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Chapter 1: Introduction 
 
 
1.1 – Silverware Identification/Inspection – A Base for New Technology 
 

Identification and inspection of silverware pieces pose many challenges to the field of 

machine vision. The challenges include the need for a high processing rate to make the 

technology commercially feasible, the need for an efficient imaging setup to acquire high 

quality images of objects with specularly reflective complex geometric surfaces, the need 

for a fast identification technique to reliably identify objects, and the need for a fast 

inspection procedure to inspect the surfaces of the objects for anomalies. The problem 

presents scope for the development of new methods to solve various existing problems in 

the field of machine vision. New methods designed to successfully handle these 

challenges can be extended to numerous other applications with little effort. 

 
1.2 - Automation of Silverware Sorting 
 
 
Automation of large commercial dishwashing operations is desirable as it offers 

improved efficiency of operation and reduced labor costs. The operations are repetitive in 

nature and are to be performed in conditions such as inconvenient temperature, humidity 

levels and limited leeway, resulting in increased costs for manual labor (Yeri, 2002). 

 

Automating this operation requires the integration of subsystems capable of singulation, 

identification, inspection and sorting, followed by wrapping of silverware. A singulation 
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system should be capable separating a mixed batch of silverware into non-touching, non-

overlapping properly oriented positions (Hashimoto, 1995; Latvala, 1999). The 

identification system should differentiate silverware pieces and also acquire spatial 

orientation information (Yeri, 2002). The inspection system should discern between clean 

and dirty silverware pieces. The sorting system should segregate the silverware pieces 

into collection bins, and the wrapping system should wrap appropriate pieces of 

silverware into a paper or cloth napkin for next use. All these subsystems are then to be 

integrated into a single system that takes a mixed batch of silverware as input and gives 

clean wrapped silverware sets as output. 

 

A search through United States Patents (Patent Class 209/926* - Silverware sorter 

subclass) reveals that there exist sorting mechanisms that utilize properties of silverware 

pieces, such as dimensions and location of center of gravity of silverware to sort and 

orient silverware pieces. Templates act as sieves to sort silverware pieces when the 

aforementioned properties are used as the criterion for sorting. There also exist 

mechanisms that utilize opto-electronics to identify silverware pieces. Phototransistors 

and lights are used to obtain an optical reading representative of the contour of the 

silverware. This reading is used to identify silverware pieces. However, none of the 

abovementioned mechanisms inspect the pieces for cleanliness, such that human 

intervention is required when cleanliness of piece is to be determined. Since such sorting 

mechanisms are dependent on the physical characteristics of the silverware piece, 

changes in templates or other hardware are necessary whenever silverware sets are 

changed. It thus appeals that a system having the capabilities of inspecting silverware 
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pieces and accommodating changes in silverware sets without having to change hardware 

is desirable. Inspection of silverware pieces requires information about surface features 

for decision-making. Ability to accommodate different sets of silverware requires the 

separation of information-acquisition, decision-making, and actuation sub-systems. The 

information-acquisition sub-system should also be capable of acquiring sufficient 

information about a silverware piece to enable identification. Visual images or 

photographs of silverware pieces provide shape and surface information, and hence make 

a suitable candidate for decision-making input. Hence a machine vision system was 

deemed suitable for implementing the information-acquisition and decision-making sub-

systems. 

 

Since machine vision systems are programmable, a large degree of flexibility can be 

provided in systems that utilize them. This is a huge advantage, since it eliminates the 

need for frequent hardware changes to cope with changing inputs or environments. Apart 

from programmability, vision systems also provide efficiency and repeatability in 

operations. These systems can be installed in work environments that are disagreeable to 

humans. Vision systems rarely incorporate moving parts and seldom require 

maintenance. Hence when appropriately designed, visions systems can compete with, and 

may surpass, human performance levels.  

 

The current gamut of industrial applications that employ vision systems is vast. Examples 

of vision applications are found in the pharmaceutical industry, the labeling and 

packaging industry, the bottling industry, the food industry, and the agricultural industry 
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(RMA, 2004; IVP, 2004) to name a few.  The pharmaceutical industry uses vision 

systems to detect cracks in tablets (Ukiva, 2004). The packaging and labeling industries 

use vision applications for rapid processing of compact labels (Ukiva, 2004). The food 

industry uses vision applications for quality control processes (JZW, 2004). Apart from 

these, vision applications can be found in various other industries in quality control 

processes, including manufacturing and assembly operations. 

 

This study is concerned with the development of a vision system capable of identifying 

and inspecting singulated silverware. Assuming singulation has already occurred, the 

vision system should approximate the human decision-making capabilities in these 

operations and send appropriate control signals to the sorting system for further 

processing. 

 
 
1.3 – Precedent work on Vision Systems for Silverware Identification 
 
 
Sandeep Yeri, as a part of his thesis (Yeri, 2002), designed a vision system that included 

a frame grabber PCI card, camera, lenses, lighting equipment, lighting setup, camera 

trigger circuitry using optical sensors, and software applications.  

 

The components used in the implementation of Yeri’s prototype are as follows: 

- Camera: Basler L104/1K (1024 Pixels, Programming capability via RS-232, High 

Sensitivity, Anti-blooming, High Signal to Noise Ratio, Compact Size). 

- Lens: Cosmicar/Pentax Lens (C-Mount, 25mm Focal Length, 1:1.4 aperture ratio, 

manual focus). 
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- Frame Grabber: National Instruments PCI-1422 Image Acquisition Board (16 bit 

gray level Digital Image, 80 Mbytes/Sec Data Transfer Rate, 16MB On-Board 

Memory). 

- Lighting Equipment: Regent Lighting Corp. Quartz Halogen Lamps Model MCL 

(30W, 120V, 60Hz, 0.29Amps). 

 

A software application for the prototype system was developed in Microsoft Visual C++ 

6.0. The software application used NI-IMAQ Vision Software Libraries (Device Drivers, 

Hardware & Software Interfacing software). This hardware and software was used in the 

study herein. The software application developed by Yeri was capable of extracting 

identification and orientation information about silverware from the acquired image. The 

algorithm used “Blob Analysis” to ascertain this information. “Blob” is a short term for 

Binary Large Object. A blob, also called “particle”, refers to a white region inside a 

binary image (black and white image). In blob analysis, properties such as area, 

perimeter, and moment of inertia are defined for the white regions, and examined in order 

to characterize the regions under examination. These binary images are obtained when 

grayscale images are subject to a thresholding process. A grayscale image is an image in 

which various shades of gray between white and black may be present. Typically, 

monochrome cameras provide 256 shades of gray. Thresholding is the process of 

segmenting an image into white and black regions. This is a lossy process, and some 

information about the image is irrecoverably lost during the process. Yeri’s system 

acquired grayscale images of silverware pieces, converted them to binary images, and 

processed the binary images, for identification purposes. 
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The software application developed by Yeri identifies silverware pieces based on area of 

white regions representing the silverware piece. Though this is a good metric that 

provides a fair amount of information about the silverware piece, it does not provide any 

information about shape of the object. Hence, an identification mechanism using area 

alone will fail in cases where areas of two different pieces of silverware are the same, 

even though their shapes are significantly different. Thus, including other features such as 

moments of inertia and perimeter, which convey some information about shape, will 

improve the reliability of an identification procedure. The application developed by Yeri 

also does not inspect pieces for cleanliness. Accordingly, we seek a vision system that 

can perform inspection, as well as identification with improved reliability. 

 

1.4 –Thesis Objective 
 
 
The objective of this thesis is to design and construct a vision system capable of 

identifying silverware pieces with high accuracy, inspecting them for cleanliness and 

sending appropriate signals to a sorting mechanism, to be designed by others (Peddi, 

2005). The minimum throughput target for this system is 30 pieces of silverware per 

minute. The current manual-processing rate is around 2400 pieces of silverware in a two-

hour shift, which is equivalent to 20 pieces of silverware a minute. This thesis is aimed at 

developing new techniques to handle the challenges associated with silverware 

identification and inspection mentioned earlier. This thesis also aims to develop these 

identification and inspection techniques in such a way that these techniques can be ported 

to other areas of application with minimal modifications. 
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Identification requires less effort, and is conceptually easier, than inspection. Efficiency 

of inspection varies according to color, size, and location of dirt on a silverware piece. It 

is difficult to inspect when the dirt color blends with the color of the silverware piece, 

when the dirt particle is small in size, and when the dirt particle is located close to the 

edges of the silverware piece. Identification on the other hand is a much easier task to 

perform since it is dependent only on the size and shape of the silverware. Hence the 

accuracy of identification will typically be higher than the accuracy of inspection, 

whether done manually or automatically with a machine vision system. For manual labor, 

because of the monotony of the task, efficiencies of both processes deteriorate with time. 

In manual inspection, accuracy of inspection declines faster than accuracy of 

identification. 

 

This work intends to design and construct a vision system, which has improved 

identification accuracy compared to Yeri’s prototype, and to develop an initial approach 

for inspecting pieces of silverware. It is anticipated that the inspection system will output 

certain false “clean” and false “dirty” results. A false “clean” result refers to a dirty 

silverware piece that is wrongly classified as clean, and a false “dirty” result refers to a 

clean silverware piece that is wrongly classified as dirty. It is assumed during the design 

of this system, that a false “clean” result is less preferable than a false “dirty” result, 

because a false clean is processed through to final clean storage, whereas a false dirty is 

merely recycled through the singulation, identification, and inspection stages of the 

overall system. 
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Though currently there exist many vision system applications capable of identification 

and inspection, the current problem poses certain unique challenges. The objects under 

consideration are metallic pieces, which have surfaces with complex geometry and a 

shiny finish. Such surface conditions give rise to a phenomenon known as specular 

reflection. Specular reflection is defined as a sharply defined beam resulting from 

reflection off a smooth surface (EWWOP, 2004). Specular reflections result in “glares” 

being formed in the image and yield a poor image of the object, which in turn results in 

incorrect image processing. Designing a lighting setup to avoid specular reflections 

usually results in non-uniform lighting, which again typically results in incorrect 

processing of the image. A lighting setup that minimizes specular reflections is dependent 

upon the geometry of the surface, and hence it is problematic to design a single setup that 

avoids specular reflections for various pieces of silverware. Most vision systems 

currently used for inspection purposes perform rudimentary analyses, since they only 

check for the presence or absence of a feature, without comparison with other images. On 

the other hand, our problem requires comparison of test images with images of clean 

pieces of silverware in order to make decisions about the cleanliness of a piece. An 

enlarged image yields greater detail for decision-making, but needs more time for 

processing. A reduced image can be processed quickly, but might not yield all the details 

necessary for decision-making.  

 

Finally, because of the required throughput, the vision system has limited time for the 

identification and inspection processes, which limits the sophistication and rigor of the 

 8



 

system. Since all these conditions co-exist, the complexity of this problem is somewhat 

acute. To handle this, in Chapter 2, we address the design of the hardware, including 

lighting setup, optics, and selection of the camera and frame grabber PCI card. Chapter 3 

presents the design of image processing algorithms for identification and inspection. 

Experimental results and analysis of them are given in Chapter 4, and conclusions and 

recommendations are presented in Chapter 5. 
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Chapter 2: Vision Setup 
 
 
2.1 – Problems identified with existing setup 

 

Inspection of silverware pieces requires the image acquisition system to deliver images of 

high quality. The vision setup used for Yeri’s experiments (Yeri, 2002) was found to be 

delivering images that were sometimes unusable for inspection purposes. 

 

The images acquired by Yeri’s system revealed the following undesirable characteristics: 

- Distortion in shape of silverware piece (Figure 1). 

- Noise, in the form of lines, parallel to image scanning direction (Figure 2). 

- Shadows and ill-lighted regions on the silverware piece (Figure 3). 

 
Figure 1: Distortion of Shape of Silverware Piece in Acquired Images. 
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Figure 2: Noise in the Form of Lines Parallel to Image Scanning Direction. 

 
Figure 3: Ill-lighted Regions on Silverware. 

 

The distortion of shape of silverware pieces in images was found to occur because of 

vibration of the silverware pieces as they were conveyed in a sliding mode underneath the 

camera. For low conveying speeds, the effects were small, but at higher speeds the 

images exhibited distortion levels that were unacceptable. The remedial measure for this 

was to modify the conveying mechanism by removing the sliding mode and fixing 

silverware pieces to a moving magnet. This eliminated the vibration of the silverware 

pieces as they were conveyed underneath the camera. Ravi V Peddi, as a part of his thesis 

(Peddi, 2005), implemented this modification to the conveying mechanism. 
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In an attempt to locate the source of the noise lines in the images, various light sources 

were used to study their influences on the lines. The noise lines were found to have 

frequencies, at various times, of approximately 120 Hz and 150 Hz. Halogen lamps, 

incandescent lamps, and fluorescent tube lights, all powered by 110V AC building 

power, together with “torch lights” powered by DC batteries were used as light sources in 

various experiments in an attempt to identify the source of the noise lines. The noise 

lines, when present, had a frequency independent of the light source. The noise lines 

persisted in the first three cases but were found to be absent when a battery light was used 

for illumination. We suspected that noise in the ATRC Lab Building AC power supply 

was the problem. Lamps, rectifier circuits and AC isolator circuits were employed, along 

with halogen lamps, incandescent lamps and tube lights, but the noise lines were found to 

persist. An oscilloscope connected to the lab power supply verified the presence of 

120Hz and 150Hz noise in the 110V 60Hz building power supply. DC Lamps were then 

chosen for illumination purposes, powered by filtered DC obtained from a Switch Mode 

Power Supply (SMPS) fed by 110V 60Hz building power supply, commonly used to 

power PCs. Images acquired using this combination of lights and power supply did not 

contain any noise lines. 

 

The ill-lighted regions on silverware pieces are sometimes caused because of the complex 

surface geometry of the pieces. The lighting equipment should be capable of providing 

diffused light onto the silverware from multiple directions to minimize ill-lighted regions. 

But this requirement would force a lighting arrangement to be specific to the physical 

shape of the silverware being imaged. The lighting setup requirements for elimination of 
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shadows and the requirements for elimination of specular reflections are mutually 

conflicting for silverware pieces with curved surfaces. Thus, it is difficult to prescribe a 

lighting setup that provides ideal lighting conditions for different silverware pieces 

having different surface geometries. However, among the well-established lighting 

techniques, the “Direct Front Illumination” (Figure 4) and “Light Tent” (Figure 5) 

lighting setups (MVA, 2004) appear to offer the best compromise for the system under 

consideration. The lighting setup used for Yeri’s experiments (Yeri, 2002) is an adapted 

version of the “Light Tent” setup. Making slight modifications to Yeri’s setup reduced 

the ill-lighted regions. The exact modifications introduced into the lighting system will be 

described in Section 2.3. 

