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1.1 Motivation

Small magnetic particles or microdevices can be used in many modern medical

applications, such as localized drug delivery [1], hyperthermia therapy to cure cancers

[3], catheter ablation for heart procedures, and magnetic stereotaxis for brain proce-

dures [9]. Using an external magnetic field to control these small or even micro sized

objects is promising in in vivo applications to realize noninvasive or minimally inva-

sive treatment. Not only in medical applications, non-contact magnetic manipulation

is also an important factor in high precision machines, especially in micromachine

applications because of their small work space [5].

In these applications, external magnetic fields are usually generated by magnets,

coils, or superconductive coils. The field manipulation is achieved by controlling

currents applied to the coils. The one dimensional (1-D) magnetic particle position

control problem is much like the 1-D magnetic levitation problem, which has been

thoroughly investigated. There is ongoing research trying to realize 3-D magnetic

body/particle position control and put it into practice.

1.2 Related literature

1.2.1 3-D magnetic particle control using MRI system

A promising method for 3-D control of magnetic particles inside the human body

utilizes an MRI (Magnetic Resonance Imaging) system [2,4] . Researchers are inves-

tigating the use of an MRI system to propel a ferromagnetic core, which in the future

may be embedded in a microdevice. The MRI system will impart a three dimensional

propulsion force. The long-term goal of such research is to provide surgeons ways of

controlling microdevices inside blood vessels.
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In an MRI system (Fig. 1), there is one main magnet and three gradient magnets.

The main magnet generates a strong uniform background field, the three gradient

magnets can generate a field gradient in a local region. The three dimensional field

gradient will exert a force on a magnetic particle. The MRI system will also get an

artifact (imaging distortion caused by the magnetic particle) in the scan image. The

position of the artifact could be used as feedback signal to adjust the applied gradient

which in turn will control the particle’s motion. Research in this field is in an initial

stage, and it relies on the expensive MRI system.

Figure 1: An MRI machine (www.medical-definitions.net/images/mri-machine.jpg)

1.2.2 A mechanism for 3-D levitated movement of a small magnet

There are also researchers working on 3-D levitated movement control of a small

magnet (it can be regarded as a small magnetic dipole) that could be used in future

micromachines [5,6]. They propose a mechanism that includes four electromagnets

and a cross-shaped pole-piece to connect the magnetic poles. The geometric design

of the pole-piece (Fig. 2) is the key for this mechanism. The combined pole-piece can

generate a unique maximum point of the magnetic flux density B in the horizontal

plane containing the magnetic dipole.
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Figure 2: Illustration of the combined pole-piece

Figure 3: A small magnet in magnetic field B

For a small magnet levitating in the work space (Fig. 3), a vertical magnetic

force (generated by additional compensative permanent magnets, not shown in the

figure) will balance its gravity. In the horizontal direction the small magnet will be

attracted to the Bmax point (Fig. 3) and stay there, since no external force exists in

the horizontal directions at the Bmax point.

The location of Bmax is determined by leak fluxes of the electromagnets, and the

leak fluxes depend on the magnitude of each coil’s current. So by controlling the

currents, a small magnet’s position can be controlled.

1.2.3 Magnetic stereotaxis system

Magnetic stereotaxis is a novel therapeutic methodology for the treatment of brain

tumors and other neurological problems. The basic idea of the magnetic stereotaxis

3



system is that large electromagnetic coils can be used to guide a small piece of im-

planted permanent magnetic material (a “magnetic seed”) along some arbitrary tra-

jectory through brain tissue. Once the seed has been maneuvered into a tumor, the

seed can be heated inductively by applied high-frequency magnetic fields to kill tumor

cells, or the seed can be used to guide a tip of catheter to deliver drugs.

Figure 4: Schematic of multicoil MSS Figure 5: A six-coil MSS

Researchers at the University of Virginia have proposed a multicoil magnetic

stereotaxis system [9,10,11] (Fig. 4, Fig. 5). It uses six superconducting coils to

generate the desired three dimensional force on the seed. An MSS device has been

built and tested for open-loop step motions of a seed.
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For the problem of one dimensional position control of a magnetic particle, only

one control variable is needed. Because a coil always exerts an attractive force to a

magnetic particle which is allowed to rotate freely, only one coil is needed to balance

a particle against its gravity and control its position for a 1-D magnetic levitation

problem. If gravity is not considered, to control a particle’s position one dimensionally,

two coils must be used (Fig. 6). The currents of the two coils can be controlled by

one control variable in a reciprocal way, where the two currents vary inversely and

the variation depends on the control input, then a position control can be achieved.

Figure 6: One dimensional control problem

Moving to the two dimensional control problem, it may be desired to control the

position of a particle of which motion is confined within a plane by using four coils

(Fig. 7). This system is analogous to a two dimensional MSS system. The difference is

that we are using four elongated rectangular coils, which generate a field distribution
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(Fig. 14) stronger and more even in the central plane (x − z plane) than the field

distribution circular coils generate (Fig. 18). This difference is illustrated in chapter

4.

The two dimensional control problem is stated as follows:

In a four-rectangular-coil frame as shown in Fig. 7, it is desired to control the

position of a permanent magnetic particle, of which the motion is confined within the

x− z plane, by moving it to a target point and stabilizing it there using a magnetic

field generated by the four coils. The coils carry direct currents. Gravity is not

considered.

Figure 7: Two dimensional control problem

In this symmetric four-rectangular-coil configuration, there is a parameter e, which

is the distance from the center of each coil to the origin.

The parameters of a single coil are shown in Fig. 7 and Table 1.

Table 1: Definition of parameters of the coil

parameter definition
a inner length of the coil
b inner width of the coil
c cross-section width
d cross-section height
N number of turns

6



Figure 8: Single rectangular coil

Ferromagnetic materials that are not permanently magnetized may exhibit hys-

teresis. This may result in their magnetic moments changing under a varying external

magnetic field. In this paper we only consider permanent magnetized particles which

have constant magnetic moments.

In reality, a ”rectangular” coil can not be made, so these coils are only approxi-

mations to elongated wound coils. If the radius of round corners of a real coil is small

compared to the coil’s length and width, this approximation should be acceptable for

the purpose of field computation.
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3.1 Motion equations

A small permanent magnetic particle can be represented by a magnetic dipole p.

The force and torque exerted on a permanent magnetic particle are [13]

F = ∇(p ·B) (3.1)

T = p×B (3.2)

where the torque T causes the magnetic moment p to align with the magnetic field

B (Fig. 9). In this paper, a bold character denotes a vector and a plain character

denotes its magnitude.

