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NOMENCLATURE 
 
 
a   = Acoustic velocity of pressure wave, m/s 

0a    = Acoustic velocity of pressure wave at reference conditions, m/s 

A   = Area, m2 

tA   = Area at the throat, m2 

c   = Velocity of gas particle, m/s 

tc   = Velocity of gas particle at throat, m/s 

sc    = Superposition velocity of gas particle, m/s 

pC   = Specific heat capacity at constant pressure, J/kg K 

vC   = Specific heat capacity at constant volume, J/kg K 

dC   = Coefficient of discharge 

fC   = Skin friction coefficient  

hC   = Convection heat transfer coefficient, W/m2K 

kC   = Coefficient of thermal conductivity, W/mK 

D   = Diameter, m 

fdp   = Pressure loss due to friction, Pa 

dQ   =  Heat generated, J 

dt   = Time step, s

   xv 



f   = Frequency of wave, Hz 

G   = Functions of ratio of specific heats ( )γ  

H   = Enthalpy, J 

L   = length of computational mesh, m 

m   = Mass, kg 

•

m   = Mass flow rate, kg/s 

M   = Mach number 

sM   = Superposition Mach number 

Nu   = Nusselt number 

p   = Pressure, Pa 

0p   = Reference/ambient pressure, Pa 

rp   = Reflected pressure, Pa 

sp   = Superposition pressure, Pa  

P   = Pressure ratio  

r   = Radius, m 

R   = Characteristic gas constant, J/kgK 

Re   = Reynolds number 

t   = Time, s 

T   = Temperature, K 

u   = Specific internal energy, J/kg 

U   = Internal energy, J 

V   = Volume, m3 

   xvi 



•

V   = Volume flow rate, m3/s 

x   = length, m 

X   = Pressure amplitude ratio 

tX   = Pressure amplitude ratio at throat 

iX   = Pressure amplitude ratio (incident) 

rX   = Pressure amplitude ratio (reflected) 

sX   = Superposition pressure amplitude ratio 

 

Greek Symbols 

α   = Velocity of pressure wave propagation, m/s 

sα   = Velocity of pressure wave propagation at superposition, m/s 

γ   = Ratio of specific heats, vp CC  

ρ   = Density of particle at any point on the wave, kg/m3 

0ρ   = Density at reference conditions, kg/m3 

sρ   = Density at superposition conditions, kg/m3 

τ   = Shear stress, N/m2 

µ   = Coefficient of viscosity, kg/ms  

Π   = Purity of gas 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Active flow control (AFC) is a very important area in aerodynamics today. The 

expression 'active' refers to the process of inputting small amounts of energy locally to 

achieve large performance gains throughout the flow field. The aim of AFC is typically 

delaying stall, increasing lift, reducing drag, enhancing combustion, and decreasing jet 

noise. This is achieved by delaying or advancing transition from laminar to turbulent 

flow, avoiding or delaying separation and suppressing or enhancing turbulence levels. 

Typical control loops used for AFC are open loop, reactive feedforward and reactive 

feedback open. In open loop control, the controlled variable is predetermined. No sensed 

information is fed forward in this case. Reactive control refers to a special class of active 

control where the input to the controller is continuously adjusted based on measurements 

of the controlled variable. In feedforward control, the measured variable and the 

controlled variable differ. For example, the pressure or velocity can be measured at an 

upstream location and the resulting signal is fed to an actuator, which sends appropriate 

control signals to influence the velocity at a downstream location. In feedback control, 

the controlled variable is measured, fed back and compared to a reference input. This 

device, which compares the feedback value and the reference value 
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is called a Comparator. This device triggers an appropriate response from the actuator 

thereby controlling the input. Figures 1.1 and 1.2 summarize the engineering goals, their 

interrelation and corresponding flow changes. 

Several methods are available for AFC. Figure 1.3 shows classification of flow 

control strategies. Gad-el-Hak [1] [2] describes the many methods, points to technologies 

currently under development and the modern tools used for soft computing. The term soft 

computing refers to several ingenious modes of computations that exploit tolerance for 

imprecision and uncertainty in complex systems to achieve tractability, robustness and 

low cost. It refers to a domain of computational intelligence that loosely lies between 

purely numerical computing and purely symbolic computations. The principal 

constituents of soft computing are neurocomputing, fuzzy logic and genetic algorithms. A 

detailed description of these methods can be found in [2]. 
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Figure 1.1 Engineering goals and corresponding flow changes [2] 
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Figure 1.2 Interrelation between flow control goals [2] 
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Figure 1.3 Classification of flow control strategies [2] 
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1.2 Circulation Control Wing Concept 

Circulation control wings achieve high lift by turning the flow over the airfoil 

using the Coanda effect in place of trailing edge flaps. The turning is performed over a 

large radius trailing edge using blowing through narrow slots to enhance the Coanda 

effect for the flow over the airfoil. Use of steady jets even at very small mass flow rates 

can yield lift coefficients higher than conventional systems using flaps [6] [7]. Pulsed jets 

even at low duty cycles are able to accomplish the desired lift [7]. A 2-D supercritical 

airfoil model described by Jones et al. [6] is shown in figure 1.4. 

 

 

 

 

 

 

 

 

  

 

Figure 1.4 Circulation Controlled Airfoil Internal Passages [6] 
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In the setup shown in figure 1.4 two manifolds are shown. These manifolds 

supply air to an actuator. Slots are provided on the upper and lower surfaces of the wing. 

Moving from a high lift to a cruise configuration is dependent on the upper and blowing 

ratios and the free stream velocity. This is done by modifying the mass flow through the 

upper and lower slots. Each slot flow is independently controlled.  

 

 

 

 

 

 

 

 

Figure 1.5 Individual Actuator Diffuser [6] 

An individual actuator diffuser is shown in figure 1.5. The flow field out of the 

actuator is a small diameter circular high-speed jet. The objective of the diffuser is to 

transition from a circular, time-dependent high-speed jet to a low speed 2D, uniform jet. 

The effectiveness of the system depends on the actuator performance, diffuser 

performance and the response of the internal conduit prior to the jet exit. Even in the case 

in which an ideal pulsed flow can be created at the actuator, the effects of the flow 

passage from the actuator to the slot can distort the pulse so that the jet leaving the slot 

has a different, less effective, pulse shape. The pressure pulse that leaves the actuator is 

distorted in amplitude and shape by friction and reflections. For the design of pulsed 
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blowing systems, a good model that considers these effects is needed to predict the 

characteristics of the pulse at the slot exit. A design tool is needed for this purpose. It is in 

this aspect that the present work becomes important. An appropriate model is required for 

evaluating the above effects. This is the objective of this research work.  

Active flow control can be applied to aircraft design applications to achieve 

improvements in performance like increased lift, reduced drag, averted separation and 

decreased noise. Blowing is one method shown to be effective by many researchers. 

Continous blowing can require excessive amounts of engine bleed air in aircraft 

applications. Magill and McManus [3], Liu [4] and Kim [5] have demonstrated that 

pulsed blowing can achieve the same goals with lower air flow requirements. They 

attribute the effect to enhanced vorticity production for an impulsively started jet flow 

and reduced mass flow obtained with the low duty cycle. Liu [4] uses a square pulse with 

a 50% duty cycle and various frequencies of 40 Hz, 120 Hz and 400 Hz. He compares the 

performance of these three frequencies with a steady jet. The lift coefficient is found to 

be high for the pulsed jet with 400 Hz frequency. Further, a comparison of time averaged 

mass flow rate vs. momentum coefficient and efficiency vs. time averaged momentum 

coefficient reveals that high frequency jets are best suited for this application. Magill and 

McManus [3] conducted experiments to prove that square-pulsed jets at high frequency 

and low duty cycles of 25% provide the optimum increase in lift. These researchers are of 

the opinion that the most effective way in suppressing stall is to use an unsteady or pulsed 

jet with a duty cycle of 10-50% and high frequency. To summarize, the advantage of 

pulsed blowing is that minimum air is required from the compressor with high lift 
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achieved even at low duty cycles. Pulses with a square profile with low duty cycles of 

25% [3] [4] and high frequencies of approximately 400 Hz [4] have been found to be 

very effective.
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1.3 Problem statement and presentation 

Efficient systems for applications of pulsed blowing require careful design. The 

challenges are that the engine bleed air must be used as sparingly as possible and the air 

must be distributed to the multiple locations at which active control is to be implemented. 

This manifold distribution problem is complicated further by the unsteady pulsatile flow. 

The dynamics of the distribution system will play an important role in overall system 

effectiveness. Several studies [5] [6] [8] have concentrated on the actuators and their 

modeling but the studies on the transmission tubing have been limited. The distribution 

systems under consideration for pulsed blowing consist of plenums and multiple 

distribution tubes, with similarities to ventilation system ducting and the intake and 

exhaust systems of internal combustion engines. One-dimensional modeling approaches 

are well developed for the flow and acoustics of such systems. Munjal [9], Munjal and 

Doige [10] and Gupta et al. [11] describe these techniques for ducts and mufflers. Bulaty 

and Widenhorn [12] and Blair [13] are among those presenting similar techniques for the 

simulation of internal combustion engine system flow and acoustics. The unsteady 

pulsatile flow of internal combustion engine exhaust systems has many similarities to 

pulsed jet active flow distribution systems. Prediction techniques are needed for the 

dynamic performance of pulsed jet flow control systems.  
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1.4 Objectives of Research 

The classic transmission line analysis of Brown [14] and the one-dimensional 

fluid-acoustic analysis techniques of Munjal [9] and of Blair [13] serve as guidelines for 

modeling the transmission system. Among these works, Blair’s was selected because of 

simplicity, ease of modeling and accuracy of results. 

 

The objectives of this research are: 

(1) Development of a fluid – acoustic analysis scheme for predictions of pulsed jet 

flow distribution system performance. The parameters of interest are pressure, 

velocity and pulse frequency. The effect of input variables like inlet pressure and 

duty cycle and simulation parameters such as mesh size and time step need to be 

studied. 

(2) Modeling of the transmission tubing using Blair’s model. 

(3) Implementation of the model in a computer program. 

(4) Analyzing the effect of various input and simulation parameters. 

(5) Code validation for select cases. 



CHAPTER II 

LITERATURE REVIEW 

2.1 Studies on active flow control 

The motivation for this research comes from several studies directly on flow 

control and other related work conducted by various researchers. Some of the studies 

have concentrated on the aerodynamic analysis and benefits of pulsed blown systems on 

aircraft. Some others have attempted to model the system itself. Both groups have 

highlighted the advantages of pulsed blowing as a means of active flow control (AFC). 

Other works have targeted flow control opportunities in non-aerodynamic areas. 

Liu [4] has underlined the importance of pulsed blowing as an effective method of 

AFC. He suggests circulation control technology as a useful way of achieving very high 

lift. Two-dimensional blowing results are presented to prove that the pulsed jet at high 

frequencies is an effective way of obtaining high lift compared to a steady jet while 

requiring lower mass flow rates. Figure 2.1 shows the plot of lift coefficient vs. mass flow 

rate for steady and pulsed jets of different frequencies.
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Figure 2.1 Variation of incremental lift coefficient with time-averaged mass flow rate [4] 

 

Other works with similar findings are those by Magill and McManus [3] and Kim 

[5].  Magill and McManus [3] have shown that pulsed jets increase lift and Lift/Drag ratio 

affecting only small changes to drag. They also find that pulsed vortex generator jets are 

highly effective at high leading edge flap deflections.  

Kim [5] has modeled a pulsed blowing system using a lumped element model for 

the actuator and a distributed model for the transmission tubing. In the lumped element 

analysis techniques developed in the 1960’s for simulating fluid-acoustic phenomena, the 

entire actuator and tubing was modeled as a lumped mass. Kim [5] has improved upon 

this approach, noting that the length of the tubing connecting the actuator to the valve is 
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not small compared to the acoustic wavelength. The transmission tubing distributed 

model in the above work is essentially based on the work by Brown [14] and Karam and 

Franke [15]. These works evaluate the characteristic impedance, amplitude frequency 

response and propagation factor in rigid uniform transmission lines with the effects of 

varying velocity profile and heat transfer included. For more basic theory, one may refer 

to the works of Nichols [16], Iberall [17], Tijdeman [18] and Hunt [19]. Kim [5] is of the 

opinion that Karam and Franke’s study [15] is not realistic in engineering applications 

due to the use of a closed tube. However, he attributes this work to the basis of studies of 

more realistic systems where there are networks of tubes that have open ends. 

Experiments were conducted in this work involving different slot widths and heights. 

This work concludes that a mathematical model is required for guiding the system design. 

Joslin et al. [20] focus on a strategy to develop tools for transitioning active flow 

control from the laboratory to applications. Pulsed pneumatic high lift technology and its 

potential for aircraft systems has been studied by Jones et al. [6]. They combine CFD and 

wind tunnel experiments to quantify flow parameters such as boundary layer separation, 

slot-velocity profiles, plenum pressures, lift, drag and pitching moment. These 

researchers underline the importance of time accurate measurements at the slot exit in 

understanding the flow physics of the pulsed circulation system. They point out the 

difficulties researchers face in making detailed and accurate measurements at the jet exit 

due to large perturbations in velocity. Figure 2.2 shows the comparison of lift coefficient 

for pulsed and steady circulation control from this study. It can be inferred from the 

figure that the lift coefficient is approximately 20% higher than for a steady jet retaining 

the same mass flow rate.  
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Figure 2.2 Comparison of pulsed and steady circulation control [6] 
(Frequency 35 Hz and varying duty cycle)   

 

Other methods like finite element methods have been used by workers like Perotti 

[21]. A discontinuous finite element method is used in this work. The author claims that 

this method is superior to finite difference schemes. The method is more efficient at 

discontinuities. Further, the interfaces between one-dimensional and three-dimensional 

meshes can be effectively modeled. The speed of execution of the finite element scheme 

is less than that of a finite difference scheme. Therefore, a speed up of the explicit 

discontinuous Galerkin finite element code through matrix inversion and accelerated time 

stepping is suggested.  
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Numerous researchers have conducted studies pertaining to modeling of flow in 

ducts. Gupta et al. [11] use a segmentation approach for analyzing ducts with mean flow. 

They use a transfer matrix for each segment and an overall transfer matrix is obtained by 

multiplying the individual transfer matrices. These matrices employ all state variables 

like acoustic pressure, acoustic mass velocity and interrelate these terms using gas 

dynamic equations. Brown [14] derives functional operators for the propagation factor 

and characteristic impedance in rigid uniform transmission lines. These factors are used 

to determine the response of the line to impulse and step excitation. The study by Karam 

and Franke [15] on frequency response of pneumatic lines focuses on the amplitude 

frequency response of lines used in fluidic systems. They use theory analogous to electric 

transmission theory to analyze response of fluid transmission lines. The volumetric flow 

rate is used rather than the mass flow rate to keep the theory analogous to electric circuit 

terminology. The volumetric flow rate is modeled as complex hyperbolic functions of 

impedance and propagation factor. 

Bulaty and Widenhorn [12] generalize a three-branch model to an n-branch 

junction model and use it for the one-dimensional unsteady flow calculations in exhaust 

systems. They use an energy related pressure loss method. 
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2.2 Flow modeling in internal combustion engines 

Unsteady flows that occur in pipe systems of internal combustion engines are 

similar to flows in our research problem. One-dimensional modeling approaches are well 

developed for such problems. Bulaty and Niessner [27] use linear finite difference 

methods with flux correction for such problems. Earlier methods used were the method of 

characteristics [28] and Lax-Wendroff methods [29].  

The one-dimensional unsteady flow in a pipe is described by the governing 

equations – continuity, momentum and energy in differential form. In pipe systems of 

internal combustion engines, pressure waves travel back and forth causing reflections at 

discontinuities. These pressures are further modified due to friction and heat transfer. 

