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CHAPTER I 

 

 

INTRODUCTION 

 

Most of us sleep, eat, and work in the conditioned space provided by heating and 

air-conditioning systems; we live in an air-conditioned world – that is – the buildings that 

surround us are conditioned for our comfort.  However, the reality is that the world 

beyond our walls is anything but conditioned:  Temperatures ranging from -129 °F (-

89°C) to 136 °F (58°C) have been recorded on the earth’s surface (NCDC and Commerce 

2009).  Air conditioning and heating systems that provide us with comfortable living 

spaces endure temperatures imposed by the climate in which they operate.  A 

psychrometric chamber is a laboratory simulator that is used to study the operation of 

these systems in various climate conditions.   

Psychrometrics is the study of water, or humidity, in the air, which is largely 

dependent on temperature.  A psychrometric chamber then, is a set of rooms in which the 

temperature and humidity can be precisely controlled.  The chamber is controlled to 

simulate actual field operating conditions that an air conditioner or heat pump would 

typically be exposed to during its service. 
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The performance characteristic data of these systems are measured for design and 

off-design conditions.  A system may be an air conditioner, heat pump, roof top unit, or 

refrigerator.  These data sets can be used to determine energy consumption, reliability, 

and maintenance schedules.  It is also possible to research design modifications and 

develop optimization features for system improvement using the data retrieved from tests 

in a psychrometric chamber.   

The thermal systems research group at Oklahoma State University (OSU) actively 

performs research on heating and air-conditioning systems.  Funds have been allocated to 

design and build a psychrometric chamber on the Stillwater campus.  This thesis 

summarizes the design, construction, and start up of the new psychrometric chamber at 

OSU. 

 

The Need for HVAC&R Research 

 

Among the several fields of engineering exists the field of heating, ventilation, 

air-conditioning, and refrigeration; or HVAC&R as it commonly called.  Although most 

don’t think about it, people throughout the world enjoy the benefits of HVAC&R 

equipment on a daily basis.  This equipment cools our homes and offices in the summer 

and heats them in the winter, it provides adequate ventilation for where we work and play 

and it enable us to keep medicine and food from spoiling.  Indeed, the world would be a 

much different place if it weren’t for the technology of the HVAC&R industry. 
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It is easy to see how the industry has helped to make the world a healthier place to 

live: safer food, readily available medicine, temperate living spaces, etc.  However, the 

benefits go beyond health: studies have shown that a properly air-conditioned workplace 

has strong connections to productivity – a connection that is worth millions to businesses 

each year (Tom 2008).  Of course, the increased productivity comes at a cost: cooling and 

heating buildings is expensive; the equipment that makes up the air conditioning system 

is often the most expensive portion of the utility bill. 

Because of relatively high operating costs, there is a great need for research to be 

done in the field of HVAC&R.  As the world becomes more energy dependant, it is 

increasingly more important for society to more efficiently make use of the energy that is 

consumed.  One aspect of increasing our energy efficiency must be through the 

improvement of HVAC&R equipment.  As is the case with any technology, improvement 

will come as research is done, and design modifications are implemented to existing 

systems and components.  The overall benefit comes as new ideas are tried and tested. 

 

Test Chambers 

 

Innovations are first created on paper before they can be implemented in real life.  

Unfortunately, engineers have neither the time nor ability to create something perfect the 

first time – therefore an intermediate step is required.   

Many equipment operations are largely dependent on surrounding conditions.  

This fact gives way to the need for test chambers.  Test chambers allow scientists and 

engineers to test new and existing technology under real life conditions.  A new type of 
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wing would not be put on a plane without first testing the thrust in a wind tunnel; 

similarly, a new heat pump technology should not be put on your home until it has been 

tested in a psychrometric chamber. 

Numerous environmental test chambers have been developed for testing various 

systems and components.  Test chambers can be purchased in all sizes, and differ in their 

control variables.  These variables include temperature, humidity, air pressure, altitude, 

solar exposure, and precipitation.   Chambers can be designed to maintain a constant 

condition; they can also be transient, or even cyclic.  One chamber on the market even 

simulates the change in air pressure of a free-falling object.  Most of these condition 

variations are beyond the scope of necessary controls in a performance characterization 

of HVAC equipment.  For testing of HVAC equipment, the temperature, humidity, and 

airflow rate are the usual controlled variables.  

A psychrometric chamber allows the operation of a unit under controlled 

conditions.  One unique aspect of a psychrometric chamber that differentiates it from a 

typical environmental test chamber is that it is able to maintain conditions with the 

addition of a live thermal load.  The psychrometric chamber must respond to the rejection 

or absorption of heat by the test unit in order to maintain the desired conditions.  In other 

words, the psychrometric chamber simulates the environment by acting as an infinite heat 

source or sink. 
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A Brief Timeline of the Project 

 

In 2006 Dr. Lorenzo Cremaschi began work as an assistant professor at Oklahoma 

State University.  As part of his start up fund he ventured to create a psychrometric 

chamber on campus at OSU.  The Building and Environmental Thermal Systems 

Research Group (BETSRG) previously had other laboratories.  Prominent laboratories 

include an airflow and contaminants laboratory, and several setups for testing ground 

source heat pumps.  The psychrometric chamber adds the ability to test air source heat 

pumps, air-conditioning equipment, refrigerators and other thermal systems in a 

controlled environment.   

Later that year the faculty members of the BETSRG group and Dr. Cremaschi 

approached AAON, a Tulsa based HVAC company, and proposed the idea of building a 

chamber with them.  A deal was struck that AAON would meet OSU half way for the 

funding of a half million dollar facility that would be located on OSU campus.  AAON 

would provide the construction materials and OSU would provide the location, man 

power and many of the materials related to the chamber.   

As part of the deal with OSU, a site in the lower basement of the Advanced 

Technical Research Center (ATRC) was dedicated to the project.  With the site selected 

and AAON on board for the project, the general specifications of the chamber were laid 

out, including the temperature ranges, overall capacity, and basic floor plan of the 

chamber area.   

By May 2007 the final design work began.  Two graduate students from OSU 

were hired as interns at AAON to design the chamber structure, seen in Figure 1.1.  Each 
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piece of the chamber was designed to be manufacture by AAON.  Concurrently at 

AAON, three undergraduate students from Montana State University were hired as 

interns to develop some of the preliminary design of the conditioning system and code 

tester.   

 

Figure 1.1:  Electronic rendering of chamber design in setting of the ATRC basement 

 

All interns completed their stay at AAON by mid August.  At this time the 

complete structural enclosure of the chamber had been designed.  The equipment 

mounting pieces in the chamber had had the preliminary work done on them, but the final 

drafts of those would not be completed until November.  The code tester design had been 

completed and conditioning system had several viable parts identified; however the 

actual system would be re-designed in the fall of 2008. 

From September to November 2007 the design on the mezzanine was 

accomplished.  Also during this time, and stretching into early March, the site in the 



 7

ATRC was prepared for the chamber construction.  Preparation included the design and 

construction of a foundation for the chamber to rest on, seen in Figure 1.2. 

Figure 1.2:  Photo showing a portion of the steel floor support for chamber 

 

Engineers and drafters at AAON converted all the part designs into files for their 

automated machinery during the late fall and early winter.  AAON utilized the annual 

winter slowdown to manufacture the parts for the chamber.  Manufacturing was 

completed by the end of January 2008.  The first shipment of parts, seen in Figure 1.3, 

came on four semi trailers and arrived at OSU on January 31, 2008.  Other shipments 

came much later and included purchased parts: such as motors, door handles, dampers, 

piping, etc. 
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Figure 1.3:  Top: lowering the crates into the ATRC basement via the wind tunnel shaft.  Bottom:  

Unopened crates at chamber construction site. 

 

The unpacking and arranging of the shipment from AAON took several weeks; 

during which time the mezzanine was constructed.  There was little room for movement 

anywhere in the basement and progress was slow; much of the effort at the time was 

directed to organization in order to keep construction moving once it was started.  The 

first panels of the chamber were screwed together near the end of March.  The lower half 
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of the first (south) wall was erected during the beginning of April.  As seen in Figure 1.4, 

the upper half of the wall was added before the end of the month.   

 

Figure 1.4: Chamber construction begins, erected south wall of chamber 

 

By the beginning of May the construction of the chamber sped up considerably; 

this was in conjunction with the end of the semester and a substantial increase in man 

power and time.   

  

Figure 1.5:  Chamber construction.  Left: Indoor chamber walls  Right: outdoor conditioning loop 
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The construction, seen in Figure 1.5, of the chamber continued throughout the 

summer.  By the end of July 2008 the last of the panels that comprise the chamber 

envelope, seen in Figure 1.6, had been secured in place.  By the middle of August a shift 

in emphasis and man power moved construction to a slower pace.  From August to 

December and beyond, the hanging of doors, mounting of equipment, and finishing 

touches on chamber construction were being accomplished.  Also during this time, a 

major revamp of the conditioning system design was accomplished.  The redesign 

eliminated some uncertainties in the system and served to balance cost and functionality 

of the chamber.  By late November parts began arriving for the conditioning system; 

parts continued to trickle in throughout February 2009.    

 

Figure 1.6: Photographs of completed chamber envelope – Clockwise from top: North wall and main 

access for units, East wall, West wall containing personnel access doors, and roof 
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In conjunction with the conditioning system revamp was a design of the electrical 

requirements for the chamber.  The basic requirements had been laid out previously; 

during this time actual components were selected.  The piping system installation began 

in December 2008 and continued into May 2009.  The cooling coils, pumps, and other 

cooling system components were also installed during this time.  Parts for the electrical 

system were ordered at the end of December.  Electrical work commenced early 

February, and continued through May. 

 

Objectives of this Thesis 

 

The overall scope of this thesis was to design and build a new psychrometric 

chamber at OSU.  The specific objectives of my thesis are to (1) design the structure of 

the chamber, mezzanine, and trolley crane.  (2) Build the chamber structure.  (3) Install 

the mechanical equipment used such as coils, heaters, and steam lines.  (4) Determine the 

soaking time of the chamber.   

I began working on the chamber in May 2007.  I was one of two graduate students 

at AAON in charge of designing the chamber structure.  At this stage, the basic plan and 

specifications had already been decided.  Later on, I designed the mezzanine and crane 

lift that are used for equipment staging.  I supervised the construction of the chamber.  I 

have done very little work in the electrical planning but have, with the help of others, 

designed the conditioning system; that is the cooling coils, heater, and steam system for 

temperature and humidity control in the chamber.  I have contributed to the many aspects 
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of the chamber, and have had great assistance.   I have spent my time at OSU keeping the 

work going; that is what I have tried to do. 
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CHAPTER II 

 

 

PSYCHROMETRIC CHAMBER: REVIEW AND SPECIFICATION 

 

Psychrometric chambers are a sub-market of environmental test chambers, which 

can be purchased in a variety of sizes and temperature ranges.  Sizes can be as small as a 

micro-wave oven or large enough to drive a semi truck into.  Table 2.1 shows what is 

available on the market; it may not be possible to get all the options in a single chamber.  

Regardless, the options available are certainly amazing. 
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Temp Min °F (°C)  -65 (-54)  -100 (-73)  -13 (-25)  -15 (-26)  -85 (-65)  -99 (-73)  -99 (-73)  -76 (-60)  -94 (-70)  -99 (-73)

Temp Max °F (°C) 212 (100)  375 (190)  131 (55) 266 (130) 302 (150) 350 (177) 350 (177) 347 (175) 356 (180) 347 (175)

Humidity min <1% 10% 50% NA 10% 20% 20% NA 10% 10%

Humidity max 99% 95% 100% NA 95% 95% 95% NA 98% 95%Temperature 

Change Rate       

°F/min (°C/ min)
9 (5) NA NA NA

1.8 - 27       

(1-15)

7.2 - 9  (4-

5)
NA NA

1.5 - 5  

(0.8 - 2.7)
NA

Area (ft2)
50 to  

25,000
Any 576 NA 174 161 NA Bench Top 1.6 27 cu ft

 

Table 2.1:  Features available in commercial environmental test chambers.  Note that all features may not 

be available in a single unit – company web advertisements 

 

With so many options available in commercial environmental chambers, 

determining the need for OSU psychrometric chamber was not very straightforward.  

There are a lot of   
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aspects that could be taken on this topic, but the idea was to make the chamber as 

versatile as possible within the cost constraints.   

 

Room Size 

 

The first decision, and possibly easiest to make, was the size of the chamber.  As 

part of the agreement with OSU, the maximum floor space for the project was 

predetermined.  The area allotted in the basement was approximately 53’ long, 25’ wide 

and 20’ high.  As seen in Figure 2.1, the space was mostly open except for a few columns 

near the edges on the east and west sides. 

 

Figure 2.1: Rendering of area dedicated to the psychrometric chamber in the ATRC basement 
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All equipment necessary to the chamber was to be contained within the allotted 

space.  Additional parameters imposed by OSU required that another test facility could be 

set up in the space east of the chamber location, and a pathway should remain on the 

north end of the chamber.  These parameters limit the access doors of the chamber to be 

on the North and West faces.  The floor plan developed allows access through the North 

wall.  A mezzanine houses the chamber conditioning equipment.  An integrated trolley 

crane will assist in lifting and moving the testing equipment into the chamber, as shown 

in Figure 2.2. 

 

Figure 2.2: 3-D rendering of mezzanine in basement of ATRC 

 

Because of the nature of research work; and for limiting the cost of construction, 

it was desirable to have a space available that could house two separate research projects.  

This would allow each researcher to keep their experimental setup without hindering the 
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progress of the other.  Some collaboration would be needed in scheduling tests, but the 

setup would remain untouched while a testing unit is on standby. 

A review of the standards set forth by American Society of Heating, 

Refrigerating, and Air-condition Engineers, ASHRAE, concerning the testing of air-

conditioning units reveals that there must be at least three feet between any unit and the 

wall of the chamber.  Additionally, there must be at least six feet from any wall to any 

discharging surface of the test unit.   

 

Figure 2.3: Floor plan of psychrometric chamber, note that internal height is 16’.  

 

While packaged air-conditioning units come in many shapes and sizes, AAON 

products were used as a reference.  AAON houses several different capacities of air-

conditioners in the same packaging.  For example, one of the RM rooftop models houses 

options of 8, 10, 13, and 15 ton capacity.  The packaging for these options has a footprint 
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of 87” x 78” and height of 45”.  Using the longest dimension, 87”, or 7.25’, the maximum 

required space would be 7.25’ for the unit, 6’ for the discharging surface, and 3’ spacing 

from the opposite wall; the total space needed is 17.25’, Figure 2.3 shows that there is 

plenty of room for a unit.  If two units are to sit side by side, assuming that the do not 

discharge toward each other, they would require 23.5’ of space.  Unfortunately, the space 

is sufficiently limited that if two of the largest test units were used, some shifting would 

be necessary to shift from one test to the other.  A unit that discharges from top and 

bottom, as can be the case with rooftop units, requires a total of 15.75’.  The total inside 

chamber space is 16’; revealing some of the difficulty in building a psychrometric 

chamber in the limited space of a basement.  .  