Figure 9: Torque on a magnetic particle

It can be noted that torque on the particle is zero only when p is parallel or

antiparallel to B. Furthermore, the parallel state is a stable rotational equilibrium

position of the particle, while the antiparallel state is an unstable rotational equilib-

rium position. If any directional change in B produces a torque, the torque tends to

re-align p and B. Assuming that the resistance of the particle to rotation is negligible,

then it may be assumed that it takes negligible time for the particle to rotate to its

stable parallel state, and the magnetic moment p always keeps the same orientation

8
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as B during its motion. Therefore, the dot product in (3.1) equals the product of

magnitudes of p and B. So the force exerted on the particle is

F = ∇(pB) = p∇B,

where p is the magnitude of magnetic moment of the particle and B is the magnitude

of the field intensity. The components of the force in x− z plane are

Fx = p(
∂B

∂x
), Fz = p(

∂B

∂z
). (3.3)

where Fx and Fz are the component of the force along x direction and z direction

respectively.

Not considering the gravity and fluid force, the motion equation of a particle along

x direction is

ẍ =
Fx

m
=

∂B

∂x

p

m
, (3.4)

and similarly, the motion equation along z direction is

z̈ =
Fz

m
=

∂B

∂z

p

m
(3.5)

where m is the mass of the magnetic particle.

3.2 Field equations

In the most general case, the magnetic field (at a point in free space) produced

by a current complies with Maxwell’s equations for the special case of magnetostatic

fields [12,13]:

∇×B = µ0j (3.6)

∇ ·B = 0 (3.7)
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where j is vector current density, µ0 is the permeability of free space. The field flux

density B can be defined as the curl of vector potential A of the field, then the

magnetostatic Maxwell’s equations become:

∇×∇×A = µ0j (3.8)

∇ · ∇ ×A = 0 (3.9)

these two equations are both satisfied if

∇ · ∇A = −µ0j (3.10)

The contribution of a differential volume (dV ) of current to the vector potential

A has the following solution [9]

dA =
µ0

4π

jdV

|R| (3.11)

where R is the vector distance from the differential current element to the point of

interest.

The field intensity is found by differentiating B = ∇×A, and substituting from

(3.11) [9],

dB =
µ0

4π

jdV ×R

|R|3 (3.12)

For the magnetic field generated by a current-carrying wire (Fig. 10), the above

equation takes the following form:

dB =
µ0i

4π

dL×R

|R|3 (3.13)

where i is the current value, dL is a differential element of the current carrying wire.

This relation is also known as the law of Biot-Savart .
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Figure 10: A filamentary current-carrying wire

By applying the Biot-Savart law to a single coil centered at the origin (Fig. 8)

with a volume integration, the x component of the field B at a point (x0, z0) in the

x− z plane can be represented as

Bx = ki
∫ d

2

− d
2

∫ a
2
+c

a
2

∫ x−a−b
2

a−b
2
−x
{ z0−z

[(x0−x)2+y2+(z0−z)2]
3
2
− z0−z

[(x0+x)2+y2+(z0−z)2]
3
2
}dydxdz

where k = µ0N
4πcd

, and i is the current input to the coil.

The other two components of the B field are

By = ki
∫ d

2

− d
2

∫ − b
2

− b
2
−c

∫ a−b
2
−y

y−a−b
2

{ z−z0

[(x0−x)2+y2+(z0−z)2]
3
2
− z−z0

[(x0+x)2+y2+(z0−z)2]
3
2
}dxdydz,

and

Bz = ki
∫ d

2

− d
2

∫ − b
2

− b
2
−c

∫ a−b
2
−y

y−a−b
2

{ y0−y

[(x0−x)2+y2+(z0−z)2]
3
2
− y0−y

[(x0+x)2+y2+(z0−z)2]
3
2
}dxdydz

+ki
∫ d

2

− d
2

∫ − b
2

− b
2
−c

∫ a−b
2
−y

y−a−b
2

{ x−x0

[(x0−x)2+y2+(z0−z)2]
3
2
− x−x0

[(x0+x)2+y2+(z0−z)2]
3
2
}dxdydz.

For the four-rectangular-coil configuration, through coordinate translation and

rotation, according to superposition principle, the field B at a point (x0, z0) in the
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x− z plane of the global coordinates system (Fig. 7) can be represented as:

Bx = i1f1x(x0, z0) + i2f2x(x0, z0) + i3f3x(x0, z0) + i4f4x(x0, z0)

Bz = i1f1z(x0, z0) + i2f2z(x0, z0) + i3f3z(x0, z0) + i4f4z(x0, z0)

where f1x, f2x, f3x, and so on [A] are functions that are determined by the position

(x0, z0). For succinctness (x0, z0) is omitted in following equations. Since the motion

of the particle is confined in the x− z plane, we do not need to consider By (in fact

By = 0 and (∇B)y = 0 in x− z plane).

Rewriting above equations in vector form gives

Bx = iT fx; Bz = iT fz, (3.14)

where

i =




i1

i2

i3

i4




; fx =




f1x

f2x

f3x

f4x




; fz =




f1z

f2z

f3z

f4z




.

The magnitude of vector B is

B = (B2
x + B2

z )
1
2 =

√
(iT fx)2 + (iT fz)2, (3.15)

and the field gradient equations are:

∂B

∂x0

=
(iT fx)(i

T ∂fx

∂x0
) + (iT fz)(i

T ∂fz

∂x0
)

√
(iT fx)2 + (iT fz)2

(3.16)

∂B

∂z0

=
(iT fx)(i

T ∂fx

∂z0
) + (iT fz)(i

T ∂fz

∂z0
)

√
(iT fx)2 + (iT fz)2

(3.17)
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In agreement with equations 3.4 and 3.5, we denote the coordinates of a point in

the x− z plane as (x, z) instead of (x0, z0), so functions fx, fz are determined by the

position (x, z), then,

∂B

∂x
=

(iT fx)(i
T ∂fx

∂x
) + (iT fz)(i

T ∂fz

∂x
)√

(iT fx)2 + (iT fz)2

∂B

∂z
=

(iT fx)(i
T ∂fx

∂z
) + (iT fz)(i

T ∂fz

∂z
)√

(iT fx)2 + (iT fz)2
.

Rearranging above equations,

∂B

∂x
=

iT [fx, fz]




∂fT

x

∂x

∂fT

z

∂x



i

√√√√√√√√
iT [fx, fz]




fTx

fTz


 i

∂B

∂z
=

iT [fx, fz]




∂fT

x

∂z

∂fT

z

∂z



i

√√√√√√√√
iT [fx, fz]




fTx

fTz


 i

.

Denoting [fx, fz] as fT , then,

∂B

∂x
=

iT fT ( ∂f
∂x

) i√
iT fT f i

(3.18)
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∂B

∂z
=

iT fT (∂f
∂z

) i√
iT fT f i

. (3.19)

It can be seen that the field gradient components are quadratic forms of i, and

their values depend on the currents, the position (x, z), and geometric parameters of

the coils.

