence. This comparison demonstrated

the effect of proper formulation of the unsteady boundary condition on an airfoil undergoing

relative motion, providing further validation of the unsteady Kutta condition and panel code

wake model.

The modified panel code solution compared favorably to the Sears solution for a periodic

transverse velocity perturbation. As with the Theodorsen solution, small variations in phase

110

and amplitude were observed between the modified panel code and Sears solutions, but again,

these differences are reasonable since the Sears solution uses the same wake formulation as

Theodorsen. Comparison of the panel code employing the freestream gust model did not

compare quite as favorably to the Sears solution. Agreement between the Sears solution and

the freestream gust model was highly dependent on gust discretization into an appropriate

set of gust sheets. Agreement in lift amplitude and phase was achieved using a discretization

of four gust sheets per gust period, but the shape of the panel code lift curve resembled

a superposition of sharp edge gusts rather than the sinusoidal shape of the Sears solution.

Thus, this comparison showed the freestream gust model could be used to model periodic

velocity perturbations, but the resulting solution is highly dependent on gust discretization

and introduces additional frequency content into the solution.

The panel code solution compared favorably to the Kussner solution for a sharp-edge

gust. This favorable comparison was expected since the Kussner solution represents a Fourier

integral of the Sears solution; however, the Kussner solution showed better agreement with

the freestream gust model than anticipated. Finally, the panel code solution predicted a

flutter boundary within a 3 percent difference of the flutter boundary predicted using the p-k

method. This verified that the coupled aerodynamic-structural model could predict airfoil

structural response to self-induced aerodynamic forcing.

7.2 Extension

Having demonstrated the favorable ability of the panel code to model classic unsteady

aerodynamic problems, the freestream gust model and structural model were coupled to

demonstrate panel code forced-response prediction capabilities. No conclusions were drawn

from these forced response simulations with regard to aerodynamic damping or system sta-

bility. However, the simulations demonstrate the panel code can model forced structural

response due to periodic aerodynamic excitation.

111

7.3 Discussion and Recommendations

The panel code solution shows greatest dependence on freestream gust model parameters

and discretization of a continuous gust. As such, it is recommended that alternate gust

discretization methods be investigated prior to the application of the developed panel method

to aerodynamic damping investigations of interest. In addition, the panel code solution is

only valid for flowfields where incompressible, inviscid assumptions hold true. This limits the

panel code application to low Mach numbers, small pitch and plunge perturbations, and low

reduced frequencies. If necessary, various techniques could be implemented in the code to

expand the applicability of the solution, such as compressibility correction factors and flow

separation models. Such corrections are well established and may be easily implemented and

validated.

7.4 Contributions of Present Work

Many investigations into aeromechanical response decouple the aerodynamic and struc-

tural models by calculating aerodynamic forcing on a stationary airfoil, which is then used

to determine structural response using assumed modes or an equivalent technique. This does

not account for aerodynamic forcing due to structural response. Time-accurate solutions cou-

pling the aerodynamic and structural models are possible using a finite element approach,

but can be computationally expensive for realistic configurations.

The developed panel code couples the aerodynamic and structural solutions to determine

time-accurate structural response accounting for both freestream and self-induced aerody-

namic forcing. The panel code provides a first order solution, limited only by the potential

flow assumptions, which can be used to systematically study aeromechanical response and

determine directions for further study.

112

BIBLIOGRAPHY

[1] Anderson, J. Fundamentals of Aerodynamics, 1 ed. McGraw Hill, New York, 1984.

[2] Ardonceau, P. L. Unsteady pressure distribution over a pitching airfoil. AIAA Journal
27 (1989), 660–662.

[3] Basu, B. C., and Hancock, G. J. The unsteady motion of a two-dimensional aerofoil in
incompressible inviscid flow. Journal of Fluid Mechanics 87 (1978), 159–68.

[4] Blisplinghoff, R. L., Ashley, H., and Halfman, R. L. Aeroelasticity, 2 ed. Dover, New
York, 1996.

[5] Hess, J. L., and Smith, A. M. O. Calculation of potential flow about arbitrary bodies.
In Progress in Aeronautical Science. Pergamon Press, New York, 1966, pp. 1–138.

[6] Hodges, Dewey H, and Pierce, G. Alvin. Introduction to Structural Dynamics and Aeroe-
lasticity, 1 ed. Cambridge, New York, 2002.

[7] Hugo, R., and Jumper, E. Controling unsteady lift using unsteady trailing-edge flap
motions. AIAA Paper 92-0275 (Jan 1992).

[8] Katz, J., and Plotkin, A. Low-Speed Aerodynamics, 2 ed. Cambridge University Press,
New York, 2001.

[9] Rennie, R. M., and J., Jumper E. Experimental measurements of dynamic control
surface effectiveness. Journal of Aircraft 33 (1996), 880–887.

[10] Theodorsen, Theodore. General theory of aerodynamic instability and the mechanism
of flutter. Tech. Rep. NACA Report 496, NACA, 1935.

[11] Theodorsen, Theodore, and Garrick, I E. Mechanism of flutter.a theoretical and ex-
perimental investigation of the flutter problem. Tech. Rep. NACA Report 685, NACA,
1940.

113

APPENDIX A

UVPM

A.1 Revision 120

program uvpm
cc
c---
c rev 120
c - based on rev 109
c Note,
c foille = forward most node
c fv_tan = stagnation point node
cc
c---
c Precompiler Definitions (uses fpp)
c---

c---
c Declare Variables
c---

IMPLICIT NONE

c --
c Common Blocks / Included Files
c --

include ’lengths.inc’
c parameter(lpanel = 300, liter = 6500, lphi = 101 , lfree = 1001)

include ’airfoil.inc’
include ’calc.inc’
include ’const.inc’
include ’debug.inc’
include ’file.inc’
include ’forces.inc’
include ’freeresp.inc’
include ’freevort.inc’
include ’gau.inc’
include ’graph.inc’
include ’iterative.inc’
include ’motion.inc’
include ’param.inc’
include ’phi.inc’
include ’relax.inc’
include ’strengths.inc’
include ’velocities.inc’
include ’wake.inc’
include ’wakepannel.inc’

c --
c - Function Parameters

integer namlen
integer rootlen

c - Iteration Variables
integer i
integer j

114

integer k

c - Steady State Flag
integer sstate

c - Graphics Variables
INTEGER pgopen
INTEGER istat(10)
REAL xmin, xmax, ymin, ymax
REAL fxmin, fxmax, fymin, fymax
REAL xmina, xmaxa, ymina, ymaxa

INTEGER just, axis
CHARACTER*70 title
REAL pgscale
REAL xtemp(liter)
REAL ytemp(liter)
REAL ztemp(liter)
INTEGER ltemp

c - Other
INTEGER Kutta
Integer iter

REAL*8 local_nor, local_tan

c - Gauss Solver
REAL*8 rhs

c - Influence variables

c - Velocity components due to rotation
REAL*8 ru(lpanel) ! x component of velocity at panel

! midpoint due to airfoil rotation
REAL*8 rv(lpanel) ! y component of velocity at panel

! midpoint due to airfoil rotation

c - Velocity components due to free stream
REAL*8 fsu ! x component of velocity at panel

! midpoint due to freestream
REAL*8 fsv ! y component of velocity at panel

! midpoint due to freestream

c - Summation variables used in influence calculations
REAL*8 tsum ! summation of tangential velocity

! component
REAL*8 usum ! summation of x dir velocity

! component
REAL*8 vsum ! summation of y dir velocity

! component

c - Velocity components due to vortex panels on the airfoil
REAL*8 vu(lpanel) ! x vel influence coefficient at

! panel i due to a unit strength
! vortex at panel j

REAL*8 vv(lpanel) ! y vel influence coefficient at
! panel i due to a unit strength
! vortex at panel j

c - Velocity components due to vortex sheets in the freestream
REAL*8 fsvu(lpanel) ! x dir component of velocity at

! panel midpoint due to vortex
! sheet (gust)

REAL*8 fsvv(lpanel) ! y dir component of velocity at
! panel midpoint due to vortex
! sheet (gust)

115

c - Velocity components due to source panel influence
REAL*8 su(lpanel,lpanel) ! unit strength source influence

! coefficient at panel i due to
! panel j (x dir component)

REAL*8 sv(lpanel,lpanel) ! unit strength source influence
! coefficient at panel i due to
! panel j (y dir component)

c - Summation variables used in calculation of airfoil vortex panel
c influence and vortex sheet influence

REAL*8 wvu(lpanel) ! u vel influence coefficient at
! panel i due to a unit strength
! Wake vortex

REAL*8 wvv(lpanel) ! v vel influence coefficient at
! panel i due to a unit strength
! Wake vortex

c - Wake Panel Coef
REAL*8 wpu(lpanel) ! u vel influence coefficient at

! panel i due to a unit strength
! vortex at the wake panel

REAL*8 wpv(lpanel) ! v vel influence coefficient at
! panel i due to a unit strength
! vortex at the wake panel

c - Calculation variables used in wake panel calc, and graphics
REAL*8 u1
REAL*8 u2
REAL*8 v1
REAL*8 v2

c - Working Variables
REAL*8 dist ! length of a panel
REAL*8 dx ! x-length of a panel
REAL*8 dy ! y-length of a panel

c -
real*8 theta

c - Phi Integration
REAL*8 intgrl(0:liter,lpanel) ! Potential at the Leading Edge
REAL*8 phi_le
REAL*8 phi_temp1
REAL*8 phi_temp2

REAL*8 vsqare

c - Forces
REAL*8 casum ! Axial Pressure
REAL*8 cnsum ! Normal Pressure
REAL*8 cmsum ! Moment Coefficient
REAL*8 dxmom ! Used to calculate foil moment
REAL*8 dymom ! Used to calculate foil moment
REAL*8 xmidmom ! Used to calculate foil moment
REAL*8 ymidmom ! Used to calculate foil moment

c - Vortex Sheet Parameters
real*8 xfsv(10,2)
real*8 yfsv(10,2)
real*8 gfsv(10,2)
integer nfsv_t
real*8 temp_cos, temp_sin
real*8 travel
real*8 time ! Used in sheet splitting

REAL*8 dxj
REAL*8 dxjp

116

REAL*8 dyj
REAL*8 dyjp
real*8 mj
real*8 mjp

c - Time
real etime
real elapsed
real extime(2)

c --
c Namelists
c --

namelist /vpm_in/ f_foil, x0, y0, f_responce, mu, k_a, k_h,
& r_a, x_a, f_mot, f_vort, idump1, idump2, debug,
& debug_wake, i_debug, relax_gammaw, relax_delk, relax_thetk

namelist /graph/ graphics, savegif,
& zm_field, zm_field_x, zm_field_y

c namelist /testing/ test_fs_split, test_fs_inf, fs_inf_scale,
c & test_fs_inf_pause

namelist /phi_int/ npi, x_far, y_far

namelist /init/ sstate

c --
c Format Statements
c --

include ’format.inc’

c---
c Start Program Runtime
c---

write(6,*)’Starting UVPM’

c---
c - Program Initialization:
c---

write(6,*)’Start Program Initalization’

!---
!----- Initialize Graphics

if (graphics.eq.1) then
!- Window 1 - Airfoil

istat(1) = pgopen(’/xserve’)
if (istat(1).le.0) stop
call PGASK(.false.)

! !- Window 2 - CP
! istat(2) = pgopen(’/xserve’)
! if (istat(2).le.0) stop
! call PGASK(.false.)
! !- Window 3 - Forces
! istat(3) = pgopen(’/xserve’)
! if (istat(3).le.0) stop
! call PGASK(.false.)

end if

c --
c - HARD-CODED PARAMETERS
c --

c - Convergence Criteria
dkcon = 1D-6!0.0001 ! Convergence Criteria
tkcon = 1D-6!0.0001 ! Convergence Criteria

117

gwcon = 1D-6!0.0001 ! Convergence Criteria

c - Wake Grouping - Currently Disabled
ngv = 10 ! Number of vortices to group past grouping

! distance
nwv = 0 !
vgd = 50. ! Chord Lengths Down Stream to start

! Grouping Vortices

c - Constants
pi = 4.D0*datan(1.0D0) ! 3.1416
pi2inv = 1.D0/(2.D0*pi) ! 0.3183
rho_fluid = 0.002377D0 ! slug/ft^3
chord = 1.0D0
alphafs = 0.0D0

c - Initializations
omega = 0.D0
hdot = 0.D0

c --
c - Get Configuration File from Command Line Input
c --

call getarg(1,f_config)
if (f_config(1:1).eq.’ ’) then

write(*,*) ’INPUT FILE NOT SPECIFIED. PROGRAM STOPPED.’
stop

end if
len_config = namlen(f_config)
write(6,*)’- Input File is >"’,f_config(1:len_config),’"’

call getarg(2,fn)
if (fn(1:1).eq.’ ’) then

sstate = 0
else if (fn(1:1).eq.’1’) then

sstate = 1
end if

c --
c - File Unit Definitions
c --

i_airfoil = 30 ! Output - Store Airfoil Node Locations
i_foil = 40 ! Input - Read In Airfoil Coords (UIUC)

! Specified in i_config
i_force = 48 ! Output - Calculated Force and Moments
i_config = 34 ! Input - Configuration File (vpm_in.dat)
i_mot = 22 ! Input - Motion History File Defined in

! i_config
i_readme = 42 ! Output - Stores Relevant Run Information
i_tan = 24 ! Output - Tangential Velocity
i_vortex = 33 ! Output -
i_elements = 47 ! Output - Element Locations and Strengths,

! Source sheet, Vortex sheet, point vortex
i_ani = 49 ! Data output
i_temp = 50 ! Temp debug
i_pressure = 51 ! pressure

c --
c - Read Input Files
c --

write(6,*)’- Read Input Files’

c - Main Config File Specified on the Command Line
write(6,*)’- Start Main Config File’

! call read_input()

118

len_config = namlen(f_config)
fn = f_config(1:len_config)
open(Unit=i_config,File=fn,Status=’unknown’)

read(i_config,nml=vpm_in)
read(i_config,nml=graph)

c read(i_config,nml=testing)
read(i_config,nml=phi_int)

close(unit=i_config)
write(6,*)’- Finish Main Config File’

c - Read Motion Files
write(6,*)’- Start Motion History’
write(6,*)’"’,f_mot,’"’
call read_motion()
write(6,*)’- Finish Motion History’

!c - Plot Motion History
! call plot_motion(istat(1))
! pause

c - Read Airfoil
write(6,*)’- Start Airfoil Coordinates’
write(6,*)’"’,f_foil,’"’
call read_foil()
write(6,*)’- Finish Airfoil Coordinates’

!c - Plot Airfoil
! call plot_airfoil(istat(1),1.E0,0)
! pause

c - Read Vortex Locations
if (f_vort.ne.’none’) then

write(6,*)’- Start Vortex Locations’
write(6,*)’"’,f_vort,’"’
call read_freevort()
write(6,*)’- Finish Vortex Locations’

end if

!c - Plot Airfoil
! call plot_airfoil(istat(1),1.E0,0)
! pause

c --
c - Initialize Output Files
c --
c - Initalize Lift File

write(6,*)’- Open Force Output’
! write(fn,’("out\force.out")’)

len_config = rootlen(f_config)
if (len_config.gt.0) then

fn=f_config(1:len_config)//’.lft’
else

write(fn,’("out\vpm_in.lft")’)
end if
write(*,*)’"’,fn,’"’

OPEN(UNIT=i_force,FILE=fn,STATUS=’unknown’)

c - Initialize Pressure File
len_config = rootlen(f_config)
if (len_config.gt.0) then

fn=f_config(1:len_config)//’.cp’
else

write(fn,’("out\vpm_in.cp")’)

119

end if
write(*,*)’"’,fn,’"’

OPEN(UNIT=i_pressure,FILE=fn,STATUS=’unknown’)

c - Initalize Animation File
write(6,*)’- Open Animation Output’

c write(fn,’("out\data.out")’)

len_config = rootlen(f_config)
if (len_config.gt.0) then

fn=f_config(1:len_config)//’.ani’
else

write(fn,’("out\vpm_in.ani")’)
end if
write(*,*)’"’,fn,’"’

OPEN(UNIT=i_ani,FILE=fn,STATUS=’unknown’)
write(i_ani,*)nodtot
write(i_ani,*)nodle
write(i_ani,*)dt
write(i_ani,*)nstep
write(i_ani,*)idump1
write(i_ani,*)idump2
write(i_ani,*)x0
write(i_ani,*)y0

len_config = rootlen(f_config)
if (len_config.gt.0) then

fn=f_config(1:len_config)//’.tmp’
else

write(fn,’("out\vpm_in.lft")’)
end if
write(*,*)’"’,fn,’"’

OPEN(UNIT=i_temp,FILE=fn,STATUS=’unknown’)

c --
c - Set Initial Conditions Based on Mothis
c --

write(6,*)’- Set Initial Conditions’

c REV 100
! alpha(0) = alpha(1)

cd_s(0) = 0.
cl_s(0) = 0.
clp = 0.0
cmeap = 0.0
cmle_s(0) = 0.
cmo_s(0) = 0.
gamma(0) = 0.
gammaw(0) = 0.
t = 0
t_s(0) = 0.*dt
thetk1 = thetk
cd = 0.
cl = 0.
clp = 0.0
cmle = 0.