 

Chamber Access 

 

Three different access routes are available to the get units into the basement and 

chamber.    Depending on the unit size, different routes will need to be used.  For small 

units, maximum dimensions not exceeding about 48” wide and 100” long, the nearest 

elevator can be used.  Larger units will require the use of the larger freight elevator or the 

wind tunnel shaft.  The freight elevator access path allows nothing wider than 76”; 

however, one must also ensure that the unit will be able to navigate the turns.  Table 2.1 

lists the clearances of each of the access routes.  These dimensions present general 

guidelines; however, when the maximum limits are approached, specific cases should be 

considered. 
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Regardless of route, the chamber entrance door is limited to 103” x 100”.  All 

large equipment to be located in the indoor chamber will be positioned via the outdoor 

chamber.   Two personnel access doors; each measuring 34” by 77”, will allow people ad 

smaller items into the chamber.  

1 Wind Shaft Limitations

Door Opening: 144" W x 120" T

*Shaft opening: 79" x 231"

2 Large Elevator Route

Opening: 72" W x 82" T

Interior: 89" W  x 108" T x 135" D

*Diagonal: 194"

Minimum hallway clearance: 76"

3 Small Elevator Route

A Opening: 48" W x 102" T

B Interior: 64" W x 108" T x 101" D

**Diagonal: 169"

*Shaft opening can be expanded to 155" x 231" if center beam is removed

**Diagonals demonstrate max length of thin rod that could fit in elevator  

Table 2.2:  Access route limitations        

 

The wind tunnel air shaft (1) provides the most direct route to the chamber, 

allowing the largest possible items into the chamber; however using this route is time 

consuming and requires the collaboration of several people – including university truck 

services.  Figure 2.4 demonstrates the possible routes to transport equipment to the 

chamber.     

The shaft is accessed on the East side of the ATRC.  A crane, and operator, can be 

rented from the university to lower equipment from the outside to the basement floor 

roughly 26’ below.  The initial shaft opening is 79” x 231”; however, a little tilting and 

twisting has allowed access of several narrow items exceeding this length.  If needed, the 
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center supporting beam could be removed enlarging the opening to 155” x 231” (12 x 19 

ft).  

 

Figure 2.4: Equipment access routes to chamber see Table 2.1 for information on dimensional limitations 

 

Temperature and Humidity Limits 

 

Reference to testing standards for heat pumps and air conditioning systems 

reveals the starting point for temperature range specification.  Heat pumps are tested as 

low as 17/15°F (-8/-9°C) and as high as 62/56.5°F (8/6°C).  Air conditioners are tested 

between 67/53.5°F (19.4/11.9°C) and 95/75°F (35/23.9°C).   So at a minimum, if all that 

will ever be tested is heat pumps and air conditioners, it is necessary to have a chamber 
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that has a dry bulb/wet bulb temperature range from 17/15°F (-8/-9°C) to 95/75°F 

(5/6°C) (AHRI 2008).   

It is conceivable, especially because this will be primarily a research facility, that 

temperature beyond this minimum range would be beneficial.  A comparison of 

commercial chambers reveals that a very common minimum temperature as -40°F; 

maximum temperatures vary widely.  Furthermore, control of humidity between 10 and 

95% seems to be common in industry; the only manufacturer advertising ranges 

significantly outside these parameters is SCSI, a developer of clean rooms.  This range 

certainly falls within the range dictated by the testing standards. 

 

Chamber Capacity 

 

The overall capacity of the chamber was decided to be 15 tons of refrigeration 

(52.7 kW).  This decision reflects a balance between testing area, access route and 

mechanical systems.  As previously discussed, a 15 ton unitary air conditioning unit from 

AAON has the dimensions of 87” x 78” x 45”; the predetermined chamber size will 

house this unit reasonably well; however, in order to get a larger unit into the chamber, 

the access route would need to be wider, which would in turn reduce the room size.  A 15 

ton capacity room balances the space needed for testing, conditioning equipment, and 

room access the best.    

Floor load capacity was also determined using an AAON unit as a reference.  A 

15 ton unit weighs about 3,000 pounds.  When testing a unit, it will likely be on castors, 

creating four point loads.  Even in the poorest distributions of weight, no more than 80% 
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of the total load would be expected to fall on one wheel, therefore 2400 lbs as a point 

load was determined to be number used for maximum floor load capacity.  

 

Air Supply 

 

One element of the chamber design makes it stand out from the typical 

commercial chamber; this is the air supply path.  Most of the chambers available on the 

market have one or more registers that supply the room with conditioned air.  In an 

attempt to obtain more uniform air distribution, the OSU psychrometric chamber was 

specified to have air delivered through a perforated floor plenum system.  The 

conditioned air will come through the floor and exit through the ceiling in the same 

manner.  With this method the distribution of the air should be more uniform, hopefully 

eliminating stagnation points and severely turbulent points which can commonly be 

found near the supply registers of a typical room.  Uniform air distribution increases the 

repeatability of experiments, thus enhancing the accuracy of test results. 

 

Preliminary Heat Transfer Analysis 

 

Some work was done by Cremaschi and Lee concerning heat transfer and the 

thickness of the panels (Cremaschi and Lee 2008).  Using finite element analysis 

software, they modeled the heat transfer through insulated panels.  The modeled panels 

are used on many of the units produced by AAON.  The thickness of the panels was 

varied to test for heat transfer through the panels.  Thicker panels will provide better 
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insulation to the chamber.  The decided benchmark in the paper was whether or not there 

would be condensate on the outside of the chamber. 

Fundamental heat transfer equations for conduction and both free and forced 

convection were used in the calculations.  The conclusion, seen in Figure 2.5, was that 5” 

panels would ensure that the outside surface temperature of the chamber would not drop 

below the dew point even when the inside of the chamber was as low as -40°F. 

Figure 2.5: Dependence of condensate formation on the outer wall of the chamber based on panel 

thickness (Cremaschi and Lee 2008) 

 

Previously AAON made panels up to 3” thick; manufacturing panels thicker than 4” 

would require AAON to purchase new machinery.  Even the manufacturing of a 4” panel 

required modification to existing machinery.  According to the results, for a 4” panel, 
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condensate is likely to collect on the outer walls of the chamber temperature approaches 

approximately -25°F (-32°C). 
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CHAPTER III 

 

 

INDUSTRY TESTING STANDARDS 

 

 

Two major organizations in the United States publish standards that apply to 

heating and air conditioning equipment.  These organizations are the Air-Conditioning, 

Heating and Refrigeration Institute, AHRI, and the American Society of Heating, 

Refrigerating, and Air-Conditioning Engineers, or ASHRAE.  Both organizations provide 

standards for guidance in testing and rating equipment.   

 

Methods for Testing 

 

According to ARI standard 210, four methods exist to conduct performance rating 

test evaluation on unitary equipment and split unit systems.   These methods are included 

in the following list (AHRI 2008): 

a) Indoor air enthalpy method 

b) Outdoor air enthalpy method    

c) Compressor calibration method 

d) Refrigerant enthalpy method
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Standard 116 from ASHRAE lists the same methods.  Both standards define the 

indoor air enthalpy method as the primary method for testing.  The other methods are for 

verification of the indoor side air enthalpy method (ASHRAE 1995).  The four main 

methods for testing equipment are explained below.   

The psychrometric chamber is set up to easily incorporate both the indoor and 

outdoor enthalpy methods without modifying the test equipment.  Implementing these 

methods will be the primary way of testing units inside the psychrometric chamber.  The 

compressor calibration method and refrigerant enthalpy method could also be used as a 

testing tool, but both methods require modifications to the typical commercial unit and 

will be used less extensively.   Because the air enthalpy methods are so useful and 

straightforward to implement, details of how the measured variables from these methods 

are used to determine equipment performance are explained in the next section.   

 

Indoor Air enthalpy Method 

 

As previously stated, the primary method for testing air-conditioners and heat 

pumps is the indoor air enthalpy method.  As implied by the name of the method, the idea 

behind the method is to measure the change of enthalpy of the indoor air.  This is done by 

monitoring the wet and dry bulb temperatures of the inlet and outlet sides of the 

conditioning coils.  The mass flow of the air is monitored as well as the power 

consumption of the test unit. 
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Outdoor Air Enthalpy Method 

 

Similar to the indoor air enthalpy method, this test relies on measurements of the 

air flow and the wet and dry bulb temperatures of the air stream to determine the change 

in enthalpy that occurs across the outdoor coil.  Power consumption measurements allow 

one to determine the performance using equations. 

 

Compressor Calibration Method 

 

In the compressor calibration method the refrigerant temperature and pressures 

are measured.  The evaporator superheat is determined as well as the refrigerant 

enthalpies for the inlet and outlet of the indoor coils, these variable are used to determine 

the capacity of the test unit.   

 

Refrigerant Enthalpy Method 

 

In this method, instruments are placed to measure the temperature, pressure and 

flow of the refrigerant.  The enthalpy of the refrigerant is determined on either side of the 

indoor coils.  Total capacity of the system can be calculated from these measured 

variables. 
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Performing Tests 

 

During testing, it is crucial to maintain the specified conditions inside the test 

chamber.  Because heat transfer is driven by temperature gradients, variations in chamber 

conditions result in variations of performance.  Standard 210/240, issued by AHRI, 

specifies chamber conditions for various unit categories.  A sample of the conditions 

appear in Table 3.1 (AHRI 2008). 

 

Table 3.1: Sample testing conditions as specifies by ARI standard 210 (AHRI 2008)   

 

As seen from the title of the table pulled from the standard, specific classifications 

exist for each type of unit.   The psychrometric chamber plays a key role by ensuring that 

the air properties entering the coils in each chamber meet the specifications dictated by 

the standards.   
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Calculations 

 

The goal behind testing is to determine the performance of the test units.  This is 

done by measuring several variables and using the results to calculate the performance.  

In an air conditioning unit, the cooling capacity can be estimated by measuring the inlet 

and outlet temperature of the air passing through the indoor cooling coils, this can be 

done by utilizing equation 3.1 in conjunction with the airflow.   

( )outinairpairLow TTcmQ −≅ ,
&&             3.1 

where 

LowQ&  is the total cooling capacity of the air conditioner 

airm&  is the mass flow rate of the air passing through the cooling coils 

airpc ,  is the average heat capacity air 

inT  and outT  are the entering and exiting air temperature passing through the indoor coils 

Equation 3.1 gives a good estimate; however, a more accurate approach is to 

measure the wet and dry bulb temperature of the air flow.  The result allows one to break 

the total capacity into dry and wet cooling, or more properly, sensible and latent cooling.  

This approach requires the use of a psychrometric chart or other means to obtain the 

absolute humidity, ω, from the wet and dry bulb temperatures at each location.  One 

could also use enthalpy, h, at each condition to calculate the total capacity.  The enthalpy 

can be estimated from the psychrometric chart using the wet and dry bulb temperatures, 

or calculated using other means Equations 3.2 through 3.5 show the relation between 

these capacities. 
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( )outinairLow hhmQ −= &&          3.2 

( )outinairpairsensiblelow TTcmQ −= ,,
&&        3.3  

( )outinfgairlatentLow imQ ωω −= &&
,         3.4 

sensibleLowlatentLowLow QQQ ,,
&&& +=         3.5 

where  

inh  and outh  are the entering and exiting enthalpies of air passing through the indoor coils 

fgi  is the enthalpy of vaporization of water 

inω  and outω  are the entering and exiting humidity ratio of the air passing through the 

indoor coils 

The dimensionless coefficient of performance, or COP, can be determined using 

Equation 3.6. 

in

Low

W

Q
COP

&

&

=           3.6 

where inW&  is the electrical power consumed by the test unit 

The above equations pertain to the indoor air enthalpy method.  As a secondary 

measurement, or check on the system, the temperatures and air flow of the outdoor 

stream can be measured.  The amount of heat rejected, HighQ& , is determined using 

expressions analogous to Equations 3.1 through 3.5.  The relation between the electrical 

work in, and the heat rejected and absorbed should be as seen in Equation 3.7.   

inLowHigh WQQ &&& +=          3.7 

For a test to be valid, correlation 3.7 must hold to within 6%(AHRI 2008).   
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Measuring the wet and dry bulb temperatures is straightforward and calculating 

the capacity and COP is trivial.  The only part of the process described above that may be 

a little unclear is the measurement of the air flow.  This is done using the air flow 

measuring apparatus, also known as code tester, seen in Figure 3.1. 

 

Figure 3.1:  Schematic of code tester (ASHRAE 2005) 

 

A code tester operates on the fundamentals of fluid flow.  In the psychrometric 

chamber it consists of a vertical column.  Air flow from the unit is ducted to the base of 

the column using large diameter flexible tubing.  A diffusion baffle on either side helps to 

settle the airflow as passes through a bank of elliptical air flow nozzles.  The nozzles are 

precision manufactured; therefore the differential pressure drop between the inlet and 

outlet of the nozzles can be used to determine the volumetric flow rate using Equations 

3.8 and 3.9 (ASHRAE 1995). 

( ) 5.0
1096 nvn vpCAV ′=&          3.8 

( )nn

n

n
p

v
v

ω+
=′

1

92.29
         3.9 
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where  

V& is the volumetric flow rate of air through a single nozzle (cfm)  

C is the coefficient of discharge for the nozzle (dimensionless) 

nA  is the exit area of the nozzle (ft
2
) 

vp is the pressure difference across the nozzle (in H2O) 

nv′  is the adjusted specific volume of the air at the nozzle (ft
3
/lb) 

nv  is the specific volume of the air as measured from wet and dry bulb temperatures 

assuming standard atmospheric conditions 

np  is the pressure at the nozzle throat (in Hg) 

nω  is the absolute humidity at the nozzle (lbs moisture/lbs dry air) 

In order to ensure that the effect of the measurement device on the flow is 

minimal, a variable speed blower is placed at the exit of the code tester.  The blower is 

adjusted to neutralize the pressure losses through testing apparatus; this is done by 

equalizing the static pressures at the unit and code tester outlets 

 

Efficiency Measurements 

 

Several methods exist for measuring the efficiency of an air conditioner.  