3.3 About the analytic form of the field gradient

In the above field gradient equations, the functions fx and fz and their partial

derivatives do not have an analytic form. For example,

∂f1x

∂x0

= k
∂

{ ∫ d
2

− d
2

∫ a
2
+c

a
2

∫ x−a−b
2

a−b
2
−x
{ z0−e−z

[(x0−x)2+y2+(z0−e−z)2]
3
2
− z0−e−z

[(x0+x)2+y2+(z0−e−z)2]
3
2
}dydxdz

}

∂x0

does not have an analytic form.

For one rectangular filamentary current loop (Fig. 12), however, an analytic form

of the gradient can be obtained by working out the loop integral and taking derivatives

[20]. The gradient components (the two partial derivatives) also follow the rule of

superposition. So we may get the analytic form of the gradient produced by each turn

of a coil, then add them together to get an analytic form of the gradient produced

by one coil (Fig. 11). That is, for this coil, the field gradient produced at a point of

interest

∇B =
m∑

j=1

n∑

k=1

∇Bjk

where n is the number of layers of the coils, m is the number of turns per layer, and

∇Bjk is the gradient generated by the j th turn on the kth layer.

Through coordinate translation and rotation, the field gradient produced by each

coil in the global coordinates system can be obtained. Then the total gradient can

reach an analytic form by superposition.

14



Figure 11: Turns of one rectangular coil

A coil usually has many turns, so it is cumbersome to get an analytic form of the

total field gradient by this approach. Although we can write a Matlab program to

compute the total gradient at a point of interest analytically through this method,

it takes very long time. As a quicker approach, numerical computation needs to be

applied.
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4.1 Numerical computation of the magnetic field

For a filamentary current-carrying loop (Fig. 12), the field intensity at a point in

free space can be calculated through a loop integration using the law of Biot-Savart,

Figure 12: A rectangular filamentary current loop

B =
µ0i

4π

∮ dL×R

|R|3 .

For each segment of the loop, the integrand is different. Using Simpson’s rule of

numerical integration, the field intensity B generated by a rectangular loop may be

computed.

For one rectangular coil (Fig. 13), its cross-sectional area may be divided into many

small areas, and the coil may be viewed as being composed of closed loops of wire

which has the small cross-section area. The current flowing through these loops will be

the product of the current density and the small area. For each loop, its contribution

to the field intensity at the point of interest is computed, and contributions from all

the loops are added together to get the total field intensity generated by this coil.

16
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Figure 13: Numerical computation method

For the 4-rectangular-coil configuration, first the field intensity generated by each

coil is calculated in its own local coordinate system. Then coordinate translation and

rotation are performed to get the contribution of each coil to the total field intensity

in the global coordinate system.

The total field intensity at the point of interest is obtained by superposition. The

gradient of B is also computed based on values of B using the following midpoint

numerical differentiation rule,

f
′
(x) =

f(x + h)− f(x− h)

2h
.
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Figure 14: Field magnitude map produced by a four-rectangular-coil config.
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Figure 15: A sharp minimum point

The field and gradient computing code was embedded into a simulink model as

an S-function for the purpose of simulation. The field intensity at any point in free

space can be obtained using this numerical method. The results of this method

were compared to the results calculated by Maple (in which the field components

are calculated using the volume integration equations in Chapter 3), for a number

of points picked in free space. The accuracy of this method increases as the cross-

section area is divided into smaller areas, and the results of this method converge to

the results from Maple. By computing B values at many grid points in the x − z

plane, we can obtain a map of the magnitude of B in the x − z plane, as shown in

Fig. 14. This map is generated under the following conditions:

the four currents are equal to 4A;

the directions of the currents are as shown in Fig. 7;

geometric parameters (in Fig. 7 and Fig. 8) are:

a = 0.1m, b = 0.05m, c = 0.02m, d = 0.04m, e = 0.095m, N = 2500.

This magnetic field map has a sharp minimum point at origin, as shown in Fig. 15.

If the current directions’ configuration is changed to the one as shown in Fig. 16, where

the two coils in each pair have the same current direction, then the magnetic field

map has a smooth minimum point.
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Figure 16: One config. of current directions that produce a smooth bottom

Figure 17: The four-circular-coil configuration

The same numerical computation method can be used to compute field intensity

generated by circular coils. In a 4-circular-coil configuration (Fig. 17), four circular

coils which have the same current, cross-sectional area, and inner diameter (cor-

responding to inner length) as those coils in Fig. 14 will produce a B magnitude

distribution in the x − z plane as shown in Fig. 18. It can be seen that the region

of the map around the origin is not as regular as that in a 4-rectangular-coil map,

where the central part looks like a bowl with a minimal point at the bottom. This

field shape character is critical to fulfill our control scheme that will be brought up in

section 4.3. This is also the reason why rectangular coils are adopted in this research.

19



−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0
0.05

0.1

x

z

B
 (

T
)

Figure 18: B magnitude map for four-circular-coil config.

4.2 Inverse linearization method

From equations 3.4 and 3.5, if we take the two force components as system control

inputs, the system is





ẍ = 1
m

Fx

z̈ = 1
m

Fz

This is a linear system, the position control can be realized by a feedback controller

(Fig. 19), such as a proportional controller.

In practice we can not control the force directly, we can only control the currents.

The relationship between the currents and the force can be obtained from equations

3.3, 3.18, and 3.19. In general the force is a function of the four currents and position

(x, z), that is

F = h(i, x, z). (4.20)

Conversely, given x, z, if we can find a solution of i to an arbitrary desired force,

then we can use these currents as control inputs to achieve our control goal of the

20



Figure 19: A linear system controlled by force

system. This method is illustrated in Fig. 20, where the ‘inverse solution’ block solves

for currents i based on x, z, and desired force. Then these currents are input to the

four coils to generate the desired ∇B, and the control goal can be achieved.

The problem of finding an i for an arbitrary desired force was solved by Meeker,

et al [9]. Generally, there exist infinite possible i that satisfy equation (4.20) for a

desired force. So a cost function was introduced to form an optimization problem

which takes equation (4.20) as constraints, and this optimization problem can be

solved numerically [9].

Although this inverse linearization control method is theoretically feasible, it uses

four control inputs for this 2-D problem, and it involves intensive numerical compu-

tational work. This method will not be implemented in this paper.