These phenomena are discussed in detail in chapter III. A comparison of algorithms used 

in unsteady flow calculations in inlet and exhaust systems of internal combustion engines 

is done by Vandevoorde et al. [30]. The method of characteristics, different Lax-

Wendroff schemes, first order upwind schemes and the latest total variation diminishing 

(TVD) schemes are compared in this study. The method of characteristics does not 

discretize equations, but rearranges the initial equations to form non-dimensional 

equations using Riemann variables that are a combination of density, pressure and 

velocity and normalizing the equations using dimensionless variables. This method 

however is very time consuming. Lax-Wendroff schemes are finite volume schemes 

involving discretization of the conservative form of the governing equations. These 

schemes are centered in space. These methods work well for contact discontinuities and 

gave second order accuracy for the spatial and time derivative. For pressure waves, these 

provide a major improvement to the method of characteristics; however, it does not 
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exactly represent the contact discontinuity as the method of characteristics. Discretization 

errors are common at section changes. In first-order upwind schemes, the information is 

obtained from the physically relevant directions unlike the Lax-Wendroff schemes that 

use the whole environment for the calculation of new value of the variable. The upwind 

schemes have first order accuracy. The TVD schemes use a cell vertex formulation. The 

fluxes are calculated on the boundaries of the control volumes in this scheme. The flux 

difference is distributed to the nodes inside the control volume in an upwind way, so that 

the node intercepts the flux in a direction that is relevant to the physics of the problem. 

This scheme is second order accurate in space and first order accurate in time. The 

authors conclude that no other schemes are suitable for the unsteady flow analysis. The 

TVD scheme exhibits acceptable computational time and accuracy.  TVD property of 

flux corrected transport techniques is discussed by Gascon et al. [31]. 

Blair [13] uses a one-dimensional technique for the simulation of pressure wave 

motion in the intake and exhaust ducts of internal combustion engines. His model has the 

advantages of simplicity with acceptable accuracy. This method, called the GPB method, 

can simulate the fluid flow through a four-stroke engine with a user defined choice of 

fuel and other engine parameters like bore, stroke, air/fuel ratio, valve parameters and 

choice of inlet and exhaust pipe configuration. In this work, this method is adopted for 

the flow simulation. The inlet pressure and the piping configuration is user defined. From 

the standpoint of ease of application of the theory on a digital computer, this method has 

proven to be the motivating factor in this research. Kirkpatrick et al. [32] compares five 

methods namely the homentropic (isentropic) method of characteristics, the non-

homentropic method of characteristics, the two-step Lax-Wendroff method with flux 
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corrected transport, the Harten-Lax-Leer upstream difference method and the GPB 

method. This paper concludes that all these methods except homentropic method of 

characteristics are suitable for non-isentropic flow conditions. Blair et al. [33] discusses 

the experimental validation of the code for discontinuity of gas properties using carbon 

dioxide and air. The accuracy and the low execution time of the GPB modeling method 

are established through a series of experiments. Blair et al. [34] also present results for 

the experimental validation of the GPB modeling method for a pipe system containing 

area discontinuities. A sudden enlargement, sudden contraction, divergent taper, long and 

short megaphone and a convergent taper configuration are used for validation. Area ratios 

in the range of 2 to 18 are tested. The included angles for the taper configuration tested 

are in the range 2.9° - 28°. The capability of GPB method to accurately predict flow 

patterns where separation takes place – when the included angle is more than 10° is 

superior to other codes like Lax-Wendroff with flux corrected transport. 

The GPB modeling method is the preferred choice for many reasons. The 

modeling is easier compared to other methods, has faster computation time, and provides 

acceptable accuracy of the solution. 



CHAPTER III 

APPROACH AND UNDERLYING THEORY 

3.1 Theory behind the computational model 

The model proposed in this work is a one-dimensional one used by Blair [13], 

[35] for analysis of internal combustion engines. This model can simulate straight pipe 

geometry and a straight pipe with one sudden expansion and one sudden contraction. The 

theory behind the computational model is explained below. The numerical aspects will be 

covered in the next chapter. 

3.2 Governing equations 

 
The control surface for one-dimensional compressible flow with heat transfer in a 

duct is shown in figure 3.1. The governing equations [32] for this flow in differential 

form are 

 

 
 

 

 

 
Figure 3.1 Control surface for one-dimensional unsteady compressible flow [32]
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Where 

vC     =   specific heat at constant volume, KkgJ  

F      =   Cross sectional area, m  2

p  = Pressure, 2mN  

•

q  = Heat transfer rate per unit mass per unit time, skgJ  

t  = time, s  

T  = Temperature, K  

u  = particle velocity, sm  

x  = Distance, m  

ρ  = Density, 3mkg  
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These are the differential form of the equations and are solved in conventional 

computational fluid dynamics using finite difference, finite volume and other techniques. 

Several methods have been used to solve these equations [30] [32]. Some of them are 

method of characteristics - homentropic and non-homentropic (homentropic methods 

assume constant entropy and non-homentropic methods assume non-isentropic flow 

conditions); finite difference methods - Lax-Wendroff with flux corrected transport and 

Harten-Lax-Leer upstream difference technique. Modern methods include TVD cell 

vertex schemes. The method used in this work is the method of pressure wave 

propagation through finite spaces (GPB). This method uses the integral formulation of 

the governing equations. The flow is assumed quasi-steady. The governing equations in 

integral form for a control volume [36] are 
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Where 

dA   = infinitesimal area in a control surface,  2m

V   = velocity vector, sm  

F  = external force vector acting on inertial system of fluid particles,  N

u   = internal energy per unit mass, kgJ  

g   = acceleration due to gravity, 2sm  

z   = elevation,  m

h   = specific enthalpy, kgJ  

SQ
•

  = Heat transfer per unit time,  W  
 

SW
•

  = Work transfer per unit time, W  
 
 
Analysis of internal engine exhaust systems uses a quasi-steady approach and hence the 

time derivatives are set to zero. So the integral form of the governing equations reduce to 

 
Continuity 

==
•

VAm ρ  Constant                                   (3-7) 
 

Momentum 

                                         
2

111
2

2222211 VAVAApApFf ρρ −=−+−                                                                                     (3-8) 

 
 
First law of thermodynamics (Energy equation) 
 
 

systemsystemsystem W
c

hmdE
c

hmQ δδ +







+∆+=








+∆+

22

2
2

22

2
1

11                      (3-9) 

   23 



systemQδ   = heat transfer,  J

m    = mass, kg 

h    = specific enthalpy, kgJ  

c    = particle velocity, sm  

systemWδ   = Work transfer,  J

systemdE  = internal energy,  J

fF   = frictional force acting on the side walls of the control volume, N 

1A   = Cross-sectional area of pipe at section 1,  2m

2A   = Cross-sectional area of pipe at section 2,  2m

 

These equations are modified for the sudden expansion and sudden contraction 

cases. For the straight pipe, the continuity and energy equations are solved. The 

derivation of equations in the form used for solution is discussed in Appendix A. The 

theory of pressure wave motion and all the required theory are discussed in the rest of this 

chapter. The governing equations in the form used for the solution use the notation 

described in section 3.3. 
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3.3 Unsteady flow Analysis by pressure wave theory 

What follows is a brief summary of relevant concepts that are used in the 

computational model to analyze pressure wave motion in a duct. A detailed discussion 

can be found in [13]. 

 
3.3.1 Motion of pressure waves in a pipe 
 

Motion of pressure waves of small amplitude is familiar to us through the theories 

of acoustic wave motion (sound). Pressure waves are of two types-compression and 

expansion waves. The compression wave is shown in figure 3.2. An expansion wave is 

shown in figure 3.3. 

 
 

 

 

 

 

 
Figure 3.2 Compression wave [10] 

 
 
 
 

 

 

 

 

 
Figure 3.3 Expansion wave [10] 
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A compression wave increases the particle velocity and decreases the pressure in the 

direction of travel and an expansion wave decreases the particle velocity and increases 

the pressure in the direction of travel. 

Motion of pressure waves back and forth takes place continuously in the exhaust 

pipes of automobile engines. When two waves approach each other, they undergo a 

superposition process. This process is further explained in section 3.3.3. After this 

process the waves split into leftward and rightward moving waves. A pressure transducer 

kept in the plane of superposition measures the superposition wave pressure. Since this 

process takes place continuously, an analytical method needs to be defined to assess the 

unsteady pressure and velocity at specific locations in the duct. This theory is true for any 

duct that has pressure waves traveling continuously inside it and hence this theory is 

adapted for modeling the tubing for the pulsed blowing system. 

Some of the relevant parameters used to define and model the flow inside the 

transmission tubing is detailed below. 
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3.3.2 Definitions  
 
Pressure ratio (P) 

The pressure ratio “P” for any pressure wave is defined as the pressure p at any point of 

the wave under consideration divided by the undisturbed pressure (ambient) also called 

the reference pressure. 

0p
pP =∴              (3-10) 

Characteristic gas constant (R) 

This is the gas constant for the particular gas through which the wave propagates. For air 

the value of R is 287 J/kgK. 

Specific heat at constant pressure and volume 

These are denoted by C  and . p vC

Ratio of specific heats (γ ) 

This is the ratio of specific heat at constant pressure to that at constant volume. This is 

denoted by γ .  

γ  = 
v

p
C

C             (3-11) 
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Functions of ratio of specific heats  

For convenience, various functions of specific heats are defined below, as in Blair [13]. 

The subscripts are obtained from values of these ratios for air. For example, for air, 

γ  = 1.4,  = 3 3G

1
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Acoustic velocity (a0) 

Acoustic velocity is the velocity of sound in air.  

0
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Pressure amplitude ratio (X) 

This is defined as  
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Gas particle velocity (c) 

This is the velocity of a particle of the fluid medium at a particular point on the wave. 

The gas particle velocity is the speed at which the particle is moving in response to the 

pressure wave driving it. It is a function of the pressure amplitude ratio of the driving 

wave. It represents the characteristic velocity in a pipe system and is the parameter 

measured by a transducer located in the piping system. 
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Propagation velocity (α ) 

When an acoustic wave travels under conditions where pressure is ‘p’ and the 

temperature is ‘T,’ the wave travels at acoustic velocity on top of gas particles that are 

moving at particle velocity c. The absolute propagation velocity of any point on a wave is 

the sum of the local acoustic velocity and the gas particle velocity. 

ca +=∴ α             (3-23) 

where ‘ ’ is the local acoustic velocity at pressure ‘a p ’ and temperature ‘T ’. 

From the above definition, we get the following expression for α . 
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Density ( ρ ) 

The density at any point on a wave of pressure p  can be written as  

5
0

GXρρ =             (3-25) 

This results from the isentropic theory of a perfect gas 
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3.3.3 Superposition of Pressure Waves in a pipe  
 

Figure 3.4 shows two pressure waves superposing in a duct. The state variables 

can be calculated for this superposed condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.4  Superposition of pressure waves [13] 

Superposition velocity 

The two waves in the duct superpose and create a superposition wave pressure . 

Assuming the rightward direction as positive and leftward as negative; the particle and 

propagation velocities on the wave front BC as and 

sp

1c 1α . 

They can be defined with respect to earlier definitions as  

)(;)1( 516011051 GXGaXaGc −=−= α         (3-27) 
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For wave top FG, similarly  

)(;)1( 526022052 GXGaXaGc −−=−−= α        (3-28) 

Now the superposition velocities are found by summing up the particle velocity of F with 

respect to BE with . 1c

Therefore the expressions for pressure ratio and particle velocity at superposition become 

121 −+= XXX s             (3-29) 

and  

)()12()12( 2105205105 XXaGXXaGXXaGc sss −=−−−=−−=     (3-30) 

Similarly the acoustic velocity during superposition is  

ss Xaa 0=             (3-31) 

 

Therefore the sum of local acoustic and particle velocities give the superposition 

propagation velocity. 

The expression for the same is  

)1( 24160 −−=+= XGXGaca ssrightwardsα         (3-32) 

)1( 14260 −−−=+−= XGXGaca ssleftwardsα        (3-33) 
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Mass flow rate 

The mass flow rate can be obtained from the relation 

Mass flow rate = density x area x velocity = ss Acρ        (3-34) 

and hence 

)()1( 2121005
5 XXXXAaGm G −−+=

•

ρ         (3-35) 

 

Mach number 

The superposition Mach number can be expressed as  
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s
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3.3.4 Friction Pressure loss and heating during wave propagation 

Figure 3.5 shows a section of the mesh where the two oppositely moving waves 

undergo a superposition process along with friction and heat transfer.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5  Friction loss and heat transfer [13] 
 

The particle flow in the pipe produces two effects:  

(1) Pressure loss to the wave in a direction opposite to particle motion. 

(2) Work expended acts as internal heating.  

Pressure loss 

The shear stress at the wall can be expressed as  

2

2
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f
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C
ρ

τ =             (3-37) 
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If flow is turbulent (as in most cases)  

25.0Re
0791.0

=fC  for  where 4000Re ≥ Re s s

Ts

dcρ
µ

=  [37]      (3-38) 

Coefficient of viscosity 

      (3-39) 6 8 12 27.457 10 4.1547 10 7.4793 10 /T Tµ − − −= × + × − × kg ms

The variation of coefficient of viscosity of air with temperature in the range 0 to 2000 K 

is shown in Figure 3.6, as given by Blair [13]. 

Temperature (K)

0 500 1000 1500 2000

co
ef

fic
ie

nt
 o

f v
is

co
si

ty
 (k

g/
m

s)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

coefficient of viscosity

 
 
 
 

Figure 3.6  Variation of coefficient of viscosity of air with temperature [13] 
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For laminar flow, assuming 01.0=fC              [37] 

The pressure loss is given by the equation  

d
dtcC

dp ssf
f

32 ρ
=             (3-40) 

where is the time step of travel of the pressure wave. dt

The new superposition pressure of the wave after time step will be dt

fssf dppp ±=            (3-41) 

The pressure ratios for the ongoing pressure waves can be written as 
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The pressures then are 
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The internal heat generated due to the shear forces can be expressed as  

2
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External heat transfer  

This section covers any external heat transfer to the pipe across the pipe wall. Convection 

is the main mode of heat transfer. By Reynolds analogy between friction and heat transfer, 

the Nusselt number can be defined. 

2
RefCNu =             (3-45) 

By definition of Nusselt number,  
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The correlation of with temperature for the temperature range of 300-2000 K [13] can 

be expressed as  

kC

mKWTTCk
2853 102491.1103814.7101944.6 −−− ×−×+×=      (3-47) 

Variation of thermal conductivity of air with temperature in the range 0 to 2000 K is 

shown in Figure 3.7, as given by Blair [13]. 
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Figure 3.7  Variation of thermal conductivity of air with temperature [13] 

 

Therefore, the external heat transfer can be expressed as  

( dtTTdxdCQ swhh −= )πδ           (3-48) 

The expression for total heat transfer is    hffh QQQ δδδ +=       (3-49) 
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3.3.5 Reflection of pressure waves 
 

Reflection of pressure waves occurs as a superposition process of oppositely 

moving waves. Reflections occur at boundaries or interface where there is a discontinuity 

in gas properties, change in area, etc. This reflection causes a pressure wave to propagate 

in a direction opposite to the incident wave. Some of the cases where it can occur are at 

the outflow boundary from a cylinder, open end of a pipe, a sudden expansion, sudden 

contraction etc. These cases are relevant to our analysis; so are discussed in detail here. 

The objective of this analysis is to evaluate the parameters associated with the reflected 

and transmitted waves after the reflection process. This theory is incorporated into the 

simulation later. 

 
3.3.5.1 Reflection at outflow from a cylinder 

 

The thermodynamic conditions and properties at the outflow boundary of 

a cylinder are shown schematically below in Figure 3.8. The properties under 

consideration are pressure, temperature, density and particle velocity.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Outflow from a cylinder [13] 
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Figure 3.9 Temperature-Entropy characteristics for outflow from a cylinder [13] 
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Figure 3.9 shows the temperature-entropy characteristics for sonic and subsonic outflow 

conditions. Subsonic outflow is non-isentropic and the sonic case is isentropic from the 

throat to the superposition station. The equations to be solved [13] are the continuity, 

momentum and the energy equations. These equations are presented in differential and 

integral form in section 3.2. The governing equations solved are summarized below. 

