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SUMMARY 
 

Diamond synthesized by chemical vapor deposition (CVD) has vast 

applications in electronic devices, cutting tools, sensors, and micro-electro-

mechanical devices (MEMS) because of its outstanding mechanical properties. A 

few of them being high hardness, high wear resistance, high thermal conductivity 

and low compressibility. Carbon atoms form one of the primary growth species in 

the synthesis of diamond. Molecular dynamics (MD) simulation is a tool used to 

study this growth mechanism at the atomic scale. However, MD simulations are 

time consuming and are bound to have statistical errors. In this study, molecular 

dynamics (MD) simulation was used to investigate the event probabilities of 

chemisorption, scattering, and desorption that occur when a carbon atom reacts 

with a hydrogenated diamond (111) surface at a radical site. The probabilities 

were calculated from 50 MD simulation trajectories. The input conditions namely, 

incident angle (θ), rotation angle (Φ), impact parameter (b), and kinetic energy of 

carbon atom (K) were selected from distribution functions. The inputs (θ, Φ, b, K) 

and the outputs (event probabilities) from MD simulations were then used to train 

multilayer neural networks (NN) to predict the aforesaid probabilities. To predict 

each of the three probabilities, 50 NN were trained. The probabilities obtained 

were the average of 50 neural networks. It was found that the NN predictions lie 

within one sigma standard deviation limit of MD. Also, the outputs of the neural 

networks were found to have less statistical fluctuation than MD. The NN were 
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also advantageous in studying the effect of any input parameter on the other, in 

minutes as compared to a number of days by MD. It was also found that, as 

impact parameter increases, chemisorption and desorption probabilities 

decrease whereas the scattering probability increases. As incident angle 

increases, chemisorption probability and desorption probabilities decrease, 

whereas scattering probability increases. As kinetic energy of the carbon atom 

increases, chemisorption probability increases, whereas scattering and 

desorption probabilities decrease. As rotational angle increases, there seems to 

 be no effect on any of the three probabilities.
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CHAPTER 1 

INTRODUCTION 

Chemical vapor deposition (CVD) of diamond involves the reaction 

between the heated substrate and the gaseous precursors at the substrate 

temperature in a vacuum environment. This type of atomistic deposition can 

provide uniform and pure coatings [1]. As these coatings are used for a variety of 

applications, such as for wear resistance and corrosion resistance [2, 3], it is 

necessary that the desired film thickness and properties are obtained. However, 

there is no known experimental method to study this phenomenon at nanometric 

or atomistic level. Therefore, simulation tools become very useful in studying the 

phenomenon of chemical vapor deposition at the atomistic level. 

Molecular dynamics simulations are the most widely used tool to study 

chemical reactions at the atomistic level. In this method, the motion of every 

atom in a system is followed by solving the Newtonian equations of motion over a 

very short period of time, on the order of 1 ps.  In this study, molecular dynamics 

simulations have been used to study the deposition of carbon atoms on a 

diamond (111) substrate. Carbon atoms are one of the precursors in the 

formation of diamond - like carbon films for use in a wide variety of applications 
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ranging from wear resistant coatings to coatings of high thermal conductivity [4-

6].  

The main interest of the molecular dynamics researchers over the years 

has been to study the effect of parameters affecting the reaction of the precursor 

atoms on the substrate. The main constraint limiting this research is the immense 

amount of computer time involved [7-10] and the statistical errors present in the 

results. 

Neural networks (NN), which work similar to neurons in a human brain, 

have found a variety of applications from banking to aerospace for problem 

solving. In this study, an effort has been made to use neural networks as a tool to 

predict the reaction probabilities for chemisorption, scattering, and desorption of 

carbon atoms incident on a diamond (111) surface. The neural networks 

developed in this study are significantly faster in predicting the event probabilities 

compared to MD simulations and have less statistical fluctuation.  

This thesis is organized in the following order. After a brief introduction 

(Chapter 1), Chapter 2 presents a review of literature in the area of molecular 

dynamics simulations of CVD processes and NN applications. Chapter 3 

presents the principles of molecular dynamics simulations. Chapter 4 describes 

the structure and type of neural networks that were used in this study. Chapter 5 

gives the problem statement and the intended goals of this investigation. Chapter 

6 describes the procedure used for the molecular dynamics simulations on the 

interaction of a carbon atom with the diamond (111) surface and also the neural 

networks implementation. Chapter 7 presents the results followed by a 
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discussion of the results. Chapter 8 provides conclusions drawn out of this work 

and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

         Diamond coatings have found a wide variety of applications from cutting 

tools to micro-electro–mechanical systems (MEMS)  because of their outstanding 

mechanical properties, namely, high wear resistance and high temperature 

resistance [2,3]. One of the means by which diamond coatings have been 

synthesized is chemical vapor deposition (CVD). CVD involves the reaction 

between a heated substrate and reactive gases, called the precursors, to 

produce a desired film of a given thickness. There have been a wide variety of 

precursor gases used ranging from metals, metal hydrides, halides, halo 

hydrides, and metal organic compounds [1] in the CVD process. Thicknesses as 

low as several nanometers  and as high as several micrometers can be obtained 

[1]. 

The diamond films formed by CVD are expected to be very precise in 

thickness [1]  and should have the desired properties, high hardness, high wear 

and chemical resistance, to name a few. The type of film formed depends upon 

the parameters, such as the precursor used, aiming angle, rotation angle, and 

temperature of the substrate. The effect of most of these parameters, if not all, 

cannot be studied by experimental methods. Simulation is the best known 

available tool to investigate the effect of input parameters in a CVD process. As 
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the CVD coatings are deposited at the nanometric scale per second, molecular 

dynamics simulation is widely used to study the synthesis of diamond at this 

level. 

2.1 Molecular dynamics simulation of chemical vapor deposition 

 Alfonso et al. [11, 12] studied the effects of hydrocarbon adsorption on 

diamond (100) flat and stepped surfaces by molecular dynamics simulations. 

They studied the adsorption of such hydrocarbons as CH3, CH2, C2H, and C2H2 

on a hydrogenated (100) diamond surface with a radical site. The empirical 

potential developed by Brenner et al. [14], together with a dynamical quenching 

technique, was employed in the studies. The effect of the binding energies, bond 

distances, bond angles, height of the adsorbed hydrocarbon from the surface, 

and tilt of bonds from the surface were investigated. It was found that, there was 

insignificant change in the binding energies of hydrocarbons adsorbed on flat and 

stepped surfaces. 

Alfonso et al. [11, 12] also studied the adsorption probability for incident 

angles 0 ° and 45° of a CH3 molecule and at substrate temperatures in the range 

of 300 – 900 K  of 75 % and 50% hydrogenated diamond (100) surfaces. They 

conducted probabilistic studies based on 150 trajectories and monitored the 

reaction for each trajectory for a period of 2.5 ps. They found that the adsorption 

probability was found to be higher for normal incidence to the surface, and was 

found to increase with higher incident energies. They also concluded that a 

radical site is required for the CH3 molecule to bind to the surface. 
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  Du et al. [13] investigated the collision of C36 molecule on diamond (001) 

surface using MD simulations with the semi-empirical Brenner potential [14]. 

They studied the effect of varying the incident energy from 20 to 150 eV of C36 on 

its structure as well as the structure of the substrate. They also examined the 

threshold energy range within which C36 is chemisorbed on the substrate of 

diamond of different orientations. The real simulations of the trajectories were on 

the order of 2.5 to 3 ps. They found that the energy threshold for chemisorption is 

sensitive to the orientation of the incident C36 molecule and its impact position. 

Gernster et al. [8] studied the effect of carbon deposition  on diamond 

(111) substrate for diamond film formation averaging over the impact parameter 

for different incident angles (0°, 45°, 60°) of the C atom to the normal,  different 

incident energies (25, 40, 50, 65 eV) of the C atom and for substrate 

temperatures of  100 K and 300 K. The time step used in these calculations was 

on the order 0.013 to 0.052 fs. They found that the formation of tetrahedral 

structure is favored by low incident energy species and low substrate 

temperature. 