4.3 Two control variables method

4.3.1 Unstable equilibrium target point

For this 2-D control problem, we may need only two control variables. Just as

the way two coils are used for 1-D problem (chapter 2), in the 4-rectangular-coil

configuration (Fig. 7) each pair of coils can be controlled by one variable. The currents

of a pair of coils can be changed in a reciprocal way by the control variable.
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Figure 20: Inverse linearization control method

Let us examine the case when the particle is in its steady state at the target

point first. If the target point is at the origin, and the four currents are of the same

value, from the field maps in section 4.1 it can be seen that the origin is an unstable

equilibrium point where the gradient of B is zero (the slope of the surface of the B map

is ∇B ). For a target point other than the origin, we may find a combination of the

four currents (nominal currents) that makes the target point an unstable equilibrium

point. Then we can apply some control law to stabilize a magnetic particle to this

equilibrium point.

Now it is similar to the optimization problem mentioned above, there are infinite

solutions of i which generate a zero gradient of field at a target point in the x−z plane.

Constraints need to be added. Let us require the two currents of each pair change

inversely about a central value Ic (for example, Ic = 4A) when we are searching for

the four nominal currents numerically, so the sum of each pair of currents is always

2Ic (8A). The nominal currents searching code was embedded in our simulink model.
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Figure 21: First iteration step

4.3.2 Nominal currents search

The above constraints for nominal currents are represented as:

pair1 : i1 = Ic − λ1, i3 = Ic + λ1

pair2 : i2 = Ic − λ2, i4 = Ic + λ2

where the central current value Ic = 4A, λ1 ∈ (−Ic, Ic), λ2 ∈ (−Ic, Ic).

Now we need to search for suitable λ1 and λ2 values that make the four currents

nominal for a given target point.

It can be seen that a point (x, z) inside the four-rectangular-coil frame at which

∇B = 0 is a minimum point of B (in Fig. 14, the field is not smooth at the equilibrium

point, theoretically the gradient of B is undefined at that point, but regardless of the

current direction configuration, the equilibrium point is always a minimum point).

We may use an iterative method to search for the suitable λ1 and λ2 values which

produce a minimum B value at the target point. This iterative method is illustrated

in Fig. 21, Fig. 22, Fig. 23.

First we divide the changing range (−Ic, Ic) of λ1 and λ2 by a given number (for

example, 4), to form grids as shown in Fig. 21. Of the intersection points inside

boundary (there are 9 points here), each point represents a combination of λ1 and
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Figure 22: Second iteration step

λ2 values. For each combination, the produced B value and ∇B at the target point

(xe, ze) are computed. Then a test is made to see if |∇B| < ε, where ε is a small num-

ber adjustable for accuracy. If this combination satisfied the accuracy requirement,

we get our nominal values and quit. If not, compare the B values for all intersection

points to find a smallest one, for example, the middle upper one in Fig. 21. Take this

point as the center point for next iteration, in a range of the four panels around this

point, redo the above iteration step.

As shown in Fig. 22, no combination is satisfactory and the smallest B occurs at

the right lower point, take this point as the center point for next iteration, redo the

iteration (Fig. 23), until a satisfactory combination of λ1 and λ2 is found.

This numerical searching method can be viewed as a kind of directional searching

method. This method provides accurate results in a short time period.

Here is an example of the searching result, for a target point at (0.01, 0.01) and

Ic = 4A, the four nominal currents are:

i1n = i2n = 3.0263671875 A

i3n = i4n = 4.9736328125 A,
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Figure 23: Third iteration step

and the field magnitude map on the x−z plane under these nominal currents is shown

in Fig. 24.

4.3.3 Control scheme

The control scheme for the two control variables method is proposed as follows:

To stabilize a magnetic particle at a target point (xe, ze), first we set this point as

an unstable equilibrium point to get the four nominal currents i1n, i2n, i3n, i4n, under

these currents the gradient of B equals zero. Then we use two control currents α, β,

to vary the currents of pair1 and pair2 (around each coil’s nominal value) separately,

in a reciprocal pattern:

pair1 : i1 = i1n − α, i3 = i3n + α;

pair2 : i2 = i2n − β, i4 = i4n + β.

The control law to generate the two control currents would be a feedback controller.
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Figure 24: B map where (0.01, 0.01) is an equilibrium point

4.3.4 System representation

Now let us take a look on the system representation in terms of the two control

inputs ( α and β). From equation 3.14, i = [i1n − α, i2n − β, i3n + α, i4n + β]T and

Bx = (i1n − α)f1x + (i2n − β)f2x + (i3n + α)f3x + (i4n + β)f4x (4.21)

= i1nf1x + i2nf2x + i3nf3x + i4nf4x − αf1x − βf2x + αf3x + βf4x

= Bnx + α(f3x − f1x) + β(f4x − f2x)

= Bnx + αg1x + βg2x;

where Bnx is the x component of the nominal B at (x, z) and we denote (f3x − f1x)

as g1x, (f4x − f2x) as g2x. Similarly,

Bz = Bnz + αg1z + βg2z; (4.22)
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The magnitude of vector B is

B = (B2
x + B2

z )
1
2 = [(Bnx + αg1x + βg2x)

2 + (Bnz + αg1z + βg2z)
2]

1
2 , (4.23)

then the x component of the field gradient is:

∂B
∂x

=
(Bnx+αg1x+βg2x)( ∂Bnx

∂x
+α

∂g1x
∂x

+β
∂g2x
∂x

)+(Bnz+αg1z+βg2z)( ∂Bnz
∂x

+α
∂g1z
∂x

+β
∂g2z
∂x

)

[(Bnx+αg1x+βg2x)2+(Bnz+αg1z+βg2z)2]
1
2

, (4.24)

and the z component of the field gradient is:

∂B
∂z

=
(Bnx+αg1x+βg2x)( ∂Bnx

∂z
+α

∂g1x
∂z

+β
∂g2x

∂z
)+(Bnz+αg1z+βg2z)( ∂Bnz

∂z
+α

∂g1z
∂z

+β
∂g2z
∂z

)

[(Bnx+αg1x+βg2x)2+(Bnz+αg1z+βg2z)2]
1
2

. (4.25)

Let x1 = x, x2 = ẋ, x3 = z, x4 = ż, the state equations for a magnetic particle

moving in x− z plane are: 



ẋ1 = x2

ẋ2 = ( p
m

) ∂B
∂x1

ẋ3 = x4

ẋ4 = ( p
m

) ∂B
∂x3

where ∂B
∂x1

and ∂B
∂x3

are determined by equations 4.24, 4.25.

4.3.5 Controllability of the linearized system

The above system equations can be put into the form:





ẋ1 = x2

ẋ2 = r(x1, x3, α, β)

ẋ3 = x4

ẋ4 = q(x1, x3, α, β)
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At a target point (x1e, x3e), a direct linearization of the system around the nominal

currents gives the following linearized model,

˙δx =




0 1 0 0
∂r
∂x1

0 ∂r
∂x3

0

0 1 0 0
∂q
∂x1

0 ∂q
∂x3

0


 x=xe

α=0

β=0

δx +




0 0
∂r
∂α

∂r
∂β

0 0
∂q
∂α

∂q
∂β


 x=xe

α=0

β=0


 α

β


 = Aδx + B


 α

β




where

δx = x− xe =




x1 − x1e

x2 − 0

x3 − x3e

x4 − 0




.