Their derivation can be found in Appendix A. 

 
Continuity 
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= =  the above equation can be modified to accommodate known 

variables 
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Energy equation/ First law of thermodynamics 
 
 
For the flow from cylinder to superposition station 2 (1-2)  
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For the flow from cylinder to throat (1-t) 
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Momentum 

( ) ( ) ( ) ( )7 57
0 2 2 02 2 2 5 02 2 2 5 02 2 21 1G GG

t i r i r i r t i rp X X X X X G a X X c G a X Xρ   − + − + + − × − × − − =      0

            

  (3-54) 

 
The solution is done by Newton-Raphson method. 
 
 
The unknowns are 2rX , tX , and . 02a tc
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3.3.5.2 Reflection at discontinuities in gas properties 
 

Consider the general case of common gas composition i.e. the gas (air) 

composition is assumed invariant. The discontinuity is of infinitesimal thickness that the 

effect of friction is ignored. The notations used are defined in figure 3.10. 

 

 

 

 

 

 
 
 
 
 

Figure 3.10  Wave reflections at a property discontinuity [13] 
 

Applying the continuity equation across the discontinuity 

bsideaside mm
••

=            (3-55) 

The momentum equation gives 

( ) bsidesbsideasidesasidebsidesasides cmcmppA
••

−=−         (3-56) 

A is the cross-sectional area of the pipe. 

Combining the above two equations 

bsidesasides pp =            (3-57) 
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bsidesasides cc =            (3-58) 

Therefore the governing equations are 

( ) ( 21052105 XXaGXXaG dbbdaa )−=−                    (3-59) 

which reduces to  
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The solution for this case is  
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1 1 2d dX X X X= + −            (3-63) 

The reflected wave pressures are 
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3.3.5.3 Wave reflection at open end of a pipe  

The out flow at the open end is shown in figure 3.11. In the plane of 

superposition at the exit, the pressure is atmospheric. 

 

 

 

 
Figure 3.11  Wave reflection at open end of a pipe [13] 

 

Here the superposition pressure is the atmospheric pressure. 
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( 7
0 2 G

ir Xpp −= )            (3-67) 

( ) ( ) iris cXaGXaGc 211 0505 =−−−=         (3-68) 
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3.3.5.4 Wave reflection at sudden area changes 
 

Consider the sudden area changes in a pipe. The two possibilities are 

sudden expansion and sudden contraction. The summary of notations can be seen in 

figure 3.12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.12 Reflections at sudden area changes [13] 
 
 

The temperature-entropy characteristics and particle flow patterns can be seen in figures 

3.13 and 3.14. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13 Temperature-Entropy characteristics [13] 

   46 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14  Particle flow [13] 
 
 

Sudden expansion 

The equations to be solved here are the continuity, momentum and the energy equations. 

The derivation of the governing equations in this form can be found in Appendix A. 

Continuity 

( ) ( ) ( ) (5 5
01 1 1 1 5 01 1 1 02 2 2 2 5 02 2 21 1G G

i r i r i r i rX X AG a X X X X A G a X Xρ ρ+ − − + + − − =) 0  

  (3-69) 

Momentum 

( ) ( )

( ) ( ) ( ) ( )

7 7
0 2 1 1 2 2

5
01 1 1 1 5 01 1 1 5 01 1 1 5 02 2 2

1 1

1 0

G G
i r i r

G
i r i r i r i r

p A X X X X

X X AG a X X G a X X G a X Xρ

 + − − + − + 
   + − − × − + − =  

 

  (3-70) 

   47 



Energy (first law of Thermodynamics) 

( )( ) ( ) ( )( ) ( )2 22 22 2
5 01 1 1 5 01 1 1 5 02 2 2 5 02 2 21 1i r i r i r i rG a X X G a X X G a X X G a X X  − + + − − − + + −    

0 =
 

  (3-71) 

The unknowns are ,  and . 1rX 2rX 02a

These equations are solved by a Newton-Raphson and Gauss elimination method. 

Benson’s Approach for initial guesses [28] 

The assumption for Benson’s guess is that the superposition pressure at the plane of 

junction is the same in both pipes at the instant of superposition. This assumes an 

isentropic process. Nevertheless, this has proved to be a good initial guess especially 

where the area ratios are in the ratio 

1 6
6 rA< <              (3-72) 

where 2

1
r
AA
A

=            (3-73) 

 

This gives 

( ) 1 2
1

1 2
1

r i i
r

r

A X X A
X

A
− +

=
+

r           (3-74) 

( )1 2
2

2 1
1

i i r
r

r

X X A
X

A
− −

=
+

          (3-75) 
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The superposition Mach number has to be evaluated at each time step and should not be 

allowed to exceed the value of unity. 

( )5 01 1 11
1

1 1 1 1
i rs

s
s i r

G a X XcM
a X X

−
= =

+ −
    (3-76) 

1 11 1s sif M M∴ ≥ =  

Hence ( )1 1 5 1 4 1
1

1 5 6

1s i s i
r

s

M X G M G XX
M G G

+ − +
= =

+
    (3-77) 

This reduces one variable in the solution during the particular iteration. 
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Sudden contraction 

Observing the particle flow profile in figure 3.14, the contracting flow is seen to flow 

smoothly from the larger to the smaller cross-section. The streamlines do not give rise to 

flow separation and so the flow is considered isentropic. Since there is no entropy gain, 

one of the unknowns – the acoustic velocity disappears from the equation and hence the 

number of unknowns reduces to two. The unknowns are and . The solution of two 

unknowns requires only two equations. So the momentum equation is ignored. 

1rX 2rX

Continuity 

( ) ( ) ( ) (5 5
1 1 1 1 1 2 2 2 2 21 1G G
i r i r i r i rX X A X X X X A X X+ − − + + − − =) 0      (3-78) 

Energy (first law of Thermodynamics) 

( )( ) ( ) ( )( ) ( )2 22 22 2
5 01 1 1 5 01 1 1 5 02 2 2 5 02 2 21 1i r i r i r i rG a X X G a X X G a X X G a X X  − + + − − − + + −    

0 =

2 0 =

 

  (3-79) 

Here              (3-80) 01 02a a=

The unknowns are and . 1rX 2rX

Therefore, the above equation reduces to 

( ) ( ) ( ) ( )2 2 2
5 1 1 1 1 5 2 2 2 21 1i r i r i r i rG X X X X G X X X X  − + + − − − + + −      (3-81) 

These equations are solved by a Newton-Raphson and Gauss elimination method. 

Initial guesses are done using a Benson’s simple solution [28] approach. 
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The superposition Mach number has to be evaluated at each time step and cannot be 

allowed to exceed the value of unity. 

( ) ( )5 02 2 2 5 02 2 22
2

2 02 2 2 2 1
i r i rs

s
s s i r

G a X X G a X XcM
a a X X X

− −
= = =

+ −
        (3-82) 

2 21 1s sif M M∴ ≥ =  

Hence ( )2 2 5 2 4 2
2

2 5 6

1s i s i
r

s

M X G M G XX
M G G

+ − +
= =

+
       (3-83) 

This reduces one variable in the solution during the particular iteration. 
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3.4 The Computational Model 

3.4.1 Assumptions and limitations of the model 

Assumptions 

(1) The flow is assumed to be one-dimensional i.e. the flow properties vary in only 

one direction - in the direction of flow. 

(2) The rate of change of the cross-sectional area along the duct axis is small. 

Wherever a sudden change in cross-sectional area is found, the governing 

equations are solved using relevant numerical techniques. The governing 

equations are solved for a sudden expansion and contraction as discussed in 

section 3.3.5.4. 

(3) The radius of curvature of the duct axis is very large compared to the diameter 

of the duct. 

(4) Velocity and temperature profiles across a cross-section remain unchanged from 

one section to the other along the duct. 

(5) Uniform properties exist across any cross section. 

(6) The average pressure amplitude ratio throughout the mesh is considered the 

mean of the superposition pressures at the ends of the mesh. This ratio is used 

for calculation of particle velocity, density and all other flow parameters for the 

mesh. The inherent assumption is that the superposition conditions are 

representative of the state conditions in the mesh. The average of the 

superposition conditions at the left and right boundaries of the mesh is the state 

condition that prevails throughout the mesh. 
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(7) The wall temperature of the tube is assumed constant. The skin temperature of the 

pipe wall is assumed to be at ambient temperature. This is justified in a quasi- 

steady analysis where the wall loses heat to the external surroundings thereby 

remaining at constant temperature. This considerably simplifies the analysis at 

each time step.  

Limitations 

(1) The successful working of the simulation is dependent upon the boundary 

conditions (as in any CFD analysis of nozzle non-isentropic flow) and the mesh 

sizing. In the computational fluid dynamic analysis of compressible nozzle 

flows, the pressure ratio (p/p0) at the inlet and exit, mesh size and the geometry 

of the nozzle (the function used to describe the nozzle shape) affect the outcome 

of the solution [29]. 

(2) The expansion and contraction ratios need to be limited to maximum value of 

1/6 to 6. This condition is required because the initial assumption of unknown 

parameters for analysis of sudden expansion and contraction using the criterion 

of Benson [28] are based on these limits of area ratios. This criterion is 

discussed in section 3.3.5.4. 

(3) Testing of the code is done by comparison to test cases found in the literature 

[13], [34]. These test cases are analyzed and results discussed in the chapter on 

results and discussion. Other applications of the technique are experimentally 

validated as reported by Kirkpatrick et al. [32], Blair et al. [33] [34]. The mesh 

size independence criterion is also discussed. 
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Now that all the underlying theory has been explained, the actual computational 

model and numerical solution methodology may be discussed. This is the purpose of the 

next chapter. Organization of the computer program, explanation of the model and the 

simulation procedure will also be discussed in chapter 4.  



CHAPTER IV 

NUMERICAL SOLUTION TO THE GOVERNING EQUATIONS 

4.1 The Computational Model 

4.1.1 Simulation Procedure 

The Simulation procedure consists of the following steps 

(1) Setting up the mesh 

(2) The selection of a time step ‘dt’ for the simulation. 

(3) Analysis of wave transmission through mesh space J. 

(4) Mass and energy transport through mesh J. 

(5) Effect of friction and area change. 

(6) Effect of discontinuity in gas properties. 

(7) Effect of geometrical discontinuities.  

 

4.1.2 Steps in simulation  

The steps involved in the procedure for the simulation are explained below. 

4.1.2.1 Setting up the mesh and meshing details 

A typical meshing structure is depicted in figure 4.1. The pressure amplitude 

ratios at the left end of the mesh is denoted by the subscript ‘R’ and ‘L’ and at the right 

end by ‘R1’ and ‘L1’. These ratios are modified during a particular time step by friction, 
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heat transfer, and reflections due to area change and difference in gas properties. All 

other parameters are derived from the representative pressure amplitude ratio for the 

mesh. 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Meshing details for duct [13] 
 

Assumption 

The average pressure throughout the mesh is considered to be the mean of the 

superposition pressures at the ends of the mesh. Therefore the pressure amplitude ratio 

can be written as  

( ) ( )1 11
2

R L R L
J

X X X X
X

+ − + + −
=

1
           (4-1) 
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The average pressure, density, temperature, acoustic velocity and mass in the 

mesh can be found from the following formulae. These equations follow from the 

isentropic relations for a perfect gas. 
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2
0J JT T X=               (4-7) 
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−
γ
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            (4-8) 

0J Ja a X=               (4-9) 

J J Jm Vρ=             (4-10) 

where 

2

4JV d Lπ
=             (4-11) 
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The main task of the simulation is to find the values of RX , LX , 1RX , 1LX  at each 

time step for all meshes. This depends on the unsteady flow analysis, wave reflections 

and the thermodynamics of gas flow in each mesh during the time step ‘dt’. 

All other parameters can be expressed in terms of the pressure amplitude ratio JX . 
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4.1.2.2 Selection of time step 

The time step dt is calculated by sweeping across each mesh space and 

finding the fastest propagation velocity in the system. It is assumed that there are linear 

variations of pressure and velocity within the mesh length L. 

1 1sL sL sR

L L Ldt or dt or dt or dt
sR

L
α α α

= = =
α

=       (4-12) 

 
Sweeping all meshes 

min

1

0.99
J total

imum
s fastest in J J

Ldt
α

=

=

= ×          (4-13) 

 

The factor 0.99 is an additional arithmetic insurance to avoid violating numerical 

stability thus satisfying the Courant, Friedrich and Lewy stability criterion [38] that 

ensures that all subsequent iterative procedures for all mesh spaces are by interpolation 

and not by extrapolation. 
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4.1.2.3 Wave transmission during time step  

Figure 4.2 summarizes the wave propagation during time step dt. For the 

time step dt calculated from the previous section, it is obvious that not all waves will 

traverse the mesh length L in the time dt. This section attempts to add a correction factor 

to accurately predict the pressure amplitude ratios at either end of the mesh after time dt. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Propagation of pressure waves in Mesh J [13] 
 
 

The pressure amplitude ratio calculation is solved by employing the continuity 

equation. However the method of solution assumes a linear interpolation approach. The 

assumption is that between any two meshes there is a linear variation of wave pressure, 

wave superposition pressure and superposition propagation velocity.  

Consider the mesh of length L as shown in figure 4.2. The calculation of time step 

in section 4.1.4.1 was based on the fastest propagation velocity. Therefore, for all other 

meshes the wave is not fast enough to reach the end of the mesh in the duration of the 
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time step. Consider such a mesh. A wave traveling towards the right having a pressure 

amplitude ratio of  will just reach the right end of the mesh in time dt. This value of 

 is linearly related to its physical position in the mesh and is a linear function of  

and . This is the value of X that will be able to reach the right end of the mesh. 

Location of this wave at start of time step is p. Similarly, for a leftward moving wave, the 

location is q and the pressure amplitude ratio is .  is a linear function of  

and . At the end of the time step values of  

pX

pX RX

LX

1RX

1LX

qX qX

pX  and qX will represent the values of the 

rightward and leftward pressure wave amplitude ratios at end of time step dt. At the start 

of the time step the values of LX , 1LX , RX  and 1RX  are required to be known. 

The expressions for pX  and qX  are listed below. Derivation of these equations 

can be found in Appendix A.  

( )4

1
1

L L
p

R L

D F F CX
G F F
+ + +

=
−

            (4-14) 

( )4

1
1

R R
q

R L

C F F DX
G F F
+ + +

=
−

          (4-15) 

6

4

1

R

where

G
AF

G

+
=

              (4-16) 

6

4

1

L

G
BF

G

+
=             (4-17) 
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( 1RA E X X= − )R

)

           (4-18) 

( 1L LB E X X= −            (4-19) 

1RXC
A

=             (4-20) 

LXD
B

=             (4-21) 

0a dtE
L

=             (4-22) 

The new values of 1RX  and LX  are given by 

( )1 {R new p }X X friction effects area changeeffects= + ± ±       (4-23) 

( ){Lnew q }X X friction effects area changeeffects= + ± ±       (4-24) 

The mean of superposition conditions at either end of the mesh are assumed to be 

characteristic of the mesh space. These values are the parameters measured by a 

transducer and constitute the representative variables in the mesh space. These 

superposition values are for evaluating the properties of the gas in the mesh in the time 

step. These values can be found from the following formulae 
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Pressure amplitude ratio 1s p qX X X= + −         (4-25) 

Pressure   7
0

G
s sp p X=         (4-26) 

Density   5
0

G
s sXρ ρ=          (4-27) 

Temperature   2
0s sT T X=         (4-28) 

Particle velocity  ( )5 0s p qc G a X X= −         (4-29) 

 

Singularities during simulation 

(1) If  1R RX X=  then 
 

1p RX X=             (4-30) 

4

6

1
1

p
q

D G X
X

G
B

+ +
=

+
           (4-31) 

The above condition is a possibility during a start up situation for all meshes 

except the first mesh.  