! cmo = 0.

delk = dt
thetk = 0.0

eta_a = 0D0

120

eta_h = 0D0
ufre = 1D0
rho_fluid = 2.377D-3

c---
c End Program Initalization
c---
c---

c---
c BEGIN THE TIME STEPPING
c---

write(6,*)’Start Time Stepping: ’,nstep,’ Iterations’

c ---
c - Start Time Iteration
c ---

do 1000 t=0,nstep
! do 1000 t=0,1

c --
c - ROTATE THE AIRFOIL AND FIND PANEL MIDPOINTS, ANGLES
c --
! call plot_airfoil(istat(1),1.E0,0)

call rotate_foil()

! call plot_airfoil(istat(1),1.E0,0)

c --
c - Evaluate Parameters That Change For Each Time Step But Not Each
c Iteration
c
c The Freestream, Source Panels (Airfoil), Vortex Panels (Airfoil),
c Vortex Panels (Wake), Discrete Vortices, Airfoil Perimeter
c Panel Midpoint Velocities Due To Rotation
c --

do 220 i=1,nodtot

c - Find Airfoil Perimeter
! dx=x(i+1)-x(i)
! dy=y(i+1)-y(i)
! dist=sqrt(dx*dx+dy*dy)
! perim=perim+dist

c --
c - Freestream Influence on i’th panel:

! Global Frame (Eularian)
fsu= uexp
fsv= 0.

! i’th Panel Frame (Lagrangian)
! fst(i)= costhe(i)*fsu + sinthe(i)*fsv
! fsn(i)=-sinthe(i)*fsu + costhe(i)*fsv
c pst(i)=(xmid(i)-xphi)*fsu + (ymid(i)-yphi)*fsv

c --
c - Influence Due To Rotation on i’th panel
C Evaluate Panel Midpoint Velocities Due To Rotation

ru(i)=-(xmid(i)-xmidp(i))/dt
rv(i)=-(ymid(i)-ymidp(i))/dt

! rt(i)= costhe(i)*ru(i) + sinthe(i)*rv(i)
! rn(i)= -sinthe(i)*ru(i) + costhe(i)*rv(i)

c --
c - Airfoil Influence:
C Find Contribution Of j’th Panel Due To Source Panels And
C Vortex Panels On The i’th Panel

121

! nsum=0.
! tsum=0.

usum=0.
vsum=0.

do 200 j=1,nodtot

call calc_panel_inf(x(j),y(j),x(j+1),y(j+1),xmid(i),ymid(i),
& costhe(j),sinthe(j))

! - Unit Source Normal on panel i due to Panel j (nxn Array)
su(i,j)= vel(1)
sv(i,j)= vel(2)

! st(i,j)= vel(1)* costhe(i) + vel(2)* sinthe(i)
! sn(i,j)= vel(1)*-sinthe(i) + vel(2)* costhe(i)

! - Unit Vortex Normal on panel i due to all other panels
usum = usum + vel(3)
vsum = vsum + vel(4)

! tsum = tsum + vel(3)* costhe(i) + vel(4)* sinthe(i)
! nsum = nsum + vel(3)*-sinthe(i) + vel(4)* costhe(i)

200 continue

! vn(i)=nsum
! vt(i)=tsum

vu(i)=usum
vv(i)=vsum

c --
c - Wake Influence on the i’th Panel: DISCRETE VORTICES

! nsum=0.
! tsum=0.

usum=0.
vsum=0.

do 210 j=1,nwv

call calc_pt_inf(xvort(j),yvort(j),xmid(i),ymid(i),vort(j))

usum = usum + vel(1)
vsum = vsum + vel(2)

! tsum = tsum + vel(1)* costhe(i) + vel(2)* sinthe(i)
! nsum = nsum + vel(1)*-sinthe(i) + vel(2)* costhe(i)

210 continue

! wvn(i)=nsum
! wvt(i)=tsum

wvu(i)=usum
wvv(i)=vsum

c --
c - Freestream Vortex Influence on the i’th panel: SHEET VORTICES

! nsum=0.
! tsum=0.

usum=0.
vsum=0.

do 215 j=1,nfsv

! check if vortex ends on a panel
if ((fsvort(j,7).ne.0).or.(fsvort(j,6).ne.0)) then

nfsv_t = 2 ! split panel
else
nfsv_t = 1 ! single panel

end if

! for each sub-vortex (k) (if split)
do k = 1,nfsv_t

122

! create sub-vortex

! Vortex Start Point
if (k.eq.1) then

if (fsvort(j,6) .ne. 0) then
! xfsv(k,1) = x(fsvort(j,6)+1)
! yfsv(k,1) = y(fsvort(j,6)+1)

xfsv(k,1) = x(fsvort(j,6))
yfsv(k,1) = y(fsvort(j,6))

else
xfsv(k,1) = fsvort(j,1)
yfsv(k,1) = fsvort(j,2)

end if
else if (k.eq.2) then

if (fsvort(j,6) .ne. 0) then
! xfsv(k,1) = x(fsvort(j,6))
! yfsv(k,1) = y(fsvort(j,6))

if (fsvort(j,6) .gt. (1)) then
xfsv(k,1) = x(fsvort(j,6)-1)
yfsv(k,1) = y(fsvort(j,6)-1)

else
xfsv(k,1) = x(nodtot+2)
yfsv(k,1) = y(nodtot+2)

end if
! xfsv(k,1) = x(fsvort(j,6)-1)
! yfsv(k,1) = y(fsvort(j,6)-1)

else
xfsv(k,1) = fsvort(j,1)
yfsv(k,1) = fsvort(j,2)

end if
end if

! Vortex End Point
if (k.eq.1) then

if (fsvort(j,7) .ne. 0) then
xfsv(k,2) = x(fsvort(j,7))
yfsv(k,2) = y(fsvort(j,7))

else
xfsv(k,2) = fsvort(j,3)
yfsv(k,2) = fsvort(j,4)

end if
else if (k.eq.2) then

if (fsvort(j,7) .ne. 0) then
xfsv(k,2) = x(fsvort(j,7)+1)
yfsv(k,2) = y(fsvort(j,7)+1)

else
xfsv(k,2) = fsvort(j,3)
yfsv(k,2) = fsvort(j,4)

end if
end if

end do ! (k)

! find length of surface panel
if (fsvort(j,7) .ne. 0) then

! ends on panel
dist = sqrt((x(fsvort(j,7))-x(fsvort(j,7)+1))**2+

& (y(fsvort(j,7))-y(fsvort(j,7)+1))**2)
else if (fsvort(j,6) .ne. 0) then
! starts on panel

! dist = sqrt((x(fsvort(j,6)-1)-x(fsvort(j,6)))**2+

123

! & (y(fsvort(j,6)-1)-y(fsvort(j,6)))**2)
if (fsvort(j,6) .gt. (1)) then

dx = x(fsvort(j,6)-1) - x(fsvort(j,6))
dy = y(fsvort(j,6)-1) - y(fsvort(j,6))
dist = sqrt((dx)**2 + (dy)**2)

else
dx = x(nodtot+2) - x(fsvort(j,6))
dy = y(nodtot+2) - y(fsvort(j,6))
dist = sqrt((dx)**2 + (dy)**2)

end if

end if

! for each sub-vortex
do k = 1,nfsv_t

if (fsvort(j,7) .ne. 0) then
! if split panel by end
! distance from end of vortex to end of subpanel
gfsv(k,2) = sqrt((xfsv(k,2) - fsvort(j,3))**2 +

& (yfsv(k,2) - fsvort(j,4))**2) / dist
! calc total gamma for sub-vortex
gfsv(k,1) = fsvort(j,5) * (1 - gfsv(k,2))

else if (fsvort(j,6) .ne. 0) then
! if split panel by Start
! distance from end of vortex to end of subpanel
gfsv(k,2) = sqrt((xfsv(k,1) - fsvort(j,1))**2 +

& (yfsv(k,1) - fsvort(j,2))**2) / dist
! calc total gamma for sub-vortex
gfsv(k,1) = fsvort(j,5) * (1 - gfsv(k,2))

else
! calc total gamma for sub-vortex
gfsv(k,1) = fsvort(j,5)

end if
end do ! (k)

! for each sub-vortex
do k = 1,nfsv_t

! length of sub-vortex
dist = sqrt((xfsv(k,2) - xfsv(k,1))**2 +

& (yfsv(k,2) - yfsv(k,1))**2)

temp_cos = (xfsv(k,2) - xfsv(k,1)) / dist
temp_sin = (yfsv(k,2) - yfsv(k,1)) / dist

!- Find Influence of sub-vortex (k) of vortex (j)
! on panel (i)
call calc_panel_inf(xfsv(k,1),yfsv(k,1),

& xfsv(k,2),yfsv(k,2),xmid(i),ymid(i),temp_cos,
& temp_sin)

! Calculate Velocities at midpoints
usum = usum + vel(3) * gfsv(k,1) / dist

vsum = vsum + vel(4) * gfsv(k,1) / dist

end do !(k) sub-vortex

215 continue

fsvu(i)= usum
fsvv(i)= vsum

c --

124

c END FSVORT
c --

220 continue

c --
c - Iterate to find Wake Panel Location based on non-changing
c parameters

c - Seed gamma and gammaw to help convergence
if (t.ge.1) then

gamma(t)=gamma(t-1)
gammaw(t)=gammaw(t-1)

else
gamma(0) = 0.0D0
gammaw(0) = 0.0D0

end if

c add thetk calculation based on angle of TE panels

iter=0
230 continue

c - Increment iter
iter = iter + 1
if (iter.gt.400) then

write(*,*)’Wake Panel Iterations Exceeded 400’
stop

end if

c - Position wake panel based on new delk and thetk
x(nodtot+2)=x(1)+cos(thetk)*delk
y(nodtot+2)=y(1)+sin(thetk)*delk

c - Find Midpoint of wake panel
xmid(nodtot+1)=.5*(x(nodtot+1)+x(nodtot+2))
ymid(nodtot+1)=.5*(y(nodtot+1)+y(nodtot+2))

c - Store delk and thetk for comparison
delk1 = delk
thetk1 = thetk
gammaw1 = gammaw(t)

c - EVALUATE INFLUENCE COEFFICIENT AT PANEL I DUE TO WAKE PANEL

j=nodtot+1
do 240 i=1,nodtot

call calc_panel_inf(x(j),y(j),x(j+1),y(j+1),xmid(i),
& ymid(i),cos(thetk),sin(thetk))

wpu(i) = vel(3)
wpv(i) = vel(4)

! wpt(i) = vel(3)* costhe(i) + vel(4)* sinthe(i)
! wpn(i) = vel(3)*-sinthe(i) + vel(4)* costhe(i)

240 continue

c --
c - ASSEMBLE MATRIX FOR THE GAUSS SOLVER

if ((sstate.eq.0).or.(t.ge.1)) then
!--
! Time Dependent

do 260 i=1,nodtot
! rhs = rotation, fs, bound vortex, wake vortex, wake panel,
! Freestream Vortex

rhs = -local_nor(ru(i),rv(i),costhe(i),sinthe(i))
& -local_nor(fsu,fsv,costhe(i),sinthe(i))
& -local_nor(vu(i),vv(i),costhe(i),sinthe(i))*
& gamma(t)

125

& -local_nor(wvu(i),wvv(i),costhe(i),sinthe(i))
& -local_nor(wpu(i),wpv(i),costhe(i),sinthe(i))*
& gammaw(t)
& -local_nor(fsvu(i),fsvv(i),costhe(i),sinthe(i))

do 250 j=1,nodtot
a(i,j)=local_nor(su(i,j),sv(i,j),costhe(i),sinthe(i))

250 continue
a(i,nodtot+1)=rhs

260 continue

else
!--
! Steady State
do 265 i=1,nodtot

rhs = -local_nor(fsu,fsv,costhe(i),sinthe(i))
do 255 j=1,nodtot

! Source
a(i,j)=local_nor(su(i,j),sv(i,j),costhe(i),sinthe(i))

255 continue
! Gamma
a(i,nodtot+1)=local_nor(vu(i),vv(i),costhe(i),sinthe(i))
! RHS
a(i,nodtot+2)=RHS

! a(i,nodtot+2)=-fsn(i)
265 continue

i = nodtot+1
do 275 j=1,nodtot

! Source Kutta
a(i,j)=local_tan(su(1,j),sv(1,j),costhe(1),sinthe(1))

& +local_tan(su(nodtot,j),sv(nodtot,j),
& costhe(nodtot),sinthe(nodtot))

275 continue
! Gamma Kutta
a(i,nodtot+1)=local_tan(vu(1),vv(1),costhe(1),sinthe(1))

& +local_tan(vu(nodtot),vv(nodtot),
& costhe(nodtot),sinthe(nodtot))

! Gamma RHS
a(i,nodtot+2)=0.!-fst(1)-fst(nodtot)

end if ! sstate

c --
c - CALL THE GAUSSIAN SOLVER

if ((sstate.eq.0).or.(t.ge.1)) then
call gauss(1,nodtot)

else
call gauss(1,nodtot+1)

end if

c --
c - RETRIEVE SOLUTION

if ((sstate.eq.0).or.(t.ge.1)) then
do 270 i=1,nodtot

q(i)=a(i,nodtot+1)
270 continue

else
do 285 i=1,nodtot

q(i)=a(i,nodtot+2)
c write(6,*)’ q=’,q(i)
285 continue

! Vortex
gamma(t) = a(nodtot+1,nodtot+2)
gammaw(t) = 0.0

end if

126

c --
c - CALCULATE THE TANGENTIAL VELOCITIES ON PANELS 1 AND NODTOT

do 290 k=1,2
i=k
if(k.eq.2) i=nodtot

! Tangential/Normal Velocity Due to Airfoil Panels
tsum=0.
usum=0.
vsum=0.