Commonly in engineering classes the coefficient of performance is used, or COP, seen in 

Expression 3.6.  As with most measures of efficiency, the basic equation is the desired 

output over the required input.  However, unlike typical efficiencies, the COP can be 

greater than unity.     
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COP ratings have no units, so it is typical to do the measurements in kilojoules, 

kJ, or British thermal units, Btu.  These units work well for engineers, but to appeal to the 

consumer other rating systems have been developed.  Some widely used efficiency 

ratings are the seasonal energy efficiency ratio, SEER and the energy efficiency ratio, 

EER.  The EER is basically the COP multiplied by 3.413; the new units become 

Btu/(Watt-hour).  This rating system utilizes the fact that electrical power is purchased by 

the kilowatt-hour (kW*hr).  The slight adjustment to Watt-hour makes gives the EER a 

magnitude to the left of the decimal, typical values of 13 rather than 0.013, which is 

much more palatable to the consumer.  The EER is based on specific test points set forth 

by AHRI, and represent the full load capacity of a unit.  The SEER, or seasonal energy 

efficiency ratio, is based on a range of settings to better gauge the efficiency throughout 

the usage season because units are not running at full capacity all the time.   

The goal in testing units is to give a reliable EER or SEER rating; these are all the 

consumer sees when selecting a piece of equipment.  Having a specific standard for 

testing ensures the consumer is comparing apples to apples when using the EER as a 

guide for selecting new air-conditioning equipment.  The EER is also used by 

government to guide the industry to better overall efficiency.  Currently, any air 

conditioner sold in the United States must have a SEER of at least 13; in this way, the 

industry is being pushed to higher standards, this gives researchers the incentive for 

innovation.  Regardless of the efficiency measurement, the goal is to get more for less; 

and that is what drives the industry. 
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CHAPTER IV 

 

 

STRUCTURAL DESIGN 

 

 Because of AAON’s pledge, it was essential to design the chamber in such a way 

that the majority of parts could be manufactured in-house.  Thus the structural design of 

the chamber commenced in May 2007 by two OSU graduate students: Sam Hobson and 

Spencer Lifferth.  Stephen Wakefield, of AAON, managed the design; Patrick Chapman 

contributed greatly to helping turn ideas into valid designs.   

 

Structural Design Specifications 

 

 As mentioned in chapter two, several parameters pre-determined the design of the 

chamber.  The overall dimension of the chamber was to be “as big as possible” with all 

necessary equipment enclosed in the portion of the ATRC Basement that was allotted.  

The envelope is approximately 53’ long, 25’ wide, and 20’ tall, as seen in Figure 2.1.  

The walls, floor, and ceiling were to be made of foam panels similar to the ones used on 

AAON’s air conditioning units.  The chamber is to contain two separate rooms, one to 

simulate indoor conditions, the other to produce outdoor conditions.  The chamber should 

be self standing.  Conditioned air is to be delivered via an underfoot air supply plenum 

with return air extracted in an overhead ceiling plenum.  Means for moving units of up 
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to 15 ton capacity into and out of the chamber should be provided.  Entry to the chamber 

is limited to the North and West walls; the east side of the chamber should not require 

any access; the south side is bordered by a wall. 

 

Chamber Walls 

 

The majority of the chamber is made up of foam panels.  Similar panels have been 

used at AAON to build some of their units.  Previously, AAON worked with 1, 2, and 3” 

thick panels; however, the chamber panels are 4” thick.  The rigid, foam filled panels 

provide structural support and insulation to the chamber.  Rectangular panels of varying 

sizes make up the walls, floor, doors, and roof to completely surround the chamber test 

area in a rigid, insulated enclosure.   

The panels are made up of a sheet metal shell filled with polyurethane foam.  The 

shell is made out of two pieces of galvanized sheet metal; depending on the panel, the 

sheet metal thickness of a side may range from 24 to 14 gauges (0.0276 to 0.071 inches).  

The thicknesses of either side of a panel are not necessarily equal.  The edges of each of 

the sheet metal sides are bent into a “C” shape, and the sides are secured together with a 

piece of double sided neoprene tape.  The Tape serves the purpose of temporarily 

aligning the side as well as providing a thermal break across the panel for insulation 

purposes.  After securing the sides together, the panel is filled with foam.  The foam 

expands to fill the panel (density of 2 lbs/ft
3
) and adheres to the sheet metal.  The 

resulting panel, even with very light gauge sheet metal, is surprisingly rigid and durable.  

Figure 4.1 demonstrates construction process of each of the foam panels.  
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Figure 4.1: Construction of foam panels 

 

The chamber structure is made of several panels joined together.  Panels are 

joined together using splices and neoprene.  The edges of the panel are lined with 

neoprene, and joining panels are pressed together to compact the neoprene.  Panels are 

fastened together using splices which are also lined with neoprene.  The neoprene serves 

to create an air tight seal and a thermal break.  Splices consist of 12 gage sheet metal with 

holes punched about every six inches.  The neoprene between panels is ¼” thick before 

compression and approximately 1/8” thick after compression.  Neoprene used to line the 

splices is 1/8” thick before compression and 1/16” thick after compression.  Figure 4.2 

demonstrates the assembly of two panels. 
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Figure 4.2: Process of joining two panels    

 

The entire chamber enclosure is assembled in this manner.  Appendix A contains 

some drawing of individual chamber parts; Figure 4.4 shows an electronic rendering of 

the complete chamber design.  The chamber consists of two levels of panels.  With the 

exceptions of the doors, the upper row of panels is the same as the lower row of panels.  

Each of the wall panels stands 9 feet high.  A splice connects the upper and lower rows of 

panels in the same manner that it connects panels side by side.  The corners of the 

chamber are assembled in much the same way as the straight runs of panels, the only 

difference is that the splices for the corners are bent to wrap around the outside of the 

panel ad meet on the inside as seen in Figure 4.3.  
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Figure 4.3:  Inside and outside corner splices 

 

 

Figure 4.4:  Rendering of chamber as it sits inside the ATRC basement 
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The panels are certainly a very important part of the chamber; however much of 

the design effort went into other parts of the chamber.  The parts include the doors, 

plenums, and the cooling and testing equipment mounting pieces. 

 

Doors 

 

There are four doors in the chamber.  Each of the two rooms has a personnel entry 

door that is 34” x 77”.  Additionally, the North wall of the chamber houses the primary 

door for moving in equipment.  Its dimension is 104” x 100”.  An identically sized door 

separates the two rooms; this door is the means of getting equipment into the indoor 

chamber.   

It is essential for the conditioning of the chamber to have doors that seal well.  

The doors should seal tightly to prevent air infiltration into the chamber.  They also 

should not compromise thermal conductivity with respect to the rest of the chamber.  The 

final door designs have fulfilled both of these requirements. 

Personnel access doors are a modified version of a panel door that AAON uses on 

some of their product lines.  Dimensions of the door were changed – not only the opening 

size, but the thickness of the door was increased to 4”, thus matching the thickness of the 

rest of the panel walls.  Construction of the door panel is similar to other panels; however 

it consists of many more pieces. 

The door panel consists of two assembled panels.  The first panel provides a door 

opening; this panel is relatively large – twice as wide as a typical wall panel – and has a 

cut out in it.  A jamb is riveted inside the cutout.  After assembling the panel pieces, the 
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panel cavity is injected with foam.  The door is made of two pieces.  It is designed in 

order to mate smoothly with the jamb, the whole mating section is made of piece of 

metal, and this forces the thermal break to the panel edge instead of center.  The door, 

seen in Figure 4.5, is connected to the doorway using a piano hinge.  A purchased latch 

system provides compression on bulb seals that line the door jamb. 

                        

Figure 4.5:  Personnel access doors on the west wall 

 

The equipment doors operate on a much different concept than the personnel 

doors.  They are custom designed for the psychrometric chamber.  The main entrance 

door is situated in the north wall on the west side of the wall.  The door consists of two 

main panels that stack on top of each other.  The upper door panel mates with the lower 

panel using a tongue and groove interface, seen in Figure 4.6.  The interface was glued 

together.  To increase rigidity to the door, each end of the door has a splice attached.  In 

addition to providing rigidity, it also protects the thin metal of the door and ensures the 

tongue and groove interface remains tight.   
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Figure 4.6:  Tongue and groove of sliding door assembly  

 

The bottom of the door is fastened with wheels, seen in Figure 4.7.  The wheel 

track was integrated into the assembly before the foaming process.  Recessing the wheels 

into the panel provides a very low profile door, minimizing the area necessary to seal.  A 

recessed handle is also integrated into the door side to allow easy opening; it also allows 

the door to open further than it otherwise would be able.  Because the recessed handles 

will not be accessible when the door is completely ajar, an additional handle is located on 

the end of the door to allow for easy closing.  Bent pieces of metal secured to the top of 

the door keep the door from tipping side to side 
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Figure 4.7:  Main door detail.  a) balancing pieces  b) handles  c) cut-away showing wheels 

 

The door opening complements the door design.  The North wall is built with 4” 

thick panels.  Unlike the rest of the chamber, however, the lower panels surrounding the 

door do not mirror the upper panels.  The top of the door opening is higher than the other 

panels and therefore is not able to be symmetrical.  Additional differences can be seen 

with the lintel, seen in Figure 4.8, which holds up several panels above the doorway 

entrance.   
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Figure 4.8:  Main equipment entrance door – lintel seen at top of the doorway  (north wall) 

 

A pocket is built around the doorway into which the door rolls, see Figure 4.9.  The base 

of the doorway is constructed from heavy gage steel panels that are also foam filled.  The 

wheels of the door roll on one of these panels.  The track panel is 1” wide and is recessed 

slightly with respect to the rest of the door’s threshold to guide the wheels.  The pocket of 

the door is constructed of 2” thick panels.  The cavity that is created by the pocket is 5" 

wide.  The door rests in the middle and is balanced by the guides previously mentioned.  

Also built into the cavity are rubber door stops to dampen the door as it opens and closes.    
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Figure 4.9:  Door pocket – without door and with door inside 

 

The door separating the two chambers is built similarly to the main entry door; 

however, a few differences exist.  The door between the rooms is centered between the 

east and west walls, as seen in Figure 4.10, rather than being located on one side, which 

is the case of the main access door.  This allows for the door to consist of two doors that 

roll to meet each other in the middle.  This will allow for ducting between the two rooms 

if needed.  Using two separate doors allowed the use of a single panel per door.  Except 

for the positioning of the handles, which are not recessed, these doors are of the same 

design as the main entry doors.  They roll on low profile wheels into a pocket created by 

2” panels spaced from the regular wall panels. 
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Figure 4.10:  Center door – looking from the indoor chamber through the intermediate wall into the 

outdoor chamber 

 

The personnel doors are sealed using a bulb seal which compresses when the door 

is closed.  The equipment access door utilizes wiper seals to prevent air from flowing 

around the pocket into the chamber; both types of seals can be seen in Figure 4.11. 

 

Figure 4.11:  neoprene seals a) flexible wiper type seal: used for rolling personnel doors b) bulb type seal: 

used on all hinged doors   
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Floor 

 

A main distinction of the Oklahoma State University psychrometric chamber is 

the underfoot air supply plenum.  The plenum structure presented a challenging task.  It 

was previously determined that the plenum, and supporting floor, should be able to 

support a 2400 lb point load.  This was to be done using no larger than 14 gage sheet 

metal – the heaviest sheet metal that AAON can manufacture using their automated 

machinery.   The floor structure consists of several parts; the final design is outlined 

below.   

 

Foundation 

 

The basement floor of the Advanced Technology Research Center is bare 

concrete.  Several drains and other abnormalities are located throughout the space where 

the chamber rests.  Because of the many drains, the floor beneath the chamber is far from 

level.  Random measurements of the area revealed a difference of 2 ½” between the 

highest and lowest points in the concrete.  The panels and the chamber would inevitably 

show instability if the bare floor was used as a foundation; therefore a better foundation 

was developed. 

The solution to the varying floor height was to create a steel grid strategically 

placed under the seams of the chamber walls and floor panels.  Flat steel stock of 3/8” 

thick was used as a base.  As seen in Figure 4.12, holes, drilled and tapped, were placed 

not less than 36” apart from each other.  Through each hole was threaded a bolt which 
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pivoted on the floor and elevated the height of the base plate to the desired level.  Nearly 

200 screws were adjusted to set the height of the base plate.  A laser level was used to 

check the height; the resulting plane is within 1/8” of level.  

 

Figure 4.12:  Method of leveling base plates over uneven concrete surface using bolts 

 

After being leveled, grout was packed under the base plates to strengthen them 

and reduce sagging.   The heads of the bolts were cut off and the plate surface ground 

smooth in preparation for building, see Figure 4.13. 

 

Figure 4.13:  Chamber construction on top of base plates; base plates provided level surface for chamber 

construction 
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Insulation 

 

Like the rest of the structure, the floor is designed with 4” thick insulation panels.  

The seams of the panels rest on centers of the base plate foundation.  Campus physical 

plant requested that the four sanitary cleanout access points located under the chamber be 

readily accessible.  After compromising from both sides, the decision was made to create 

a few panels that would have pre-punched, or perforated access points.  The panels will 

only need to be penetrated if the cleanout point is ever used; however, the panel would 

have no difference in performance until that point in time.   

 

Figure 4.14:  Picture of floor panel with precut access to sanitary cleanout  

 

The perforated panels, seen in Figure 4.14, allow plumbers the access they need 

with minimal work required to get to the cleanouts.  The panels also mark the location of 

the cleanout, thus ensuring that little additional disruption of tests need be done to fix a 
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potential problem.  All of the cleanouts are located in the indoor room.  Cutout points 

were not made for drains and other items in the floor. 

 

Plenum Structure 

 

The plenum structure consists of two main parts; the floor grating and the 

supporting structure.  The supporting structure is secured at the base with a “U” channel 

that is fastened over the seams of the floor paneling; thus securing the paneling together 

and transferring the weight through the most rigid part of the floor panels down to the 

base plate.  Sheet metal posts are secured inside the “U” channel.  On top of the posts 

rests a saddle structure on which the floor grating rests; the plenum structure can be seen 

in Figure 4.15.   

 

Figure 4.15:  Floor plenum assembly: a) u-channel  b) plenum post  c) floor insulation  d) grating  e) 

saddle rail 

 

An important consideration in the design of the saddle rail was to ensure that the 

automated bending machines at AAON could manufacture it.  While these machines are 
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versatile in their overall ability to manufacture complex parts, they also subject to some 

very specific constraints concerning the length, height, depth, and number of bends that 

can be performed on a single piece of steel.  These limitations have to do with the tooling 

on the machines.  These constraints led to the two-piece saddle rail design seen in Figure 

4.16. 