(2) If  1L LX X=  then 
 

1q LX X=             (4-32) 

4

6

1
1

q
q

C G X
X

G
A

+ +
=

+
           (4-33) 

The above condition is a possibility during a start up situation for all meshes.  
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(3) If 1R RX X=  and 1L LX X=  then 
 

1q LX X=            (4-34) 

1p RX X=             (4-35) 

The above condition is true during a start up situation for  all meshes except the 

first mesh.  

4.1.2.4 Mass and Energy transport along the duct during a time step 

A rough guideline for the mesh size is in the range of 10-25 mm, which by 

calculation [13] is found to be feasible. This value is deduced from the assumptions used 

in design of internal combustion engines. The assumption is that the time step dt should 

be equivalent to a crank angle of 1 - 2°.  

N
d

N
dL

6
100060

360
1000 θαθα ×

=×××=        (4-36) 

For an engine running at 3000 – 5000 rpm and using γ  = 1.3 and R  = 300 kgKJ  this 

turns out to be in the range 10 – 25 mm. For our research problem however this is a rough 

guideline. For large geometries involving long lengths, larger mesh sizes may be used. 

The test case 2 comparisons in chapter 5 use a mesh length of 35 - 50 mm.  The analysis 

of mass and energy transport through the duct employs a first law of thermodynamics 

analysis. Here the heat transfer occurring in the mesh to the gas by means of friction 

heating will be considered. 

In our analysis only friction heating is present as the air bleed is 

compressed air from the engine at reference temperatureT . There are four ‘events’ likely 0
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to occur in the mesh during the time step dt. They are summarized in figure 4.3 and 

figure 4.4. 

 

 

 

 
 

 

 

 
 

 

 
Figure 4.3 Mass and energy transport at mesh J during time step dt [13] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Heat and mass transfer across Mesh J [13] 
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The parameters that are important in our analysis for each case are summarized 

below. The subscript ‘a’ refers to the value after time step and ‘b’ for the value before 

time step. The left side of the mesh is referred to as the ‘in’ side and the right end as the 

‘out’ side. 

 
Case 1 

Pressure          (4-37) 1J in J R J LX X X= + −

Particle velocity ( )5 0J in J J J R J Lc G a X X= −        (4-38) 

Density          (4-39) 5
0

J G
J in J J inXρ ρ=

Specific Enthalpy 
2

2
J in

J in J P b J
cdh C T= +        (4-40) 

Mass flow increment J in J in J J indm A c dtρ=         (4-41) 

Enthalpy increment  J in J in J indH dh dm=         (4-42) 

Air flow increment J in J J ind ∏ = ∏ dm         (4-43) 

Case 2 
 
Pressure          (4-44) 1J in J R J LX X X= + −
 
Particle velocity ( )1 5 1 0J in J J J R J Lc G a X X− −= −       (4-45) 
 
Density          (4-46) 1 5

1 0
J G

J in J J inXρ ρ −
−=

 

Specific Enthalpy 
2

1 1 2
J in

J in J P b J
cdh C T− −= +        (4-47) 

 
Mass flow increment J in J in J J indm A c dtρ=         (4-48) 
 
Enthalpy increment  J in J in J indH dh dm=         (4-49) 
 
Air flow increment 1J in J J ind −∏ = ∏ dm          (4-50) 
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Case 3 
 
Pressure  1 1 1J out J R J LX X X= + −        (4-51) 
 
Particle velocity ( )1 5 1 0 1 1J out J J J R J Lc G a X X+ += −        (4-52) 
 
Density  1 5

1 0
J G

J out J J outXρ ρ +
+=          (4-53) 

 

Specific Enthalpy 
2

1 1 2
J out

J out J P b J
cdh C T+ += +         (4-54) 

 
Mass flow increment J out J out J J outdm A c dtρ=         (4-55) 
 
Enthalpy increment  J out J out J outdH dh dm=         (4-56) 
 
Air flow increment 1J out J J outd +∏ = ∏ dm         (4-57) 
 
 
 
Case 4 
 
Pressure  1 1 1J out J R J LX X X= + −         (4-58) 
 
Particle velocity ( )5 0 1 1J out J J J R J Lc G a X X= −        (4-59) 
 
Density  5

0
J G

J out J J outXρ ρ=          (4-60) 
 

Specific Enthalpy 
2

2
J out

J out J P b J
cdh C T= +         (4-61) 

 
Mass flow increment J out J out J J outdm A c dtρ=         (4-62) 
 
Enthalpy increment  J out J out J outdH dh dm=         (4-63) 
 
Air flow increment J out J J outd ∏ = ∏ dm          (4-64) 
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For the meshes at the end of the pipe, the required information for the above 

equations is deduced from the boundary conditions of the flow, which have been applied 

at the right or left end of a mesh space. For the left end the pressure boundary condition is 

the applied pulse peak pressure and for the right end it is the ambient pressure. As far as 

the temperatures are concerned, the left end temperature is calculated from the pressure 

ratio and for the right end it is once again the ambient condition.  

The thermodynamics of the mesh space during the time step involves applying the 

continuity and energy equations. 

 
 
Continuity 
 
 

The new mass in the mesh space J am  after the time step can be derived from the 

continuity equation 

J a J b J in J outm m dm dm= + −            (4-65) 

Energy equation 

The first law of thermodynamics can be applied to the mesh space 

Heat transfer + energy in = change of system state + energy out + work done 

( )int f h J in J J out J JJ
dQ dQ dQ dH dU dH P dV+ + + = + +        (4-66) 

where 

3

2
f sJ s s

f

C A c dt
dQ

ρ
=            (4-67) 

( )h h sJ w sdQ C A T T dt= −            (4-68) 

and sJA dLπ=             (4-69) 
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The work term J JP dV  is zero. The internal generation term intQδ is known. This term 

arises due to the use of a catalyst used that can cause exothermic reactions releasing heat 

energy in the exhaust systems of engines. For our case there is no heat generation inside 

the pipe system. Therefore, this term is zero. 

The internal energy term can be expressed as  

2 2

2 2
a J b J

J a J a J b J b J

a J b

cdU m u m u
    

= + − +    
     J

c 



       (4-70) 

The system particle velocity is assumed to be the mean of that at either end of the mesh. 

2 21
2 2 2

J in J out
a J

c cc
 

= +
 

            (4-71) 

The energy equation becomes 

( ) ( 21
2 )2

J J v a J a J b J b J a J a J b J b JdU C m T m T m c m c= − + −        (4-72) 

where J vC  is the specific heat at constant volume of the gas in mesh J. 

The above equation can be solved for the system temperature  after the time step. a JT

The new reference temperature  can be found for the mesh space as 0aT

0 2
a J

a
a J

TT
X

=              (4-73) 

The other reference conditions after a time step are 

0 0a a J a J aa Rγ= T   0
0

0
a

a J a

p
R T

ρ =         (4-74) 
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4.1.2.5 Reflection of waves at discontinuities after a time step  

In this section only the sudden expansion and contraction conditions will 

be considered as only it is relevant to the configuration of the system as discussed later in 

the results section. See figure 4.5 for the mesh set up. The equations to be solved and the 

solution methodology have already been discussed in the “Wave reflection at sudden area 

changes” section. These have to be performed after the solution of the pressure amplitude 

ratios have been obtained at either side of the discontinuity ( 1pX  and 2qX  in figure 4.5) 

for the time step. 

 

 

 

 

 

 

 

 
 
 

 

 
 
 
 

Figure 4.5 Two adjacent meshes in a restricted pipe [13] 
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4.1.2.6 Reflection of waves at ends of the pipe after a time step 

At the end of the time step, for the end meshes the pressure amplitude 

ratios are calculated after calculating the reflections at the ends. This depends on the 

connection at the ends. In the model the left end is connected to a cylinder or a duct and 

the right end is connected to the atmosphere. Therefore at the left end the theory for the 

outflow from a cylinder applies and at the right end the theory for the open end to the 

atmosphere applies.  

At the end of each time step the modeling method must calculate the 

values of 1 RX  and end 1LX  from the above calculation, where the subscripts ‘1’ and ‘end’ 

refer to the left end mesh and right end mesh respectively. 
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4.2 A Computer program for performing the simulation 

 

Now that the theory has been presented, the next step is to look at the 

development of a  program to execute the theory on the digital computer. This is what is 

discussed in this section.  

Evaluation of the theory for checking the suitability of the application is the first 

step in the development process. A commercially available software – Virtual four stroke 

SAE edition® software used for simulation of four stroke engines was employed for this 

application. The objective was to evaluate the effectiveness of this simulation for 

application in prediction of system dynamic parameters. The results and configuration 

modeled is described in the results and discussion chapter.  

 

4.2.1 Flow chart for Simulation 

An algorithm is developed and a flow chart for proceeding to the coding is 

shown in figure 4.6. The program statement flow can be seen from the flow chart. This 

helps in defining the structure and constitution of the program. The program is written in 

modular fashion involving several subroutines. This helps in making testing of the 

program easier. Details of the program and explanation of the subroutines is described in 

the next section. 
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CONTINUED FROM 
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CONTINUED FROM 
PREVIOUS PAGE

IS TO 
NEGATIVE

ERROR 
MESSAGE BOX
“TO NEGATIVE”

YES

GO TO END OF 
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Figure 4.6 Flow chart for simulation 



4.2.2 Development of flow simulation code  

The program consists of several subroutines. The full listing of the code can 

be found in Appendix B. A brief explanation follows. The subroutines are 

(1) input_read 

(2) simulate 

(3) mesher 

(4) pulse_generator 

(5) supersonic_check 

(6) case_selector_1_2 

(7) case_selector_3_4 

(8) sudden_expansion 

(9) sudden_contraction 

(10) gauss_expn 

(11) pivot_expn 

(12) par_expn 

(13) fun_expn 

(14) der_expn 

(15) gauss_contrn 

(16) pivot_contrn 

(17) par_contrn 

(18) fun_contrn 

(19) der_contrn 

(20) clearcells 
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input_read 

 This subroutine reads all input provided by the user like inlet pressure, gas 

constant, wall temperature of pipe etc. These values are stored in variables for further 

processing by other subroutines. This subroutine also initializes several variables like 

reference pressure and temperature, specific heats etc. The functions of gamma are also 

evaluated here. 

 

simulate 

 This routine is the heart of the simulation and is the driver routine. The whole 

simulation procedure is done here. The read routine is first called. Then the pulse 

generator is called which assigns the inlet boundary condition according to the duty 

cycle. Calculation of time step follows and then the first law of thermodynamics analysis 

is done. In the first law section the following subroutines are called: supersonic_check, 

case_selector_1_2 and case_selector_3_4. The descriptions of these routines follow later. 

After the first law calculations are done, the new reference temperature is evaluated and 

the wave transmission is redone to give the final pressure ratios at the end of the 

particular time step. The sudden expansion or sudden contraction routines are called if the 

model contains these. 

 

mesher 

 This routine creates the mesh structure from the given inputs of segment lengths. 

Here the objective is to get a uniform mesh length through the pipe or keep the mesh 
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length values as equal as possible while maintaining the general-purpose nature of the 

routine. 

pulse_generator 

This sub routine defines the inlet boundary condition depending on the application time 

of the pulse (Tp) calculated from the duty cycle and the frequency. If the aggregate time 

of simulation exceeds the Tp  value then the inlet pressure ratio is set to 1. Otherwise it is 

retained at the value of Xinlet. 

supersonic_check 

This routine calculates the particle Mach number and checks for supersonic 

condition. If found to be supersonic, it modifies the opposite moving pressure wave 

amplitudes for a shock condition and outputs the new amplitudes of pressure ratios. 

 

case_selector_1_2 

 This subroutine selects the case of inflow or outflow at the left boundary of all 

meshes depending on the magnitude of difference in left and right pressure ratios. 

 

case_selector_3_4 

 This subroutine selects the case of inflow or outflow at the right boundary of all 

meshes depending on the magnitude of difference in left and right pressure ratios. 

 

sudden_expansion 

This subroutine solves the non-isentropic sudden expansion problem and outputs the 

reflected pressure ratios and also the acoustic velocity of the first mesh at the expansion. 
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This is achieved by solving the continuity, momentum and the first law equations. A 

Newton-Raphson methodology is used to solve the equations. 

sudden_contraction 

 This subroutine solves the isentropic sudden contraction problem and outputs the 

reflected pressure ratios. This is achieved by solving the continuity, momentum and the 

first law equations. A Newton-Raphson methodology is used to solve the equations. 

 

gauss_expn, pivot_expn, par_expn, fun_expn, der_expn 

 These routines are used in the Newton-Raphson solver used in the sudden 

expansion routine. These perform the Gaussian elimination, pivot checking, partial 

differential evaluation, function evaluation and derivative evaluation respectively. 

 

gauss_contrn, pivot_contrn, par_contrn, fun_contrn, der_contrn 

 These routines are used in the Newton-Raphson solver used in the sudden 

contraction routine. These perform the Gaussian elimination, pivot checking, partial 

differential evaluation, function evaluation and derivative evaluation respectively. 

 

clearcells 

 This routine does the task of clearing the output data. This subroutine makes it 

easy for the user to delete all output before running a new simulation case. The user can 

click on “clear cells” button to delete all output data. 
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4.2.3 Working of the program 

The simulate subroutine acts as the driver routine. The input read routine is 

first called to read in all input. Then the mesher routine is called to create the mesh. The 

boundary pressure ratios for each mesh are defined. Variable initializations are done here. 

At the start of the time loop, the pulse generator routine is called which assigns the pulse 

to the XR(1) variable according to the aggregate time value (aggtime). The time step 

value “dt” is evaluated next. 

The simulation proceeds to the first law of thermodynamics evaluation 

where the case selector routines are called to decide on outflow or inflow condition at 

each mesh boundary. Every time a particle velocity is evaluated, a supersonic check is 

done using the supersonic_check routine. The thermal conductivity, viscosity coefficient, 

flow Reynolds number and heat transfer are evaluated. The new reference temperature is 

obtained at the end of first law evaluation. The wave transmission calculations are redone 

to calculate the modified pressure ratios at the end of the time step. The sudden expansion 

or sudden contraction routines are called at the appropriate meshes if needed. At the end 

of the time step, the flow parameters are evaluated. The simulation then proceeds to the 

next time step. Once the aggregate time equals the total time, the time loop exits and the 

program ends. 



CHAPTER V 

RESULTS AND DISCUSSION 

5.1 Overview 

The objective of this chapter is to discuss the results from the simulation. Results 

from a test case employed to determine the feasibility of the code for the intended 

problem are presented. This involves simulation using an academic version of a 

commercial code for design and simulation of four stroke engines. This is called the 

Virtual 4 Stroke® software. This software was developed by Dr. G.P.Blair at the Queens 

University of Belfast and marketed by SAE (Society of Automotive Engineers, PA). 

After reviewing the results from this simulation, the actual flow simulation code was 

written adapting the one-dimensional theory of internal combustion engine design to 

pulsed blowing systems. Two test cases found in the literature associated with simulation 

codes for the design of internal combustion engines and ventilation duct systems are 

discussed. The various simulation parameters, the working, and the physics of the 

simulation are also discussed. The significance of the simulation input parameters with 

respect to stability of the simulation is also outlined. Further, a test case is analyzed with 

different mesh sizes to judge the independence of mesh size on the solution.  
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5.2 Results from Virtual 4 Stroke® software 

The preliminary approach adopted to checking the feasibility of obtaining the 

solution was to solve the problem using commercially available software. This was done 

using the Virtual 4 Stroke® software used for simulation of internal combustion engines. 

This software was developed by Dr. G.P. Blair at the Queens University of Belfast and 

marketed by SAE (Society of Automotive Engineers, PA). The code used was an 

academic version, hence has inherent limitations, for example the wall temperature and 

initial temperature of the gas could not be changed. 