! - Source
do 280 j=1,nodtot

tsum = tsum + local_tan(su(i,j),sv(i,j),costhe(i)
& ,sinthe(i))*q(j)

usum = usum + su(i,j)*q(j)
vsum = vsum + sv(i,j)*q(j)

280 continue

! - Sum Velocity Components
vtan(i) = local_tan(ru(i),rv(i),costhe(i),sinthe(i))

& +local_tan(fsu,fsv,costhe(i),sinthe(i))
& +local_tan(vu(i),vv(i),costhe(i),sinthe(i))*
& gamma(t)
& +local_tan(wvu(i),wvv(i),costhe(i),sinthe(i))
& +local_tan(wpu(i),wpv(i),costhe(i),sinthe(i))*
& gammaw(t)
& +local_tan(fsvu(i),fsvv(i),costhe(i),sinthe(i))
& +tsum

if (i.eq.1) then
u1=fsu+usum+vu(i)*gamma(t)+wpu(i)*gammaw(t)+

& wvu(i)+fsvu(i)
v1=fsv+vsum+vv(i)*gamma(t)+wpv(i)*gammaw(t)+

& wvv(i)+fsvv(i)
else

u2=fsu+usum+vu(i)*gamma(t)+wpu(i)*gammaw(t)+
& wvu(i)+fsvu(i)

v2=fsv+vsum+vv(i)*gamma(t)+wpv(i)*gammaw(t)+
& wvv(i)+fsvv(i)

end if

290 continue
c --
c - SOLVE FOR THE VELOCITY AT THE MIDPOINT OF THE WAKE PANEL

c --
c - EVALUATE STRENGTH OF VORTICITY ON THE WAKE PANEL

if ((sstate.eq.0).or.(t.ge.1)) then
gammaw(t)=dt/(2.D0*delk)*(vtan(nodtot)**2.D0-vtan(1)**2.D0)
gamma(t)=gamma(t-1)-gammaw(t)*delk/perim

end if ! (t.ge.1)

c --
c - SOLVE FOR DELK AND THETK

c - Basu and Hancock Method
c Basu, B. C. and Hancock, G. J.,
c "The Unsteady Motion of a Two-Dimensional Aerofoil in
c Incompressible Inviscid Flow," Journal of Fluid Mechanics,
c Vol. 87, 1978, pp. 159-168.

! thetk=atan2(vwp,uwp)
! delk=sqrt(uwp**2+vwp**2)*dt

127

c - Ardonceau’s Method
c Ardonceau, Pascal L.,
c "Unsteady Pressure Distribution Over A Pitching Airfoil,"
c AIAA Journal, Vol. 27, 1989, pp. 660-662.

dx=(u1+u2)*5.D-1*dt
dy=(v1+v2)*5.D-1*dt
delk = delk + relax_delk * (sqrt(dx**2+dy**2) - delk)

dx = x(1) - x(2)
dy = y(1) - y(2)
dist = dy / dx
dx = x(1) - x(nodtot)
dy = y(1) - y(nodtot)
dist = (dist + dy / dx) / 2.D0

thetk = thetk + relax_thetk * (datan2(dy,dx) - thetk)
thetk = datan2(dist,1.D0)

c --
c print Debug Data for convergence
c - r91

if (debug.ne.0) then
if (iter.le.1) then

write(6,49)
write(6,49)’iter’,’delk’,’thetk’,’gamma’,’gammaw’,

& ’d_gammaw’,’conv’,’u1’,’u2’,’v1’,’v2’,’vtan(1)’,
& ’vtan(nodtot)’

endif
write(6,50)real(iter),delk,thetk,gamma(t),gammaw(t),

& abs(gammaw(t)-gammaw1), gwcon, u1, u2, v1, v2,vtan(1),
& vtan(nodtot)
endif

c --
c - Check for Convergence of delk and thetk
! if(abs(thetk-thetk1).lt.tkcon.and.abs(delk-delk1).lt.dkcon)then

if ((sstate.eq.0).or.(t.ge.1)) then
if(abs(gammaw(t)-gammaw1) .lt. gwcon)then

go to 320 ! Exit
else

go to 230 ! Re-iterate
end if

end if ! (t.ge.1)

c --
c - CONVERGENCE ACHIEVED

320 continue

c - r91
if (debug.ne.0) then

write(6,49)
endif

c---
c - Pressure and Force Calculation
c---
c - Place Phi Integration points

if (debug.ne.0) then
write(i_debug,*)’ - Place Integration Points’

endif

c --
c - Sine Placement from x_far to LE

dx=x(nodle)-x_far
dy=y(nodle)-y_far

128

do 325 i=1,npi
theta = dreal(i-1)/dreal(npi) * pi/2.0D0
xpi(i) = dsin(theta)*dx + x_far;
ypi(i) = dsin(theta)*dy + y_far;

325 continue

c---
c CALCULATION OF TANGENTIAL VELOCITY ON EACH PANEL DUE TO
c SOURCE PANELS, VORTEX PANELS, WAKE PANEL, DISCRETE VORTICES
c

if (debug.ne.0) then
write(i_debug,*)’ - Calc Tangential Velocity on each Panel’

endif

do 360 i=1,nodtot

! Tangential/Normal Velocity Due to Airfoil Panels
tsum=0.
usum=0.
vsum=0.

! - Source
do 365 j=1,nodtot

tsum = tsum + local_tan(su(i,j),sv(i,j),costhe(i)
& ,sinthe(i))*q(j)

usum = usum + su(i,j)*q(j)
vsum = vsum + sv(i,j)*q(j)

365 continue

vtan(i) = local_tan(ru(i),rv(i),costhe(i),sinthe(i))
& +local_tan(fsu,fsv,costhe(i),sinthe(i))
& +local_tan(vu(i),vv(i),costhe(i),sinthe(i))*
& gamma(t)
& +local_tan(wvu(i),wvv(i),costhe(i),sinthe(i))
& +local_tan(wpu(i),wpv(i),costhe(i),sinthe(i))*
& gammaw(t)
& +local_tan(fsvu(i),fsvv(i),costhe(i),sinthe(i))
& +tsum

vxdir(i)=fsu+usum+vu(i)*gamma(t)+wpu(i)*gammaw(t)+
& wvu(i)+fsvu(i)

vydir(i)=fsv+vsum+vv(i)*gamma(t)+wpv(i)*gammaw(t)+
& wvv(i)+fsvv(i)

if (vtan(i).lt.0) then
fv_tan = i+1

end if

360 continue

c Nessisary For Fsvortex Convection Routine
call calc_pt_vel(xmid(nodtot+1),ymid(nodtot+1),1)

vtan(nodtot+1) = vel(1)*cos(thetk) + vel(2)*sin(thetk)

c---
c CALCULATION OF VELOCITY AT INTEGRATING POINTS
c

do 390 i=1,npi

call calc_pt_vel(xpi(i),ypi(i),0)

upi(i) = vel(1)
vpi(i) = vel(2)

390 continue

c---

129

c EVALUATE THE VELOCITIES AT THE DISCRETE VORTICES
c

do 420 i=1,nwv

call calc_pt_vel(xvort(i),yvort(i),0)

udv(i) = vel(1)
vdv(i) = vel(2)

420 continue

c---
c EVALUATE THE VELOCITIES AT THE FREE STREAM VORTICES
c

do 425 i=1,nfsv

!- Start Point
call calc_pt_vel(fsvort(i,1),fsvort(i,2),0)

vfsvort(i,1) = vel(1)
vfsvort(i,2) = vel(2)

!- End Point
call calc_pt_vel(fsvort(i,3),fsvort(i,4),0)

vfsvort(i,3) = vel(1)
vfsvort(i,4) = vel(2)

425 continue

c---
c EVALUATION OF PHI INTEGRATION UP TO THE LEADING EDGE

if (debug.ne.0) then
write(i_debug,*)’ - Evaluate PHI Integration up to Leading Edg

&e’
endif

c --
c INTEGRATE UP TO LEADING EDGE
c Assumption: phi is zero, or constant for all t at point 1, or the
c farfield

phi_le = 0.
do i=2,npi

! Distance from previous point to point i
dx=(xpi(i) - xpi(i-1)) * upi(i-1) !(upi(i) + upi(i-1))/2.0
dy=(ypi(i) - ypi(i-1)) * vpi(i-1) !(vpi(i) + vpi(i-1))/2.0

! Calculate phi at point i based on phi at previous point and
! velocity at current point

phi_le = phi_le + dx + dy
end do

dx=x(nodle)-xpi(npi)
dy=y(nodle)-ypi(npi)
phi_le = phi_le + upi(npi)*dx + vpi(npi)*dy

c --
c INTEGRATE PHI ALONG THE LOWER SURFACE

phi_temp1 = phi_le
do 440 i=nodle-1,1,-1

! Find Distance along panel
dx = x(i) - x(i+1)
dy = y(i) - y(i+1)

! find phi at panel end point
phi_temp2 = phi_temp1 + vxdir(i)*dx + vydir(i)*dy

! phi at midpoint is average of phi at endpoints
intgrl(t,i)= (phi_temp1 + phi_temp2) / 2.0

! swap temp variables
phi_temp1 = phi_temp2

130

440 continue

c --
c INTEGRATE PHI ALONG THE UPPER SURFACE

phi_temp1 = phi_le
do 450 i=nodle,nodtot,1

! Find Distance along panel
dx = x(i+1) - x(i)
dy = y(i+1) - y(i)

! find phi at panel end point
phi_temp2 = phi_temp1 + vxdir(i)*dx + vydir(i)*dy

! phi at midpoint is average of phi at endpoints
intgrl(t,i)= (phi_temp1 + phi_temp2) / 2.0

! swap temp variables
phi_temp1 = phi_temp2

450 continue

c---
c CALCULATE SURFACE PRESSURES
c (NOTE: THE EVALUATION OF V.DX MAY BE WRONG AND
c THE X AND Y COMPONENTS OF VELOCITY ON EACH
c PANEL MAY NEED TO BE EVALUATED)

if (debug.ne.0) then
write(i_debug,*)’ - Calculate Surface Pressure’

endif
c --
c Calculate CP around airfoil

do 460 i = 1,nodtot
c Calculate Cp panel(i)

vsqare=vtan(i)**2
if (sstate.eq.0) then

if(t.eq.0) then
cp(i)=1.-vsqare-2.*intgrl(t,i)/dt

else if(t.eq.1) then
cp(i)=1.-vsqare-2.*(intgrl(t,i)-intgrl(t-1,i))/dt

else
cp(i)=1.-vsqare-2.*(intgrl(t-2,i)+3.*intgrl(t,i)-

+ 4.*intgrl(t-1,i))/dt/2.
end if

else
if(t.eq.0) then

cp(i)=1.-vsqare !- 2.*intgrl(t,i)/dt
else if(t.eq.1) then

cp(i)=1.-vsqare-2.*(intgrl(t,i)-intgrl(t-1,i))/dt
else

cp(i)=1.-vsqare-2.*(intgrl(t-2,i)+3.*intgrl(t,i)-
+ 4.*intgrl(t-1,i))/dt/2.

end if
end if ! (sstate.eq.0)

460 continue

c---
c EVALUATE AERODYNAMIC FORCES

if (debug.ne.0) then
write(i_debug,*)’ - Calc Aerodynamic Forces’

endif

cnsum=0.
casum=0.
cmsum=0.
cl = 0.
cd = 0.
cmle = 0.

131

cmea = 0.

do 475 i=1,nodtot

!- Cl
cnsum = -cp(i) * (x(i+1)-x(i))
cl = cl + cnsum

!- Cd
casum = -cp(i) * (y(i+1)-y(i))
cd = cd + casum

!- Cm
cmle=cmle+cnsum*(x(nodle)-xmid(i))-casum*(y(nodle)-ymid(i))
cmea=cmea+cnsum*(x0 -xmid(i))-casum*(y0 -ymid(i))

475 continue

c---
c---
c Export Data For Each Time Step

if (debug.ne.0) then
write(i_debug,*)’ - Export Data’

endif
c---
c FORCE DATA
c---

write(i_force,58)float(t)*dt*chord/uexp,mothis(t),
&alpha(t)*180./pi,cl,cd,cmle,cmea,delk,thetk

write(i_pressure,55) (cp(i),i=1,nodtot)

if((t.eq.0).or.(MOD(t,idump1).eq.0).or.(MOD(t,idump2).eq.0)) then
c call print_iter()

write(i_ani,*) t
write(i_ani,56) gamma(t),gammaw(t)
write(i_ani,58) float(t)*dt*chord/uexp,mothis(t),

&alpha(t)*180./pi,cl,cd,cmle
write(i_ani,56) (x(i),i=1,nodtot+2)
write(i_ani,56) (y(i),i=1,nodtot+2)
write(i_ani,56) (q(i),i=1,nodtot)

write(i_ani,55) (xmid(i),i=1,nodtot)
write(i_ani,55) (ymid(i),i=1,nodtot)
write(i_ani,55) (cp(i),i=1,nodtot)
write(i_ani,55) (vtan(i),i=1,nodtot)
write(i_ani,55) (vnor(i),i=1,nodtot)
write(i_ani,57) (xvort(i),i=1,t)
write(i_ani,57) (yvort(i),i=1,t)
write(i_ani,57) (vort(i),i=1,t)

! Free Stream Vortices
write(i_ani,*)nfsv
do k =1,7

write(i_ani,57) (fsvort(i,k),i=1,nfsv)
end do

end if

write(i_temp,55)(intgrl(t,i),i=1,nodtot),(vtan(i),i=1,nodtot),
& (cp(i),i=1,nodtot)

c---
c CONVECT WAKE PANEL AND WAKE VORTICES
c
c REV 92
c REV 100

132

! if (t.ge.1) then
if ((sstate.eq.0).or.(t.ge.1)) then

if (debug.ne.0) then
write(i_debug,*)’ - Convect Wake Panel and Vortices’

endif

nwv=nwv+1
sumvort=0.
do 480 i=nwv-1,1,-1

vort(i+1)=vort(i)
xvort(i+1)=xvort(i)+udv(i)*dt
yvort(i+1)=yvort(i)+vdv(i)*dt
nvort(i+1)=nvort(i)
sumvort=sumvort+vort(i+1)

480 continue
vort(1)=gammaw(t)*delk

! vort(1)=gammaw(t) ! REV 52
xvort(1)=xmid(nodtot+1)+.5*(u1+u2)*dt
yvort(1)=ymid(nodtot+1)+.5*(v1+v2)*dt
nvort(1)=1

c --
c Convect Freestream Vorts
c --

! Step Through All Sheet Vortices and Convect
do j = 1,nfsv

! Upper surface

! Check if sheet ends on a surface
if (fsvort(j,7).ne.0) then

! rev 120 - check if stagnation point has moved past gust element
! endpoint. If so, move element endpoint with stagnation
! point

if (fsvort(j,7).lt.fv_tan) then
fsvort(j,7) = fv_tan
fsvort(j,3) = x(fsvort(j,7))
fsvort(j,4) = y(fsvort(j,7))

end if

! Initialize Time
time = dt

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = vtan(fsvort(j,7)) * time

do while (travel .gt. 0.0)

! Calculate distance from vortex to end of panel
! i.e. distance remaining on the panel

dx = x(fsvort(j,7)+1) - fsvort(j,3)
dy = y(fsvort(j,7)+1) - fsvort(j,4)
dist = sqrt((dx)**2 + (dy)**2)

! ! Move end along panels until travel < dist
! while_flag = 1
!

if (travel .ge. dist) then
if (fsvort(j,7) .le. (nodtot)) then

! subtract time to go length of panel from timestep
time = time - dist / vtan(fsvort(j,7))

! Move index to the next panel

133

fsvort(j,7) = fsvort(j,7) + 1
! place endpoint at end of panel

fsvort(j,3) = x(fsvort(j,7))
fsvort(j,4) = y(fsvort(j,7))