 

Figure 4.16:  Cross section of saddle rail, the supporting component of floor grating sections showing parts 

A and B of the saddle rail assembly 

 

Equations 4.1 and 4.2 (Shigley and Mischke 2002) were used to determine the 

validity of the structural design.  The former equation demonstrates the deflection of a 

beam that is simply supported, while the latter demonstrates the deflection of a beam that 

is cantilevered on each end.  The sections of beams between each post are a mixture 

between these two scenarios.  Table 4.1 demonstrates the effect that the post spacing has 

on the beam deflection. 
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EI
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192
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max =           4.2 

where 

 F is Force (lbs) 

 l is length (in) 

 E is the modulus of Elasticity, a material property; 28,000 psi was used for the 

galvanized sheet metal that comprises the chamber 

 I is the bending moment of inertia, a geometric property that is computed using 

the cross-sectional area of the member (in
4
) 

L (in) Part A Part B Combined Part A Part B Combined Part A Part B Combined

20 0.004 0.003 0.002 0.016 0.013 0.007 0.010 0.008 0.005

35 0.022 0.017 0.010 0.086 0.070 0.039 0.054 0.044 0.024

40 0.032 0.026 0.014 0.129 0.104 0.058 0.081 0.065 0.036

60 0.109 0.088 0.049 0.435 0.352 0.195 0.272 0.220 0.122

80 0.258 0.209 0.115 1.031 0.835 0.461 0.644 0.522 0.288

ymax (in) Simply Supportedymax (in) Cantelivered ymax (in) Average

 

Table 4.1:  Deflection of part A and part B of the saddle rail acting separately and combined as one.  The 

bending moment of inertia, I, is 0.887, 1.095, and 1.982 in
4
 for part A, part B, and their combined total 

respectively; the demonstrated load is 2400 lbs. 

 

The table demonstrates what we intuitively know; larger spacing of posts results 

in the greater deflection of the beam.  Spacing of 35” is selected.  This allows 7 posts to 

be roughly evenly spaced across the East-West axis of the room.  In the worst of case, if 

part B acts alone as a simply supported beam, assuming no twisting, the deflection is only 

0.070”, which would be undetectable when rolling equipment around inside the chamber. 

Intuitively, we would assume that a beam subject to such little deflection would 

have no danger of failure; a quick check confirms this assumption.  Equations 4.3 and 4.4 
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are used to demonstrate this.  Again, the first demonstrates the stresses in a simply 

supported beam and the latter in a cantilevered beam.    

4
max

Fl
M =           4.3 

8
max

Fl
M =           4.4 

Where F and l are force (lbs) and length (in) respectively and Mmax is the maximum 

bending moment (lb-in) in the beam 

The neutral axis runs through the centroid of the cross section of the beam, the 

maximum stress is determined using Equations 4.5 and 4.6.  Table 4.2 demonstrates the 

maximum compression and tension stress that act on the saddle rail components. 

I

cM
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1max
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I
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2max

max, =σ          4.6 

Where  

σc,max and σt,max are the maximum compressive and tensile forces (psi) in the beam 

 Mmax is the maximum bending moment (psi) 

 c1 and c2 are the distances (in) from the neutral axis to the top and bottom of the 

beam respectively  

 I is the bending moment of inertia (in
4
) 

Part A Part B CombinedPart A Part B CombinedPart A Part B Combined

Mmax (lb-in) 10500 10500 10500 21000 21000 21000 15750 15750 15750

σt (psi) 14773 12773 7057 29547 25545 14113 22160 19159 10585

σc (psi) -29085 -24673 -13631 -58170 -49345 -27262 -43628 -37009 -20446

Cantelivered Simply Supported Average

Table 4.2:  Maximum stresses in saddle rail parts.  Note that failure occurs at about 30,000 psi in steel, 

when combined, the rails are not in danger of failure 
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The grating rests on top of the saddle rails.  Again, the design, seen in Figure 

4.17, was constrained to the manufacturing capabilities at AAON.  The grating is made of 

three parts, all of which are replicated at least once in the assembly.  The assembly 

consists of two end caps, which rest on the saddle rails; between the end caps span the 

main support rails, each section of grating has 10 support rails that are spaced roughly 5” 

apart on center.  Stabilizers run across the bottom of the grates to tie the main load 

bearing members together.  The design results in 885.9 in
2
 open area for every 2286 in

2
 of 

grate, or 38.7% open area. 

 

Figure 4.17:  Grating with cutout view; a) main supporting rails b) side support rail c) stabilizer  

 

A two dimensional finite analysis would have to be used in order to get the full 

picture of the deflection and maximum stresses of the grate system, however, each 

component is analyzed separately using Equations 4.1 and 4.2; results appear in Table 

4.3.  It can be seen that under the maximum expected load, even when the pieces are 

functioning alone, the deflection is still within an acceptable value. 
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Object I  (in4) ymax (in) Mmax (lb-in) σt (ksi) σc (ksi) ymax (in) Mmax (lb-in) σt (ksi) σc (ksi) ymax (in) Mmax (lb-in) σt (ksi) σc (ksi)

Side support rail 0.426 0.127 14871 45.82 -45.82 0.511 29742 91.63 -91.63 0.319 22306.5 68.73 -68.73

main supporting 

rail (one section) 0.351 0.154 14871 59.82 -51.39 0.620 29742 119.65 -102.78 0.387 22306.5 89.73 -77.09

main supporting 

rail (combined) 0.702 0.077 14871 29.91 -25.70 0.310 29742 59.82 -51.39 0.193 22306.5 44.87 -38.54

grate stabilizer 0.061 0.718 13837.5 263.37 -133.61 2.873 27675 526.73 -267.22 1.795 20756.25 395.05 -200.42

AverageCantelivered Simply Supported

 

Table 4.3:  Deflections and stresses in each of the rail members acting independently from one another 

under a centrally located 2400 lb point load 

 

Floor Surface 

 

Solid sheet metal is used around the perimeter of each room to cover the gaps 

between the grating rails.  The center portion of the room will use a perforated sheet 

metal, which will serve as a diffuser for the conditioning air.  As seen in Figure 4.18, fine 

perforated steel is used near the conditioning loop where the pressure of the airflow is 

high.  Courser perforated steel is used farther back in the chamber.  The difference in 

open area should allow the airflow to be more evenly distributed across the entire 

chamber.  Currently, the chamber is broken into three distinct sections: 23%, 40% and 

58% open area for the perforated steel.  After the grating is taken into account, the open 

area of the floor translates to 8.9%, 15.5%, and 22.4%.  
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Figure 4.18:  Distribution of perforated flooring. a) closed sheet metal;  remaining flooring is perforated 

sheet metal with the open area of b) 23% c) 40% d) 58% 
 

Plenum Ceiling 

 

As is the case with the floor, the plenum ceiling, consists of several parts.  

Consistent with the rest of the chamber, 4” thick insulated panels comprise the roof.  

Similar to the wall panels, the ceiling panels are secured together using splices.  A center 

beam supports the panels, and a plenum hangs from the roof panels.  Each part will be 

described below. 

 

Ceiling Beams 

 

The ceiling beams are made of ten gauge sheet metal, and are the only parts of the 

chamber made using the manual, rather than automatic, press brake at AAON.  Each 

chamber has a beam extending between the East and West walls.  The indoor and outdoor 
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ceiling beams are 295” and 318” respectively; due to the length limit on the press brake, 

the beams were made in sections, and welded together on-site. Two identical sections of 

beam are welded back-to-back for the complete beam design, shown in Figure 4.19.  The 

tops and bottoms of the beams are capped and insulted to reduce thermal conductivity 

between the plenum space and the ambient air.   

 

Figure 4.19:  Ceiling beam cross section  

 

The primary stresses on the beams are due to the roof panels; the deflection of a 

cantilevered beam with uniform load is determined using Equation 4.7, and the maximum 

bending moment is represented as Equation 4.8 for the ends of the beam, and Equation 

4.9 for maximum in the middle of the beam.  The ceiling beam is modeled as a 

cantilevered beam because of the supporting posts used to secure the ends of the beam.  

Because interstitial space between the roof of the chamber and the ceiling of the ATRC 

exists, it is likely that the ceiling beam will experience more loading than just the roof 

panels.  To account for addition loading in the center of the beam, Equations 4.7 and 4.8 
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can be combined with previously mentioned cantilevered expressions to get a total 

resulting deflection and bending moment.  As before, Equation 4.5 and 4.6 will show the 

resulting stresses in the beam.  Table 4.4 shows the total deflection of the beam and the 

resulting stresses occurring.  The total roof weighs about 7,000 lbs, distributed evenly 

between the two rooms.  The maximum load that the outdoor ceiling beam should endure 

in addition to the panels is 3,300 lbs; this corresponds to a maximum stress in the beam of 

about 15 ksi; the indoor can theoretically handle more because it is shorter.  The very 

simple analysis of a single ceiling panel indicates that, acting alone, it can support 

approximately 100 lbs before it is subject to the same stress.   
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Object I  (in
4
) ymax (in) Mmax (lb-in) σt (ksi) σc (ksi)  new load (lbs) ymax (in)

Ceiling beam (one 

side) 29.69 2.154 47700 7.93 -7.55 1100 2.376

ceilig panel (one 

side) 0.306 0.094 2062.5 1.64 -11.42 27 0.189

Ceiling beam 

(combined) 59.38 1.077 47700 3.96 -3.78 3300 1.410
Ceiling panel 

(combined) 0.612 0.047 2062.5 6.74 -6.74 102 0.225

 σmax = (15 ksi)Design Conditions

 

 Table 4.4: Analysis of ceiling beam and panels   
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Supporting Columns 

 

For safety and rigidity, the ceiling beams are supported by columns erected next 

to the structure.  The supporting columns, made out of 4” square steel tube, are anchored 

to the floor and ceiling of the ATRC, as seen in Figure 4.20.   

 

 

Figure 4.20:  Ceiling beam – post interface 

 

Roof Panels 

 

The roof panels are supported by the ceiling beam and the walls.  Corner splices, 

as described previously, are used at the junction of the roof and walls; panel to panel 

junctions are also done in the same manner as the walls.  As previously stated, it is likely 
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that the roof will be subject to loads that are not part of the chamber structure.  The 

strength and probable deflection of the ceiling panels can be determined from Equations 

4.6 and 4.6; results are shown in Table 4.4.  The equations assume that panels remain 

rigid under deflection, an assumption warranted by the stiffness of the panels after foam 

injection.      

Plenum Structure 

 

The ceiling plenum hangs from the roof panels, and is made out of very 

lightweight steel.  It consists of several parts, as seen in Figure 4.21; the first being 

hangers which are fastened to the roof to support the plenum, or false ceiling.  The 

hangers support a sleeve into which the plenum blanks and filters are inserted.   

 

Figure 4.21:  Left: Filter sleeves and ceiling plenum assembly  

 

The bulk of the false ceiling consists of blanks and filters, these are use to create 

the plenum space.  Fourteen filters provide means for the air to enter the plenum space.  

The filters act as a diffuser and pressure differential as well as to help ensure the 

conditioning equipment remains clean and dust free.  The blanks, made out of very thin 
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sheet metal have the same shape as the filters and provide the plenum space for air to 

return to the conditioning loops.  The filters and blanks can be arranged in any 

configuration in case the air flow inside the chamber needs to be adjusted.  Both filters 

and blanks are inserted into the sleeve using the cutaway slot and filter clips as seen in 

Figure 4.22. 

 

Figure 4.22:  Filter sleeve entrance and retaining clips 

 

Conditioning Loops and Code Tester 

 

The limited space required unique planning for the conditioning and code tester 

loops.  These loops are located on the East side of the chamber and are separated from the 

chamber, as seen in Figure 4.23, using a wall consisting of panels and doors 2” thick.   
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Figure 4.23:  Conditioning loop and code tester.  Left: without equipment.  Right: with equipment.  Center 

column is code tester, side columns are conditioning loops. 

 

Behind the wall are three sections separated by 4” thick partitions.  The partitions 

extend between the floor and ceiling plenums.  The center section is capped at the 

bottom, but left open on to the ceiling plenum on top and serves as the code tester.  Each 

side section functions as a conditioning loop. 

 The code tester, described in chapter three, consists of several levels of equipment 

necessary for testing the air flow from a unit.  The majority of the code tester equipment 

is mounted using a triangular bracket, seen in Figure 4.24. 
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Figure 4.24:  Triangular mounting bracket secured in code tester 

 

The conditioning loops have equipment mounting brackets of several shapes and 

sizes.  They support coils, dampers, blowers and electric heaters, all of which are 

necessary to condition the chamber.  Each component is discussed more in chapter six; 

however, pictures of the different bracketing styles are shown in figure 4.25. 
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Figure 4.25: Various types of brackets used in mounting conditioning equipment: a) top coil mount  b) 

blower nozzle plat mount  c) front coil hanger mount  d) bottom coil mount  e) damper and heating coil 

mount   

 

A 20 hp blower is located near the top of the code tester and near the bottom of 

the conditioning loop.  As seen in Figure 4.26, the motor mount designed allows the 

motor to be suspended in the center of each of the loops.  The motor mounts are secured 

to each wall and to the back of the conditioning loop.   
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Figure 4.26:  Left: Blower mounted in conditioning loop Right: rendering of motor mount 

 

Figure 4.27 shows the partition separating the chamber and the conditioning and 

code testing loops.  Several doors and removable panels allow access to the equipment if 

needed.   

 

Figure 4.27:  Façade for conditioning loops and code tester revealing access doors  a) coils access  b) 

conditioning blower and electric heater access  c) flow nozzle access  d) code tester blower access  e) flex 

duct connection for code tester  
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Mezzanine and Crane Lift 

 

One solution to getting around the limited available floor space was to build a 

mezzanine on which to place several of the components necessary for conditioning the 

chamber:  Pumps, tanks, heat exchangers and other items are placed on the mezzanine to 

free up room for equipment entering and exiting the chamber.  Integrated into the 

mezzanine design is a crane lift for lifting test units up to the level of the plenum floor. 

The mezzanine and crane lift, designed separate from AAON, are comprised of 

structural steel rather than sheet metal.  Dr. Dana Hobson, P.E., assisted in the selection 

of the beam material for the mezzanine in order to ensure that it met standards of safety.  

The mezzanine platform is 10’ x 10’; there is a clearance under the mezzanine of roughly 

12’.  The beam for the crane approach is 40’ long and will support well over the required 

weight of 3000 lbs.  The mechanical lift and trolley selected will support 4000 pounds.  A 

picture of the mezzanine and crane lift can be seen in Figure 4.28 and 4.29. 
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Figure 4.28:  Mezzanine with accompanying trolley beam erected in basement of ATRC before 

construction of chamber 

  

   

 

 

Figure 4.29: Full design sketch of mezzanine and crane lift 
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Staging Area 

 

 

 

Because the floor of the chamber is nearly 20 inches higher than the ATRC 

basement floor, it is important to have a way of getting into the chamber.  As an 

intermediate step between the crane and the chamber, a staging area has been designed.  