 

 
Figure 4: Diffuse Front Illumination  

(Machine Vision Association: http://www.sme.org/downloads/mva/mvaposter.pdf) 
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Figure 5: Light Tent Illumination 

(Machine Vision Association: http://www.sme.org/downloads/mva/mvaposter.pdf) 
 

2.2 – Camera & Board 

 

The image acquisition system used for experimentation during the course of this thesis 

uses a PCI-1422 Image Acquisition Board and a Basler L104/1K camera for imaging 

purposes. These were originally acquired and implemented by Yeri (Yeri, 2002). The 

Basler L104/1K camera is a monochrome line scan camera capable of providing images 

of 256 gray levels with a maximum width of 1024 pixels. It offers features including RS-

232 programming capability, high signal to noise ratio, electronically controllable sensor 

exposure time, electronic trigger capability, and a maximum scan-line rate of 57.45KHz. 

The camera’s sensor has a principal spectral response from 300nm to 1000nm, peaking at 
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approximately 700nm, as shown in Figure 6. The DC Lamps chosen for illumination emit 

light of wavelength ranging between 550nm to 650nm, generating good spectral response 

from the camera. 

 
Figure 6: Spectral Response of BaslerL104/1K Camera. 

(Basler Corporation: http://www.baslerweb.com/popups/403/L100_Users_Manual.pdf) 
 

The PCI-1422 Image Acquisition Board, provided by National Instruments, was chosen 

because apart from being compatible with the camera, National Instruments provides 

good software support in the form of pre-compiled libraries that can be used in the 

development of custom applications. National Instruments provides extensive software 

routines that facilitate programmable image acquisition and image processing. The 

camera and frame grabber combination mentioned above, when employed along with an 

appropriate lighting setup, is capable of delivering images meeting the quality 

requirements for identification and inspection of silverware pieces. 
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2.3 – Lighting Setup & Optics 

 

During the imaging process, the lighting setup illuminates the object to be imaged, and 

the optical equipment focuses light from the object onto the camera sensor, which 

registers an impression of the object. The criteria for selection of optical equipment 

include resolution, sensor size, field of view, working distance and depth of field, 

illustrated in Figure 7. 

 
Figure 7: Fundamental Parameters of an Imaging System (EIO, 2004). 

(Edmund Industrial Optics: http://www.edmundoptics.com/techSupport/ 
DisplayArticle.cfm?articleid=287) 

 

A C-mount lens, of 25mm focal length and an aperture ratio of 1:1.4, was selected since 

could accommodate the 1024 pixels on the camera sensor of 10.24mm width (Yeri, 
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2002). Selecting a maximum field of view of 12 inches, we obtain the working distance 

of 24.5 inches using (1):  

w
f
wdW o −=   (1) 

where W is the width of object being imaged, f is focal length of lens used, do is working 

distance, and w is the width of sensor. 

 

The lighting setup for illuminating the object in this thesis is a modified version of the 

lighting setup used by Yeri for his experiments (Yeri, 2002), shown in Figure 8, which is 

a modified “light tent” setup. 

 
Figure 8: Illumination Setup used by Yeri (Yeri, 2002). 
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Our modifications to this setup consist of adding “curtains” that serve as extended 

reflecting surfaces in order to reduce the ill-lighted regions. Figure 9 shows the lighting 

setups with and without curtains. Yeri used polarizers to control the intensity of 

illumination. The DC Lamps mentioned previously are of a lower intensity than the 

halogen lamps used by Yeri, and hence the polarizers have been removed to allow more 

light into the lighting dome. 

Without Curtains With Curtains

Camera

Lighting Dome

Optical 
Switches

DC Lamps

Curtains

Figure 9: Lighting Setup With and Without Curtains. 
 

Images acquired using this lighting setup showed significant reduction in the ill-lighted 

regions, and also do not contain distorted shapes or noise lines. This indicates more 

suitability for inspection of silverware pieces. Figure 10 shows a sample image acquired 

using this lighting setup. It can be seen that significant improvement has been achieved 

over the previous images acquired by Yeri’s setup shown, in Figures 1,2, and 3. 
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Figure 10: Sample Image Acquired Using Lighting Setup with Curtains. 

 

Chapter 3 will present the image processing algorithms for identification and inspection 

of silverware pieces acquired using the lighting setup described above. 
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Chapter 3: Algorithm Design & Description 
 
 
3.1 - Digital Images & Fundamental Image Processing Operations 

 
A digital image is a two-dimensional array of values representing light intensity of a 

given picture element (pixel). They are collections of values f(x,y), where ‘f’ is a function 

of brightness at the pixel at spatial co-ordinates (x,y) (NIVCM, 2004). The images used 

for this thesis are 8-bit grayscale images, meaning that f(x,y) is an integer in the range 

[0,255] representing black(0), white(255), and various gray levels in between, as shown 

in Figure 11. 

 
 

0 255128 19264

Black WhiteIntermediate gray levels  
Figure 11: Gray Scale Reference Chart 

 
 
By convention, the location of the image origin is at the left-top corner of a 2-D scale. 

The X co-ordinate increases from left to right and the Y co-ordinate increases from top to 

bottom, as shown in Figure 12. 
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Figure 12: Digital Image Representation. 

(Machine Vision Association: http://www.sme.org/downloads/mva/mvaposter.pdf) 
 

The actual internal representation of a digital image also includes image borders. Image 

borders are value cells attached to all sides of the actual digital image. Most image 

processing algorithms require neighboring pixel values to evaluate any given pixel. Since 

pixels on the edges of the images do not have neighbors on all four sides, image borders 

are added to images to act as surrogate neighbors, thus facilitating the processing of edge 

pixels of the images. The border size for all images acquired and processed during the 

course of this thesis is 5 pixels wide. Figure 13 illustrates the internal image 

representation used by the libraries provided by National Instruments (NI). 

 21



 

 
Figure 13: Internal Image Representation in National Instruments Libraries. 

(National Instruments: http://www.ni.com/pdf/manuals/372916c.pdf) 
 

NI provides a variety of image processing functions to analyze and manipulate images. It 

is outside the scope of this thesis to provide a detailed description all the functions, but 

we provide a brief description of the frequently employed functions to assist 

understanding. 

 

Thresholding is the process of separating the “foreground” and the “background” of an 

image. This operation is performed by setting the values of all pixels within a range to 

one of the two values, typically 1 or 255, and the value of all other pixels to another 
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typically 0. NI provides algorithms for thresholding, auto-thresholding and multi-

thresolding. Thresholding effects are illustrated in Figure 14. 

 
Figure 14: Thresholding of Images. 

Edge-detection is the process of locating the edges in an image. An edge is usually 

defined as a region of sharp changes in gray levels. Edges are detected by employing a 

convolution operation followed by a thresholding operation. Edge-detection results are 

illustrated in Figure 15. 

 
Figure 15: Edge-detection in Images. 

 
Image rotation algorithms are also provided by the NI libraries, which rotate images 

about their center using zero-order or bilinear interpolation. Image rotation functions are 

used for alignment of images during inspection in this thesis. Rotation effects are 

illustrated in Figure 16. 
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Figure 16: Rotation of Images. 

 

Image re-sampling refers to the process of resizing images employing certain methods of 

interpolation. Image re-sampling functions are used in this work for accommodating 

slight changes in sizes of silverware pieces during alignment for inspection. Re-sampling 

results are illustrated in Figure 17. 

 
Figure 17: Re-sampling in Images. 

NI libraries also provide extensive functions for binary and grayscale morphology, and 

particle measurements that are used extensively in this work. These functions provide 

methods to perform various analyses and to manipulate images, if so desired. 
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3.2 – Image Pre-processing  

 
The image acquired from the camera includes features other than the silverware piece. 

Hence certain pre-processing has to be done before the image can be passed on for 

identification and inspection processes. Pre-processing expunges unnecessary features 

from the image and improves the quality of the data left in the image passed on for 

inspection and identification. Figure 18 demonstrates images before and after pre-

processing. 

 
Figure 18: Images Before and After Pre-processing. 

 

In this work, the image pre-processing algorithm includes thresholding, selection of the 

largest particle, rejection of all other particles, construction of a mask using the selected 

particles, followed by masking of the original image to suppress all other unnecessary 

information. A mask refers to a binary image that is the same size or smaller than the 

image being masked. Masking isolates parts of an image for processing and is used when 

processing of the image is to be applied to particular parts of the image. Only those pixels 

that correspond to non-zero values in the binary image are processed in the image being 
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masked. Figure 19 shows image before and after masking operation and the binary mask 

used in the masking operation. 

Top Left: Image before masking (Grayscale)

Top Right: Mask being applied (Binary)

Bottom Left: Image after masking (Grayscale)

Figure 19: Images Before and After Masking and Image of Mask. 

The image pre-processing algorithm utilizes the NI Library functions as image processing 

primitives (i.e. basic operations). A detailed flowchart representing the pre-processing 

algorithm and code developed for the algorithm can be seen in Appendix A. 

 

3.3 – Identification 

 
For identifying silverware pieces, we use three features, namely, the area of the largest 

particle, the area moment of inertia of the largest particle about an axis perpendicular to 

the image plane (z-axis), and the perimeter of the largest particle. The moment of inertia 

about the z-axis is evaluated from moments of inertia about the x and y-axes using the 

Perpendicular Axis Theorem. The area, moments of inertia about the x- and y-axes, and 

the perimeter are computed using NI library functions. These values are evaluated using 

binary images obtained by thresholding pre-processed images. Use of the moment of 
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inertia and perimeter introduces shape-dependence into the identification algorithm, 

which improves the reliability over identification algorithms based only on area. The 

feature set, once evaluated for an image to be processed, is compared to the feature sets 

of pre-learned and pre-loaded binary prototype images. When feature set differences are 

within a user-defined tolerance, a match is confirmed. A heuristic is added to the 

identification algorithm that compares the sum of feature set differences to a preset value, 

and tries to “soften” the “hard limit” nature of comparison of feature set differences the 

user-defined tolerance. A detailed flowchart representing the identification algorithm and 

code developed for the algorithm can be seen in Appendix A. 

 

Failure to confirm matches to any of the pre-learned prototypes results in abortion of all 

further processing for inspection, and appropriate signals are delivered to the sorting 

mechanism so that the silverware piece is reprocessed. 

 

If a silverware piece is successfully identified, then further analysis is performed to 

evaluate the angle at which the silverware piece is oriented with respect to the x-axis, and 

to determine symmetry of silverware piece along its longest axis. This information is 

needed to align the image to be inspected with the appropriate prototype image for further 

analysis. It is assumed here that the largest dimension of the silverware piece lies along 

the handle of the silverware piece. It is also assumed that symmetry, if present, will have 

an axis of symmetry along the longest dimension (LD). 
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NI Libraries provide functions to evaluate the orientation of the LD, but further 

information about the direction in which the head of the silverware piece is pointing is 

also required to properly align the test image with the prototype image.  

 

A non-symmetrical distribution of area prevails in some silverware images, and this 

causes the centroid of the area to be closer to one end of the silverware piece than the 

other. Due to this property, when a line equal in length to the length of the silverware 

piece is centered about the centroid, one end of the line lies outside the rectangular 

bounding box, which encloses the silverware piece.  

 
Figure 20: Determination of Orientation of Silverware Pieces. 

 
This property is utilized to evaluate information about the direction in which the head of 

the silverware piece points. Figure 20 illustrates the aforementioned property, with the 

dotted box indicating the line segment lying outside the enclosing rectangle. 
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In order to verify symmetry in a silverware piece, the image is rotated so that the LD is 

oriented along the x-axis. The locations of the centroid of the test image, and the centroid 

of the test image reflected about a horizontal line passing through the center of the image, 

are evaluated and compared to verify symmetry in the image. If the distance between the 

centroids is within a pre-defined tolerance, the image is assumed to be symmetric about 

its LD; otherwise the silverware piece is assumed to be non-symmetric about its LD. 

Figure 21 illustrates verification of symmetry in a soupspoon and a knife. 

 
Figure 21: Verification of Symmetry in Silverware Pieces – Edge Image. 

For non-symmetric silverware pieces, proximity between centroids is used as the 

selection criterion to select the appropriate prototype image for inspection process. Any 

discrepancy between symmetry of test image and prototype will result in abortion of all 

further processing for inspection, and appropriate signals are sent to the sorting 

mechanism so that the silverware piece is reprocessed. 
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3.4 – Inspection 

 
Once a silverware piece is successfully identified, its orientation evaluated, and 

symmetry successfully verified, further analysis is performed in order to determine the 

cleanliness of the silverware piece. Dirt particles are located by human vision as 

discrepancies in surface texture. Sharp differences in colors and patterns are observed at 

the boundaries of the dirt particles on the silverware piece. The inspection algorithm 

implemented in this thesis attempts to emulate this. It is observed that due to the sharp 

differences in color at the boundaries of dirt particles, distinct edges will be formed when 

subjecting the image to an edge-detection algorithm. However, any actual physical 

features present on the silverware piece will also form edges. Hence a comparison is 

required in order to determine whether an edge is being formed due to dirt particles or 

otherwise. Figure 22 shows how actual physical features on a silverware piece form 

edges.  

Grayscale Image Edge Image

Edges formed by physical 
features

Figure 22: Clean Silverware Piece and Edges Formed by Physical Features. 
 

Figure 23 shows how dirt particles on a silverware piece form edges. 
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Grayscale Image Edge Image

Edges formed by physical 
features

Edges formed 
by dirt 

particles

Figure 23: Dirty Silverware Piece and Edges Formed by Dirt Particles. 
 

The orientation and symmetry information previously discussed is used to select the 

appropriate prototype edge-image for comparison purposes. During comparison, each 

edge in an edge image of the silverware piece being inspected is compared against edges 

in the prototype edge image. If the edge in the test image has a corresponding edge in the 

prototype image, then it means that some physical feature actually present on the 

silverware piece is forming the edge. However if no corresponding edge is located in the 

prototype image, then it implies that a feature not present in the prototype is forming the 

edge. This feature is most likely a dirt particle, and hence the system classifies the 

silverware piece as dirty. 