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = vtan(fsvort(j,7)) * time

else if (fsvort(j,7) .eq. (nodtot+1)) then

! Move index to the next panel
fsvort(j,7) = fsvort(j,7) + 1

! place endpoint at end of panel
fsvort(j,3) = x(fsvort(j,7))
fsvort(j,4) = y(fsvort(j,7))

! Calculate remaining distance to go past end of
! wake panel

travel = travel - dist
! Place end past panel

fsvort(j,3) = fsvort(j,3) + dx * travel / dist
fsvort(j,4) = fsvort(j,4) + dy * travel / dist

! Zero Panel
fsvort(j,7) = 0

! Zero Travel
travel = 0.0

end if

else if (travel .lt. dist) then
if (fsvort(j,7) .le. (nodtot+1)) then

fsvort(j,3) = fsvort(j,3) + dx * travel / dist
fsvort(j,4) = fsvort(j,4) + dy * travel / dist

travel = 0.0

else

end if

end if
end do

else ! does not end on panel
! Move endpoints at local velocity if do not end on surface

fsvort(j,3) = fsvort(j,3) + dt * vfsvort(j,3) ! x stop
fsvort(j,4) = fsvort(j,4) + dt * vfsvort(j,4) ! y stop

end if

! Lower Surface
! Check if sheet ends on a surface
if (fsvort(j,6).ne.0) then

! rev 120 - check if stagnation point has moved past gust element
! endpoint. If so, move element endpoint with stagnation
! point

if (fsvort(j,6).gt.fv_tan) then
fsvort(j,6) = fv_tan
fsvort(j,1) = x(fsvort(j,6))
fsvort(j,2) = y(fsvort(j,6))

end if

! Initialize Time
time = dt

! Calculate Distance to travel along surface based
! on panel tangential velocity

134

if (fsvort(j,6) .gt. (1)) then
travel = abs(vtan(fsvort(j,6)-1)) * time

else
travel = abs(vtan(nodtot+1)) * time

end if

do while (travel .gt. 0.0)

! Calculate distance from vortex to end of panel
! i.e. distance remaining on the panel

if (fsvort(j,6) .gt. (1)) then
dx = x(fsvort(j,6)-1) - fsvort(j,1)
dy = y(fsvort(j,6)-1) - fsvort(j,2)
dist = sqrt((dx)**2 + (dy)**2)

else
dx = x(nodtot+2) - fsvort(j,1)
dy = y(nodtot+2) - fsvort(j,2)
dist = sqrt((dx)**2 + (dy)**2)

end if

if (travel .ge. dist) then
if (fsvort(j,6) .gt. (2)) then

! subtract time to go length of panel from timestep
time = time - dist / abs(vtan(fsvort(j,6)-1))

! Move index to the next panel
fsvort(j,6) = fsvort(j,6) - 1

! place endpoint at end of panel
fsvort(j,1) = x(fsvort(j,6))
fsvort(j,2) = y(fsvort(j,6))

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = abs(vtan(fsvort(j,6)-1)) * time

else if (fsvort(j,6) .eq. (2)) then

! subtract time to go length of panel from timestep
time = time - dist / abs(vtan(fsvort(j,6)-1))

! Move index to the next panel
fsvort(j,6) = fsvort(j,6) - 1

! place endpoint at end of panel
fsvort(j,1) = x(fsvort(j,6))
fsvort(j,2) = y(fsvort(j,6))

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = abs(vtan(nodtot+1)) * time

else if (fsvort(j,6) .eq. (1)) then

! place endpoint at end of panel
fsvort(j,1) = x(nodtot+2)
fsvort(j,2) = y(nodtot+2)

! Calculate remaining distance to go past end of
! wake panel

travel = travel - dist
! Place end past panel

fsvort(j,1) = fsvort(j,1) + dx * travel / dist
fsvort(j,2) = fsvort(j,2) + dy * travel / dist

! Zero Panel
fsvort(j,6) = 0

! Zero Travel
travel = 0.0

135

end if

else if (travel .lt. dist) then

if (fsvort(j,6) .ge. (1)) then

fsvort(j,1) = fsvort(j,1) + dx * travel / dist
fsvort(j,2) = fsvort(j,2) + dy * travel / dist

travel = 0.0

else if (fsvort(j,6) .eq. (1)) then

end if

end if

end do
else ! does not end on panel

! Move endpoints at local velocity if do not end on surface
fsvort(j,1) = fsvort(j,1) + dt * vfsvort(j,1) ! x stop
fsvort(j,2) = fsvort(j,2) + dt * vfsvort(j,2) ! y stop

end if

c --
c Split Freestream Vorts that Straddle foille
c --

c --
c Check for panel straddling foille and split
c --

c START CONDITIONAL

C 1 ! Not Already End On Airfoil
if ((fsvort(j,6) + fsvort(j,7)).eq. 0) then

C 2 ! Starting or ending vortex x coord is past x(foille)
if ((fsvort(j,1) .ge. x(foille))

& .or.(fsvort(j,3) .ge. x(foille))) then
C 3 ! Starting or ending vortex x coord is less then x(1)

if ((fsvort(j,1) .le. x(1)).and.(fsvort(j,3) .le. x(1))) then

C 4
dx = fsvort(j,2) - y(foille)
dy = fsvort(j,4) - y(foille)

! Vortex y coord straddle y(foille)
if ((dx*dy) .le. 0.0) then

C 5
dx = fsvort(j,1) - fsvort(j,3)
dy = fsvort(j,2) - fsvort(j,4)
dist = sqrt((dx)**2 + (dy)**2) ! length of vortex panel j

dyj = fsvort(j,2) - y(foille) ! y location at LE
dxj = fsvort(j,1) - dyj / dy * dx ! Corresponding x location
dyj = y(foille)

! Check that panel is past foil leading edge
if ((dxj .ge. x(foille)) .or.

& (abs(dxj - x(foille)) .lt. 1.0e-6)) then

dyj = fsvort(j,2) - (y(foille) + y(fv_tan))/2.0
! y location at LE

dxj = fsvort(j,1) - dyj / dy * dx ! Corresponding x location
dyj = (y(foille) + y(fv_tan))/2.0

136

! delta to le correlation
dx = fsvort(j,1) - dxj
dy = fsvort(j,2) - dyj

! ratio of distance to le equiv to length of vortex panel j
dist = sqrt((dx)**2 + (dy)**2) / dist

!!! write(*,*) ’ dist = ’, dist

! Fill Temp Array with Location at time t
do k = 1,4

fstemp(k) = fsvort(j,k) - vfsvort(j,k)*dt
end do

! From a point on the Panel at t to the stagnation pt
dxj = fstemp(1)+(fstemp(3)-fstemp(1))*dist
dyj = fstemp(2)+(fstemp(4)-fstemp(2))*dist

! From a point on the Panel at t+1 to the stagnation pt
dxjp = fsvort(j,1)+(fsvort(j,3)-fsvort(j,1))*dist
dyjp = fsvort(j,2)+(fsvort(j,4)-fsvort(j,2))*dist

! Slopes of each point to the stagnation pt
mj = (dyj - y(fv_tan+1)) / (dxj - x(fv_tan+1))
mjp = (dyjp - y(fv_tan+1)) / (dxjp - x(fv_tan+1))

! If the slopes are not the same, Change point on
! panels and reiterate at 495,
! Else, continue

! Find Distance traveled from point at t to the Stagnation point
dx = sqrt((dyj-y(foille))**2 + (dxj-x(foille))**2)

! Find Distance traveled from the Stagnation point to point at t+1
dy = sqrt((dyjp-y(foille))**2 + (dxjp-x(foille))**2)

! Find the portion of dt left after stagnation point reached
mj = dy / (dx + dy) * dt

if (dist .ge. 0.999) then
fsvort(j,7) = foille
nfsv_t = 0

fsvort(j,3) = x(foille)
fsvort(j,4) = y(foille)

else if (dist .le. 0.001) then
fsvort(j,6) = foille
nfsv_t = 0

fsvort(j,1) = x(foille)
fsvort(j,2) = y(foille)

else
nfsv_t = 1

! Add one panel to existing sheet
nfsv = nfsv + 1

! Shift Current Panels by One
do i = nfsv, j+1, -1

! Panel Locations
do k = 1,7

fsvort(i,k) = fsvort(i-1,k)
end do

137

! Panel Velocities
do k = 1,4

! vfsvort(i,k) = vfsvort(i-1,k)
if (i.eq.(j+1)) then

vfsvort(i,k) = 0.
else

vfsvort(i,k) = vfsvort(i-1,k)
end if

end do
end do

! Set Ending vortex
k = j

if (fv_tan .gt. foille) then
fsvort(k,7) = fv_tan

else
fsvort(k,7) = foille

end if
fsvort(k,3) = x(fsvort(k,7))
fsvort(k,4) = y(fsvort(k,7))
fsvort(k,5) = fsvort(k,5) * dist

! Set Starting vortex
k = j + 1
if (fv_tan .lt. foille) then

fsvort(k,6) = fv_tan
else

fsvort(k,6) = foille
end if
fsvort(k,1) = x(fsvort(k,6))
fsvort(k,2) = y(fsvort(k,6))
fsvort(k,5) = fsvort(k,5) * (1 - dist)

c ! Stop Execution
c goto 9999

end if ! dist .le. 0.001

do k = j,j + nfsv_t
time = mj

if (fsvort(k,7).ne.0) then
travel = vtan(fsvort(k,7)) * time
do while (travel .gt. 0.0)

! Calculate distance from vortex to end of panel
! i.e. distance remaining on the panel

dx = x(fsvort(k,7)+1) - fsvort(k,3)
dy = y(fsvort(k,7)+1) - fsvort(k,4)
dist = sqrt((dx)**2 + (dy)**2)

! ! Move end along panels until travel < dist
! while_flag = 1
!

if (travel .ge. dist) then
if (fsvort(k,7) .lt. (nodtot)) then

! subtract time to go length of panel from timestep
time = time - dist / vtan(fsvort(k,7))

! Move index to the next panel
fsvort(k,7) = fsvort(k,7) + 1

! place endpoint at end of panel
fsvort(k,3) = x(fsvort(k,7))
fsvort(k,4) = y(fsvort(k,7))

! Calculate Distance to travel along surface based

138

! on panel tangential velocity
travel = vtan(fsvort(k,7)) * time

else if (fsvort(k,7) .eq. (nodtot)) then

! subtract time to go length of panel from timestep
time = time - dist / vtan(fsvort(k,7))

! Move index to the next panel
fsvort(k,7) = fsvort(k,7) + 1

! place endpoint at end of panel
fsvort(k,3) = x(fsvort(k,7))
fsvort(k,4) = y(fsvort(k,7))

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = vtan(fsvort(k,7)) * time

else if (fsvort(k,7) .eq. (nodtot+1)) then

! Move index to the next panel
fsvort(k,7) = fsvort(k,7) + 1

! place endpoint at end of panel
fsvort(k,3) = x(fsvort(k,7))
fsvort(k,4) = y(fsvort(k,7))

! Calculate remaining distance to go past end of
! wake panel

travel = travel - dist
! Place end past panel

fsvort(k,3) = fsvort(k,3) + dx * travel / dist
fsvort(k,4) = fsvort(k,4) + dy * travel / dist

! Zero Panel
fsvort(k,7) = 0

! Zero Travel
travel = 0.0

end if

else if (travel .lt. dist) then
if (fsvort(k,7) .le. (nodtot+1)) then

fsvort(k,3) = fsvort(k,3) + dx * travel / dist
fsvort(k,4) = fsvort(k,4) + dy * travel / dist

travel = 0.0

else

end if

end if
end do

end if

if (fsvort(k,6).ne.0) then
! Calculate Distance to travel along surface based
! on panel tangential velocity
if (fsvort(k,6) .gt. (1)) then

travel = abs(vtan(fsvort(k,6)-1)) * time
else

travel = abs(vtan(nodtot+1)) * time
end if

do while (travel .gt. 0.0)

! Calculate distance from vortex to end of panel
! i.e. distance remaining on the panel

if (fsvort(k,6) .gt. (1)) then
dx = x(fsvort(k,6)-1) - fsvort(k,1)

139

dy = y(fsvort(k,6)-1) - fsvort(k,2)
dist = sqrt((dx)**2 + (dy)**2)

else
dx = x(nodtot+2) - fsvort(k,1)
dy = y(nodtot+2) - fsvort(k,2)
dist = sqrt((dx)**2 + (dy)**2)

end if

if (travel .ge. dist) then
if (fsvort(k,6) .gt. (2)) then

! subtract time to go length of panel from timestep
time = time - dist / abs(vtan(fsvort(k,6)-1))

! Move index to the next panel
fsvort(k,6) = fsvort(k,6) - 1

! place endpoint at end of panel
fsvort(k,1) = x(fsvort(k,6))
fsvort(k,2) = y(fsvort(k,6))

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = abs(vtan(fsvort(k,6)-1)) * time

else if (fsvort(k,6) .eq. (2)) then

! subtract time to go length of panel from timestep
time = time - dist / abs(vtan(fsvort(k,6)-1))

! Move index to the next panel
fsvort(k,6) = fsvort(k,6) - 1

! place endpoint at end of panel
fsvort(k,1) = x(fsvort(k,6))
fsvort(k,2) = y(fsvort(k,6))

! Calculate Distance to travel along surface based
! on panel tangential velocity

travel = abs(vtan(nodtot+1)) * time

else if (fsvort(k,6) .eq. (1)) then

! place endpoint at end of panel
fsvort(k,1) = x(nodtot+2)
fsvort(k,2) = y(nodtot+2)

! Calculate remaining distance to go past end of
! wake panel

travel = travel - dist
! Place end past panel

fsvort(k,1) = fsvort(k,1) + dx * travel / dist
fsvort(k,2) = fsvort(k,2) + dy * travel / dist

! Zero Panel
fsvort(k,6) = 0

! Zero Travel
travel = 0.0

end if

else if (travel .lt. dist) then

if (fsvort(k,6) .ge. (1)) then

fsvort(k,1) = fsvort(k,1) + dx * travel / dist
fsvort(k,2) = fsvort(k,2) + dy * travel / dist

travel = 0.0

else if (fsvort(k,6) .eq. (1)) then

end if

140

end if

end do

end if

end do ! k

c pause

C 5
end if

C 4
end if ! if ((dx*dy) .lt. 0.0) then

C 3
end if

C 2
end if ! if ((fsvort(j,1) .ge. x(foille)).or.(fsvort(j,3)

! .ge. x(foille))) then
C 1

end if ! if ((fsvort(j,6) + fsvort(j,7)).eq. 0) then

c END CONDITIONAL

end do ! j (nfsv)

c REV 92
end if ! (t.ge.1)

c---
c RETURN TO NEXT TIME STEP
c

if (debug.ne.0) then
write(i_debug,*)’ - End Time Step’

endif

!---
! Print Forces to screen
!---
! if((t.eq.idump1).or.(idump1.eq.0).or.(MOD(t,idump2).eq.0)) then

if((t.eq.0).or.(MOD(t,idump1).eq.0)) then

if (t.le.1) write(6,49)’t’,’h’,’alpha’,’cl’,’cmle’,’cmea’,’iter’,
& ’GAMMA’,’GAMMAW’!,’phi_le’,’phi_us’,’phi_ls’
write(6,50)float(t)*dt*chord/uexp,mothis(t),alpha(t)*180./pi,cl,
&cmle,cmea,dreal(iter)/1.D3,gamma(t)*perim,gammaw(t)*delk

! &phi_le,
! &intgrl(t,nodtot),
! &intgrl(t,1)

end if

clp = cl
cmeap = cmea

cl_s(t) = cl
cmle_s(t) = cmle
cmea_s(t) = cmea
cmo_s(t) = cmle + cl/4.
cd_s(t) = cd
t_s(t) = t*dt

1000 continue

!---
!---
! Close Open Data Files

write(6,*)’Closing Data Files’

if (i_debug .NE. 6) then ! Close Debug if open
close(UNIT=i_debug)

141

endif

CLOSE(UNIT=i_force)
!---
! Print Summary Output
!---
c call print_readme()

!---
! Print Status to Screen
!---

write(6,*)’Finished’

elapsed = etime(extime)
write(*,*) ’Executed in ’, elapsed, ’(s) CPU time.’
write(*,*) extime(1), ’(s) user time, ’, extime(2),
&’(2) system time.’