The staging area is similar in design to the mezzanine, as seen in Figure 4.30.  The 

staging are will be used to position units onto a test cart.  When the unit is ready for 

testing, the cart can be rolled from the staging area into the chamber.  Detailed 

schematics of the staging area are contained in Appendix B.    

 

 

Figure 4.30:  Design sketch of staging area used for accessing the chamber
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CHAPTER V 

 

 

METHOD OF CONDITIONING AND CONTROL 

 

This chapter focuses on the specifics of the conditioning and how the 

psychrometric chamber is to be controlled.  It will also touch on the unique difficulties of 

conditioning to temperatures as low as -40°F (-40°C).   

 

Air Flow 

 

As previously discussed, the OSU psychrometric chamber is unique in that it is 

conditioned by an underfoot air supply plenum.  Conditioned air enters the underfoot 

plenum as it leaves the conditioning loop.  The air diffuses through the perforated steel 

floor, as seen in Figure 5.1, to enter the conditioned space, and continues through filters 

in the ceiling to enter the ceiling plenum.  From the ceiling plenum air is pulled back into 

the conditioning loops to complete the cycle.   

 



 68

 

Figure 5.1:  Airflow pattern inside chamber 

 

Air enters the vertical conditioning loop through a set of control dampers located 

at the top.  In the conditioning loop, air is first cooled by the coils.  The blower, located 

directly below the coils, pulls the air through the coils and propels it downward past the 

set of electrical resistance heaters and into a control damper located at the bottom of the 

conditioning loop.  Just before the air reenters the plenum, it is humidified by steam 

injection. 
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Figure 5.2:  Conditioning loop components 

 

Good system design is essential for maintaining tight control of the chamber.  A 

brief overview of the psychrometrics involved with the conditioning of the chamber will 

be helpful; the process is outlined below. 

 

Psychrometrics 

 

Three components are used to change the properties of the air:  Cooling coils, 

electric resistance heater, and a steam humidifier.  The coils provide sensible cooling 

down to the saturation curve, and latent cooling beyond the saturation curve.  The electric 

resistance heaters provide sensible heating.  Any point on the psychrometric chart could 



 70

technically be reached using only the cooling coils and heater.  However, condensate 

collected on the coils leaves the chamber system; an overall drying effect would result 

without the addition of humidity back into the system.  The steam generator provides 

latent heating, or humidification to restore system water.  Figure 5.3 demonstrates the 

processes on the psychrometric diagram. 

 

Figure 5.3:  Psychrometric chart and processes.  a) Sensible cooling b) latent cooling c) sensible heating d) 

steam humidification 

 

The fundamental concepts of controlling and conditioning the chamber from an 

air side perspective are fairly straightforward.  The air flow can be adjusted by varying 

the blower speed or adjusting the dampers located at the top and bottom of the 

conditioning loop.  The exiting temperature and humidity of the air depends on the 

temperature of the cooling coils, the amperage delivered to the heating coils, and the 

whether or not the steam valves are open.   
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In the outdoor chamber only one of the conditioning loops will operate at any 

given time.  This will allow defrosting of one set of outdoor coils while maintaining 

chamber conditions with the other conditioning loop.  In the indoor chamber, both 

conditioning loops will operate simultaneously because there are no plans to operate at 

sub-freezing temperatures.   

Of course, the actual operation of the system and the coordination of the specific 

pieces of equipment are a lot more complex than explained above. The details behind 

each of the systems and getting everything to work harmoniously will require hours of 

testing and operation. 

 

Cooling Loop and Coils 

 

The most heavily relied upon pieces of equipment to keep the chamber within 

conditions are the cooling coil.  Each room has a set of four fin and tube coils that will be 

working at any given time.  All coils are fin and tube type custom designed by AAON for 

use in the chamber.  Coils are placed in the conditioning loops using a “V” configuration, 

as seen in Figure 5.4.  

The indoor coils are two tube rows deep; each coil has a capacity of about 5.5 

tons (19.28 kW).  The outdoor coils are each four rows deep.  The outdoor conditioning 

loop is two coils deep, or rather; it consists of a double “V”. 
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Figure 5.4:  Cooling coils inside conditioning loops  a) indoor coils b) outdoor coils 

 

Indoor Cooling Loop 

 

The indoor cooling system is a basic hydronic system; the operating fluid is water.  

Figure 5.5 shows a flow diagram of the indoor cooling system.  Heat from the air in the 

chamber is removed using the coils.  Heat is removed from the water using a brazed plate 

heat exchanger connected to the campus chilled water system.  The campus system 
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delivers water at 44° F, with a strict need to return the water from the plate heat 

exchanger at 56° F.  Proportional valves in each of the lines to the plate heat exchanger 

will be used to control the temperature of the coil.  

 

Figure 5.5: Piping Schematic for indoor cooling loop  

 

Additional control of the coil heat transfer rate is done using proportion mixing 

valves at the outlet of each of the coils.  These valves allow a portion of the water flow to 

bypass the coils.  The modulation of these valves helps to control the water side, and thus 

the air side, heat transfer rate.  Additional control may be obtained through adjustment of 

pump speed.  A volume tank in the system acts as a flywheel to help maintain the system 

against small disturbances; the volume tank may be bypassed for faster system response.  

Other necessary components of any hydronic system include balancing valves, air 

separators, pumps, and an expansion tank.  A detailed piping schematic is contained in 

Appendix C.   

An additional plate heat exchanger is installed after the campus chilled water heat 

exchanger.  The other side of this heat exchanger will be available for connection to 
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another device.  This will give flexibility to the system.  A likely possibility for 

connection to the “extra” heat exchanger would be a DX system or a chiller; this would 

allow cooling to temperatures below that of the campus chilled water.  Additional 

humidity removal and cooler chamber temperatures could be reached using the additional 

heat exchanger.   

 

Outdoor Cooling Loop 

 

The outdoor chamber cooling loop is much more complex than the indoor.  In 

order to meet the low temperature requirements, the outdoor system is filled with 

Dynalene HC-50, a glycol-type substance which freezes at -58°F.  Many of the 

complexities inherent to the outdoor system are introduced because of the low 

temperature of the circulating fluid.  Figure 5.6 shows the schematic of the outdoor 

cooling loop. 
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Figure 5.6:  Piping Schematic of the outdoor cooling loop with defrost capabilities 

 

Each of the stacked coil pair is connected in parallel to a proportional control 

valve.  This gives the effect of controlling a single eight-row coil.  Proportional mixing 

valves allow the precision control of the heat transfer rate of the coils.   

Similar to the indoor cooling loop, there are two plate heat exchangers, one of 

which rejects heat to the campus chilled water system, the other to a chiller or DX system 

to get to lower temperatures.  It is expected that the second heat exchanger will be used 

extensively.  Because this is basically a hydronic system, the same components exist in 

the outdoor cooling loop as in the indoor cooling loop. 

The main differences of the outdoor loop with respect to the indoor cooling loop 

are the changes made to facilitate smooth operation at low temperatures.  The mixing 

valves used to control the coils are only rated to -20°F; therefore a manual bypass is 
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installed for both valves on one of the outdoor conditioning loops.  When temperature of 

the fluid is below -20°F, the bypass should be manually opened.  The coils will then run 

full open, with the only control of them being through the adjustment of the variable 

speed pump.  An actuated valve allows the complete bypass of the campus chilled water 

plate frame heat exchanger.  Bypassing the heat exchanger at low temperatures will 

prevent freezing of the campus chilled water, which would likely damage the system.   

When the temperature of the outdoor coils approach freezing, there will be frost 

accumulation.  As frost accumulates at low temperatures; the effectiveness of the coils 

will decrease.  Decreased air flow and degraded heat transfer will eventually render the 

coils completely ineffective.  In order to combat this process, a defrost system has been 

designed.  The defrost loop incorporates four 3-way valves, a pump, and a heating tank, 

as seen in Figure 5.6.   

In the event that the need for defrost is detected, the heater in the tank will be 

turned on.  Circulating fluid is diverted from the coils needing defrosting to the ice free 

coils as the system switches to the other conditioning loop.  The heated fluid will then be 

circulated through the frosted coils to melt the ice from them.  When the frosting renders 

the other coils inoperable, the process will be repeated. 

The electric heating elements will work on proportional control.  Each room has 

four 20 watt heaters.  Steam will be injected under the floor right after the conditioning 

loop.  Steam is mainly controlled with signals to the steam generator.  Table 5.1 shows 

the pieces of equipment used to control indoor chamber conditions; Table 5.2 

demonstrates control items for the outdoor chamber.  Notice the several possible control 

strategies. 
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Description Quantity Control Type Effect of Controlling Location

Damper 4 proportional
Operate between close ond 

open to regulate airflow

One at the top and bottom of 

each conditioning loop

Blower 2 proportional

Adjust to vary air volume to 

chamber or velocity through 

conditioning loop and across 

coils

One in each of the 

conditioning loops, just 

under eye level

Mixing Valve 4 proportional

Regulate fluid flow to each coil, 

changing the capacity and heat 

tranfer characteristics

One connected to the outlet 

of each cooling coil - valve 

located in interstitial space 

above the chamber

Mixing Valve 1 proportional

Regulate flow to the brazed 

plate heat exchanger connected 

to the campus chilled water - 

effects capacity and heat tranfer 

of the system

Above mezzanine, near plate 

heat exchanger

Proportional 

Valve
1 proportional

Regulates return temperature of 

campus chilled water to plate 

heat exchanger - must ensure 

56 F return

Above mezzanine, near plate 

heat exchanger

Circulation 

Pump
1 proportional

Increase fluid flow in cooling 

system - effects capacity and 

water side heat transfer 

On mezzanine

Electric Heating 

Elements
1 proportional Heat air stream

Located below blower, but 

above damper in one 

conditioing loop.

Electric Heating 

Elements
3 on/off Heat air stream

Conditioining loops near 

bottom.  Located below 

blower, but above damper

Steam 

Generator

1 

(shared)
on/off

Increase humidity in room - 

manual control valve to 

determine which room

Interstital space above 

chamber - over partition wall

Indoor Chamber

 

Table 5.1:  Items for control in the indoor chamber 

 

It is not hard to imagine the possible complexities involved in controlling the 

chamber.  Many of the same variables can be controlled using different interdependent 

pieces of equipment.  Perhaps the simplest example is demonstrated by the control of the 

volume of air delivered to the chamber.  In the indoor room, this aspect depends on two 

blowers and four dampers, all of which are independently operated.  Slightly closing any 

one of the dampers will immediately increase the pressure differential across that 
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particular conditioning loop, thus reducing the airflow through the conditioning loop.  

The decreased air flow will created a drop in pressure in the supply plenum.  The blower 

in the opposite conditioning loop would in turn need to do less work to push the same 

amount of air; however, because it operates independently, equilibrium will be reached at 

a slightly higher flow rate.   

Adjusting a damper in one conditioning loop directly decreases the flow in that 

loop; however it indirectly increases flow in the opposite conditioning loop.  Where, then 

will the new equilibrium point be?  The solution is increasingly more complex because 

the concern will not only be with the amount of air flow, but also the temperature of said 

air.  The changes in airflow will affect the flow characteristics, and thus the heat transfer 

properties at the cooling coil.  Variation in heat transfer at the coils affects the return 

water temperature, and eventually the supply temperature.  Ultimately, a change in the 

damper position could affect every aspect of the system!  Experimental data will be 

invaluable in determining the set method for controlling the system. 
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Description Quantity Control Type Effect of Controlling Location

Damper 4 proportional
Operate between close ond 

open to regulate airflow

One at the top and bottom of 

each conditioning loop

Blower 2 proportional

Adjust to vary air volume to 

chamber or velocity through 

conditioning loop and across 

coils

One in each of the 

conditioning loops, just 

under eye level

Mixing Valve 4 proportional

Regulate fluid flow to each coil, 

changing the capacity and heat 

tranfer characteristics

One connected to the outlet 

of each stacked coil set - 

located in interstital space 

above chamber

3-way Valve 4
directional:     

1 or 2

Regulates coil connection to 

cooling system or to defrost 

system

Interstitail space above 

chamebr over the outdoor 

conditioning loop

Mixing Valve 1 proportional

Regualte flow to the plate heat 

exchanger connected to 

campus chilled water

On mezzanine, near plate 

heat exchanger

Circulation 

Pump
1 proportional

Regulate fluid flow in outdoor 

cooling loop
On mezzanine 

Circulation 

Pump
1 on/off

Turn on to circulate water in 

defrost system

Interstitail space above 

chamebr over the outdoor 

conditioning loop

Tank heater 1 on/off
Heats the deforst tank - set 

temperature manually selected

On defrost tank in interstitial 

space above chamber

Electric Heating 

Elements
2 proportional

Heat air stream before delivery 

to chamber

One in each conditioining 

loop near bottom.  Located 

below blower, but above 

damper

Electric Heating 

Elements
6 on/off

Heat air stream before delivery 

to chamber

Three in each conditioining 

loop near bottom.  Located 

below blower, but above 

damper

Steam 

Generator

1 

(shared)
on/off

Increase humidity in room - 

manual control valve to 

determine which room

Interstital space above 

chamber - over partition wall

Outdoor Chamber

 

Table 5.2:  Control items for outdoor chamber 

 

The control of the chamber will be done using a data acquisition (DAQ) system.  

The system will continuously gather data about temperature and air flow.  It will adjust 

the many components according to the needs involved to reach and maintain the required 

conditions.  The topic of actually controlling the chamber is reserved for another paper.           
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CHAPTER VI 

 

 

AN OPERATIONAL MODEL 

 

As part of the chamber planning and design, an operational model was developed 

to test the soaking time of the chamber.  The soaking time is the time it takes for the 

chamber to transition from the start up temperature to the set point temperature.  This 

section focuses on modeling this aspect of the chamber.  

 

Literature on Computer Modeling 

 

It seems that it is only when we stand on the shoulders of others that we are able 

to see the picture clearly enough to attempt to build a trail.  The idea of modeling heat 

transfer in a structure is not new.  Several papers have been published on this topic, far 

too many to review here.  Research is particularly plentiful in the HVAC industry, where 

much of it is based on the modeling of living or working spaces in order to provide 

comfortable conditions for people (Clark, Hurley et al. 1985; Clark and May 1985; 

Sowell 1989; Brandemuehl, Lepore et al. 1990; Sowell and Hittle 1995; Kasahara, Kuzuu 

et al. 2000; Sowell and Haves 2001; Chatzidakis, Athienitis et al. 2002; Armstrong, Leeb 

et al. 2006).  Other areas of research focus on animal housing, green houses, or 

environmental  
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test facilities(Chatzidakis, Athienitis et al. 2002).  The general approach of most 

researchers seems to have been aimed at either modeling a room or a building in which 

several rooms are located.   