The controllability matrix of this linearized system is

C = [B|AB|A2B|A3B],

then

C =




0 0 ∂r
∂α

∂r
∂β

0 0 . . . . . .
∂r
∂α

∂r
∂β

0 0 ( ∂r
∂x1

∂r
∂α

+ ∂r
∂x3

∂q
∂α

) ( ∂r
∂x1

∂r
∂β

+ ∂r
∂x3

∂q
∂β

) . . . . . .

0 0 ∂q
∂α

∂q
∂β

0 0 . . . . . .
∂q
∂α

∂q
∂β

0 0 ( ∂q
∂x1

∂r
∂α

+ ∂q
∂x3

∂q
∂α

) ( ∂q
∂x1

∂r
∂β

+ ∂q
∂x3

∂q
∂β

) . . . . . .


 x=xe

α=0

β=0

This controllability matrix has a rank of 4, therefore the linearized system is

controllable with the two inputs α and β.

4.3.6 The PID feedback controller

To generate the two controls, a state feedback PID controller is used as following,
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α = Kp · (z − ze) + Ki ·
∫ t
0(z − ze)dτ + Kd · ż,

β = Kp · (x− xe) + Ki ·
∫ t
0(x− xe)dτ + Kd · ẋ,

where Kp, Kd, Ki are gains for proportional, derivative, and integral control respec-

tively.
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5.1 Position control simulation result

The simulation of this closed-loop system is a computationally intensive work, the

simulink models are shown in Fig. 25 and 26. They contain two steps. The first

step is the nominal currents searching, where the S-function ‘rect4 nominalCurrents’

takes xe, ze as inputs and obtains four nominal currents for this target point (Fig. 25).

The second step is the simulation of the closed-loop control system, where the two

controls α and β operate with the four nominal currents separately, generating four

currents for the coils (Fig. 26). The S-function ‘rectcoil4 cloop sfun’ takes x, z, and i

as its inputs and computes the gradient of B at (x, z).

Figure 25: Nominal currents search

It can be seen that under a given ∇B, the acceleration of the particle is only

determined by the ratio p/m. In the simulation the particle is assumed to have a

property of p/m = 0.02wb · m/kg (for instance, the mass of the particle could be
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Table 2: Coil parameters for the simulation

parameter value unit
a 0.1 m
b 0.05 m
c 0.02 m
d 0.04 m
e 0.095 m
N 2500 no.
Ic 4 Amp

Figure 26: The closed-loop position control system

m = 1× 10−6kg, the magnetic moment of the particle could be p = 2× 10−8wb ·m).

The parameters (defined in Fig. 7 and Fig. 8) of the coils are shown in table 2.

The simulation initial conditions are:

x0 = −0.01m,

z0 = −0.01m,

vx0 = 0.01m/s (initial velocity in x direction),

vz0 = 0 m/s (initial velocity in z direction).

The feedback gains are: Kp = 100, Kd = 10, Ki = 5.

The simulation result (Fig. 27, Fig. 28) shows that the particle can be stabilized

at this target point. In Fig. 28 the z position error (z − ze) has a larger overshoot.
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5.2 Simulation of motion along a circular path

To move the particle along a desired path, the position control scheme can be

exploited in a stepwise way. A number of fixed points on the desired path could be

selected, then the particle can be moved from one point to the next point using the

position control scheme, and step by step, the full path would be fulfilled. The more

points selected along the path, the more accurate the fulfilled trajectory would be.

The stepwise path tracking method was simulated for a desired circular path with

a radius of 0.01m, centered at the origin. The PID controller parameters are chosen

as: Kp = 100, Kd = 30, Ki = 5. Here the derivative gain is chosen to be bigger than

the derivative gain in the last position control simulation, to suppress the overshoot

of each step so that the fulfilled trajectory would be smoother.

For each step, when the particle gets close to the target point and its position

error to the target point is below a constant ε ( ε = 2% in this simulation ), the

current step of simulation stops, the target point is set to be the next point on the

path, the current position and velocity are set to be the initial values for the next

step of simulation, then next step starts.
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Figure 28: Position error (x− xe) and (z − ze) vs time (s)

In this simulation 32 equidistant points are selected on the desired circular path

(Fig. 29), the starting position of the particle is at (-0.01, 0), the simulation result is

shown in (Fig. 30).

5.3 Limitation on two variables control scheme

There are limitations on the proposed two variables control scheme. First, only in

a certain range around the origin in the x−z plane may this method be implemented.

If the target point is too far from the origin, there may be no suitable current com-

bination to make this point an equilibrium point. The initial position of the particle

should not be too far from the target point, otherwise the linearized model may fail

and the system may become uncontrollable.

Secondly, each coil’s current is changing by the control α or β about its own

nominal current, for example, i2 = i2n − α. If the nominal current i2n = 2A and

the control α > 2A, then i1 becomes negative, that means the direction of current of

coil 2 will be reversed. The coil with a reversed current will still attract a magnetic

particle, and the attraction will get stronger as α gets bigger, then the control scheme

will fail. So in implementation, the initial conditions and the feedback gains are all

factors which need to be considered to ensure that the controls will not become too

big and all currents stay in their original direction.
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Figure 30: Simulation of motion along a circular path
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This thesis studies the two dimensional position control problem of a small perma-

nent magnetic particle. External magnetic field generated by four elongated wound

coils is used to control the position of the particle. The force imparted on the magnetic

particle is directly related to the gradient of the field strength.

A two control variable method is proposed and verified by simulation. In this

method a set of nominal currents which make the target position an unstable equilib-

rium point are searched, then two control variables are applied to the two pairs of the

coils respectively. Each control variable varies the currents in each pair in a reciprocal

way. The currents varies around each coil’s nominal current. A PID feedback con-

troller is used to generate the two control variables. The simulation result shows that

this control method can stabilize the particle at a desired point two dimensionally

within a certain region of the configuration of the four elongated coils.

The controllability analysis of the system is based on a linearized model where the

system is linearized at the target position and with the nominal currents. This causes

limitations on the two variable method. The target position should not be too far

from the origin, otherwise there may be no suitable current combination to make the

target position an equilibrium point. The initial position of the particle should not

be too far from the target position, in case the linearized model fails. Furthermore,

the initial conditions and the feedback gains need to be considered together to ensure

that all currents stay in their nominal directions during the motion of the particle

when this method is implemented.