 Neyts et al. [9] have studied the formation of diamond films using low 

energy hydrocarbon radicals (< 2 eV). The MD simulations were carried out on a 

previously simulated diamond film consisting of 712 atoms. The temperature of 

the substrate was maintained at 523 K. A time step of 0.5 fs was used. Each 

trajectory was carried out for 0.75 ps. The simulations investigated two 

conditions, namely,  

• Low acetylene influx 
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• High acetylene influx 

The sticking and desorption efficiencies of various growth species were studied. 

C2  and C2H molecules  were found to be the most important species aiding 

diamond growth. 

Huang et al. [10] studied the chemisorption of hydrocarbon molecules, 

namely, CH3  and CH2 on a hydrogen terminated diamond (001) surface using the 

many- body Brenner potential [14]. CH3 and CH2 hydrocarbons were made to 

impact on a hydrogenated and a non-hydrogenated substrate. The substrate was 

maintained at a temperature of 300 K. The hydrocarbons were projected on to 

the substrate at normal angle of incidence. They considered two cases. The first 

case considered was a mixture containing 60% CH3 and 40% CH2. The time 

between impingement of each hydrocarbon was set at 4 ps, in this case. The 

second case considered was a mixture of 98:2 hydrogen/methane gases which 

had the same amount of hydrocarbons as the previous one. A shower of 

hydrogen atoms (50 atoms) were made to impact on the diamond surface 

between hydrocarbon impacts to simulate a hydrogen terminated diamond 

surface and the shower lasted for 2 ps. Threshold energies for chemisorption of 

the hydrocarbons for fixed orientation and varying impact sites were determined. 

Huang et al. [15] studied the energy threshold for chemisorption  and 

variation of chemisorption with incident energy considering C2H2 and CH3 

radicals on a diamond (001) substrate covered with  and without hydrogen atoms 

at a temperature of 300 K. The simulations for each trajectory lasted for 3 ps. 
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They found that molecules CH3, CH2, and hydrogen atoms form the important 

species in diamond growth. 

 Kaukonen et al. [16] studied the deposition effects of carbon atoms on a 

diamond (100) substrate made up of 640 atoms. They studied the effect of 

incident beam energy (up to 150 eV), substrate temperature, deposition angle of 

the carbon atom and thermal coupling constant on carbon deposition. They 

studied these effects by depositing 640 atoms on a substrate made up of 640 

atoms and by depositing 500 atoms on a substrate made up of 1280 atoms. They 

found that , decreasing the substrate temperature and increasing the thermal 

conductivity at high deposition energies ere found to favor diamond growth. 

Neyts et al. [17] studied the sticking and hydrogen abstraction reactions of 

various species, namely, C2, CH2, C3, linear C3H, cyclic C3H, and cyclic C3H2 on 

a diamond-like carbon substrate (DLC). They randomly oriented these 

hydrocarbon species above the substrate containing 830 atoms. The 

hydrocarbons were aimed at random, in the x-y plane of the substrate. They 

have studied the effect of incident energy on the sticking probability. To calculate 

the sticking probability they considered 500 trajectories at energies of 0.11 eV 

and 1 eV.  The Brenner et al. potential [14] and a time step of 0.5 fs were 

employed. The simulations were run for 2.5 ps for hydrocarbon energies of 0.1 

eV and for 1.25 ps for energies of 1 eV. It was found that C2 molecule in efficient 

in  abstracting H atoms from the diamond like carbon (DLC) substrate. 

Perry et al. [18,19] studied the rate coefficients,  event probabilities and 

desorption probabilities of reactions of C2H2, C2H, CH3, CH2, C2H4, C2H3, C3H,  
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and Cn(1-3) at 1250 K on a diamond (111) terrace and a diamond (111) ledge 

surfaces. The terrace surface consisted of 147 atoms. All surface atoms were 

capped with hydrogen atoms except one. The ledge surface consisted of 147 

atoms and two radical sites. The range of incident angles of the hydrocarbon 

varied from 0 to 50.19° and the aiming point was chosen randomly within a 

radius of 1 A. The number of trajectories used for calculating the event probability 

for each event varied from 250 to 1000. They have reported a computational 

speed of 30 min per trajectory on an ALPHA 3000/ Model 300 Workstation. The 

simulation time for individual trajectories varied in the range of 0.10 - 0.87 ps. 

Chemisorption reactions were found to occur at a higher rate on the ledge 

surface than on the terrace surface. 

 Zhu et al. [20] studied the interaction between C2H2 incident molecule and 

diamond (001) surface. The impinging C2H2 has an incident energy ranging from 

1 to 20 eV. The Brenner potential which was developed from a Tersoff potential 

with bond-order correction, was used in the study. The chemisorption 

probabilities were studied for 200 collision events of C2H2. Each simulation 

trajectory lasted for 3 ps. Six types of chemisorption configurations were 

observed from the study. 

 Hu et al. [21,41] studied the adsorption probabilities of ethylene (C2H4) 

clusters,  adamantine (C10H6) molecules, and fullerene (C20) molecules at various 

incident angles and kinetic energies at a temperature of 300 K. Impact of 20 

clusters on the hydrogenated diamond (111) substrate was studied. Impact at 

incident angles of 0°, 15°, 45°, and 60° were considered. Each trajectory was run 
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for 3 ps with a time step of about 0.2 fs. Adhesion of these radical atoms was 

studied with respect to their incident angle and incident energy. It was found that 

the adsorption probabilities were found to decrease with increasing incident 

angles. 

2.2 Application of Neural networks (NN) 

 Artificial neural networks or neural networks (NN) are information 

processing systems that work similar to the neurons in the human brain. The 

history of neural networks dates back to 1940 when Mcculloh and Pitts [22] 

showed that artificial neurons could be used to compute any logical or arithmetic 

function. From then on, neural networks have been used in a variety of 

applications, such as aerospace, automotive, banking, defense, robotics, and 

speech recognition, to name a few [23-27]. 

 Neural networks are used to predict the underlying function between a set 

of inputs and the corresponding outputs. Neural networks learn by example and 

react to situations to which they are trained. When they are given a known set of 

inputs within the scope of their training, they can accurately predict the output.  

 Natale et al. [28] used neural networks to study the relationship between 

inputs and outputs in an Atmospheric pressure chemical vapor deposition 

(APCVD) process of silicon dioxide. The neural network was trained using data 

from experiments. Inputs to the neural network were gas flow rates, temperature 

of injectors, nitrogen curtain flows, chamber pressure, butterfly purge valve 

pressure, and thermocouple temperature. The outputs were the weight 

percentage of dopants, namely, boron, and phosphorous. The thickness of the 
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film formed was also predicted. Thus, the neural network aided in the prediction 

of the best combination of input conditions to obtain a desired film thickness of a 

desired composition. The trained neural network was able to predict the output 

within 1% to 10% of the experimental values. 

 Han et al. [29] used neural networks to predict the optimized operating 

conditions in a Plasma enhanced chemical vapor deposition (PECVD) process. 

The neural network was trained for inputs namely, substrate temperature, 

pressure, RF power, and nitrous oxide flow. The outputs for training were the 

deposition rate, permittivity, film stress, uniformity, silanol concentration, and 

water concentration. The trained network was then used to obtain optimized 

conditions to produce novel film properties, such as 100% uniformity, low 

permittivity, stress free, and impurity free concentration. 

 Geisler et al. [30] used a five layer feed forward neural network to predict 

the properties of a Si3N4 film synthesized by plasma enhanced CVD (PECVD). 

The neural network was trained for six input variables, namely, substrate 

temperature, chamber pressure, RF power, NH3 flow, SiH4 flow, and N2 flow.  

The film’s refractive index, the effective lifetime, and positive charge density 

formed the outputs. To train the network, 47 data points were used. Sensitivity 

studies were carried out on the output. 