As is the case with most fields that have been around for decades, an exhaustive 

literature review is not practical.  Far too many papers have been published on the topic 

of building simulation to do more than touch on the available pertinent information.  The 

main difference with mainstream building modeling and modeling the chamber is the 

dynamic aspect of the chamber.   

In general, buildings are maintained at a set temperature.  Building controls may 

allow small perturbations from the set point temperature; however, it is much more 

common for temperature of a building to remain constant.  Modeling of buildings focus 

on the thermal loads associated with weather and occupants.  The key point is to 

understand how much energy is required to maintain the set point temperature of the 

buildings.  This purpose is often extended to investigate energy saving options.  

Regardless, building models focus on the steady state operation because the vast majority 

of operational time for building conditioning systems is spent maintaining the set point 

temperature.  Even with some energy saving practices, where conditioning is minimized 

during nights or weekend, the overall deviation from the standard set point is relatively 

small.   

In contrast, the psychrometric chamber will operate intermittently, dedicating a 

large portion of its operating time to soaking, or transitioning to the set point conditions.  

Additionally, the temperature changes between start up and the set point temperature can 
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be greater than 100°F (38°C).  Therefore a new model needs to be developed in order to 

estimate the soaking time of the chamber.   

Regardless of the differences from the typical building model, there is a lot of 

pertinent information to be gleaned from main stream building model literature.  This 

section of the paper attempts to present the main ideas and methods used in building 

simulation.  An overview of the building system modeling is provided with examples and 

references to work done by previous researchers in the field.  Governing equations of the 

most popular solution methods are presented with documentation directing interested 

readers to their sources. 

Some examples of research that have used models that are pertinent to the 

psychrometric room project are also presented.  The literature review is concluded with a 

brief discussion of programs and a short explanation of some of the HVACSIM+ 

supporting literature.       

 

Simulating Systems 

 

People have long been interested in the overall energy needs associated with 

maintaining comfortable conditions inside a space.  In the early days simple steady state 

models were used to determine the amount of coal delivered to a home.  These models 

were referred to as degree-day models (Armstrong, Leeb et al. 2006).  The steady state 

model obviously left things to be desired.  Modeling approaches have evolved to become 

more complicated over the years.  The time of the degree-day has passed.  New models 

use computers and complicated algorithms written in lengthy programs to predict energy 
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consumption over several years based on past weather data.  These programs can break 

down the data into small time steps in order to give an accurate representation of the 

modeled system at any given moment. 

The response to an input, such as an air conditioner, is determined by much more 

than the indoor and outdoor temperatures.  Parameters such as geometry of the building, 

internal partitions, and obstructions in the room all influence what actually happens 

inside a building.  Significance is also found in the building’s capacitance, or ability to 

store heat, as well as its thermal transmission properties (Armstrong, Leeb et al. 2006).  It 

is not hard to imagine why the early models were insufficient.   

Early models lacked not only complexity in calculation, but also lacked sufficient 

components and appropriate parameters.  A small house with one room may have been 

adequately heated by a stove in the middle of the room, but a similar sized house with 

two rooms and an identical stove in the corner certainly could not be assumed to have the 

same warmth to it.  A simulation must be broken into parts and sub parts.  A common 

way of breaking down a simulation by current programs by breaking it into four main 

parts: Load, System, Plant, and Economics; or LSPE as Sowell has termed it (Sowell and 

Hittle 1995).  Each of these components may be broken down even further depending on 

the overall goal of a simulation and the desired level of detail. 

 

Components of the LSPE Model 

 

Load.  The first, and possibly most obvious, part of the LSPE model is that of the 

load.  Loads are the reason behind HVAC equipment.  Their sources are numerous.  
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Typical building loads specific to air conditioning are present in the form of lights, 

people, machinery, computers, conduction through walls, and radiation incident on 

exterior walls and through windows.  Loads are dealt with using either a nodal or zonal 

model.  Both models break a space up into manageable pieces and assign a value to each 

piece representative of the loads generated in the space.   An example of a zonal model is 

presented by Kasahara in Figure 6.1 (Kasahara, Kuzuu et al. 2000).   

 

Figure 6.1: Example of a zone model (Kasahara, Kuzuu et al. 2000) 

 

Each zone will have a load value associated with it and will interact with the 

zones immediately around it.  For example, from Figure 6.1, zone 2 will have loads 

associated with the window, perhaps conductive heat loss to a lower outside temperature; 

it will exchange heat with zones 1, 3, and 5.  Zone 4 may have electronic equipment 

producing heat that needs to be accounted for and will exchange heat with zones 1, 3, and 

5.  Adding more zones makes the model more accurate but also complicates the model.   

Nodal models are really an extension of zone.  They allow more freedom, but can also 

become increasingly more complex.  Complexity can improve simulation results, but 

always add the cost of computation time.   
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Sowell presented a complex nodal model,  which he solved using HVACSIM+ 

(Sowell 1989).  In Sowell’s model, each surface or volume in the room is represented by 

a node in the network.  Nodes appear inside and at the boundary of a zone and do not 

necessarily contain mass.  Heat transfer in any form can occur between any of the nodes.  

This method allows one to very accurately show the interactions inside and around a 

building.  Sowell suggests, when using this method, modeling in great detail then 

removing nodes one at a time to see which nodes are significant and which can be 

removed for simplification. 

 

System.  Systems, sometimes referred to as, secondary systems are deal with 

components other than the main loads.  Fans, dampers, and motors are all part of what the 

system entails.  Strand describes HVAC simulation in as having three loops (Strand, 

Fisher et al. 2002).  A visual representation of these three loops is displayed in Figure 6.2.  

Strand’s designates the loops as the air loop, plant loop and condenser loop.  Both the air 

loop and the condenser loop would fall in to the category of being part of the system.  

The plant loop is left to be in a category of its own which will be discussed later.  It is 

interesting to note that generally programs will have a strong base in either load or 

system, but will leave the other one lacking (Sowell and Hittle 1995). 
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Figure 6.2: Loops of interest in a simulation model.   Air and condenser loops fall into the system category 

(Strand, Fisher et al. 2002). 

 

Plant.  Most computer programs have greatly simplified the plant, or the operating 

HVAC component.  Usually there is a catalogue of HVAC units comprised of air 

conditioners, heat pumps, furnaces, chillers, etc. and users are instructed to input an 

efficiency or curve fit coefficients obtained from manufacturers’ data.  It should be noted, 

however, that in Europe plants are modeled in great detail; a furnace model, for example, 

might include combustion calculations (Sowell and Hittle 1995).  

 

Econonmics.  In general, economics is the driving factor behind simulation.  

Whether the goal is to determine the amount of coal to deliver or the amount of electricity 

that is used, people are still concerned about the cost of creating the desired effects.  

Source energy is calculated in most programs, some programs will even calculate the cost 

of the source energy.  In any case, comparisons between simulations with varying 

components, loads, or conditions provides insight that help engineers improve their 

designs.         
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Computational Methods 

 

In general, two methods or models are widely used to mathematically describe 

building systems, or zone models.  They are the heat balance method and the transfer 

function method. 

 

Heat Balance Model.  The heat balance model uses surface conduction, radiation, 

and convection at the surface of the building and convective heat transfer within the 

space.  It is the most adaptive approach to building simulations.  The AHSRAE handbook 

of fundamentals details the process (ASHRAE 1993).  The solution uses basic energy 

balances, but several of them in order to balance all the sources of energy and physical 

components in the room.  The governing calculations for the inside surface appear in 

Equation 6.1. 
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For i=1, 2, 3, 4, 5, 6 

where  

       m  = number of surfaces in the room 

     qi,θ  = rate of heat conducted into surface i at inside surface at time θ 

       Ai = area of surface i 

       hci  = convective heat transfer coefficient at interior surface i and interior surface j 

       gij = radiation heat transfer factor between interior surface i and interior surface j  

      ta,θ  = inside air temperature at time θ 

      ti,θ = average temperature of interior surface i at time θ 
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   RSi,θ  = rate of solar energy coming through windows and absorbed by surface i at time θ 

   RLi,θ  = rate of heat radiated from lights and absorbed by the surface i at time θ 

   REi,θ = rate of heat radiated form the equipment and occupants and absorbed by surface 

    i at time θ  

    

The set of equations formed by Equation 6.1 need to be solved simultaneously 

with the equations formed using Equation 6.2.  This is necessary because the internal 

surface temperature is changing with time, which affects the conduction rate.  The 

equations of Equation 6.2 are typically formed using the conduction transfer functions.  
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where 

        in = inside surface subscript 

        k = order of CTF 

        m = time index variable 

       M = number of nonzero CTF values 

        o  = outside surface subscript 

         t  = temperature  

        θ  = time 

        x  = exterior CTF values  

        Y  = cross CTF values 

        Z = interior CTF values 

       Fm = flux history coefficients 

 



 89

Equation 6.3 is a space air energy balance and must be solved simultaneously with 

Equations 6.1 and 6.2. 
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where 

        σ  = air density 

       C = air specific heat 

    Vi,θ = volume flow rate of outdoor air infiltrating into room at time θ 

     to,θ = outdoor air temperature at time θ 

   Vv,θ = volume rate of flow of ventilation air at time θ  

     tv,θ = ventilation air temperature at time θ  

  RSa,θ = rate of solar heat coming through windows and connected into room air at time θ 

  RLa,θ = rate of heat from lights connected into room air at time θ 

  REa,θ = rate of heat from equipment and occupants and connected into room air at time θ 

 

Transfer Function Method.  The transfer function method is well suited for a 

computer.  It approaches the problem with using a sol-air temperature to represent 

outdoor conditions, and it assumes a constant indoor temperature.  It also assumes that 

both the indoor and outdoor heat transfer coefficients are constant.  This method is 

outlined in chapter 26 of the ASHRAE Handbook of Fundamentals (ASHRAE 1993).  

The governing equation is shown as Equation 6.4.  For addition help in using the 

equation, the reader is referred to the handbook. 

 



 90

( ) ( ){ } 







−−= ∑∑∑

−=

−

=

−

01

,

0

,, /
n

nrc

n

nen

n

nene ctAqdtbAq δθδθθ     6.4 

where 

      qe,θ = heat gain through wall or roof at calculation hour θ, Btu/h 

        A = indoor surface area of a wall or roof, ft
2
 

         θ = time, h 

         δ = time interval, h 

         n = summation index (each summation has as many terms as there are non- 

    negligible values of coefficients) 

   te,θ-nδ = sol-air temperature at time θ-nδ, °F 

        trc = constant indoor room temperature, °F 

bn, cn, dn = conduction transfer coefficients 

 

Relevant Research 

 

Several papers demonstrate building simulation with good supporting results.  

One of particular interest is by Sowell.  Previously mentioned, he developed a program 

that uses the heat balance method predict the heat loads in a room.  His program 

incorporates an arbitrary number of nodes (Sowell 1989).  Using nodes in his program 

allowed him to step away from the lumped capacitance model that is largely used.  Many 

simulations in the past had divided a room into only a small handful of zones, usually 

representing each zone as a portion of only the largest of the capacitances located in the 

zone.  His program remedied this problem; much detail can be included in such a model.   
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A significant portion of his research dealt with lighting; particularly the non-linear 

aspect of fluorescent lighting and how the heat gain from it is incorporated into a building 

simulation (Sowell 1989).  He used a program called LIGHTS to help supplement his 

program in HVACSIM+, Sowell Admits that the interface between the two programs 

needs some work (Sowell 1989); however, Sowell’s research definitely presents a good 

starting path for the design of a psychrometric chamber simulation.  

Kasahara’s method of simulating a small building using a zone model has 

relevance to the proposed psychrometric chamber simulation.  His method is more course 

than Sowell’s in the calculation, but his model includes humidity calculations (Kasahara, 

Kuzuu et al. 2000).  Kasahara’s solution incorporated Kirchhoff’s current law with the 

assumption that the air, while well mixed, was only flowing in one direction.  It seems 

that the same idea could be used in the simulation of the psychrometric chamber because 

of the nature of the air flow.  Using the zones described above, Kasahara created flow 

network and derived equations governing the room.   

The most relevant research on this topic comes from Chatzidakis (Chatzidakis, 

Athienitis et al. 2002); which is based on an environmental test chamber located in 

Athens.  The test chamber is built inside a building and is used to test semi trucks that 

require heating or cooling to maintain conditions in the cargo area.  Chatzidakis used a 

transient finite difference model matrix to calculate the transient conditions leading up to 

the set point of the test facility.   

The literature demonstrates that it is generally not possible to solve a problem as 

complex as building modeling by hand calculations.  The solution in all reviewed 

literature was to use computers to model a building, or parts of a building and how they 
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interact with each other.  A similar method will be used in modeling the psychrometric 

chamber. 

   

Programs.  The Package in which a simulation is executed is likely to play some 

role in the outcome of a simulation.  Programs such as Energy Plus, AXCESS, TRACE, 

BLAST, TRNSYS and others have all been developed to simulate at least some part of a 

model.  Unfortunately, time and resources are always limited and a comprehensive 

analysis of several programs is not feasible.    

Due to the availability and openness of the source code, HVACSIM+ has been 

chosen as the engine of simulation.  HVACSIM+ stands for the HVAC SIMulation PLUS 

other systems.  It is a non-propriety building simulation program that was developed at 

the National Bureau of Standards (NBS).  It is made up of a main simulation program, a 

library of HVAC system component models or Types, a building shell model, and 

interactive front and input data generation programs(Park, Clark et al.).  The goal of the 

program is to help people better understand the interaction of buildings with the 

environment and with the loads.  It too uses the basic LSPE approach to simulation.  

HVACSIM+ has many features that make it appealing for such a project.  The program is 

used extensively at OSU and several Type models have been created.  New Type models 

can easily be incorporated into HVACSIM+ through the use of a FORTRAN compiler.  

The option to customize the program is what is most appealing. 

Three main papers serve as valuable resources in the operation and modification 

of the HVACSIM+ program.  The first of these is a general user’s guide which mostly 

describes the set up and general application of HVACSIM+.  It includes some sample 
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simulations which could be used as a tutorial to the program (Clark and May 1985).  The 

user’s guide refers the reader to the reference manual for information about how to 

modify the program and create customized Type models.  The reference manual also 

describes capabilities, operations, and limitations of the program.  It is backed with 

models and validation in many areas (Clark 1985). 

The third paper on HVACSIM+ is specific to building simulation.  It details the 

shell models used in the original HVACSIM+ program.  A zone envelope, building 

surface, and zone model are each included in the original program as Types 50, 51, and 

52 respectively (Park, Clark et al. 1986).    