The attempt was to simulate an engine to achieve the required flow conditions at 

the exhaust port. This is achieved by varying the engine parameters like speed, valve 

overlap period etc. A few important parameters are engine cylinder parameters, intake, 

exhaust valve seat diameter and valve open and close crank angles. Some of the 

important design parameters for the engine can be found in table 5-1. 
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 Engine details

1 ClosedCycle.CombustionEfficiency 0.85
2 ClosedCycle.IgnitionDelay 13
3 ClosedCycle.IgnitionDuration 44
4 ClosedCycle.IgnitionTiming -27
5 ClosedCycle.TrappedAirFuelRatio 12
6 ClosedCycle.WiebeA 6.02
7 ClosedCycle.WiebeM 1.64
8 ClosedCycle.IsBurnByUser 0
9 ClosedCycle.IsDebug 0
10 ClosedCycle.IsSynch 0
11 ConnectingRod.Diameter 0
12 ConnectingRod.Length 0.148
13 Piston.CompressionHeight 0.04
14 Piston.Height 0.08
15 Piston.InitialTemperature 300
16 Bore 0.088
17 Stroke 0.082
18 FrictionFactor 350
19 FrictionConstant 100000
20 SquishClearance 0.00125
21 ClearanceVolume 0.00003788
22 HeadSurfaceFactor 1.5
23 InitialGasPresFactor 4
24 InitialGasTemp 927
25 WallTemp 150
26 HeadTemp 300
27 HeadType 4 Stroke 2 Valve

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-1. Engine design parameters for the software test case 
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Design parameters for the intake and exhaust valves are shown in tables 5-2 and 5-3 

respectively. A detailed description of all input parameters can be found in Appendix C. 

 
Intake valve details

1 OuterSeatDiameter 0.0502
2 InnerSeatDiameter 0.0482
3 SeatAngle 45
4 StemDiameter 0.0079
5 PortDiameter 0.0472
6 ManifoldDiameter 0.0381
7 ValveOpen 305
8 ValveClose 616
9 RampUpPeriod 40
10 RampUpRatio 0.2
11 RampDownPeriod 40
12 RampDownRatio 0.2
13 MaxLift 0.012

 

 

 

 

 

 

 

Table 5-2. Intake valve design parameters for the software test case 

 
Exhaust valve details

1 OuterSeatDiameter 0.0413
2 InnerSeatDiameter 0.0393
3 SeatAngle 45
4 StemDiameter 0.0111
5 PortDiameter 0.0385
6 ManifoldDiameter 0.0413
7 ValveOpen 195
8 ValveClose 355
9 RampUpPeriod 40
10 RampUpRatio 0.2
11 RampDownPeriod 40
12 RampDownRatio 0.2
13 MaxLift 0.01
14 Count 1
15 InterValveClearance 0.005

 

 

 

 

 

 

 

 

Table 5-3. Exhaust valve design parameters for the software test case 
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The plots shown are the pressure and velocity results for particular locations for a 

particular exhaust piping configuration. The configuration modeled for the software test 

case is shown in figure 5.1. 

135 mm 80 mm

12.4 mm 6.9 mm6.9 mm

80 mm

 
Figure 5.1 Pipe configuration for software test case 

 

The pressure boundary condition at the left end is achieved by assigning relevant 

engine parameters. Some of these parameters are RPM, ignition delay, duration and 

timing; valve overlap period in terms of crank angle and seat diameters etc. A trial and 

error approach is used to get matching results. The results were encouraging enough to 

use the method in a flow simulation code with provisions for using required pressures, 

geometry and initial and boundary conditions.  

The test runs were conducted for several different RPM corresponding to the pulse 

frequencies. The assumption is that the pulse is ejected for a period of time during which 

the exhaust valve is open. This assumption is proven valid from the results. 

The time period and rpm of the engine can be related by the following equation, 

N
ddt 60
360

×=
θ                     (5-1) 

where  

θd is the crank angle corresponding to time  and is the rpm of the engine. dt N
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For the test case, the exhaust valve opens at 195° and closes at 355°. So the angle for 

which the exhaust valve is open is 160°. 

Substituting  160=θd  ,  

 
N

6.26
=dt  seconds                   (5-2) 

The frequency of the pulse is the inverse of the time period, therefore 

6.26
Nf =                       (5-3) 

For ,    3000=N Hzf 112=

The results above are shown for 3000 RPM, which correspond to a pulse frequency of 112 

Hz.  Results for other frequencies can be found in Appendix C. The pressure time history 

for the above case is shown in figure 5.2. 
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Figure 5.2 Pressure plot for software test case 
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Figure 5.2 represents the pressure fluctuation with respect to time for a full 720° 

crank rotation. The plot is shown for two locations – the inlet and the exit of the pipe 

section. These are the pressure values recorded by a transducer at the above locations. The 

simulations of the unsteady flow are done for several engine cycles. A periodic steady 

solution is obtained after several cycles. Figure 5.2 is the plot of such a solution. The peak 

pressure corresponds to the time period when the exhaust valve is open. The exhaust valve 

opens at approximately 0.01 seconds and closes nearly at 0.02 seconds. This is equivalent 

to 160° of crank rotation. The experimental measurement of this pressure history with a 

transducer is difficult as the high velocity of the ensuing pulse damages the filament 

(wire) of the transducer as reported by Jones et al. [6]. The plot at the exit shows that the 

pressure pulse has been attenuated by approximately 50%. This is attributed to the friction 

and heat transfer effects as the wave travels through the pipe. 

The velocity time history plot for the above case is shown in figure 5.3. The plot at 

the inlet of the pipe section shows a peak between 0.01 and 0.02 seconds indicating that 

the exhaust valve is open during this period, discharging a pressure pulse of high velocity. 

The velocities are high due to the high  temperatures in the engine cylinder. The velocity 

increases towards the outlet of the pipe section and is higher at the exit than the inlet. The 

velocity is increased by nearly 40%. This is in line with compressible flow theory in 

which the pressure decreases and velocity increases for a subsonic flow. 

It can be seen that there is a pressure attenuation and velocity amplification in the 

unsteady compressible flow through the pipe section. The simulation provides an accurate 

way of predicting the unsteady pressure and velocity at any particular location in the pipe 

system. This measurement is difficult to conduct due to the difficulties mentioned above. 
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These are the principal output variables for our problem. This time history of 

pressure and velocity can be used as input to the aerodynamic analysis for lift, drag and 

other computations. 
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Figure 5.3 Velocity plot for software test case 
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5.3 Simulation using Flow Simulation code 
 
 

After reviewing the results from the simulation using the Virtual 4 Stroke® 

software, a general-purpose flow simulation code was written. Results derived from this 

code tailored to the needs of the research problem are discussed in this section. This code 

can simulate a straight pipe and a pipe with one expansion and one contraction. However 

due to the nature of the problem in hand, the stability of the solution and accuracy of 

results are strongly dependent on input parameters, the mesh size and the configuration 

itself. For example, very high pressure at the left end of the pipe can cause very strong 

expansion waves to be induced in the direction opposite to flow direction thereby causing 

negative reference temperatures during the course of the simulation. This gives an 

erroneous result. This occurs due to the instability of the simulation for the particular 

time step and propagates through the solution domain. An analysis of stability problems 

that could be encountered is explained in section 5.4. The stability and accuracy of 

simulation of isentropic nozzle flows is described in [29]. The relevant details are 

summarized in section 5.4. The notations used for input to the program are shown in 

figure 5.4. 
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Figure 5.4 Notations used for input to the program 

   91 



Two test case configurations found in the literature [34] used to validate the GPB 

modeling method are also used for comparisons to this flow simulation code. 

 

5.3.1 Test case 1 

A representative configuration modeled which also is the test case 1 [13] is shown 

in figure 5.4. This test case is used for validation of the GPB modeling method in the 

literature [34]. The entire methodology is experimentally validated as described in [32], 

[33] and [34]. The input parameters used for this test case in the literature are shown in 

table 5-4 and for the flow simulation code in table 5-5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Configuration for test case 1 [13] 
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Simulation parameters in literature for test case

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 1.50 bar pressure in cylinder
medium air ------- -------
speed 3000.00 RPM Engine RPM
Reference temperature 293.00 K Reference temperature
Port opening 0.008 secs time during which exhaust port is open during a cycle

 

Table 5-4. Input parameters for test case 1 in literature [13] [34] 

 

Simulation parameters for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 150000 Pa pressure at inlet of duct

γ 1.4 ------- ratio of specific heat capacities
R 287 J/kgK Characterestic gas constant
frequency - f 100 Hz frequency (Hz)
wall temperature - Tw 300 K Temperature of the duct wall
Duty cycle 0.25 ------- fraction of T when Xp is present 
Ambient reference temperature 293 K Initial (undisturbed) temperature
Ambient reference pressure 101325 Pa Initial (undisturbed) pressure
Exit pressure 101325 Pa pressure at exit of pipe

Geometric details  for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
L1 108.00 mm length of segment 1
D1 25.000 mm diameter of segment 1
L2 2655.0000 mm length of segment 2
D2 80.000 mm diameter of segment 2
L3 2507.00 mm length of segment 3
D3 25.000 mm diameter of segment 3  

 

Table 5-5. Input parameters for test case 1 for flow simulation code 
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Discussion of results 

Figure 5.9 shows the pressure amplitude plot for the transducer locations.  

The pulsed pressure wave introduced at the left boundary has an initial pressure 

amplitude ratio (X) of 1.057. The short length of 108 mm makes the pressure wave 

encounter a sudden expansion and this reduces the pressure amplitude ratio to a peak 

value of 1.01 about 0.002-0.003 seconds. The pressure wave leaves station 1 at 0.0048 

seconds and the pressure amplitude ratio value drops to 1. The wave travels to the right to 

station 2 and reaches the peak at 0.009 seconds. The peak pressure here is higher than 

station 1, because the sudden contraction sends a reflected compression wave to the left, 

which superposes with the rightward moving compression wave and results in a 

superposed condition at station 2 resulting in a higher pressure amplitude ratio. At station 

3, the rise in pressure is attributed to the sudden contraction to a smaller pipe from 80 mm 

to 25mm. For the time period of the simulation corresponding to the input frequency, the 

pressure wave has not reached the end of the pipe, so undisturbed conditions exist in the 

end mesh. It can be seen from the results that the modeling method provides a sufficient 

explanation of the physics of the transmission of the wave through the pipe.  

Figures 5.9 - 5.11 show plots of various parameters with respect to time at various 

transducer locations in the geometry. The results showed the same trend as the results in 

[13]. Figures 5.6 – 5.8 show results from the simulation in [13]. In the engine test case, 

the results are averaged over the entire engine cycle after reaching a periodic steady 

condition. In our study, the simulation is performed only during the period corresponding 

to the frequency of the pulse emitted. Hence, the time period is less than for the engine 

simulation case. The entry pressure boundary condition into the pipe is fixed as the input 
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to the pipe comes from the output of the actuator generating the pulse. The calculations 

associated with the thermodynamics of the cylinder in the engine test case are absent in 

our test case. 

Comparing the results shown in figures 5.6 - 5.8 and 5.9, it is seen that for the 

time period of 0.01 seconds, the peak pressures at station 2 and 3 are higher than the peak 

value at station 1. The ratio of peak pressures to one another is approximately equal for 

both engine and flow simulation cases. 

This code has inherent limitations and does not solve the problem for all 

geometry and initial and boundary conditions. The peculiarity of similar problems 

applied to nozzle flows is discussed in detail in [29]. The solution to such problems is 

dependent on boundary conditions, nozzle geometry and other factors. This is further 

discussed in section 5.4. The user may perform numerical experiments by varying the 

mesh size, boundary conditions and input parameters etc to achieve an optimal solution. 

 

 

 

 

 

 

 

 

 

Figure 5.6 Pressure amplitude ratio at station 1 from engine 
 simulation test case 1 in literature [13] 
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Figure 5.7 Pressure amplitude ratio at station 2 from engine 
 simulation test case 1 in literature [13] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 Pressure amplitude ratio at station 3 from engine 
 simulation test case 1 in literature [13] 
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Figure 5.9 Pressure amplitude ratios at transducer locations 

   97 



 
 

Time (secs)

0.000 0.002 0.004 0.006 0.008 0.010

Pa
rt

ic
le

 v
el

oc
ity

 (m
/s

)

0

5

10

15

20

25

30

35

Station 1
Station 2
Station 3
End of pipe

 

 

Figure 5.10 Particle velocities at transducer locations 

 

 

All other parameters such as absolute pressure, temperature, acoustic velocity, density and 

reference temperature are deduced from the pressure amplitude ratio. Detailed results are 

plotted for each of the locations in Appendix C. 
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Figure 5.11 Temperature at transducer locations 
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5.3.2 Test case 2 

Another representative configuration modeled which is the test case 2 [13] is 

shown in figure 5.12. The input parameters in the literature are shown in table 5-6 and for 

the flow simulation code in table 5-7. Pressure and velocity plots are shown in figures 

5.13 and 5.14. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12 configuration for test case 2 [13] 
 

  

 

   100 



 

 

Simulation parameters in literature for test case

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 1.50 bar pressure in cylinder
medium air ------- -------
speed 3000.00 RPM Engine RPM
Reference temperature 293.00 K Reference temperature
Port opening 0.008 secs time during which exhaust port is open during a cycle

 

Table 5-6. Input parameters for test case 2 in literature [13] [34] 

 

Simulation parameters for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 150000.00 Pa pressure at inlet of duct

γ 1.4000 ------- ratio of specific heat capacities
R 287.00 J/kgK Characterestic gas constant
frequency - f 100.00 Hz frequency (Hz)
wall temperature - Tw 300.00 K Temperature of the duct wall
Duty cycle 0.25 ------- fraction of T when Xp is present 
Ambient reference temperature 293 K Initial (undisturbed) temperature
Ambient reference pressure 101325 Pa Initial (undisturbed) pressure
Exit pressure 101325 Pa pressure at exit of pipe

Geometric details  for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
L1 3394.00 mm length of segment 1
D1 25.000 mm diameter of segment 1
L2 2500.0000 mm length of segment 2
D2 80.000 mm diameter of segment 2
L3 155.00 mm length of segment 3
D3 80.000 mm diameter of segment 3  

Table 5-7. Input parameters for test case 2 for flow simulation code 

 

   101 



Discussion of results 

Figures 5.13 – 5.15 show the results for this test case from literature [13]. Similar 

to test case 1, the results are averaged over the entire engine cycle after reaching a 

periodic steady condition. In our study, the simulation is performed only during the 

period corresponding to the frequency of the pulse emitted. Hence, the time period is less 

than for the engine simulation case. The input for our study is a square pulse which is not 

the case for the engine study. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.13 Pressure amplitude ratio at station 1 from engine 
simulation test case 2 in literature [13] 
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Figure 5.14 Pressure amplitude ratio at station 2 from engine 
simulation test case 2 in literature [13] 

 

 

 

 

 

 

 

 

 

Figure 5.15 Pressure amplitude ratio at station 3 from engine 
simulation test case 2 in literature [13] 
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Refer to figure 5.16 for the pressure amplitude ratio plot for the transducer 

locations. In this test case, the basic action of reflection at a sudden expansion is 

observed. The pressure pulse passes the station 1 at 0.004 seconds. The spike in pressure 

at station 2 is due to the reflections from the sudden expansion. Station 3 exhibits a loss 

in pressure due to the expansion. Again, for the time period of the simulation 

corresponding to the input frequency, the pressure wave has not reached the end of the 

pipe and undisturbed conditions exist in the end mesh. Therefore, the pressure amplitude 

ratio is 1. Figures 5.16 and 5.17 show the pressure and velocity plots at the three stations 

shown in figure 5.12. The mesh size used is 50 mm. The time step under-relaxation factor 

is 0.65. A comparison of results with different mesh sizes is discussed in section 5.5. 

Effect of time step is discussed using the test case 2 in section 5.4.3.  