 The use of neural networks in molecular dynamics simulations is in its 

early stages. For the most part, they have been used to develop potentials using 

electronic structure calculations. Hobday et al. [31] used neural networks to 

develop a potential energy surface for a C – H system. Inputs to the neural 
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network consisted of pairwise terms, such as, direction cosines, bond lengths, 

cut – off functions, first neighbor information, such as its bond lengths and 

torsional angles and second neighbor information such as the number and type 

of atoms. The output was the potential energy of an atom. The numerical 

experiments carried out indicates the possibility for the development of a 

potential energy surface (PES). The PES although slower than Brenner potential 

by 60% – 80%, it is  still  inexpensive compared to the ab initio calculations 

Lorenz et al. [32] developed a potential energy surface using neural 

networks trained for ab-initio data. The sticking probability of H2 on a Pd (100) 

surface is determined using molecular dynamics calculations on the potential 

energy surface developed by neural networks. Out of the 659 ab-initio energies 

obtained, 619 were used for training and 40 were used for testing. The potential 

energy surface developed using neural network was very accurate in predicting 

the sticking probability of H2 on a Pd (100) surface as compared to analytical 

potential energy surface. 

 Raff et al. [33] used neural networks to interpolate potential energy 

surfaces for Si5 and vinyl bromide. The neural networks were trained for data 

from ab-initio calculations. The potential energy surface they developed can also 

be used for Monte Carlo studies, gas-phase chemical reactions, nanometric 

cutting and nanotribology. The method has a better computational accuracy and 

advantages over the existing methods and it is also easy to implement. 

 Sumpter et al. [34] used neural network as a tool to study the energy 

during stretch, bending, and torsion of various bonds in H2O2 molecule. 
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Trajectory calculations were performed on a potential energy surface derived 

from ab-initio calculations. The neural network in this case was trained to predict 

the mode energies within a few seconds and with a percentage error of 1% to 

12% as compared to molecular dynamics simulations. 

 This literature survey indicates that if data from MD simulations of reaction 

studies in a CVD process can be used to train a neural network, the network can 

predict the results for various input conditions in very short time compared to 

pure molecular dynamics simulation studies. 

 
 

 



 14 

CHAPTER – 3  

PRINCIPLES OF MOLECULAR DYNAMICS (MD) SIMULATION 

 

 Molecular dynamics (MD) simulations have been a very effective tool in 

nanometric simulation studies [38, 39, 43]. Using molecular dynamics 

simulations, the positions, velocities, and acceleration of every atom in the 

system can be obtained at different times by solving Newtonian equations of 

motion. 

 In a system that consists of many atoms, the initial positions are assigned 

to the atoms of the system depending upon the initial configuration. The new 

positions of the atoms at the next time step are obtained by solving the 

Newtonian equations of motion [38, 39]. If V is the potential function, then the 

force experienced by an atom i is given by  

,
idr

dV
F −=        (3.1) 

where, F is the force and ri is the position vector of the ith atom at time t. 

Therefore, the acceleration of the atom can be obtained by  

.
2

2

idr

dV

dt

rd
m −=      (3.2) 

The velocity and new position can be obtained by solving  

,0vtav += δ       (3.3) 
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where, v  is the velocity at time tt δ+ i,  0v  is the velocity of the atom at time 0t ,  a  

is the acceleration, and tδ  is the time step. The time step used in this study is 0.5 

fs. Having the velocity, the new position of the atoms is given by  

,0rtvr += δ       (3.4) 

where, r  is the new position of the atoms and 0r  is the old position of the atoms. 

3.1 Integration Method 

There are many integration methods, such as Runge–Kutta, velocity 

verlet, leapfrog, Adams – Bashforth- Moulton fourth order to integrate the 

equations of motion. Consider  an example of the  the Gear predictor - corrector 

method [38, 39]. In this method, the position, velocity, and acceleration of every 

atom in the system are calculated for each time step. The time step is 0.5 fs. The 

position, velocity, and acceleration of atoms are calculated in two steps, the 

predictor step and the corrector step. 

 Let v be the velocity, a the acceleration, and r the position of a given atom 

at time step t. The position, velocity, acceleration, and rate of change of 

acceleration at the next time step t+δt is predicted to be  rp,  vp,  ap,  pb
 . The 

values are calculated at the predictor step. 

 ...,)(
6

1
)(

2

1
)()()( 32 ++++=+ tbttatttvtrttr p δδδδ      (3.5) 

 ...,)(
2

1
)()()( 2 +++=+ tbtttatvttv p δδδ      (3.6) 

 ...,)()()( ++=+ ttbtatta p δδ        (3.7) 

 ...)()( +=+ tbttb p δ         (3.8) 
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 The force experienced by an atom in the system is given by 

.
)(

pdr

rdV
F

p

−=       (3.9) 

This force is obtained by substituting the position pr  of each atom from the 

predictor step on to the potential function used in the study. 

Corrected acceleration is given by  

.
m

F
ac =        (3.10) 

The acceleration ca  thus obtained is used to find the errors in the values of the 

accelerations found in the predictor step. 

Error in the acceleration value is given by  

∆a (t+δt)=ac(t+δt) - ap(t+δt).     (3.11) 

The difference in acceleration is used to correct the predicted values of position, 

velocity, acceleration, and rate of change of acceleration. The corrected values 

are given by  

  rc(t+δt) = rp(t+δt) + c0 ∆a (t+δt),      (3.12)  

  vc(t+δt) = vp(t+δt) + c1 ∆a (t+δt),     (3.13)  

  ac(t+δt) = ap(t+δt) + c2 ∆a (t+δt),     (3.14)  

  bc(t+δt) = bp(t+δt) + c3 ∆a (t+δt),     (3.15) 

where, c0 = 1/6, c1 = 5/6,  c2 = 1,  c3 = 1/3.  

Eqns (3.12) – (3.15)   give the corrected values of position, velocity, acceleration, 

and rate of change of acceleration. 
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3.2 Potential function 

 Empirical potential, in general, is an analytical function used to describe 

the potential energy between the atoms in a chemical system. It has parameters 

that can be modified to describe the properties of the given material. For 

example, the many body empirical potential V developed by Brenner et al. [14],  

takes the form  

.)]()([
)(

∑∑
>

−=
ij

ij

A

ijij

R

i

rVbrVV       (3.16) 

Here, the functions RV and AV are pair-additive interactions that represent all 

interatomic repulsions and attractions from valence electrons. ijr   represents the 

distance between neighbor atoms i and j.   

The empirical bond order function ijb   takes the form  

.][
2

1 ππσπσ
ijjiijij bbbb ++= −−        (3.17) 

The values for the functions 
πσ −

ijb and 
πσ −

jib depend on the local coordination 

and bond angles for atoms i and j, respectively. Function π
ijb  can be further 

written as  

.DH

ij

RC

ijij bb += ππ
        (3.18) 

The repulsive function )(rV R  and the attractive function )(rV A have  the forms  

given by  Eqns (3.19) and (3.20), respectively. 

.)/1)(()( rcR AerQrfrV α−+=      (3.19) 

 .)()(
3,1

r

n

n

cA neBrfrV
β−

=

∑=                 (3.20) 



 18 

The parameters for carbon- carbon pair terms used are given in Table 3.1 

Table 3.1 Parameters for carbon – carbon pair terms 

B1 = 12388.79197798 eV β1 = 4.7204523127 Å−1 Q = 0.3134602960833 Å 

B2 = 17.56740646509 eV β2 = 1.4332132499 Å−1 A = 10953.544162170 eV 

B3 = 30.71493208065 eV β3 = 1.3826912506 Å−1 α = 4.7465390606595 Å−1 

Dmin = 1.7 Dmax = 2.0  

 

The function 
πσ −

ijb  from  Eqn (3.17) takes the form  

.)],())(cos()(1[
),(

2/1∑
≠

− −++=
jik

H

i

C

iijijkik

c

ikij NNPeGrfb ijkλπσ θ   (3.21) 

The subscripts represent the atom identity. The function )(rf c refers to the 

interactions of the nearest neighbors only. Function P is a bicubic spline and 

quantities C

iN  and H

iN  represent the number of carbon and hydrogen atoms that 

are neighbors to atom i. C

iN  and H

iN are defined by 

 .)(
atomscarbon 

),(

∑
≠

=
jik

ik

c

ik

C

i rfN     (3.22) 

