
AB INITIO MOLECULAR DYNAMICS (AIMD) 
A NEW APPROACH FOR DEVELOPMENT OF

ACCURATE POTENTIALS

By

Milind M Malshe
Bachelor of Engineering
University of Mumbai

Mumbai, India
1998

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER of SCIENCE
December, 2004



ii

AB INITIO MOLECULAR DYNAMICS (AIMD) 
A NEW APPROACH FOR DEVELOPMENT OF

ACCURATE POTENTIALS

Thesis Approved:

________________________________________________
Thesis Advisor

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________
Dean of the Graduate College

Dr. R. Komanduri

Dr. S. Roy

Dr. H. Lu

Dr. M. Hagan

Dr. L. M. Raff

Dr. A. Gordon Emslie



iii

1

2

3 SUMMARY

In this study a new approach is presented for the development of accurate potential-

energy hypersurfaces based on ab initio calculations that can be utilized to conduct 

molecular dynamics and Monte Carlo simulations to study chemical and mechanical 

properties at the atomistic level. The method integrates ab initio electronic structure 

calculations with the interpolation capability of multilayer neural networks. A sampling 

technique based on novelty detection is also developed to ensure that the neural network 

fitting for the potential energy spans the entire configuration space involved during the 

simulation. The procedure can be initiated using an empirical potential or direct dynamics 

simulation. The procedure is applied for developing the potential energy hypersurface for 

5-atom clusters within a silicon workpiece. Ab initio calculations were performed using 

Gaussian 98 electronic structure program. Results for 5-atom silicon clusters representing 

the bulk and the surface structure are presented.
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8 CHAPTER 1

1 Introduction

Computer simulation techniques play an important role in the study of various 

chemical, biological and mechanical processes at the atomistic level. By the comparing 

results of the simulations with experimental observations, theoretical model used in the 

simulation can be corrected and validated. Once validated, the simulations can be used to 

study the system under different conditions for which experimental results are not easily 

available. By analyzing the results from the simulations, experiments can then be 

performed under specific conditions to achieve desired results. Thus computer 

simulations can complement both theoretical and experimental approaches. In 

conjunction with the developments in computer technology, the use of simulations has 

greatly extended the range of problems that can be studied. In chemistry, simulations are 

performed to study reaction dynamics. In engineering, simulations are used to study the 

behavior of a material under varying conditions in various processes such as machining, 

indentation, and melting. Such simulations can provide a useful insight into important 

mechanisms such as phase transformation and dislocation dynamics, which otherwise is 

not easily understood using other techniques. 

Simulation techniques can be broadly classified into two groups as, stochastic and 

deterministic. Stochastic simulations are based on statistical mechanics which relates 
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macroscopic properties such as pressure and temperature to the distribution and motion of 

atoms and molecules, whereas deterministic approach is based on classical mechanics. 

Examples of deterministic and stochastic approaches are molecular dynamics and Monte 

Carlo simulations respectively. Molecular dynamics simulations generate information at 

the microscopic level, such as atomic positions and velocities, by integrating the 

equations of motions and following the time evolution of a set of interacting atoms. 

Statistical mechanics deals with macroscopic systems from a molecular point of view, 

where macroscopic phenomenons are studied from the properties of individual molecules 

making up the system. 

The most important part of MD/MC simulation is the development of the 

potential energy surfaces, which describe the interactions of atoms within a system. It 

should provide a realistic description of the interatomic interactions to match the 

experimental observations. The usual approach for developing a potential is to determine 

a functional form motivated by physical intuition and then to adjust the parameters either 

to ab initio data and/or some physical properties to come up with an empirical potential. 

Although, such empirical potentials provide a simple and physically interpretable 

description for the interatomic interactions their applicability is limited to the type of data 

to which it was fitted. Once fitted, there is no easy way to improve upon it, without 

refitting the data. A solution to this problem is to model the system using ab initio

electronic structure calculations by solving Schrödinger’s equation, to compute the 

potential energy and forces from the first principles. Such a technique can provide very 

accurate description of the interatomic interactions, but are computationally very 

extensive and hence limited only to small systems involving only a few atoms.  
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In this study a new approach is presented for the development of accurate 

potential-energy hypersurfaces based on ab initio calculations that can be utilized to 

conduct molecular dynamics and Monte Carlo simulations to study chemical, mechanical, 

and electrical properties at the atomistic level. The method integrates ab initio electronic 

structure calculations with the interpolation capability of multilayer neural networks. A 

sampling technique based on novelty detection is also developed to ensure that the neural 

network fitting for the potential energy spans the entire configuration space involved 

during the simulation.

Chapter 2 gives a literature review of various empirical potentials and different 

design approaches employed for modeling different situations. Chapter 3 explains the 

molecular dynamics technique, and various integration algorithms and implementation of 

periodic boundary conditions. Chapter 4 gives the classification and design of empirical 

potentials and details about some of the important empirical potentials developed for 

covalent materials, particularly silicon. Chapter 5 provides a detailed description of ab 

initio techniques. Different types of basis sets and techniques, such as Hartree-Fock 

method, electron correlation methods, such as configuration interaction, perturbation 

theory and density functional theory are discussed. Chapter 6 discusses multilayer neural 

networks, training algorithms and techniques to achieve an accurate fit. A sampling 

technique called novelty detection is also discussed. Chapter 7 presents the new technique 

for ab initio Molecular Dynamics, and discusses various steps involved. Chapter 8 shows 

the results for the silicon system. Chapter 9 summarizes the conclusions of this study.
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11 CHAPTER 2

2 Literature Review

The most important part of the MD/MC simulation is the development of the 

potential energy surfaces, which can model the system under the consideration 

sufficiently close to the actual one. In recent years many empirical potentials for silicon 

such as Stillinger-Weber potential, Tersoff potential, Bolding-Anderson potential and 

Brenner potential have been developed and applied to number of different systems.  

2.1 Literature review of design of interatomic potentials 

Existing models for interatomic differ in the degree of sophistication, functional 

form, fitting strategy and the range of applicability where each one is designed for a 

specific problem. Not only surfaces and small clusters are difficult to model (Balamane et 

al, 1992; Kaxiras, 1996) even bulk material, including crystalline and amorphous phases, 

solid defects and liquid phase have not provided a transferable description by a single 

potential. The usual approach for developing an empirical potential is to arrive at a 

parameterized functional form motivated by physical intuition and then to find a set of 

parameters by fitting to either ab initio data or experimental observation, or both for 

various atomic structures. A covalent material presents a difficult challenge because 

complex quantum mechanical effects, such as chemical bond formation, hybrdization, 

metallization, charge transfer and bond bending must be described by an effective 
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interaction between atoms. In spite of a wide range of functional forms and fitting 

strategies most of these models have been successful in the regime for which they were 

parameterised, but have shown a lack of transferability. Balamane and Halicioglu ( 1992) 

performed a comparative  study of six classical many-body potentials namely, Pearson, 

Takai, Halicioglu and Tiller potential; Biswas and Hamann potential; Stillinger and 

Weber potential; Dodson potential; Tersoff potential (T2); modified Tersoff potential 

(T3). They concluded that each has strengths and limitations, none appearing clearly 

superior to the others, and none being fully transferable.

The Stillinger-Weber potential (1985) was parameterized for experimental 

properties of solid and liquid silicon such as lattice energy and melting point. The model 

has a form of a third order cluster potential (Carlson, 1990) in which the potential energy 

is expressed as a linear combination of two and three-body terms, as:

∑∑
<<<

+=
kji

kji
ji

ji

kjivjivE
,,

3
,

2 ),,(),( , ( 2.1 )

where v2(i,j) represents two-body interactions and v3(i,j,k) represents three-body 

interactions. The two-body interactions are expressed as :
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angular function h(θ). Thus:
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where θijk is the bond angle formed by the bonds ij and ik, and g(r) is a decaying function. 

The angular function has a minimum at θ= 109.5°, i.e. the tetrahedral angle to represent 

the angular preference for sp3 bonding. This potential gives a fairly realistic description 

of crystalline silicon, point defects, liquid and amorphous phases but provides inadequate 

description of under-coordinated or over-coordinated structures. Mistriotis et al. (1989) 

proposed an improvement over Stillinger-Weber potential which included four-body 

interactions as well. It was able to give good agreement with the melting point of the 

crystal and the geometries and the energies of the ground and low metastable states of 

silicon clusters.

Tersoff (1988; 1989) proposed an approach by coupling two-body and multi-body 

correlations into the model. The potential is based on bond order which takes into 

account local environment. The bond strength depends on the geometry- the more 

neighbors an atom has, the weaker the bond to each neighbor would be. The energy is the 

sum of repulsive and attractive interactions which depends on the local bonding 

environment. Thus:

[ ]

.),,(

,),()(),()(
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1

,

,,
3
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∑
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+⋅=
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The fR and fA terms are repulsive and attractive pair potentials, respectively and fC is a 

cutoff function. The main feature of this form is the term bij. The idea is that the strength 

of each bond depends upon the local environment and is lowered when the number of 

neighbors is relatively high. The term ζij defines the effective coordination number of 
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atom taking into account the relative distance of two neighbors (rij-rik) and the bond angle 

θijk.

The Bolding-Anderson potential (1990) is a general from of Tersoff potential, in 

which the interaction between pair of atoms dependent on the environment. They 

suggested that clusters of four or more atoms have local minima on the potential energy 

surface corresponding to multiple configurations, which involve atoms with high 

coordination number and strained bonds angles. The increase in potential because of 

strained bond angles is offset by the large number of weak bonds formed. Their potential 

incorporated angle dependence that is different for clusters and crystals by introducing 

interference functions.

Bazant and Kaxiras (1997) developed environment dependent interatomic 

potential (EDIP) for bulk silicon. The interaction model included two-body, three-body 

terms which depend on the local atomic environment through an effective coordination 

number given by:

V2(r,Z) = ΦR(r) + p(Z) ΦA(r), 

where ΦR(r) represents the short range repulsion of atoms, ΦA(r) represents the attractive 

force of bond formation, and p(Z) is the bond order, which determines the strength of the 

attraction as a function of the atomic environment, measured by the coordination Z. The 

explanation of the bond order is that, as an atom becomes overcoordinated beyond the 

ideal coordination beyond its valence, the bonds become more metallic, characterized by 

delocalized electrons (Carlsson, 1985; 1990; Abell, 1985; Pettifor, 1990). They provided 

a test of empirical theories of covalent bonding in solids using a procedure to invert ab 

initio cohesive energy curves. They showed that the inversion of ab initio cohesive 
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energy curves verified trends in chemical bonding across various bulk bonding 

arrangements consistent with theoretical predictions (Bazant and Kaxiras, 1996). Their 

results indicated that a coordination dependent pair interaction can provide a fair 

description of high symmetry crystal structures without requiring additional many-body 

interactions, and angular forces are needed only to stabilize the structure under symmetry 

breaking distortion, primarily for small coordinations. 

In spite of various approaches, no potential has demonstrated a transferable 

description of molecule in all its forms leading to the conclusion that it may be too 

ambitious to attempt a simultaneous fit of all of the important atomic structures (bulk, 

crystalline, surface, amorphous, liquid phase and clusters), since qualitatively different 

aspects of bonding are at work in different types of structures. 

Rahman and Raff (2001) presented analytical fitting to the ab initio data for 

dissociation dynamics of vinyl bromide. Their approach was to develop analytic 

functions for each of the energetically open reaction channels using functional forms 

suggested by physical and chemical considerations. The parameters of these functions are 

expressed as appropriate functions of system’s geometry. These channel potentials are 

connected smoothly with parameterized switching functions that play a central role in 

fitting the potential barriers, the reaction coordinate curvatures, and the coordinate 

coupling terms obtained by the ab initio calculations. 

Ischtwan and Collins (1994) have developed a moving interpolation technique in 

which the potential energy in the neighborhood of any point is approximated by Taylor’s 

series using inverse bond length coordinates as the expansion variables. The data  from 

ab initio calculations is used to obtain a set of initial Taylor series expansions. The 
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procedure expresses the potential at any configuration as a weighed average of the Taylor 

series about all points in the data set. Subsequently, the results are iteratively improved 

by computing trajectories on the Taylor series fitted surface and the internal coordinates 

are stored. These new points are added to the data set according to a weight factor that is 

determined by the relative density of points in the data set in the region of the new point. 

The criterion used to assess convergence of the iteratively improved potential to the final 

surface was computed using dynamic variable, such as reaction probability. 

Jordan et al. (1995) used the moving interpolation trajectory sampling method to 

investigate the reaction dynamics.

Maisuradze et al. (2003) introduced an interpolating moving least squares (IMLS) 

method for the interpolation between the computed ab initio points. When the method is 

unrestricted, the least squares coefficients are obtained from the solution of a large matrix 

equation that must be solved repeatedly during a trajectory study. 

Another approach involves bypassing the physical motivation behind the 

functional form of the potential in favor of elaborate fitting as described by Ercolessi and 

Adams, (1994). The potential involves combinations of cubic splines with effectively 

hundreds of adjustable parameters and the approach was force matching method, which 

involves fitting the potential to ab initio atomic forces of many atomic configurations 

including surfaces, clusters, liquids, and crystals. Potential form is defined by single 

variable functions- atomic coordinates, such as glue potential which is defined as:

∑ ∑∑ 





+Φ=
i j

ij
ji

ij rUrV )()(
2

1

,

ρ , ( 2.5 )

where )( ijrΦ  is a pair potential, )( ijrρ  is a function of atomic density and U(n) is the glue 

function. They attempted to match the forces from first principle calculations for a large 
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set of configurations with those predicted by a classical potential, by minimizing the 

objective function, namely,

)()()( ααα CF ZZZ += , ( 2.6 )

where ZF contains ab initio data and ZC consists of physical quantities from experimental 

results. If the emphasis is given to ZF, then the minimizing potential appears as the best 

approximation of the first principles system, with ZC acting as a guide towards the correct 

region in the space of parameters. On the other hand, if the emphasis is on ZC, then the 

method looks like conventional fit, but the ZF term relieves the burden of guessing the 

functional form. 

Another approach utilizes genetic algorithms and genetic programming. The idea 

is to let the computer program determine the functional form and come up with the best 

possible solution with minimal human input. The concept is based on genetics and 

evolution theory, in which different genetic representations of a set of variables are 

combined to produce a better solution. The technique is stochastic in nature rather than 

conventional gradient based approaches and hence the dimensionality of the problem 

does not pose a serious limitation. It works by randomly generating and exchanging 

functional elements (variables and arithmetic operators, such as addition and 

multiplication), and selecting the fittest individuals (which represent a set of parameters) 

assessed by comparing with target values, a population of potential evolves until a 

superior form emerges. Makarov and Metiu (1998) proposed a procedure by which 

genetic programming could be used to find the best functional form and the best set of 

parameters to fit the energy and derivatives from ab initio calculations. They suggested 

directed search which guides the computer to use a specified functional form without 
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limiting too much on the flexibility of the search. Directed search was used to fill in 

portions of human engineered functional template, without which the computer could not 

find a simple interpretable form even for a pair potential.

As an alternative to these methods Blank et al. (1993; 1995) explored an 

interpolation method based on feed forward neural networks. Functional approximation 

using neural networks does not require any assumption regarding the functional form of 

the potential. Multilayer feed forward neural networks could fit in principle to any real 

valued continuous function of any dimension to arbitrary accuracy provided it has 

sufficient number of neurons (Cybenko, 1989). Blank et al. used neural network to fit 

data sets produced by low dimensional models of CO molecule chemisorbed on a 

Ni(111) surface. The models were constrained versions of many dimensional empirical 

potential that had been used in the simulation of surface dynamics where it had been 

shown to give a reliable qualitative picture of the molecule- surface interaction. 

Hobday et al. (1999) developed a neural network model for more complex C-N 

system for which the potential energy function was not parameterized. They used the 

neural network to fit the many-body term in the Tersoff functional form rather than fitting 

the entire potential. In contrast to the conventional network architecture, where a single 

input vector is presented to network, a set of N vectors where N is the number of 

neighbors of the two atoms i and j, not including i and j. The value of N depends on the i-

j bond. For example if the i-j bond is a part of monocyclic chain, then N=2. If the i-j bond 

is tetrahedrally coordinated, then N=6. To present the local environment to the network, 

the bond order term is expressed as a function of i-j-k contributions, where k is the first 

neighbor of i or j. The input network consists of N vectors, where N is the number of 
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different i-j-k contributions. Each vector of the input data consisted of pairwise 

information, such as direction cosines, bond lengths, cutoff functions, and first neighbor 

information, such as its bond lengths and torsional angles and second neighbor 

information, such as the number of types of atoms used to describe the i-j-k atoms triplet. 

The size of the input vector was constant, but the number of input vectors N is a variable 

which could change during the simulation.

Car and Parrinello (1985) developed a unified approach for molecular dynamics 

and density functional theory. In this method, the ions are still moved classically but 

under the action of forces obtained by solving the electronic structure problem, thus 

eliminating the need for empirical potentials at the expense of much larger computational 

requirements. This technique is known as Car-Parrinello molecular dynamics method. 

The electron density in terms of occupied single particle orthonormal orbitals is written 

as: 

∑ Ψ=
i

i rrn
2

)()( . ( 2.7 )

A point on the Born-Oppenheimer potential energy surface is given by the minimum with 

respect to Ψi of the energy functional. In the conventional formulation, minimization of 

the energy functional with respect to orbitals Ψi, subject to the orthonormality constraint 

leads to the self consistent Kohn-Sham equations. Its solution involves repeated matrix 

diagonalization. Car and Parrinello (1985) adopted a different approach by regarding the 

minimization of the Kohn-Sham (1965) functional as a complex optimization problem, 

which could be solved by applying optimization method called “simulated annealing” 

introduced by Kirkpatrick et al. (1983). In this approach, an objective function is 

minimized relative to the parameters with Boltzman type probability distribution via a 
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Monte Carlo procedure. In Car-Parrinello method the objective function is the total 

energy functional and the variational parameters are the coefficients of the expansion of 

Kohn-Sham orbitals. They found the simulated annealing strategy based on the MD, 

rather than on Metropolis Monte Carlo of Kirkpatrick et al. (1983) could be applied 

efficiently to minimize the Kohn-Sham functional. This technique called “dynamical 

simulated annealing” was found to be useful to study finite temperature properties. 

2.2 Literature review of quantum mechanical calculations

of silicon clusters

Raghavachari (1985; 1986; 1988) investigated the geometries and energies of 

silicon clusters using ab initio calculations. He considered several geometrical 

arrangements and electronic states. All geometries considered were optimized with 

several basis sets (minimal basis set- STO-3G, 6-31G) at Hartree-Fock level of theory 

and incase of open shell species (triplets, quintets, etc.) unrestricted Hartree-Fock was 

used. Then single point calculations were performed at these geometries using complete 

fourth order perturbation (MP4) theory with the polarized 6-31G* basis set. For the 

clusters of five silicon atoms, the geometries considered were- trigonal bipyramid, square 

pyramid, planar pentagon, linear structure, and the tetrahedral structure (which is the 

equilibrium structure for the bulk). He found the trigonal bipyramid with a singlet state to 

be the most stable structure of all the structures considered. In the case of square pyramid 

atom forms four equivalent bonds, all on one side of a plane which is not a stable 

structure and the molecule prefers to rearrange to more stable triangular bipyramid 

structure in spite of lower number of bonds present. They found the tetrahedral structure 

of five silicon atoms to have high energy. Though the central atom in such a cluster has 
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four bonds oriented in tetrahedral directions, the remaining four silicon atoms have only 

one bond each and are too distant from each other to interact favorably. 

Fig 2.1 The geometries for the neutral and ionic clusters of Si2 to Si6, (Raghavachari, 1985).
(Numbers in parentheses indicate bond lengths and bond angles for the ions).

Fig 2.1shows the ground state equilibrium structures for the neutral and ionic structures 

of Si2 to Si6. Consideration of the structures Si3 to Si7 revealed that each cluster Sin can 

be built from a smaller cluster Sin-1 by addition of a silicon atom at an appropriate edge or 

face capped bonding site. Edge capped structures were found to be favored in the case of 

smaller clusters while the face capped clusters became comparable in energy for the 

intermediate clusters. For example the rhombus structure of Si4 could be considered as an 

edge capped triangular form, which is stable compared to the face capped tetrahedron. 

Many atoms in larger clusters Si7 to Si10 were found to have a coordination 

number of 6 (greater than 4) for the bulk. It indicated that unlike a close-packed metallic 

system there may be saturation of coordination at 6 and further bonding caused 

overcrowding and destabilization. He concluded that the principal differences between 

these clusters and the bulk were due to large fraction of surface atoms in the clusters. 
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These surface atoms provide a large driving force (analogous to the surface tension) to 

form more compact structures provided the resulting strain energy is not too high. In this

sense there was a correspondence between the local coordination found in clusters and 

high pressure form of silicon (β-tin structure) which has hexacoordinate silicon in 

octahedral environment.