Comparing the two solutions for the time period of 0.01 seconds, it can be seen 

that the peak pressure is highest at station 2 for both cases. The lowest peak is observed 

for station 3. The increase in pressure at station 2 is due to the reflection from the sudden 

expansion and subsequent superposition at station 2. 
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Figure 5.16 Pressure amplitude ratios at transducer locations 
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Figure 5.17 Particle velocities at transducer locations 
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Figure 5.18 Temperature at transducer locations 
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5.4 Effect of Simulation parameters 

The simulation parameters that may affect the stability of the solution for our 

problem are mesh size, duty cycle and the inlet and exit boundary conditions. Anderson 

[29] describes a problem for a quasi one-dimensional subsonic-supersonic isentropic 

nozzle flow. The method of characteristics is used to analyze stability of CFD solutions 

to such flows. This method necessitates that at a boundary where one characteristic 

propagates into the domain, one dependent variable must be specified at the boundary 

and at a boundary where one characteristic propagates out of the domain, one dependent 

variable must be allowed to float. Further, when a streamline moves into a domain, two 

values must be specified at the boundary. Thus for a subsonic inflow boundary, two 

boundary flow variables need to be specified – density and temperature and velocity is 

allowed to float. In the case where the two characteristics propagate out of the domain 

and the streamline is moving out, all the variables are allowed to float. Thus for a 

supersonic outflow boundary, all three variables are allowed to float. Intelligent selection 

of initial conditions is important because the closer these values are to the final answer, 

convergence will be faster. A purely subsonic flow is also dealt with by Anderson [29]. A 

high inlet pressure ratio may cause the solution to become unstable and blow up. This is 

attributed to the fact that the exit pressure is held constant. Finite compression and 

reflection waves reflect off this boundary and if these waves are strong enough, they will 

set up strong oscillations near the downstream boundary leading to a blow up of the 

calculations. For smaller pressure ratios the unsteady waves created are weaker and hence 

do not set up an oscillation. Anatomy of a failed solution for these types of problems also 

can be found in [29]. Such a case will be discussed in sections 5.4.2 and 5.4.3. 
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To summarize, the simulation parameters that affect the solution are mesh size, 

input parameters, duty cycle and time step. The effect of mesh size is discussed with a 

test case in section 5.4.1. Influence of duty cycle is discussed in section 5.4.2 and time 

step in section 5.4.3. The test case 2 is used to show the effects of all three parameters. 

 

5.4.1 Effect of mesh size 

This is the most important parameter affecting the solutions. In performing 

several numerical experiments with the code, it has been found that for this problem the 

dependency of solution on mesh size is very high. Unless the correct mesh size is applied 

or a value in a very close range within a few mm is applied, the solution fails to converge, 

mostly resulting in a negative reference temperature or the blow up of the solution. Test 

case 2 can be used to analyze this behavior. 

Three mesh sizes were tested – 35mm, 40 mm, 50 mm. Results were in close 

agreement – maximum variation was 2%. Figures 5.12 – 5.14 show pressure plot 

comparison for the three cases. The velocity plots are shown in figures 5.15 – 5.17. Other 

results for this test case can be found in Appendix C. 

Smaller mesh sizes of the order of 10mm causes the mass outflow to exceed the 

mass inflow resulting in negative reference temperatures to be evaluated. This mostly 

occurs in the mesh just upstream of the expansion. Further, if the difference in individual 

mesh sizes in the pipe is large, similar results can occur for the smallest mesh. Therefore, 

the mesher routine is written in such a way as to ensure that the mesh size values are kept 

as close as possible while retaining the general-purpose nature of the routine.  
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Figure 5.19 Pressure amplitude ratio plots for three mesh sizes, station 1 - comparison 
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Figure 5.20 Pressure amplitude ratio plots for three mesh sizes, station 2 – comparison 
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Figure 5.21 Pressure amplitude ratio plots for three mesh sizes, station 3 - comparison 
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Figure 5.22 Particle velocity plots for three mesh sizes, station 1 – comparison 
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Figure 5.23 Particle velocity plots for three mesh sizes, station 2 – comparison 

 

   114 



 

 

 

 

Time (secs)

0.000 0.002 0.004 0.006 0.008 0.010

Pa
rt

ic
le

 v
el

oc
ity

 (m
/s

)

0

2

4

6

8

10

12

14

16

18

35 mm mesh
40 mm mesh
50 mm mesh

 
 
 

Figure 5.24 Particle velocity plots for three mesh sizes, station 3 – comparison 
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5.4.2 Effect of duty cycle 

The duty cycle is an input parameter. However, at very low duty cycles, it has 

been seen that the solution may blow up due to strong expansion waves traveling 

upstream resulting in negative reference temperatures at some arbitrary location in the 

geometry. This is due to the fact that after a few time steps the pressure amplitude ratio 

drops to one resulting in the mass outflow from a mesh exceeding the inflow thereby 

causing negative reference temperatures during the particular time step. 

Such a case can be analyzed using test case 2. Here we reduce the duty cycle to 

0.1 and increase the inlet pressure to 300,000 Pa. Figure 5.25 shows the reference 

temperature plot of the failing mesh, in this case it is the mesh just upstream of the 

sudden expansion. This is true for most cases. 
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Figure 5.25 Reference temperature plot for failing mesh 
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The plot of mass flow in and out of the mesh in the course of the simulation is 

shown in figure 5.26. This plot  clearly indicates that the  mass flow out of the mesh is 

more than the mass flow into the mesh. This differential causes a negative reference 

temperature to be created in the first law evaluation and the code blows up giving an error 

message. This can be solved in some cases using an under-relaxation in the time step. 

Such a case showing improvement in solution is discussed in section 5.4.3. 
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Figure 5.26 Mass inflow and outflow for the failing mesh 
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5.4.3 Effect of time step and stability 

 Time step plays a very important role in the accuracy of the solution of hyperbolic 

equations. A detailed discussion can be found in [29]. Stability of the solution of 

hyperbolic equations is governed by the Courant, Friedrich and Lewy (CFL) stability 

criterion [38]. This criterion is mathematically written as  

x
tcC

∆
∆

=                (5-4) 

where c is the particle velocity and C is the Courant number. 

This translates into  

c
xCt ∆

=∆               (5-5) 

The Courant Number C is to be kept below 1 but close to 1 for stability and 

accuracy respectively. A detailed discussion on stability considerations for hyperbolic 

equations using method of characteristics can be found in [29]. The mesh size is found to 

be the lone governing factor affecting the stability of the solution. The Courant number 

needs to be kept below 1 for convergence.  However, this is built into the model while 

evaluating the time step. The 0.99 factor ensures that the Courant number is below 1 and 

all subsequent iterative procedures are by interpolation. See section 4.1.2.2 for details. 

The user can vary this factor in the code and check for any stability issues. The author 

does not feel that this factor is very critical to the outcome of the solution for this 

problem using this modeling method. 

The effect of time step on the solution is analyzed with test case 2. The simulation 

is performed with under-relaxation in the time step calculation by varying the multiplier 

(0.99) of the time step in the time step evaluation. 
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Figure 5.27 shows the pressure amplitude ratio for different under-relaxation 

factors.  

0.000 0.002 0.004 0.006 0.008 0.010
0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.99

Pr
es

su
re

 a
m

pl
itu

de
 ra

tio

Time (secs)  
 

Figure 5.27 Pressure amplitude ratio plots for station 1 with varying 
under-relaxation factors 

 

 

The decision on the best solution depends on the reference temperature plots for 

all three stations. The reference temperature is a good indicator of the stability of the 

solution. Figure 5.28 shows the velocity plots for the same case. The pressure and 

velocity plots do not show much variation. However, the temperature plot in figure 5.29 

shows a marked divergence in the solution. 
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Figure 5.28 Particle velocity plots for station 1 with varying under-relaxation factors 
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Figure 5.29 Temperature plots for station 1 with varying under-relaxation factors 
 

The next step to find the best solution is to compare the solution for all stations. 

The best solution selected is the solution that exhibits the smooth solution without any 

abrupt changes. Figures 5.30 – 5.32 show the results for station 2. Figure 5.22 rules out 

the solution for the 0.99 factor as this plot shows considerable variation from the other 

cases. The factor is reduced in steps and as seen from the plot improves the solution. This 

procedure is repeated until the variation in the variables is acceptable. In this case, this 

was done until the variation was within 1%. It has been observed that the time step 

multiplier (0.99 in this case) can cause an error in the interpolation procedure for the 

mesh. This occurs in the evaluation of the interpolated pressure amplitude ratios at either 
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end of the meshes ( pX  and qX ). The selection of an appropriate factor can be done by 

studying the pressure amplitude and reference temperature plots. The 0.99 case shows 

undershoot and is asymptotic. 
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Figure 5.30 Pressure amplitude ratio plots for station 2 with varying 
under-relaxation factors 

 

Figure 5.32 shows the temperature plot for station 2. The solution for the 0.65 case was 

selected as the best solution by following the procedure described earlier. The 

multiplying factor was varied continously until the solution was acceptable. The plots for 

station 3 are shown in figures 5.33-5.35. Plots for other parameters are shown in 

Appendix C. 
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Figure 5.31 Particle velocity plots for station 2 with varying under-relaxation factors 
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Figure 5.32 Temperature plots for station 2 with varying under-relaxation factors 
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Figure 5.33 Pressure amplitude ratio plots for station 3 with varying 
under-relaxation factors 
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Figure 5.34 Particle velocity plots for station 3 with varying under-relaxation factors 
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Figure 5.35 Temperature plots for station 3 with varying under-relaxation factors 
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5.5 Pressure pulse propagation through the pipe 

From the results of the simulation, the effect of the transmission tubing on the 

pressure pulse can be summarized. The square pulse that leaves the actuator at the left 

end of the tube is distorted due to two reasons. One is the friction pressure loss in the 

pipe. The other is the reflections that occur inside the tube due to geometric and 

thermodynamic discontinuities. The one-dimensional model serves as an analysis tool to 

observe the effects of the tubing on the pressure pulse. The results of the simulation can 

be used for further aerodynamic analyses. 

The pressure pulse propagation through the pipe can be seen in figure 5.25. The 

square pulse with a duty cycle of 25% is shown with a dashed line in the figure. The 

pressure amplitude ratio is 1.057 corresponding to an inlet pressure of 150,000 pa. The 

pulse travels through the pipe and reaches station 1 at 0.000414 seconds. The amplitude 

ratio of the pulse has reduced to 1.0563 due to friction and reflections. The shape has 

distorted to the kind of profile shown by the solid lines. As the pulse further undergoes 

reflections, the distortion increases and a shape similar to a sinusoidal profile is attained 

as it reaches station 2. This occurs at 0.0065 seconds. The pressure wave crosses station 2 

between 0.0065 and 0.01 seconds. The amplitude ratio has decreased further to 1.0547. 

This discussion shows that the simulation helps us in visualizing the propagation 

of the pressure pulse through the pipe. It is possible to quantify the pressure amplitude 

ratio and the attenuation of the pulse. The distortion of the pulse shape can also be seen 

from the plots. The square shape is not maintained as the pulse travels through the pipe. 

This is an important consideration for the design of the control system. 
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Figure 5.36 Pressure pulse propagation through the pipe 
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5.6 Comparison to analytical solution 

 Results from the transmission line analysis of Brown [14] and Karam and Franke 

[15] could not be directly compared to the flow simulation results because the 

transmission line analysis assumes a blocked line whereas the application of interest 

requires an open end. An analytical approach for the pressure pulse propagation through a 

pipe that is seldom found in the literature has been described by Emmons [39]. The 

analytical solution assumes an ideal pipe, neglecting friction and heat transfer. Wave 

reflections are not included in the analysis. However, this analytical solution provides one 

means of evaluating our numerical solution. 

 The analytical solution uses a method of analysis that assumes the pressure 

distribution changes only as a function of the wave velocity. The pressure amplitudes 

remain invariant as the wave propagates, only the distribution changes. A pure isentropic 

pulse of finite amplitude has an initial pressure distribution dependent only on distance. 

For our problem distance traveled by the wave is proportional to time. So the pressure 

distribution for a whole cycle is assumed as the initial distribution. The wave particle 

velocities are evaluated for a particular location on the wave from the pressure amplitude 

ratio. The density is evaluated for the ambient conditions. The formulae for evaluating 

the variables are described in Chapter III.  

 The distance traveled by the wave is calculated by ( )x c a t= +

t =

.  is the particle 

velocity and  is the acoustic velocity. This method does not analyze reflections of 

pressure waves. The distance is calculated for each point on the wave using a suitable 

time interval. The particle and acoustic velocities are calculated corresponding to the 

pressure amplitude ratio using the initial pressure distribution at time .  

c

0

a
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A sinusoidal pulse is selected since a square pulse would not show any variation in the 

distribution. The mean pressure of the sinusoidal pulse is 150,000 Pa with an amplitude 

variation of 20%. The frequency of the pulse is 100 Hz. For comparison with the 

numerical solution, the particle and acoustic velocities obtained from the numerical 

simulation are used to evaluate the distance traveled by the wave. The numerical scheme 

employs the algorithm described in chapter IV. Figure 5.37 shows a plot of the analytical 

solution of the wave pressures as it travels through the pipe. The table of calculations can 

be found in Appendix C.  
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Figure 5.37 Analytical solution of Pressure wave propagation through the pipe 
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The analytical solution only accounts for the distortion in the pulse profile. This method 

does not include effects of the variation in reference temperatures and the superposition 

process. Hence, the pressures and velocities are lower than for the numerical solution. 

The distortion in pulse profile as it traverses the pipe is the focal point of comparison 

here. The profile distortion is handled by the analytical solution and more accurately by 

the numerical solution. The numerical solution involves wave reflections and the first law 

analysis, which evaluates the variation in reference temperatures. Hence the numerical 

solution should have more accuracy. The comparison between these solutions further lays 

stress on the importance of the numerical scheme for the analysis of the pressure pulse 

propagation. The analytical solution is limited to simple conditions and uses ideal 

assumptions. The numerical solution can handle boundary conditions that are more 

realistic and the algorithm can calculate the transient variation in the variables more 

accurately. Figure 5.38 shows the plot for the numerical case. The table of calculations 

can be found in Appendix C. 

 

 A better comparison  can be done by plotting the two solutions on the same plot. 

Such a plot for two time steps of 0.002 and 0.004 seconds are shown in figures 5.39 and 

5.40 respectively. Plots for other time steps are in appendix C. 
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Figure 5.38 Numerical solution of Pressure wave propagation through the pipe 
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Figure 5.39 Comparison of analytical and numerical solutions for time of 0.002 seconds 
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Figure 5.40 Comparison of analytical and numerical solutions for time of 0.004 seconds 

 

 

A comparison of results between analytical solution and the numerical scheme serves to 

validate the effectiveness and accuracy of the numerical methodology. The simple wave 

propagation problem analyzed above shows similar trends for the two solutions. This 

leads us to the conclusion that the numerical scheme employed may be an effective tool 

to evaluate the pressure pulse propagation in a duct under realistic conditions involving 

friction and heat transfer. 
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5.7 Parameters relevant to the Control system design engineer 

To design a control system correctly for the pulsed blowing system, the design engineer 

needs to know how each parameter can be varied to obtain the required pulse profile at 

the outlet of the distribution system. The following discussion is aimed at resolving these 

aspects of the simulation. Tests are performed varying several parameters. The inlet 

pressure, duty cycle, tube lengths, the expansion and contraction ratios in the geometry 

are the parameters considered. The model used is the same model used in the software 

test case discussed in earlier sections.  

 
Pressure amplitude 
 
Increasing the inlet pressure results in higher pressure peaks available at the exit.  This is 

shown in figure 5.41. The inlet pressure is varied from 150000 to 200000 Pa. for the 

200000 Pa case, the outlet pressure is considerably higher than the other two cases and 

higher peaks are available.  