.)(
atomshydrogen  

),(

∑
≠

=
jil

il

c

il

H

i rfN      (3.23) 

For solid-state carbon, λ and function P are assigned a value of zero. The 

function ))(cos( ijkG θ  in Eqn (3.21) adjusts the contribution each neighbor makes 

to the empirical bond order.  
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t

iN  is the coordination of atom i. It takes the form  

.H

i

C

i

t

i NNN +=        (3.24) 

The term RC

ijπ in Eqn (3.18) signifies the influence of radical energies and 

π  bonds configuration of bond energies and is given by  

),,,( conj

ij

t

j

t

iij

RC

ij NNNF=π     (3.25) 

where , 

,)]()([)]()([1
carboncarbon

),(

2

),(

2 ∑∑
≠≠

++=
jil

jljl

c

jl

jik

ikik

c

ik

conj

ij XFrfXFrfN    (3.26) 

,2                                          ,1)( <= ikik xxF    

,32       ,2/))]2(2cos(1[)( <<−+= ikikik xxxF π         (3.27) 

,3                                          ,0)( ikik xxF <=  

).( ik

c

ik

t

kik rfNx −=      (3.28) 

 The term,   

).( ik

c

ik

t

kik rfNx −=      (3.29) 

The term DH

ijb  in Eqn (3.18) is represented as shown in Eqn (3.30) 

,])()())(cos1()[,,(
),( ),(

2∑ ∑
≠ ≠

Θ−=
jik jil

jl

c

jlik

c

ikijkl

conj

ij

t

j

t

iij

DH

ij rfrfNNNTb     (3.30) 

where,   

.ijljikijkl ee=Θ        (3.31) 
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Function ijT  takes a tricubic spline form and functions jike  and  ijle  are unit 

vectors in direction R. Values of the carbon – carbon cubic spline, T in Eqn (3.30) 

are given in Table 3.2 

               Table 3.2: Values of carbon-carbon cubic spline, T 

i J k T( i,  j,  k) 

2 2 1 -0.070280085 

2 2 9 -0.00809675 

 

Value of  )(rf c  is a switching function given by, 

[ ]
.                                   ,0)(

,  ,2/))/()((cos1)(

,                                   ,1)(

max

maxminminmaxmin

min

ij

c

ij

ijijijijij

c

ij

ij

c

ij

D    rrf

DrDDDDrrf

D    rrf

>=

<<−−+=

<=

π    (3.32) 
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CHAPTER - 4 

PRINCIPLES OF NEURAL NETWORKS 

The human brain is made up of approximately 1011 neurons [22] which 

communicate among each other to accomplish any human activity. Artificial 

neural networks (NN) are simple representations of these biological neurons. 

These neural networks are not as powerful as the biological neurons in 

performing complex functions, but they can be well trained to perform simple 

functions. This chapter provides a brief summary of the architecture of a simple 

neural network as well as steps involved in the development of neural networks 

used in the present study. 

4.1 Biological neurons 

 Artificial neural networks have derived their inspiration from biological 

neurons present in the human brain. There are 104 connections for each neuron 

[22]. Therefore, the human brain consists of 1011 ×  104 connections which is 

quite complex. 

A neuron consists of three principal components. 

 a. Dendrites 

 b. Cell Body 

 c. Axon 
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The dendrites are fiber - like structures which carry electrical signals into the cell 

body. 

The cell body stores and sums up these electrical signals. The axon is a 

long fiber that carries electrical signals from the cell body to other dendrites.     

Figure 4.1 shows a simple neuron 

 

Figure 4.1 Schematic of a simple neuron [44] 

 

The point of contact of the axon of a neuron to the dendrite of another 

neuron is called the synapse. The arrangement of the neurons, the strength of 

the synapse and their communication determines the function of the biological 

neural network. The greater the strength of the synapse, the higher is the 

performance of the neural network. 
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4.2 Simple input neuron 

 Artificial neural networks are simple representations of biological neurons. 

A simple neural network is shown in Figure 4.2 [22], which can be mathematically 

represented as,  

.)( abwpf =+     (4.1) 

 A single input p  is multiplied by a weight matrix w  and the product wp  is 

added to the product of the value 1 multiplied by a biasb . The total value 

)( bwp + is called the net input and it is represented by n in  Figure 4.2. This net 

input is then passed on to a transfer function f .  

 

abwpf =+ )(  

Figure 4.2 Single input neuron [22]. 

 If the biological neuron and the single input neuron are to be compared, w  

would represent the strength of the synapse, the summation )( bwp + would 

represent the cell body. The transfer function f and the output a  would 

represent the signal carried away by the axon. 
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4.3 Multi layer network 

 Artificial neural networks have a wide variety of applications from banking 

to engineering [35-37]. These applications have more than one input and one or 

more outputs. A single input neuron, such as the one shown in Figure 4.2 cannot 

be used. Instead, multiple input neurons have to be implemented for such a 

situation. Multiple input neurons together with a multi- layer network are shown in 

Figure 4.3 

 

Figure 4.3 Multi Layer Networks [22]. 

It has R inputs and each layer has a weight matrix W and a bias vector b. The 

bias and weight matrices corresponding to a particular layer are represented by a 

superscript above the variable name. The outputs from one layer form the inputs 

to the next layer. The layer which produces the output is called the output layer 

and the remaining layers are called the hidden layers. 

 The number of inputs to a layer need not be equal to the number of 

neurons present. The number of neurons and layers are selected depending on 

the complexity of the problem. 
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4.4 Feed Forward networks 

  Feed forward network is a type of network architecture in which the signal 

travels only in one direction, from input to output. There is no feedback from the 

output to the input.  

4.5 Transfer function 

 Transfer function can be a linear or a non-linear function of n. The transfer 

function calculates the desired output a  from the net input. In a multilayer 

network, the transfer function in each layer need not be the same.  

4.6 Training the network 

 Training the network in simple terms, is modifying the weights and biases 

to perform a particular function. There are many different types of training 

procedures available. The most commonly used ones are  

 a. Supervised training. 

 b. Unsupervised training. 

4.6.1 Supervised training 

 In supervised training, the network is provided with known inputs and the 

corresponding outputs. When the network is trained, it compares its output with 

the desired output or target. When the results do not match, the weight and the 

bias are adjusted so that the network is trained for the desired output. 

4.6.2 Unsupervised training 

 In unsupervised training, the neural network is not provided with the 

outputs. It trains with the help of inputs. The neural network recognizes a pattern 

in the input and gets trained for the variation in that pattern. 
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4.6.3 Training algorithm 

 The neural network compares its output to the known input. If there is an 

error between the input and the output, the neural network attempts to minimize 

the error by adjusting the weights in each layer so that the neural network can 

generalize well to the given inputs. In other words, the neural network calculates 

the change in error as each weight is increased or decreased. This process 

requires the neural network to compute the derivative of weights. In the case of 

single-layer networks, the error is a linear function of the network weight, hence 

computing them is easier. In multilayer networks with non-linear transfer 

functions, computing the errors becomes more difficult.  

4.6.4 Performance index 

 It is very difficult to have an ideal network that can predict the exact 

output(s) for a given set of input(s). There has to be some measurement tool to 

identify if sufficient training has occurred and stop training when it has occurred. 

One such measurement tool is the mean square error (MSE). 

 In supervised training, the neural network is supplied with known inputs 

and known targets. 

},,..{},........,{},,{ 2211 ii tPtPtP     (4.5) 

iP  Is the known input given to the network and it  is the known target given to the 

network. As each input is given to the network, it is compared with the output. 

The mean square error can be represented as  

].)[()()( 22 atEeExf −==     (4.6) 
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Mean square error is a performance measure that is used by the back- 

propagation algorithm. 