Fig 2.2 Scaled cohesive energy vs. cluster size for neutral silicon clusters calculated at the MP4/6-
31G* level, (Raghavachari, 1985).

Fig 2.2shows the scaled cohesive energy as a function of the size of the cluster. The 

cohesive energy generally increases with some indication of special stability at cluster 

sizes 4, 7 and 10.  Si7 and Si10 approach the bulk cohesive energy more closely. Smaller 

clusters have low cohesive energy because of the difference in the number of bonds 

between the clusters and the bulk and not because of the nature of bonding.

The local relative stabilities of different size clusters could be compared by the 

incremental binding energy (which is defined as the energy required in the reaction 

Sin→ Sin-1+Si). Fig 2.3 shows an incremental binding energy as a function of the size of 

the cluster at HF/6-31G* and MP4/6-31G* levels.
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Fig 2.3 Incremental binding energy vs. cluster size for neutral silicon clusters calculated at the HF/6-
31G* and MP4/6-31G* levels (Raghavachari and Rohlfing, 1988).

The peaks at cluster sizes of 4, 6, 7 and 10 indicate that these structures are locally stable, 

consistent with the prominent presence of 6, 7 and 10 in the mass spectral distributions of 

these clusters.
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3 Molecular Dynamics Simulation

Molecular Dynamics is a computer simulation technique where the time evolution 

of a set of interacting atoms is followed by integrating the equations of motions. While 

the continuum mechanics approach provides a better understanding of the processes at 

the macro and micro regime, it cannot be implemented to simulate the processes at the 

atomistic regime. Unlike in finite element analysis or other continuum approaches, where 

the nodes and distances are selected arbitrarily, in molecular dynamics it is based on 

more fundamental unit for a specific material such as: lattice spacing and inter-atomic 

distances. Thus the processes can be studied at the fundamental level. However, since a 

large number of atoms constitute any common material, one has to consider the 

interactions of several thousands of atoms even for nanometric study. Such simulations 

require large amount of computing resources but in return can provide an insight into 

processes happening at the smallest level, namely, atomistic level.

3.1 Brief history of molecular dynamics simulation

The molecular dynamics method was first introduced by Alder and Wainwright in 

the late 1950's (Alder and Wainwright, 1957, 1959) to study the interactions of hard 

spheres. The purpose of the paper was to investigate the phase diagram of a hard sphere 

system and in particular the solid and liquid regions. In a hard sphere system, particles 
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interact via instantaneous collisions, and travel as free particles between collisions. 

Gibson et al. (1960) studied the dynamics of radiation damage. It was the first example of 

molecular dynamics calculation with a continuous potential based on a finite time 

integration method. Rahman (1964) carried out perhaps the first simulation using a 

realistic potential for liquid argon. He studied properties of liquid argon using Lennard-

Jones potential. Rahman and Stillinger (1974) carried out simulation of liquid water.

Verlet calculated the phase diagram of argon using the Lennard-Jones potential, and 

computed correlation functions to test theories of the liquid state. The bookkeeping 

device, which became known as Verlet neighbor list was also introduced. The Verlet time 

integration algorithm was used. Phase transitions in the same system were investigated by 

Hansen and Verlet (1969). The number of simulation techniques has expanded since 

then; there exist now many specialized techniques for particular problems, including 

mixed quantum mechanical - classical simulations. 

3.2 Applicability of MD simulations

Molecular dynamics follows the laws of classical mechanics. At the atomistic 

level, the system follows laws of quantum mechanics rather than classical mechanics. A 

classical description of the system involved can be used, when quantum effects, such as 

tunneling, and electronic excitations, play no essential role in the dynamics. In addition to 

this, the kinetic energy of a particle must be large enough, to ensure that the de Broglie 

wavelength is much smaller than the lattice constant of the solid. A simple test of the 

validity of the classical approximation is based on the de Broglie thermal wavelength 

defined as: 
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where M is the atomic mass and T is the temperature. The classical approximation is 

justified if a<<Λ , where a is the mean nearest neighbor distance. The classical 

approximation is poor for lighter elements, such as hydrogen, helium. Moreover, 

quantum effects become important in any system when T is sufficiently low. The drop in 

the specific heat of crystals below the Debye temperature or the anomalous behavior of 

the thermal expansion coefficient, are well known examples of measurable quantum 

effects in solids. Hence, molecular dynamics results should be interpreted with caution in 

these regions.                             

An important issue of MD simulations is the temporal scale that can be explored. 

The maximum time step with which Newton’s equations can be integrated numerically is 

inherently restricted to small values (about 1 fs), in order to reproduce atomic vibrations 

accurately. As a result molecular dynamics simulations require long computational times 

because the most interesting motions occurring during the simulation processes are very 

slow compared with the fast oscillations of bond lengths and bond angles that limit the 

integration time step. This limits the time scales that can be handled by MD in reasonable 

amount of actual clock time. MD simulations are usually limited to molecular processes 

happening in relatively short times, the so called “rare events” phenomenon in which 

infrequent processes are completed quickly, such as dissociation of a chemical bond 

which is a rapid process that is completed on the pico-second time scale. However the 

application of external load is longer by orders of magnitude compared with the 

dissociation time, making it difficult to observe such events at experimental speeds. In 

order to overcome the time scale limitation of MD, two approaches are usually followed. 
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In the first approach coarse-graining, the dynamic variables are divided into slow and 

fast degrees of freedom and averaging is performed on the fast degrees of freedom. In the 

second approach fast (and rare) trajectories between desired states are computed 

explicitly, and their probabilities (relative to non-reactive trajectories) are calculated. 

3.3 Formulation of the differential equations of motion

The forces between the atoms are computed explicitly and the motion of the 

molecule is followed over a period of time using a suitable numerical integration method. 

Classical mechanics describes how physical objects move and how their positions change 

with time. Consider an isolated system consisting of N bodies with coordinates (xi, yi, zi) 

where i=1, 2, 3… N (Goldstein, 1965). By isolated system it means that all other bodies 

are sufficiently remote to have a negligible influence on the system. Each of the N bodies 

is assumed to be small enough to be treated as a point particle. The position of the ith

body with respect to a given inertial frame is denoted as ri (t). Its velocity and 

acceleration are given by vi (t) = )(tri&  and ai (t) = )(tri&& . Each atom has a mass mi. From 

Newton’s second law: iii amF
rr

=

where iF
r

 is the total force acting on an atom. This force is composed of a sum of forces 

due to each of the other interacting atoms in the system. If the force on ith body due to jth
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where  ip
r

 is the momentum of ith body
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The force on the atom i is the gradient of the potential energy function with respect to the 

coordinates of atom i.

),...,( 21 Nii rrrVF
rrrr ∇−= , (3.3)

where V is the potential energy function. ir
r

 is the position vector of atom i, xi, yi, and zi, 

are the Cartesian coordinates of atom i.
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Now, force in the X- direction on atom i is given by:
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The velocity of atom i in X- direction is: 

m

p
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(3.6)

Similar equations can be derived in Y- and Z- directions.

It should be noted that to update the position of an atom, one has to solve 6 coupled first 

order differential equations. If the number of atoms in the system is N, then the number 

of differential equations to be solved is 6N. If the potential function is a simple pairwise 

potential, such as Lennard- Jones or Morse potential, then the total number of terms in 

such a simple potential is N(N-1)/2. Thus, as an example, a system of 2000 atoms 

requires integration of 12,000 coupled first order differential equations of motion and 

about 2 million pairwise terms need to be calculated each time a derivative is evaluated. 

Such evaluations must be done for every integration step for every trajectory calculation. 

The computational time therefore, increases rapidly as the number of atoms in the system 

increase. 
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3.4 Time integration algorithms

The MD trajectories are defined by both position and velocity vectors and they 

describe the time evolution of the system. Accordingly the positions and velocities are 

propagated with a finite time interval by solving a set of coupled first order differential 

equations. Time integration algorithms are based on finite difference methods, where 

time is discretized on a finite grid. These are based on Taylor series expansion truncated 

after some finite number of terms. Truncation error varies as nt)(∆ , where t∆  is the time 

step and n is the order of the method (which depends on the number of time derivatives 

considered in the expansion). Hence, for higher order methods, the truncation error drops 

off rapidly even with a small reduction in the time step. The idea of the numerical 

integration of Newton’s equations of motion is to find an expression that defines 

positions at time tt ∆+ in terms of already known positions and their time derivatives, 

such as velocities and accelerations at time t. Thus:  
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3.4.1 Verlet algorithm

This is perhaps the most widely used method of integrating the equations of 

motion, initially developed by Verlet (1967) and attributed to Stömer (Gear, 1971). The 

Verlet algorithm uses acceleration at time t and positions at time t and t- t∆ to calculate 

the new positions at time t+ t∆ . The algorithm is time reversible, and given the 

conservative force field, it guarantees the conservation of the linear momentum. 
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Adding Eqn. (3.8 A) and (3.8 B), and neglecting higher order terms,

2)()()(2)( ttattrtrttr ∆+∆−−=∆+

and the velocity is computed as,
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The basic Verlet algorithm does not uses velocities explicitly which may introduce 

numerical imprecision, since the local error in updating the positions is proportional to 

t∆ 4, whereas the error in updating the velocities is proportional to t∆ 2. 

3.4.2 Leap- frog Verlet algorithm

This is a modification of the Verlet algorithm in which velocities are computed at

half time step as well. The algorithm is given as,
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The advantage of this method is that the velocities are explicitly calculated, but the 

disadvantage is that they are not calculated at the same time as the positions. The 

velocities at time t can be approximated as,
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3.4.3 Velocity Verlet algorithm

The velocity Verlet algorithm provides a better description of the velocities, 

without the need to compute the velocities at half the time step.
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3.4.4 Beeman algorithm

Beeman algorithm (1976) provides more accurate expression for velocities
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It should be noted that these algorithms assume that the force remains constant while 

updating the positions from t to t+ t∆ . To circumvent this assumption, higher order terms 

involving higher time derivatives should be included in the algorithm.  

It may be noted that the above mentioned methods are self starting methods i.e. it 

is only necessary to know the positions and velocities at time t=t0. An estimate of 

accuracy during the integration can be obtained by monitoring the total energy of the 

system and the angular momentum which should be conserved. Step size reduction and 

back integration are other resources to check the accuracy of the integration results. 

Predictor-corrector methods provide an automatic error estimate at each integration step, 

allowing the program to employ a variable step size to achieve a specified accuracy. 

However, these methods are not self starting. Therefore it is necessary to use velocity 

Verlet or similar single step methods to start the integration.
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3.5 Methods to improve computational speed

3.5.1 Neighbor list and book-keeping techniques

In the MD/MC simulations distances of atom i to all other atoms in the system are 

computed. For the calculation of potential and forces only the atoms that are separated by 

distances smaller than the potential cutoff are considered. The time to calculate all pair 

bond distances is proportional to N2, where N is the number of atoms in the system. 

Verlet (1967) suggested a technique for improving the speed by maintaining a list of 

neighbors of a particular atom, which is updated at intervals. Between the updates of the 

neighbor list, only the bond distances of atoms appearing in the list are computed. This 

procedure reduces the computational time to some extent. 

3.5.2 Cell structures and link lists

As the size of the system increases the conventional neighbor list becomes too 

large to store easily and testing of every pair in the system is inefficient. An alternative 

method of keeping track of neighbors for large systems is the cell index method. 

(Quentrec and Brot, 1975; Hockney and Eastwood, 1981). The cubic simulation box is 

divided into a regular lattice of M x M x M cells. A 2- dimensional representation is 

shown in Fig 3.1.These cells are chosen such that the side of the cell l=L/M is greater 

than the cutoff distance of the potential. 
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Fig 3.1 Cell index method

The first part of the method involves sorting all atoms into appropriate cells. For this 2-

dimensional example, neighbors of any atom in the cell 13 can be found in cells 13, 7, 8, 

9, 12, 14, 17, 18, 19. Now searching for the neighbors is fast and efficient. For a 2-

dimensional system there are approximately Nc = N/M2 atoms in each cell and for a 3-

dimensional system there would be Nc= N/M3 atoms in each cell. Using the cell structure 

method only 9NNc pairs have to computed for a 2-dimensional system and in 3-

dimensional system 27NNc pairs as opposed to ½ N(N-1) in the conventional way. The 

cell structure can be set up and implemented in a linked list. The linked list array stores 

the number of the next atom in the cell, i.e. the list array element for an atom is the next 

of next atom in the cell and so on.

3.6 Periodic boundary conditions (PBC)

No matter how large the simulated system is its number of atoms would be 

negligible compared to the number of atoms that make up the macroscopic specimen (of 

the order of 1023). As a result, in the simulation model the ratio of the number of surface 

atoms to the total number of atoms would be much larger than in reality, causing surface 

effects to be much more important than what they would be. A solution to this problem is 

the use of periodic boundary conditions. Periodic boundary is a mathematical formulation
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to make a simulation that contains only a few hundred atoms to behave as though it is 

infinite in size. In doing so it also removes the surface effects since atoms near the 

boundary have less neighbor than the atoms inside. While using PBCs, the atoms are 

considered to be enclosed in a box, and this box is replicated by translation in all three 

Cartesian directions to form an infinite lattice. In effect every atom in the simulation box 

has an exact duplicate in each of the surrounding cells with the same velocities.

Fig 3.2 Representation of periodic boundary condition (PBC) and the simulation cell

Fig 3.2 shows the representation of the periodic boundary along with the main simulation 

cell. rcut is the cutoff used in the potential.

If an atom is located at a position r in the box then this particle represents an 

infinite set of particle located at:

r+ la+ mb + nc, (3.13)
where l, m and n are integer numbers, and a, b and c indicates the vectors corresponding 

to the edges of the box. All these image particles move together, but only one of them is 

represented in the computer program. Each particle should be thought of as interacting 

not only with other particles in the box but also with their images in the surrounding 

boxes. Whenever an atom leaves the simulation cell, it is replaced by another with the 
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same velocity entering from the opposite cell face, so the number of atoms in the 

simulation cell is conserved. Therefore no atom feels any surface effects.

An artifact of this technique is that if the simulation cell is too small and the 

cutoff radius is greater than half the length of the simulation cell then an atom i can 

interact with atom j as well as its image j1 in the neighboring cell. As a result the 

interaction between atoms i and j is effectively counted twice as: i-j and i-j1. The 

minimum image criterion states that if the box size is greater than 2 rc, where rc is the 

cutoff radius of the potential then among all pairs formed by an atom i in the box and the 

set of all periodic images of atom j atmost one will interact. To demonstrate this, if 

suppose an atom i interacts with two images j1 and j2 of an atom j. These two images 

must be separated by a distance of at least 2 rc. In order to interact with both j1 and j2, i 

should be within a distance rc from each of them, which is impossible since they are 

separated by more than 2 rc. Using the minimum image criterion, only the closest image 

of an atom j if within the cutoff radius rc will interact with an atom i. Hence, it is very 

important that the box size of the simulation cell is at least greater than twice the cutoff 

radius specified for the potential. Long range interactions such as Columbic interactions 

larger than the simulation cell are treated using Ewald summation which was developed 

for studying ionic crystals (Ewald 1921; Madelung 1918). Using the minimum image 

criterion, the periodic boundaries are modeled by modifying the distance calculation. The 

difference between the x- coordinate of an atom i and j is denoted as dx, then if dx is 

greater than half the box size in x- direction (L/2) then atom j does not interact with atom 

i. Instead, its image j1 in a surrounding cell is considered to be bonded with atom i.
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If,  dx > L/2 then dx = dx – L, 
If, dx < -L/2 then dx = dx + L. (3.14)

Alternatively,


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where L is the box size in that particular Cartesian direction and anint is a function that 

rounds off the ratio 
L

dx
 to the nearest integer value. 

Similar procedure is applied in the Y- and Z-directions, and the distance is computed as: 

222 dzdydx ++ . (3.16)
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15 CHAPTER 4

4 Interatomic Potentials

The interatomic potential used in a simulation to model the lattice structure plays 

an important role in determining the accuracy of the simulation results. The accuracy of 

the trajectories obtained from MD simulation is affected by the choice of the potential 

energy function. The total energy of the system is the sum of kinetic energy (KE) and the 

potential energy (PE). The KE is simple to compute but the PE computation is complex 

since it depends on the positions of all interacting atoms. The complexity of the potential 

also determines the computational time required for the simulation. The force acting on 

an atom is proportional to the first derivative of the potential energy function. The largest 

part of a molecular dynamics simulation is the evaluation of the forces which are required 

to calculate new positions of atoms. The potential energy can be obtained using two 

approaches. One approach is to perform ab initio calculations by solving the 

Schrodinger’s equation for the entire system at each integration step. Although, 

theoritically this is the best approach (without any arbitrary assumptions and ad hoc

parameterization), it is not feasible to perform such calculations for the entire system at 

every time step. For larger systems comparitively simple and computationally efficient 

empirical potential functions are used which take into account factors such as, bond 

stretching, bending and torsions, covalent bonding and non-bonded (Van der Waals and 

Coulomb) interactions. 
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4.1 Design of inter-atomic potentials

The traditional approach is to completely get rid of electronic degrees of freedom 

and move the nuclei using some appropriate analytical potential function. The functional 

form of this potential is chosen so as to mimic the behavior of the true potential in 

realistic ways for specific materials under specific conditions. Constructing the potential 

involves two steps:

1. Selecting an analytical form for the potential. This could be sums of pairwise 

terms where the energy of the pair depends on the relative distance, or a many-

body form appropriate for specific type of bonding involving bond distances, 

angles, and coordination.

2. Once the form is decided then the next step is to determine specific 

parameterization of the functions. A set of parameters is found which fits the data 

from ab initio calculations or experimental properties, such as, density, cohesive 

energy and phonon frequencies, or a data set containing some combination of 

both theoretical and experimental observations.  

The most important factor is the range of applicability of the potential energy 

function. Since ad hoc functional form is used, it has no theoretical foundation and once 

the empirical potential is developed there is no straightforward means to improve it. 

Normally, the parameters are adjusted to the equilibrium data which means that the 

potential can be used to model the bulk properties of the crystal lattice close to 

equilibrium conditions. So it is unlikely that the energies and forces for amorphous 

structures will be accurately represented by the potential. For example, a potential 

function designed for bulk may not be appropriate for studying the bond dissociation or 
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diatomic molecule of the same element, since the environment would be very different 

from the one for which it was designed. However, it may be possible to model the bulk 

and surface where the environment differs due to the reduced coordination of the atoms at 

the surface. These problems are intractable and one should be critical while using 

analytical potentials for simulating high temperature and pressure conditions. 

4.2 Classification of potential energy functions

The empirical potentials are further classified into two-body, three-body and 

many-body potential forms. Most of the empirical potential forms comprise an attractive 

and a repulsive term. The term empirical may be misleading as it may not be strictly 

empirical as the term suggests (Komanduri and Raff, 1999). These potentials can provide 

a more realistic model than the potentials derived from purely theoretical considerations 

(Torrens, 1972) since parameterization of these potentials can take into account some 

physical properties as well. 

Empirical potential forms are based on mathematical expressions for pairwise 

interaction between two atoms or ions, which may or may not be justified from theory. 

These forms can be expressed in terms of attractive and repulsive terms. By convention 

repulsive forces are considered positive and attractive forces as negative. As the distance 

between two atoms decreases, both attractive and repulsive forces increase. The repulsive 

forces increase more rapidly than the attractive forces. The curvature of the potential 

energy function is mainly determined by the repulsive force component, which in turn 

also governs the elastic behavior of the solid. When attractive and repulsive forces 

exactly balance each other, this corresponds to the equilibrium position with the potential 

energy being minimum, which is also the bond energy. The cohesive properties of solids, 
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such as melting and vaporization behavior are determined by the magnitude of the 

maximum binding energy, which is governed by attractive force component. Higher the 

bonding energy, the higher is the melting temperature and the elastic modulus and lower 

is the coefficient of thermal expansion. 

Several empirical potential functions have been developed suitable for different 

materials. Some examples of simple pair potentials are Lennard- Jones (also known as

 6-12) (1925), Morse potential (1929) and Born-Meyer potential (1933). Also for 

complex systems such as one involving covalent bonding common potential functions are 

Stillinger-Weber (1985), Tersoff (1988, 1989), Bolding-Anderson potential (1990), 

Brenner potential (1990), and embedded atom potential and modified emebedded atom 

potential (MEAM) (Baskes, 1989).

Cutoff radius

In general, each atom can interact with all other atoms in the simulation. One 

method of increasing the computational speed is to limit the range of the potential. 

Normally the potential functions are truncated at a certain value of bond distance called 

the “cutoff radius”. By neglecting the interaction beyond the cutoff radius, the 

computational time is significantly reduced with very little loss in accuracy. Truncation 

of the potential energy function also results in the truncation of the forces. The cutoff 

distance is generally taken as the distance where the potential energy is ~3-5% of the 

equilibrium potentials energy. Consequently, a finite cutoff results in small fluctuations 

in total energy instead of strictly constant energy.
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4.2.1 Pair potentials

Pair potentials are applicable for many metals for atomistic studies. Pair potentials 

can be classified into two basic categories (Vitek, 1996), one in which the potential 

determnies the total energy of the system and the second type determines the change in 

energy when a configuration varies under constant density conditions. 