 

Repeating (1) given in Chapter 2, we have 

w
f
wdW o −=   (1) 

Then using numerical values from our experimental setup, namely f = 25mm, w = 0.01 

mm (1024 pixels on 10.24mm) and do = 24.5 inches, we obtain W= 0.23992 mm. This is 

the smallest dimension on the silverware piece that will map onto one pixel of the camera 
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sensor. Accordingly, the inspection algorithm should be able to locate any dirt particle 

whose dimensions are greater than or equal to 0.24mm x 0.24mm. 

 

To facilitate comparison of an acquired (test) image with a prototype image, the test 

image is rotated and resized, using the functions provided in NI libraries, so that both 

images have the same size and the LDs are oriented in the same direction. It is observed, 

however, that even after rotation and resizing, a pixel-by-pixel correspondence is very 

improbable. This is due to the very low probability of two silverware pieces being 

imaged at identical locations under the camera, in identical positions, and precisely the 

same timing. Imaging of silverware pieces even under slightly different positions, or 

different locations under the camera or at different timings, will result in a significant 

number of changes in the values of pixels in the image, even though the human eye might 

not detect it. Hence the inspection algorithm searches in a neighborhood of a pixel 

instead of looking for a single pixel. It also incorporates a mechanism that keeps track of 

the direction of propagation of the edge by means of an error vector, ensuring that the 

search for corresponding pixels occurs in the most probable regions. During each search 

for a pixel, the error vector records the deviation between expected location of pixel and 

the actual location at which it is found. This deviation is then used to offset the search for 

the next pixel so in an attempt to minimize the deviation for the next search. As the 

process of storing deviations and offsetting searches is repeated over the whole process, it 

is tantamount to tracking the direction of propagation of an edge. The tolerance levels for 

the error vector are to pre-defined and depend upon the size of the image being 
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processed. A detailed flowchart representing the inspection algorithm and code 

developed for the algorithm can be seen in Appendix A. 

 

Figure 24 shows dirt located on a silverware piece after the inspection process. Figure 25 

shows the processed image of a clean silverware piece. Figure 26 shows a context level 

flowchart for the entire processing algorithm. The experiments conducted and results 

obtained are discussed in Chapter 4. 

Top: Grayscale Image

Bottom: Edge Image

Figure 24: Bold White Spots Mark Dirt Located on Silverware Piece After Inspection. 
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Top: Grayscale Image

Bottom: Edge Image

Figure 25: No Dirt Located on a Clean Silverware Piece. 
 

3.5 – New Techniques Developed 

 

The vision algorithm developed herein can be employed not only for the identification 

and inspection of silverware pieces, but also to almost any other problem requiring the 

same for objects (of any size and shape), with minimal modifications. The algorithm can 
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be ported for use with other image types with slight modifications. The vision system is 

capable of automatically generating all prototype images it requires (from pre-acquired 

grayscale images) to process test images. The vision system developed presents 

modifications to existing lighting setups in order to refine image quality. The vision 

system presents a fast identification procedure that works by comparison of feature sets 

and identifies shapes with a high reliability. The system also presents a technique to 

identify orientations of objects with accuracy comparable to that of template matching. 

The system also presents methods to evaluate the degree of symmetry/non-symmetry 

present in an object using blob analysis results. Finally the vision algorithm presents a 

new technique to detect the presence of surface anomalies (independent of their size and 

shape) on the surface of the object. The inspection procedure uses algorithms that were 

developed to track edges in images. The code and flowcharts for the above algorithms 

can be found in Appendix-A. This technique needs a special mention since it takes the 

solution a step closer to the solution domain from the problem domain. It simulates the 

human system more than previous systems since it deals with entities such as edges and 

shapes, and properties such as symmetry and orientation rather than mere pixels, making 

the algorithm easily portable to other applications. The abovementioned techniques can 

be applied together or individually for other problems depending on their respective 

needs. 
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remove all other particles from 
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Using Binary Image mask the 
Grayscale Image

Evaluate perimeter, area and 
moment of inertia. Evaluate 
differences with prototypes 

binary images.

Differences within 
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Piece 
Unknown

No

Select prototype with least error.

Rotate and resize test image to 
align with prototype

Evaluate Symmetry to choose 
appropriate prototype

Evaluate Edge image for test 
image

Perform neighborhood 
search for each edge in test 
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Corresponding edges 
located for each edge in 

prototype ??

Known 
Clean Piece

Known Dirty 
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Send appropriate 
signals to sorting 

machine
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No

    

User requested 
termination ??

Yes

Yes

No

 
Figure 26: Context Level Flowchart Representing Image Acquisition, Pre-processing, 

Identification and Inspection. 
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Chapter 4: Experimental Results and Discussion 
 
 
The vision system described in Chapter 3 was tested to evaluate its performance in 

identifying and inspecting silverware pieces. Mixed batches of randomly oriented 

silverware pieces were fed in random order as input to the vision system, and the outputs 

were analyzed to evaluate the efficiencies of identification and inspection. Silverware 

pieces were manually placed on the conveyer belt upstream of the lighting box to isolate 

the efficiency of the vision system from the efficiency of the hopper mechanism used for 

singulation of silverware pieces. Manually placing silverware on the moving magnets 

effectively simulates a 100% efficient singulation system. 

 

The vision system can operate only below a certain maximum processing rate due to the 

constraint on time available for processing. The vision system must complete processing 

of one silverware piece before the next silverware piece arrives under the camera for 

imaging. The maximum processing rate is inversely proportional to the time required for 

vision system processing. A fraction of the time between the triggers caused by two 

consecutive silverware pieces is consumed for imaging the silverware piece and another 

fraction is consumed by waiting for the silverware piece to arrive under the camera. For 

various processing rates, Figure 27 presents the total time between two consecutive 

triggers, image acquisition time, time available for processing and actual time required. 
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Figure 27: Time between triggers, Time Available for Processing, Actual Time Needed 
for Processing, Image Acquisition Time. 

 

The relationships among these quantities are given by: 

TT = 103.54 * BS ( -1.1896 )

AR = 33.75 * BS               

IAT = 500/AR 

TP = TT – IAT – IWT 

PPM = 60/TT 

Where TT is Time between Triggers, AR is Camera Line Scan Rate, IAT is Image 

Acquisition Time, TP is Time available for Processing and PPM is Silverware Piece 

Processing Rate, BS is Belt Speed and IWT is Wait Time before start of Image 

Acquisition. 
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The actual time needed for processing depends upon the speed and processing power of 

the computer employed by the vision system. The current setup uses a PC with a 1.1GHz 

processor and 392 MB of RAM. This configuration results in a maximum processing 

time of about 0.7 seconds for an image size of 960 x 500 pixels. It can be seen from 

Figure 27 that an intersection occurs between “actual time needed for processing” graph 

and the “time available for processing” graph, indicated by the dashed vertical line. The 

processing rate at which this intersection occurs is the maximum processing rate, namely 

55 pieces per minute, which the vision system can handle. At processing rates higher than 

this, one or more pieces will not be processed, since the vision system would still be busy 

processing a previous image. Using a state of the art computer for processing (e.g. 3.8 

GHz with 1GB of RAM) will reduce the actual time needed for processing, allowing 

higher processing rates. 

 

Testing was done at different speeds of conveying of silverware pieces under the camera, 

equivalent to setting the processing rate. Images of the four different “clean” silverware 

pieces are shown in Figures 28 and 29. “Dirty” silverware pieces, examples of which are 

shown in Figures 30 and 31, were made “artificially dirty” by means of a black felt tip 

pen. The conveying speeds arbitrarily chosen for testing purposes correspond to 

processing rates of 33 pieces per minute, 39 pieces per minute and 46 pieces per minute. 

Silverware pieces were placed on the magnets manually, and whenever (by mistake) 

improper placement of silverware onto the magnets occurred, the entire batch of 

silverware was re-fed to the vision system. A silverware piece was placed on each 

passing magnet. All images acquired during testing were of size 960 x 500 pixels. Test 
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results for processing rate of 33, 39, and 46 pieces per minute are shown in Table 1 

through 6. 

 

Line Scan Rate for Image Acquisition 1.013 KHz 
Average time taken to acquire image 0.505 seconds 
Average time taken to process image 0.512 seconds 
Total number of clean silverware pieces fed 100 
Total number of dirty silverware pieces fed 100 
Total number of silverware pieces fed  200 
Total number of silverware pieces successfully identified 200/200 (100%) 
Total number of “clean” pieces classified as “clean”  87/100 (87%) 
Total number of “dirty” pieces classified as “dirty” 92/100 (92%) 

Table 1:Test results for processing rate of 33 pieces/minute (Set-1: “Artificial Dirt”). 

 

Line Scan Rate for Image Acquisition 1.182 KHz 
Average time taken to acquire image 0.436 seconds 
Average time taken to process image 0.527 seconds 
Total number of clean silverware pieces fed 100 
Total number of dirty silverware pieces fed 100 
Total number of silverware pieces fed  200 
Total number of silverware pieces successfully identified 200/200 (100%) 
Total number of “clean” pieces classified as “clean”  88/100 (88%) 
Total number of “dirty” pieces classified as “dirty” 93/100 (93%) 

Table 2:Test results for processing rate of 39 pieces/minute (Set-1: “Artificial Dirt”). 

 

Line Scan Rate for Image Acquisition 1.350 KHz 
Average time taken to acquire image 0.382 seconds 
Average time taken to process image 0.519 seconds 
Total number of clean silverware pieces fed 100 
Total number of dirty silverware pieces fed 100 
Total number of silverware pieces fed  200 
Total number of silverware pieces successfully identified 200/200 (100%) 
Total number of “clean” pieces classified as “clean”  86/100 (86%) 
Total number of “dirty” pieces classified as “dirty” 92/100 (92%) 

Table 3:Test results for processing rate of 46 pieces/minute (Set-1: “Artificial Dirt”). 
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Line Scan Rate for Image Acquisition 1.013 KHz 
Average time taken to acquire image 0.501 seconds 
Average time taken to process image 0.509 seconds 
Total number of clean silverware pieces fed 100 
Total number of dirty silverware pieces fed 100 
Total number of silverware pieces fed  200 
Total number of silverware pieces successfully identified 200/200 (100%) 
Total number of “clean” pieces classified as “clean”  86/100 (86%) 
Total number of “dirty” pieces classified as “dirty” 90/100 (90%) 

Table 4:Test results for processing rate of 33 pieces/minute (Set-2: “Artificial Dirt”). 

 

Line Scan Rate for Image Acquisition 1.182 KHz 
Average time taken to acquire image 0.433 seconds 
Average time taken to process image 0.513 seconds 
Total number of clean silverware pieces fed 100 
Total number of dirty silverware pieces fed 100 
Total number of silverware pieces fed  200 
Total number of silverware pieces successfully identified 200/200 (100%) 
Total number of “clean” pieces classified as “clean”  87/100 (87%) 
Total number of “dirty” pieces classified as “dirty” 91/100 (91%) 

Table 5:Test results for processing rate of 33 pieces/minute (Set-2: “Artificial Dirt”). 

 

Line Scan Rate for Image Acquisition 1.350 KHz 
Average time taken to acquire image 0.381 seconds 
Average time taken to process image 0.521 seconds 
Total number of clean silverware pieces fed 100 
Total number of dirty silverware pieces fed 100 
Total number of silverware pieces fed  200 
Total number of silverware pieces successfully identified 200/200 (100%) 
Total number of “clean” pieces classified as “clean”  86/100 (86%) 
Total number of “dirty” pieces classified as “dirty” 91/100 (91%) 

Table 6:Test results for processing rate of 33 pieces/minute (Set-2: “Artificial Dirt”). 

 

Tests were conducted for some silverware pieces in Set-1 that contained actual dirt, 

including dried egg yolk, dried coffee stains and dried sauce stains. Test results for Set-1 

for processing rates of 33, 39, and 46 pieces per minute are shown in Table 7 through 9. 
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Line Scan Rate for Image Acquisition 1.013 KHz 
Average time taken to acquire image 0.503 seconds 
Average time taken to process image 0.512 seconds 
Total number of clean silverware pieces fed 25 
Total number of dirty silverware pieces fed 25 
Total number of silverware pieces fed  50 
Total number of silverware pieces successfully identified 50/50 (100%) 
Total number of “clean” pieces classified as “clean”  43/50 (86%) 
Total number of “dirty” pieces classified as “dirty” 46/50 (92%) 

Table 7:Test results for processing rate of 33 pieces/minute (Set-1: “Real Dirt”). 

 

Line Scan Rate for Image Acquisition 1.182 KHz 
Average time taken to acquire image 0.432 seconds 
Average time taken to process image 0.527 seconds 
Total number of clean silverware pieces fed 25 
Total number of dirty silverware pieces fed 25 
Total number of silverware pieces fed  50 
Total number of silverware pieces successfully identified 50/50 (100%) 
Total number of “clean” pieces classified as “clean”  44/50 (88%) 
Total number of “dirty” pieces classified as “dirty” 45/50 (90%) 

Table 8:Test results for processing rate of 39 pieces/minute (Set-1: “Real Dirt”). 

 

Line Scan Rate for Image Acquisition 1.350 KHz 
Average time taken to acquire image 0.396 seconds 
Average time taken to process image 0.523 seconds 
Total number of clean silverware pieces fed 25 
Total number of dirty silverware pieces fed 25 
Total number of silverware pieces fed  50 
Total number of silverware pieces successfully identified 50/50 (100%) 
Total number of “clean” pieces classified as “clean”  43/50 (86%) 
Total number of “dirty” pieces classified as “dirty” 46/50 (92%) 

Table 9:Test results for processing rate of 46 pieces/minute (Set-1: “Real Dirt”). 

 

The camera line-scan rate is directly proportional to belt speed. For higher processing 

rates the belt speeds are higher and hence the line-scan rates are higher. Processing 
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efficiency is the percentage of correctly identified and correctly classified silverware 

pieces. It can be concluded from the results given above that the processing efficiency 

and processing time are independent of the processing rate. The false “dirty” 

classifications of clean silverware pieces were caused by variations in positions of 

silverware pieces and by shapes of reflections of surroundings onto the silverware pieces. 