4.6.5 Back propagation algorithm 

 A multilayer network can be represented as  

),( 1111 −+++ += mmmmm baWfa       for      ,1..............2,1,0 −= Mm  (4.7) 

where, M is the number of layers in the network. The input to the network is given 

by,  

.0 pa =      (4.8) 

The outputs of the network is given by 

Maa =      (4.9) 

The steepest descent algorithm for the mean square error is given by,  

.)()1(
,

,, m

ji

m

ji

m

ji
w

F
kwkw

∂

∂
−=+ α    (4.10) 

.)()1(
m

i

m

i

m

i
b

F
kbkb

∂

∂
−=+ α     (4.11) 

where, α  is the learning rate. For a single-layer network, Eqns (4.10) and (4.11) 

can be calculated from the following 

).()(2)()1( kzkekWkW α+=+    (4.12) 

).(2)()1( kekbkb α+=+     (4.13) 

For a multi-layer network, error does not depend upon weights of a single layer 

but on multiple layers. Chain rule is a solution to this problem. 
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4.6.5.1 Chain rule 

 If there is a function f that is an explicit function of n and if the derivative 

of the function with respect to x is required, then chain rule is used. 

An example of the chain rule is described in the following 

If    nenf 2)( =  and 23xn = then, 

,
)()())((

dx

xdn

dn

ndf

dx

xndf
×=     (4.14) 

,62
))(( 2 xe

dx

xndf n ×=      (4.15) 

.12
))(( 2nxe

dx

xndf
=      (4.16) 

In the same way, using the chain rule, derivative of a function f  in Eqns (6.10) 

and (6.11) can  be determined as,  

.
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m
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m

i

m
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n

F
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     (4.17) 
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F
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×
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∂
=

∂

∂
     (4.18) 

The function n  can be computed as an input to layer m,  which can be expressed 

as a function of weights and biases  

.

1

1

1

,∑
−

=

− +=

mS

j

m

i

m

j

m

ji
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i bawn     (4.19) 
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    (4.20) 

If we define,   
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,
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∂

∂
=       (4.21) 

then Eqns (4.17) and (4.18) can be simplified as  

.1

,

−=
∂

∂ m
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     (4.22) 
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      (4.23) 

 

 

Now, the steepest descent algorithm can be expressed as  
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ji askwkw α     (4.24) 

.)()1( m
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i skbkb α−=+      (4.25) 

In matrix form Eqns (6.24) and (6.25) become 

,)()()1( 1 Tmmmm askWkW −−=+ α     (4.26) 

,)()1( mmm skbkb α−=+       (4.27) 

where,  
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Equation (4.28) gives the sensitivity 
ms of just one layer. One has to compute 

the sensitivities of other layers as well. They are computed from the last layer 

(output layer) and propagated into the first layer backwards, hence, the term 

back propagation. 

The sensitivities of the other layers can be computed using the Jacobian matrix 

given by 
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Therefore, the Jacobian matrix can be written as 
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where, 

     .
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The Jacobian matrix can now be expressed as  
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 Using the chain rule again, the recurrence relation can be expressed in matrix 

form as 

.)()( 11 ++= mTmmmm sWnFs     (4.34) 

The sensitivities are propagated backwards in the network from the last layer to 

the first layer. This is expressed as  

.131 ssss MM →→→ −      (4.35) 

The sensitivities at the last layer or output layer is given by  

).)((2 atnFs MMM −−=      (4.36) 

4.7 Early Stopping 

 If the neural network has to precisely predict the underlying function 

between the inputs and outputs, it should not overfit the given data. Early 

stopping is a method that is useful to avoid over fitting of data. In this method, the 

entire input set is divided into training set, testing set, and validation set. The 

training set is used to compute the weights to obtain the desired output. The 

validation set is used to determine the time to stop training. As the neural 

networks starts to overfit the data, the error on the training set starts decreasing 
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and the error on the validation set starts increasing. The aim of the early stopping 

algorithm is to minimize the error on the validation set.  
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CHAPTER 5 

PROBLEM STATEMENT 

 

The aim of molecular dynamics (MD) simulations is to model interactions 

of materials at the atomic scale. For MD simulations of the study of CVD process, 

it is necessary to critically asses the note of the experimental conditions, 

precursor gases used, their composition, the reactions involved. This would 

facilitate in modeling the process. 

In a CVD process, the properties of the deposited film depend on its 

chemical composition. In order to determine the most effective species that aid in 

the growth of diamond films, MD simulations have been a very common tool, as 

pointed out in Chapter 2. 

A number of precursor atoms and molecules, namely, CH3, C2H2, C2H4, 

CH2, C, to name a few, may be used as growth species in a CVD process. 

Diamond film growth occurs by the chemisorption of these radicals on to a 

diamond surface. 

The aims of this investigation are the following 

1. To perform MD simulations for investigating the chemisorption,  

scattering and desorption probabilities of a carbon atom on a diamond (111) 

surface. We intend to employ the potential energy surface given by Brenner et al. 



 34 

[14] and compute the probabilities of chemisorption, scattering, and desorption 

for various input parameters. 

2. To develop neural networks to reduce the time involved in 

investigating the effect of input parameters, namely, incidence angle (θ), rotation 

angle (Φ), impact parameter (b), and kinetic energy (K) of C atom on  three 

events, namely, chemisorption, reflection, and desorption. 

3. To use neural networks to predict the underlying function between 

incidence angle (θ),  rotation angle (Φ),  impact parameter (b), and kinetic energy 

of C atom (K)  and event probabilities which form the output.   
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CHAPTER 6 

MD SIMULATIONS AND NN IMPLEMENTATION OF EVENT 

PREDICTION IN A CVD PROCESS 

 A chemical reaction occurs by the adsorption of a chemical species on a 

reaction surface. This study focuses on the chemical reactions that occur on a 

diamond (111) surface. The reactions that are considered in this study are 

chemisorption, scattering, and desorption. This chapter describes the simulation 

setup used, the input variables considered, and the output probabilities. 

6.1 Model Considered 

 The present study considers a diamond (111) surface for simulation. The 

top layer atoms on the diamond surface are covered with hydrogen atoms except 

for the central one which forms the radical site. The diamond substrate consists 

of five layers of atoms, out of which the top layer forms the hydrogen layer. Out 

of the remaining four layers of carbon atoms,  the bottom layer consists of 

boundary atoms for which the Newtonian equations of motion are not integrated. 

A layer of atoms on each side of the substrate also form boundary atoms. In 

total, the simulation model consists of 186 atoms, of which 108 atoms are moving 

atoms. Moving atoms are those for which equations of motion are integrated. 
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Figure 6.1 Top View of Diamond (111) substrate. In the 
figure, squares represent top layer hydrogen atoms, 
triangles represent first layer of carbon atoms, circles 
represent the second layer of carbon atoms, asterisks 
represent the third layer carbon atoms, and rhombus 
represents the fourth layer carbon atoms. 

 
6.2 Input Variables 

 To study the chemical reactions occurring on the diamond (111) substrate 

when impacted by a carbon atom, the input variables were selected such that the 

chemical reaction that occurs simulates the experiment. 

 The input variables considered are 

a. Impact parameter (b), 

b. Incident angle (θ), 

c. Rotation angle (Φ), and 

d.  Kinetic energy of carbon atom (K).  

Figure 6.2 shows a pictorial view of the input variables considered. 
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Figure 6.2 Representation of input variables considered 

 In this study, before the reaction probabilities are studied on the diamond 

(111) substrate, the substrate has to be brought to the minimum energy 

configuration. For this, the forces on the atoms in the system are calculated by 

taking the first derivative of the potential. From the forces, the new positions are 

obtained by solving the Newtonian equations of motions. If the potential energy 

of the new structure is greater than the previous one, the velocity of all atoms is 

set to zero and the process is repeated until the potential energy attains a 

minimum. 

 After the substrate is relaxed, kinetic energy equals to 3 kT (where k is the 

Boltzmann constant and T is the desired temperature), is randomly inserted into 

each atom and the substrate is allowed to vibrate for ~ 60,000 time steps with a 

time step of 0.5 fs. The temperature of the substrate is then maintained at 1250 K 

using a Brendeson thermostat procedure [42] for ~ 50,000 steps. 
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 The procedure for the selection of each of the input variables is given in 

Sec 6.2.1. In this study, each of these input parameters were held constant for 50 

trajectories, which forms one neural network point. 