Lennard- Jones potential (Lennard- Jones,  1925) is given as:
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where ε  andσ  are parameters that determine the well depth and the position of the 

potential minimum, respectively. One of the most commonly used forms of the pair 

potential is the Morse potential (Morse, 1929). It is used to model the interaction between 

atoms of two different materials. It is given as:

( )2)(1)( erreDrV −−−= α ,

or ( ) c
rrrr rreeDrV ee ≤−= −−−− ...2)( )()(2 αα . (4.2)

where r is the bond distance between the two atoms, and rc is the cutoff radius beyond 

which the potential is truncated to zero. Potential values computed using the two forms 

given in Eqn. (4.2) differes by a factor of D, which is a constant, and as a result the forces 

computed using the two forms are the same and either of the forms could be used in 

simulation. The potential parameters D, α, re are adjusted to the measured sublimation 

enthalpy, Debye temperature, and the nearest neighbor spacing for the material. Garifalco 

and Weizer (1959) calculated Morse potential parameters using experimental values for 

energy of vaporization, lattice constants and compressibility. Morse potential can model 

FCC metals well but not BCC metals and covalent materials. A general feature of a 
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physically reasonable pair potential is that they favor formation of closed packed 

structures. So they are unsuitable for describing covalent systems which assume more 

open structure.

4.2.2 Many-body potentials

Pair potentials, such as Lennard-Jones potential are suitable to model interactions 

of inert gases, such as Helium, Argon, and Xenon. A covalent material represents a 

difficult challenge because of complex quantum mechanical effects, such as chemical 

bond formation, hybridization, metallization, charge transfer, and bond bending, which 

must be described by an effective interaction between atoms. For instance, silicon 

undergoes a series of structural phase transitions from tetrahedral to a denser phase called 

as β-tin to simple cubic to FCC under pressure. This indicates that the energy difference 

between these structures is not too large which suggests that the cohesive energy is nearly 

independent of the coordination. The pairwise potential model would favor the more 

packed structure. Consequently, no reasonable pair potential can stabilize the diamond 

tetrahedral structure without considering the angular terms. Various methods have been 

introduced to circumvent this problem. Several authors have introduced potentials with a 

strong angular dependence (Stillinger and Weber, 1985; Biswas and Hamman, 1985; 

Baskes, 1987; Baskes et al, 1989). Pettifor (1989) developed similar approach from tight 

binding. Models based on the bond charge (Brenner and Garrison, 1985), and a function 

of local coordination (Tersoff, 1986) have also been developed. Most of these models 

have been successful in the regime for which they were parameterised but have shown a 

lack of transferability. A survey of six such potentials (Balamane and Halicioglu, 1992) 

concluded that each has strengths and limitations, none appearing clearly superior to
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others, and none being fully transferable. Recently the environment dependent 

interatomic potential (EDIP) (Justo et al, 1997, 1998; Bazant et al, 1997) have been 

developed as an improvement over previous model. 

The other group of potentials (Kane, 1985; Keating, 1966) are constructed to 

accurately describe small distortions from the ground state in complex systems, such as 

diamond structure of semiconductors. The Keating model uses Taylor series expansion of 

the energy about its minimum. It can give accurate descriptions of small displacements 

but become progressively less accurate for large displacements. Such potentials are useful 

for describing phonons and elastic deformations. 

In general, any many-body potential energy function describing interactions 

among N identical particles can generally be resolved into one-body, two-body, three-

body etc. contributions as follows:
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The single particle potential V1 describes external forces. The first term which describes 

the interactions of atoms is the second term, which has a form of pair potential. In order 

that this description to be useful in theoretical modeling it is necessary that the 

component functions Vn quickly converges to zero with increasing n.

The first step towards a many-body form is to include three-body terms, by 

favoring the bond angles corresponding to those of diamond structure. Stillinger and 

Weber (1985) proposed such a potential which has the form:
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where θijk is the bond angle formed by the bonds ij and ik and g(r) is a decaying function 

with a cutoff between the first and second neighbor. The bond angles in diamond 
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tetrahedral structure are ~ 109.5° and the cosine of this angle is ~ -1/3. This makes the 

term cos(θijk)+1/3 to go to zero for θ ~ 109.5°, which makes tetrahedral structure more 

stable than compact structure. This potential gives a fairly realistic description of 

crystalline silicon. However its built-in tetrahedral bias create problems in other

situations for example, it cannot predict the right energies of the non-tetrahedral 

structures found under pressure, the coordination of the liquid is too low and the surface 

structures are not correct. Consequently this potential is not transferable to situations 

other than it was designed for. 

Work by Carlsson (1990) showed that to build realistic potential, analytic forms 

which take into account local environments with bond strengths depending on it should 

be considered. The work of Biswas and Hamman (1987) suggests that a three-body 

potential is not adequate for accurately describing the cohesive energy of silicon over a 

wide range of bonding geometry and coordination. However a general form for a four-

body or five-body potential becomes intractable as it would contain too many parameters. 

Instead of a general N-body form, Tersoff (Tersoff, 1988; 1989) proposed an approach by 

coupling two body and multi body correlations into the model. The potential is based on 

bond order which takes into account local environment. The bond strength depends on 

geometry, the more neighbors an atom has, the weaker the bond to each neighbor would 

be. If the energy per bond decreases rapidly with increasing coordination then the 

diatomic molecules would be the most stable arrangements of atoms. On the other hand, 

if the bond order depends weakly on coordination then this should favor closed packed 

structures to maximize the number of bonds. Silicon undergoes structural transitions with 

a varying coordination under pressure with a small difference in cohesive energy (Yin 
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and Cohen, 1980, 1982, 1984; Chang and Cohen, 1984). This suggests that the decrease 

in bond strength with increase in coordination number almost cancels the increase in 

number of bonds over a range of coordination (Tersoff, 1988).

Tersoff potential (Tersoff, 1989) is given as:
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where E is the total potential energy of the system. fR and fA are repulsive and attractive 

pair potentials, respectively, and fC is a cutoff function given by:
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where rij is the bond distance between atoms i and j. S is the cutoff radius. λij, µij, and R

are potential parameters. The main feature of this form is the term bij. The idea is that the 

strength of each bond depends upon the local environment and is lowered when the 

number of neighbors is relatively high. This dependence is expressed by the parameter bij

which can diminish the attractive force relative to the repulsive force.

[ ],))cos((
1)(

),()(

,)1(

22

2

2

2

,

2
1

ijkii

i

i

i
ijk

ijk
jik

ikikCij

nn
ij

n
iijij

hd

c

d

c
g

grf

b ii

θθ

θωζ
ζβχ

−+
−+=

=

+=

∑
≠

− (4.5 c)

The term ζij defines the effective coordination number of atom taking into account the 

relative distance between two neighbors (rij-rik) and the bond angle θijk. The function g(θ)
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has a minimum at h=cos(θ), the parameter d determines how sharp the dependence on the 

angle is and c expresses the strength of the angular effect. The parameters R and S are not 

optimized but chosen so as to include first neighbors only for several selected high 

symmetry structures, such as: graphite, diamond, simple cubic, and face centered cubic.

The parameter xij strengthens or weakens heteropolar bonds in multi-component systems. 

xii =1, and xij = xji. Also ωii = 1. The potential was first calibrated for silicon (Tersoff, 

1988)a and then for carbon (Tersoff, 1988)b. The parameters were chosen to fit theoretical 

and experimental data, such as cohesive energy, lattice constants, and bilk modulus 

obtained from realistic and hypothetical configurations. Table 4.1 lists the parameters for 

carbon, silicon and germanium.

Table 4.1 (Parameters of Tersoff potential, 1989)

C Si Ge
A (eV) 1.3936 x 103 1.8308 x 103 1.769 x 103

B (eV) 3.467 x 102 4.7118 x 102 4.1923 x 102

λ (°A-1) 3.4879 2.4799 2.4451
µ (°A-1) 2.2119 1.7322 1.7047
β 1.5724 x 10-7 1.1 x 10-6 9.0166 x 10-7 

n 7.2751 x 10-1 7.8734 x 10-1 7.5627 x 10-1 

c 3.8049 x 104 1.0039 x 105 1.0643 x 105

d 4.384 1.6217 x 101 1.5652 x 101

h -5.7058 x 10-1 -5.9825 x 10-1 -4.3884 x 10-1 

R (°A) 1.8 2.7 2.8
S (°A) 2.1 3.0 3.1

Brenner (1990) developed an empirical many-body potential for hydrocarbons 

which can model intramolecular chemical bonding in a variety of small hydrocarbon 

molecules as well as graphite and diamond lattice. The potential function was based on 

Tersoff covalent bonding formulation, with additional terms to correct an inherent 

overbinding of radicals. Nonlocal effects were incorporated via an analytic function that 

defines conjugation based on the coordination of carbon atoms. The potential was fitted 
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to the binding energy of the C2 diatomic molecule, and binding energies and lattice 

constants of graphite, diamond, simple cubic and face centered cubic structures. Dyson 

and Smith (1996) extended the Brenner potential for C-Si-H system to model the 

chemical vapor deposition (CVD) diamond growth on the silicon substrate. Parameters 

for the Si-Si and Si-C interactions were fitted to diatomic bond energy and bulk 

properties such as bulk modulus, experimental cohesive energy, experimental lattice 

constant instead of bond length, phonon mode frequencies.
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17 CHAPTER 5

5 Ab Initio Calculations

'Ab initio' is a term used to describe a solution of the non-relativistic, time 

independent Schrödinger equation: ĤΨ = EΨ. Where Ĥ is the Hamiltonian operator for 

the system, which is a function of kinetic and potential energies of the particles of the 

system, Ψ is the wavefunction, and E is the energy.

The Hamiltonian for an N electron atom is 
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The first term on the right hand side of the Eqn.(5.1) represents the kinetic energy of the 

nucleus. It contains the coordinates of the nucleus and derivatives with respect to the 

coordinates of the nucleus, but it does not contain the coordinates of any of the N

electrons or derivatives with respect to these coordinates. Therefore, this is called as zero-

electron term. The second and third terms in Eqn.(5.1) contains the coordinates of one 

electron and hence are called as one electron terms, where as the last term, electron-

electron repulsion, depends on coordinates of both electrons and hence is called as two 

electron terms.
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5.1 Born-Oppenheimer approximation

It is computationally impossible to solve Eqn.(5.1) for anything other than the 

hydrogen atom. For this reason, for a many bodied system, approximations are 

introduced to simplify the calculations. One of the approximations is the Born-

Oppenheimer approximation. It can be noted that the mass term appears in the 

denominator of the nuclear kinetic energy term is much larger than the mass of the 

electron. This large mass means that the nuclei are moving very slowly relative to the 

electrons. The nuclei can be considered to be moving in the potential generated by the 

moving electrons. This approximation allows the electronic Hamiltonian to be considered 

for a fixed set of nuclear co-ordinates.

5.2 Basis sets

The next approximation involves expressing the molecular orbitals as linear 

combinations of a pre-defined set of one-electron functions known as basis functions. A 

basis set is the mathematical description of the orbitals within a system, which in turn 

combine to approximate the total electronic wavefunction. These basis functions are 

usually centered on the atomic nuclei and so bear some resemblance to atomic orbitals. 

An individual molecular orbital is defined as:

∑
=

=Φ
N

ii c
1µ

µµ χ .
(5.2)

The coefficients icµ are known as the molecular orbital expansion coefficients. The basis 

functions χ1… χN are also chosen to be normalized. 
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5.2.1 Slater-type orbitals (STO)

STOs are constructed from a radial part describing the radial extend of the orbital 

and an angular part describing the shape of the orbital. 

lm
rn YerC )(1 ζ

µ
−−=Φ . .(5.3)

The radial part )(1 rn er ζ−−  depends on the distance r from the origin of the basis function 

(usually the location of the nucleus), the orbital exponent, and the principal quantum 

number, n. The spherical part, Ylm known as spherical harmonics, depends on the angular 

quantum number, l and the magnetic quantum number, m. The normalization constant, C

is chosen such that the integral over the square of the basis function yields unity.

5.2.2 Gaussian-type orbitals (GTO)

Gaussian-type orbitals are constructed from a radical and a spherical part, but the 

radical part has a different dependence on r. The GTO squares r so that the product of 

gaussian primitives is another gaussian. By doing this, the equation is much easier at the 

cost of accuracy. To compensate for this, more gaussian equations are combined to get 

more accurate results. Gaussian and other ab initio electronic structure programs use 

gaussian type atomic functions as basis functions. Gaussian functions have a general 

form as:

2rcba ezyxcg α−= , (5.4)

where α is the constant determining the size (radical extent) of the function. In a Gaussian 

function 
2re α− is multiplied by powers of x, y, z, and normalization constant so that:

∫ =
spaceall

g 12
. (5.5) 



44

The sum of these exponents L= a+ b+ c is used to define the angular momentum of the 

basis function: s- type (L=0), p- type (L=1) d- type (L=2), f- type (L=3), g- type (L=4)…

Following are some representative Gaussian functions for s, py and dxy respectively:
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Linear combinations of primitive Gaussians are used to form the actual basis functions 

called contracted Gaussians which have the form:

∑=
p

pp gd µµχ , (5.7) 

where gp are primitive Gaussians, pdµ are fixed constants within a given basis set.

This results in the following expansion for molecular orbitals:
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5.2.3 Types of basis sets

Larger basis sets more accurately approximate the orbitals by imposing fewer 

restrictions on the locations of electrons in space. In the true quantum mechanical picture, 

electrons can have a finite probability of existing anywhere in space; this limit 

corresponds to the infinite basis set expansion. Standard basis sets for electronic 

calculations use linear combinations of Gaussian functions to form orbitals. Basis sets 

may be classified by the number and type of basis functions that they contain. Basis sets 
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assign a group of basis functions to each atom within a molecule to approximate its 

orbitals. These basis functions are composed of a linear combination of Gaussian 

functions referred to as contracted functions, and the component Gaussian functions are 

referred to as primitives. A basis function consisting of a single Gaussian function is 

termed as uncontracted.

Minimal basis set

Single Gaussian functions as described by Eqn.(5.4) are not well suited to 

describe the spatial extent and nodal characteristics of atomic orbitals. Hence, basis 

functions are described as sum (contraction) of several Gaussians as used in Eqn.(5.7). 

Minimal basis set contains minimum number of basis functions needed for each atom. 

Minimal basis set use fixed size atomic type orbitals. The STO-3G basis set (Hehre et al., 

1969; Collins et al., 1976) is a minimal basis set (although it is not the smallest possible 

basis set). It uses three Gaussian primitives per basis function, which accounts for ′3G′ in 

its name. ′STO′ stands for Slater-type orbitals. The STO-3G basis set approximates 

Slater-type orbitals with Gaussian functions.

Double zeta, triple zeta and quadruple zeta basis set

The minimal basis set approximates all orbitals to be of the same shape. The 

double zeta basis sets such as the Dunning-Huzinaga basis set denoted as D95 (Dunning 

and Huzinaga, 1976) from all molecular orbitals from linear combinations of two sizes of 

functions for each atomic orbital. Dunning’s basis set has been derived from an already 

existing large atomic basis set of nine uncontracted Gaussian primitives of the s-type and 

five uncontracted Gaussian primitives of the p-type. Six of the nine s-type functions have 

then been grouped into a single contraction, while the other three s-type functions have 



46

been left alone. Similarly, four of the five p-type functions have been contracted into a 

single function, while one function was left uncontracted. This yields a basis set of four s-

type and two p-type basis functions. In contrast to the split valence basis sets discussed 

before, the D95 basis set is a full double zeta basis set in that it allocates two basis 

functions for each atomic orbital of the core as well as the valence region occupied in the 

electronic ground state.

The double zeta basis set is important because it allows to treat each orbital 

separately during Hartree-Fock calculations. This gives more accurate representation of 

each orbital. Each atomic orbital is expressed as a sum of two Slater -type orbitals. The 

two equations are the same except for the value of zeta, which accounts for how diffuse 

(large) the orbital is. The two STOs are added in some proportion as in Eqn.( 5.9 ).                                                       

( 5.9 )

The constant d determines how much each STO will account towards the final orbital. 

Thus, the size of the atomic orbital can range anywhere between the value of either of the 

two STOs. The triple and quadruple zeta basis sets use three and four Slater equations 

respectively.

Split valence basis set

The description of the valence electrons can be improved over that in the minimal 

STO- 3G basis set if more than one basis function is used per valence electron. Basis sets 

of this type are called split valence basis set. They have two sizes of basis function for 

each valence orbital. Often, it takes too much effort to calculate a double-zeta for every 

Slater- orbital 1 Slater- orbital 2

   Constant
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s
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 3-21G

orbital. Since the inner-shell electrons are not as vital to the calculation, they are 

described with a single Slater Orbital and the only valence orbitals are treated using a 

double-zeta. Examples of split valence basis sets are 3-21G (Binkley et al., 1980; Gordon 

et al., 1982; Pietro et al., 1982; Dobbs and Hehre, 1986; 1987) and 6-31G (Ditchfield et 

al., 1971; Hehre et al., 1972; Hariharan and Pople, 1973; 1974; Gordon, 1980; Binning 

and Curtiss, 1990). The notation 3- 21G means summing 3 Gaussians for the inner shell 

orbital, each valence electron is described by two basis functions, two Gaussians for the 

first STO of the valence orbital and 1 Gaussian for the second STO. 

Fig 5.1 Description of split valence basis set

The main difference between 3-21G and 6-31G is that a much larger number of 

primitives are used in the latter in the core as well as the inner most valence shell. The 

use of a contraction of six Gaussian primitives for each core orbital improves the 

description of the core region significantly. The valence region is described by two basis 

The number of Gaussian functions 

summed to describe the inner shell orbital

The number of Gaussian functions 

summed in the second STO

The number of Gaussian functions that comprise the 

first STO of the double zeta
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functions per atomic orbital. The inner shell is composed of a contraction of three 

Gaussians and the outer shell consists of one single Gaussian primitive.

6-31G† also known as 6-31G(d′) and 6-31G†† also known as 6-31G(d′,p′) is 

defined as part of the complete basis set methods (Petersson and Al-Laham, 1991 ; 

Petersson et al. 1988). Similarly, triple split valence basis sets such as 6-311G also 

known as MC-311G (McLean and Chandler, 1980; Krishnan et al., 1980; Wachters, 

1970; Hay, 1977; Raghavachari and Trucks, 1989; Binning and Curtiss, 1990; Curtiss et 

al., 1995; McGrath and Radom, 1991) use three sizes of contracted functions for each 

orbital type.

Polarized basis set

A better approximation is to account for the fact that sometimes orbitals share 

qualities of 's' and 'p' orbitals or 'p' and 'd', etc. and not necessarily have characteristics of 

only one or the other. As atoms are brought close together, their charge distribution

causes a polarization effect (the positive charge is drawn to one side while the negative 

charge is drawn to the other) which distorts the shape of the atomic orbitals. Split valence 

basis sets allow orbitals to change size, but not to change shape. Polarized basis sets 

remove this limitation by adding orbitals with angular momentum beyond what is 

required for the ground state to the description of each atom. The first step consists of the 

addition of a set of d-type functions to the basis sets of those atoms, which have occupied 

s- and p-shells in their electronic ground states. For hydrogen, this corresponds to the 

addition of a set of p-type functions. Two different notations exist to specify the addition 

of polarization functions. The first notation adds one asterisk to the basis set to specify 

addition of polarization functions to non-hydrogen atoms, while two asterisks symbolize 
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the addition of polarization functions to all atoms (including hydrogen). The 6-31G** 

basis set (Frisch et al., 1984) is thus constructed from the split valence 6-31G basis set 

through addition of one set of d-functions to all non-hydrogen atoms and one set of p-

functions to all hydrogen atoms. In the second notation the polarization functions are 

specified through their angular quantum number explicitly. The 6-31G** basis set would 

then be termed 6-31G (d,p). This latter notation is much more flexible as multiple sets of 

polarization functions can be specified much more easily. The notation 6-31G (d) means 

the polarization functions for the 6-31G basis appear in the basis set listing as a single set 

of uncontracted d-type Gaussians. There are six Cartesian d-type Gaussians (x2, y2, z2, xy, 

yz, zx) e(-α r2 ), which are equivalent to five pure d-type functions (xy, yz, zx, x2-y2, 3z2-r2) 

e(-α r2 ) plus one additional s-type function.

Diffuse functions

In chemistry, one is mainly concerned with the valence electrons which interact 

with other molecules. However, many of the basis sets concentrate on the main energy 

located in the inner shell electrons. This is the main area under the wave function curve.