!---
9999 continue

!---
!----- Close Open Graphics Windows

if (graphics.eq.1.) then
! call pgslct(istat(3))
! call pgclos
! call pgslct(istat(2))
! call pgclos

call pgslct(istat(1))
call pgclos

end if

stop
end

!---
c End Program Unpanel
!---

c---
c Include Files
c---
c (-G77 Start)

include ’read_foil.f’
include ’read_freevort.f’
include ’read_motion.f’
include ’plot_motion.f’
include ’plot_airfoil.f’

Include ’rotate_foil_r109.f’
include ’rk4_resp.f’
Include ’rotate_pt.f’

include ’calc_panel_inf.f’
include ’calc_point_inf.f’

include ’gauss.f’

include ’calc_pt_vel.f’

c---
c Subroutines and Functions
c---
C namlen DIRECTLY from Tim Cowan’s Euler3d utilities.

c***c
c***c

integer function namlen(filen)
c
c***c
c

character*72 filen

142

c
c---c
c

namlen = 0
do i = 72,1,-1

if (filen(i:i) .ne. ’ ’) then
namlen = i
goto 101

endif
enddo

101 return
c

end
c***c
c***c

integer function rootlen(filen)
c
c***c
c

character*72 filen
c
c---c
c

namlen = 0
do i = 72,1,-1

if (filen(i:i) .eq. ’.’) then
rootlen = i-1
goto 101

endif
enddo

101 return
c

end
c***c

c***c
c***c

integer function dirlen(filen)
c
c***c
c

character*72 filen
c
c---c
c

namlen = 0
do i = 72,1,-1

if ((filen(i:i) .eq. ’/’).or.(filen(i:i) .eq. ’\’)) then
dirlen = i-1
goto 101

endif
enddo

101 return
c

end
c***c
c---

real*8 function local_tan(u,v,costhe,sinthe)

c --
implicit none
real*8 u,v,costhe,sinthe

local_tan = u*costhe + v*sinthe

return
end

c---
c---

real*8 function local_nor(u,v,costhe,sinthe)

c --

143

implicit none

real*8 u,v,costhe,sinthe

local_nor = -u*sinthe + v*costhe

return
end

c---

144

APPENDIX B

COMMON FILES

B.1 Common Variables Declarations
The common files contain variables used in multiple locations. The files are organized

around Common Blocks and variable usage.

B.1.1 lengths.inc

!---
!-- Lengths.inc
!---

INTEGER lpanel
INTEGER liter
INTEGER lphi
integer lfree
integer knd
parameter(lpanel = 300, liter = 10000, lphi = 201 , lfree = 3001,

& knd = 4)
!---

B.1.2 airfoil.inc

!---
!-- airfoil.inc
!---

common /airfoil/ nodle, nodtot, x0, y0, x, y, xmid, ymid, xmidp,
&ymidp, costhe, sinthe, perim, foille

INTEGER nodle ! node of leading edge
INTEGER nodtot ! total number of nodes
REAL*8 x0 ! x-coordinate of the Elastic Axis
REAL*8 y0 ! y-coordinate of the Elastic Axis
REAL*8 x(lpanel) ! x-coordinate of node location
REAL*8 y(lpanel) ! y-coordinate of node location
REAL*8 xmid(lpanel) ! x-coordinate of middle of panel
REAL*8 ymid(lpanel) ! y-coordinate at middle of panel
REAL*8 xmidp(lpanel) ! x-coordinate of middle of panel

! previous time step
REAL*8 ymidp(lpanel) ! y-coordinate of middle of panel

! previous time step
REAL*8 costhe(lpanel) ! array of cosine of angle of panels

! with the x axis
REAL*8 sinthe(lpanel) ! array of sine of angle of panels

! with x-axis
REAL*8 perim ! perimeter of the airfoil
integer foille

!---

145

B.1.3 calc.inc

!---
!-- calc.inf
!---

common /pt_inf/ vel
real*8 vel(4)

!---

B.1.4 const.inc

!---
!-- const.inc
!---

common /const/ pi, pi2inv, rho_fluid
REAL*8 pi ! 3.141593...
REAL*8 pi2inv ! 1/(2*pi)
real*8 rho_fluid ! Density of fluid

!---

B.1.5 debug.inc

!---
!-- debug.inc
!---

common /debugstatus/ debug

integer debug
integer debug_wake

!---

B.1.6 file.inc

!---
!-- file.inc
!---

common /file/ i_readme, i_airfoil, i_config, i_debug, i_mot,
&i_pressure, i_force, i_foil, i_tan, i_vortex, i_elements,
&i_data, idump1, idump2, fn, f_debug, f_mot, f_foil, foil_desc,
&f_vort, i_temp

! File Identifiers
INTEGER i_readme
INTEGER i_airfoil
INTEGER i_config
INTEGER i_direc
INTEGER i_debug
INTEGER i_mot
INTEGER i_pressure
INTEGER i_force
INTEGER i_foil
INTEGER i_tan
INTEGER i_vortex
INTEGER i_elements
INTEGER i_data
integer i_ani
integer i_ani2
INTEGER idump1
INTEGER idump2

146

INTEGER len_config
integer i_temp
integer i_phi
integer i_samp
integer i_resp

! File Names
CHARACTER*72 fn
CHARACTER*72 f_debug
CHARACTER*72 f_mot
CHARACTER*72 f_foil
CHARACTER*72 foil_desc
CHARACTER*72 f_vort
CHARACTER*72 f_config
CHARACTER*72 f_samp

!---

B.1.7 forces.inc

!---
!-- forces.inc
!---

common /forces/ cl, cd, cmle, cmea, cp, cl_s, cmle_s, cmea_s,
& cmo_s, cd_s, t_s, clp, cmeap

REAL*8 cl ! Coefficient of Lift
REAL*8 cd ! Coefficient of Drag
REAL*8 cmle ! Set equal to cmsum
REAL*8 cmea ! Set equal to cmsum
REAL*8 cp(lpanel) ! Cp on each panel

real*8 cl_s(0:liter) ! Cl Time History
real*8 cmle_s(0:liter) ! Cmle Time History
real*8 cmea_s(0:liter) ! Cmea Time History
real*8 cmo_s(0:liter) ! Cmo Time History
real*8 cd_s(0:liter) ! Cd Time History
real*8 t_s(0:liter) ! Time History

real*8 clp ! CL for previous time step
real*8 cmeap ! cmea for previous time step

!---

B.1.8 freeresp.inc

!---
!-- freeresp,inc
!---

common /freeresp/ mu, k_a, k_h, r_a, x_a,
& omega, hdot, eta_a, eta_h, ufre, f_responce

integer f_responce
real*8 mu
real*8 k_a
real*8 k_h
real*8 r_a
real*8 x_a

real*8 omega
real*8 hdot

147

real*8 eta_a
real*8 eta_h

real*8 ufre
!---

B.1.9 freevort.inc

!---
!-- freevort.inc
!---

common /freevort/ fsvort, fv_split, fv_tan, nfsv

integer nfsv ! Number of free stream vortex panels
real*8 fsvort(lfree, 7)
! Store Free Stream Vortex Location and Strength
! (n,1) Panel Starting Location x coordinate
! (n,2) Panel Starting Location y coordinate
! (n,3) Panel Ending Location x coordinate
! (n,4) Panel Ending Location y coordinate
! (n,5) Vortex Strength
! (n,6) Panel Vortex Starts on if along airfoil
! (n,7) Panel Vortex Ends on if along airfoil

real*8 vfsvort(lfree, 4)
! Stores Free Stream Vortex Velocity
! (n,1) Panel Starting Location x velocity
! (n,2) Panel Starting Location y velocity
! (n,3) Panel Ending Location x velocity
! (n,4) Panel Ending Location y velocity

real*8 fstemp(5)
! Temporary calculation storage for first 5 values of fsvort()

integer fv_split
integer fv_tan
integer stag_pt

!---

B.1.10 gau.inc

!---
!-- gau.inc
!---

common /gau/ a
REAL*8 a(lpanel+1,lpanel+1) ! [A] For Gauss Solver
!---

B.1.11 graph.inc

!---
!-- graph.inc
!---

common /graph/ graphics, savegif

INTEGER graphics ! Determines if Graphical output should be
! displayed at runtime

INTEGER savegif ! Determines if Graphical output should be
! Saved as Gifs at runtime

148

INTEGER zm_field
real zm_field_x(2) ! (1) min (2) max
real zm_field_y(2) ! (1) min (2) max

!---

B.1.12 iterative.inc

!---
!-- iterative.inc
!---

common /iterative/ t
INTEGER t ! time (iteration)

!---

B.1.13 motion.inc

!---
!-- motion.inc
!---

common /motion/ alpha, mothis, nstep
INTEGER nstep ! total number of time steps
REAL*8 alpha(0:liter) ! airfoil angle of attack (deg)
REAL*8 mothis(0:liter)

!---

B.1.14 param.inc

!---
!-- param.inc
!---

common /param/ uexp, dt, alphafs, chord
REAL*8 uexp ! Free Stream Velocity
REAL*8 dt ! time step
REAL*8 alphafs ! Free Stream Angle of Attack
REAL*8 chord ! Chord Length of the airfoil

!---

B.1.15 phi.inc

!---
!-- phi.inc
!---

common /phi/ x_far, y_far, xpi, ypi, upi, vpi, npi
! Integrating Points

integer npi ! Number Of Integrating Points
real*8 x_far
real*8 y_far
REAL*8 xpi(lphi) ! x-coordinate of phi integration point
REAL*8 ypi(lphi) ! y-coordinate of phi integration point
REAL*8 upi(lphi) ! x-velocity component at phi integration

! point
REAL*8 vpi(lphi) ! y-velocity component at phi integration

! point
!---

149

B.1.16 relax.inc

!---
!-- relax.inc
!---

common /relax/ relax_delk, relax_thetk, relax_gammaw

real*8 relax_delk
real*8 relax_thetk
real*8 relax_gammaw

!---

B.1.17 strengths.inc

!---
!-- strengths.inc
!---

common /strengths/ q, gamma, gammaw
REAL*8 q(lpanel) ! strength of each source panel
REAL*8 gamma(0:liter) ! vorticity on airfoil
REAL*8 gammaw(0:liter) ! vorticity on wake panel

!---

B.1.18 velocities.inc

!---
!-- velocities.inc
!---

common /velocities/ vtan, vnor
REAL*8 vtan(lpanel) ! tangential velocity on panel
REAL*8 vnor(lpanel) ! tangential velocity on panel

REAL*8 vxdir(lpanel) ! tangential velocity on panel
REAL*8 vydir(lpanel) ! tangential velocity on panel

!---

B.1.19 wake.inc

!---
!-- wake.inc
!---

common /wake/ nwv, ngv, vgd, nvort, xvort, yvort, vort, udv, vdv

INTEGER nwv ! Total # of wake vortices (including "big"
! ones)

INTEGER ngv ! number of small vortices past vortice
! grouping distance before they are grouped
! into a "big" vortice

REAL*8 vgd ! vortice grouping distance (nondimensional,
! in chord lengths)

INTEGER nvort(liter) ! # of vortices that have been grouped into
! wake vortex i

REAL*8 xvort(liter) ! x-coordinate of discrete vortex location
REAL*8 yvort(liter) ! y-coordinate of discrete vortex location
REAL*8 vort(liter) ! strength of discrete vortex
REAL*8 udv(liter) ! x-velocity component at discrete vortex
REAL*8 vdv(liter) ! y-velocity component at discrete vortex

!---

150

B.1.20 wakepannel.inc

!---
!-- wakepanel.inc
!---

common /wakepannel/ delk, delk1, dkcon, tkcon, thetk, thetk1
REAL*8 delk ! length of wake panel
REAL*8 delk1 ! length of wake panel (last iteration)
REAL*8 dkcon ! convergence of delk
REAL*8 tkcon ! convergence of thetk
REAL*8 thetk ! angle of wake panel with x-axis
REAL*8 thetk1 ! angle of wake panel with x-axis (last

! iteration)
real*8 gwcon
real*8 gammaw1

!---

B.1.21 graph cons.inc

!---
!-- graph_cons.inc
!---

character*20 color_n(0:15)
data color_n /’Black ’, ’White ’, ’Red ’, ’Green ’, ’Blue ’,

& ’Cyan ’, ’Magenta ’, ’Yellow ’, ’Orange ’, ’Green + Yellow ’,
& ’Green + Cyan ’, ’Blue + Cyan ’, ’Blue + Magenta ’,
& ’Red + Magenta ’, ’Dark Gray ’, ’Light Gray ’/

!---
! Index Color
! --- --------------------- ---- ---- ---- ---- ---- ----
! 0 Black (background) 0, 0.00, 0.00 0.00, 0.00, 0.00
! 1 White (default) 0, 1.00, 0.00 1.00, 1.00, 1.00
! 2 Red 120, 0.50, 1.00 1.00, 0.00, 0.00
! 3 Green 240, 0.50, 1.00 0.00, 1.00, 0.00
! 4 Blue 0, 0.50, 1.00 0.00, 0.00, 1.00
! 5 Cyan (Green + Blue) 300, 0.50, 1.00 0.00, 1.00, 1.00
! 6 Magenta (Red + Blue) 60, 0.50, 1.00 1.00, 0.00, 1.00
! 7 Yellow (Red + Green) 180, 0.50, 1.00 1.00, 1.00, 0.00
! 8 Red + Yellow (Orange) 150, 0.50, 1.00 1.00, 0.50, 0.00
! 9 Green + Yellow 210, 0.50, 1.00 0.50, 1.00, 0.00
! 10 Green + Cyan 270, 0.50, 1.00 0.00, 1.00, 0.50
! 11 Blue + Cyan 330, 0.50, 1.00 0.00, 0.50, 1.00
! 12 Blue + Magenta 30, 0.50, 1.00 0.50, 0.00, 1.00
! 13 Red + Magenta 90, 0.50, 1.00 1.00, 0.00, 0.50
! 14 Dark Gray 0, 0.33, 0.00 0.33, 0.33, 0.33
! 15 Light Gray 0, 0.66, 0.00 0.66, 0.66, 0.66