6.2.1 Impact parameter 

 Impact parameter is the point at which the incident carbon atom is aimed 

at the substrate. In the present study, the impact parameter is chosen randomly 

from a distribution function given by [18, 19] 

.max1 bb ×= ζ                    (6.1) 

This is equivalent to the selection from a normalized probability distribution      

    
2

max

2
)(

b

bdb
dbbP =       (6.2) 

where maxb  is the maximum radius around the radical site within which the value 

of b varies. 1ζ  is a random number that varies between 0 and 1. In this study maxb  

was found to be 2.5 Å as chemisorption at the radical site was not observed 

beyond 2.5 Å. The value of b signifies the radius around the radical site where 

impact can occur. In each trajectory, b was chosen randomly using Eqn 6.1. 

Figure 6.3 shows a typical distribution of impact parameters generated by Eqn 

(6.1). Note that the probability of selection varies in a non-linear fashion with b. 



 39 

0

50

100

150

200

250

300

0 0.4 0.8 1.2 1.6 2 2.4

Impact parameter, b (Å)

[P
 (

b
+

 0
.1

) 
- 

P
 (

b
)]

 *
 N

 

Figure 6.3 Distribution for the impact parameter. Histogram 
is the plot of distribution. Solid line is the plot of the 
theoretical function. N represents the number of points (3305 
used in this study). 

 
6.2.2 Incident angle  

 In this study, the incident carbon atom is placed over the substrate at a 

distance such that there is no influence of the substrate atoms on the incident 

carbon atom when it is over the edge of the substrate. The incident angle was 

selected randomly from a distribution weighted by the solid angle element,  

θθθθ dSindP =)(       (6.3) 

This selection can be achieved  from Eqn (5.4) [18, 19].   

),(cos1(cos 2

1

mθζθ −= −     (6.4) 

  where mθ  is the maximum value that the incident angle can take. 2ζ is a random 

number which takes values between 0 and 1. mθ  was decided based on the 

substrate size, and the effect of chemisorption at a distance from the radical site. 
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In the present study, mθ  was fixed at 21.84°. It was based on the condition that 

the incident carbon atom should be at least 10 Å above the top layer of the 

substrate at the start of the trajectory and aimed within 2.5 Å from the radical site, 

after which there is no effect of chemisorption. Figure 6.4 shows a histogram for 

incident angle distribution obtained from Eqn (6.4). 
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Figure 6.4 Distribution for the incident angle. Histogram is 
the plot of the distribution obtained. Solid line is the plot of 
the theoretical function. N represents the number of points 
(3305 used in this study). 

 
6.2.3 Rotation  angle  

  The rotation angle is defined in Figure 6.2. The rotational angle distribution 

is uniform over the range πφ 20 ≤≤ . Therefore, we select its value in each 

trajectory using Eqn (6.5) [18, 19]   

.2 4ζπφ ××=      (6.5) 
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4ζ  is a random number that varies between 0 and 1. Figure 6.5 shows the 

distribution for the rotation angle φ  
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Figure 6.5 Distribution for the rotation angle. Histogram is 
the plot of the distribution obtained. Solid line is the plot of 
the theoretical function. N represents the number of points 
(3305 used in this study). 

 
As can be seen the distribution is essentially uniform. 

6.2.4 Kinetic energy of incident carbon atom  

 Kinetic energy of incident carbon atom (K) is chosen from a Boltzman 

distribution corresponding to a temperature of 1250 K. The Boltzmann 

distribution function is given by  
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π
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Kinetic energy is found using  
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.
2
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The distribution of Kinetic energy in eV is given in Figure 6.6 
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Figure 6.6 Boltzmann distribution for the kinetic energy of 
incident carbon atom corresponding to 1250 K. Histogram is 
the plot of the distribution obtained. Solid line is the plot of 
the theoretical function. N represents the number of points 
(3305 used in this study). 

 
6.3 Output variables 

 As mentioned in Section 6.2, 165,250 (3305×50) MD trajectories were run 

holding all input variables θ, Φ, b, and K constant for a set of 50 trajectories. The 

event probabilities of interest are 

 a. Chemisorption probability, 

 b. Scattering probability, and 

 c. Desorption probability. 
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The Z - coordinate and energies associated with each event are described 

below.   

6.3.1 Chemisorption 

 Chemisorption is bonding between the incident carbon atom and the 

carbon at the radical site. In the present study, we used the criteria that 

chemisorption had occurred if the incident carbon atom experienced more than 

10 inner turning points and stayed within a bonding distance of 2 Å from the 

carbon atom at the radical site for at least 1 ps 

 Figure 6.7 shows the variation of  Z - coordinate and potential energy plots 

with time, as chemisorption occurs. It can be seen from the plot that there is a 

drop in the potential energy of the system as a bond is formed.  
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Figure 6.7 Z – coordinate and potential energy plots with 
time for chemisorption event 
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6.3.2 Scattering 

            When the incident carbon atom does not react with the substrate and is 

reflected, scattering is considered to have occurred. In the present study, if the 

incident carbon atom exhibits just one inner turning point and is well above the 

bonding distance of 2 Å at the end of 1 ps after it has reached the substrate, 

scattering is considered to have occurred. 

 Figure 6.8 shows the Z - coordinate plot and the potential energy plot with 

time, as scattering occurs. It can be seen from the plot that there is no drop in 

potential energy of the system as no reaction occurs in the system. 
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Figure 6.8 Z – coordinate and potential energy plots with 
time for scattering event 
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6.3.3 Desorption 

             When the incident carbon atom does not react with the substrate 

but stays within the bonding distance for sometime and then scatters away, 

desorption is assumed to have occurred. In the present study, if the incident 

carbon atom exhibits 2 to 9 inner turning points and is well above the bonding 

distance of 2Å from the radical site at the end of 1 ps after it has reached the 

substrate,  desorption is assumed  to have occurred. 

 Figure 6.9 shows the Z - coordinate plot and potential energy plot with 

time as desorption occurs. No significant drop in potential energy is seen as 

there is no reaction occurring. 
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Figure 6.9 Z – coordinate and potential energy plots with 
time for desorption event 
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Average chemisorption, scattering, and desorption probabilities were 

alculated from the results of 50 trajectories with the inputs θ, Φ, b, and remaining 

constant. 

The probability from 50 MD trajectories for a given input (θ, Φ, b, and K ) 

corresponds to one set of output and input to the neural network. 3305 sets of 50 

trajectories were run and the corresponding inputs and outputs were used for 

training the neural network. 

6.4 Implementation of Neural Networks 

The main purpose for the use of neural networks in this study is that 

artificial neural networks operate in parallel and perform a multitude of activities 

at the same time. As discussed in Chapter 2, MD simulations are computationally 

intensive. Also the study of probabilities involves statistical errors. Hence, use of 

neural networks for this study is well justified as time for the computation and 

statistical errors are immensely reduced. 

 In this study, there are three networks used to predict the probabilities for,  

  a. Chemisorption 

  b. Scattering 

  c. Desorption 

 θ,  Φ,  b,  and K form the inputs to each of the neural networks and event 

probabilities  form the output of the network. The feed forward multilayer neural 

networks used consist of one input layer and one hidden layer. Fifty neurons are 

used in the hidden layer. 
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 The probabilities supplied to the neural network as targets are from 50 MD 

trajectories for the same input conditions. The 50 trajectories provide an average 

over the vibrational phase of the lattice.The output of the neural network is the 

average of 50 neural   networks. 

6.4.1 Transfer functions used   

In the first layer or the hidden layer, the tan sigmoid transfer function as 

shown in Figure 6.10 was used. This transfer function takes values between -∞ 

and +∞ and outputs values between -1 and +1  

 

Figure 6.10 Tan sigmoid transfer function [22]. 

The tan sigmoid function takes the form, 

.1
)1(

2
2

−
+

=
− n
e

a      (6.8) 

 In the output layer purelin transfer function was used. This is a linear 

transfer function and the output of the transfer function is equal to its input. 

Figure 6.11 is a representation of the purelin transfer function [22]. 
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Figure 6.11 Linear transfer function [22]. 