Due to the existence of mutual inductance and self inductance, the realizable

current slew rate of the four coils is limited. So the two control inputs α and β should
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not change too rapidly. A suggestion is that the slew rate of α and β should not

exceed 10A/ms for coils with a size comparable to the coils used in this thesis.

Coils which have a similar size to the coils in this thesis usually have a resistance

less than 100Ω. With a central current set to 1A, the average power consumption will

be less than 400 Watts. This is realizable for a lab environment. So it is suggested

that the central current value be set to 1A when the control scheme is implemented.

Future work of this study may include:

• Experimental implementation of the control scheme.

• Fluid force needs to be considered in the motion equations, for the simulation

of the particle motion in a fluid environment.

• More accurate rectangular coil model could be built by considering fillets on the

four corners, and field computation codes need to be rewritten to contain integration

on the corners.

• The specific region of controllability of this position control scheme needs to be

investigated or tested.
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Source code

rectcoil4 cloop sfun.cpp:

#include "stdio.h"

#include "rect_coil.h"

#include "math.h"

struct Bfield{ //the magnetic field intensity B

double x;

double y;

double z;

};

struct P_position{ //the position of the particle

double x;

double y;

double z;

};

//----------------------------------rect_coil class-----------------------------------------------

class rect_coil {

protected:

double inner_width;

double inner_length;

double coil_xsection_width;

double coil_xsection_height;

41



int Num_turns;

double i_n; //the central current

double i_density;

double I; //current of subdivided circular loop

private:

double x;

double y;

double z;

double x0; //the coordinates of the point to be calculated

double y0;

double z0;

double a;

double b;

double ra1; //current_ratio of coil1

double ra2; //current_ratio of coil2

double ra3; //current_ratio of coil3

double ra4; //current_ratio of coil4

double func_Bx_fore(double l) //the integrant function for Bx, fore segment for a single loop

{

return 0;

}

double func_By_fore(double l) // for By, fore segment

{

return -I*z/(10000000*pow((x-l)*(x-l)+(y+b)*(y+b)+z*z,1.5)); //’mu0/4pi’=10^-7

}

double func_Bz_fore(double l) // for Bz, fore segment

{

return I*(y+b)/(10000000*pow((x-l)*(x-l)+(y+b)*(y+b)+z*z,1.5));

}

double func_Bx_right(double l) // for Bx, right segment

{

return I*z/(10000000*pow((x-a)*(x-a)+(y-l)*(y-l)+z*z,1.5));

}

double func_By_right(double l) // for By, right segment

{

return 0;

}
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double func_Bz_right(double l) // for Bz, right segment

{

return I*(a-x)/(10000000*pow((x-a)*(x-a)+(y-l)*(y-l)+z*z,1.5));

}

double half_loop_Bx(double a_loop, double b_loop)

//integration using Simpson’s rule, to get the Bx generated by the fore and right segment

{

a=a_loop; //a, b are the geometric parameters of the rect. subdivided coil (wire)

b=b_loop; //a, b will be used inside the functions func_Bx_fore(double l) and so on

int k;

double integ=0.0; //integration result with fore and right segments

double dx=2*b/Num_subdiv_right; //dx is the dL in the Biot-Savart law

double Sub_integ[Num_subdiv]; //Num_subdiv is the subdivision number along the fore segment

//Num_subdiv_right is the subdiv. number along the right segment, Num_subdiv_right<= Num_subdiv.

for(k=0;k<Num_subdiv_right;k++)

{

Sub_integ[k]=(dx/6)*(func_Bx_right(-b+k*dx)+4*func_Bx_right(((-b+k*dx)+(-b+(k+1)*dx))/2)

+func_Bx_right(-b+(k+1)*dx));

integ=integ+Sub_integ[k];

}

return integ;

}

double half_loop_By(double a_loop, double b_loop)

//integration using Simpson’s rule, to get the By generated by the fore and right segment

{

a=a_loop; //a, b are the geometric parameters of the rect. subdivided coil (wire)

b=b_loop; //a, b will be used inside the functions func_Bx_fore(double l) and so on

int k;

double integ=0.0; //integration result with fore and right segments

double dx=2*a/Num_subdiv;

double Sub_integ[Num_subdiv]; //Num_subdiv is the subdivision number along the fore segment

for(k=0;k<Num_subdiv;k++)

{

Sub_integ[k]=(dx/6)*(func_By_fore(-a+k*dx)+4*func_By_fore(((-a+k*dx)+(-a+(k+1)*dx))/2)

+func_By_fore(-a+(k+1)*dx));

integ=integ+Sub_integ[k];

}

return integ;
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}

double half_loop_Bz(double a_loop, double b_loop)

//integration using Simpson’s rule, to get the Bz generated by the fore and right segment

{

a=a_loop; //a, b are the geometric parameters of the rect. subdivided coil (wire)

b=b_loop; //a, b will be used inside the functions func_Bx_fore(double l) and so on

int k;

double integ=0.0; //integ. with fore and right segments

double dx=2*a/Num_subdiv;

double Sub_integ[Num_subdiv]; //Num_subdiv is the subdivision number along the fore segment

//Num_subdiv_right is the subdiv. number along the right segment, Num_subdiv_right<= Num_subdiv.

for(k=0;k<Num_subdiv;k++)

{

Sub_integ[k]=(dx/6)*(func_Bz_fore(-a+k*dx)+4*func_Bz_fore(((-a+k*dx)+(-a+(k+1)*dx))/2)

+func_Bz_fore(-a+(k+1)*dx));

integ=integ+Sub_integ[k];

}

dx=2*b/Num_subdiv_right;

for(k=0;k<Num_subdiv_right;k++)

{

Sub_integ[k]=(dx/6)*(func_Bz_right(-b+k*dx)+4*func_Bz_right(((-b+k*dx)+(-b+(k+1)*dx))/2)

+func_Bz_right(-b+(k+1)*dx));

integ=integ+Sub_integ[k];

}

return integ;

}

double other_half_loop_Bx(double a, double b, double c, double

a_loop, double b_loop)

{

x=-a; //change coordinates

y=-b;

z=c;

return -half_loop_Bx(a_loop, b_loop);

//Bx of the other half loop, the minus sign change it back to the current coordinates.

}

double other_half_loop_By(double a,double b, double c, double

a_loop, double b_loop)

{
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x=-a; //change coordinates

y=-b;

z=c;

return -half_loop_By(a_loop, b_loop);

//By of the other half loop, the minus sigh change it back to the current coordinates.

}

double other_half_loop_Bz(double a,double b, double c, double

a_loop,double b_loop)

{

x=-a; //change coordinates

y=-b;

z=c;

return half_loop_Bz(a_loop, b_loop);

//Bz of the other half loop, has the same sign as in the current coordinates.