The “false” clean classifications of dirty silverware were caused by dirt particles located 

too close to physical features forming “edges” in images, since the neighborhood search 

feature in the inspection algorithm assumes the dirt to be part of the physical feature 

itself. It can be also seen that results using “real dirt” (Tables 7-9) are comparable with 

results using “artificial dirt” (Tables 1-6). Our vision system algorithm allows the setting 

of various tolerances and thresholds, whose values influence the efficiency of the system. 

In general, these values should be tuned initially for optimal performance of the vision 

system.  

 

It is concluded that the vision system developed has a high reliability for identification 

and a reasonable reliability for classifying clean and dirty silverware pieces. The 

accuracy of classification of dirty pieces is more crucial than the accuracy of 

classification of clean pieces. Our vision system algorithm also establishes an initial 

approach to classify specularly reflective objects with small anomalies (i.e. “dirt”). The 

vision system surpasses its minimum throughput target of identifying and inspecting 

silverware pieces at a processing rate of 30 pieces per minute. However there remains 

room for improvement in classification. 
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Figure 28: Images of “Clean” Spoon, Soup Spoon, Knife and Fork (Set-1). 
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 Figure 29: Images of “Clean” Spoon, Soup Spoon, Knife and Fork (Set-2). 
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Figure 30: Images of “Dirty” Spoon, Soup Spoon, Knife and Fork (Set-1). 
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 Figure 31: Images of “Dirty” Spoon, Soup Spoon, Knife and Fork (Set-2). 
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Chapter 5: Conclusions and Recommendations 
 
 
5.1 – Conclusions 

 

This thesis focused on developing a vision system for identification and inspection of 

silverware. A vision system capable of identifying and inspecting silverware pieces was 

developed. The lighting setup was modified in order to reduce shadows and ill-lighted 

regions. Noise lines were eliminated from the image by selecting an appropriate power 

source for the lighting equipment. The current system identifies silverware pieces with an 

accuracy of 100%, classifies clean silverware pieces with an average accuracy of 87%, 

and classifies dirty silverware pieces with an average accuracy of 91%, with the average 

processing time of approximately 0.52 seconds. The maximum processing rate for the 

current setup is approximately 55 pieces per minute. 

 

5.2 – Contributions 

In this thesis we have contributed the following (Refer Appendix-A for code and 

flowcharts): 

- A fast identification algorithm using feature sets to identify objects of any size 

and shape. 

- A technique to evaluate orientation of an object.  

- A technique to evaluate degree of symmetry present (about the longest axis) in an 

object. 
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- A technique to compare and track edges between two images. 

- A technique to detect the presence of surface anomalies. 

- A modification to the existing lighting technique to enhance image quality by 

reducing ill-lighted regions. 

The algorithms developed here lay an initial approach to inspecting surfaces of specularly 

reflective objects. 

 

The algorithm can be easily ported to other applications with minor modifications. The 

algorithm can be used for vegetable sorting and classification in the food industry, for 

metal surface finish testing in the production sector, and in the web-handling industry to 

check shape integrity and surface quality of the web, to name a few examples of other 

applications where it can be employed. 

 

5.3 – Recommendations 

Use of a color camera (using Red-Blue-Green (RGB)) for imaging is expected to produce 

greater efficiency of the inspection system. However, using RGB images instead of 

grayscale images will increase the amount of processing required by roughly three times 

and will also increase the cost by a minimum factor of 2. Use of UV lighting will enhance 

the contrast between the silverware piece and dirt particles, but a UV camera is needed to 

acquire images under UV lighting which will increase camera costs by a factor of 3. Use 

of thermal/Infra-red imaging techniques is expected to eliminate the inefficiencies caused 

by specular reflections and improve the accuracy of the inspection algorithm, but such 

imaging equipment is costly (increases the cost by a factor of 5) to acquire and maintain. 
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Employing texture analysis can enhance the performance of the inspection algorithm, but 

such an analysis requires more processing significantly, which could reduce processing 

rate. Use of a higher resolution camera will yield in better images, and hence better 

inspection results, but higher resolution images will require more processing time. The 

initial approach to inspection of silverware pieces suggested in this thesis can be 

enhanced using one or more of the recommendations above, provided the associated 

drawbacks can be eliminated or tolerated. It is essential to keep in mind that the overall 

cost of the system must be minimized in order to have a viable commercial system. 

Hence we expect that an appropriate trade-off among cost, efficiency, and processing rate 

must be made for a commercially viable system. Cost is likely to be the dominant factor. 
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APPENDIX – A 
 

 Software Code & Flowcharts 
 
NI Vision Libraries are extensively used in the development of the algorithms in this 
thesis. The library has extensive routines to perform various image processing functions. 
The functions frequently employed in this thesis are  
 

- Thresholding 
- Edge detection 
- Rotation 
- Re-sampling 

 
NI algorithms perform thresholding using Histogram based techniques. These include 
clustering, entropy, moments and interclass variance. Edge detection is based on Prewitt, 
Sobel, Laplacian and Gaussian filters. Rotation and re-smapling employ standard zero-
order, bilinear and bi-cubic interpolation techniques. Detailed information about the 
aforementioned can be obtained at the NI website http://www.ni.com in a document titled 
“IMAQ Vision Concepts Manual”. 
 
In what follows, we present 3 flow charts describing various processes in the complete 
pre-processing, identification and inspection procedure along with the code.s 
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Flowchart for Preprocessing Algorithm (See “Prepare_for_Matching” for related code). 
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Flowchart for Identification Algorithm (See “Process_Image” for related code). 
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Flowchart for Inspection Algorithm (See “Inspect_Image” for related code). 
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Code 
File : ImgAn.h 
 
#ifndef C_MY_IMAGE 
#include <atlstr.h> 
 
#include "niimaq.h" 
#include "nivision.h" 
 
class CMyImage 
{ 
public : 
 
 Image * main_image; 
 Image * display_image; 
 Image * edge_image; 
 Image * binary_image; 
 Image * temp_image; 
 Image * temp_image1; 
 Image * match_image; 
 
 int num_proto; 
 int inspect; 
 int write_images; 
 int im_count; 
 
 CString im_name; 
 CString im_path; 
 CString errmsg; 
 
 float *a,*cx,*cy,*ar,*mz,*ml,*sw,*sh,*pm,*pbx,*pby; 
 int * im_sym; 
 CString * pnames; 
 Image ** bi, ** ei, ** pi, ** oei; 
 float icx,icy; 
 float icx2,icy2; 
 float ibx,iby; 
 float area,moment,perimeter; 
 
 float area_tol,moment_tol,peri_tol,soft_tol_scale; 
 float sym_x,sym_y; 
 float sym_fact; 
 
 int piece_found; 
 int is_dirty; 
 
 float bin_th; 
 float edge_th; 
  
public : 
 
 CMyImage(); 
 ~CMyImage(); 
 
 int Load_Image(CString fn); 
 int Load_Proto(CString pt); 
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 int Make_Prototype(CString pt, CString fn); 
 int Rotate_to_Horiz(void); 
 int Collect_Info(void); 
 
 int Process_Image(); 
 int find_proto_info(); 
 
 float Prepare_Angle(float deg,float mx,float my,Rect * bb,float 
ll); 
 int In_Rectangle(PointFloat pp,Rect * bb); 
 int PrepareImage(Image * I,Image * BI); 
 int Prepare_for_Matching(Image * I,Image * mI,Image * eI,Image * 
bI); 
 int Inspect_Image(Image * pe); 
 
 //int Inspect_Image(Image * I, Image * eI,float iml,float 
pml,float rot_ang,float icx,float icy,float cx,float cy); 
 
}; 
 
 
struct belt_data 
{ 
double belt_speed; 
double del_time; 
double belt_max_time; 
double belt_tol; 
double belt_acq_delay; 
}; 
 
#define C_MY_IMAGE 
#endif 
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File : ImgAn.cpp 
 
#include "ImgAn.h" 
#include "niimaq.h" 
#include "nivision.h" 
#include "math.h" 
#include <stdio.h> 
#include <conio.h> 
#include <atlstr.h> 
#include <list> 
using namespace std; 
 
#define PI 3.1415926538 
float sf=1.0f; 
float src_wd=4; 
int ngs=2; 
int ng=2; 
 
void draw_plus(Image * I,float dcx,float dcy,int dx,int dy,float col); 
 
CMyImage::CMyImage() 
{ 
main_image=imaqCreateImage(IMAQ_IMAGE_U8,5); 
display_image=imaqCreateImage(IMAQ_IMAGE_U8,5); 
edge_image=imaqCreateImage(IMAQ_IMAGE_U8,5); 
binary_image=imaqCreateImage(IMAQ_IMAGE_U8,5); 
temp_image=imaqCreateImage(IMAQ_IMAGE_U8,5); 
temp_image1=imaqCreateImage(IMAQ_IMAGE_U8,5); 
match_image=imaqCreateImage(IMAQ_IMAGE_U8,5); 
 
this->bi=NULL; 
this->ei=NULL; 
this->pi=NULL; 
this->oei=NULL; 
this->pnames=0; 
 
this->num_proto=0; 
this->write_images=1; 
this->inspect=1; 
 
this->area_tol = 12.0f; 
this->moment_tol = 12.0f; 
this->peri_tol = 12.0f; 
this->sym_fact = 2.0f; 
this->soft_tol_scale = 1.5f; 
 
this->a=NULL; 
this->cx=NULL; 
this->cy=NULL; 
this->ar=NULL; 
this->mz=NULL; 
this->ml=NULL; 
this->sw=NULL; 
this->sh=NULL; 
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this->pm=NULL; 
this->pbx=NULL; 
this->pby=NULL; 
this->im_sym=NULL; 
this->pnames=NULL; 
 
this->im_path = "c:\\temp_im\\"; 
this->im_count=0; 
 
//this->bin_th = 0.75f; Set - 1 
this->bin_th = 0.625f; 
//this->bin_th = 0.5f; 
this->edge_th = 0.8f; 
} 
 
CMyImage::~CMyImage() 
{ 
int i; 
imaqDispose(main_image); 
imaqDispose(edge_image); 
imaqDispose(display_image); 
imaqDispose(binary_image); 
imaqDispose(temp_image); 
imaqDispose(temp_image1); 
imaqDispose(match_image); 
 
if (bi!=NULL)  
 { 
 for(i=0;i<this->num_proto;i++) imaqDispose(bi[i]); 
 delete[] bi; 
 } 
 
if (ei!=NULL)  
 { 
 for(i=0;i<this->num_proto;i++) imaqDispose(ei[i]); 
 delete[] ei; 
 } 
 
if (pi!=NULL)  
 { 
 for(i=0;i<this->num_proto;i++) imaqDispose(pi[i]); 
 delete[] pi; 
 } 
 
if (oei!=NULL) 
 { 
 for(i=0;i<this->num_proto;i++) 
  { 
  if (im_sym[i]==1) imaqDispose(oei[i]); 
  } 
 delete[] oei; 
 } 
 
if (this->a!=NULL) delete[] a; 
if (this->cx!=NULL) delete[] cx; 
if (this->cy!=NULL) delete[] cy; 
if (this->ar!=NULL) delete[] ar; 
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if (this->mz!=NULL) delete[] mz; 
if (this->ml!=NULL) delete[] ml; 
if (this->sw!=NULL) delete[] sw; 
if (this->sh!=NULL) delete[] sh; 
if (this->pm!=NULL) delete[] pm; 
if (this->pbx!=NULL) delete[] pbx; 
if (this->pby!=NULL) delete[] pby; 
if (this->pnames!=NULL) delete[] pnames; 
if (this->im_sym!=NULL) delete[] im_sym; 
} 
 
int CMyImage::Load_Image(CString fn) 
{ 
int n; 
n=imaqReadFile(this->main_image,fn.GetString(),NULL, NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
return(0); 
} 
 
int CMyImage::Load_Proto(CString pt) 
{ 
CString str,s1,s2,s3,s4; 
char fs[300]; 
char ptf[300]; 
int i,n; 
FILE * fp; 
 
strcpy(ptf,pt.GetString()); 
fp=fopen(ptf,"r"); 
if (fp==NULL) {this->errmsg="Unable to open Prototype File !!";return(-
1);} 
 
fgets(fs,299,fp); 
this->num_proto = atoi(fs); 
if (this->num_proto<=0) {this->errmsg="Corrupt Prototype File 
!!";return(-1);} 
 
this->bi = new Image * [this->num_proto]; 
this->ei = new Image * [this->num_proto]; 
this->oei = new Image * [this->num_proto]; 
this->pi = new Image * [this->num_proto]; 
 
this->a=new float[this->num_proto]; 
this->cx=new float[this->num_proto]; 
this->cy=new float[this->num_proto]; 
this->ar=new float[this->num_proto]; 
this->mz=new float[this->num_proto]; 
this->ml=new float[this->num_proto]; 
this->sw=new float[this->num_proto]; 
this->sh=new float[this->num_proto]; 
this->pm=new float[this->num_proto]; 
this->pbx=new float[this->num_proto]; 
this->pby=new float[this->num_proto]; 
this->im_sym=new int[this->num_proto]; 
this->pnames=new CString[this->num_proto]; 
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for(i=0;i<this->num_proto;i++) 
 { 
 this->bi[i]=imaqCreateImage(IMAQ_IMAGE_U8,5); 
 this->ei[i]=imaqCreateImage(IMAQ_IMAGE_U8,5); 
 this->pi[i]=imaqCreateImage(IMAQ_IMAGE_U8,5); 
 fgets(fs,299,fp);fs[strlen(fs)-1]='\0';str=fs; 
 fgets(fs,299,fp);fs[strlen(fs)-1]='\0';s1=fs; 
 s2="e_";s2=s2 + s1;s2=s2 + ".bmp"; 
 s3="b_";s3=s3 + s1;s3=s3 + ".bmp"; 
 s4="p_";s4=s4 + s1;s4=s4 + ".bmp"; 
 s2 = str + s2; 
 s3 = str + s3; 
 s4 = str + s4; 
 
 this->pnames[i]=s1; 
 n=imaqReadFile(this->ei[i],s2.GetString(),NULL, NULL); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 n=imaqReadFile(this->bi[i],s3.GetString(),NULL, NULL); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 n=imaqReadFile(this->pi[i],s4.GetString(),NULL, NULL); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
  