In Fig 5.2, this area is that to the left of the dotted line. Normally the tail (the area to the 

right of the dotted line), is not really a factor in calculations.

Fig 5.2 Variation of energy with respect to radius
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However, when an atom is in an anion or in an excited state, the loosely bond electrons, 

which are responsible for the energy in the tail of the wave function become much more 

important. The theoretical description of negatively charged species is particularly 

challenging for ab initio molecular orbital theory. This is due to the fact that the excess 

negative charge spreads outward to a much larger degree than is typically the case for 

uncharged or positively charged molecules. To compensate for this, diffuse functions are 

used. Diffuse functions are large size versions of s- and p-type functions (as opposed to 

standard valence size functions). They use small orbital exponents. They allow orbitals to 

occupy a larger region of space and are important for systems where electrons are 

relatively far from the nucleus, such as molecules with lone pairs, anions and other 

systems with significant negative charge, systems in their excited states, and systems with 

low ionization potentials. Diffuse basis functions are typically added as an additional set 

of uncontracted Gaussian functions of the same angular momentum as the valence 

electrons. To reflect the addition of diffuse basis functions on all non-hydrogen atoms, a 

+ sign is added to the standard basis set notation. If diffuse s-type functions are also 

added to the basis set of hydrogen atoms, a second + sign is appended. The 6-31+G(d) 

basis set (Clark et al., 1983) is the 6-31G(d) basis set with diffuse functions added to 

heavy atoms. The basis et 6-31++G(d) adds diffuse functions to the hydrogen as well. 

Diffuse functions on hydrogen seldom make a significant difference in accuracy.

High angular momentum basis set

Such basis sets add multiple polarization functions per atom to the triple zeta 

basis set. For example, the 6-31G(2d) basis set adds two d functions per heavy atom 

instead of just one. Such basis sets are useful for describing the interactions between 
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electrons in electron correlation methods; they are not generally needed for Hartree-Fock 

calculations, to be discussed in the next section.

Basis sets for post- third row atoms

basis sets for atoms beyond the third row of the periodic table are handled 

somewhat differently. For very large nuclei, electrons near the nucleus are treated in an 

approximate way, using effective core potentials (ECP). This treatment includes 

relativistic effects. The LANL2DZ basis set is an example of such a basis set.

5.3 Hartee-Fock method

Molecular orbital theory decomposes the wave function Ψ into a combination of 

molecular orbitals Φ1, Φ2… Φi are chosen to be normalized orthogonal set of molecular 

orbitals. Thus

∫ ∫ ∫ =ΦΦ 1* dzdydxii , (5.10)

∫ ∫ ∫ ≠=ΦΦ jidzdydxji ;0* . (5.11)

The simplest way of expressing the wave function of a many electron system is to take 

the product of the spin-orbitals of the individual electrons. For the case of two electrons

)()()( 221121 xxxx χχ=Ψ . (5.12)

This is known as Hartree product.

However, such a function is not antisymmetric, since swapping the orbitals of two 

electrons does not result in a sign change. i.e.

)()( 1221 xxxx Ψ−≠Ψ .  (5.13)

Therefore the Hartree product does not satisfy the Pauli principle. This problem can be 

overcome by taking a linear combination of both Hartree products:
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where the coefficient is the normalization factor. This wave function is antisymmetric. 

Moreover, it also goes to zero if any two wave functions or two electrons are the same. 

The expression can be generalized by writing it as a determinant called Slater 

determinant:
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A single Slater determinant is used as an approximation to the electronic wave function in 

Hartree-Fock theory. In more accurate theories, such as configuration interaction and 

multiconfiguration self consistent field (MCSCF) calculation (Hegarty and Robb, 1979; 

Eade and Robb, 1981; Schlegel and Robb, 1982; Bernardi, et al., 1984; Frisch et al.,

1992), a linear combination of Slater determinants is used. Each row is formed by 

representing all possible assignments of electron i to all orbital spin combinations. 

Swapping two electrons corresponds to interchanging two rows of the determinant, which 

will have the effect of changing its sign.

The original Hartree method expresses the total wave function of the system as a 

product of one-electron orbital. In the Hartree-Fock method (Hehre et al., 1986), the 

wave function is an antisymmetrized determinantal product of one-electron orbital (the 

"Slater" determinant). Schrödinger’s equation is transformed into a set of Hartree-Fock 

equations. Now the problem is to solve for a set of molecular orbital expansion 
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coefficients icµ in Eqn.(5.8). Hartree-Fock theory takes advantage of the variational 

principle, which states that for the ground state of any antisymmetric normalized function 

of the electronic coordinates denoted as Ξ, the expectation value corresponding to Ξ will 

always be greater than the energy for the exact wave function: 

E(Ξ) > E(Ψ).  (5.16)

In other words, the energy of the exact wave function serves as a lower bound to the 

energies calculated by any other normalized antisymmetric function. Thus the problem 

becomes one of finding the set of coefficients that minimize the energy of the resultant 

wave function.

The variables in the Hartree-Fock equations depend on themselves. So, they must 

be solved in an iterative manner. Convergence may be improved by changing the form of 

the initial guess. Since the equations are solved self-consistently, Hartree-Fock is an 

example of a self-consistent field (SCF) method.

Hartree-Fock calculation involves the following steps:

1. Begin with a set of approximate orbital for all the electrons in the system.

2. One electron is selected, and the potential in which it moves is calculated by 

freezing the distribution of all the other electrons and treating their averaged 

distribution as the Centro-symmetric source of potential

3. The Schrödinger equation is solved for this potential, which gives a new orbital 

for it.

4. The procedure is repeated for all the other electrons in the system, using the 

electrons in the frozen orbitals as the source of the potential.

5. At the end of one cycle, there are new orbitals from the original set.
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6. The process is repeated until there is little or no change in the orbitals.

Unrestricted Hartree-Fock method is capable of treating unpaired electrons for 

open shell systems. In this case the α and β electrons are in different orbitals, resulting in 

two sets of molecular orbital expansion coefficients.
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The two sets of coefficients result in two sets of Fock matrices producing two sets of 

orbitals. These separate orbitals proper dissociation to separate atoms and correct 

delocalized orbitals for resonant systems. However, the eigenfunctions are not pure spin 

states, but contain some amount of spin contamination from higher states, for example, 

doublets are contaminated to some degree by functions corresponding to quartets and 

higher states..

It might give an impression that molecular orbitals are real. Except for the 

hydrogen atom that is not the case. Molecular orbitals are the product of Hartree-Fock 

theory, which is an approximation to the Schrödinger equation. The approximation is that 

each electron feels only the average Coulomb repulsion of all the other electrons. This 

approximation makes Hartree-Fock theory much simpler than the real problem, which is 

an N-body problem. Unfortunately, in many cases this approximation is rather serious 

and can give bad answers. It can be corrected by explicitly accounting for the electron 

correlation by many-body perturbation theory (MBPT), configuration interaction (CI), or 

density functional theory (DFT).
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5.4 Electron correlation methods

Hartree-Fock theory provides an inadequate treatment of the correlation between 

the motions of electrons within a molecular system, especially that arising between 

electrons of opposite spin. When Hartree-Fock theory fulfills the requirement that |Ψ|2 be 

invariant with respect to the exchange of any two electrons by antisymmetrizing the wave 

function, it automatically includes the major correlation effects arising from pairs of 

electrons with the same spin. This correlation is termed as exchange correlation. The 

motion of electrons of opposite spin remains uncorrelated under Hartree-Fock theory. 

Any method which goes beyond SCF in attempting to treat this phenomenon is known as 

electron correlation method or post- SCF method.

5.4.1 Requirements of electron correlation theories

Any electron correlation theory should provide a unique total energy for each 

electronic state at a given geometry and should also provide continuous potential energy 

surfaces as the geometry changes. The resulting energy should be variational, i.e. it 

should be an upper bound to the exact energy. The most important criterion for an 

accurate electron correlation theory is the property of size consistency. This term refers to 

the linear scaling of energy with the number of electrons in the system. A size consistent 

method leads to additive energies for infinitely separated systems. Size consistent method 

is necessary to reach quantitative accuracy. Another important criterion is the correctness

for two electron systems. For any molecular system composed of reasonably well defined 

electron pair bonds, such methods provide excellent starting points for inclusion of 

additional corrections such as those from three electron correlations. Such three electron 

correlations although computationally expensive, are crucial to reach quantitative 
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accuracy (Raghavachari and Anderson, 1996). In general, correlation techniques are 

computationally more expensive than HF methods. Many correlation techniques involve 

an iterative solution of a set of coupled equations.

5.4.2 Configuration interaction (CI)

Among the many schemes introduced to overcome the deficiencies of Hartree-

Fock method, the most simple and general technique to address the correlation problem is 

configuration interaction (Shavitt, 1977; Schaefer, 1977; Boys, 1950). Configuration 

interaction is a straight forward application of the linear variational technique to the 

calculation of electronic wavefunctions. A linear combination of configurations (Slater 

determinants) is used to provide a better variational solution to the exact many-electron 

wavefunction. 

The most important type of correlation effect which contributes to chemical 

bonding is usually termed as left-right correlation. For H2, this refers to the tendency that 

when one electron is near the first hydrogen, the other electron tends to be near the 

second hydrogen. This is absent in the HF method where the spatial positions of the two 

electrons occupying the lowest bonding molecular orbital are uncorrelated. The problem 

gets worse as the two atoms move apart and dissociate. Qualitatively, this can be 

corrected by including a second configuration where both electrons occupy the anti-

bonding orbital. While this is unfavorable energetically, a mixture of the HF 

configuration with this second configuration provides a better description of the system. 

This is referred to as “configuration interaction”. The second configuration has only a 

small weight at the equilibrium distance in H2 but its weight increases as the bond 
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distance increases until the configurations have equal weights at dissociation. Such a left-

right correlation is included in valence-bond-type wave functions.

The exact wave function Ψ can not be expressed as a single determinant. CI 

method constructs other determinants by replacing one or more occupied orbitals within 

the Hartree-Fock determinant with a virtual orbital. In a single substitution, a virtual 

orbital Φa replaces an occupied orbital Φi within the determinant. This is equivalent to 

exciting an electron to a higher energy orbital. Similarly in a double substitution, two 

occupied orbitals are replaced by virtual orbitals and triple substitution would exchange 

three orbitals and so on.

CI wave function mixes the Hartree-Fock wave function with single, double, 

triple, quadruple … excited configurations, and the coefficients which determine the 

amount of mixing are determined variationally. The full CI method forms the wave 

function Ψ as a linear combination of Hartree-Fock determinant and all possible 

substituted determinants:

∑
>

Ψ+Ψ=Ψ
0

00
s

ssbb , (5.17)

where the 0-indexed term is the Hartree-Fock level and s runs over all possible 

substitutions. The b’s are the set of coefficients to be solved for by minimizing the energy 

of the resultant wave function. If all possible excited configurations are included, the 

method gives the exact solution within the space spanned by a given basis set. Full CI is 

the most complete non-relativistic treatment of the molecular system possible, with the 

limitation imposed by the chosen basis set. 
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5.4.3 Limited configuration interaction

The full CI method is size consistent and variational. However, it is very 

computationally expensive and impractical for large systems, since the number of 

configurations in full CI expansion grows exponentially with the size of the system. 

Practical CI methods augment the Hartree-Fock by adding only a limited set of 

substitutions. CIS method adds single excitation to Hartree-Fock determinant, while 

CISD adds singles and doubles. The CISD method (Pople et al., 1977; Krishnan et al., 

1980; Raghavachari and Pople, 1981) is an iterative technique where the computational 

dependence of each iteration scales as the sixth power of the size of the system. A 

disadvantage of the limited CI methods is that they are not size consistent, i.e. the energy 

does not scale linearly with the size of the system, and CISD energy is not additive for 

infinitely separated systems. For example, the CISD energy for two infinitely separated 

He atoms is different from twice the energy of a single He atom. 

Quadratic configuration interaction (QCI) technique (Pople et al., 1987) introduces size 

consistency in CISD theory. The CISD method consists of a set of linear equations in the 

configuration expansion coefficients (for single and double excitations) which are solved 

iteratively. In the QCISD method (Gauss and Cremer, 1988; Trucks and Frisch, 1998; 

Salter et al., 1989), these equations are modified by the introduction of additional terms, 

quadratic in the expansion coefficients, which make the method size consistent.

5.4.4 Møller-Plesset Perturbation theory (MP)

MP theory (Møller and Plesset, 1934) treats the electron correlation as a 

perturbation on the Hartree-Fock problem. It adds higher excitations to the Hartree-Fock 
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theory as a non-iterative correction. The wave function and energy are expanded in a 

power series of the perturbation. The Hamiltonian is expressed in two parts:

H = H0 + H′, (5.18)

where H0 is called the zeroth order Hamiltonian, and H′ is the perturbation. H0 is chosen 

such that the Schrödinger equation H0Ψ0 = E0 Ψ0 can be solved exactly for the zeroth 

order eigenfunctions Ψ0 and the corresponding zeroth order energy eigenvalues E0. It is 

assumed that perturbation is sufficiently small that its presence does not appreciably alter 

the eigenfunctions of the system.

Hatree-Fock energy is correct to the first order. Hence the perturbation energies 

start contributing from second order. While performing MP calculations, first HF 

calculation is performed and then second, third, fourth, and fifth order perturbation 

corrections are computed. The final ground state energy is given by

Eground state = EHF + E(2) + E(3) + E(4) + E(5) + … , (5.19)

where EHF is the Hartree-Fock energy and E(i) are the successive Møller-Plesset 

perturbation corrections. 

In perturbation theory, the different correlation contributions emerge through their 

interaction with the starting HF wave function Ψ0. Since the Hamiltonian contains only 

one- and two-electron terms, only single and double excitations can contribute via direct 

coupling to Ψ0 in the lowest orders. However, the self-consistent optimization of the HF 

wave function prevents direct mixing between single excitations and Ψ0. Thus, the second 

and third-order energies have contributions only from double excitations. In higher 

orders, there is indirect coupling via double excitations, and thus the fourth and fifth-

order energies have contributions from single, double, triple, and quadruple excitations. 
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A common notation denoted as MPn (Raghavachari and Pople, 1978; 

Raghavachari et al., 1980; Frisch et al., 1980) is used. Thus, MP2 (Head-Gordon et al,

1988; Frisch et al, 1990; Head-Gordon, 1994; Trucks et al, 1998; Saebo and Almlof, 

1989), MP3 (Pople et al, 1977; 1976), MP4 (Raghavachari and Pople, 1978) denote the 

total energies correct to second, third, fourth … order respectively. Perturbation theory 

truncated at any order is size consistent. MP2, MP3, MP4, and MP5 methods scale as the 

fifth, sixth, seventh and eighth power of the size of the system. If triples are excluded 

from the MP4 method (Raghavachari and Pople, 1978; Raghavachari et al., 1980; Frisch 

et al., 1980; Bartlett and Shavitt, 1977; Bartlett and Purvis, 1978; Bartlett et al., 1983; 

Wilson and Saunders, 1979) the resulting MP4 (SDQ) technique (Raghavachari and 

Pople, 1978) can be evaluated with sixth order computational dependence. Fifth-order 

theory (MP5) (Kucharski and Bartlett, 1986; Kucharski et al., 1989; Bartlett et al., 1990; 

Raghavachari et al., 1990) has been implemented though feasible only for small systems. 

Analytical derivatives of the potentials energy can be computed for MP2 (Frisch et al,

1990; Pople et al, 1979; Handy and Schaefer, 1984), MP3, and MP4 (SDQ) methods 

(Trucks et al, 1988). Analytical frequencies can be computed for MP2 method (Head-

Gordon, 1994; Trucks et al, 1998). MP2 is the most applicable method for electron 

correlation effects for large systems. It can be implemented without requiring the storage 

of two-electron integrals and many other intermediate quantities which makes it possible 

to study large systems such as C60.

5.5 Density functional theory (DFT)

Shortly after the formulation of quantum mechanics in the mid 1920's, Thomas 

(1926) and Fermi (1928) introduced the idea of expressing the total energy of a system as 
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a functional of the total electron density. Because of the crude treatment of the kinetic 

energy term, i. e. the absence of molecular orbitals, the accuracy of these early attempts 

was far from satisfactory. It was not until the 1960's that an exact theoretical framework 

called density functional theory (DFT) was formulated by Hohenberg and Kohn (1964) 

and Kohn and Sham (1965) that provided the foundation for accurate calculations. 

Earlier, motivated by the search for practical electronic structure calculations. 

In contrast to the Hartree-Fock picture, which deals with a description of 

individual electrons interacting with the nuclei and all other electrons in the system, in 

density functional theory, the total energy is decomposed into three contributions, a 

kinetic energy, a Coulomb energy due to classical electrostatic interactions among all 

charged particles in the system, and a term called the exchange-correlation energy that 

captures all many-body interactions. 

In density functional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965), 

correlation energy along with exchange energy is treated as a functional of the three 

dimensional electron density. DFT partitions the electronic energy as:

E = ET +EV + EJ + EXC, (5.20)

where ET is the kinetic energy term, EV includes terms describing the potential energy of 

the nuclear-electron attraction and of the repulsion between pairs of nuclei, EJ is the 

electron-electron repulsion term and EXC is the exchange correlation term.

All terms, except the nuclear-nuclear repulsion in Eqn.(5.20) are functions of ρ the 

electron density. The term EXC accounts for the exchange energy arising from the 

antisymmetry of the quantum mechanical wavefuncion, and dynamic correlation in the 

motions of the individual electrons. Hohenbrg and Kohn (1964) demonstrated that EXC is 
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determined entirely by the electron density, i.e. it is a function of electron density. The 

term EXC is usually approximated as an integral involving only the spin densities and 

possibly their gradients as given by

rdrrrrfE B
XC vvvvv 3)(),(),(),()()( βα ρρρρρ ∇∇= ∫ , (5.21)

ρα and ρβ refer to α and β spin density, and total electron density ρ is (ρα + ρβ).

EXC is separated into exchange and correlation parts corresponding to same spin and 

mixed spin interactions as given by

EXC (ρ) = EX(ρ)  +  EC(ρ), (5.22)

the terms EX(ρ)  and EC(ρ) are again functionals of electron density, termed as exchange 

functional and correlation functional. Local functionals depend on the electron density, 

while gradient corrected functionals depend on both electron density ρ and                      

its gradient       .

In local density approximation (LDA) approximation, the exchange-correlation 

energy is taken from the known results of the many-electron interactions in an electron 

system of constant density (homogeneous electron gas). The LDA assumes that at each 

point in a molecule or solid there exists a well defined electron density; an electron at 

such a point experiences the same many-body response by the surrounding electrons as if 

the density of these surrounding electrons had the same value throughout the entire space 

as at the point of the reference electron. The exchange-correlation energy of the total 

molecule or solid is then the integral over the contributions from each volume element. 

The contributions are different from each volume element depending on the local electron 

density. The local exchange functional is defined as

ρ∇



63

∫


−= rdE X
LDA

v33
43

1

4

3

2

3 ρπ .
(5.23)

In DFT, the total electron density is decomposed into one-electron densities, which are 

constructed from one-electron wave functions. These one-electron wave functions are 

similar to those of Hartree-Fock theory. For molecular systems, DFT leads to a molecular 

orbital (MO) picture in analogy to the Hartree-Fock approach. 

DFT has been successfully extended to open-shell systems and magnetic solids 

(von Barth and Hedin, 1972; Gunnarsson et al., 1972). In these cases, the local exchange-

correlation energy depends not only on the local electron density, but also on the local 

spin density (which is the difference between the electron density of spin-up electrons 

and that of spin-down electrons). The resulting generalization of LDA is called local spin 

density approximation (LSDA).  

Within the local density approximation, binding energies are typically 

overestimated. Any real system is spatially inhomogeneous, i.e. it has spatially varying 

density. The accuracy could be improved if the rate of this variation is included in the 

functional. Gradient expansion approximation (GEA) tries to systematically calculate the 

gradient corrections to the LDA. In generalized gradient approximations (GGA), instead 

of power series gradient expansions, generalized functions are used. 

Inclusion of non-local gradient corrections improves the values of binding 

energies. Becke (1988) formulated the gradient corrected exchange functional based on 

the LDA exchange functional given as
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where ρρ ∇= − 3/4x ,γ  is a parameter chosen to fit known exchange energies of the inert 

atoms. Becke functional is defined as a correction to the local LDA exchange functional.

Self consistent Kohn- Sham DFT calculations are performed in an iterative manner 

analogous to the SCF computation. Becke formulated which include Hartree- Fock and 

DFT exchange along with DFT correlation as;

XC
DFTDFT

X
HFHF

XC
hybrid EcEcE += . (5.25)

For example Becke style three parameter functional denoted as B3LYP (Becke, 1993) is 

defined as:
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The parameter c0 allows any combination of Hartree- Fock and LDA local exchange to be 

used. The local correlation functional VWN3 is corrected by the LYP correlation 

correction.