The purelin transfer function takes the form,  

    .na =       (6.9) 

6.5 Normalization 

 The transfer function tan sigmoid used in the hidden layer takes up only 

values between -1 and 1 and gives outputs between -1 and 1. Hence, the values 

that are fed into the network have to be scaled between -1 and +1. The algorithm 

used for normalization is given by  
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pp

pp
p i
i      (6.10) 

where, minp  and maxp  are the minimum and maximum of the input and target 

values, respectively. For the present study, a total of 3305 points have been used 

to train the neural network, of which 85% (2809 points) are chosen for training 

and 15% (496 points) are chosen for validation. The variables which are to be 

studied forms the testing set. 
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CHAPTER 7 

RESULTS AND DISCUSSION 
 
 As stated in Chapter 6, MD simulations were carried out on a diamond 

(111) substrate and the reaction probabilities were determined. These 

probabilities were obtained by running a set of 50 trajectories to average over 

lattice vibrational phases. The inputs and outputs (reaction probability) 

corresponding to 50 trajectories formed one neural network training or validation 

point. In this study, 3305 points were generated for the neural network. The 

neural network was then trained using these points. The inputs to the neural 

network were θ, Φ, b, and K and the outputs were  

a. Chemisorption probability, 

b.  Scattering probability, and  

c. Desorption probability. 

The main aim of this study is to reduce the time involved in studying the 

effect of the complete range of input parameters on the output by using neural 

networks trained on MD data. 

 Three neural networks were developed to study each of the event 

probabilities. 

7.1 Training and testing plots 

 The neural network was trained using the early stopping algorithm as 

discussed in Chapter 6. Figures 7.1 to 7.3 show the training and testing plots for 
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chemisorption, scattering, and desorption probabilities, respectively. In all these 

plots, the X -  axis represents the probability predicted by MD , while the Y – axis 

represents the probability predicted by the Neural networks (NN). 
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Figure 7.1 Training and testing plots for chemisorption 
probability 
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Figure 7.2 Training and testing plots for scattering probability 
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Figure 7.3 Training and testing plots for desorption 
probability 

 
 Out of 3305 points, 70% were used for training the network, another 15% 

were used to test the network, and the remaining 15% were used for validation. 

In Figures 7.1 to 7.3, the Y - axis represents the output of the neural network 

while the X - axis represents the MD data. If the neural network predicts the MD 

data exactly, the plot would fit the 45 ° line.  
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7.2 Neural network predictions and the results of molecular dynamics (MD) 

 After the network had been trained, it was tested with the already available 

MD data. The MD data were generated by varying one of the input parameters 

while holding the others constant. The statistical error for one sigma standard 

deviation on MD data is calculated using Eqns (7.1) to (7.2) [18] 

,100
*

% ×
−

=
sT

sT

NN

NN
error      (7.1) 

where, TN is the total number of events (50 in this study) and sN  is the total 

number of successful events 

For one sigma limit, the error is given by 

.errorPevente ±=σ     (7.2) 

By this method, one sigma error on each molecular dynamics data was 

calculated. There is a 67% chance for neural network predictions to lie within one 

sigma standard deviation limit of MD. The agreement of neural network 

predictions with MD is described in this section. 

For better accuracy in the neural network results, while training  the 

network, out of the 3305 points, 85% were used for training and 15 % were used 

for validation. The additional MD points generated formed the testing set for the 

network. To reduce random statistical error, 50 neural networks were trained. 

Each training represented one neural network. For each neural network, the 

initial weight matrices were randomly chosen. Also, the 85% data for the training 

set and remaining 15% data as a validation set were chosen randomly for each 

network from the 3305 points. This type of random selection of weights and 
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training points were made to allow the 50 neural networks to average out the 

random statistical error in the data. For all of the 50 neural networks, the 

additional MD points generated formed the testing set. The output of the neural 

network has been obtained by averaging over all 50 neural networks. 

Figures 7.4 to 7.7 show the ability of the neural network to predict the 

testing data, which were MD points generated in addition to 3305 points. As 

mentioned above, the neural network results have been obtained by averaging 

50 neural networks.  

Figure 7.4 shows the effect of impact parameter (b) on the probabilities 

under study. In this case, the impact parameter (b) is varied from 0 to 2.5 Å while 

the other constant input parameters are incident angle (θ) = 15°, rotation angle 

(Φ) = 200°and kinetic energy of carbon atom (K) = 0.04 eV. It can be seen from 

Figure 7.4,  that as the point of impact of the incident carbon moves away from 

the radical site, it is difficult to form a bond at the radical site. Therefore, the 

probability of chemisorption Pc decreases, whereas scattering probability Ps 

increases. The probability of desorption PD is less near the radical site as 

probability of chemisorption is higher, whereas, it increases and remains 

constant with increase in  distance from radical site.  
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Figure 7.4 Neural Network and MD predictions of effect of 
the impact parameter (b). PC, PS and PD, are the probabilities 
of chemisorption, scattering, and probability of desorption, 
respectively. Circles and squares denote MD and neural 
network data, respectively. The error bars represent one 
sigma limit of statistical uncertainty. 

 
Figure 7.5 shows the effect of incident angle (θ) on the probabilities under 

study. In this case, the incident angle is varied from 1° to 21°. The other constant 

input parameters are impact parameter (b) = 1.5 Å, rotation angle (Φ) = 200° and 

kinetic energy of carbon atom (K) = 0.14 eV. As the angle of incidence of the 
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carbon atom increases, chemisorption probability Pc decreases as the incoming 

carbon atom sees a hydrogen atom in its way. A similar phenomenon for 

chemisorption probability on diamond (111) surface was observed by Hu et al. 

[21, 41]. Also, with increasing incident angle (θ), scattering probability Ps 

increases as there is a greater probability for the incoming carbon atom to get 

scattered away by the surface hydrogen. The desorption probability PD 

decreases with increase in incident angle, as there is a high probability of not  

forming a bond  at the radical site. 
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Figure 7.5 Neural Network and MD predictions of effect of 
the incident angle (θ).PC, PS and PD, are the probabilities of 
chemisorption, scattering, and probability of desorption, 
respectively. Circles and squares denote MD and neural 
network data, respectively. The error bars represent one 
sigma limit of statistical uncertainty. 
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Figure 7.6 shows the effect of kinetic energy of the incident carbon atom 

(K) on the probabilities PC, PS and PD. In this case, the kinetic energy (K) was 

varied from 0.005 to 0.8 eV.  The other constant input parameters were impact 

parameter = 1.5 Å, Rotation angle (Φ) = 200°, and incident angle (θ) = 15°. It can 

be seen that the chemisorption probability PC, increases with increase in kinetic 

energy. Less chemisorption probability at lower kinetic energy of carbon atom is 

due to a barrier that hinders chemisorption. Also, a trend in the chemisorption PC 

probability and the scattering probability Ps  could be the seen from Fig 7.6. The 

increasing trend in chemisorption probability PC initially can be attributed to the 

fact that, at lower kinetic energies, the carbon atom might get repelled by the 

surface hydrogen atoms and at higher energies, the incident carbon atom might 

have higher energy to overcome repulsion by hydrogen atoms. Following the 

increasing trend in chemisorption probability PC, there is a slight decrease. This 

could be due to the fact that at relatively higher kinetic energies, the incoming 

carbon atom is unable to dissipate its energy into the lattice and hence a low 

chemisorption probability. The decreasing trend is again followed by an 

increasing trend. At higher kinetic energies of the carbon atom, there is partial C -

H bond formation between the incoming carbon atom and the hydrogen atom 

present on the surface of the substrate. This partial bond formation facilitates 

energy transfer and thereby there is a higher possibility of carbon atom 

chemisorbing due to lesser energy. A complimentary trend could be observed in 

the scattering probability PS. As for the desorption probability PD, there is an  

effect of hydrogen repulsion and radical site attraction. Therefore,  the desorption 
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probability PD, is relatively high at lower kinetic energies and it decreases with 

higher kinetic energies as chemisorption probability PC increases. A similar trend 

of overall increase in chemisorption probability with increase in kinetic energy 

was  observed by Alfonso et al.[7], Du et al.[13], Gernster et al.[8], Huang et al. 