 fgets(fs,299,fp); 
 this->im_sym[i] = atoi(fs); 
 if (this->im_sym[i]==1) 
  { 
  this->oei[i]=imaqCreateImage(IMAQ_IMAGE_U8,5); 
  fgets(fs,299,fp);fs[strlen(fs)-1]='\0';s1=fs; 
  s2="e_";s2=s2+s1;s2=s2+".bmp"; 
  s2=str+s2; 
  n=imaqReadFile(this->oei[i],s2.GetString(),NULL, NULL); 
  if (n==0) {this->errmsg = 
imaqGetErrorText(imaqGetLastError()); return(-1);} 
  } 
 } 
 
n = this->find_proto_info(); 
return(n); 
} 
 
 
int CMyImage::find_proto_info() 
{ 
int i,j; 
int ww,hh; 
ParticleReport* pr; 
float x,y,area,mx,my,pmr; 
int n,num; 
 
j=0; 
for(i=0;i<this->num_proto;i++) 
 { 
 pr = imaqGetParticleInfo(this->bi[i],TRUE,IMAQ_ALL_INFO,&num); 
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 if (pr==NULL) {this->errmsg = 
imaqGetErrorText(imaqGetLastError()); return(-1);} 
 
 n=imaqCalcCoeff(this->bi[i],&pr[j],IMAQ_AREA,&area); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 this->ar[i]=area; 
 
 n=imaqCalcCoeff(this->bi[i],&pr[j],IMAQ_CENTER_MASS_X,&x); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 this->cx[i]=x; 
 
 n=imaqCalcCoeff(this->bi[i],&pr[j],IMAQ_CENTER_MASS_Y,&y); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 this->cy[i]=y; 
 
 n=imaqCalcCoeff(this->bi[i],&pr[j],IMAQ_PERIMETER,&pmr); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 this->pm[i]=pmr; 
 
 n=imaqCalcCoeff(this->bi[i],&pr[j],IMAQ_INERTIA_XX,&mx); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 n=imaqCalcCoeff(this->bi[i],&pr[j],IMAQ_INERTIA_YY,&my); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 this->mz[i] = mx + my; 
 
 imaqGetImageSize(this->pi[i],&ww,&hh); 
 this->sw[i]=(float)ww; 
 this->sh[i]=(float)hh; 
     
 imaqDispose(pr); 
 } 
 
return(0); 
} 
 
//// --------------- LOGIC BELOW ----------------------- 
// 
 
 
 
int CMyImage::Rotate_to_Horiz(void) 
{ 
// align image to horizontal .... 
 
PixelValue pp; 
ParticleReport* pr; 
float deg,ps,x,y,max_len; 
int j,n,num; 
Rect bbox; 
 
pr = imaqGetParticleInfo(this->binary_image,TRUE,IMAQ_ALL_INFO,&num); 
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if (pr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
if (num==0) return(-2); 
 
ps=0.0f;j=0; 
for(n=0;n<num;n++) 
 if (pr[n].area > ps) 
  { 
  j=n; 
  ps=(float)pr[n].area; 
  } 
 
// find out orientation and centre of mass ... 
 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_ORIENTATION,&deg); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_CENTER_MASS_X,&x); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->icx=x; 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_CENTER_MASS_Y,&y); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->icy=y; 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_MAX_INTERCEPT,&max_len); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
this->ibx = pr[j].boundingBox.left + pr[j].boundingBox.width / 2.0f; 
this->iby = pr[j].boundingBox.top + pr[j].boundingBox.height / 2.0f; 
bbox = 
imaqMakeRect(pr[j].boundingBox.top,pr[j].boundingBox.left,pr[j].boundin
gBox.height,pr[j].boundingBox.width); 
 
deg = this->Prepare_Angle(deg,this->icx,this->icy,&bbox,max_len); 
 
pp.grayscale=0; 
n=imaqRotate(this->main_image,this->main_image,-deg,pp,IMAQ_BILINEAR); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
return(0); 
} 
 
int CMyImage::Collect_Info(void) 
{ 
ParticleReport* pr; 
float area,x,y,pmr,mx,my; 
int n,num,j; 
 
pr = imaqGetParticleInfo(this->binary_image,TRUE,IMAQ_ALL_INFO,&num); 
if (pr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
if (num==0) return(-2); 
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j=0; 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_AREA,&area); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->area=area; 
 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_CENTER_MASS_X,&x); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->icx=x; 
 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_CENTER_MASS_Y,&y); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->icy=y; 
 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_PERIMETER,&pmr); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->perimeter=pmr; 
 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_INERTIA_XX,&mx); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
n=imaqCalcCoeff(this->binary_image,&pr[j],IMAQ_INERTIA_YY,&my); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->moment = mx + my; 
 
imaqDispose(pr); 
imaqFlip(this->temp_image,this->binary_image,IMAQ_HORIZONTAL_AXIS); 
 
pr = imaqGetParticleInfo(this->temp_image,TRUE,IMAQ_ALL_INFO,&num); 
if (pr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
j=0; 
n=imaqCalcCoeff(this->temp_image,&pr[j],IMAQ_CENTER_MASS_X,&x); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->icx2=x; 
 
n=imaqCalcCoeff(this->temp_image,&pr[j],IMAQ_CENTER_MASS_Y,&y); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
this->icy2=y; 
 
this->sym_x = (float)fabs(this->icx - this->icx2); 
this->sym_y = (float)fabs(this->icy - this->icy2); 
 
imaqDispose(pr); 
return(0); 
} 
 
int CMyImage::Make_Prototype(CString pt,CString fn) 
{ 
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Image * II; 
ThresholdData* tinfo; 
PixelValue pp; 
ParticleReport* pr; 
HistogramReport* hr; 
//SelectParticleCriteria pcrit; 
int num; 
int j,n; 
float ps,nf=0.25; 
 
 
Rect roi;  
Point des; 
 
II=imaqCreateImage(IMAQ_IMAGE_U8,5); 
 
des.x=0; 
des.y=0; 
 
// prepare main image ... 
this->PrepareImage(this->main_image,this->binary_image); 
this->Rotate_to_Horiz(); 
this->PrepareImage(this->main_image,this->binary_image); 
 
imaqDuplicate(II,this->main_image); 
 
hr = imaqHistogram(II,3,0,255,this->binary_image); 
if (hr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
pp.grayscale=(hr[0].mean + hr[0].max)/2.0f; 
n = imaqMinConstant(II,II,pp); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
//if (hr[0].mean!=0) pp.grayscale = 255.0f/hr[0].mean; else 
pp.grayscale=1.0f; 
//n = imaqMultiplyConstant(II,II,pp); 
//imaqWriteBMPFile(II,"zdum.bmp",FALSE,NULL); 
 
// calculate edge Image ... 
float kern[9]={-1,-1,-1,-1,8,-1,-1,-1,-1}; 
n = imaqConvolve(this->edge_image,II, kern,3,3,nf,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
num=3; 
tinfo= imaqAutoThreshold(this->temp_image,this-
>edge_image,num,IMAQ_THRESH_CLUSTERING); 
if (tinfo==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
float xx,yy; 
 
//xx=tinfo[num-1].rangeMin * 0.5f + tinfo[num-2].rangeMin * 0.5f; 
xx=tinfo[num-2].rangeMin; 
yy=tinfo[num-1].rangeMax; 
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n = imaqThreshold(this->temp_image,this->edge_image,xx,yy,TRUE,1.0); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
//imaqWriteBMPFile(this->temp_image,"zdum.bmp",FALSE,NULL); 
 
ParticleFilterCriteria cr[1]; 
 
cr[0].parameter = IMAQ_AREA; 
cr[0].lower = 1; 
cr[0].upper = 5*sf; 
cr[0].exclude = FALSE; 
 
//cr[0].parameter = IMAQ_PARTICLE_TO_IMAGE; 
//cr[0].lower = 0; 
//cr[0].upper = 0.005f; 
//cr[0].exclude = FALSE; 
 
n = imaqParticleFilter(this->edge_image,this-
>temp_image,&cr[0],1,TRUE,TRUE); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
pp.grayscale = 255; 
imaqMultiplyConstant(this->edge_image,this->edge_image,pp); 
 
// prepare slightly bigger mask ... 
 
imaqDuplicate(this->temp_image1,this->binary_image); 
n = imaqMorphology(this->temp_image1,this-
>temp_image1,IMAQ_DILATE,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
pr = imaqGetParticleInfo(this->temp_image1,TRUE,IMAQ_ALL_INFO,&num); 
if (pr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
// select biggest particle ...  
// should be only one particle in the image because of prepare image 
... 
 
ps=0.0f;j=0; 
for(n=0;n<num;n++) 
 if (pr[n].area > ps) 
  { 
  j=n; 
  ps=(float)pr[n].area; 
  } 
 
roi.top  = pr[j].boundingBox.top; 
roi.left = pr[j].boundingBox.left; 
roi.height = pr[j].boundingBox.height;  
roi.width = pr[j].boundingBox.width; 
 
// create the logical prototype ... 
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imaqDuplicate(this->temp_image,this->binary_image); 
 
// teach prototype ... 
 
n = imaqSetImageSize(II,roi.width,roi.height); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
n = imaqCopyRect(II,this->temp_image,roi,des); 
 
pp.grayscale = 200; 
imaqMultiplyConstant(II,II,pp); 
pp.grayscale = 50; 
n = imaqAddConstant(II,II,pp); 
 
//if (imaqLearnPattern(II,IMAQ_LEARN_ALL)==0) {this->errmsg = 
imaqGetErrorText(imaqGetLastError()); return(-1);} 
 
// write files now .... 
 
CString ff1,ff2,ff; 
 
// logical prototype ... 
ff=fn; 
ff=ff+".bmp"; 
ff.MakeUpper(); 
 
// visual ... 
n = imaqCopyRect(II,this->main_image,roi,des); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
ff1="p_";ff2=pt;ff1=ff1+ff;ff2=ff2+ff1; 
n = imaqWriteBMPFile(II,ff2.GetString(),FALSE,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
// edge ... 
n = imaqCopyRect(II,this->edge_image,roi,des); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
ff1="e_";ff2=pt;ff1=ff1+ff;ff2=ff2+ff1; 
n = imaqWriteBMPFile(II,ff2.GetString(),FALSE,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
// binary ... 
n = imaqCopyRect(II,this->binary_image,roi,des); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
ff1="b_";ff2=pt;ff1=ff1+ff;ff2=ff2+ff1; 
n = imaqWriteBMPFile(II,ff2.GetString(),FALSE,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
imaqDispose(pr); 
imaqDispose(hr); 
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imaqDispose(II); 
return(0); 
} 
 
// 
////-------------------------------------------------------------------
---------- 
// 
int CMyImage::Prepare_for_Matching(Image * I,Image * mI,Image * 
eI,Image * bI) 
{ 
//HistogramReport * hr; 
ThresholdData * tinfo; 
ParticleReport* pr; 
int n,num,n1; 
PixelValue pp; 
float nf=0.25f; 
Image * II; 
Rect roi; 
Point des; 
float ps; 
 
 
II=imaqCreateImage(IMAQ_IMAGE_U8,5); 
imaqDuplicate(II,bI); 
 
n = imaqMorphology(this->temp_image1,II,IMAQ_DILATE,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
// select the largest particle ... 
pr = imaqGetParticleInfo(this->temp_image1,TRUE, IMAQ_BASIC_INFO,&n); 
if (pr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
if (n==0) return(-2); 
 
num=0; 
ps = (float)pr[num].area; 
for(n1=0;n1<n;n1++) 
 { 
 if (pr[n1].area > ps) 
  { 
  ps=(float)pr[n1].area; 
  num = n1; 
  } 
 } 
 
roi.top  = pr[num].boundingBox.top; 
roi.left = pr[num].boundingBox.left; 
roi.height = pr[num].boundingBox.height;  
roi.width = pr[num].boundingBox.width; 
  
imaqSetImageSize(bI,roi.width,roi.height); 
imaqSetImageSize(mI,roi.width,roi.height); 
 
des.x=0; 
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des.y=0; 
 
n = imaqCopyRect(bI,II,roi,des); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
n = imaqCopyRect(mI,I,roi,des); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
//hr = imaqHistogram(mI,3,0,255,bI); 
//if (hr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
//pp.grayscale = hr[0].mean; 
//n = imaqMinConstant(mI,mI,pp); 
//if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
//imaqDispose(pr); 
 
// calculate edge Image ... 
float kern[9]={-1,-1,-1,-1,8,-1,-1,-1,-1}; 
n = imaqConvolve(eI,mI, kern,3,3,nf,NULL); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
num=3; 
tinfo = imaqAutoThreshold(this-
>temp_image,eI,num,IMAQ_THRESH_CLUSTERING); 
if (tinfo==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
float xx,yy,ff=0.8f; 
 
//xx=(tinfo[num-1].rangeMin + tinfo[num-2].rangeMin)/2.0f; 
//xx=tinfo[num-2].rangeMin; 
xx=tinfo[num-2].rangeMin * ff + tinfo[num-1].rangeMin * ( 1.0f - ff); 
yy=tinfo[num-1].rangeMax; 
 
n = imaqThreshold(this->temp_image,eI,xx,yy,TRUE,1.0); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
imaqDuplicate(eI,this->temp_image); 
 
//pr = imaqGetParticleInfo(this->temp_image,TRUE,IMAQ_ALL_INFO,&iii); 
//if (pr==NULL ){this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
ParticleFilterCriteria cr[2]; 
int n_cr=2; 
 
//cr[0].parameter = IMAQ_AREA; 
//cr[0].lower = 1; 
//cr[0].upper = 5*sf; 
//cr[0].exclude = FALSE; 
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//cr[0].parameter = IMAQ_NUM_HOLES; 
//cr[0].exclude = FALSE; 
//cr[0].lower=0; 
//cr[0].upper=1; 
// 
//cr[1].parameter = IMAQ_AREA_OF_HOLES; 
//cr[1].exclude = FALSE; 
//cr[1].lower=0; 
//cr[1].upper=1; 
// 
//iii = imaqParticleFilter(this->edge_image,this-
>edge_image,cr,2,TRUE,TRUE); 
//if (pr==NULL ){this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
cr[0].parameter = IMAQ_PARTICLE_TO_IMAGE; 
cr[0].lower = 0; 
cr[0].upper = 0.01f; 
cr[0].exclude = FALSE; 
 
cr[1].parameter = IMAQ_ELONGATION; 
cr[1].lower = 0; 
cr[1].upper = 2; 
cr[1].exclude = FALSE; 
 
n = imaqParticleFilter(eI,this->temp_image,cr,n_cr,TRUE,FALSE); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
//imaqSizeFilter(eI,eI,TRUE,2,IMAQ_KEEP_LARGE,NULL); 
 
pp.grayscale = 255; 
imaqMultiplyConstant(eI,eI,pp); 
 