}

public:

////---------------------------B calculation for a single rect coil----------------------------------

double total_Bx(double a,double b, double c) {

double a_loop,b_loop;

x=a;

y=b;

double Bx=0.0; //temporary variable for Bx

int j;

int k;

for(j=0;j<num_coil_subdiv*(coil_xsection_height/coil_xsection_width);j++)

{

z=c+(coil_xsection_height/2)-(coil_xsection_width/num_coil_subdiv)*(0.5+j);

//z coordinate according to the subdivided loop

for(k=0;k<num_coil_subdiv;k++) //num_coil_subdive is along the width of the cross-section

{

a_loop=(inner_length/2)+(coil_xsection_width/num_coil_subdiv)*(0.5+k);

b_loop=(inner_width/2)+(coil_xsection_width/num_coil_subdiv)*(0.5+k);

Bx=Bx+half_loop_Bx(a_loop,b_loop)+other_half_loop_Bx(x,y,z,a_loop,b_loop);

}

}

return Bx;

}
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double total_By(double a,double b, double c)

{

double a_loop,b_loop;

x=a;

y=b;

double By=0.0; //temporary variable for By

int j;

int k;

for(j=0;j<num_coil_subdiv*(coil_xsection_height/coil_xsection_width);j++)

{

z=c+(coil_xsection_height/2)-(coil_xsection_width/num_coil_subdiv)*(0.5+j);

//z coordinate according to the subdivided loop

for(k=0;k<num_coil_subdiv;k++) //num_coil_subdive is along the width of the cross-section

{

a_loop=(inner_length/2)+(coil_xsection_width/num_coil_subdiv)*(0.5+k);

b_loop=(inner_width/2)+(coil_xsection_width/num_coil_subdiv)*(0.5+k);

By=By+half_loop_By(a_loop,b_loop)+other_half_loop_By(x,y,z,a_loop,b_loop);

}

}

return By;

}

double total_Bz(double a,double b, double c) {

double a_loop,b_loop;

x=a;

y=b;

double Bz=0.0; //temporary variable for Bz

int j;

int k;

for(j=0;j<num_coil_subdiv*(coil_xsection_height/coil_xsection_width);j++)

{

z=c+(coil_xsection_height/2)-(coil_xsection_width/num_coil_subdiv)*(0.5+j);

//z coordinate according to the subdivided loop

for(k=0;k<num_coil_subdiv;k++) //num_coil_subdive is along the width of the cross-section

{

a_loop=(inner_length/2)+(coil_xsection_width/num_coil_subdiv)*(0.5+k);

b_loop=(inner_width/2)+(coil_xsection_width/num_coil_subdiv)*(0.5+k);

Bz=Bz+half_loop_Bz(a_loop,b_loop)+other_half_loop_Bz(x,y,z,a_loop,b_loop);

}

}
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return Bz;

}

//////---B calculation in global coordinates system, using coordinates translation and rotation------

Bfield B_global(double x0, double y0, double z0, double xc, double yc, double zc, double alpha)

//(x0,y0,z0) is the point in global coords to be calculated, (xc,yc,zc) is the center of the coil

//alpha is the rotation angle of the coil (around the line passing the center and parallel to y axis)

{

double x_loc,y_loc,z_loc; //local coordinates

Bfield B_loc;

Bfield B; // B = {Bx_glo,By_glo,Bz_glo}

x_loc=(x0-xc)*cos(alpha)-(z0-zc)*sin(alpha);

y_loc=(y0-yc);

z_loc=(x0-xc)*sin(alpha)+(z0-zc)*cos(alpha);

B_loc.x=total_Bx(x_loc, y_loc,z_loc); //B value in local coord. system

B_loc.y=total_By(x_loc, y_loc,z_loc);

B_loc.z=total_Bz(x_loc, y_loc,z_loc);

B.x= (B_loc.x*cos(alpha)+B_loc.z*sin(alpha)); //B value in global coord. system

B.y= B_loc.y;

B.z= (-B_loc.x*sin(alpha)+B_loc.z*cos(alpha));

return B;

}

Bfield B4coils(double x0, double y0, double z0)

//compute the field generated by the 4 rect. coils

{

Bfield B4coils;

Bfield B1, B2, B3, B4;

B1=B_global(x0,y0,z0, 0, 0, 0.09, 0); //0.09 is the z coordinate of the center of the 1st coil

B2=B_global(x0,y0,z0, 0.09*sin(PI/2), 0, 0.09*cos(PI/2), PI/2);

B3=B_global(x0,y0,z0, 0.09*sin(2*PI/2), 0, 0.09*cos(2*PI/2), 2*PI/2);

B4=B_global(x0,y0,z0, 0.09*sin(3*PI/2), 0, 0.09*cos(3*PI/2), 3*PI/2);

B4coils.x= B1.x*ra1 + B2.x*ra2 + B3.x*ra3 + B4.x*ra4;

B4coils.y= B1.y*ra1 + B2.y*ra2 + B3.y*ra3 + B4.y*ra4;

B4coils.z= B1.z*ra1 + B2.z*ra2 + B3.z*ra3 + B4.z*ra4;

return B4coils;

}
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double Bsum4coils(double x0, double y0, double z0)

//compute the field magnitude generated by the 4 rect. coils

{

double Bsum;

Bfield B4_coils;

B4_coils=B4coils(x0,y0,z0);

Bsum= sqrt(B4_coils.x*B4_coils.x + B4_coils.y*B4_coils.y + B4_coils.z*B4_coils.z);

return Bsum;

}

double gradB4coils_x(double a, double b, double c,double i1, double i2, double i3, double i4)

//return the x component of the gradient

{

ra1=i1/i_n;

ra2=i2/i_n;

ra3=i3/i_n;

ra4=i4/i_n;

return (Bsum4coils(a+h,b,c )-Bsum4coils(a-h,b,c ))/(2*h);

}

double gradB4coils_y(double a, double b, double c, double i1, doublei2, double i3, double i4)

//return the y component of the gradient

{

ra1=i1/i_n;

ra2=i2/i_n;

ra3=i3/i_n;

ra4=i4/i_n;

return (Bsum4coils(a,b+h,c )-Bsum4coils(a,b-h,c ))/(2*h);

}

double gradB4coils_z(double a, double b, double c,double i1, double i2, double i3, double i4)

//return the z component of the gradient

{

ra1=i1/i_n;

ra2=i2/i_n;

ra3=i3/i_n;

ra4=i4/i_n;

return (Bsum4coils(a,b,c+h )-Bsum4coils(a,b,c-h ))/(2*h);

}
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//---------------------------------constructor of rect_coil-----------------------------------

rect_coil() {

inner_length=0.1;

inner_width=0.05;

coil_xsection_width=0.02;

coil_xsection_height=0.04;

Num_turns=2500;

i_n=4; //i_n is the central current

i_density

=i_n*Num_turns/(coil_xsection_width*coil_xsection_height);//coil’s current density

//current of subdivided circular loop, ampere

I=i_density*pow(double(coil_xsection_width/num_coil_subdiv),2.0);

}

}; //--------------------------end of the class ’rect_coil’----------------------------------

#ifdef __cplusplus extern "C" { // use the C fcn-call standard for all functions

#endif // defined within this scope

#define S_FUNCTION_LEVEL 2

#define S_FUNCTION_NAME rectcoil4_cloop_sfun

/*

* Need to include simstruc.h for the definition of the SimStruct and

* its associated macro definitions.