Simulation parameters for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 150000, 175000, 200000 Pa pressure at inlet of duct
γ 1.4000 ------- ratio of specific heat capacities
R 287.00 J/kgK Characterestic gas constant
frequency - f 100.00 Hz frequency (Hz)
wall temperature - Tw 300.00 K Temperature of the duct wall
Duty cycle 0.1 ------- fraction of T when Xp is present 
Ambient reference temperature 293 K Initial (undisturbed) temperature
Ambient reference pressure 101325 Pa Initial (undisturbed) pressure
Exit pressure 101325 Pa pressure at exit of pipe

Geometric details  for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
L1 80.00 mm length of segment 1
D1 6.858 mm diameter of segment 1
L2 135.0000 mm length of segment 2
D2 12.446 mm diameter of segment 2
L3 80.00 mm length of segment 3
D3 6.858 mm diameter of segment 3  

Table 5-8. Input parameters for flow simulation code for varied inlet pressure case 
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Figure 5.41 – Pressure amplitude plot for various inlet pressures 
 
 
The plot in figure 5.42 shows the particle velocity variation at the outlet. The higher 

pressure case results in a more rounded peak and a higher velocity at the outlet. The 

effect of inlet pressure is to impart a higher particle velocity and results in the velocity 

peak available for more time. 

 

   135 



Time (secs)

0.000 0.002 0.004 0.006 0.008 0.010

Pa
rt

ic
le

 v
el

oc
ity

0

50

100

150

200

250

300

150000 - outlet
175000 - outlet
200000 - outlet

 
 

Figure 5.42 – Particle velocity plot for various inlet pressures  
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Duty cycle 
 
A higher duty cycle at the inlet results in a more sustained pulse available at the exit. 

Aerodynamic analyses have concluded that a duty cycle in the range of 0.25-0.5 is the 

most effective. So several duty cycles in the range 0.1 – 0.4 were tested. Figure 5.43 

shows that the 0.4 case exhibits a longer retention time for the pulse. Figure 5.44 shows 

that the peak velocity values are similar. However, the velocity at the outlet for the 0.4 

case lasts for more time than all the other cases.  A considerably higher and sustained 

peak pressure is available for a duty cycle of 0.4.  

 

 
Simulation parameters for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 150000.00 Pa pressure at inlet of duct
γ 1.4000 ------- ratio of specific heat capacities
R 287.00 J/kgK Characterestic gas constant
frequency - f 100.00 Hz frequency (Hz)
wall temperature - Tw 300.00 K Temperature of the duct wall
Duty cycle 0.1,0.2,0.3,0.4 ------- fraction of T when Xp is present 
Ambient reference temperature 293 K Initial (undisturbed) temperature
Ambient reference pressure 101325 Pa Initial (undisturbed) pressure
Exit pressure 101325 Pa pressure at exit of pipe

Geometric details  for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
L1 80.00 mm length of segment 1
D1 6.858 mm diameter of segment 1
L2 135.0000 mm length of segment 2
D2 12.446 mm diameter of segment 2
L3 80.00 mm length of segment 3
D3 6.858 mm diameter of segment 3  

 

Table 5-9. Input parameters for flow simulation code for varied duty cycle case 
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Figure 5.43 – Pressure amplitude plot for various duty cycles 
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Figure 5.44 – Particle velocity plot for various duty cycles 

 
Tube length 
 

The effect of the tube length was investigated maintaining the other parameters constant. 

The input parameters used are summarized in the table 5-10. 
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Simulation parameters for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 150000.00 Pa pressure at inlet of duct
γ 1.4000 ------- ratio of specific heat capacities
R 287.00 J/kgK Characterestic gas constant
frequency - f 100.00 Hz frequency (Hz)
wall temperature - Tw 300.00 K Temperature of the duct wall
Duty cycle 0.1 ------- fraction of T when Xp is present 
Ambient reference temperature 293 K Initial (undisturbed) temperature
Ambient reference pressure 101325 Pa Initial (undisturbed) pressure
Exit pressure 101325 Pa pressure at exit of pipe

Geometric details  for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
L1 80.00 mm length of segment 1
D1 6.858 mm diameter of segment 1
L2 135, 200, 250, 300,2000 mm length of segment 2
D2 12.446 mm diameter of segment 2
L3 80.00 mm length of segment 3
D3 6.858 mm diameter of segment 3  

Table 5-10. Input parameters for flow simulation code for varied tube length case 

 

The pressure amplitude plot in figure 5.45 shows that a longer tube attenuates the 

pressure pulse more. This is an expected result. The peak pressure is highest for the 

shortest tube. 
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Figure 5.45 – Pressure amplitude plot for various tube lengths 

 

The velocity plot in figure 5.46 exhibits a similar trend. The shorter tube gives a larger 

particle velocity at the outlet. To minimize the attenuation it is advisable to use a shorter 

tube for the distribution system. 
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Figure 5.46 – Particle velocity plot for various tube lengths 
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Effect of area ratio 
 
 
Several expansion and contraction ratios were tested on the software test case model. The 

area ratio was increased to 3, 4 and 5. The limit of the area ratio is governed by the 

Benson’s criterion; hence, the maximum value is 6. 

 

Simulation parameters for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
Pinlet 150000.00 Pa pressure at inlet of duct
γ 1.4000 ------- ratio of specific heat capacities
R 287.00 J/kgK Characterestic gas constant
frequency - f 100.00 Hz frequency (Hz)
wall temperature - Tw 300.00 K Temperature of the duct wall
Duty cycle 0.1 ------- fraction of T when Xp is present 
Ambient reference temperature 293 K Initial (undisturbed) temperature
Ambient reference pressure 101325 Pa Initial (undisturbed) pressure
Exit pressure 101325 Pa pressure at exit of pipe

Geometric details  for flow simulation code

PARAMETER VALUE UNIT DESCRIPTION
L1 80.00 mm length of segment 1
D1 6.858 mm diameter of segment 1
L2 135.0000 mm length of segment 2
D2 12.446, 20.574, 27.432, 34.29 mm diameter of segment 2
L3 80.00 mm length of segment 3
D3 6.858 mm diameter of segment 3  

 

Table 5-11. Input parameters for flow simulation code for varied area ratio case 

 

The pressure amplitude plot in figure 5.47 indicates that higher expansion and contraction 

ratios cause higher attenuation. It is advisable to have a straight pipe with minimal area 

changes. The velocity plot indicates backflow at several periods in the cycle and higher 

attenuation with higher area ratio.  
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Figure 5.47 – Pressure amplitude plot for varied area ratio case 
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Figure 5.48 – Particle velocity plot for varied area ratio case 
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

In this study, a one-dimensional code is used to analyze unsteady gas flow 

through ducts. The method is adopted from the analysis techniques used for design and 

simulation of internal combustion engines. The methodology uses a mesh method of 

interpolation. The model developed by Dr. G.P. Blair at the Queens University of Belfast 

is called the GPB model. This model in contrast to earlier methods uses a commercial 

code - Virtual 4 Stroke® software also developed by Dr. G.P. Blair. This code is used to 

analyze a pulsed blowing system by simulating an engine giving the necessary pressure 

pulse at the exhaust port. This analysis is used to study the feasibility of developing a 

suitable flow simulation code for the specific research problem. Results obtained were 

encouraging. Therefore, a general-purpose code that can simulate a straight pipe and a 

straight pipe with one expansion and one contraction was developed. Two test cases 

described in literature for validation of codes for design of internal combustion engines 

are used for evaluation of the trends predicted by this code. Effects of parameters like 

mesh size, time step and duty cycle that affect the solution are discussed with appropriate 

test cases. The mesh independency issue is addressed by solving the second test case 

using three different mesh sizes. The attenuation of the pulse amplitude and the distortion  

of the pulse profile is explained with simulation results.
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Summary 

The GPB model provides a sufficient explanation of the pulse propagation through 

the pipe. The dynamic nature of the problem is well captured by this modeling method. 

The computation time is less compared to other methods and the method appears to 

predict proper trends. The method is also easier to implement on a digital computer than 

older methods.  

The pulse attenuation and distortion can be visualized in the plots as discussed in 

section 5.5. This program allows computations to be performed to develop improved exit 

pulse characteristics. The dynamic nature of unsteady flow is well captured in the model 

and the variation in properties of the fluid is also reflected in the solution. The 

simulations show that the pulse shape is not constant as it propagates through the tube. 

Thus the assumption that the pulse shape is maintained throughout the tube is not true. 

The exit pulse characteristics are important input for aerodynamic calculations and 

modeling of the active flow control system. These are difficult to measure experimentally 

due to the high velocities involved. In this context, this analysis tool is of importance to 

the designer of the control system in performing design optimization. 

 More complex algorithms can be developed to model complex geometry. Bends and 

branches can also be effectively modeled by this method. This is not included in this 

work and is recommended for future research efforts. The code analyzes the pulse for a 

time equivalent to one complete cycle of the pulse. This can be modified to cover few 

more pulse cycles. At the end of the time step the program returns to the location where 

the pulse generator routine is called. The pulse generator routine needs to be rewritten so 

that it can evaluate the aggregate time and assign appropriate pressure amplitude ratio 
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values to the left end. The amplitude ratios need to be checked with previous iterations 

and a suitable convergence criterion needs to be set to end the simulation if the criterion 

is satisfied. This necessitates that either all the arrays for the calculated variables be 

changed to two-dimensional ones or all the variable values be stored in temporary 

variables for comparison to the values in the subsequent time step. If the results need to 

be reviewed periodically, additional print statements may be needed to print results to 

new sheets. Further, if the solution diverges, precaution needs to be taken to avoid an 

infinite loop. 

 

6.1 Conclusions 

Investigations in the present study lead to the following major conclusions  

(1) A one-dimensional model is suitable for analysis of pulsed blowing systems. The 

GPB method has advantages of simplicity, ease of modeling and accuracy. 

(2) The computational model is already established and experimentally validated for 

internal combustion engines, hence is acceptable for this application. 

(3) The code makes it possible to evaluate the unsteady system parameters where 

accurate measurement by instruments is difficult. 

(4) The code predicts changes in pulse amplitude and shape that agree with trends 

seen in engine simulation computations. 

(5) The output from this simulation can be used for further aerodynamic design 

calculations. 
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(6) Like any other computational fluid dynamics code, this code also has inherent 

limitations. The stability and accuracy of the solution is dependent on input 

parameters like mesh size, pressure and duty cycle.  

 

 

6.2 Recommendations 

(1) The user may perform numerical experiments with the code to explore further into 

factors affecting the solution. This will help in refining the code and produce better 

results. For example, the influence of mesh size on the final solution may be 

improved by using a different meshing scheme. 

(2) The code analyzes the pulse for a time equivalent to one complete cycle of the pulse. 

This can be modified to cover few more pulse cycles. This needs a more complicated 

algorithm. The entire set of parameters needs to be stored in temporary variables and 

used as input to the next time step. The required steps for the modification of the 

program have already been outlined in the summary section. 

(3) Experimental validation for this application is recommended. This could help 

improve the solution algorithm.  
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APPENDIX A 

Derivation of governing equations 

Sudden expansion 
 
 
The governing equations for the sudden expansion case shown in figure A.1 are applied 

to the superposition stations 1 and 2. The particle flow pattern is shown in figure A.2. 

 
 
 
 
 
 
 
 
 
 

 
 

Figure A.1 Sudden expansion in a pipe [13] 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
Figure A.2 Particle flow in a sudden expansion in a pipe [13]
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Continuity 
 
The continuity equation for a quasi-steady one-dimensional flow can be written as  

1m m
• •

= 2              (A-1) 

Mass flow rate = density x area x particle velocity = A cρ × ×        (A-2) 

0 Xρ ρ= ×              (A-3) 

(5 0 i rc G a X X= − )             (A-4) 

With the right direction retained as positive, the continuity equation becomes 

( ) ( )5 5
01 1 1 5 01 1 1 02 2 2 5 02 2 2 0G G

s i r s i rX AG a X X X A G a X Xρ ρ− + − =         (A-5) 

 

1s i rX X X= + −                                   (A-6) 

The continuity equation reduces to 

( ) ( ) ( ) (5 5

01 1 1 1 5 01 1 1 02 2 2 2 5 02 2 21 1G G
i r i r i r i rX X AG a X X X X A G a X Xρ ρ+ − − + + − − =) 0  

   (A-7) 

This is the equation solved in section 3.4.5.4 - equation 3-69. 

 

Momentum 

The momentum equation for flow from superposition station 1 to superposition 2 can be 

expressed as 

( )1 1 2 1 1 2 2 1 1 2 2 0s s s s s s sA p A A p A p m c m c
• •+ − − + − =

 

          (A-8) 

Here the pressure 1sp  is assumed to act over the annulus area ( )2 1A A− . Combining 

continuity and momentum equations, the momentum equation reduces to 
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( ) ( )2 1 2 1 1 2 0s s s s sA p p m c c
•

− + − =           (A-9) 

From definitions 

7
0

G
s sp p X=                       (A-10) 

( 7

1 1 1 1 G
s i rX X X= + − )

)

          (A-11) 

( 7

2 2 2 1 G
s i rX X X= + −           (A-12) 

0s sm X A scρ=            (A-13) 

(1 5 01 1 1 )s i rc G a X X= −           (A-14) 

(2 5 02 2 2s ic G a X X= − )r           (A-15) 

Expanding each term in sm  we get 

( ) ( )5

1 01 1 1 1 5 01 1 11 G
s i r i rm X X AG a Xρ= + − − X        (A-16) 

Substituting all these terms in equation (A-9) the expression for the momentum equation 

becomes 

( ) ( )

( ) ( ) ( ) ( )

7 7
0 2 1 1 2 2

5
01 1 1 1 5 01 1 1 5 01 1 1 5 02 2 2

1 1

1 0

G G
i r i r

G
i r i r i r i r

p A X X X X

X X AG a X X G a X X G a X Xρ

 + − − + − + 
   + − − × − + − =  

 

 (A-17) 

This is the equation solved in section 3.4.5.4 - equation 3-70. 
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Energy equation (first law of thermodynamics) 

The first law of thermodynamics for an open system can be written as 

 systemsystemsystem W
c

hmdE
c

hmQ δδ +







+∆+=








+∆+

22

2
2

22

2
1

11      (A-18) 

 

Summary of gas flow through a sudden expansion  [28] 

When gas flows steadily through a sudden enlargement, its static pressure drops slightly 

and then increases gradually to a maximum value. This pressure difference is called the 

pressure recovery. The location at which this occurs is called the plane of recovery. For 

non-steady flow, the plane of recovery moves very close to the geometric area change. 

This area change zone is of finite length. However, for analysis purposes, the assumption 

is that the plane of recovery is just downstream of the enlargement and that a quasi-

steady model is satisfactory. Therefore, the heat transfer, internal energy and flow work 

terms disappear from the energy equation. Applying the continuity relation to the energy 

equation, the equation reduces to 

2 2
1

1 22 2
2s s

s s
ch h+ = +

c            (A-19) 

( ) ( )
2 2
1

1 2 1 2 1 21 1
2s s

s s p s s s s
a aRh h C T T T Tγ

γ γ
−

− = − = − =
− −

       (A-20) 

Substituting this condition in (A-19) 

( ) (2 2 2 2
1 5 1 2 5 2 0s s s sc G a c G a+ − + ) =          (A-21) 

( )1 5 01 1 1s i rc G a X X= −   and     ( )2 5 02 2 2s ia X X= − r

)

c G      (A-22) 

(1 01 1 1s i ra a X X= −     and     ( )2 02 2 2s ia a X X= − r       (A-23) 
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Therefore, the energy equation (A-21) becomes 

( )( ) ( ) ( )( ) ( )2 22 22 2
5 01 1 1 5 01 1 1 5 02 2 2 5 02 2 21 1i r i r i r i rG a X X G a X X G a X X G a X X  − + + − − − + + −    

0 =
 

  
This is the equation solved in section 3.4.5.4 - equation 3-71.    (A-24) 

The unknowns are ,  and . 1rX 2rX 02a
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Sudden contraction 
 
 
The governing equations for the sudden contraction case shown in figure A.3 are applied 

to the superposition stations 1 and 2. The particle flow pattern is shown in figure A.4. 