//imaqWriteBMPFile(eI,"z_edge.bmp",FALSE,NULL); 
//imaqWriteBMPFile(II,"z_auto.bmp",FALSE,NULL); 
 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
imaqDispose(II); 
imaqDispose(pr); 
return(0); 
} 
 
//---------------------------------------------------------------------
-------- 
 
int CMyImage::PrepareImage(Image * I,Image * BI) 
{ 
int n,n1,num; 
float ps,xx,yy; 
ThresholdData* tinfo; 
ParticleReport* pr; 
HistogramReport* hr; 
PixelValue pp; 
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float m1,m2,m3; 
 
// 
//n = imaqEqualize(I,I,0.0f,255.0f,NULL); 
//if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
hr = imaqHistogram(I,3,0.0f,255.0f,NULL); 
if (hr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
m1 = hr->max; 
m2 = hr->min; 
m3 = 255 / (m1 - m2); 
 
pp.grayscale = m2; 
n = imaqSubtractConstant(I,I,pp); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
pp.grayscale = m3; 
n = imaqMultiplyConstant(I,I,pp); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
 
// calculate Binary Image ... 
tinfo= imaqAutoThreshold(BI,I,2,IMAQ_THRESH_CLUSTERING); 
if (tinfo==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
xx=tinfo->rangeMin+(tinfo->rangeMax-tinfo->rangeMin)*this->bin_th; 
yy=255; 
 
n = imaqThreshold(BI,I,xx,yy,TRUE,1.0); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
 
// fill holes ... 
n = imaqFillHoles(BI,BI,TRUE); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
// remove all particles touching border ... 
n = imaqRejectBorder(BI,BI,TRUE); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
// select the largest particle ... 
pr = imaqGetParticleInfo(BI,TRUE, IMAQ_ALL_INFO,&n); 
if (pr==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
if (n>0) 
 { 
 num=0; 
 ps = (float)pr[num].area; 
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 for(n1=0;n1<n;n1++) 
  { 
  if (pr[n1].area > ps) 
   { 
   ps=(float)pr[n1].area; 
   num = n1; 
   } 
  } 
 
 
 n = imaqCalcCoeff(BI,&pr[num],IMAQ_CENTER_MASS_X,&xx); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
 n = imaqCalcCoeff(BI,&pr[num],IMAQ_CENTER_MASS_Y,&yy); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
 // take out all other particles ... 
 Point pt; 
 
 pt.x = (int)xx; 
 pt.y = (int)yy; 
 
 n = imaqMagicWand(BI,BI,pt,0.0f,TRUE,1.0f); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
 // mask the main image ... 
 n = imaqMultiply(I,I,BI); 
 if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 } 
else 
 { 
 return(-2); 
 } 
 
imaqDispose(pr); 
imaqDispose(hr); 
return(0); 
} 
 
 
float CMyImage::Prepare_Angle(float deg,float mx,float my,Rect * 
bb,float ll) 
{ 
float fin_deg; 
float degr; 
PointFloat pf1,pf2; 
int pr1,pr2; 
 
ll=ll/2.0f; 
fin_deg=deg; 
 
if (fin_deg < 90.0) 
 { 
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 degr=fin_deg*(float)PI/180.0f; 
 
 pf1.x = mx + ll*cosf(degr); 
 pf1.y = my - ll*sinf(degr); 
 
 pf2.x = mx - ll*cosf(degr); 
 pf2.y = my + ll*sinf(degr); 
 
 pr1=In_Rectangle(pf1,bb); 
 pr2=In_Rectangle(pf2,bb); 
 
 while((pr1==1)&&(pr2==1))  // both inside ... increase 
length ... 
  { 
  ll++; 
  pf1.x = mx + ll*cosf(degr); 
  pf1.y = my - ll*sinf(degr); 
 
  pf2.x = mx - ll*cosf(degr); 
  pf2.y = my + ll*sinf(degr); 
 
  pr1=In_Rectangle(pf1,bb); 
  pr2=In_Rectangle(pf2,bb); 
  } 
 
 while((pr1==0)&&(pr2==0))  // both outside ... decrease 
length ... 
  { 
  ll--; 
  pf1.x = mx + ll*cosf(degr); 
  pf1.y = my - ll*sinf(degr); 
 
  pf2.x = mx - ll*cosf(degr); 
  pf2.y = my + ll*sinf(degr); 
 
  pr1=In_Rectangle(pf1,bb); 
  pr2=In_Rectangle(pf2,bb); 
  } 
 
 
 if ((pr1==0)&&(pr2==1)) fin_deg=fin_deg;   // proper 
orientation ... 
 if ((pr1==1)&&(pr2==0)) fin_deg=fin_deg+180.0f;  // head on 
other side ... 
 
 } 
else 
 { 
 degr=(180.0f-fin_deg)*(float)PI/180.0f; 
 
 pf1.x = mx + ll*cosf(degr); 
 pf1.y = my + ll*sinf(degr); 
 
 pf2.x = mx - ll*cosf(degr); 
 pf2.y = my - ll*sinf(degr); 
 
 pr1=In_Rectangle(pf1,bb); 
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 pr2=In_Rectangle(pf2,bb); 
 
 while((pr1==1)&&(pr2==1))  // both inside ... increase 
length ... 
  { 
  ll++; 
  pf1.x = mx + ll*cosf(degr); 
  pf1.y = my + ll*sinf(degr); 
 
  pf2.x = mx - ll*cosf(degr); 
  pf2.y = my - ll*sinf(degr); 
 
  pr1=In_Rectangle(pf1,bb); 
  pr2=In_Rectangle(pf2,bb); 
  } 
 
 while((pr1==0)&&(pr2==0))  // both outside ... decrease 
length ... 
  { 
  ll--; 
  pf1.x = mx + ll*cosf(degr); 
  pf1.y = my + ll*sinf(degr); 
 
  pf2.x = mx - ll*cosf(degr); 
  pf2.y = my - ll*sinf(degr); 
 
  pr1=In_Rectangle(pf1,bb); 
  pr2=In_Rectangle(pf2,bb); 
  } 
 
 if ((pr1==0)&&(pr2==1)) fin_deg=fin_deg+180.0f;  // head on 
other side ... 
 if ((pr1==1)&&(pr2==0)) fin_deg=fin_deg;   // proper 
orientation ... 
 } 
 
return(fin_deg); 
} 
 
int CMyImage::In_Rectangle(PointFloat pp,Rect * bb) 
{ 
int res=0; 
if ((pp.x >= bb->left)&&(pp.x <= (bb->left+bb->width))&&(pp.y >= bb-
>top) && (pp.y <= (bb->top+bb->height))) res=1; 
return(res); 
} 
 
 
// ---------------------------------------------------------------- 
int CMyImage::Process_Image() 
{ 
float * ers; 
float e1,e2,e3,e4; 
int i,j,ec; 
int c1,c2; 
float tot_tol; 
int iii; 
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// PRI 
 
// prepare image ... 
//if (this->write_images==1) 
// { 
// imaqWriteBMPFile(this->main_image,this-
>im_name.GetString(),FALSE,NULL); 
// } 
this->piece_found=-1; 
this->im_count++; 
this->is_dirty = -2; 
 
this->area = -1; 
this->moment = -1; 
this->perimeter = -1; 
 
//printf("\n [%d : %04d : %d]",this->piece_found,this->im_count,this-
>is_dirty); 
 
iii=this->PrepareImage(this->main_image,this->binary_image); 
if (iii==-1) return(-1); 
if (iii==-2)  
 { 
 this->piece_found=-1; 
 return(0); 
 } 
if (this->Rotate_to_Horiz()==-1) return(-1); 
if (this->PrepareImage(this->main_image,this->binary_image)==-1) 
return(-1); 
if (this->Prepare_for_Matching(this->main_image,this->match_image,this-
>edge_image,this->binary_image)==-1) return(-1); 
// 
//// -- we are not interested in edges which do not have holes .... 
 
//ParticleFilterCriteria cr[2]; 
//cr[0].parameter = IMAQ_NUM_HOLES; 
//cr[0].exclude = FALSE; 
//cr[0].lower=0; 
//cr[0].upper=1; 
// 
//cr[1].parameter = IMAQ_AREA_OF_HOLES; 
//cr[1].exclude = FALSE; 
//cr[1].lower=0; 
//cr[1].upper=1; 
// 
//iii = imaqParticleFilter(this->edge_image,this-
>edge_image,cr,2,TRUE,TRUE); 
//if (iii==0){this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
CString ss,s1; 
s1.Format("%04d.bmp",im_count); 
 
//ss=this->im_path + "main"; 
//ss=ss+s1; 
//imaqWriteBMPFile(this->main_image,ss.GetString(),FALSE,NULL); 

 75



 

 
ss=this->im_path + "edge"; 
ss=ss+s1; 
imaqWriteBMPFile(this->edge_image,ss.GetString(),FALSE,NULL); 
 
 
iii=this->Collect_Info(); 
if (iii==-1) return(-1); 
 
// evaluate feature set .... 
ers = new float[this->num_proto*4]; 
ec=0; 
tot_tol = (this->area_tol + this->peri_tol + this->moment_tol)/3.0f * 
this->soft_tol_scale; 
 
//printf("\nImage : %s",this->im_name.GetString()); 
if (iii==0) 
 { 
 for(i=0;i<this->num_proto;i++) 
  { 
  CString ss; 
 
  e1=(float)fabs(this->ar[i]-this->area)/this->ar[i]*100.0f; 
  e2=(float)fabs(this->mz[i]-this->moment)/this-
>mz[i]*100.0f; 
  e3=(float)fabs(this->pm[i]-this->perimeter)/this-
>pm[i]*100.0f; 
  e4=e1+e2+e3; 
  //printf("\n\t## %.3f  %.3f  %.3f  %.3f",e1,e2,e3,e4*1.5); 
  // 
  //ss.Format("%s : %.2f , %.2f , %.2f",this-
>pnames[i],e1,e2,e3); 
  //AfxGetMainWnd()->MessageBox(ss.GetString()); 
  c1=0; 
  c2=0; 
  if ((e1<=this->area_tol)&&(e2<=this-
>moment_tol)&&(e3<=this->peri_tol)) c1=1; 
  if (e4 <= tot_tol) c2=1; 
  if ((c1==1)||(c2==1)) 
   { 
   ers[ec*4]=e1; 
   ers[ec*4+1]=e2; 
   ers[ec*4+2]=e3; 
   ers[ec*4+3]=(float)i; 
   ec++; 
   } 
  } 
 
 //this->piece_found = -1; 
 if (ec>0) 
  { 
  j=(int)ers[3]; 
  int mf=0; 
  for(i=0;i<ec;i++) 
   { 
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   if 
((ers[i*4]<ers[mf*4])&&(ers[i*4+1]<ers[mf*4+1])&&(ers[i*4+2]<ers[mf*4+2
])) 
    { 
    mf = i; 
    j=(int)ers[i*4+3]; 
    } 
   } 
  this->piece_found=j; 
  } 
 } 
 
if ((this->piece_found!=-1)&&(this->inspect==1)) 
 { 
 // inspect call ... 
 if (this->im_sym[this->piece_found]==1) 
  { 
  float d1; 
  float d2; 
  float mdx1,mdy1,mdx2,mdy2; 
  mdx1 = (this->cx[this->piece_found] - this->icx); 
  mdy1 = (this->cy[this->piece_found] - this->icy); 
  d1=mdx1*mdx1 + mdy1*mdy1; 
 
  mdx2 = (this->cx[this->piece_found] - this->icx2); 
  mdy2 = (this->cy[this->piece_found] - this->icy2); 
  d2=mdx2*mdx2 + mdy2*mdy2; 
 
  //CString ss; 
  //ss.Format("%f,%f && %f,%f",mdx1,mdy1,mdx2,mdy2); 
  //AfxGetMainWnd()->MessageBox(ss.GetString()); 
 
  if (d1<d2) 
   { 
   this->sym_x = (float)fabs(mdx1)/2; 
   this->sym_y = (float)fabs(mdy1)/2; 
   if (this->Inspect_Image(this->ei[this-
>piece_found])==-1) return(-1); 
   } 
  else 
   { 
   this->sym_x = (float)fabs(mdx2)/2; 
   this->sym_y = (float)fabs(mdy2)/2; 
   if (this->Inspect_Image(this->oei[this-
>piece_found])==-1) return(-1); 
   } 
 
  } 
 else 
  { 
  if (this->Inspect_Image(this->ei[this->piece_found])==-1) 
return(-1); 
  } 
 } 
 
return(0); 
} 
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int CMyImage::Inspect_Image(Image * pe) 
{ 
int isdirty=0; 
unsigned char *ea,*ia,*ba; 
PixelValue pp; 
int i,j,a,b; 
int ww,hh; 
int w,h; 
int pid; 
int n1,ngsl,ngl; 
int stx,stpx,sty,stpy; 
int n; 
 
Rect rr; 
Image *tI,*zI; 
 
tI  = imaqCreateImage(IMAQ_IMAGE_U8,5); 
zI  = imaqCreateImage(IMAQ_IMAGE_U8,5); 
 
// resize image ... 
 
pid = this->piece_found; 
 
imaqGetImageSize(pe,&w,&h); 
 
rr = imaqMakeRect(0,0,h,w); 
n1 = imaqResample(zI,this-
>edge_image,w,h,IMAQ_ZERO_ORDER,IMAQ_NO_RECT); 
 