*/

#include "simstruc.h"

#define IS_PARAM_DOUBLE(pVal) (mxIsNumeric(pVal) &&

!mxIsLogical(pVal) &&\ !mxIsEmpty(pVal) && !mxIsSparse(pVal) &&

!mxIsComplex(pVal) && mxIsDouble(pVal))

/*====================*

* S-function methods *

*====================*/

#define MDL_CHECK_PARAMETERS #if defined(MDL_CHECK_PARAMETERS) &&

defined(MATLAB_MEX_FILE) /*

* Check to make sure that each parameter is 1-d and positive

*/
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static void mdlCheckParameters(SimStruct *S) {

/*

const mxArray *pVal0 = ssGetSFcnParam(S,0);

if ( !IS_PARAM_DOUBLE(pVal0)) {

ssSetErrorStatus(S, "Parameter to S-function must be a double scalar");

return;

}

*/

} #endif

/* Function: mdlInitializeSizes

===============================================

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {

return;

}

} else {

return; /* Parameter mismatch will be reported by Simulink */

}

#endif

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 7);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 3);
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ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 1); // reserve element in the pointers vector

ssSetNumModes(S, 0); // to store a C++ object

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

}

/* Function: mdlInitializeSampleTimes

=========================================

* Abstract:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

*/

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart =======================================================

* Abstract:

* This function is called once at start of model execution.

*/

static void mdlStart(SimStruct *S)

{

ssGetPWork(S)[0] = (void *) new rect_coil; // store new C++ object in the

} // pointers vector

#endif /* MDL_START */

/* Function: mdlOutputs

=======================================================

* Abstract:

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
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rect_coil *rc = (rect_coil *) ssGetPWork(S)[0]; // retrieve C++ object from

real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and use

y[0]= rc->gradB4coils_x(*uPtrs[0],*uPtrs[1],*uPtrs[2],*uPtrs[3],*uPtrs[4],*uPtrs[5],*uPtrs[6]);

// member functions of the object

y[1]= rc->gradB4coils_y(*uPtrs[0],*uPtrs[1],*uPtrs[2],*uPtrs[3],*uPtrs[4],*uPtrs[5],*uPtrs[6]);

y[2]= rc->gradB4coils_z(*uPtrs[0],*uPtrs[1],*uPtrs[2],*uPtrs[3],*uPtrs[4],*uPtrs[5],*uPtrs[6]);

}

/* Function: mdlTerminate

=====================================================

* Abstract:

* In this function, perform any actions that are necessary at

* the termination of a simulation. For example, if memory was

* allocated in mdlStart, this is the place to free it.

*/

static void mdlTerminate(SimStruct *S) {

rect_coil *rc = (rect_coil *) ssGetPWork(S)[0]; // retrieve and destroy C++

delete rc; // object in the termination

} // function

/*=============================*

* Required S-function trailer *

*=============================*/

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

#ifdef __cplusplus } // end of extern "C" scope

#endif

the function ’nominal currents’ in rect4 nominalCurrents.cpp:

Currents nominal_currents(double xe, double ze) //only in x-z plane

{

double oldStepSize, newStepSize;

int zSteps;
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int xSteps;

Currents nominalCurrents;

double i1,i2,i3,i4,i1_n,i2_n,i3_n,i4_n; //i1_n... are currents that

//generate the min. B

double B_min, Bsum;

int j,k;

i1_n= i_n;

i2_n= i_n;

i3_n= i_n;

i4_n= i_n; //initialize the four nominal currents

ra1=1;

ra2=1;

ra3=1;

ra4=1;

B_min= Bsum4coils(xe,0,ze); //initialize B_min

if(xe==0 && ze==0)

{

nominalCurrents.i1=i_n;

nominalCurrents.i2=i_n;

nominalCurrents.i3=i_n;

nominalCurrents.i4=i_n;

return nominalCurrents; //if (xe,ze) is the origin, the four

//are all i_n.

}

else

{

double i1_temp= i_n;

double i2_temp= i_n;

double i3_temp= i_n;

double i4_temp= i_n; //these temporary currents are used to record those currents

//for smaller B.

oldStepSize= i_n; //initial oldStepSize

newStepSize= i_n/2;

while(true)

{

zSteps = int(2*oldStepSize/newStepSize); // =4

xSteps = int(2*oldStepSize/newStepSize);

for(j=1;j<zSteps;j++)
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{

for (k=1;k<xSteps;k++)

{

i1= (i1_n-oldStepSize)+j*newStepSize;

i3= (i3_n+oldStepSize)-j*newStepSize;

i2= (i2_n-oldStepSize)+k*newStepSize;

i4= (i4_n+oldStepSize)-k*newStepSize;

ra1=i1/i_n;

ra2=i2/i_n;

ra3=i3/i_n;

ra4=i4/i_n;

//compute B under these current ratios

Bsum= Bsum4coils(xe,0,ze);

if(Bsum<B_min)

{

B_min= Bsum;

i1_temp= i1;

i2_temp= i2;

i3_temp= i3;

i4_temp= i4; //record the currents for this smaller Bsum.

if( Bsum<Bsum4coils(xe+h,0,ze)

&& Bsum<Bsum4coils(xe-h,0,ze)

&& Bsum<Bsum4coils(xe,0,ze+h)

&& Bsum<Bsum4coils(xe,0,ze-h) )

{

nominalCurrents.i1=i1;

nominalCurrents.i2=i2;

nominalCurrents.i3=i3;

nominalCurrents.i4=i4;

return nominalCurrents; //if gradB==0,wet get it,and return.

}

}

} //end of ’for k’ loop

} //end of ’for j’ loop

//----- if no currents meet the ’0 gradB’ criterion--------

i1_n= i1_temp;

i2_n= i2_temp;

i3_n= i3_temp;
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i4_n= i4_temp; //renew those currents which generate min.gradB

oldStepSize = newStepSize; //current StepSize became oldStepSize

newStepSize = oldStepSize/2; //new stepsize for next ’while’ loop

} //end of the ’while’ loop

} //end of ’else’

}
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