!---

151

APPENDIX C

INPUT FILES

C.1 Configuration File

!---
! Configuration file, set Namelists for runtime parameters
!---
!---
! &vpm_in
! ---
! F_FOIL - Input File With Airfoil Coordinates
! X0 - x/c Location Of Elastic Axis
! Y0 - y/c Location Of Elastic Axis
!
! F_RESPONCE - Calculate Airfoil Free Elastic Responce if > 0
! B_RATIO - Ratio Of Pitching Frequency To Plunging Frequency
! (Omega_alpha / Omega_h)
! MU - Normalized Density Ratio
! (m / pi*rho*b^2)
! X_ALPHA - Dimensionless Static Imbalance
! (sqrt(S_alpha / m*b)
! R_ALPHA - Dimensionless Radius Of Gyration
! (I_alpha^2.....)
!
! F_MOT - Arbitrary Motion Input File
! (CSV Or Space Delimited)
! F_VORT - Starting Location for Free Stream Vortex Sheets
! (CSV Or Space Delimited)
! -- Note, use ’none’ for filename if there are no free
! stream vorticies
!
! IDUMP1 - A Single Time Step To Save Data At
! IDUMP2 - A Time Step Multiple To Save Data At
!
! DEBUG - Show Debug Data/Comments
! DEBUG_WAKE - Not Used
! I_DEBUG - Where to Send Debug Info, 6 = screen, any other
! integers save to file
!
! RELAX_GAMMAW - Over/Under Relaxation Factors for Wake Panel
! Iterations
! RELAX_DELK - Over/Under Relaxation Factors for Wake Panel
! Iterations
! RELAX_THETK - Over/Under Relaxation Factors for Wake Panel
! Iterations
!
!---
! &graph - Set Graphics Parameters
! --
!
! GRAPHICS - To Show Graphics, set GRAPHICS > 0
! SAVEGIF - To Save graphics as gifs instead of sending to

152

! display, set SAVEGIF > 0
! ZM_FIELD - Zoom Flowfield Display
! 0 = Default
! 1 = Zoom to dimensions specified in ZM_FIELD_X and
! ZM_FIELD_Y
! 2 = Convects View Specified At t=0 by ZM_FIELD_X and
! ZM_FIELD_Y With The Free Stream Velocity
! ZM_FIELD_X - Two Element Vector Specifying MIN and MAX Region
! ZM_FIELD_Y

!---
! &phi_int - Set Phi Integration Parameters
! --
! npi - Number of points to place between leading edge and
! Phi = 0
! x_far - x location to place point where Phi = 0
! y_far - y location to place point where Phi = 0
!
!---

&vpm_in
F_FOIL = ’in\airfoils\c060p066\n0012.100’,
X0 = 0.25,
Y0 = 0.0,

F_RESPONCE = 0,
B_RATIO = 1,
MU = 20.,
X_ALPHA = 0.0,
R_ALPHA = 0.5,

F_MOT = ’in\motion\wa01t005.mot’,

F_VORT = ’none’,

IDUMP1 = 1,
IDUMP2 = 1,

DEBUG = 0,
DEBUG_WAKE = 0,
I_DEBUG = 6,

RELAX_GAMMAW = 1.0,
RELAX_DELK = 1.0,
RELAX_THETK = 1.0

/

&graph
GRAPHICS = 0,
SAVEGIF = 0,
ZM_FIELD = 0,
ZM_FIELD_X = -.05 1.05
ZM_FIELD_Y = -0.15 0.15

/

&phi_int
npi = 100
x_far = -10.0
y_far = 0.0

/

C.2 Airfoil Coordinates

NACA0.12
1.00000000 0.00000000
0.86666667 -0.01760195
0.73333333 -0.03264190

153

0.60000000 -0.04518009
0.47410810 -0.05421574
0.34986683 -0.05933467
0.23519668 -0.05890533
0.13740798 -0.05205985
0.06273483 -0.03908178
0.01593772 -0.02123112
0.00000000 0.00000000
0.01593772 0.02123112
0.06273483 0.03908178
0.13740798 0.05205985
0.23519668 0.05890533
0.34986683 0.05933467
0.47410810 0.05421574
0.60000000 0.04518009
0.73333333 0.03264190
0.86666667 0.01760195
1.00000000 -0.00000000

C.3 Motion History

Free Stream Velocity (uinf),,
1.000000 ,,

Time Incrememnt - (dt),,
.005,,
tstep (integer),alpha (deg), mothis (chord)
0.0000000E+00 , 1.000000 , 0.0000000E+00
9.9999998E-03 , 1.000000 , 0.0000000E+00
2.0000000E-02 , 1.000000 , 0.0000000E+00
2.9999999E-02 , 1.000000 , 0.0000000E+00
3.9999999E-02 , 1.000000 , 0.0000000E+00
4.9999997E-02 , 1.000000 , 0.0000000E+00
5.9999999E-02 , 1.000000 , 0.0000000E+00
7.0000000E-02 , 1.000000 , 0.0000000E+00
7.9999998E-02 , 1.000000 , 0.0000000E+00
8.9999996E-02 , 1.000000 , 0.0000000E+00
9.9999994E-02 , 1.000000 , 0.0000000E+00
0.1100000 , 1.000000 , 0.0000000E+00
0.1200000 , 1.000000 , 0.0000000E+00
0.1300000 , 1.000000 , 0.0000000E+00
0.1400000 , 1.000000 , 0.0000000E+00
0.1500000 , 1.000000 , 0.0000000E+00
0.1600000 , 1.000000 , 0.0000000E+00
0.1700000 , 1.000000 , 0.0000000E+00
0.1800000 , 1.000000 , 0.0000000E+00
0.1900000 , 1.000000 , 0.0000000E+00
0.2000000 , 1.000000 , 0.0000000E+00

C.4 Free Stream Vortices

x1 y1 x2 y2 GAMMA
-1.000000 2.000000 -1.000000 1.900000 0.0100000
-1.000000 1.900000 -1.000000 1.800000 0.0100000
-1.000000 1.800000 -1.000000 1.700000 0.0100000
-1.000000 1.700000 -1.000000 1.600000 0.0100000
-1.000000 1.600000 -1.000000 1.500000 0.0100000
-1.000000 1.500000 -1.000000 1.400000 0.0100000
-1.000000 1.400000 -1.000000 1.300000 0.0100000
-1.000000 1.300000 -1.000000 1.200000 0.0100000
-1.000000 1.200000 -1.000000 1.100000 0.0100000
-1.000000 1.100000 -1.000000 1.000000 0.0100000
-1.000000 1.000000 -1.000000 0.900000 0.0100000
-1.000000 0.900000 -1.000000 0.800000 0.0100000
-1.000000 0.800000 -1.000000 0.700000 0.0100000
-1.000000 0.700000 -1.000000 0.600000 0.0100000

154

-1.000000 0.600000 -1.000000 0.500000 0.0100000
-1.000000 0.500000 -1.000000 0.400000 0.0100000
-1.000000 0.400000 -1.000000 0.300000 0.0100000
-1.000000 0.300000 -1.000000 0.200000 0.0100000
-1.000000 0.200000 -1.000000 0.100000 0.0100000
-1.000000 0.100000 -1.000000 -0.100000 0.0200000
-1.000000 -0.100000 -1.000000 -0.200000 0.0100000
-1.000000 -0.200000 -1.000000 -0.300000 0.0100000
-1.000000 -0.300000 -1.000000 -0.400000 0.0100000
-1.000000 -0.400000 -1.000000 -0.500000 0.0100000
-1.000000 -0.500000 -1.000000 -0.600000 0.0100000
-1.000000 -0.600000 -1.000000 -0.700000 0.0100000
-1.000000 -0.700000 -1.000000 -0.800000 0.0100000
-1.000000 -0.800000 -1.000000 -0.900000 0.0100000
-1.000000 -0.900000 -1.000000 -1.000000 0.0100000
-1.000000 -1.000000 -1.000000 -1.100000 0.0100000
-1.000000 -1.100000 -1.000000 -1.200000 0.0100000
-1.000000 -1.200000 -1.000000 -1.300000 0.0100000
-1.000000 -1.300000 -1.000000 -1.400000 0.0100000
-1.000000 -1.400000 -1.000000 -1.500000 0.0100000
-1.000000 -1.500000 -1.000000 -1.600000 0.0100000
-1.000000 -1.600000 -1.000000 -1.700000 0.0100000
-1.000000 -1.700000 -1.000000 -1.800000 0.0100000
-1.000000 -1.800000 -1.000000 -1.900000 0.0100000
-1.000000 -1.900000 -1.000000 -2.000000 0.0100000

155

APPENDIX D

GRAPHICS ROUTINES

D.1 Plotting Routines
Plot and compare output.

D.1.1 Compare Data r10

PROGRAM compare
!---
!---
! rev 10
! - Remove comments and unnecessary code for Publication
!---
!---
!----- Variables

IMPLICIT NONE

!- Include Common Variable Definitions
INCLUDE ’graph_cons.inc’

!- Array Length Parameters
INTEGER liter
INTEGER lcompare
PARAMETER(liter = 10000, lcompare = 10)

!- Data Variables
REAL TIME(liter,lcompare)
REAL h(liter,lcompare)
REAL alpha(liter,lcompare)
REAL cl(liter,lcompare)
REAL CMLE(liter,lcompare)
REAL CMEA(liter,lcompare)
REAL CD(liter,lcompare)
INTEGER nstep(lcompare)
CHARACTER*20 titles(lcompare)

!- Code Variables
REAL temp
CHARACTER*72 fn(lcompare)
INTEGER i_data, i, j

!- Graphics Variables
INTEGER pgopen
INTEGER istat(10)
REAL xmin
REAL xmax
REAL ymin
REAL ymax

INTEGER just, axis
CHARACTER*70 title
REAL pgscale

156

REAL xtempa(liter,lcompare)
REAL ytempa(liter,lcompare)
REAL ztempa(liter,lcompare)
REAL xtemp(liter)
REAL ytemp(liter)
REAL ztemp(liter)

INTEGER ltemp

INTEGER nsets
INTEGER gtype
INTEGER gforce
INTEGER reread

INTEGER namlen
INTEGER leng

real*8 rate(liter)
real*8 peaks_t(liter)
real*8 peaks_amp(liter)
integer npeaks

real*8 troughs_t(liter)
real*8 troughs_amp(liter)
integer ntroughs

!- Initalize Variables
i_data = 11

!----- Format Statements

!----- Body

!-------- Prompt for File Input
write(*,*)’ Number of Datasets to Compare?’
read(*,*) nsets

do j=1,nsets
write(*,*)’ Name of set (’,j,’) relative to cd (72 char max)’
read(*,*)fn(j)

end do

!-------- Plot Parameters

istat(1) = pgopen(’/xserve’)
c istat(1) = pgopen(’?’)

if (istat(1).le.0) stop
call PGASK(.false.)

!-------- Read Input Files
1000 continue

reread = 0
do j = 1,nsets

open(UNIT=i_data, FILE=fn(j), status=’unknown’)
i = 1
do while(.true.)

! Read coordinates into x(i) and y(i)
1010 format(9(E20.10,1X))

read(i_data,fmt=1010,end=1020) time(i,j),h(i,j),alpha(i,j),
& CL(i,j),CD(i,j),CMLE(i,j),CMEA(i,j) !,temp

i=i+1
end do

1020 continue

157

nstep(j) = i-1
! write(*,*)’j ’,j,’ i ’,i,’ nstep ’,nstep(j)

close(UNIT=i_data)
end do

!-------- Define Titles
titles(1) = ’Cl vs. Time’
titles(2) = ’Cmle vs. Time’
titles(3) = ’Cmea vs. Time’
titles(4) = ’Cd vs. Time’
titles(5) = ’Alpha vs. Time’
titles(6) = ’h/c vs. Time’
titles(7) = ’h/c vs. Alpha’

gforce = 1
do while(gforce.gt.0)

if (gforce.eq.1) then
write(*,*)’--------------------------’
do i = 1,7

write(*,’(a,I2,a,a)’)’ (’,i,’) ’,titles(i)
end do

! write(*,*)’ (2) Cm vs. Time’
! write(*,*)’ (3) Cd vs. Time’
! write(*,*)’ (4) Alpha vs. Time’
! write(*,*)’ (5) h/c vs. Time’
! write(*,*)’ (6) Cl vs. Alpha’

write(*,*)’--------------------------’

gtype = 0
do while ((gtype.lt.1).or.(gtype.gt.7))

write(*,*)’ Pick Parameter to Plot’
read(*,*)gtype

end do

!--- Fill Temp Arrays With Chosen Values
do j=1,nsets

do i=1,nstep(j)
!-- Fill xtempa

if ((1.le.gtype).and.(gtype.le.6)) then
xtempa(i,j)=time(i,j)

else if ((7.eq.gtype)) then
xtempa(i,j)=alpha(i,j)

end if

!-- Fill ytempa
if ((1.eq.gtype))then

ytempa(i,j)=cl(i,j)
else if ((2.eq.gtype))then

ytempa(i,j)=CMLE(i,j)
else if ((3.eq.gtype))then

ytempa(i,j)=CMEA(i,j)
else if ((4.eq.gtype))then

ytempa(i,j)=cd(i,j)
else if ((5.eq.gtype))then

ytempa(i,j)=alpha(i,j)
else if ((6.eq.gtype))then

ytempa(i,j)=h(i,j)
else if ((7.eq.gtype))then

158

ytempa(i,j)=h(i,j)
end if

end do
end do

end if

!--- Find Limits to Plot
if (gforce.eq.2) then

write(*,*)’ X-axis Limits (xmin, xmax)’
read(*,*)xmin,xmax
write(*,*)’ Y-axis Limits (xmin, xmax)’
read(*,*)ymin,ymax

else if (gforce.eq.1) then
!------ x-axis

xmin = 0
xmax = 0
if ((1.le.gtype).and.(gtype.le.6)) then

do j = 1,nsets
xmax = max(xmax,time(nstep(j),j))

end do
else if ((7.eq.gtype)) then

do j = 1,nsets
do i = 1,nstep(j)

xmin = min(xmin,(xtempa(i,j))*1.1)
xmax = max(xmax,(xtempa(i,j))*1.1)

end do
end do

end if

!------ y-axis
ymin = 0.
ymax = 0.
do j = 1,nsets

do i = 1,nstep(j)
ymin = min(ymin,(ytempa(i,j))*1.1)
ymax = max(ymax,(ytempa(i,j))*1.1)

end do
end do

end if

! Select Graphics Window
call pgslct(istat(1))

c CALL PGERAS
!-- Save as Gif
if (gforce.eq.3) then

write(*,*)’File name to Save As (no extension)’
read(*,*) fn(nsets+1)
leng = namlen(fn(nsets+1))
write(fn(nsets+2),’(a,".ps/cps")’)fn(nsets+1)(1:leng)
write(*,*)fn(nsets+2)
istat(4) = pgopen(fn(nsets+2))
call pgslct(istat(4))

end if

call pgbbuf()
! Color Index

call pgsci(1)
! Line Style

call pgsls(1)
! Axis Properties

just = 0

159

axis = 0

call PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS)
! Label Axes

call pglab(’’,’’,titles(gtype))

! Set Line Style
call pgsls(1)

do j = 1,nsets
! Set Color Index

call pgsci(j+1) ! Red
! Plot Line

do i = 1,nstep(j)
xtemp(i) = xtempa(i,j)
ytemp(i) = ytempa(i,j)

end do

call pgline(nstep(j),xtemp,ytemp)

c write(title,)

call pgsch(0.75)
i = namlen(fn(j))
write(title,’("- ",A," = ",A,A,A)’)color_n(j+1),

& ’’,fn(j)(1:i),’’
write(*,*)title
call PGMTXT (’T’, -real(1+j), 1./20., 0.0, title)

end do

call pgebuf()

if (gforce.eq.3) then
call pgclos

end if

!--- Options
write(*,*)’----------------------------------’
write(*,*)’ (0) Exit’
write(*,*)’ (1) Plot Another Parameter’
write(*,*)’ (2) Zoom Current Plot’
write(*,*)’ (3) Save Current Plot’
write(*,*)’ (4) Reload Data’
write(*,*)’----------------------------------’

gforce = -1
do while ((gforce.lt.0).or.(gforce.gt.4))

write(*,*)’ Option?’
read(*,*)gforce

end do

if (gforce.eq.4) then
gforce = 0
reread = 1

end if

end do

if (reread.eq.1) goto 1000

call pgslct(istat(1))
call pgclos
end

160

!---
!--- FUNCTIONS
!---

INTEGER FUNCTION namlen(filen)

CHARACTER*72 filen
!---

namlen = 0
do i = 72,1,-1

if (filen(i:i) .ne. ’ ’) then
namlen = i
goto 101

endif
enddo

101 return
end

!---

D.2 Animation Routines
Used to animate output.