//imaqWriteBMPFile(zI,"ztest_edge.bmp",FALSE,NULL); 
//imaqWriteBMPFile(pe,"zprot_edge.bmp",FALSE,NULL); 
// 
//pp.grayscale = 255; 
//imaqDivideConstant(pe,pe,pp); 
//pp.grayscale = 255; 
//imaqDivideConstant(zI,zI,pp); 
// 
//pp.grayscale = 75; 
//imaqMultiplyConstant(pe,pe,pp); 
//pp.grayscale = 150; 
//imaqMultiplyConstant(zI,zI,pp); 
//imaqAdd(tI,zI,pe); 
//imaqWriteBMPFile(tI,"zover.bmp",FALSE,NULL); 
 
 
ia=(unsigned char *)imaqImageToArray(zI,IMAQ_NO_RECT,&ww,&hh); 
if (ia==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
ea=(unsigned char *)imaqImageToArray(pe,IMAQ_NO_RECT,&ww,&hh); 
if (ea==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
ba=(unsigned char *)imaqImageToArray(pe,IMAQ_NO_RECT,&ww,&hh); 
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if (ba==NULL) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
 
list <Point> elist,dlist; 
list <Point>::iterator tpt; 
Point p1,p2; 
int done=0;//,oi,oj; 
long count=0; 
 
for(i=0;i<ww;i++) 
for(j=0;j<hh;j++) 
 { 
 if (ia[i+j*ww]!=0) count++; 
 ba[i+j*ww]=0; 
 } 
 
for(i=0;i<ww;i++) 
for(j=0;j<hh;j++) 
 if ((ea[i+j*ww]!=0)&&(ia[i+j*ww]==0)) 
  ia[i+j*ww]=100; 
 
i=0;j=0; 
 
if (this->sym_x > this->sym_y) 
 { 
 ngsl = (int)ceil(this->sym_x * this->sym_fact); 
 } 
else 
 { 
 ngsl = (int)ceil(this->sym_y * this->sym_fact); 
 } 
 
if (ngsl==0) ngsl=1; 
 
int nn_1 = (int)ceil(src_wd * this->sym_fact); 
 
if (nn_1 > ngsl) ngsl = nn_1; 
 
//CString ss; 
//ss.Format("%f , %f - %d",this->sym_x,this->sym_y,ngsl); 
//AfxGetMainWnd()->MessageBox(ss.GetString()); 
 
ngl = ngsl; 
 
// find out all points to be examined ... 
while(done==0) 
 { 
 if (ia[i+j*ww]==255) 
  { 
  p1.x=i; 
  p1.y=j; 
  elist.push_back(p1); 
  ia[i+j*ww]=200; //already taken ... 
  count--; 
  stx=i-ngsl;if (stx<0) stx=0; 
  stpx=i+ngsl;if (stpx>=ww) stpx=ww-1; 
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  sty=j-ngsl;if (sty<0) sty=0; 
  stpy=j+ngsl;if (stpy>=hh) stpy=hh-1; 
  for(a=stx;a<=stpx;a++) 
  for(b=sty;b<=stpy;b++) 
   if (ia[a+b*ww]==255) 
    { 
    i=a; 
    j=b; 
    a=stpx+1; 
    b=stpy+1; 
    } 
  } 
 else 
  { 
  for(a=0;a<ww;a++) 
  for(b=0;b<hh;b++) 
   if (ia[a+b*ww]==255)  
    { 
    i=a; 
    j=b; 
    a=ww; 
    b=hh; 
    } 
  } 
 if (count==0) done=1; 
 } 
 
// edges will be in 200 .... 
 
 
n=imaqArrayToImage(zI,ia,ww,hh); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
int dcx,dcy,dx,dy; 
int nf; 
 
pp.grayscale=1; 
dcx=0; 
dcy=0; 
isdirty=0; 
 
tpt=elist.begin(); 
p2.x=((Point)(*tpt)).x; 
p2.y=((Point)(*tpt)).y; 
 
for(tpt=elist.begin();tpt!=elist.end();tpt++) // process whole list 
... 
 { 
 p1.x=((Point)(*tpt)).x; 
 p1.y=((Point)(*tpt)).y; 
 
 dx=abs(p1.x-p2.x); 
 dy=abs(p1.y-p2.y); 
 
 nf=0; 
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 if ((dx>ngsl)||(dy>ngsl))  
  { 
  stx = p1.x - ngl + dcx; 
  stpx = p1.x + ngl + dcx; 
 
  sty = p1.y - ngl + dcy; 
  stpy = p1.y + ngl + dcy; 
 
  if (stx<0) stx=0; 
  if (stpx>=ww) stpx=ww-1; 
 
  if (sty<0) sty=0; 
  if (stpy>=hh) stpy=hh-1; 
 
  for(a=stx;a<=stpx;a++) 
  for(b=sty;b<=stpy;b++) 
   if (ea[a+b*ww]!=0) 
    { 
    dcx=a-p1.x; 
    dcy=b-p1.y; // update dcx , dcy ... 
 
    p2.x=p1.x; 
    p2.y=p1.y; 
 
    nf=1; 
 
    a = stpx+1; 
    b = stpy+1; 
    } 
   
  if (nf==0) // might not be following patterns ... so try 
again ... 
   {dcx=0;dcy=0;} 
 
  } // discontinuous edge .... 
 
 if (nf==0) 
  { 
  stx = p1.x - ngl + dcx; 
  stpx = p1.x + ngl + dcx; 
 
  sty = p1.y - ngl + dcy; 
  stpy = p1.y + ngl + dcy; 
 
  if (stx<0) stx=0; 
  if (stpx>=ww) stpx=ww-1; 
 
  if (sty<0) sty=0; 
  if (stpy>=hh) stpy=hh-1; 
 
  for(a=stx;a<=stpx;a++) 
  for(b=sty;b<=stpy;b++) 
   if (ea[a+b*ww]!=0) 
    { 
    dcx=a-p1.x; 
    dcy=b-p1.y; // update dcx , dcy ... 
 

 81



 

    p2.x=p1.x; 
    p2.y=p1.y; 
 
    nf=1; 
 
    a = stpx+1; 
    b = stpy+1; 
    } 
  } 
 
 if (nf!=1) // dirty ... 
  { 
  i = (int)p1.x; 
  j = (int)p1.y; 
  ba[i+j*ww]=255; 
  isdirty=1; 
  } 
 
 } 
 
n=imaqArrayToImage(tI,ba,ww,hh); 
if (n==0) {this->errmsg = imaqGetErrorText(imaqGetLastError()); 
return(-1);} 
 
imaqDispose(ia); 
imaqDispose(ea); 
imaqDispose(ba); 
 
 
if (isdirty==1) 
 { 
 ParticleReport * pr;int num; 
 pr = imaqGetParticleInfo(tI,TRUE,IMAQ_ALL_INFO,&num); 
 ParticleFilterCriteria cr[1]; 
 //cr[0].parameter = IMAQ_MAX_INTERCEPT; 
 //cr[0].lower = 1; 
 //cr[0].upper = 2*sf; 
 //cr[0].exclude = FALSE; 
 
 //cr[0].parameter = IMAQ_PERIMETER; 
 //cr[0].lower = 1; 
 //cr[0].upper = 4*sf; 
 //cr[0].exclude = FALSE; 
 
 cr[0].parameter = IMAQ_AREA; 
 cr[0].lower = 0; 
 cr[0].upper = 4*sf; 
 cr[0].exclude = FALSE; 
 
 imaqParticleFilter(tI,tI,&cr[0],1, TRUE,TRUE); 
 pr = imaqGetParticleInfo(tI,TRUE,IMAQ_BASIC_INFO,&num); 
 
 if (num==0) isdirty=0;  
  else  
  { 
  imaqAdd(zI,zI,tI); 
  } 
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 } 
 
 
if (!elist.empty()) elist.clear(); 
if (!dlist.empty()) dlist.clear(); 
 
if ((this->write_images == 1)&&(isdirty==1)) 
 { 
 CString ss; 
 ss.Format("z_%s.bmp",this->im_name.GetString()); 
 ss = this->im_path + ss; 
 imaqWriteBMPFile(zI,ss.GetString(),FALSE,NULL); 
 } 
 
this->is_dirty = isdirty; 
 
imaqDispose(tI); 
imaqDispose(zI); 
return(0); 
} 
 
 
 
void draw_plus(Image * I,float dcx,float dcy,int dx,int dy,float col) 
{ 
Point p1,p2,p3,p4; 
 
p1.x=(int)dcx-dx; 
p1.y=(int)dcy; 
 
p2.x=(int)dcx+dx; 
p2.y=(int)dcy; 
 
imaqDrawLineOnImage(I,I,IMAQ_DRAW_VALUE,p1,p2,col);  
 
p3.x=(int)dcx; 
p3.y=(int)dcy-dy; 
 
p4.x=(int)dcx; 
p4.y=(int)dcy+dy; 
 
imaqDrawLineOnImage(I,I,IMAQ_DRAW_VALUE,p3,p4,col); 
} 
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File : main.cpp 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <process.h> 
#include <conio.h> 
#include <time.h> 
 
#include "ImgAn.h" 
 
//int prog_stat; 
char con_file[]="c:\\temp_im\\config\\config.txt"; 
char con_path[]="c:\\temp_im\\config\\"; 
char tt_file[]="c:\\temp_im\\forke.bmp"; 
char proto_file[200]; 
 
struct belt_data belt; 
CMyImage * img1; 
 
INTERFACE_ID int_id; 
SESSION_ID ssn_id; 
long sig_count=0; 
long im_count; 
int sys_busy=0; 
int waiting; 
int need_pr; 
int err_oc; 
int service_ret; 
int kp; 
int needs_del=-1; 
int prog_stat=0; 
int belt_control; 
int trig_count; 
 
clock_t last_trig,curr_trig; 
double min_trig,trig_dur,max_trig; 
double belt_acq; 
double belt_tol; 
double min_trig_th; 
 
clock_t tstart,tstop; 
int first_trig; 
 
Image ** im;  
Rect acqRect; 
FILE * mfp; 
 
int belt_calibrate(void); 
int load_prototypes(void); 
int make_prototype(void); 
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int process_pieces(void); 
int stop_process(void); 
int read_config_file(void); 
int write_config_file(void); 
int process_pieces(void); 
 
 
void errChk(IMG_ERR err); 
void my_sleep(clock_t wait ); 
uInt32 process_routine(SESSION_ID sid, IMG_ERR err, uInt32 signal, 
void* userdata); 
uInt32 calibrate_routine(SESSION_ID sid, IMG_ERR err, uInt32 signal, 
void* userdata); 
void closing_routines(); 
int starting_routines(); 
 
void main() 
{ 
int done=0; 
char ch,ch1; 
int retval; 
 
img1= new CMyImage(); 
img1->inspect=1; 
img1->write_images=1; 
belt_control=0; 
min_trig_th = 0.8; 
belt.belt_acq_delay = 0.05; 
 
while(!done) 
 { 
 if ((kbhit())||(prog_stat<0)) 
  { 
  ch=getch(); 
  if (ch==27)  
   { 
   done=1; 
   closing_routines(); 
   } 
  else 
   { 
   prog_stat=-prog_stat; 
   } 
  } 
 //done=1; 
  
 if (prog_stat==0) 
  { 
  printf("\n>> Performing STARTUP routines ..."); 
  if (starting_routines()!=-1) 
   { 
   if (belt_control==1)  
    { 
    prog_stat=1; 
    } 
   else  
    { 
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    prog_stat=2; 
    } 
   } 
  else 
   { 
   done=1; 
   break; 
   } 
  } 
 
 if (prog_stat==1)  // calibrate belt ... 
  { 
  printf("\n>> START BELT & ENCODER !! Press ENTER to 
continue ..."); 
  ch1=0; 
  while((ch1!=13)&&(ch1!=27)) 
   { 
   ch1=getch(); 
   } 
  if (ch1!=27)  
   { 
   retval = belt_calibrate(); 
   if (retval!=-1) prog_stat=2; 
   } 
  else 
   { 
   printf("\n>> To QUIT press ESC again !!"); 
   prog_stat=-prog_stat; 
   } 
  } 
  
 if (prog_stat==2) 
  { 
  printf("\n>> L - Load Prototypes | M - Make Prototypes 
<M/L> : "); 
   
  ch1=0; 
 
 while(!((ch1=='m')||(ch1=='M')||(ch1=='L')||(ch1=='l')||(ch1==27)
)) 
   { 
   ch1=getch(); 
   } 
 
  if ((ch1=='l')||(ch1=='L')) 
   { 
   CString ss=proto_file; 
   if (img1->Load_Proto(ss)==-1)  
    { 
    printf("\n>> ERROR : %s",img1-
>errmsg.GetString()); 
    } 
   else 
    { 
    printf("\n>> Prototypes Loaded successfully 
!!"); 
    prog_stat=3; 
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    } 
   } 
 
  if ((ch1=='M')||(ch1=='m')) 
   { 
   char ss[300],nm[300]; 
   CString s1; 
   printf("\n>> Prototype File (including path) : "); 
   fflush(stdin); 
   gets(ss); 
   printf(">> Enter Prototype Name. Do not give 
extensions : "); 
   fflush(stdin); 
   gets(nm); 
   if (img1->Load_Image(ss)==-1) 
    { 
    printf("\n>> ERROR : %s",img1-
>errmsg.GetString()); 
    } 
   else 
    { 
    CString pt; 
    s1=ss; 
    int pos=s1.ReverseFind('\\'); 
    if (pos==-1) pt=""; 
    else pt=s1.Left(pos+1); 
    //printf("\n[%s]\n[%s]",pt.GetString(),nm); 
    if (img1->Make_Prototype(pt,nm)==0) 
     { 
     printf("\n>> Prototype successfully 
made."); 
     } 
    else 
     { 
     printf("\n>> ERROR : %s !!",img1-
>errmsg.GetString()); 
     } 
    } 
   } 
 
  if (ch1==27) 
   { 
   printf("\n>> To QUIT press ESC again !!"); 
   prog_stat=-prog_stat; 
   } 
  } 
 
 if (prog_stat==3)  // process pieces .... 
  { 
   /// AAAAAAAA 
  printf("\n>> Press ENTER to begin processing pieces ..."); 
  ch1=0; 
  while((ch1!=13)&&(ch1!=27)) 
   { 
   ch1=getch(); 
   } 
  if (ch1!=27)  
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   { 
   CString ss; 
   ss=con_path; 
   ss=ss+"results.txt"; 
   printf("\n>> Feed pieces ..."); 
   mfp=fopen(ss.GetString(),"r"); 
   if (mfp!=NULL) 
    { 
    __time64_t long_time; 
    struct tm * ttm; 
 
    fclose(mfp); 
    _time64( &long_time ); 
    ttm = _localtime64( &long_time ); 
 
    CString st; 
    st.Format("RR_%02d%02d_%02d%02d%02d.txt",ttm-
>tm_mon,ttm->tm_mday,ttm->tm_hour,ttm->tm_min,ttm->tm_sec); 
    st=con_path+st; 
    rename(ss.GetString(),st.GetString()); 
    } 
   mfp=fopen(ss.GetString(),"w"); 
   process_pieces(); 
   fclose(mfp); 
   prog_stat=4; 
    
   printf("\n\n>> Press ENTER to continue ... !!"); 
   ch=0; 
   while((ch!=13)&&(ch!=27)) 
    { 
    ch=getch(); 
    } 
   if (ch==27) 
    { 
    printf("\n>> To QUIT press ESC again !!"); 
    prog_stat=-prog_stat; 
    } 
   } 
  else 
   { 
   printf("\n>> To QUIT press ESC again !!"); 
   prog_stat=-prog_stat; 
   } 
  } 
 if (prog_stat==4) 
  { 
  closing_routines(); 
  prog_stat=0; 
  } 
 if (prog_stat==5) 
  { 
  // debug routine ... 
  clock_t t1,t2; 
  img1->Load_Proto(proto_file); 
  img1->Load_Image(tt_file); 
  img1->im_name = "test.bmp"; 
  t1=clock(); 
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  img1->Process_Image(); 
  t2=clock(); 
  printf("\nTook : %f",(double)(t2-t1)/CLOCKS_PER_SEC); 
  done=1; 
  } 
 
 // end of while ... 
 