Table 5.1 lists various model chemistries definable via ab initio methods and 

standard basis sets. Each cell in the chart defines a model chemistry. 

Table 5.1 Effect of various model chemistries and basis sets on accuracy of the solution to Schrödinger’s 
equation (Foresman and Frisch).
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The columns correspond to different theoretical methods and the rows to different 

basis sets. The level of correlation increases from left to right across any row, with 

Hartree-Fock method at the extreme left (including no correlation), and the full 

configuration interaction method at the right (which fully accounts for electron 

correlation). The rows of the chart correspond to increasingly larger basis sets. The 

bottom row of the chart represents a completely flexible basis set. The cell in the lower 

right corner of the chart represents the exact solution of the Schrödinger equation.

18
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19 CHAPTER 6

6 Neural Networks

As the term neural network (NN) implies, this approach is aimed towards 

modeling real networks of neurons in the brain. It was inspired by a number of features of 

the brain that would be desirable in artificial systems, such as its robustness and fault 

tolerance, its flexibility and the ability to deal with fuzzy and noisy information and its 

highly parallel structure.  

6.1 Biological neurons

The brain is composed of about 1011 highly connected elements called neurons, 

each of which is connected to about 104 other neurons. Fig 6.1 shows the schematic of 

biological neuron.

Fig 6.1 Schematic of biological neuron
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A neuron's dendritic tree is connected to thousands of neighboring neurons. Each neuron 

receives electrochemical inputs from other neurons at the dendrites.  When one of those 

neurons fire, a positive or negative charge is received by one of the dendrites. The 

strengths of all the received charges are added together through the processes of spatial 

and temporal summation. Spatial summation occurs when several weak signals are 

converted into a single large one while temporal summation converts a rapid series of 

weak pulses from one source into one large signal. The aggregate input is then passed to 

the soma (cell body). The soma and the enclosed nucleus do not play a significant role in 

the processing of incoming and outgoing data. Their primary function is to perform the 

continuous maintenance required to keep the neuron functional. If the sum of these 

electrical inputs is sufficiently powerful to activate the neuron, it transmits an 

electrochemical signal along the axon, and passes this signal to the other neurons whose 

dendrites are attached at any of the axon terminals.  These attached neurons may then 

fire. The part of the soma that does concern itself with the signal is the axon hillock. If 

the aggregate input is greater than the axon hillock's threshold value, then the neuron 

fires, and an output signal is transmitted down the axon. The strength of the output is 

constant, regardless of whether the input was just above the threshold, or a hundred times 

as great. The output strength is unaffected by the many divisions in the axon; it reaches 

each terminal button with the same intensity it had at the axon hillock. This uniformity is 

critical in an analogue device such as a brain where small errors can be critical, and 

where error correction is more difficult than in a digital system. It is important to note 

that a neuron fires only if the total signal received at the cell body exceeds a certain 

level.  The neuron either fires or it does not, there are not different grades of firing. 
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Each terminal button is connected to other neurons across a small gap called a synapse, as 

shown in Fig 6.2 . The physical and neuro-chemical characteristics of each synapse 

determine the strength and polarity of the new input signal. This is where the brain is 

most flexible. 

Fig 6.2 Synaptic gap

Changing the constitution of various neuro-transmitter chemicals can increase or 

decrease the amount of stimulation that the firing axon imparts on the neighboring 

dendrite. Altering the neurotransmitters can also change whether the stimulation is 

excitatory or inhibitory. Many drugs, such as alcohol have dramatic effects on the

production or destruction of these critical chemicals. The infamous nerve gas, sarin, can 

kill because it neutralizes a chemical (acetylcholinesterase) that is normally responsible 

for the destruction of a neurotransmitter (acetylcholine). This means that once a neuron 

fires, it keeps on triggering all the neurons in the vicinity and one no longer has control 

over muscles.

So, from a very large number of extremely simple processing units (each 

performing a weighted sum of its inputs, and then firing a binary signal, if the total input 
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exceeds a certain level) the brain manages to perform extremely complex tasks. This is 

the model on which artificial neural networks (NN) are based.  Thus far, artificial neural 

networks have not even come close to modeling the complexity of the brain. It is worth 

noting that even though biological neurons are slow compared to electrical circuits, the 

brain is able to perform many tasks much faster than any conventional computer because 

of the massively parallel structure of biological neural networks.

While in actual neurons the dendrite receives electrical signals from the axons of 

other neurons, in an artificial neuron (perceptron) these electrical signals are represented 

as numerical values. At the synapses between the dendrite and axons, electrical signals 

are modulated in various amounts. This is also modeled in an artificial neuron by 

multiplying each input value by a value called the weight. An actual neuron fires an 

output signal only when the total strength of the input signals exceeds a certain threshold. 

We model this phenomenon in a ANN by calculating the weighted sum of the inputs to 

represent the total strength of the input signals, and applying a step function on the sum 

to determine its output. Fig 6.3  shows a simple model of a neuron.

Fig 6.3 Model of a neuron
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6.2 History of multilayer neural networks

The first step toward artificial neural networks came in 1943 when Warren 

McCulloch and Walter Pitts (1943) wrote a paper “A logical calculus of the ideas 

immanent in nervous activity” describing how neurons might work that united the studies 

of neurophysiology and mathematical logic. They modeled a simple neural network with 

electrical circuits and showed the network in principle, could compute any arithmetic 

function. Training of the neural network was introduced when Hebb (1949) in 1949 

published the book "The organization of behavior," which pointed out the fact that neural 

pathways are strengthened each time they are used, a concept fundamentally essential to 

the ways in which humans learn. If two nerves fire at the same time, the connection 

between them is enhanced. Frank Rosenblatt (1958) invented the perceptron and 

associated learning rule. It was built in hardware. A single-layer perceptron was found to 

be useful in classifying a continuous-valued set of inputs into one of two classes. This 

was the first practical application of artificial neural networks. In 1959, Bernard Widrow 

and Marcian Hoff developed models called "ADALINE" (ADAptive LInear Neuron) and 

"MADALINE” (Multiple ADAptive LInear Neuron). ADALINE was developed to 

recognize binary patterns so that if it was reading streaming bits from a phone line, it 

could predict the next bit. MADALINE was the first neural network applied to a real 

world problem, using an adaptive filter to eliminate echo on phone lines. In 1962, 

Widrow and Hoff developed a learning rule to train ADALINE networks. Minsky and 

Papert (1969) showed that perceptron and ADALINE networks were limited for 

classification problems in which the two classes were linearly separable. These networks 

were incapable of handling nonlinear classification problems, such as exclusive-or (XOR)
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problem. Rosenblatt and Widrow were aware of these limitations and proposed 

multilayer networks. First description of an algorithm to train multilayer networks was 

given by Webros (1974). He described it for general networks with neural networks as a 

special case. It was rediscovered by Rumelhart, Hinton, and Williams (1986), Parker 

(1985) and Le Cun (1985). Backpropagation was developed by generalizing Widow-Hoff 

learning rule to multilayer neural networks with nonlinear differentiable transfer 

functions.

6.3 Neural networks versus conventional computers

Neural networks take a different approach to problem solving than that of 

conventional computers. Conventional computers use an algorithmic approach i.e. the 

computer follows a set of instructions in order to solve a problem. Unless the specific 

steps that the computer needs to follow are known the computer cannot solve the 

problem. That restricts the problem solving capability of conventional computers to 

problems that we already understand and know how to solve particularly for repetitive 

tasks. But computers would be so much more useful if they could do things that we do 

not exactly know how to do. Neural networks process information in a similar way the 

human brain does. The network is composed of a large number of highly interconnected 

processing elements (neurons) working in parallel to solve a specific problem. Neural 

networks learn by example. They are not programmed to perform a specific task. The 

examples must be selected carefully otherwise the network might function incorrectly. 

The disadvantage is that because the network finds out how to solve the problem by 

itself, its operation can be unpredictable.
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On the other hand, conventional computers use a predictive approach to problem 

solving. The way the problem is to be solved must be known and stated in unambiguous 

instructions. These instructions are then converted to a high level language program and 

then into machine code that the computer can understand. Their operation is predictable.

Neural networks and conventional algorithmic computers are not in competition but 

complement each other. There are tasks that are more suited to an algorithmic approach, 

such as arithmetic operations and tasks that are more suited to neural networks. Even 

more, a large number of tasks, require systems that use a combination of the two 

approaches (normally a conventional computer is used to supervise the neural network) in 

order to perform at maximum efficiency. Neural networks have shown to be good at 

problems which are easy for a human but difficult for a traditional computer, such as 

image and voice recognition and predictions based on past knowledge.

6.4 Model of a neuron

Fig 6.4 shows a single input neuron, which forms the building block for the 

Artificial Neural Network (ANN). The scalar input p is multiplied by the scalar weight w, 

the other input 1 is multiplied by the bias b. the summer adds wp and b to form the net 

input n, which goes into a transfer function f to produce a scalar output  a. 

w and  b are adjustable scalar parameters of the neurons, which are adjusted by the 

learning rule so as to minimize the errors (i.e. neuron outputs and the target values). 
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Fig 6.4 Single input neuron (Hagan et al. 1996)

6.5 Multilayer network

Fig 6.5 shows a neural network with multiple layers with each layer having 

multiple neurons. Each layer has its own weight matrix W and bias vector b. The 

superscript to each parameter indicates the layer it is associated with. The network has R

inputs. The outputs from one layer are inputs to the next layer.

Fig 6.5 Multilayer network (Hagan et al. 1996)

A layer whose output is the output of the entire neural network is called as the output 

vector, whereas other layers are called as hidden layers. The number of neurons in the 
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input layer is the same as the number of input variables and the number of neurons in the 

output layer is same as the number of outputs. The number of neurons to be used for the 

hidden layer is decided by the designer depending upon the complexity of the function 

involved. 

6.6 Transfer functions

A transfer function is a linear or non-linear function of the net input to the neuron. 

Nonlinear transfer functions give neural networks their nonlinear capabilities. The 

function must be differentiable for the optimization of the parameters and is desirable to 

saturate at both extremes. The most common forms of transfer functions are the 

monotonically increasing sigmoidal or hyperbolic tangent function. 

Hyperbolic tangent function
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Fig 6.6 a) Hyperbolic tangent function ranging from [-1, +1] for x  =   ±∞
b) Log sigmoid function ranging from [-1,+1] for x  =  ±∞
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These functions are also called as squashing functions because of their asymptotic 

behavior at ±∞ .  Convergence with functions which are symmetric about the origin, like 

the hyperbolic tangent is faster (LeCun, 1998)

6.7 Neural network training

Neural network training is a procedure for modifying weight matrices and bias 

vectors of the network to meet certain goals, such as minimizing the difference between 

the network output and target values. It is equivalent to performing the non-linear 

optimization of the network parameters. There are two approaches for neural network 

training: supervised learning and unsupervised learning.

 In supervised training, both the inputs and the outputs are provided. The network 

then processes the inputs and compares its resulting outputs against the desired outputs. 

Errors are then propagated back through the system, causing the system to adjust the 

weights which control the network. This process occurs over and over and the weights 

are continually adjusted. During the training of a network the same set of data is 

processed many times as the weights and biases are adjusted. It is very important to have 

enough data points for the training so as to cover the configuration space adequately. The 

number of data points depends on the number of input variables, as the number of input 

variables increase. It increases the dimensionality of the problem and more points are 

required in order to cover the entire configuration space. The number of data points 

required also depends on the complexity of the problem. Also, it is equally important to 

choose the input variables carefully. Sometimes it may not be obvious as to which 

variables to choose so that the input data contains complete information from which the 

target output is derived. Supervised learning has applications in function approximation 



76

and pattern classification problems where the number and type of patterns is known 

beforehand.

In unsupervised training, the network is provided with the inputs but not with the 

desired outputs. The system itself decides what features to use to group the input data. 

This is referred to as self-organization. These networks look for regularities or trends in 

the input to adapt the network parameters. Unsupervised learning has applications in 

clustering operation. They learn to categorize the input patterns into a finite number of 

classes.

6.7.1 Supervised training and parameter optimization

The supervised training is done by comparing the output with known target 

values. The optimization of network parameters is performed by some iterative 

optimization scheme until the desirable solution by the scalar cost function is reached. 

Normally the cost function is taken as the sum of the squared difference between the 

network output and the target values. 

( )[ ]22 )( atEeE −= , (6.3 )

where t is the target vector, a is the vector of neural network output and e is the 

difference between the target and the neural network output. E(e2) is the expectation of 

the sum squared error. The training process can be classified into two types: incremental 

training and batch training. In incremental training the weights and biases of the network 

are updated each time an input is presented to the network, while in batch training, the 

weights and biases are updated after all inputs are presented. The incremental training is 

comparatively faster since in batch training the redundancy or the presence of patterns 

which are very similar leads to slower convergence. In incremental training the noise 
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present in the updates coming from the numerical calculation of the gradient after each 

successive sample can result in weights which are able to find a different minimum 

before getting stuck in a local minimum, unlike in batch training where the random 

initialization of the weights is very crucial. However such noise can prevent full 

convergence to the minimum. For batch training the conditions of convergence are well 

understood. Many optimization schemes, such as conjugate gradient method are 

applicable only for batch training. Also, the analysis of convergence rates is simpler.

In order to minimize the cost function, the training algorithm cycles through the 

following steps:

1. The network is presented with one (for incremental training) or all (for batch 

training) training samples consisting of both inputs and targets.

2. The network output is measured and the squared error between the target and the 

output is calculated.

3. The weights and biases are adjusted so as to minimize the cost function i.e. the 

squared error.

4. The procedure is repeated until the squared error reaches the desired limit.

The optimization of the parameters is usually done using gradient based methods, such as 

steepest descent or conjugate gradient or quasi Newton algorithms. 

6.8 LMS (Least Mean Squared Error) algorithm

The LMS or Widrow–Hoff algorithm is based on approximate steepest descent 

algorithm. Widrow and Hoff noticed that the estimate of the mean squared error could be 

obtained by using squared error at each iteration. 
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)()( 2 kexF ∇=∇ , (6.4)

where k is the iteration number.

The partial derivatives of squared error with respect to weights and biases at kth iteration 

are given by:
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where R is the number of input variables.
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where )(kpi is the ith element of the input vector at the kth iteration.
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Therefore 
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kekexF  … where p is the input vector and 1 is constant 

input for bias. That is, the approximate gradient is given by multiplying the input with the 

error. Now the steepest descent method produces proceeds as

xkxkk xFxx =+ ∇−= |1 )(α . (6.8)

LMS algorithm can be written in matrix notation as:

               W(k+1)= W(k)+2α e(k) pT
(k),

and  b(k+1)= b(k) +2α e(k). (6.9)
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6.9 Backpropagation algorithm

Neural networks employing only one layer of neurons can solve only linearly 

separable classification problems. First description of an algorithm to train multilayer 

networks was given by Webros (1974). He described it for general networks with neural 

networks as a special case. It was rediscovered by Rumelhart (1986), Parker (1985) and 

Le Cun (1985). Backpropagation was developed by generalizing Widow-Hoff learning 

rule to multilayer neural networks with nonlinear differentiable transfer functions. It is 

also a gradient descent algorithm where the parameters are adjusted along the negative of 

the gradient of the cost function. The term backpropagation refers to the manner in which 

the gradient is computed for nonlinear multilayer networks. With single layer network, 

the weights are adjusted based on the error values as in LMS (Widrow-Hoff) learning. 

However, with multilayer networks, it is less obvious how to calculate the error for the 

hidden layers as the error from the output layer is not an explicit function of weights in 

the hidden layers. 

Chain rule is applied to compute the gradient for the steepest descent algorithm. 
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where m
in is the net input to the ith neuron in the mth layer, 

m
jiw ,  and 

m
ib  are the weights 

and biases the layer m.

Now the net input m
in is computed as:
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Now, a term sensitivity is defined as the change in the cost function F with respect to 

change in the ith element of the net input at the layer m.
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Now, the steepest algorithm can be expressed as:
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where Wm and bm are weight matrix and bias vector at the layer m.
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Next step is to compute the sensitivities. This process involves a recurrence relationship 

in which the sensitivity at layer m is computed from the sensitivity at layer m+1, which 

gives it the name backpropagation. Now the Jacobian matrix is defined as:
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Hence, the Jacobian matrix can be written as:
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And the recurrence relation can be written as:

11 )()( ++= mTmmmm sWnFs & , (6.19)

Thus, the sensitivities are propagated backward through the network from last to first 

layer, which gives it the name backpropagation.
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For the output layer the sensitivities are computed as:

))((2 atnFs −−= & , (6.20)

where t is the target value and a is the neural network output.

6.10 Numerical optimization techniques

The mean squared error of a single layer network with linear transfer function is a 

quadratic function with only one minimum and a constant curvature. In such cases, the 

LMS algorithm guarantees the convergence, so long as the learning rate is not too large. 

But for a multilayer network the mean squared error may be a non-quadratic function 

where the curvature varies drastically over the parameter space which makes it difficult 

to choose the learning rate. To overcome some of these difficulties heuristic techniques, 

such as variable learning rate, using momentum and rescaling the variables are employed. 

Another approach employs standard numerical optimization techniques, such as 

conjugate gradient and quasi Newton method.

6.10.1 Conjugate gradient methods

The backpropagation algorithm adjusts the weights along the steepest descent 

direction. Although this is the direction in which the function decreases most rapidly, this 

may not produce faster convergence. Instead of using orthogonal search directions as in 

the steepest descent method, conjugate gradient method adjusts the search direction so as 

to pass through the minimum of the function. The conjugate gradient method uses the 

information on the first derivative of the error function only and also has a quadratic 

convergence property i.e. it converges to the minimum of a quadratic function in a finite 

number of steps. This is a O(N) method.
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6.10.2 Newton and quasi-Newton methods

Newton method

The cost function i.e. the mean squared error can be expanded using Taylor’s 

series as:
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where g is the gradient vector and H is the Hessian matrix defined as:
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Quadratic approximation of the error surface can be obtained by ignoring higher order 

terms in the Taylor’s series expansions. The optimum value of w∆ i.e. the adjustments to 

the weights is:

gHw ⋅−=∆ −1 . (6.23)

Newton method requires computing the Hessian matrix which involving second order 

derivatives and then finding its inverse which takes O(N3) iterations. But this does not 

guarantee the convergence. If the error surface is not quadratic, then the Hessian matrix 

may not be always positive definite and the algorithm diverges. 

In quasi Newton method, Hessian matrix is estimated by some positive definite matrix, 

which ensures the convergence. The Hessian matrix is further approximated as:

JJH T2≅ , (6.24)

where J is the Jacobian matrix.
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6.10.3 Levenberg-Marquardt algorithm

The Hessian matrix in Gauss-Newton method may not always invertible. 

Levenberg-Marquardt algorithm uses an approximation to the Hessian matrix as:

[ ] TT JIJJw
1−+=∆ µ , (6.25)

where J is the Jacobian matrix consisting of the first derivatives of network errors with 

respect to weights and biases. When µ is zero, then it is similar to Gauss-Newton method, 

and when µ is large, it becomes the gradient descent algorithm. The Jacobian matrix can 

be computed through standard backpropagation technique that is less complex than 

computing the Hessian matrix (Hagan and Menhaj, 1994).

6.11 Bias/variance dilemma

One of the most serious problems that arise in connectionist learning by neural 

networks is overfitting of the provided training examples. This means that the trained 

function fits very closely the training data. However it does not generalize well, i.e. it can 

not model unseen data sufficiently well. The problem is to choose a function that both fits 

the training data as well as generalizes well over a specified range. If the function is 

parameterized so as to fit the training data perfectly using a higher order polynomial 

(which is equivalent to having more number of neurons in the hidden layers) then the fits 

would be drastically different for different sets of data randomly drawn from the same 

underlying function. More parameter flexibility has a benefit of fitting anything but at the 

cost of sensitivity to the variability in the data set. There is a variation between the 

average fit over all data sets and the fit for a single data set i.e. a variance introduced by 

the fits over multiple training sets. This can be addressed to some extent by having more 

number of data points for the fitting. There is a drawback to the flexibility afforded by 
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extra degrees of freedom in fitting the data that the amount of data required grows 

exponentially with the order of the fit. On the other hand, if very few parameters are 

available then the fit would be too restrictive and although the fit would not be as 

sensitive to the variability in the training data there would be a fixed error or bias no 

matter how much data is collected. This problem is referred to as bias/variance dilemma

(Geman et. al, 1992). This becomes a problem when there are relatively few data points 

especially in high dimensional space.

Statistical bias is the complexity restriction that the neural network architecture 

imposes on the degree of fitting accurately to the target function. The statistical bias 

accounts only for the degree of fitting the given training data, but not for the level of 

generalization. Statistical variance is the deviation of the neural network training efficacy 

from one data sample to another that could be described by the same target function 

model. This statistical variance accounts for the generalization of whether or not the 

neural network fits the examples without regard to the specificities of the provided data. 