D.2.1 Animate r21

PROGRAM animate
!---
!---
! rev 21
! - Remove comments and unnecessary code for Publication
!---
!---
!----- Variables

IMPLICIT NONE
!- Include Common Variable Definitions

INCLUDE ’lengths.inc’
INCLUDE ’airfoil.inc’
INCLUDE ’wake.inc’
INCLUDE ’strengths.inc’
INCLUDE ’motion.inc’
INCLUDE ’freevort.inc’
INCLUDE ’forces.inc’
INCLUDE ’graph_cons.inc’

!- Array Length Parameters
INTEGER lcompare
PARAMETER(lcompare = 3)

!- Data Variables
REAL*8 time(liter)
REAL*8 vtan(liter)
REAL*8 vnor(liter)
REAL*8 trash
REAL temp
REAL*8 dt, dx, dy, dist
INTEGER gforce, gtype
INTEGER nstep_force

!- Data Counters
INTEGER idump1,idump2
INTEGER m,t,imax,step
REAL tstart, tstop, gpoints
INTEGER istart, istop, gshow, grepeat, gzoom

161

!- Code Variables
CHARACTER*60 fn(4)
CHARACTER*60 ftemp
CHARACTER*20 titles(10)
CHARACTER*8 atitle(10)
INTEGER i_ani, i_force, i, j, k, ani, i_ani2
INTEGER namlen
INTEGER leng
INTEGER leng2

!- Graphics Variables
INTEGER pgopen
INTEGER istat(10)
REAL xmin, xmax, ymin, ymax
REAL fxmin, fxmax, fymin, fymax
REAL xminv, xmaxv, yminv, ymaxv

INTEGER just, axis
CHARACTER*70 title
REAL pgscale, pgscale_vf, pgscale_vf_u, pgscale_vf_v
REAL xtemp(liter)
REAL ytemp(liter)
REAL ztemp(liter)
INTEGER ltemp

! Set type of diaplay, 1 or 3 windows
INTEGER nwindow

! Viewports
REAL xmina, xmaxa, ymina, ymaxa
integer UNITS

! Write Graphics
integer savegif
integer iter

CHARACTER*70 garb_c
real garb_f
real*8 garb_d
integer garb_i

integer nsamp, i_samp
! lfree = 3001

REAL*8 xsamp(liter) ! x-coordinate of phi integration point
REAL*8 ysamp(liter) ! y-coordinate of phi integration point
REAL*8 usamp(liter) ! x-velocity at phi integration point
REAL*8 vsamp(liter) ! y-velocityat phi integration point

!---
!----- Format Statements

INCLUDE ’format.inc’

!---
!----- Initalize Variables

!- File Identifiers
i_ani = 11
i_ani2 = 53
i_force = 12
i_samp = 52 ! Velocities at the phi integration points

!- Runtime
m = 30
t = 1
step = 5
dt = 0.01
gpoints = -1
gzoom = -1

162

nodtot = m

!- Graphics
gforce = 1
gtype = 1
savegif = 0

pgscale = -1.0
pgscale_vf = -1.0

!- Define Titles
titles(1) = ’Cl vs. Time’
titles(2) = ’Cm vs. Time’
titles(3) = ’Cd vs. Time’
titles(4) = ’Alpha vs. Time’
titles(5) = ’h/c vs. Time’
titles(6) = ’Cl vs. Alpha’

!---
!----- Prompt for Input File

write(*,*)’ Name of Dataset (60 char max, no extension)’
read(*,*) fn(1)

write(*,*)’ Number of Graphics Windows (1,3)’
read(*,*) nwindow

!---
!----- Initialize Graphics

!- Window 1 - Airfoil
istat(1) = pgopen(’/xserve’)
if (istat(1).le.0) stop
call PGASK(.false.)

if (nwindow.ne.1) then
!- Window 2 - CP

istat(2) = pgopen(’/xserve’)
if (istat(2).le.0) stop
call PGASK(.false.)

!- Window 3 - Forces
istat(3) = pgopen(’/xserve’)
if (istat(3).le.0) stop
call PGASK(.false.)

end if
!---
!----- Read Force Data

leng = namlen(fn(1))
write(*,*)’leng = ’,leng
write(ftemp,’(a,".lft")’)fn(1)(1:leng)
write(*,*)’"’,ftemp,’"’
open(UNIT=i_force, FILE=ftemp, status=’unknown’)
i = 1
do while(.true.)

! Read coordinates into x(i) and y(i)
read(i_force,fmt=58,end=1020) time(i),mothis(i),alpha(i),

& cl_s(i),cd_s(i),cmle_s(i)
i=i+1

end do
1020 continue

nstep_force = i-1
! write(*,*)’j ’,j,’ i ’,i,’ nstep ’,nstep(j)

close(UNIT=i_force)

163

!---
!----- Set Repeat Loop

grepeat = 1
do while(grepeat.gt.0)

!---
!----- Read Animation Data

!- Animation File (*.ani), BINARY
leng = namlen(fn(1))
write(*,*)’leng = ’,leng
write(ftemp,’(a,".ani2")’)fn(1)(1:leng)
write(*,*)’"’,ftemp,’"’
open(UNIT=i_ani2,file=ftemp,status=’old’,FORM=’unformatted’,

& ERR=1030)
goto 1040

1030 continue

WRITE(*,*) ’ File ERROR’
i_ani2 = 0

!- Animation File (*.ani), ASCII
leng = namlen(fn(1))
write(*,*)’leng = ’,leng
write(ftemp,’(a,".ani")’)fn(1)(1:leng)
write(*,*)’"’,ftemp,’"’
open(UNIT=i_ani,file=ftemp,status=’old’,FORM=’formatted’,

& ERR=9999)
1040 continue

leng = namlen(fn(1))
write(*,*)’leng = ’,leng
write(ftemp,’(a,".samp")’)fn(1)(1:leng)
write(*,*)’"’,ftemp,’"’

open(UNIT=i_samp,file=ftemp,status=’unknown’,FORM=’unformatted’)

write(*,*)’===========================’
write(*,*)’- File open’

if (i_ani2.ne.0) then
read(i_ani2)nodtot

write(*,*)’ nodtot =’,nodtot
read(i_ani2)nodle

write(*,*)’ nodle =’,nodle
read(i_ani2)dt

write(*,*)’ dt =’,dt
read(i_ani2)nstep

write(*,*)’ nstep =’,nstep
read(i_ani2)idump1

write(*,*)’ idump1 =’,idump1
read(i_ani2)idump2

write(*,*)’ idump2 =’,idump2
read(i_ani2)x0

write(*,*)’ x0 =’,x0
read(i_ani2)y0

write(*,*)’ y0 =’,y0
else

read(i_ani,*)nodtot
write(*,*)’ nodtot =’,nodtot

read(i_ani,*)nodle
write(*,*)’ nodle =’,nodle

read(i_ani,*)dt
write(*,*)’ dt =’,dt

164

read(i_ani,*)nstep
write(*,*)’ nstep =’,nstep

read(i_ani,*)idump1
write(*,*)’ idump1 =’,idump1

read(i_ani,*)idump2
write(*,*)’ idump2 =’,idump2

read(i_ani,*)x0
write(*,*)’ x0 =’,x0

read(i_ani,*)y0
write(*,*)’ y0 =’,y0

end if

write(*,*)’---------------------------’
write(*,*)’ interval =’,real(nstep)*dt,’ (s)’

!---
!----- Prompt for Display Options

if (grepeat.eq.1) then

write(*,*)’===========================’
write(*,*)’ Display Options’
write(*,*)’ (1) Show Specified Time’
write(*,*)’ (2) Animate Interval’
write(*,*)’ (3) Animate All Data’
write(*,*)’===========================’

ani = -1
! Error Check Input
do while ((ani.lt.1).or.(3.lt.ani))

write(*,*)’ Option?’
read(*,*)ani

end do

!- Option One - Show Specified Time
if (ani.eq.1) then

! Get Time To Show
write(*,*)’Show Time x? (s)’
read(*,*)tstop
istop = (tstop/dt)

!- Option Two - Animate Interval
else if (ani.eq.2) then

write(*,*)’Start at time x? (s)’
read(*,*)tstart

istart=(tstart/dt)
write(*,*)’Stop at time x? (s)’
read(*,*)tstop

istop= (tstop/dt)
!- Option Three - Animate All
else if (ani.eq.3) then

istart = 0
istop = nstep

end if

!---
!----- Set Parameters for Display

step = idump2
imax = (imax/step)*step
write(*,*)’imax = ’,imax
write(*,*)’istart = ’,istart
write(*,*)’istop = ’,istop

gzoom = -1 ! Set Default Zoom
end if

165

!---
!----- Find Limits if repeat

if (grepeat.eq.2) then
write(*,*)’ X-axis Limits (xmin, xmax)’
read(*,*)xmina,xmaxa
write(*,*)’ Y-axis Limits (xmin, xmax)’
read(*,*)ymina,ymaxa
gzoom = 1 ! Set Custom Zoom

end if

!---
!----- Animate Loop

iter = 0
do t = 0,istop,step

iter = iter + 1

!---- Read Data
if (i_ani2.ne.0) then

read(i_ani2) garb_i
read(i_ani2) gamma(t),gammaw(t)

! read(i_ani2,58) time(t),mothis(t),alpha(t),cl_s(t),cd_s(t),
! & cmle_s(t)

read(i_ani2) garb_d,garb_d,garb_d,garb_d,garb_d,garb_d
read(i_ani2) (x(i),i=1,nodtot+2)
read(i_ani2) (y(i),i=1,nodtot+2)
read(i_ani2) (q(i),i=1,nodtot)

read(i_ani2) (xmid(i),i=1,nodtot)
read(i_ani2) (ymid(i),i=1,nodtot)
read(i_ani2) (cp(i),i=1,nodtot)
read(i_ani2) (vtan(i),i=1,nodtot)
read(i_ani2) (vnor(i),i=1,nodtot)
read(i_ani2) (xvort(i),i=1,t)
read(i_ani2) (yvort(i),i=1,t)
read(i_ani2) (vort(i),i=1,t)

!---- Free Stream Vortices
read(i_ani2)nfsv
do k =1,7

read(i_ani2) (fsvort(i,k),i=1,nfsv)
end do

else
read(i_ani,*) trash
read(i_ani,56) gamma(t),gammaw(t)

! read(i_ani,58) time(t),mothis(t),alpha(t),cl_s(t),cd_s(t),
! & cmle_s(t)

read(i_ani,58) trash,trash,trash,trash,trash,trash
read(i_ani,56) (x(i),i=1,nodtot+2)
read(i_ani,56) (y(i),i=1,nodtot+2)
read(i_ani,56) (q(i),i=1,nodtot)

read(i_ani,55) (xmid(i),i=1,nodtot)
read(i_ani,55) (ymid(i),i=1,nodtot)
read(i_ani,55) (cp(i),i=1,nodtot)
read(i_ani,55) (vtan(i),i=1,nodtot)
read(i_ani,55) (vnor(i),i=1,nodtot)
read(i_ani,57) (xvort(i),i=1,t)
read(i_ani,57) (yvort(i),i=1,t)
read(i_ani,57) (vort(i),i=1,t)

!---- Free Stream Vortices

166

read(i_ani,*)nfsv
do k =1,7

read(i_ani,57) (fsvort(i,k),i=1,nfsv)
end do

end if

!---- Sampled Data
if (pgscale_vf.gt.0) then

read(i_samp) garb_i,nsamp,
& (xsamp(i),ysamp(i),usamp(i),vsamp(i),i=1,nsamp)

end if

!---- Calculate Panel Angles
do i=1,nodtot

dx=x(i+1)-x(i)
dy=y(i+1)-y(i)
dist=sqrt(dx*dx+dy*dy)
sinthe(i)=dy/dist
costhe(i)=dx/dist

enddo

!- Plot Data
!---- Check If Display Single, Display All, Or Display Range

gshow = 0
if ((ani.eq.1).and.(t.eq.istop)) then

gshow = 1
else if ((ani.eq.2).and.(istart.le.t).and.(t.le.istop)) then

gshow = 1
else if (ani.eq.3) then

gshow = 1
end if

!- Flowfied Plot ---
if (gshow.eq.1) then

! Start Buffer

! Select Display to plot to

if (nwindow.eq.1) then
if (savegif.ne.0) then

leng = namlen(fn(2))
leng2 = namlen(fn(3))
write(fn(4),’(a,"",i5.5".",a,"/",a)’)fn(2)(1:leng),iter,

& fn(3)(1:leng2),fn(3)(1:leng2)
write(*,*)fn(4)
istat(4) = pgopen(fn(4))
if (istat(4).le.0) stop
call pgslct(istat(4))

else
call pgslct(istat(1))

end if
CALL PGPAGE
CALL PGSVP(0.05,0.95,0.5,0.92)

else
if (savegif.ne.0) then

leng = namlen(fn(2))
leng2 = namlen(fn(3))
write(fn(4),’(a,"ff",i5.5".",a,"/",a)’)fn(2)(1:leng),iter,

& fn(3)(1:leng2),fn(3)(1:leng2)
write(*,*)fn(4)
istat(4) = pgopen(fn(4))

167

if (istat(4).le.0) stop
call pgslct(istat(4))

else
call pgslct(istat(1))

end if
end if

! Get actual viewport dimensions
UNITS = 3 ! (Pixels)
call PGQVP(UNITS, xminv,xmaxv,yminv,ymaxv)

! Axes
call pgsci(1)

! Set Up Axes
if (gzoom.lt.0) then
xmin = -1.
xmax = istop*dt+2.5
ymin = 0.
ymax = 0.
ymin = min(ymin,-abs((xmax - xmin)/5))
ymax = max(ymax, abs((xmax - xmin)/5))
else

! if (nwindow.ne.1) then
if (((xmaxa - xmina)/(xmaxv - xminv)) .gt.