 

Methodology 

 

The heat balance method is the most adaptable, and simplest to use in the given 

situation because of the way that it breaks down the load into manageable parts.  

Chatzidakis used the heat balance method in his simulation (Chatzidakis, Athienitis et al. 

2002).  Using the same method will allow validation of the chamber model.   

The chamber is broken into nodes for simulation purposes.  Each wall, the ceiling, 

floor, and main chamber air mass is set as a control volume or node.  Each node 

exchanges energy with those nodes surrounding it in the form of convection or radiation 

heat transfer; however, in the chamber model, radiation is neglected.  Transient finite 

difference equations will be incorporated in the wall models.   
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Five main Type models; Types 803, 804, 805, 806, and 807; have been developed 

in order to sufficiently represent the interactions taking place in the simulation.  

Descriptions of each type and its governing equations are found below.   

 

TYPE 803: Free Convection Heat Transfer 

 

Type 803 calculates the free convection that takes place at a surface.  This model 

was developed to model the heat transfer that takes place in the quiescent air that 

surrounds the psychrometric chamber.  The subroutine uses physical properties of the air 

and adjacent surface to determine the amount of heat transfer that takes place across the 

interface.  It outputs the heat transfer rate into the surface as well as the surrounding air.   

Inputs for Type 803 are surface temperature and ambient temperature.  Parameters 

include the height, width, and an integer input for surface position.  The position input 

allows the user to specify the surface as the upper or lower face of a horizontal plane, or 

to specify that the surface is vertical.  

A detailed explanation of free convection and several equations are given by Incropera 

and Dewitt.  For simplicity, Equation 6.5, recommended by Churchill and Chu, is used to 

calculate the average Nusselt number for the vertical plane (Incropera and Dewitt 2002).  
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The Nusselt number is used to find the average convection coefficient, h.  The 

Raleigh number, RaL is calculated from the height and physical properties of the air at the 

film temperature.  The Prandtl number, Pr, is also calculated using the film temperature. 

Because gravity is a driving force in free convection, horizontal surfaces must be 

dealt with differently; the governing equations appear as Expression 6.6 below. 

Upper heated plane or lower cooled plane: 

3/1

4/1

15.

54.

LL

LL

RaNu

RaNu

=

=
         

( )
( )117
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1010

1010

≤≤

≤≤

L

L

Ra

Ra
      6.6 

Lower heated plane or upper cooled plane: 

4/127. LL RaNu =          ( )105 1010 ≤≤ LRa  

In horizontal configuration the Raleigh number is calculated using an adjusted 

length, L of the form L = area/perimeter.  Upon calculation of the Nusselt number, the 

convection coefficient, h, is easily determined and used to get the overall heat transfer 

rate into the surface via Equation 6.7.  Heat transfer into the surrounding air is opposite in 

sign. 

( )
surfaceTThAq −= ∞          6.7 

 

TYPE 804: Forced Convection Heat Transfer 

 

Type 804 calculates the heat transfer rate due to forced convection at a surface 

using the physical properties of the moving air in conjunction with the surface 

temperatures of the adjacent plane.  It has four inputs.  Inputs include temperature of the 

surface and ambient air, mass flow rate through the space, and ambient pressure.  Type 



 96

804 outputs the heat transfer rate into the wall and into the adjacent space.  Parameters 

include flow surface length, heat transfer area, and flow area, which is used to determine 

the air velocity.  

The heat transfer rates calculated by Type 804 are based on air moving across flat 

plates.  This phenomenon can be seen in several places in the OSU chamber; one of the 

most obvious examples for uses of this type is for the walls in the main chamber.  Air 

travels unidirectional through the room, entering through the floor and exiting through 

the ceiling.  Air travels through the plenums and conditioning loop in approximately the 

same manner.  For this reason, Type 804 will be used extensively. 

The average Nusselt number for flat plates in parallel flow can be separated into 

two separate categories:  turbulent and laminar flow.  Both categories are described by 

Incropera and Dewitt (Incropera and Dewitt 2002) and are shown in Expression 6.8. 
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The Reynolds number, ReL, is calculated using the length, velocity, and kinematic 

viscosity.  Length is given as a parameter; kinematic viscosity is determined at the film 

temperature using a preexisting subroutine and the density.  Velocity is calculated from 

the mass flow rate input and the flow area specified as a parameter.  Density is 

determined using the ideal gas law and the pressure input.  Equation 6.7, above, is used to 

determine the heat transfer rate into and out of the surface.     
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TYPE 805: Room Model 

Type 805 is a room model that has the assumption of being well mixed.  It has 

thirteen inputs; nine of which represent heat gain from walls or objects in the room.  The 

remaining four inputs include mass flow rate, supply air temperature, room temperature, 

and a signal to use initial conditions.  It has one real output and a dummy output for ease 

of expansion.  The valid output is the time derivative of the temperature change in the 

room; it must be connected to the room temperature input.  It has three parameters; the 

initial room temperature, heat capacity of objects in the room, and room volume. 

The governing equations for Type 805 are an adaptation to the Type 52 model 

developed by Clark (Clark and May 1985).  The air in the room absorbs the heat 

transferred from the walls.  Convection heat transfer from six surfaces is listed in the type 

model.  Inputs are also specifically labeled for short wave radiation, long wave radiation 

and occupants in the room.  It should be noted, however, that all of the heat transfer into 

the model is summed together, so the labels have little significance beyond identification.  

Heat from the supply, SupplyQ& , air is summed with the heat inputs.  SupplyQ&  is determined 

from the following equation. 

( )
RoomSupplySupplyairpSupply TTmcQ −= &&

,        6.9 

The differential equation is then determined with Equation 6.10.  All physical 

properties of air are determined using the average of the two inlet temperatures.   

( )
roomairairpObjects
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In the model, the total heat transfer into the room is used to heat both the air and 

the objects in the room.  The new temperature in the room is computed using Equation 

6.11. 

inair

StuffPairPair

intotal

room T
Ccm

Q
T ,

,,

,
+

+
=        6.11 

When the signal used to specify initial conditions is active, then Tair,in is equal to 

the initial conditions specified as a parameter.  This allows the user to easily specify the 

initial conditions of the room, which is necessary to determine the transient state. 

 

TYPE 806: Air Cooler – User Specified Heat Removal 

 

Type 806 represents the cooling (or heating) system.  It has five inputs, one output and a 

single parameter.  The inputs include mass flow rate, temperature in, heat transfer rate, 

temperature of the heat source, and a signal for initial conditions.  Exiting temperature is 

the only output; initial temperature is declared as a parameter.  The cooling system of any 

real application would be much more complex than the simple model demonstrated by 

Type 806, but development of the cooling system is beyond the scope of this project. 

Type 806 is governed by Equation 6.12, below.  The user can easily specify the 

rate of heat transfer from the air.  The source temperature provides a limit so that the 

exiting air temperature, Tout, always falls in the range between Tin and Tsource. 

in

airPair

out T
cm

Q
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&

&

         6.12 
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TYPE 807:  Partition with Thermal Mass 

 

Type 807 is used to approximate the temperature gradient in the walls 

surrounding the chamber.  It uses convection and radiation from both sides of the wall to 

get heat flow into the wall.  It uses heat flow and the surface temperatures from both sides 

to compute the new temperatures on each surface and at three intermediary points inside 

the wall.  Table 6.1, below, shows the inputs and outputs for TYPE 807. 

 

TYPE 803

Inputs: units Outputs: units

Radiation heat transfer, side A kW Energy storage in wall kW

Radiation heat transfer, side B kW Heat transfer through wall kW

Convection heat transfer, side A kW Temperature, Side A C

Convection heat transfer, side B kW Temperature, Side B C

Surface temperature, side A C Temperature, Midpoint C

Surface temperature, side B C  

Table 6.1: Inputs and outputs associated with TYPE 807 

 

The equations governing the transient behavior of the wall are slightly modified 

from their source (Incropera and Dewitt 2002), and appear below as Equation 6.13 and 

6.14.  ( ) p
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where  

p

surfaceT  is the temperature of the surface at the current time step 
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1+p

surfaceT  is the temperature of the surface at the future time step 

p

midT  is the current temperature of the inner wall node  

ρ  is density  

pC is specific heat capacity of the wall A  is the heat transfer area 

k  is the coefficient of conduction 

α  is the thermal diffusivity of the wall 

x∆  is the distance between nodes  

qradiation and qconvection are the heat transfer rates of the radiation and convection to the 

surface respectively 

p

mT  is the current temperature of a specified node, m 

1+p

mT is the future temperature of a specified node, m 

These finite difference formulae must meet stability requirements based on the the 

material properties, ∆x, and the time step.  If the wall is broken into 4 different nodes, 

then the chamber wall data meets stability criteria for these functions at time steps below 

about 1 minute.  

The model assumes that the wall is homogenous.  Chamber walls at Oklahoma 

State and at the test facility in Athens are made up primarily of urethane foam with a thin 

steel skin.  Excellent conduction properties and material thinness create a stability 

criterion for the skin that is on the order of microseconds.  Future development of a wall 

model with more than one section could serve future users of HVACSIM+.  The 

homogenous assumption is necessary to keep the program time step in a semi-reasonable 

regime.      
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Connecting the Components 

 

To simulate the system, the components are connected together.  Type 807 wall 

units interface with the room, Type 805, via the forced convection calculator, Type 804, 

and with the external environment through the free convection calculator, Type 803.  

Room models can also be used for ducts and plenums.  Each Type 805 room model 

passes outlet temperature to the next room model, or to Type 806 for conditioning 

purposes.   

Simulation of the chamber can be broken down into as many pieces as one would 

like; however, it is suggested to keep it as simple as possible because the complex 

algorithm used by HVACSIM+ to solve the system of equations can be difficult to work 

with.  One who wishes to make the model more complex is invited to read about the 

hierarchal system solver that is incorporated in HVACSIM+ (Clark 1985).  The interested 

engineer will have to analyze how to break the simulation into blocks and superblocks.  

Adding components to the workspace makes this task ever more important and difficult 

to accomplish correctly.  

 

Component Validation    

 

After a stand alone test for each component was performed, sets of three or four 

components were then combined in mock simulations to ensure that component outputs 

were reasonable.  Results were very encouraging, but further validation seemed 

necessary. 
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The literature review did not yield much information about typical transition 

times, nor did it reveal any experimental test results for transient conditions.  The best 

verification that could be found is from the simulation results obtained from Chatzidakis 

(Chatzidakis, Athienitis et al. 2002).   

To begin his simulation, Chatzidakis had the car, or test specimen, inside the test 

chamber with both the car and chamber at equilibrium with the surrounding, 25 °C, see 

Figure 6.3.  When the simulation is started, the test chamber and the car simultaneously 

begin their conditioning loops.  From the equilibrium point, the car heats its entire 

volume and contents to its set point of 32.5 °C using a 3 kW capacity heater.  Similarly, 

the chamber cools its contents to a 7.5 °C set point using 20 kW of cooling capacity.   

 

Figure 6.3: Schematic of test chamber in Athens with specimen inside (Chatzidakis, Athienitis et al. 2002). 

  

Although no data points were given, Chatzidakis adequately described the 

simulation parameters and presented the following graph, Figure 6.4, which shows his 

simulation results.  It took about 1.5 hours for the chamber to reach the set point 

temperature.  The test specimen reached its set point temperature in about half an hour.   
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Figure 6.4: Simulation results from Chatzidakis.  Note particularly Tspe, Tcha, Tcon1, and Tcon3, representing 

the car cavity, test chamber, surface concrete and middle concrete temperatures respectively (Chatzidakis, 

Athienitis et al. 2002) 

 

For validation, Chatzidakis’ simulation was mimicked using the developed Type 

models.  The results of the simulation appear in Figure 6.5, the connections can be seen 

in Appendix D.  It can be seen that both the chamber and the test specimen reflect 

Chatzidakis’s results.  The variations are likely associated with the minor assumptions of 

a few parameters not included in Chatzidakis’ report; further variation may be due to the 

difference in approach to solving the problem.  This difference is particularly evident 

when comparing the results of the concrete temperature curves. 
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Simulation Data vs Chatzidakis's Data
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Figure 6.5: Validation results.  Simulation modeling results for the chamber in Athens using results from 

the custom HVACSIM+ program compared to results from Chatzidakis’s paper. 

 

Results 

 

Design data from the OSU psychometric room was used to develop a model of the 

chamber and its ducts.  In the OSU chamber, only the outdoor chamber was modeled, no 

test specimen was inside.  The following graph, Figure 6.6, shows the chamber, 

conditioning loop, and underfoot plenum approach the set point of 7.5 °C from an initial 

starting condition of 25 °C.  The chamber takes the longest to get to the set point, 

reaching it in about 3 hours. 
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Figure 6.6: Soaking for set point of 7.5°C. a) chamber  b) plenum  c) conditioning loop 

 

Several other set points were simulated; they appear in Figure 6.7.  The model is 

such that the chamber never really reaches the set point temperature, but hovers very near 

to it.  Figure 6.7 demonstrates that the time it takes for the chamber to reach temperatures 

that differ from the set point by 1, 2, and 5°C.  The results are reasonable; the soaking 

time from 25°C to within 1° of -40°C is 4.4 hours.  Simulations with a set point between -

20 and -30°C do not get within 1 degree of the set point.  This is likely attributed to the 

transition of laminar to turbulent convection coefficients.   
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Soaking Time
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Figure 6.7: Transient time to reach set point based on a 25 °C starting point, note that some setpoints do 

not get to within 1°C 

 

Simulation was carried out to 10 hours for several set points.  The limit of each 

set point was determined and plotted in Figure 6.8.  The figure demonstrates the time it 

takes for the temperature curve of the chamber to become asymptotic, or for it to reach its 

temperature limit within two decimal places.  It also shows that, with the exception of the 

-30° set point, the final difference between the set point temperature and the chamber 

temperature increases with decreasing temperature, which is what would be expected.  
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Figure 6.8: Time for chamber temperature curve to become asymptotic and variation from set point 

temperature at that time.  

 

Sensitivity Analysis 

 

Because the thermo physical properties of the panels are based on some general 

assumptions, it seems wise to perform a sensitivity analysis on the model to see how 

sensitive the soaking time is to variations in thermo physical properties of the panels.  