[10] and Neyts et al. [9] by studies on various diamond surfaces using different 

incident hydrocarbon species. 
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Figure 7.6 Neural Network and MD predictions of effect of 
the kinetic energy (K) of incident carbon atom. PC, PS and PD, 
are the probabilities of chemisorption, scattering, and 
probability of desorption, respectively. Circles and squares 
denote MD and neural network data, respectively. The error 
bars represent one sigma limit of statistical uncertainty. 
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Figure 7.7 shows the effect of rotation angle (Φ) on the probabilities PC, PS 

and PD. In this case, rotation angle (Φ) was varied from 0 to 360°.  The other 

constant input parameters were impact parameter 2 Å, incident angle (θ) = 

15°and kinetic energy of carbon atom (K) = 0.14 eV. There seems to be no effect 

of approach angle on the reaction probabilities. 
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Figure 7.7 Neural Network and MD predictions of effect of 
the rotation angle (Φ). PC, PS and PD, are the probabilities of 
chemisorption, scattering, and probability of desorption, 
respectively. Circles and squares denote MD neural network 
data, respectively. The error bars represent one sigma limit 
of statistical uncertainty. 
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 It could be inferred from Figures 7.4 to 7.7 that the predictions of the trained 

neural network are in agreement with the results given by MD.  

The neural network predictions shown in Figures 7.4 to 7.7 are the 

average of 50 neural networks. Therefore, the neural network predictions also 

have a variation in them. Figure 7.8 is the variation of Pc with impact parameter in 

neural network and MD.  
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Figure 7.8 Statistical fluctuations in MD and Neural network 

The error bars corresponding to the circles and the error bars 

corresponding to squares indicate the error of MD data and neural network data, 

respectively.  

The following can also be observed from Figures 7.4 to 7.8 

1. The neural network is able to follow the trend predicted by MD 

convincingly.  

2. The prediction of neural network is a smooth curve with less statistical 

fluctuations than MD. 

 



 61 

7.3 Neural Network predictions of event probabilities 

 From Figures 7.4 to 7.7, it is evident that the neural network can predict 

the underlying function between inputs and outputs. Therefore, the neural 

network trained on MD data can be used to explore a wide input range at the 

expense of very small CPU time. Figures 7.9 to 7.12 show such results. Unless 

otherwise specified, the results described in Figures 7.9 to 7.12 correspond to 

the following values of input parameters.  

a. Rotation angle (Φ) = 200° 

 b. Incident angle  (θ) = 15° 

 c. Impact parameter (b) = 1.5 Å 

 d. Kinetic energy of carbon atom (K) = 0.14 eV 

From Figure 7.9 and 7.10, it could be inferred that the rotation angle (Φ), has no 

effect on the reaction probabilities PC, PS and PD. 
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Figure 7.9 Neural Network plot for the study of effect of 
rotation angle (Φ) on probabilities. PC, PS and PD, are the 
probabilities of chemisorption, scattering, and probability of 
desorption, respectively.  
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Figure 7.10 Neural Network plot for the study of effect of 
incident angle (θ) on probabilities. PC, PS and PD, are the 
probabilities of chemisorption, scattering, and probability of 
desorption, respectively.  
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From Figure 7.11, it can be seen that at impact parameter values close to the 

radical site, the chemisorption probability Pc  is less at lower incident angles and 

it is high with higher angle of incidence and a complimentary trend could be 

observed in the scattering probability PS . This may be due to the fact that, as the 

incident carbon atom strikes the radical site head on or at very low incident 

angles ( of the order of 5-10°, in this case), there is not much time for the incident 

carbon atom coming in at a higher velocity to form a bond  at the radical site .The 

kinetic energy of the carbon atom is higher than the bond energy of C-C bond 

and therefore no chemisorption occurs. In the case of higher incident angles, the 

incident carbon atom loses much of its energy on to the vibrating hydrogen 

atoms before it strikes the radical site and hence a higher chemisorption 

probability PC could be attributed to higher incident angles. Figure 7.12 shows the 

neural network predictions of the effect of kinetic enrgy and the incident angle of 

the incoming  carbon atom on the probabilities. PC, PS and PD  are the 

probabilities of chemisorption, scattering, and desorption respectively. The 

explanation given to Figure 7.6 can be extended to each curve in Figure 7.12 as 

well. 
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Figure 7.11 Neural Network plot for the study of effect of 
impact parameter (b) on probabilities. PC, PS and PD, are the 
probabilities of chemisorption, scattering, and probability of 
desorption, respectively.  
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Figure 7.12 Neural Network plot for the study of effect of 
kinetic energy of the incident carbon atom (K) on 
probabilities. PC, PS and PD, are the probabilities of 
chemisorption, scattering, and probability of desorption, 
respectively.  

 
7.4 A comparison of CPU time required 

Neural Network is found to be very efficient in terms of processing time 

compared to MD. In this study, it was found that it takes approximately 20 

minutes of CPU time to generate a single MD point. This MD point contains 
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information of all three probabilities.  The time taken for neural network prediction 

is essentially unaffected by the number of points. It takes less than an hour of 

CPU time for the neural network to train and predict the probabilities for 

chemisorption, scattering, and desorption. Depending on the number of points to 

be simulated, the time taken for the neural network to predict these values 

slightly increases, but is insignificant compared to the time taken to run MD. 

Although, clock time to run MD trajectories depends on computer processing 

speed, it can be said that, with the same computer processing speed, neural 

network would take less time than MD (minutes compared to days). This can be 

noted from Figure 7.13 
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Figure 7.13 CPU time requirements – MD and Neural 
network 
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CHAPTER - 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Chemical vapor deposition of diamond produces precise and uniform 

coatings. As the coatings are of the order of nanometers, the mechanism for 

formation of such a coating cannot be studied experimentally. Simulation tools 

have to be used for such studies. Molecular dynamics is one such simulation tool 

that has been used over years to study the reaction probabilities of radicals CH3, 

C2H2, and C2H4 on diamond surfaces [17-19].  However, it has a drawback in  

that such simulations require enormous amount of CPU time. 

 In this study, an effort was made to reduce the aforesaid drawback of 

molecular dynamics by using neural networks. Molecular dynamics (MD) 

simulations were performed to study the chemisorption, scattering,  and 

desorption probabilities of a carbon atom on a diamond (111) surface. Results 

obtained from MD simulations were then used to train a multilayer neural 

network. The conclusions that may be drawn from this study are given in the 

following 

1. The trained neural network is able to predict the probabilities at a much  

faster rate than MD 
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2. A trained neural network can easily be used to study the effect of any 

input parameter over a wide range of other parameters which is not a 

simple task with MD. 

3. The predictions of the neural network are reasonably  accurate. 

4. As impact parameter increases chemisorption probability (Pc) 

decreases whereas the scattering probability (Ps) increases and 

desorption probability (PD) decreases. 

5. As incident angle (θ) increases, chemisorption probability (Pc) 

decreases, whereas scattering probability (Ps) increases and desorption 

probability (PD) decreases. 

6. As kinetic energy of the carbon atom (K) increases, chemisorption 

probability (Pc) increases, whereas scattering probability (Ps) decreases 

and desorption probability (PD) decreases. 

7. As rotational angle (Φ) increases, there seems to be no effect on any of 

the three probabilities, namely, chemisorption probability (Pc), scattering 

probability (Ps), and desorption probability (PD). 

8.2 Future work 

 Having established that the neural network can be used to study 

the effect of parameters faster than MD, a large domain remains to be 

explored. The scope of this study can be further extended to the following 

1. Input variables for this study had been selected from distribution 

functions to simulate the physical experiment. The study of a uniform 
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distribution of the input parameters may also be an interesting domain to 

explore. 

2. Temperature of the substrate can be varied and its effect on the 

probabilities can be studied. 

3. Reaction probabilities of different species can be studied. 

4. Reaction probabilities on surfaces without capped hydrogen atoms can 

be studied. 
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