One approach to avoid overfitting is to deliberately add some random noise with a mean 

value of zero to the model, which makes it difficult for the network to fit any specific 

data point too closely. Another way of introducing noise is to use increment training, i.e. 

updating the weights after every data point is presented, and to randomly reorder the data 

points at the end of each training cycle. In this manner, each weight update is based on a 

noisy estimate of the true gradient.

6.11.1 Neural network growing and neural network pruning

To reduce the statistical bias neural network growing is employed, where initially 

the training is started with less number of neurons. During the training process when the 
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decrease in error falls below a certain threshold value, then more neurons are added. With 

a view to reduce the statistical variance, neural network pruning is employed where a 

large network is first trained and the relative importance of the weights is assessed. Less 

important weights are then removed without affecting the performance much to get a 

smaller network 

6.12 Regularization and early stopping

Regularization involves modifying the performance function which is the mean 

squared error. The risk of overfitting can be reduced if the variance is used in the error 

function to penalize the neural network model with high curvature. The usual 

performance function is defined as:
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where R(W) is the function of network parameters. Regularization is performed by weight 

decay (Hertz et. al, 1996). A common form of R(W) used to penalize the model is taken 

as the sum square of weights, since overfitting with large curvature occurs when the 

weights of the network become too large. 
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where γ  is the performance ratio. Using this performance function will cause the 

network to have smaller weights and biases and this will cause the network response to 

be smoother and less likely to overfit. 
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Bayesian framework (MacKay, 1992) provides an approach to determine the 

optimal regularization parameter in an automated fashion. In this framework the weights 

and biases are assumed to be random variables with a specified distribution. The 

regularization parameters are related to unknown variances associated with these 

distributions. Bayesian regularization is implemented along with Levenberg- Marquardt 

algorithm (Foresee and Hagan, 1997).

6.13 Early stopping

In order to achieve good generalization, overfitting needs to be controlled. This 

can be achieved by early stopping. In this technique, the available data set is divided into 

three subsets, viz. training set, validation set, and testing set. Training set is used to 

compute the gradients and updating the weights and biases. Validation and testing sets 

are used to monitor the error. Generally, the error on the training and validation sets 

decrease during the initial phase of training. However, when the network starts 

overfitting, the error on the training set continues to decrease while that on the validation 

set starts increasing. When the error on the validation set increases for a specified number 

of iterations, the training is stopped. Fig 6.7 shows a typical variation of the error on the 

training and validation sets during neural network training.
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Fig 6.7 Evaluation of error during training

6.14 Normalizing the data

If the range of the output variables is quite large, then before training it is often 

useful to scale the inputs and targets so that they fall within a specified range. Since the 

range for nonlinear transfer functions, such as logsigmoid and hyperbolic tangent 

function is [0, 1] and [-1, +1], the inputs and targets are scaled within a range from [-1, 

+1] with the average close to zero. 
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where min p and max p are the minimum and maximum of the input or target values.

6.15 Neural network derivatives

In general, for function approximation problems, the neural network is used to 

map the functional relationship between input and output variables. Once trained, this 

neural network is presented with a input vector to calculate the corresponding output. But 

in some cases the derivatives of the output variables with respect to the input variables 
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may be desired. An example of such an application would be molecular dynamics 

simulation, where a multilayer neural network is trained for the energy of a molecular 

cluster with bond distances and angles that define the geometry of the cluster as the input. 

During the molecular dynamics simulation. The force i.e. the first derivative of the 

energy with respect to coordinates of atoms is required. 

6.15.1 First derivative with respect to weights

For the multilayer network, the network output is given as:

1...,,1,0)( 1111 −=+= ++++ MmforbaWfa mmmmm , (6.30)

where the superscript represents the layer number. M is the number of layers of the 

network and input to the first layer is pa =0
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6.15.2 Derivatives of the transfer function

The derivatives of the transfer functions are required to calculate the derivatives 

of the network output with respect to the network input.

Linear function:
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Log sigmoid function

The log sigmoid transfer function is defined as:
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Hyperbolic tangent (tan sigmoid) function

The hyperbolic tangent function is defined as:
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6.15.3 First derivative with respect to inputs

For the multilayer network, the network output is given as:

1...,,1,0)( 1111 −=+= ++++ MmforbaWfa mmmmm , (6.36)

where the superscript represents the layer number. M is the number of layers of the 

network and the input to the first layer is pa =0

The sensitivity is defined as:

11)( ++ ⋅⋅== MMmM
M

M
M sWnF

dn

da
s

T& ,
(6.37)

where )( mM nF&  is the Jacobian matrix 
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For the output layer M, the sensitivity sM is 1

The sensitivity of hidden layers is computed as:
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where 
m
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df
 is the derivative of the transfer function at layer m, and M is the number of 

layers. The derivative with respect to the network input is computed as:
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6.16 Novelty detection

Multilayer feed forward neural network can fit, in principle any real valued 

continuous function of any dimension to an arbitrary accuracy provided it has sufficient 

number of neurons (Cybenko, 1989). However, the performance of the trained neural 

network depends upon the data set provided during the training. The training algorithm 

minimizes errors between the targets and the network outputs for the training data. But 

this does not guarantee the neural network performance for a data that was not present in 

the training set, usually called as testing data. 

Consider an example of approximating a function: f(x) = x4. The inputs p used for 

the training the neural network are selected within the range [-1, 1]. Now this trained 

network is tested for new inputs ranging from [-2, 2]. Fig 6.8 shows a plot of neural 

network output trained over the range [-1, 1] and tested over the range [-2, 2].

Fig 6.8 Plot of neural network output for f(x) = x4
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In the region of input between [-1, 1], which is same as that of training data, the network 

performed well. However the network performs poorly outside this region, producing 

very large errors between targets and outputs.

In the case of neural network fitting for a multivariate function, it becomes 

difficult to decide which input vector lies outside the range of the inputs in the training 

set and whether to count on the neural network output for a given input vector. Also, 

when the dimension of the input vector is large then the distinction between interpolation 

and extrapolation becomes more ambiguous. Therefore, differentiating the boundaries 

between normal and abnormal data is much more difficult, making it difficult to decide 

whether a specific input should be accepted or rejected. Novelty Detection is a technique 

that is used to identify abnormal data points. Thus, the novelty detection algorithm should 

be capable of identifying the inputs that fall outside the range of the training data. For 

example in the above example of the function of one variable, if an input is in between [-

1, 1], then the corresponding output is accepted, whereas is an input is out of range [-1, 1] 

then the corresponding output is rejected. Some of the novelty detection techniques 

(Pukrittayakamee and Hagan, 2001) are: 

1. Minimum distance computation 

2. Neural tree algorithm (Martinez, 1998)

3. Gaussian kernel estimator (Bishop, 1994)

4. Associative multilayer perceptron (Frosini, 1996)
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6.16.1 Minimum distance computation

This method is based on the 2-norm distance calculation between training vectors and the 

testing vector. When two vectors are close then their individual elements would also be 

close to each other. The 2-norm distance between the vectors is given as,

( ) ( )[ ] 2
1

ji
T

jiji bababa −⋅−=− ,
 (6.40)

where ai and bj are the two vectors.

A vector d is constructed whose elements are distances of a testing vector to all input 

vectors used for training. The minimum distance separating the testing vector from all 

training vectors is,

dm= min(d),

and the mean separation distance <d> is the average value of the elements of d. A large 

value of dm would indicate that the testing vector is different from training vectors for 

which the neural network was trained. Next step would be to incorporate this testing 

vector into a new training data set along with original training data set, and train a new 

neural network for this new data set. On the other hand, a smaller value of dm suggests 

that there is at least one point in the training data set that is close to the testing vector, and 

the testing vector may or may not be included into the new training data set. This is 

decided based on the average distance <d> as well. If <d> is also small then that 

suggests that there are many data points in the training set close to the testing data point 

and this testing data point need not be included in the new training data set. In other 

words, the density of points close to the testing point is high. But, if dm is small and <d>

is large, then it indicates that although there is at least one training data point close to the 

testing point, the density of points close to the testing point is small. In other words, this 
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point lies in an isolated region from other data points in the training set and this testing 

point should be incorporated into the new training set to improve the overall neural 

network fit.

A selection procedure based only on the magnitude of dm may not be able to 

detect points that are critical to improve the fit. In regions where the gradient is large 

many points would be required to obtain an accurate fit. The network outputs and targets 

could also be used for novelty detection. The minimum distance algorithm is modified to 

include the outputs as well. 

For an input vector p the error between the output a and target t is written as:

eT = tT – aT  = F(pT) – aT, (6.41)
where F is the function to be approximated.

F could be expanded about the training input vector closet to p using Taylor’s series 

expansion as:
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where p0 is the training vector and                 is the first derivative of the function with 

respect to the input evaluated at the training vector.

Now, if  pm is the closest vector in the training set to p, with a minimum distance dm and if 

higher order terms could be ignored, then 
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So, the network error not only depends on the distance between the testing vector p and 

the closest training vector pm, but also on the gradient evaluated at the training vector. 
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Therefore, if the underlying function has a large slope, then the error could be large even 

though the minimum distance is small. 

The underlying function is generally not known, and therefore its gradient could 

not be computed. Pukrittayakamee and Hagan (2001) found that an approximation of the 

gradient could be used if the minimum distance computation is modified to include the 

distance between the network output and the target. The modified vector is [p t], where p

is the input vector and t is the network output vector.
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where α is the greater than zero, and N is the total number of training points.
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7 Ab Initio Molecular Dynamics (AIMD)

7.1 Approach

This chapter introduces an integrated approach for obtaining ab initio quantum 

mechanical potential energy surfaces and force fields for use in molecular dynamics 

simulations. The method involves following steps:

1. Perform MD simulations using an empirical potential which can reasonably 

model the interatomic interaction of the material. Store the configurations of 

atoms comprising of number of atoms within the cut-off radius of a particular 

atom and coordinates of respective atoms during the simulation. These 

configurations make up the initial set of configurations and serve as the starting 

point.

2. Perform electronic structure calculations of energies and force fields for the 

configurations stored in step 1 configurations using electronic structure program

such as Gaussian 98.

3. Train a multilayer neural network to fit the scaled potential energy (obtained by 

shifting the zero of potential energy) and force fields for the configurations.  
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4. Perform MD simulation using the output from the neural network for energy and 

force. Observe the energy conservation and store more configurations during the 

simulation.

5. Compare the configurations stored while using the neural network in step 4 with 

those stored in step 1, and using novelty detection technique find the outlier 

configurations i.e. the configurations that are different from those in the training 

set, and form a new data base of  configurations by augmenting the original data 

set with these new outlier configurations.

6. Perform electronic structure calculations on the new set of configurations using 

electronic structure program such as Gaussian 98.

7. Retrain the neural network for this new data base of configurations.

8. Repeat steps 4-7 until the configurations during the MD simulation are no longer 

different from those in the data base for which the neural network is trained. This 

would imply that the neural network is properly trained over the range of 

configuration space involved during the simulation. 

7.2 Choice of the coordinate system

Cartesian coordinates provide an efficient representation of the molecular 

geometry for the computer, and have the advantage of including actual spatial orientation 

of the molecule. The position of an atom is specified using its X, Y, and Z coordinates. 

Hence to specify a molecular geometry in Cartesian coordinates, one need to specify 3N 

coordinates, where N is the number of atoms in the molecular system. The use of internal 

coordinates allows one to specify the geometry with respect to the body-fixed frame so 
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that translational and rotational degrees of freedom of the system can be ignored and the 

geometry is specified using 3N-6 internal coordinates of the molecule. 

7.2.1 Internal coordinates

Internal coordinates are generally the most efficient way to describe the potential 

energy as a function of atomic coordinates. However since the internal coordinates are 

coupled, it is convenient to solve the equations of motion during MD simulation in the 

Cartesian coordinate system. Consequently, it becomes necessary to convert a set of 

Cartesian coordinates to corresponding internal coordinates. However there is no unique 

set of Cartesian coordinates for a given set of internal coordinates due to translational and 

rotational degrees of freedom involved and due to nonlinear dependence of the internal 

coordinates upon the Cartesian coordinates. For converting internal coordinates to 

Cartesian coordinates, some constraints have to be imposed such as fixing the position of 

the center of mass at the origin for a given configuration and aligning the coordinate axis 

along a specific atom (first neighbor represented as atom 2 in Gaussian 98)

Internal coordinates are specified using bond distances, bond angles and dihedral 

(torsional) angles. Fig 7.1 shows variables involved in internal coordinates. The dihedral 

angle is the angle between two planes passing through atoms i, j, l and j, k, l respectively.

It is measured as the angle between the vector normal to these planes. Unlike the bond 

angle which varies from 0°-360°, dihedral angle varies from -180°-180°.
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Fig 7.1  Internal coordinates a) bond distance, b) bond angle, and c) dihedral angle.

Dihedral angle is calculated as:

cos Φijkl = (êij X êjk) · (êjk X êkl) / (sinθijk · sinθjkl), (7.1)

where êij is the unit vector pointing from atom i to j.

Alternatively, if the equations of planes formed by atoms i, j, k and j, k, l are expressed 

as:

dzcybxa +++ 111 . (7.2)

Then the normal vector is given by n1= (a1, b1, c1), and the dihedral angle is defined as:

cosθ = n1 · n2 = 
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The dihedral angle is either positive or negative depending on the relative rotation of the 

configuration with respect to an observer. Only the absolute value of the dihedral angle 

can be obtained using Eqn. (7.1) or Eqn.(7.3), and some sign convention has to be 

followed to determine the sign of the dihedral angle. Dihedral angles can be viewed using 

Newman projections. It may be noted that Newman projections are drawings used to 

represent different positions of parts of molecules with respect to each other in space. The 

structure is viewed along the bond between two adjacent atoms and the bonds to other 
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atoms in the configuration are drawn as projections in the plane of the paper. When a 

dihedral angle is viewed from front to rear, if the atom is clockwise from front, the 

dihedral angle is positive. If the rear atom is anticlockwise the dihedral angle is negative. 

Fig 7.2 shows the sign convention for the dihedral angle.

                         Positive dihedral angle                  Negative dihedral angle  

Fig 7.2 Sign convention for dihedral angle

7.3 Input vector to the neural network

A multilayer neural network is used to fit the energy or forces from the ab initio

calculations. The input vector to the neural network should consist of variables that 

define the geometry of a given configuration uniquely in body fixed frame of reference. 

Fig 7.3 Configuration of 5 silicon atoms

 A

B

 A

B
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Fig 7.3 shows a typical configuration of 5 silicon atoms where Si1 is the central atom and 

atoms Si2, Si3, Si4 and Si5 are bonded to the Si1 atom. The dotted line for bond Si1-Si3 

shows that the atom Si3 is projecting inside the plane of the paper, while solid lines for 

bonds Si1-Si4 and Si1-Si5 show that the atoms Si4 and Si5 are projecting out of the plane 

of the paper, while atom Si1 and Si2 are in the plane of the paper.

Now the input vector to the neural network for the configuration shown in Fig 7.3 could 

be constructed in two ways. One approach would be to form the input vector consisting 

of all the bond distances. For example the input vector could be formed as: 

in1 = [r12; r13; r14; r15; r23; r24; r25; r34; r35; r45],

where r12, r13, r14, and r15 are bond distances between atoms Si1 and Si2, Si3, Si4 and Si5

respectively. Such a vector would uniquely specify the geometry of a given 

configuration. In this case, the number of variables involved would be n (n-1)/2, where n

is the size of the cluster (for a cluster of 5 silicon atoms, n=5). Other approach would be 

to form the input vector consisting of internal coordinates. This formulation would 

require 3n -6 variables as opposed to n (n-1)/2 variables as in the case of input vector 

consisting of all bond distances. The configuration in Fig 7.3 can be written in terms of 

internal coordinates using 4- bond distances, 3- bond angles and 2- dihedral angles as: 

in2 = [ ]5124412351241231215141312 ,,,,,,,, ΦΦθθθrrrr ,

where r12, r13, r14, r15 are bond distances between atoms Si1 and Si2, Si3, Si4 and 

Si5, respectively, and θ312, θ412, θ512 are bond angles that atoms Si3, Si4 and Si5 make 

with bond 1-2, and Φ4123, Φ5124 are the dihedral angles. While measuring the bond angles 

and dihedral angles bond 1-2 (Si1-Si2) is used as a reference line. So that the input vector 
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so constructed is consistent with the convention followed in Gaussian 98, which places 

the Z-axis along bond 1-2 while using internal coordinates. 

 It should be noted that the length of the input vector formed using all bond 

distances varies as the square of n i.e. the cluster size, whereas the length of  the input 

vector formed using internal coordinates varies linearly (three times) with the cluster size. 

As a result, for the cluster size of five or greater than five, the input vector formed using 

the internal coordinates would involve less number of variables compared to the input 

vector formed consisting of all bond distances. The use of internal coordinates reduces 

the dimension (length) of the input vector used for training the neural network. 

Consequently, the input space is less sparse. This could result in faster convergence 

during training with less number of training configurations. This also reduces the overall 

complexity involved in mapping the input variables to the output variables.

7.4 Sorting and ordering the input vector for neural network training

Consider a function of two variables: f(x,y) = x2+y2, which is a paraboloid. Fig 

7.4 shows the contour plot of the function. Since the function is parabolic so the contours 

are circles, and each circle represents a constant function value curve, i.e. the points on a 

contour represent a set of [x,y] values which result in the same value for f. It should be 

noted that f (2,4) = f (4,2), since points [2,4] and [4,2] are on the same contour 

corresponding to f = 20. 

Now if a neural network is to be trained for this function of two variables (x,y) 

then the input vector corresponding to f = 20 could be specified as either 



4

2
or 



2

4
. 

The difference between these two input vectors is the different ordering of the variables x
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and y. It is possible to reduce the configuration space required to be trained if the 

symmetry involved in specifying the input vector is taken into consideration. The input 

could be ordered so that the first element is x and the second element is y (or vice versa). 

So instead of training the network with two inputs differing only in their ordering and 

having the same output, the network could be trained for only one ordered input vector. 

Fig 7.4 (b) shows the contour plot of the function, the diagonal line separates the two 

input vectors having the same function value but differing only in their order of 

representation. 

                               (a)                                                                       (b)

Fig 7.4 Contour plot of a function f(x,y) = x2+y2

As shown in Fig 7.4 (b) either the upper or the lower region about the diagonal 

need to be considered for training. Thus for a two variable function, by ordering the input 

vector to the network reduces the configuration space required for training by a factor of 

half. Such an approach proves to be more efficient in a situation where the input vector 
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dimension is large and the number of data points is limited. This results in sparse data 

points in high dimension making the network training difficult. 

7.4.1 Procedure for sorting and ordering the input vector for AIMD

It is important to take the symmetry of the configuration into account. For the 

electronic structure program, such as Gaussian 98 the energy and force fields for a given 

Si5 cluster are unaltered if two or three silicon atoms are exchanged. However, the neural 

network training algorithm does not take into account the symmetry involved in the input 

vector. 

Therefore, the neural network must be trained to recognize this symmetry or a different 

procedure for constructing the input vector should be adopted that makes this 

unnecessary in order for the neural network to recognize different ordering of atoms 

within the same configuration. Consider a configuration as shown in Fig 7.5. Both (a) and 

(b) show the same configuration but with different ordering of atoms Si2 and Si3.

                            (a)                                                                             (b)    

Fig 7.5 Effect of ordering of atoms in a configuration
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The configurations shown in Fig 7.5 (a) and (b) both have the same energy and forces 

along the bonds and either of the two could be used for ab initio calculations. But the two 

configurations will have different input vectors for neural network training because bond   

used as the reference line for measuring the angles is different in the two cases, 1-2 in 

case (a) and 1-3 in case (b). The input vectors for these two configurations could be 

written as:

in(a) = [ ]5124412351241231215141312 ,,,,,,,, ΦΦθθθrrrr ,

in(b)  = [ ]5134413251341321315141213 ,,,,,,,, ΦΦθθθrrrr .

For any non-equilibrium geometry, different angles are involved in the input 

vector. So, for the neural network the configurations in Fig 7.5 (a) and (b) are two 

different inputs. For proper generalization of the fit, the neural network has to be trained 

for both the input vectors having the same energy as the output. For a given configuration 

there are (n-1)! symmetries (permutations) possible the with same energy and force 

fields, where n is the size of the cluster. As a result the number of configurations required 

for training the neural network increases exponentially as the number of atoms within a 

cluster increases and it becomes unfeasible to consider all the symmetries. For example: 

if there are N different configurations for which ab initio calculations are performed then 

for the neural network training there would be N(n-1)! data points considering all 

symmetries. For a cluster of Si5 atoms (n-1)! is 24, hence with 10,000 different 

configurations from Gaussian 98 there would be 240,000 data points for neural network 

training. Considering all possible permutations of the same configuration proves to be an 

inefficient approach for the neural network training, since it not only increases the 
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number of configurations required for training by a factor of (N-1)! but also increases the 

configuration space and complexity of the function to be trained.  