Three properties were selected for variation:  Specific heat capacity, density, and thermal 

conductivity.  These properties were systematically varied according to Table 6.2.  The 

original estimated value for the previous simulations remains as the middle value.  The 

high and low values are +15% and -15% of the middle value respectively, the set point of 

the chamber is set to 0°C. 
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limit (°C) w/in 5°C w/in 2°C w/in 1°C To limit

1.045 70 0.026  OOO 0.58 81.6 143.2 231.6 541.6

1.045 70 0.0299  OO+ 0.60 81.6 143.2 233.2 528.2

1.045 70 0.0221  OO - 0.55 81.6 143.2 230.7 552.4

1.045 80.5 0.026  O+O 0.59 82.4 145.7 247.4 560.7

1.045 80.5 0.0299 O++ 0.61 82.4 145.7 249.1 554.1

1.045 80.5 0.0221 O+ - 0.57 82.4 145.7 246.6 565.7

1.045 59.5 0.026  O - O 0.57 81.6 139.9 217.4 500.8

1.045 59.5 0.0299 O - + 0.60 81.6 139.9 218.3 475.8

1.045 59.5 0.0221 O - - 0.54 81.6 139.9 216.6 524.1

1.20175 70 0.026  +OO 0.59 82.4 145.7 247.4 560.7

1.20175 70 0.0299  +O+ 0.61 82.4 145.7 249.1 554.1

1.20175 70 0.0221  +O - 0.57 82.4 145.7 246.6 565.7

1.20175 80.5 0.026  ++O 0.61 82.5 149.1 266.6 571.6

1.20175 80.5 0.0299  +++ 0.63 82.5 149.1 268.3 568.3

1.20175 80.5 0.0221  ++ - 0.59 82.5 149.1 265.0 575.0

1.20175 59.5 0.026  + - O 0.58 81.6 142.4 229.9 537.4

1.20175 59.5 0.0299  + - + 0.60 81.6 142.4 230.7 522.4

1.20175 59.5 0.0221  + - - 0.55 81.6 142.4 228.2 549.1

0.88825 70 0.026  - OO 0.57 81.6 139.9 217.4 500.8

0.88825 70 0.0299   -O+ 0.60 81.6 139.9 218.3 475.8

0.88825 70 0.0221  - O - 0.54 81.6 139.9 216.6 524.1

0.88825 80.5 0.026  - +O 0.58 81.6 142.4 229.9 537.4

0.88825 80.5 0.0299  - ++ 0.60 81.6 142.4 230.7 522.4

0.88825 80.5 0.0221  - + - 0.55 81.6 142.4 228.2 549.1

0.88825 59.5 0.026  - - O 0.58 81.1 136.9 206.1 437.8

0.88825 59.5 0.0299  - - + 0.61 81.1 136.9 206.9 406.1

0.88825 59.5 0.0221  - - - 0.54 81.1 136.1 205.3 473.6

0.63 82.5 149.1 268.3 575.0

0.54 81.1 136.1 205.3 406.1

0.09 1.4 13.0 63.0 168.9

Input Parameters Resuts

run

max

min

Maximum difference

High and Low (+, -) 

inputs vary by +/- 15% 

from middle value (O)

Time (minutes)Specific 

Heat, Cp 

(kJ/kg-K)

Density 

(kg/m3)

Thermal 

Conductivity, 

k (W/m-K)

 
Table 6.2: Input parameters and results for analysis of model sensitivity to variation in thermo physical 

properties 

 

Results of these variations also appear in Table 6.2.  Maximum and minimum 

overall changes in soaking time and temperature limits correspond closely to the runs 

where all variables were set at their corresponding high and low values, respectively.   

In order to see if one property had a larger influence than another, each property 

was plotted for its low, middle, and high value while holding constant the other two 

properties.  Figure 6.9, 6.10, 6.11 displays the results corresponding to the time it takes 

for the chamber to transition to 1°C, or within one degree of the set point temperature. 
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Figure 6.9 demonstrates that, while holding density and specific heat constant, the 

thermal conductivity a weak effect on the soaking time.  Increasing the thermal 

conductivity from the lowest to highest value, or 30% of the nominal value, only 

increases the soaking time approximately 5 minutes, or about 2% of the nominal 232 

minutes.  Contrastingly, increasing the specific heat or density, while keeping other 

properties constant, results in a 35 minute increase in soaking time between the low and 

high values, as seen in Figure 6.10 and 6.11.  The data reveals that on average, a 15% 

change in density or specific heat is proportional to a 43% change in soaking time. 
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Figure 6.9:  Effect that variance in panel thermal conductivity has in the chamber soaking time to within 

one degree of the set point temperature 
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Effect That Variance in Panel Density Has on Chamber 

Soaking Time to within 1 Degree of Set Point Temperature 
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Figure 6.10:  Effect that variance in panel density has in the chamber soaking time to within one degree of 

the set point temperature 

  

Effect That Variance in Panel Specific Heat Capacity Has on Chamber 

Soaking Time to within 1 Degree of Set Point Temperature 
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Figure 6.11:  Effect that variance in panel specific heat capacity has in the chamber soaking time to within 

one degree of the set point temperature 

 

The reason behind the similarity in simulation results when changing density or 

specific heat can be seen in Equations 6.13, and 6.14, both of these variables appear as a 
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product of each other, therefore a 15% change in either makes an identical change in 

either equation.   Contemplating how the equations are working sheds light on the results 

that appear in the above figures.  The reason that these variables increase the soaking 

time is that, with every time step, the updated temperature is undershooting the overall 

change.  Therefore, the overall time to reach the set point temperature is increased.   

Although the thermal conductivity does not seem to play a significant role in the 

simulated soaking time, it is more significant than the density and specific heat in 

determining the temperature limit; this significance can be seen in Figures 6.12 and 6.13.  

The temperature limit was determined by running the simulation to 10 hours.  After 

simulating 10 hours of operation, the temperature has clearly reached an asymptotic 

value, which differs from the set point temperature.  In other words, the temperature limit 

is the steady state value of the simulation.      
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Figure 6.12: Effect of temperature limit resulting from changes in thermal conductivity 
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Effect of Temperature Limit Resulting from Changes in Density
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Figure 6.13: Effect of temperature limit resulting from changes in Density 

Figures 6.12 and 6.13 demonstrate that on average, a 15% increase in the thermal 

conductivity results in a 4% increase in the temperature limit; whereas a 15% increase in 

either the density or the specific heat capacity only increases the temperature limit by 1%.  

Furthermore, this increase in temperature limit corresponds to a decrease in the time it 

takes to reach the temperature limit in the case of the thermal conductivity, as seen in 

Figure 6.14.  Intuitively, this makes sense because the temperature limit is closer to the 

initial conditions.  The figure also demonstrates that, in the case of increasing density or 

specific heat, the time it takes to get to the temperature limit increases, correlates to the 

increasing need in energy to change the temperature of the unit. 
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Effect of Property Variation on Time to Reach Temperature 

Limit

500

510

520

530

540

550

560

570

85 100 115

% of nominal value

ti
m

e
 t

o
 l

im
it

 (
m

in
)

Varience in thermal

conductivity

variance in specific heat or

density

 

Figure 6.14: Effect of property variation on time it takes for simulation to reach the temperature limit.  

Values correspond to the middle range setting settings of the variables that are held constant.   
      

Modeling Conclusions 

 

In this section, several method of building simulation have been researched and 

discussed.  Type subroutines have successfully been developed and implemented for use 

in the transient model of the OSU psychrometric chamber.  Data has been used to 

validate the model.  The projected soaking time for various temperatures is estimated.  In 

practice, the actual soaking time of the chamber will depend on the control methods 

implemented; however, it this model should provide a good estimate.  A sensitivity 

model gives some insight into the importance of selecting appropriate thermo physical 

properties of the panels when modeling the chamber.
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CHAPTER VII 

 

 

CONCLUSION AND FUTURE RESEARCH 

 

A comprehensive design of the psychrometric chamber structure has been 

developed; including the design of a mezzanine, trolley crane, and staging area.  The 

chamber has been constructed in the basement and of the ATRC on the OSU campus.  As 

part of the construction, the mechanical components of the chamber have been installed.  

These components include the cooling coils and associated hydronic system, heating 

coils, and supporting electrical items.  A model of the chamber soaking time has also 

been developed and validated using a model found in the literature.   

Specifically conclusions of this thesis are as follows: 

• A new psychrometric chamber at OSU was designed and constructed.  The 

structure consists of two adjacent rooms, one to simulate outdoor climate 

conditions and the other to replicate the indoor environments of residential and 

commercial buildings. 

o The constructed chamber, with dimensions of 25’ x 40’ x 20’, sits in the 

basement of the Advanced Technology Research Center on the Oklahoma 

State University, Stillwater campus.
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o The designed chamber temperature rage is -40 to130°F (-40 to 54 °C) and 

10 to 90% relative humidity.  Maximum capacity is approximately 15 tons 

(52.7 kW).  Maximum airflow rate is approximately 8000cfm. 

o The chamber consists of sheet metal panels filled with a polyurethane 

foam core.  The average thermal conductivity of the panels is estimated to 

be 0.026 - 0.033 W/m-K (0.015 - 0.019 Btu/hr-ft-F).  Simulation analysis 

suggests chamber operation down to about -25°F (-32°C) before formation 

of condensate on the exterior walls. 

• A mezzanine and crane lift were also designed and constructed.  The mezzanine 

houses much of the conditioning equipment; the crane has a capacity of 4,000 lbs.  

A staging area has also been designed. 

• A literature review of the existing knowledge in the field revealed that air 

enthalpy methods, described in the ARI standard 210 and ASHRAE standard 116, 

is the most suitable method for testing units.  The chamber was specifically 

designed with these methods in mind for testing split system and unitary 

equipment. 

• Hydronic cooling loops for indoor and outdoor chambers were designed and 

installed.  Dynalene HC-50, with a freezing temperature of -58°F (-50°C), is used 

in the outdoor loop to allow good heat transfer at low temperature; water is the 

heat transfer fluid of the indoor loop 
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• Based on preliminary simulations using customized subroutines in HVACSIM+, 

the soaking time of the chamber from 25 to 0°C (77 to 32°F) is expected to be 

about 2.5 hours.  The soaking time down to -40°F is approximately 4 hours.  

• A sensitivity analysis demonstrated a correlation between increasing soaking time 

and increasing density and specific heat values.  Increasing thermal conductivity 

corresponded to an increase in the steady state temperature.  

• The chamber structure and supporting systems have been constructed and await 

operation. 

Much work has been completed on the OSU psychrometric chamber, this thesis outlines 

the design and construction, up to chamber start up.  However, this is not the end of the 

work and research that could be done concerning the chamber; much more research could 

be done to better understand and improve the operating psychrometric chamber.   

 

Future Work and Research 

 

Calibration 

 

I suspect that the next student to take on this project will have his hands full as he 

or she tries to get the chamber to respond correctly to changes in load and set point.  Just 

maintaining conditions with no live thermal load will present a significant challenge; 

which, I believe, will increase as the set point temperature diverges from ambient 

conditions.  A significant control issue will be when the set point of the chamber is right 

around freezing and frost begins to form on the cooling coils.  Switching outdoor 
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conditioning loops to defrost mode while maintaining conditions will require some 

innovation.    

As currently operating, the psychrometric chamber will only be able to reach 

about 55°F.  The airflow laboratory has a chiller that may be connected to the chamber to 

bring it down to about -10°F.  This chiller has a small capacity, but could definitely be 

used in heat pump testing.  It is suggested that, as funds permit, a chiller dedicated to the 

chamber be purchased.  This chiller should approach -50°F if the -40°F set point is to be 

reached inside the chamber.  This chiller could be connected to the chamber cooling loop 

through the heat exchanger; however the losses associated with the heat exchanger may 

warrant the direct connection of the chiller into the cooling line. 

 

Modeling 

 

Future research work in modeling the complete chamber system could yield 

interesting results and will likely allow one to make suggestions to options for changes in 

the operations and control of the chamber. 

 

Control.  The most obvious modeling that would have significant benefit is the 

modeling of the control of the chamber; this may be done in parallel with the calibration 

of the chamber.  Modeling the control and operation of the chamber will give better 

understanding to the options for control and may allow the optimization for control.  The 

optimization could be focused on energy saving measure or on the best way to maintain 

the set point.   
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Coil Frosting.  Much is still not understood about frost accumulation on coils.  

Modeling this aspect of the chamber could help in other areas of the HVAC&R field.  In 

any case, modeling this phenomenon would give way to better prediction for defrosting 

method of the chamber conditioning coils. 

 

Airflow.  As currently built, the airflow patterns inside the chamber are a 

speculation of how it should behave.  Modeling the airflow in a CFD program should 

give ways to improve the uniformity of the airflow throughout the chamber.  

This list is not exhaustive, several other points of interest could be touched on 

concerning the chamber.  But, again the key research is not with the chamber itself, but 

with the research that will go on inside its walls. 
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Appendix A:  Chamber Parts 

 

 

 

The complete chamber design is too complex to include here.  The complete chamber 

structure assembly contains about 4,900 parts.  This number is comprised of 400 unique 

part numbers.  This appendix contains a sampling of these parts.  The parts were designed 

at AAON, but were drafted later using a demo version of Solid Edge; please excuse the 

water mark. 
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Appendix B:  Staging Area Design 

 

 

At the time that the thesis was completed, the staging area had not yet been constructed.  

The design is included here for construction purposes. 
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Appendix C:  Detailed Schematics of Conditioning Loop 

 

 

 

This appendix contains detailed schematics of the conditioning loop, including estimated 

pipe lengths.  Locations of fittings and valves are also specified.  
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Appendix D:  HVACSIM+ Workspace 
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HVACSIM+ workspace for validation using Chatzidakis’s data 
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HVACSIM+ workspace for modeling the OSU psychrometric chamber
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Findings and Conclusions:   

 

The complete design and construction of a psychrometric chamber resulted in the 

following conclusions: 

 

• Chamber dimensions of 25’ x 40’ x 20 

• Temperature rage of -40 to130°F (-40 to 54 °C) and 10 to 90% relative humidity  

• Cooling capacity of 15 tons (52.7 kW) and airflow rate of approximately 

8000cfm. 

• The chamber consists of sheet metal panels filled with a polyurethane foam core; 

the estimated thermal conductivity of a panel is 0.026 - 0.033 W/m-K (0.015 - 

0.019 Btu/hr-ft-F).   

• Simulation suggests chamber operation down to about -25°F (-32°C) before 

formation of condensate on the exterior walls 

• The chamber was specifically designed to incorporate industry standards for 

testing using the indoor and outdoor air enthalpy methods 

• Low and high temperature hydronic cooling systems were designed and installed 

for chamber operation 

• Based on preliminary simulations using customized subroutines in HVACSIM+, 

the soaking time of the chamber for 25 to 0°C (77 to 32°F) is expected to be about 

2.5 hours.  The soaking time down to -40°F is approximately 4 hours.  

• The chamber structure and supporting systems have been constructed and await 

operation. 

 

 