& ((ymaxa - ymina)/(ymaxv - yminv))) then
xmin = xmina
xmax = xmaxa
ymin = (ymaxa+ymina)/2.0 -

& (xmaxa-xmina)*(ymaxv - yminv)/(xmaxv - xminv)/2.0
ymax = (ymaxa+ymina)/2.0 +

& (xmaxa-xmina)*(ymaxv - yminv)/(xmaxv - xminv)/2.0
else
xmin = (xmaxa+xmina)/2.0 -

& (ymaxa-ymina)*(xmaxv - xminv)/(ymaxv - yminv)/2.0
xmax = (xmaxa+xmina)/2.0 +

& (ymaxa-ymina)*(xmaxv - xminv)/(ymaxv - yminv)/2.0
ymin = ymina
ymax = ymaxa

end if
end if

just = 1
axis = 0

if (nwindow.ne.1) then
call PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS)

else
CALL PGSWIN(xmin, xmax, ymin, ymax)
call pgsch(0.5)
CALL PGBOX (’BCTSN’, 0.0, 0, ’BCTSVN’, 0.0, 0)
call pgsch(0.75)

end if
! title

write(title,’("Airfoil at time =",f12.4,"(s)")’)real(t)*dt

call pglab (’x/c’,’y/c’,title)

! Set Character (Arrow) Size
call pgsch(0.25)

! Mark Center of rotation
call pgsci(8) ! orange
xtemp(1) = x0
ytemp(1) = y0

168

call pgpt(1,xtemp,ytemp,8)
call pgsci(2) ! red
xtemp(1) = x0
ytemp(1) = y0 - mothis(t)
call pgpt(1,xtemp,ytemp,8)

! Mark Wake Vortices
call pgsci(2) ! Blue
call pgsch(1.0)
do j = 1,t

xtemp(1) = abs(vort(j))
call pgsch(100.*xtemp(1))
if (vort(j).gt.0) then

call pgsci(3) ! Green
xtemp(1) = 3 ! *

else if (vort(j).eq.0) then
call pgsci(3) ! Green
xtemp(1) = 1 ! .

else if (vort(j).lt.0) then
call pgsci(5) ! L. Blue
xtemp(1) = 2 ! +

end if
! + if CW, x if ccw
xtemp(2) = xvort(j)
ytemp(2) = yvort(j)
call pgpt(1,xtemp(2),ytemp(2),int(xtemp(1)))

! call pgpt(1,xvort(j),yvort(j),-1)
end do

! Plot Airfoil
call pgsch(gpoints)
call pgsci(2)

do j = 1,nodtot+1
xtemp(j) = x(j)
ytemp(j) = y(j)

end do
call pgline(nodtot+1,xtemp,ytemp)

if (gpoints.gt.0) then
call pgpt(nodtot,xtemp,ytemp,2)

end if

! call pgsci(4)
! do i = 1,nodtot
!
! dx = x(i+1) - x(i)
! dy = y(i+1) - y(i)
! dist = sqrt(dx**2 + dy**2)
!
! xtemp(1) = xmid(i) - dy/dist * 0.005
! ytemp(1) = ymid(i) + dx/dist * 0.005
!
! call pgpt(1,xtemp,ytemp,2)
!
! end do

call pgsci(4)
xtemp(1)=x(nodtot+1)
xtemp(2)=x(nodtot+2)

169

ytemp(1)=y(nodtot+1)
ytemp(2)=y(nodtot+2)

call pgline(2,xtemp,ytemp)
if (gpoints.gt.0) then

call pgpt(2,xtemp,ytemp,2)
end if

! Mark Free Stream Vortices
call pgsci(3) ! Blue
call pgsch(.25)
do j = 1,nfsv

if (fsvort(j,5).ge.0) then
call pgsci(6) ! Purple

else
call pgsci(7) ! Yellow

end if

xtemp(1) = fsvort(j,1)
xtemp(2) = fsvort(j,3)

ytemp(1) = fsvort(j,2)
ytemp(2) = fsvort(j,4)

call pgline(2,xtemp,ytemp)

call pgsch(gpoints)
if (gpoints.gt.0) then

call pgpt(2,xtemp,ytemp,2)
end if

end do

! Plot Velocity Vectors
if (pgscale.gt.0) then

call pgsch(.25)
do j = 1,nodtot,1

! Plot tangential velocities at midpoints
call pgsci(8) ! Orange
xtemp(1)=xmid(j)
xtemp(2)=xtemp(1)+vtan(j)* costhe(j)*pgscale
ytemp(1)=ymid(j)
ytemp(2)=ytemp(1)+vtan(j)* sinthe(j)*pgscale
call pgarro(xtemp(1),ytemp(1),xtemp(2),ytemp(2))

end do
end if ! Velocity Vectors

! Plot Vector Field
if (pgscale_vf.gt.0) then

call pgsch(.25)
do j = 1,nsamp

! Plot tangential velocities at midpoints
call pgsci(4) ! Blue
xtemp(1)=xsamp(j)
xtemp(2)=xtemp(1)+usamp(j)*pgscale_vf*pgscale_vf_u
ytemp(1)=ysamp(j)
ytemp(2)=ytemp(1)+vsamp(j)*pgscale_vf*pgscale_vf_v
call pgarro(xtemp(1),ytemp(1),xtemp(2),ytemp(2))

end do
end if ! Velocity Vectors

! Set Character (Arrow) Size

170

call pgsch(1.)

!- Cp Plot ---

if (nwindow.eq.1) then
if (savegif.ne.0) then

call pgslct(istat(4))
else

call pgslct(istat(1))
end if
CALL PGSVP(0.05,0.45,0.05,0.4)

else
if (savegif.ne.0) then

call pgslct(istat(4))
call pgclos

leng = namlen(fn(2))
leng2 = namlen(fn(3))
write(fn(4),’(a,"cp",i5.5".",a,"/",a)’)fn(2)(1:leng),iter,

& fn(3)(1:leng2),fn(3)(1:leng2)
write(*,*)fn(4)
istat(4) = pgopen(fn(4))
call pgslct(istat(4))

else
call pgslct(istat(2))

end if
end if

! Set Line Style
call pgsls(1)

! Set Color Index
call pgsci(1)

! Set Axis Limits
xmin = -0.1
xmax = 1.1
ymin = 2.
ymax = -2.
just = 0
axis = 0

if (nwindow.ne.1) then
call PGENV (XMIN, XMAX, YMIN, YMAX, JUST, AXIS)

else
CALL PGSWIN(xmin, xmax, ymin, ymax)
call pgsch(0.5)
CALL PGBOX (’BCTSN’, 0.0, 0, ’BCTSVN’, 0.0, 0)
call pgsch(0.75)

end if
! Set Title

write(title,’("Cp at time =",f12.4,"(s)")’)real(t)*dt
call pglab(’x/c’,’-Cp (r=upper g=lower)’,title)

! Plot Cp Points
do j = 1,nodtot

xtemp(j) = xmid(j)
ytemp(j) = cp(j)

end do
call pgsci(2)
call pgpt(nodtot,xtemp,ytemp,3)
call pgsci(3)
call pgpt(nodle,xtemp,ytemp,3)

! Mark Free Stream Vortices
call pgsci(3) ! Blue
do j = 1,nfsv

171

if ((fsvort(j,6)+fsvort(j,7)).ne.0) then
if (fsvort(j,7).ne.0) then

call pgsci(2)
xtemp(1) = fsvort(j,3)
xtemp(2) = fsvort(j,3)

else
call pgsci(3)
xtemp(1) = fsvort(j,1)
xtemp(2) = fsvort(j,1)

end if

ytemp(1) = ymin
ytemp(2) = ymax
call pgline(2,xtemp,ytemp)

end if

end do

!- Force Plot --
if (nwindow.eq.1) then

if (savegif.ne.0) then
call pgslct(istat(4))

else
call pgslct(istat(1))

end if
CALL PGSVP(0.55,0.95,0.05,0.4)

else
call pgslct(istat(3))

end if

!--- Fill Temp Arrays With Chosen Values
do i=1,nstep_force

!-- Fill xtempa
if ((1.le.gtype).and.(gtype.le.5)) then

xtemp(i)=time(i)
else if ((6.eq.gtype)) then

xtemp(i)=alpha(i)
end if

!-- Fill ytempa
if ((1.eq.gtype))then

ytemp(i)=cl_s(i)
else if ((2.eq.gtype))then

ytemp(i)=cmle_s(i)
else if ((3.eq.gtype))then

ytemp(i)=cd_s(i)
else if ((4.eq.gtype))then

ytemp(i)=alpha(i)
else if ((5.eq.gtype))then

ytemp(i)=mothis(i)
else if (6.eq.gtype) then

ytemp(i)=cl_s(i)
end if

end do

!- Find Limits to Plot
if (gforce.eq.1) then

!------ x-axis
fxmin = 0
fxmax = 0
if ((1.le.gtype).and.(gtype.le.5)) then

fxmax = max(fxmax,time(nstep_force))

172

else if ((6.eq.gtype)) then
do i = 1,nstep_force

fxmin = min(fxmin,(xtemp(i))*1.1)
fxmax = max(fxmax,(xtemp(i))*1.1)

end do
end if

!------ y-axis
fymin = 0.
fymax = 0.
do i = 3,nstep_force

fymin = min(fymin,(ytemp(i))*1.1)
fymax = max(fymax,(ytemp(i))*1.1)

end do
end if

call pgsch(1.0)

! Color Index
call pgsci(1)

! Text Scale
call pgsch(1.0)

! Line Style
call pgsls(1)

! Axis Properties
just = 0
axis = 0

if (nwindow.ne.1) then
call PGENV (fxmIN, fxmAX, fymIN, fymAX, JUST, AXIS)

else
CALL PGSWIN(fxmIN, fxmAX, fymIN, fymAX)
call pgsch(0.5)
CALL PGBOX (’BCTSN’, 0.0, 0, ’BCTSVN’, 0.0, 0)
call pgsch(0.75)

end if
! Label Axes

call pglab(’’,’’,titles(gtype))

! Set Line Style
call pgsls(1)

! Set Color Index
call pgsci(2) ! Red
! Plot Line
call pgline(nstep_force,xtemp,ytemp)

write(title,’("- ",A," = ",A)’)color_n(1+1),fn(1)(1:i)

!- Plot Vertical line at time(t)
call pgsci(4) ! Blue
xtemp(1) = time(t)
xtemp(2) = time(t)
ytemp(1) = fymin
ytemp(2) = fymax
call pgline(2,xtemp,ytemp)

if (savegif.ne.0) then
call pgslct(istat(4))
call pgclos

end if

end if ! if gshow

173

end do
if (i_ani.ne.0) then

close(UNIT=i_ani2)
else

close(UNIT=i_ani)
end if

if (savegif.ne.0) then
savegif = 0

end if

!---
!----- Options Menu

write(*,*)’===========================’
write(*,*)’ Program Options’
write(*,*)’ ’
write(*,*)’ (1) Plot Again’
write(*,*)’ (2) Zoom Current Plot’
write(*,*)’ (3) Replay Animation’
write(*,*)’ (4) Toggle Points’
write(*,*)’ (5) Toggle Velocity’
write(*,*)’ ’
write(*,*)’ (6) Change Force Plot’
write(*,*)’ ’
write(*,*)’ (7) Step Back by ’,idump2*dt,’(s)’
write(*,*)’ (8) Step Forward by ’,idump2*dt,’(s)’
write(*,*)’ ’
write(*,*)’ (9) Save Graphics’
write(*,*)’ ’
write(*,*)’ (11) Plot Vector Field’
write(*,*)’ ’
write(*,*)’ (20) Exit’
write(*,*)’===========================’

! Error Check Input
grepeat = -1
do while ((grepeat.lt.1).or.(20.lt.grepeat))

write(*,*)’ Option?’
read(*,*)grepeat

! if ((grepeat.lt.10).and.(5.lt.grepeat)) then
! grepeat=-1
! end if

end do

! Check Exit Case (Exits for grepeat.le.0)
if (grepeat.eq.20) grepeat = 0

! Check For Toggle Points
if (grepeat.eq.4) then

if (gpoints.le.0) then
write(*,*)’ Scale Factor for Points? (+ real)’
read(*,*)gpoints

else
gpoints = -1

end if
end if

! Check for Toggle Velocity
if (grepeat.eq.5) then

if (pgscale.le.0) then
write(*,*)’ Scale Factor for Vectors? (+ real)’
read(*,*)pgscale

174

else
pgscale = -1

end if
end if

! Check for Vector Field
if (grepeat.eq.11) then

! if (pgscale_vf.le.0) then
write(*,*)’ Scale Factor for Vectors? (+real=on,-1=off)’
read(*,*)pgscale_vf
write(*,*)’ Scale Factor for Vectors (x)? (+ real)’
read(*,*)pgscale_vf_u
write(*,*)’ Scale Factor for Vectors (y)? (+ real)’
read(*,*)pgscale_vf_v

end if

! Check for Change force plot
if (grepeat.eq.6) then
!--- Options

write(*,*)’----------------------------------’
write(*,*)’ (0) Exit’
write(*,*)’ (1) Plot Another Parameter’
write(*,*)’ (2) Zoom Current Plot’
write(*,*)’----------------------------------’

gforce = -1
do while ((gforce.lt.0).or.(gforce.gt.3))

write(*,*)’ Option?’
read(*,*)gforce

end do

! Check gforce
if (gforce.eq.1) then

write(*,*)’--------------------------’
do i = 1,6

write(*,’(a,I2,a,a)’)’ (’,i,’) ’,titles(i)
end do

! write(*,*)’ (2) Cm vs. Time’
! write(*,*)’ (3) Cd vs. Time’
! write(*,*)’ (4) Alpha vs. Time’
! write(*,*)’ (5) h/c vs. Time’
! write(*,*)’ (6) Cl vs. Alpha’

write(*,*)’--------------------------’

gtype = 0
do while ((gtype.lt.1).or.(gtype.gt.6))

write(*,*)’ Pick Parameter to Plot’
read(*,*)gtype

end do
end if

if (gforce.eq.2) then
write(*,*)’ X-axis Limits (fxmin, fxmax)’
read(*,*)fxmin,fxmax
write(*,*)’ Y-axis Limits (xmin, xmax)’
read(*,*)fymin,fymax

end if
end if

! Check for Step forward or backwards
if ((7.le.grepeat).and.(grepeat.le.8)) then

175

! Set Show Single Time
ani = 1

if (grepeat.eq.7) istop = istop - idump2
if (grepeat.eq.8) istop = istop + idump2

end if

!-- Save as Graphics
if (grepeat.eq.9) then

grepeat = 3
savegif = nwindow

write(*,*)’path to save to?’
read(*,*) fn(2)
write(*,*)’Format to Save to? (gif,ps,cps)’
read(*,*) fn(3)
iter = 1
leng = namlen(fn(2))
leng2 = namlen(fn(3))
write(fn(4),’(a,i5.5".",a,"/",a)’)fn(2)(1:leng),iter,

& fn(3)(1:leng2),fn(3)(1:leng2)
write(*,*)fn(4)

end if

!---
!----- Repeat

end do

!---
!----- Close Open Graphics Windows

if (nwindow.ne.1) then
call pgslct(istat(3))
call pgclos
call pgslct(istat(2))
call pgclos
end if
call pgslct(istat(1))
call pgclos

!---
!----- End Program

9999 continue
end

!---
!--- FUNCTIONS
!---

INTEGER function namlen(filen)
IMPLICIT NONE
CHARACTER*72 filen
INTEGER i

namlen = 0
do i = 72,1,-1

if (filen(i:i) .eq. ’ ’) then
namlen = i-1

endif
enddo
end

!---

176

VITA

Aaron M. McClung

Candidate for the degree of

Masters of Science

Thesis: DEVELOPMENT AND VALIDATION OF AN UNSTEADY PANEL

CODE TO MODEL AIRFOIL AEROMECHANICAL RESPONSE

Major Field: Mechanical and Aerospace Engineering

Biographical:

Education: Graduated from Newman Smith High School, Carrollton, Texas in
May 1996; received Bachelor of Science in Aerospace Engineering from
Oklahoma State University, Stillwater, Oklahoma in July 2000;
Completed the requirements for the Masters of Science in Mechanical
Engineering at Oklahoma State University in July 2004.

Experience: Employed by Sequoyah Engineering, Inc. of Oklahoma City,

Oklahoma, as a staff engineer from May 2000 to December 2001;
employed by Oklahoma State University Department of Mechanical and
Aerospace Engineering, Stillwater, Oklahoma, as a Graduate Teaching
Assistant from January 2002 to December 2003; employed by Oklahoma
State University Department of Mechanical and Aerospace Engineering,
Stillwater, Oklahoma, as a Graduate Research Assistant from June 2002 to
May 2004.

Professional Memberships: Association for Unmanned Vehicle Systems

International

	Table of Contents
	List of Figures
	Notation
	Chapter I
	Chapter II
	Chapter III
	Chapter IV
	Chapter V
	Chapter VI
	Chapter VII
	Bibliography
	Appendices
	Vita