 } 
printf("\n\n>> TERMINATING PROGRAM ..."); 
//closing_routines(); 
ch=getch(); 
delete img1; 
} 
 
int belt_calibrate(void) 
{ 
int done=0; 
double del_err1,del_err2; 
char ch; 
int choice; 
float ff; 
CString ss; 
 
im_count=0; 
first_trig=-1; 
service_ret=1; 
 
ss=con_path; 
ss=ss+"belt.txt"; 
mfp = fopen(ss.GetString(),"w"); 
//printf("\nStart Encoder & Belt ... "); 
 
printf("\n>> CALIBRATION STARTED !!"); 
last_trig=clock(); 
 
// capture trigger ....... 
errChk(imgSessionWaitSignalAsync(ssn_id,IMG_EXT_TRIG2,IMG_TRIG_POLAR_AC
TIVEH,calibrate_routine,NULL)); 
while(!done) 
 { 
 if (im_count >= 15) {done=1;service_ret=0;} 
 } 
 
// end trigger .... 
errChk(imgSessionTriggerClear(ssn_id)); 
fprintf(mfp,"\nMIN : %f",min_trig); 
fprintf(mfp,"\nMAX : %f",max_trig); 
fclose(mfp); 
printf("\n>> CALIBRATION ENDED !!"); 
 
del_err1 = fabs(min_trig - belt.del_time)/belt.del_time * 100.0; 
del_err2 = fabs(max_trig - belt.belt_max_time)/belt.belt_max_time * 
100.0; 
if ((del_err1 > belt.belt_tol)||(del_err2 > belt.belt_tol)) // belt 
speed has changed too much ... 
 { 
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 printf("\n\n>> Belt Speed has changed. \n>> Do you want to set 
current belt speed as default ? <Y/N> : "); 
 ch=getch(); 
 if ((ch=='y')||(ch=='Y')) choice=1; else choice=0; 
 if (choice==1) 
  { 
  printf("\nEnter corresponding belt speed : "); 
  scanf("%f",&ff); 
  belt.belt_speed = (double)ff; 
  belt.del_time = min_trig; 
  belt.belt_max_time = max_trig; 
  write_config_file(); 
  return(0); 
  } 
 else  
  {  
  return(-1); 
  } 
 } 
else 
 { 
 printf("\n>> Belt Speed within tolerance."); 
 } 
 
return(0); 
} 
 
int starting_routines() 
{ 
if (read_config_file()==-1) 
 { 
 printf("\nERROR opening CONFIG.TXT !!"); 
 return(-1); 
 } 
else 
 { 
 
 // open interface ... 
 
 // ---- remember ....... 
 errChk(imgInterfaceOpen("img0",&int_id)); 
 errChk(imgSessionOpen(int_id,&ssn_id)); 
 //prog_stat=1; 
 //mfp = fopen("results.txt","w"); 
 //img1 = new CMyImage(); 
 //needs_del=1; 
 } 
return(1); 
} 
 
void closing_routines() 
{ 
//if (needs_del==1)  
// { 
// delete img1; 
// img1=NULL; 
// needs_del=0; 
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// } 
imgClose(int_id,TRUE); 
} 
 
int read_config_file(void) 
{ 
FILE * fp; 
char s1[100],s2[100],s3[100],s4[100]; 
 
 
fp=fopen(con_file,"r"); 
if (fp==NULL) return(-1); 
 
fgets(s1,99,fp); 
fgets(s2,99,fp); 
fgets(s3,99,fp); 
fgets(s4,99,fp); 
fgets(proto_file,199,fp); 
proto_file[strlen(proto_file)-1]='\0'; 
 
belt.belt_speed=atof(s1); 
belt.del_time = atof(s2); 
belt.belt_max_time = atof(s3); 
belt.belt_tol = atof(s4); 
 
// belt wait delay ... 
//belt.belt_acq_delay = 0.4; 
//belt.belt_acq_delay=0.1; 
belt_acq=belt.belt_acq_delay; 
 
acqRect.left=30;  
acqRect.top=0; 
acqRect.width=1024 - 2*30; 
acqRect.height=500; 
 
fclose(fp); 
return(1); 
} 
 
int write_config_file(void) 
{ 
FILE * fp; 
 
fp=fopen(con_file,"w"); 
fprintf(fp,"%f\n",belt.belt_speed); 
fprintf(fp,"%f\n",belt.del_time); 
fprintf(fp,"%f\n",belt.belt_max_time); 
fprintf(fp,"%f\n",belt.belt_tol); 
fprintf(fp,"%s\n",proto_file); 
 
fprintf(fp,"\n\n\nBELT SPEED\nMIN DELAY TIME\nMAX DELAY TIME\nSPEED 
TOLERANCE\nPROTO FILE"); 
fclose(fp); 
return(0); 
} 
 
int process_pieces(void) 
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{ 
// PP 
 
//clock_t t1,t2; 
//double dd; 
int done,i; 
CString ss; 
char ch; 
 
im_count=0; 
service_ret=1; 
need_pr=0; 
//im  = &(img1->main_image); 
last_trig=clock(); 
first_trig=0; 
err_oc=0; 
done=0; 
max_trig = belt.belt_max_time; 
min_trig = belt.del_time; 
belt_tol = belt.belt_tol/100.0; 
kp=0; 
sys_busy=0; 
trig_count=0; 
 
fflush(stdin); 
i=imgSessionWaitSignalAsync(ssn_id,IMG_EXT_TRIG2,IMG_TRIG_POLAR_ACTIVEH
,process_routine,NULL); 
printf("\n>> Function Hook : %d",i); 
errChk(i); 
 
while(done==0) 
 { 
 //if (trig_count>100) done=1; 
 //if (sys_busy==0) printf("\nSystem Idle !!"); 
 if (kbhit())  
  { 
  ch=getch(); 
  printf("\n>> User Abort !!"); 
  if (ch==27) 
   { 
   //On_Stop(); 
   done=1; 
   break; 
   } 
  } 
 if (prog_stat!=3) {done=1;service_ret=0;break;} 
 if (err_oc==1) 
  { 
  printf("\nERROR : Picture Snap failed !!"); 
  service_ret=0; 
  img1->errmsg = imaqGetErrorText(imaqGetLastError()); 
  break; 
  } 
 if (err_oc==2) 
  { 
  service_ret=0; 
  img1->errmsg = "Belt Speed changed !! Re-calibrate belt."; 
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  break; 
  } 
 } 
 
printf("\n>> Out of Processing Loop ..."); 
// end trigger .... 
service_ret=0; 
errChk(imgSessionTriggerClear(ssn_id)); 
printf("\n>> Trigger released !!"); 
 
if (done==0)  
 { 
 printf("\n>> ERROR : %s",img1->errmsg); 
 //On_Stop(); 
 } 
return(0); 
} 
 
 
// ---------------------------------------- 
 
uInt32 process_routine(SESSION_ID sid, IMG_ERR err, uInt32 signal, 
void* userdata) 
{ 
if (service_ret==0) return(0); 
// signal debounce ... 
curr_trig=clock(); 
trig_dur = ((double)(curr_trig - last_trig)/ CLOCKS_PER_SEC); 
if (trig_dur<min_trig_th)  
 { 
 last_trig=curr_trig; 
 //printf("\n>> Trigger too soon ..."); 
 return(1); 
 } 
//trig_count++; 
//printf("\n>>>> %d @ %f",trig_count,trig_dur); 
//if (sys_busy==0) 
// { 
// sys_busy=1; 
// clock_t t1,t2; 
// t1=clock(); 
// //my_sleep(3*CLOCKS_PER_SEC); 
// t2=clock(); 
// printf("\n >>>> Slept for %f",(double)(t2-t1)/CLOCKS_PER_SEC); 
// sys_busy=0; 
// } 
//else 
// { 
// printf("\n>>> SYstem busy ..."); 
// } 
 
////fprintf(mfp,"\nMFP : %f",curr_trig); 
if (sys_busy==1)  
 { 
 fprintf(mfp,"\n[%f] System Busy !! Missed piece ...",trig_dur); 
 last_trig=curr_trig; 
 return(1); 
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 } 
if (first_trig<=1)  
 { 
 first_trig++; 
 last_trig=curr_trig; 
 printf("\n>> %d",first_trig); 
 return(1); 
 } 
//printf("\n>>> %d",im_count); 
if (first_trig==2) 
 { 
  
 if (belt_control==1) 
  { 
  if ((trig_dur < (1-belt_tol) * min_trig)||(trig_dur > 
(1+belt_tol) * max_trig)) 
   { 
   err_oc=2; 
   //need_pr=2; 
   return(0); 
   }   
  } 
 if (sys_busy==0)  // not currently processing an image ... 
  { 
  clock_t t1,t2,t3,t4; 
  double dd,dd1,dd2,dd3; 
  CString ss; 
 
 
  sys_busy=1; 
  t1=clock(); 
  my_sleep((clock_t)(belt_acq*CLOCKS_PER_SEC)); 
  t2=clock(); 
  im_count++; 
  //clock_t tt; 
  //t1=clock(); 
  if (imaqSnap(sid,(img1->main_image),acqRect)==NULL)  
   { 
   err_oc=1; 
   return(0); 
   } 
  t3=clock(); 
  // wait until picture is taken properly ... 
  //if 
(imgSessionWaitSignal(sid,IMG_AQ_DONE,IMG_TRIG_POLAR_ACTIVEH,10000)!=0) 
  // { 
  // err_oc=1; 
  // return(0); 
  // } 
  img1->im_name.Format("Image_%04d.bmp",im_count); 
  if (img1->write_images==1) 
   { 
   ss = img1->im_path + img1->im_name; 
   imaqWriteBMPFile(img1-
>main_image,ss.GetString(),FALSE,NULL); 
   } 
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  //printf("\nBefore %s : %d , %d",img1-
>im_name.GetString(),img1->piece_found,img1->is_dirty); 
  img1->piece_found=-1; 
  printf("\nIn ... "); 
  if (img1->Process_Image()==-1) return(0); 
  printf("Out"); 
  t4=clock(); 
  dd=(double)(t4-t1)/(CLOCKS_PER_SEC); 
  dd1=(double)(t2-t1)/(CLOCKS_PER_SEC); 
  dd2=(double)(t3-t2)/(CLOCKS_PER_SEC); 
  dd3=(double)(t4-t3)/(CLOCKS_PER_SEC); 
  fprintf(mfp,"\n%.3f\t%s",dd,img1->im_name.GetString()); 
  if (img1->piece_found!=-1) 
   { 
   printf("\n%s : %s",img1->im_name.GetString(),img1-
>pnames[img1->piece_found]); 
   } 
  else 
   { 
   printf("\n%s : UNKNOWN ",img1->im_name.GetString()); 
   } 
  if (img1->piece_found>-1) 
   { 
   fprintf(mfp,"\t%s",img1->pnames[img1->piece_found]); 
   if (img1->is_dirty==1) 
    { 
    fprintf(mfp,"\tDIRTY"); 
    printf("  > DIRTY [%.3f,  %.3f]",ceil(img1-
>sym_x*img1->sym_fact),ceil(img1->sym_y*img1->sym_fact)); 
    } 
   else 
    { 
    fprintf(mfp,"\tCLEAN"); 
    printf("  > [%.3f,  %.3f]",ceil(img1-
>sym_x*img1->sym_fact),ceil(img1->sym_y*img1->sym_fact)); 
    } 
   } 
  else 
   { 
   fprintf(mfp,"\tUnkn\tXXXXX"); 
   } 
  fprintf(mfp,"\t%.3f\t%.3f\t%.3f",dd1,dd2,dd3); 
  } 
 } 
 
last_trig = curr_trig; 
sys_busy=0; 
return(1); // re-instate call back ... 
} 
 
 
// used in calibration of belt ... 
uInt32 calibrate_routine(SESSION_ID sid, IMG_ERR err, uInt32 signal, 
void* userdata) 
{ 
// signal debounce ... 
curr_trig=clock(); 
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if (((double)(curr_trig - last_trig)/ CLOCKS_PER_SEC)<min_trig_th) 
return(1); 
if (service_ret==0) return(0); 
im_count++; 
if (first_trig<0) {first_trig++;last_trig=clock();return(1);} 
if (first_trig==0)  
 { 
 first_trig=1; 
 min_trig = ((double)(curr_trig - last_trig)/ CLOCKS_PER_SEC); 
 max_trig = min_trig; 
 fprintf(mfp,"\n%f",min_trig); 
 } 
else 
 { 
 trig_dur = ((double)(curr_trig - last_trig)/ CLOCKS_PER_SEC); 
 fprintf(mfp,"\n%f",trig_dur); 
 if (trig_dur < min_trig) min_trig=trig_dur; 
 if (trig_dur > max_trig) max_trig= trig_dur; 
 } 
 
last_trig = curr_trig; 
return(1); 
} 
 
void my_sleep( clock_t wait ) 
{ 
clock_t goal; 
goal = wait + clock(); 
while( goal > clock() ); 
} 
 
void errChk(IMG_ERR err) 
{ 
if (err<0) 
 { 
 char err_msg[1000]; 
 imgShowError(err,err_msg); 
 printf("\nERROR : %s !!",err_msg); 
 //imgClose(int_id,TRUE); 
 closing_routines(); 
 //exit(0); 
 } 
} 
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APPENDIX – B 

 
Camera Data Sheet 
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Appendix – C 
 

Frame Grabber Data Sheet 
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