To circumvent this problem it becomes necessary to devise a strategy for training the 

neural network without considering the permutations. One way to achieve this is to order 

the input vector which obviates the need to consider all permutations without affecting 

the generalization ability of the neural network. Consider a configuration as shown in Fig 

7.3. First calculate all bond distances with the central atom Si1, i.e. r1-2, r1-3, r1-4 and 

r1-5, sort these bond distances and order the atoms Si2, Si3, Si4 and Si5 and then 

calculate the angles with bond 1-2 as the reference line (2 corresponds to atom 2 after 

sorting and ordering). The ordering of the input vector circumvents the need to consider 

all permutations and also reduces the configuration space of the input variables required 

for training and hence the overall complexity of the function involved. As a result time 

required for training the neural network is reduced. Also a simpler neural network 

architecture (having less number of neurons) could be implemented and the accuracy of 

the fit could be improved for a given number of neurons. The same procedure should be 

followed during the MD/MC simulation to construct the input vector, in order to calculate 

the energy and forces using the trained network. This procedure results in a slight 

increase in the computational time during the simulation. But the advantages offered by 

sorting and ordering the input vector offset this slight increase in the computational time. 

7.5 Calculation of forces during the MD simulation

Molecular dynamics simulation involves numerical integration of the classical 

Newton’s equations of motion for a system of interacting atoms over a period of time. 

According to Newton’s second law: 
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Fi = mi ai (7.4)

where Fi is the force on atom i, and mi and ai are the mass and acceleration of atom i. The 

force is the negative gradient of the potential energy with respect to the position of an 

atom.

),...,( 21 Nii rrrVF
rrrr ∇−= , (7.5)

where V is the potential energy function. ir
r

 is the position vector of atom i, xi, yi and zi, 

are the Cartesian coordinates of atom i.
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The force on an atom could be computed in two ways. One approach would be to 

first train a neural network for the forces and use this network in the simulation. Now for 

a cluster of n atoms there would be at least 3n-6 variables required to define the geometry 

uniquely. If a neural network is to be trained for the forces then such a network would 

have 3n-6 input variables (bond distances and angles) and also 3n-6 output variables 

(forces along the bond distances and angles). It would be a very demanding task to train a 

single network to perform this, since the functional dependence of angular forces on the 

input variables may be very different from the functional dependence of forces along the 

bonds. It would be like trying to fit different functional relationships for a given set of 

input variables. Although such a network could be trained with a large number of neurons 

and consequently more training time, a better approach would be to train the network for 

the potential energy of the molecular cluster and then during the simulation differentiate 
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this network with respect to the input variables to get the forces. For a specified accuracy 

such a network may require less number of neurons than a network which tries to directly 

fit all the derivatives. This reduces the training time but on the other hand during the 

simulation the output from the neural network has to be differentiated to calculate the 

forces which introduce extra calculations during the simulation. The approach involving 

the neural network differentiation would be feasible only if the time required for the 

differentiation of a possibly a smaller network is lesser than the time required to compute 

directly the derivatives from a larger network with comparable accuracy. Since the neural 

network involves analytical differentiable transfer functions, such as sigmoid functions 

for mapping, it could be differentiated analytically without introducing any numerical 

errors. For the multilayer network, the network output is given as:

1...,,1,0)( 1111 −=+= ++++ MmforbaWfa mmmmm , (7.8)

where the superscript represents the layer number. M is the number of layers of the 

network, and input to the first layer is pa =0

The sensitivity is defined as:
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For the output layer M, the sensitivity sM is 1
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The sensitivity of hidden layers is computed as:
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where 
m

m

dn

df
 is the derivative of the transfer function at layer m, and M is the number of 

layers.

The derivative with respect to the network input is computed as:
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7.6 Sampling technique

For a typical configuration of 5 silicon atoms as shown in Fig 7.3, the input vector 

using internal coordinates is specified as:

[ ]5124412351241231215141312 ;;;;;;;; ΦΦθθθrrrr .

The neural network is trained for energy computed from Gaussian 98 as a function of 

nine variables in internal coordinates. Although it is possible to compute energies and 

forces at MP4 (SDQ) and DFT level for thousands of configurations, this number of 

configurations is still small compared to the totality of the configuration space available 

for the system. If reasonable ranges are taken for each coordinate and each range divided 

into ten equal segments, then the total number of possible configurations would be 109. 

This number of configurations is impractical considering the present computational 

capabilities. However because of bonding restrictions present in the system not all of the 

configuration space is of interest in the dynamical studies. For example, in the simulation 
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of bulk silicon material, configurations such as Si-Si-Si-Si-Si i.e. five silicon atoms in a 

linear chain are of no interest. In any system, the number of important configurations 

forms a small subset of the total configuration space. Therefore, the key is to sample only 

the important region of the total configuration space. 

Since an empirical potential is used during the first step to store the 

configurations, this set of configurations need not necessarily cover the entire 

configuration space of the ab initio potential energy. This empirical potential need not be 

highly accurate but should provide a reasonable representation of the interatomic 

interaction of the material. The configurations that are generated in an ensemble of 

trajectories using an empirical potential comprise the subset of configuration space that 

has to be sampled. The procedure that has been employed attempts to sample the entire 

configuration space in an iterative fashion. A set of trajectories using this empirical 

potential is computed. Next the energy and forces for these configurations are computed 

using Gaussian 98. This data makes up the first approximation for the ab initio potential 

energy and force field. Then a neural network is trained to the ab initio database with the 

input vector consisting of internal coordinates and the output being the energy or force 

components. Now a second set of MD trajectories is computed using this neural 

network force field rather than the original empirical potential. During these calculations 

atomic configurations are stored and their energies and forces are computed using 

Gaussian 98. After several iterations neural network is expected to converge to ab initio

potential energy and force field.

Given a sufficient number of neurons, a neural network can be trained to 

approximate any arbitrary function (Cybenko, 1989). However, the performance of the 
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trained neural network will be dependent upon the data set that was provided during the 

training period. A training algorithm minimizes the errors between the targets and the 

neural network outputs for the training data set. But this does not guarantee the neural 

network performance for a data that was not present in the training set, usually called as 

testing data. In the case of neural network fitting, for a multidimensional variable 

function, it becomes difficult to decide which input vector lies outside the range of the 

training set. Also when the dimension of the input vector is large then the distinction 

between interpolation and extrapolation becomes more ambiguous. Therefore, 

differentiating the boundaries between normal and abnormal (outlier) data is much more 

complicated, making it difficult to decide whether a specific input should be accepted or 

rejected. 

7.7 Novelty detection

Novelty Detection is a technique that is used to identify abnormal data points. 

Thus, the novelty detection algorithm should be capable of identifying the inputs that fall 

outside the range of the training data. Some of the novelty detection techniques 

(Pukrittayakamee and Hagan, 2001) are: 

5. Minimum distance computation

6. Neural tree algorithm (Martinez, 1998)

7. Gaussian kernel estimator (Bishop, 1994)

8. Associative multilayer perceptron (Frosini, 1996)

In the context of AIMD, the novelty sampling algorithms based on the current density of 

configuration points in the data base guide the selection of configurations to be included 



113

to form a new data base. Regions with a low density of configurations are preferentially 

included in the sample. 

Let qi be an input vector corresponding to the ith configuration, in the current data 

base. By computing trajectories using the neural network output for the force field a new 

configuration qn is generated. Qualitatively this configuration should be included in the 

data base if qn lies in a region of space where the density of points in the data base is low. 

Minimum distance computation is used for the novelty detection. It is based on the 2-

norm difference between vector qn and vector qi:

[ ] 2/1
)()( ni

T
nini qqqqqq −⋅−=− . (7.13)

A vector d is now defined whose elements are all the distances computed using 

Eqn.(7.13) for each of the N configuration points in the data base. The minimum distance 

separating point qn from other points in the data base is the minimum element of d

denoted as dm=min(d). The mean separation distance <d> is the average value of the 

elements of d. The configuration point qn will be added to the data base with a high 

probability if dm or <d> is large, but with low probability if both dm and <d> are small. 

A selection algorithm based solely upon the magnitude of dm has a drawback that 

it will not detect the points that are needed in the database, in the region where the 

configuration density is not low. This is the case when the function is sharply changing. 

Hence, in the regions where the gradient of the function is large, many points will be 

required to obtain an accurate neural network fit than in the case with smaller gradient, 

even though the configuration density is not low. But the underlying function is 

unknown. Therefore it is impossible to calculate the gradient at an arbitrary configuration 

point. Pukrittayakamee and Hagan (2001) have found that if the minimum distance 
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between a set of modified configuration vectors is used in place of dm, then the effect of 

the function gradient can be incorporated into the selection algorithm. A modified vector 

is created as: 

Γi = [qi Oi], (7.14)

where Oi is the output from the neural network of the configuration point qi. When the 

minimum distance Γm between Γi and Γn is used in place of dm, the effect of function 

gradient is incorporated. This is because, if the gradient between points qi and qn is large, 

then the difference between corresponding neural network outputs Oi and On will be 

large, making the magnitude of Γm large, and hence the point qn will be identified as a 

novelty point.
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8 Results and Disscussion

In the present study the approach was used to develop potential energy 

hypersurface for a cluster of five silicon atoms. Ab initio calculations were performed 

using Gaussian-98 electronic structure program using density functional theory. A feed-

forward multilayer neural network was trained using Matlab. The accuracy of the trained 

neural network was iteratively improved using modified novelty detection technique.

The equilibrium configuration of silicon is tetrahedral in which every silicon atom 

is bonded to four other silicon atoms in a tetrahedral arrangement as shown in Fig 8.1. 

Fig 8.1 Silicon cluster

To model this system a cluster of at least five silicon atoms should be considered 

including the central atom and four other atoms bonded to it. MD simulations of 

machining of silicon workpiece were performed. Tersoff potential (Tersoff, 1989) was 
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employed during the initial step of the iterative process. Very high energies are present 

during the machining process which results in atomic configurations far off from the 

equilibrium tetrahedral structure especially in the chip and near the tool because of the 

subsurface deformation. This increases the size of subset configuration space that is 

sampled. 

MD simulations of machining were performed with +15° rake angle, 10° 

clearance angle, 1Å depth of cut at a cutting speed of 491.2 ms-1. The total number of 

atoms in the workpiece was 1,675. Throughout the MD simulations, the configurations of 

the five-atom silicon clusters that are present predominantly in the chip in front of the 

tool in the shear zone and within a few unit cell distances in the workpiece beneath the 

tool are stored 

8.1 Ab initio calculations

The energies and force fields at the central atom are computed for 18,000 

configurations using Gaussian 98 electronic structure program for density functional 

theory (DFT) calculations with 6-31G** basis set and B3LYP procedure for 

incorporating the correlation. The input was specified in internal coordinates i.e. Z-matrix 

format. It is important to take symmetry into account, since merely switching the 

ordering of atoms does not change the resulting energy and force fields from ab initio 

calculations. The neural network should also be trained to recognize different possible 

ordering of the same configuration involved. One option to achieve this is to train the 

neural network considering all possible permutations of a configuration. For a cluster of n 

atoms there are (n-1)! possible permutations. So with 18,000 five atoms’ silicon clusters 

this would require. 18,000 · (5-1)! i.e. 432,000, data points to be considered for the neural 
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network training, which becomes unfeasible for neural network training. An alternative is 

to order the input vector which obviates the need to consider all permutations without 

affecting the generalization ability of the neural network. The Z-matrix input describing 

the Si5 clusters comprise of four Si-Si bond distances, three Si-Si-Si- angle, and two 

dihedral angles. Before each calculation, the four bond distances were listed in increasing 

order of their deviation from the Si-Si equilibrium bond distance. This listing determines 

the Z-matrix input for the bond angles and dihedral angles. Bond Si1-Si2 was considered 

as reference for measuring the angles. This procedure obviates the need to train the neural 

network to recognize symmetry and simplifies the training. Fig 8.1 shows a typical 

configuration of five silicon atoms. The variables involved in Z-matrix input are r12, r13, 

r14, r15, θ312, θ412, θ512, φ4123 and φ5124, where r12, r13, r14, r15 are the bond distances of silicon 

atom #1 with atoms 2, 3, 4 and 5 respectively, θ312, θ412, θ512 are angles of that bond 1-3, 

1-4 and 1-5 make with the bond 1-2 and φ4123 and φ5124 are the two dihedral angles. When 

the trained neural network is utilized for computing energy and force fields, the same 

ordering of the input vector was used. 

The database of configurations obtained from the machining simulations was 

augmented with additional 10,000 five-atom silicon configurations near the equilibrium. 

These configurations were obtained corresponding to a temperature of 300 K in the 

silicon workpiece and following the vibrational motions of the lattice using molecular 

dynamics with Tersoff potential. The configurations were stored at equally spaced time 

intervals during the calculations. The energies and force fields for these configurations 

were also computed using Gaussian 98 for density functional theory (DFT) calculations 

with 6-31G** basis set and B3LYP procedure for incorporating the correlation. 
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8.2 Neural network training

Next step is to fit the neural network to the ab initio energy. The forces can be 

calculated during the MD simulation by differentiating the neural network output i.e. the 

energy with respect to the inputs i.e. the internal coordinates. The zero of the energy is 

shifted so that the energy of five infinitely separated silicon atoms corresponds to zero 

energy. Consequently, the energy of a cluster of five silicon atoms would be negative, 

which is the convention followed for empirical potential as well. The inputs i.e. the 

internal coordinates and outputs i.e. the energy are scaled so that the range for each 

variable in the entire database is [-1, +1], using Eqn.(8.1)  

1
)min(max

)min(
2 −−

−⋅=
pp

pp
pn ,

(8.1)

where p is the variable to be scaled, minp and maxp are the minimum and maximum 

values of each variable in the input and output vectors for the entire database consisting 

all configurations. pn is the scaled value corresponding to p. The scaled database is 

divided into three sets: training, validation and testing set. Approximately 10% of the 

data points were used for the validation set, 10% for the testing set and the rest for the 

training set. A multilayer feed forward neural network was used to fit the data. The 

number of neurons in the input and output layers is determined by the number of input 

and output variables, respectively.
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 The neural network specifications are listed in Table 8.1. 

Table 8.1 Neural network specification for silicon clusters

Number of layers: 2, (one hidden layer and one output layer)
Number of neurons: 9 for the input layer, corresponding to the number of input 

variables.
45 for the first hidden layer.
1 for the output layer, corresponding to the number of 
output variables.

Transfer function Hyperbolic tangent function in the hidden layer.
Linear function in the output layer.

Training algorithm Levenberg-Marquardt along with Bayesian regularization.

Designing a network involves deciding upon the number of neurons in the hidden 

layer. The network should have enough parameters to learn the underlining function. On 

the other hand, if there are too many parameters available for fitting a relatively simple 

function or if the number of data points is far less than the number of parameters, then the 

network could overfit the data i.e. it would try to fit every data point very closely while 

not generalizing well the configuration space. Generally, the underlined function is 

unknown which makes it difficult to decide the number of neurons. To avoid overfitting 

it is essential to employ an early stopping procedure (Sarle, 1995). In this method, the 

root mean square deviation of the neural network output from the data in the validation 

set is computed after each iteration during training. Initially, the root mean square error 

for both the training and validation sets decrease because the accuracy of the fit is 

improving. At some point during training overfitting the data can start. This would 

improve the apparent accuracy for the training set, but increase the accuracy for the 

validation and testing sets since these points are not included in the training set. For 

optimum performance from the specific neural network architecture, the training should 

be continued until the error for the validation set is a minimum value. Along with early 
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stopping, regularization is also used which penalizes the network model with high 

curvature, since high curvature normally results while overfitting the data. Bayesian 

regularization provides an approach to determine the optimal regularization parameter in 

an automated fashion. In this framework the weights and biases are assumed to be 

random variables with a specified distribution. 

Fig 8.2 Comparison of neural network output with ab initio energy for the training set
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Fig 8.3 Comparison of neural network output with ab initio energy for the validation set

Fig 8.4 Comparison of neural network output with ab initio energy for the testing set
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Fig 8.2 to Fig 8.4 show the plots of neural network output for the training, validation and 

testing sets, respectively. If the neural network fit were perfect then all points would fall 

along the 45° line. The computed root mean square deviation of the neural network fit 

from the ab initio energy values was 0.36 KJ mol-1, which is comparable to the chemical 

accuracy involved in the experimental measurements. 

8.3 Iterating for the neural network convergence

The minimum distance of a configuration in the initial set (consisting of 

configurations stored form Tersoff potential) from all other configurations in the same set 

is calculated.  Fig 8.5 shows the distribution of minimum distances N(Γm) for the initial 

set of Si5 configurations from Tersoff potential. The distribution is close to Gaussian with 

the most likely normalized minimum distance being about 0.095.

Fig 8.5 Distribution of minimum distances N(Γm) for the initial set of Si5 configurations 
using Tersoff potential
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Next step is to use the trained neural network in MD simulation for energy and 

force calculations. While performing the MD simulations using the neural network, the 

novelty detection is also employed to obtain additional configurations to iteratively 

improve the potential energy hypersurface. Now the minimum distances of 

configurations in the new set (consisting of configurations stored during the MD 

simulation using neural network) are calculated from the configurations in the initial set 

(using Tersoff potential) and the distribution is plotted in the histogram in Fig 8.6. The 

distribution has a peak close to 0.25

Fig 8.6 Distribution of minimum distances N(Γm) of the configurations in first iteration from initial set 
configurations.

Fig 8.7 shows a comparison of the distribution of minimum distances N(Γm) of 

the configurations from first iteration with the distribution of configurations from Tersoff 

potential. The dashed lined distribution corresponds to minimum distance of the initial 
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configurations and the solid lined distribution corresponds to minimum distance of 

configurations from the first iteration. There is very little overlap between the two

distributions indicating that the configurations occurring during the MD simulation while 

using the neural network trained ab initio potential energy hypersurface are significantly 

different from those in Tersoff potential. This indicates that the new configurations lie in 

a region of configuration space not adequately sampled by the initial data set using 

Tersoff potential.

Fig 8.7 Comparison of distribution of minimum distances N(Γm) of the configurations in first iteration 
from initial configurations with the distribution of configurations from Tersoff potential.

A new set is formed by concatenating the initial configurations and configurations 

during the first iteration and the minimum distance distribution is recomputed for the 

concatenated set. Fig (8.8) shows the distribution of recomputed minimum distances for 

the concatenated set. The spread of the histogram in Fig (8.8) is smaller that in Fig 8.7 
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because now the neural network is trained for outlier configurations as well along with 

initial set of configurations and as a result corresponding output is close to the target 

values. Also the configurations in the two sets could be overlapping, which reduces the 

spread of minimum distances for the concatenated data set.

Fig (8.8) Distribution of recomputed minimum distances of concatenated set of configurations in the 
initial and first iteration.

Now for the selection process based on minimum distance criterion, normalized 

probability value should be used. For this purpose, Parzen’s distribution for multivariate 

kernel is used (Specht, 1990). In the case of Gaussian kernel, the multivariate estimate is 

expressed as:

FA(X) = ∑
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m= Total number of configurations

XAi= minimum distance for the ith configuration.
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σ= smoothing parameter

p= dimensionality of the data, since in this case there is only one number corresponding 

to the minimum distance so p=1.

A small value of σ causes the estimated density function to have distinct modes 

corresponding to the locations in the samples. A larger value of σ produces a greater 

degree of interpolation between points. Fig 8.9 shows a plot of Parzen’s distribution for 

the initial set of configurations from the Tersoff potential using σ = 0.01. Fig 8.10 shows 

a plot of Parzen’s distribution for configurations stored while running MD simulation 

using neural network.

Fig 8.9 Parzen’s distribution of minimum distances for the initial set of configurations from the Tersoff 
potential
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Fig 8.10 Parzen’s distribution of minimum distances for the configurations stored while using neural 
network trained for ab initio energy during MD simulation.

As new configuration points are generated during the trajectories computed using 

the neural network force field, they are added to the data base if:

P(Γm) ≤ T1 P(Γm)max,

or, if  ( )1
2

max

1
)(

)(
T

P

P

m

m −≤Γ
Γ ξ  and Γm ≥ Γ.

(8.3)

T1 is an empirically determined acceptance threshold n the range (0 ≤ T1 ≤ 1) and ξ is a 

random number whose distribution is uniform on the interval [0,1].

Now, by examining Fig 8.9 it can be seen that for a given probability there are more than 

one Γm values, as a result when the minimum distance between the configurations Γm is 

very small and close to zero (which is the case if the two configurations are almost 

identical), then the corresponding probability is small and the configuration will be 
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accepted, which is not required since there is already at least one configuration in the set 

which is close to it. To avoid this in the second condition in equation (8.3), Γm ≥ Γ is used 

so that a configuration with low probability is accepted only if its minimum distance Γm

is greater than some threshold value Γ.

Fig 8.11 Distribution of minimum distances of the configurations during second iteration from 
configurations during the first iteration

Fig 8.11 shows the distribution of minimum distances of the configurations during 

second iteration from configurations during the first iteration. A sharp peak close to zero 

indicates that the new configurations are not very different or very similar to the 

configurations for which the neural network is trained, and the second peak is close to 

0.05. Comparing Fig 8.11 with Fig 8.5 where the peak was close to 0.095, it can be 

concluded that the neural network training has converged over the configuration space 
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involved during the simulation. Fig 8.12 shows Parzen’s distribution of minimum 

distances for the configurations during second iteration.

Fig 8.12 Parzen’s distribution of the minimum distances for the concatenated set of configurations in the 
initial and first iteration.

8.4 Neural network convergence using different empirical potentials

Tersoff potential is used to model silicon workpiece during the initial step. 

Configurations of atoms are stored during the simulations, which are used to perform ab 

initio calculations using Gaussian 98. A neural network is then fitted to the ab initio

energy and forces for use in MD or MC simulation. To compare the effect of using 

different empirical potentials as a starting point to store the configurations for Gaussian 

98, two potentials proposed by Tersoff (1988, 1989) were selected. The parameters for 

two potentials are listed in Table 8.2. 
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Table 8.2 Tersoff potential parameters
Tersoff 1 (1988) Tersoff2 (1988)

A (eV) 3.2647 x 103 1.8308 x 103

B (eV) 9.5373 x 101 4.7118 x 102

λ1 (Å-1) 3.2394 2.4799
λ2 (Å-1) 1.3258 1.7322
α 0.0000 0.0000
β 3.3675 x 10-1 1.0999 x 10-6

n 2.2956 x 101 7.8734 x 10-1

c 4.8381 1.0039 x 105

d 2.0417 1.6217 x 101

h 0.0000 -5.9825 x 10-1

λ3 (Å-1) 1.3258 1.7322
R (Å) 3.0 2.85
D (Å) 0.2 0.15

MD simulations were performed using the two potentials and the configurations were 

stored during the simulation. To compare the configurations from the two sets, minimum 

distances of a configuration from one set with all the configurations in the second set are 

computed. Fig 8.13  (a). shows a histogram of minimum distance of all configurations 

stored using modified Tersoff potential. Fig 8.13 (b). shows a histogram of minimum 

distance of configurations stored using Tersoff potential with all the configurations stored 

using modified Tersoff potential. 

Fig 8.13 (a) Distribution of minimum distances of 
all configurations stored using modified Tersoff 
potential.

(b) Distribution of minimum distances of a 
configuration using Tersoff potential from 
configurations using modified Tersoff potential.
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Larger spread of the histogram in Fig 8.13 (b) than in Fig 8.13 (a) indicates that the 

configurations from the two sets are very different from another.

Fig 8.14. shows a plot of the potential energy for the same set of configuration using 

different potential energy functions and corresponding parameters. If the values of 

potential energy were the same for a given configuration then the points would lie along a 

450 line. A random distribution of points in Fig 8.14. shows that the two potentials result 

in different configurations.

Fig 8.14 comparison of Tersoff and modified Tersoff potential energies (eV) 
for the same set of configurations
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Next step is to compute ab initio energies and forces using Gaussian 98 (using 

Density Functional Theory) for these two sets of configurations and fit a neural network. 

Fig 8.15. shows a plot of neural network output for configurations trained using two sets. 

Fig 8.15 Comparison of neural network output energy (eV) for
configurations from Tersoff and modified Tersoff potentials

8.5 A method to obtain a conservative force field 

Ab initio calculations were performed for clusters of five silicon atoms and a 

neural network was trained for either the energy of the cluster or forces on the central 

atom in the cluster. During the MD or MC simulation this neural network is used to 

calculate the energy and forces on all atoms in the system.  Such simulations are 

performed on the bulk silicon, whereas the forces on atoms are calculated using neural 

network trained for energy or forces in clusters of five silicon atoms. So in effect the 

entire work-piece is considered to be made up of separate five atoms’ clusters, and the 

corresponding force field represents an isolated cluster of five silicon atoms and not five 
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silicon atoms in the bulk in which case the force field is affected not only by first 

neighbors but also second neighbors and so on. 

If during the MD simulation, only the force on the central atom is computed for 

every cluster in the workpiece using the neural network then the resulting force field will 

not be conservative, i.e. the sum of the forces on all atoms in X, Y and Z directions does 

not add to zero. To get a conservative force field it is necessary to compute the forces on 

the end atoms (atoms bonded to the central atom within a five atoms’ cluster) in addition 

to the central atom. For this purpose all workpiece atoms are grouped into two groups 

viz. central and end atoms. 

During the MD simulation the force is calculated by differentiating the 

During the MD simulation the force is calculated by differentiating the neural 

network with respect to the coordinates of the central and end atoms. For one set of 

central and end atoms this force field is denoted as F1, for other set obtained by switching 

Central atom

End atom

Fig 8.16 Central and end atoms grouping
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the central and end atoms, the force field is denoted as F2. It should be noted that both F1

and F2 produce a conservative force field. 

Although F1 or F2 produce a conservative force field but they still represent 

forces in a five atoms’ isolated silicon clusters and not those in a five atoms’ clusters 

within a bulk. As a result the electron density around the end atoms and the forces on the 

end atoms may not be correct to model the bulk system. One approximation could be to 

use average force field of F1 and F2. This is achieved by first considering one set of 

central and corresponding end atoms and computing the force field denoted as F1, and 

then switching the central and end atoms to obtain the force field denoted as F2, and now 

the force on each atom is computed as average of  F1 and F2. Using this approach and the 

force field from DFT calculations with 6-31G** basis set and B3LYP procedure for 

incorporating the correlation, the equilibrium bond distance was found to be 2.432 Å. 

Fig 8.17 and Fig 8.18 show the variation of the total and the potential energy 

corresponding to the equilibrium bond distance of 2.432 Å using periodic boundary 

conditions.
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Fig 8.19 shows the phonon frequency plot of the four bonds of the central atom. 
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Fig 8.19 Phonon frequencies for silicon

Table 8.3 shows the comparison of the phonon frequencies obtained from the simulation 

and experimental values. The difference between computed and experimental frequencies 

is attributed to the fact that Hartree-Fock theory predicts frequencies to be 10-20% higher 

than experimental. Also the forces corresponds to 5-atoms’ silicon clusters and not 5-

atoms’ within a bulk.s

Table 8.3 

Experimental frequencies
(THz)

Frequencies obtained from 
simulations by Tersoff

(THz)

Frequencies obtained from 
simulations using NN trained for 
DFT energies

(THz)
0.6 0.7 0.767
0.8 0.8 1.06
1.7 1.5 1.63
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8.6 Neural network training for surface and bulk configurations

The size of an input vector is fixed for a given neural network, which in this case 

depends on the number of atoms within the cutoff radius. In bulk silicon each atom has a 

coordination number of four, but for the atoms on the surface the coordination number 

differs from the bulk. Consequently the neural network trained for the bulk silicon having 

nine input variables can not be used to model s structure with coordination number other 

four, such as the configurations of the surface atoms. To make the coordination number 

for surface atoms to be four, second neighbors should be included, though these second 

neighbors would be out of the cutoff radius for the empirical potential. 

MD simulations were performed on the silicon workpiece, and the 5000 configurations 

for the surface atoms were stored, where every configuration has five atoms including 

second neighbors. The energies and force fields were computed for these configurations 

using Gaussian 98 and using DFT method with 6-31G** basis set and B3LYP  procedure 

for incorporating the correlation. A neural network was trained for the data base 

containing bulk as well as surface configurations. The neural network specifications are 

given in Table 8.4  approximately 10% of the data points were used for the validation set, 

10% for the testing set and remaining for the training set. To avoid overfitting Bayesian 

regularization and early stopping were used. Fig 8.20 shows the plot for the neural 

network output for the training set. The computed root mean square deviation of the 

neural network fit from the ab initio energy values was 0.0082 eV. 
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Table 8.4 Neural network specification

Number of layers: 2, one hidden layer and one output layer
Number of neurons: 9 for the input layer, corresponding to the number of input variables.

45 for the first hidden layer.
1 for the output layer, corresponding to the number of output 
variables.

Transfer function Hyperbolic tangent function in the hidden layer.
Linear function in the output layer.

Training algorithm Levenberg-Marquardt along with Bayesian regularization.

Fig 8.20 Comparison of neural network output with ab initio energy for the training set.
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Fig 8.21Comparison of neural network output with ab initio energy for the validation set

Fig 8.22Comparison of neural network output with ab initio energy for the testing set
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8.7 Neural network training for ab initio energies in carbon clusters of 

Buckyball (C60) and carbon nanotube

The energies and force fields were computed for 6,000 configurations using 

Gaussian 98 for density functional theory (DFT) calculations with 6-31G** basis set and 

B3LYP procedure for incorporating the correlation.  The configurations were obtained 

from the simulations of buckyball (C60) molecule at a temperature of 300 K, following 

the vibrational motions of the molecule using molecular dynamics with Tersoff potential. 

Although carbon atoms in a buckyball are arranged to form hexagonal and pentagonal 

ring structures, these rings are not planar as in the case of graphite structure. The cluster 

consists of four carbon atoms where three carbon atoms are bonded to one central atom. 

The input was specified in internal coordinates i.e. Z-matrix format. The variables 

involved in Z-matrix input are r12, r13, r14, θ312, θ412, φ4123, where r12, r13, r14 are the bond 

distances of silicon atom #1 with atoms 2,3 and 4 respectively, θ312, θ412 are angles of that 

bond 1-3 and 1-4 make with the bond 1-2 and φ4123 is the dihedral angle. When the 

trained neural network is utilized for computing energy and force fields, the same 

ordering of the input vector was used. 

The zero of the energy is shifted so that the energy of four infinitely separated 

carbon atoms corresponds to zero energy. Consequently the energy of a cluster of four 

carbon atoms would be negative, which is the convention followed for empirical potential 

as well. The inputs i.e. the internal coordinates and outputs i.e. the energy are scaled so 

that the range for each variable in the entire database is [-1, +1], using (8.1)  

The scaled database is divided into three sets: training, validation and testing set. 

Approximately 10% f the data points were used for the validation set, 10% for the testing 
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set and remaining for the training set. A multilayer feed forward neural network was used 

to fit the data. During the training process Bayesian regularization along with early 

stopping is employed to avoid overfitting. 

Table 8.5 Neural network specification

Number of layers: 2, one hidden layer and one output layer
Number of neurons: 6 for the input layer, corresponding to the number of input variables.

24 for the first hidden layer.
1 for the output layer, corresponding to the number of output 
variables.

Transfer function Hyperbolic tangent function in the hidden layer.
Linear function in the output layer.

Training algorithm Levenberg-Marquardt along with Bayesian regularization.

Fig 8.23 shows the plot of neural network output for the training, validation and 

testing sets. The computed root mean square deviation of the neural network fit from the 

ab initio energy values was 0.0054 eV. 

Fig 8.23 Comparison of neural network output with ab initio energy for the training set
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26 CHAPTER 9

9 Conclusions and Future Work

An integrated approach for the development of accurate potential energy 

hypersurfaces based on ab initio electronic structure calculations and function 

approximation capability of multilayer neural networks has been developed, along with 

sampling technique based on modified novelty detection was developed to determine the 

critical regions of the configuration space. In the first step MD simulations were 

performed for machining of silicon using Tersoff potential. Atomic configurations of the 

five-atom silicon clusters that are present predominantly in the chip in front of the tool in 

the shear zone and within a few unit cell distances in the workpiece beneath the tool were 

stored during the simulation. The database of configurations obtained from the machining 

simulations was augmented with additional five-atom silicon configurations near the 

equilibrium by following the vibrational motions of the lattice. These configurations 

make up the initial set of configurations and serve as the starting point for the iterative 

process. Ab initio calculations were performed using density functional theory (DFT) 

within Gaussian 98 electronic structure program, to compute the energy and forces for 

these configurations. A multilayer neural network was trained with the configurations 

specified in internal coordinates as the input and the corresponding energies from ab 

initio calculations as the output. To avoid overfitting the underlying function, early 
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stopping along with Bayesian regularization was used. To reduce the time required for 

the neural network training, initially scaled conjugate gradient method was employed, 

which is faster than Levenberg-Marquardt algorithm. Once the network is reasonably 

trained and the improvement in the error starts reducing, then the training was stopped 

and restarted to employ Levenberg-Marquardt algorithm to achieve a better accuracy.

Molecular dynamics simulations were performed using the output from the 

trained neural network for computing the force field. Atomic configurations were stored 

during the simulation and compared with the initial set of configurations, for which the 

neural network was trained. Modified novelty detection technique was used to identify

the outlier configurations i.e. the configurations that are different from those in the 

training set. Ab initio calculations were performed using density functional theory (DFT) 

within Gaussian 98 electronic structure program for these new configurations. These 

configurations were added to the initial data base of configurations, and a neural network 

was retrained for this new data base. This neural network was used to perform MD 

simulations and the configurations were stored during the simulation. Minimum distance 

criterion was used to check the convergence of the neural network over the configuration 

space involved during the simulation. The root mean squared deviations of neural 

network predictions from quantum mechanically computed energies was found to be on 

the order of 0.09 to 0.36 kJ mol-1 for five-atom silicon system. 

The advantages of the present technique can be summarized as follows:

1. Compared with other approaches such as least squares method, the use of neural 

networks provides a better accuracy.  
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2. The neural network fitting procedure does not rely upon ad hoc parameterized 

functional forms.

3. The neural network fit is analytic and hence does not result in discontinuities in 

higher derivatives. The output from the neural network is differentiable with 

respect to the input variables, so a neural network trained for ab initio energies 

can be employed in MD simulations, and the forces could be computed by 

differentiating the neural network output. This property provides two advantages, 

first one need not have to do force calculations while performing ab initio

electronic structure calculations, since such calculations are computationally very 

expensive, and secondly it would be possible to get an analytic force fields for 

methods for which analytical expression for forces does not exist yet, but provide 

very accurate results, such as MP4, which is a complete fourth order method.

4. It is also possible to fit a neural network directly for the forces.

5. Sampling technique based on modified novelty detection and MD simulation 

provides a way to sample only the critical regions of the configuration space.

6. The accuracy of the neural network fit can be easily improved upon by 

incorporating new configurations.  

7. The same approach can be utilized for developing potential energy and force 

fields for different materials as well alloys and other chemical compounds.

8. The empirical potential employed during the first step need not be highly 

accurate.
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Future work

In the present study, the neural network was used for fitting the energy and force fields in 

five-atom silicon clusters. For modeling the bulk system a periodic system could be 

considered for ab initio electronic structure calculations. For system involving different 

cluster sizes, such as amorphous and metastable phases, a modular neural network could 

be employed, which can handle input vectors of different lengths.
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11 Appendix

Steps involved in developing neural network trained ab initio 

potential energy hypersurfaces

1. Perform molecular dynamics/ Monte Carlo simulations of a material under 

consideration using an appropriate potential for modeling interatomic interactions. 

Calculate the number of atoms within a cutoff radius for an atom in the material, 

and store coordinates of atoms forming a cluster. The configurations that are 

generated in an ensemble of trajectories using an empirical potential comprise the 

subset of configuration space that has to be sampled.

Following example shows a cluster of 5 silicon atoms, Si1 is the central atom to 

which atoms Si2, Si3, Si4, and Si5 are bonded.
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Table 6 lists Cartesian coordinates of 5 atoms.

Table 6

X Y Z
Si1 0.10595 0.00086 -0.00393
Si2 -1.49416 -0.39903 1.77593
Si3 -0.5682 2.10462 -0.89392
Si4 2.33901 -0.0196 0.66507
Si5 -0.3826 -1.68685 -1.54315

2. Calculate bond distances of atoms Si2, Si3, Si4, and Si5 from the central atom Si1.

Sort and order the bond distances and using bond Si1-Si2 as the reference bond 

calculate bond angles θ312 (angle between Si3-Si1-Si2), θ412, and θ512. Also 

calculate dihedral angles between atoms Si4-Si1-Si2-Si3 (Φ4123) and Si5-Si1-Si2-Si4

(Φ5124), looking along bond Si1-Si2 in Neuman projection.

3. Write a input file for Gaussian-98 specifying the configuration in the Z-matrix 

format as follows:

g98 <<END > si.log
%Mem=200MB
%Chk=si.chk Link0 section
#P B3LYP/6-31G** Route section

Silicon Title section

0    1 Molecule
Si1 specification
Si2 Si1 2.426558 section
Si3  Si1 2.381677 Si2 103.4742e
Si4 Si1 2.331201 Si2 114.8164e Si3 123.2472  0
Si5 Si1 2.335859 Si2 103.0822e Si4 122.7374  0

END
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First line specifies name for output file, 

%Mem command controls the amount of dynamics memory to be used.

Link 0 commands specify scratch file handling and its location.

The route section specifies the type of functional and the basis set to be used for 

the calculation. In the present study B3LYP hybrid functional is used for 

incorporating electron correlation using 6-31G** basis set.

Molecule specification section specifies the charge, multiplicity and geometry of 

the molecule. In this example ‘0’ indicates a neutral molecule and ‘1’ indicates 

multiplicity = 1 (singlet). The geometry is specified in Z-matrix format.

4. Perform ab initio calculations for all the configurations stored during the 

simulation in step 1 to compute the energy and forces using density functional 

theory with B3LYP procedure to incorporate electron correlation and 6-31G** 

basis set..

5. Sort and order the input vectors so as to obviate the need to train a network for all 

possible permutations of a configuration. Scale the input and output vectors so 

that all the variables fall within a range [-1 +1]. In the present study a neural 

network with one hidden layer having 9 neurons in the input layer (corresponding 

to the number of input variables), 45 neurons in the hidden layer, and 1 neuron in 

the output layer (corresponding to the number of output variables) was used. With 

45 neurons in the hidden layer the network has 496 parameters for fitting. The 

input vectors to the network being internal coordinates and the energies from ab 

initio calculations forming the outputs. To avoid overfitting, use early stopping 

and Bayesian regularization during training explained in sections 6.12 and 6.13.
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6. Use the trained neural network to perform molecular dynamics or Monte Carlo 

simulation. During the simulation input vectors to the network are ordered and 

scaled within the range [-1 +1]. The output from the network is post-processed to 

get the energy/force value. Store more configurations occurring during the 

simulation. In the present study about 34,000 configurations were stored.

7. Compare the new configurations with the configurations for which the neural 

network was trained. Modified novelty detection technique based on modified 

minimum distance computation, compares two input vectors augmented with the 

output from the network. The purpose of considering the network output is to take 

into account gradient of the underlying function for sampling procedure. 

Let qi be an input vector corresponding to the ith configuration, in the current data 

base. By computing trajectories using the neural network output for the force field 

a new configuration qn is generated. Minimum distance computation based on the 

2-norm difference between vector qn and vector qi is used for the novelty 

detection. 
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A vector d is now defined whose elements are the distances between the 

configurations. The minimum distance separating point qn from other points in the 

data base is the minimum element of d denoted as dm=min(d). The minimum 

distance between a set of modified configuration vectors is used in place of dm, to 

incorporate the effect of the function gradient into the selection algorithm. A 

modified vector is created as,

Γi = [qi Oi]
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where Oi is the output from the neural network of the configuration point qi. 

When the minimum distance Γm between Γi and Γn is used in place of dm, the 

effect of function gradient is incorporated. This is because, if the gradient between 

points qi and qn is large, then the difference between corresponding neural 

network outputs Oi and On will be large, making the magnitude of Γm large, and 

hence the point qn will be identified as a novelty point. Plot a histogram of 

minimum distances as shown in Fig 8.6. A large value of minimum distance for 

outlier configurations would indicate that the outlier configurations are different 

from the one in the training set and the corresponding network output would be 

far off from the target values.

Identify the outlier configurations by comparing normalized probability of 

minimum distances for initial configurations and configurations during iteration 

as shown in Fig 8.7. Using the selection criterion given in Eqn. (8.3) based on 

Parzen’s distribution select the configurations to be added for retraining the 

network. In the present study T1=0.5 and Гm=0.06 was used.

8. Perform ab initio calculations for the outlier configurations to compute the energy 

and forces using density functional theory with B3LYP procedure to incorporate 

electron correlation and 6-31G** basis set.

9. Retrain a neural network for the entire database consisting of initial and outlier 

configurations as described in step 5.

10. Re-compute the minimum distances of the combined set consisting of initial and 

outlier configurations to get a histogram plot as shown in Fig 8.8. The re-

computed minimum distance values could be less for the concatenated set of 
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outlier and initial data set of configurations because now the neural network is 

trained for outlier configurations as well along with initial set of configurations 

and as a result corresponding output is close to the target values.

11. Use the retrained neural network in the simulation and repeat steps from 5-9 until 

the minimum distance values are small or lie within the range of minimum 

distances from the initial set of configurations as shown by the histogram plot of 

minimum distances as shown in Fig 8.11, which indicates the convergence is 

obtained over the configuration space involved during the simulation.
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