Unlike a sudden expansion, the contracting flow is assumed to smoothly move from 

station 1 to 2 without turbulent vortices and particle flow separation. So the flow is 

assumed isentropic. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure A.3 Sudden contraction in a pipe [13] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.4 Particle flow in a sudden contraction in a pipe [13] 
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With the flow assumed isentropic, 

01 02T T=              (A-25) 

and  

01 02a a=              (A-26) 

Therefore, the number of unknowns reduces to two. The unknowns are  and . 1rX 2rX

 
Continuity 
 
The continuity equation for a quasi-steady one-dimensional flow can be written as  

1m m
• •

= 2            (A-27) 

Mass flow rate = density x area x particle velocity = A cρ × ×      (A-28) 

0 Xρ ρ= ×            (A-29) 

(5 0 i rc G a X X= − )           (A-30) 

With the right direction retained as positive, the continuity equation becomes 

( ) ( )5 5
01 1 1 5 01 1 1 02 2 2 5 02 2 2 0G G

s i r s i rX AG a X X X A G a X Xρ ρ− + − =                  (A-31) 

 

1s i rX X X= + −                                 (A-32) 

The continuity equation reduces to 

( ) ( ) ( ) (5 5

01 1 1 1 5 01 1 1 02 2 2 2 5 02 2 21 1G G
i r i r i r i rX X AG a X X X X A G a X Xρ ρ+ − − + + − − =) 0  

 (A-33) 

Simplifying applying the condition 01 02a a=  

( ) ( ) ( ) ( )5 5
1 1 1 1 1 2 2 2 2 21 1G G
i r i r i r i rX X A X X X X A X X+ − − + + − − = 0     (A-34) 

This is the equation solved in section 3.4.5.4 - equation 3-78. 
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Energy equation (first law of thermodynamics) 

The first law of thermodynamics for an open system can be written as 

 systemsystemsystem W
c

hmdE
c

hmQ δδ +







+∆+=








+∆+

22

2
2

22

2
1

11      (A-35) 

 

Summary of gas flow through a sudden contraction  [28] 

Applying a quasi-steady approach as in sudden expansion, the heat transfer, internal 

energy and flow work terms disappear from the energy equation. Applying the continuity 

relation to the energy equation, the equation reduces to 

2 2
1

1 22 2
2s s

s s
ch h+ = +

c            (A-36) 

( ) ( )
2 2
1

1 2 1 2 1 21 1
2s s

s s p s s s s
a aRh h C T T T Tγ

γ γ
−

− = − = − =
− −

       (A-37) 

Substituting this condition in (A-36) 

( ) (2 2 2 2
1 5 1 2 5 2 0s s s sc G a c G a+ − + ) =

)

         (A-38) 

(1 5 01 1 1s i rc G a X X= −           (A-39) 

(2 5 02 2 2s ic G a X X= − )r

)

         (A-40) 

(1 01 1 1s i ra a X X= −            (A-41) 

(2 02 2 2s ia a X X= − )r

0 =

           (A-42) 

Therefore, the energy equation (A-38) becomes 

( )( ) ( ) ( )( ) ( )2 22 22 2
5 01 1 1 5 01 1 1 5 02 2 2 5 02 2 21 1i r i r i r i rG a X X G a X X G a X X G a X X  − + + − − − + + −    

 

 (A-43) 
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Here             (A-44) 01 02a a=

Therefore, the above equation reduces to 

( ) ( ) ( ) ( )2 2 2
5 1 1 1 1 5 2 2 2 21 1i r i r i r i rG X X X X G X X X X  − + + − − − + + − =  

2 0
   (A-45) 

The unknowns are and . 1rX 2rX

This is the equation solved in section 3.4.5.4 - equation 3-81. 
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Interpolation scheme for wave transmission through a mesh [13] 

The propagation of pressure waves through a mesh and the notations used in the 

derivation is shown in figure A.5. The wave transmission theory is briefly explained in 

section 4.1.2.3. Here the derivation of expressions for the variables pX  and  qX  is 

discussed. 

 
 

 

 

 

 

 

 

 

 

Figure A.5 Propagation of pressure waves in Mesh J [13] 
 

The locations of pressure waves  pX  and  qX  are ‘p’ and ‘q’ respectively. The 

propagation velocities for these waves are defined by  

( )0 6 4 1p pa G X G Xα = − q −

)−

           (A-46) 

(0 6 4 1q q pa G X G Xα = −            (A-47) 

The time required for these waves to reach the ends of the mesh is the time step dt. 
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The distances covered by these waves in this time step are  

p px dtα=              (A-48) 

q qx dtα=                        (A-49) 

 

The dimensional values of px  and qx  relate to the numeric values of pX  and  qX  as 

linear variations of the change of wave pressure between the two ends of the mesh J. 

Therefore, the relations of pX  and  qX  can be derived from 

( )1
p

p R R R

L x
X X X X

L
−

= + −          (A-50) 

( )1 1
q

q L L L

L x
X X X X

L
−

= + −          (A-51) 

Eliminating px  and qx  from the above relations 

(1 0
6 4

1

1R p
p q

R R

X X a dt G X G X
X X L

−
= −

−
)−          (A-52) 

(0
6 4

1

1L q
q p

L L

X X a dt G X G X
X X L

−
= −

−
)−

)R

         (A-53) 

Defining the following variables makes the expressions more convenient 

( 1RA E X X= −           (A-54) 

( 1L L )B E X X= −           (A-55) 

1RXC
A

=            (A-56) 

LXD
B

=            (A-57) 
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0a dtE
L

=            (A-58) 

 

Using these variables, the equations (A-52) and (A-53) become 

6 4
1 1 0p qX G G X C
A

 + − − − = 
 

         (A-59) 

6 4
1 1 0q pX G G X D
B

 + − − − = 
 

         (A-60) 

 

Defining two more variables 

6

4

1

R

G
AF

G

+
=             (A-61) 

6

4

1

L

G
BF

G

+
=              (A-62) 

 

The final expressions employing the above condensed variables are  

 

( )4

1
1

L L
p

R L

D F F CX
G F F
+ + +

=
−

          (A-63) 

( )4

1
1

R R
q

R L

C F F DX
G F F
+ + +

=
−

          (A-64) 
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Rankine-Hugoniot relations across a shock  [13] 

In the computational model, whenever a supersonic velocity is reached at any 

location in a duct, a normal shock is applied to reduce this velocity to a subsonic value. 

This method is called a ‘shock fitting’ scheme in computational fluid dynamics. In this 

scheme, at any instant the particle velocity is calculated, a supersonic check routine is 

called to check the Mach number. If the value of Mach number exceeds 1, the Rankine-

Hugoniot relations are used to calculate the modified pressure amplitudes and reduce the 

particle velocity to a subsonic value. The reason behind this scheme is that in unsteady 

flow the particle velocity cannot exceed the local velocity of the forcing pulse. For the 

pulse, the limiting velocity is the local acoustic velocity. The Rankine-Hugoniot relations 

are applied to this shock to obtain the modified pressure amplitude ratios. 

 Consider two oppositely moving waves with amplitudes 1X  and 2X  in a 

superposition condition. The following relations apply. 

1 2 1sX X X= + −            (A-65) 

0s sa a X=             (A-66) 

(5 0 1 2sc G a X X= − )            (A-67) 

Mach number ( )5 0 1 2

0

s
s

s s

G a X Xc
a a X

−
= =M            (A-68) 

 

If the Mach number exceeds unity the Rankine-Hugoniot relations are applied to the 

waves 1X  and 2X . These relations describe the internal reflections across a shock and 

give the expressions for the new pressure amplitude ratios  and . 1newX 2newX
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The expressions for  and  are 1newX 2newX

4 3
1

1
2newX +Γ +Γ Γ

= 4            (A-69) 

and 

4 3
2

1
2newX +Γ −Γ Γ

= 4           (A-70) 

where 

2

1
2

2
1

2 1
1

s

s

M

M

γ
γ

γ

+
−Γ =
−

−

           (A-71) 

2
2

2
1 1sM

1γ γ
γ γ

−
Γ = −

+ +
          (A-72) 

3
1

2 1
γ −

Γ = Γ            (A-73) 

1
2

4 sX 2

γ
γ
−

Γ = Γ             (A-74) 

 

The new pressures are given by 

7
1 0 1

G
new newp p X=            (A-75) 

7
2 0 2

G
new newp p X=            (A-76) 

   166 



APPENDIX B 

PROGRAM LISTING 

 
' NASA EPSCOR RESEARCH PROJECT - SUMMER 2003 

 
'*********************************************************************** 
' Mechanical and Aerospace Engineering, Oklahoma State University 

' Principal investigator - Dr. Frank.W.Chambers 

' Thesis : One-dimensional analysis techniques for pulsed jet flow distribution   

systems 

' Simulation of transient flow 

' Reference source :   Gordon.P.Blair, Design and Simulation of Four Stroke  

  Engines -  Chapter 2,3, pp 153 - 213 

' Developer  :   Krishnan, Kalyanasundaram - Master of Science student, MAE 

' Dates       :   05/15/2003-12/15/2004 

'*********************************************************************** 
 
Option Explicit    'prompts to declare all variables 
Option Base 1      'prompts all arrays to start from value 1 
 
'Declaration of variables 
 
Public pinlet As Double 
Public T0(300) As Double 
Public dia(300) As Double 
Public pipedia As Double 
Public gamma As Double 
Public gc As Double 
Public F As Double 
Public Tw As Double 
Public p0 As Double 
Public G3 As Double 
Public G4 As Double 
Public G5 As Double
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Public G6 As Double 
Public G7 As Double 
Public G17 As Double 
Public G35 As Double 
Public G67 As Double 
Public Pi As Double 
Public Pratio As Double 
Public Xinlet As Double 
Public Rho0(300) As Double 
Public Area(300) As Double 
Public a0(300) As Double 
Public j As Integer 
Public L(300) As Double 
Public XR(300) As Double 
Public XL(300) As Double 
Public XR1(300) As Double 
Public XL1(300) As Double 
Public Xp(300) As Double 
Public Xq(300) As Double 
Public totaltime As Double 
Public aggtime As Double 
Public dt As Double 
Public Rhozero As Double 
Public azero As Double 
Public n As Integer 
Public alphasR(300) As Double 
Public alphasL(300) As Double 
Public alphasR1(300) As Double 
Public alphasL1(300) As Double 
Public dtL(300) As Double 
Public dtR(300) As Double 
Public dtL1(300) As Double 
Public dtR1(300) As Double 
Public dttemp(300) As Double 
Public dtmin As Double 
Public A(300) As Double 
Public B(300) As Double 
Public C(300) As Double 
Public D(300) As Double 
Public E(300) As Double 
Public FR(300) As Double 
Public FL(300) As Double 
Public Tzero As Double 
Public Xs(300) As Double 
Public ps(300) As Double 
Public Rhos(300) As Double 
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Public Ts(300) As Double 
Public cs(300) As Double 
Public Ck(300) As Double 
Public mhu(300) As Double 
Public Re(300) As Double 
Public Cf(300) As Double 
Public Ch(300) As Double 
Public Areasurf(300) As Double 
Public dQf(300) As Double 
Public dQh(300) As Double 
Public Cp As Double 
Public Cv As Double 
Public X(300) As Double 
Public p(300) As Double 
Public Rho(300) As Double 
Public Temp(300) As Double 
Public ma(300) 
Public mb(300) As Double 
Public Xin(300) As Double 
Public cin(300) As Double 
Public cout(300) As Double 
Public ca(300) As Double 
Public cb(300) As Double 
Public Rhoin(300) As Double 
Public dhin(300) As Double 
Public dmassin(300) As Double 
Public dmassout(300) As Double 
Public denthalpyin(300) As Double 
Public denthalpyout(300) As Double 
Public Xin1(300) As Double 
Public cin1(300) As Double 
Public Rhoin1(300) As Double 
Public dhin1(300) As Double 
Public dmassin1(300) As Double 
Public denthalpyin1(300) As Double 
Public Xin2(300) As Double 
Public cin2(300) As Double 
Public Rhoin2(300) As Double 
Public dhin2(300) As Double 
Public dmassin2(300) As Double 
Public denthalpyin2(300) As Double 
Public Xout3(300) As Double 
Public cout3(300) As Double 
Public Rhoout3(300) As Double 
Public dhout3(300) As Double 
Public dmassout3(300) As Double 
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Public denthalpyout3(300) As Double 
Public Xout4(300) As Double 
Public cout4(300) As Double 
Public Rhoout4(300) As Double 
Public dhout4(300) As Double 
Public dmassout4(300) As Double 
Public denthalpyout4(300) As Double 
Public dU(300) As Double 
Public Ta(300) As Double 
Public Tb(300) As Double 
Public XR1new(300) As Double 
Public XLnew(300) As Double 
Public i As Integer 
Public x1(300) As Double 
Public x2(300) As Double 
Public X2d(300) As Double 
Public X1d(300) As Double 
Public Xfinal(300) As Double 
Public Pfinal(300) As Double 
Public Rhofinal(300) As Double 
Public Tfinal(300) As Double 
Public afinal(300) As Double 
Public cfinal(300) As Double 
Public counter As Integer 
Public Tinlet As Double 
Public ainitial(300) As Double 
Public XRmod As Double 
Public XLmod As Double 
Public casenumber As Integer 
Public n1initial As Double 
Public n1x As Double 
Public Ln1 As Double 
Public n1 As Integer 
Public n2initial As Double 
Public n2x As Double 
Public Ln2 As Double 
Public n2 As Integer 
Public n3initial As Double 
Public n3x As Double 
Public Ln3 As Double 
Public n3 As Integer 
Public L1 As Double 
Public L2 As Double 
Public L3 As Double 
Public d1 As Double 
Public d2 As Double 
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Public d3 As Double 
Public Tp As Double 
Public k As Integer 
Public Xi1 As Double 
Public Xi2 As Double 
Public a01 As Double 
Public T02 As Double 
Public A1 As Double 
Public A2 As Double 
Public Rho01 As Double 
Public Rho02 As Double 
Public Xref1 As Double 
Public Xref2 As Double 
Public a02 As Double 

  171 



'*********************************************************************** 
'SUBROUTINE- INITIALIZATION OF VARIABLES AND READING INPUT 

'This subroutine does all the input reading and initialization 

'*********************************************************************** 
 
Sub input_read() 
 
 'READS ALL INPUT FROM THE INPUT SHEET 
 
    pinlet = Worksheets("input").Cells(8, 3) 'Pa 
    gamma = Worksheets("input").Cells(9, 3) 
    gc = Worksheets("input").Cells(10, 3) 
    F = Worksheets("input").Cells(11, 3) 
    Tw = Worksheets("input").Cells(12, 3) 
    Tp = Worksheets("input").Cells(14, 3) 
     
     
    L1 = Worksheets("input").Cells(21, 3) 'mm 
    L2 = Worksheets("input").Cells(23, 3) 'mm 
    L3 = Worksheets("input").Cells(25, 3) 'mm 
     
    d1 = (Worksheets("input").Cells(22, 3)) / 1000  'M 
    d2 = (Worksheets("input").Cells(24, 3)) / 1000  'M 
    d3 = (Worksheets("input").Cells(26, 3)) / 1000  'M 
     
     
     
    'ASSIGNING CONSTANTS TO BE USED 
         
    p0 = 101325         'reference pressure, Pa 
    Tzero = 293         'reference temperature, K 
    Pi = 22 / 7 
    Cp = 1005           'Specific heat at constant pressure, J/kg K 
    Cv = Cp / gamma     'Specific heat at constant volume, J/kg K 
     
     
    'Calculates all derived functions of gamma 
     
     G3 = (4 - 2 * gamma) / (gamma - 1) 
     G4 = (3 - gamma) / (gamma - 1) 
     G5 = 2 / (gamma - 1) 
     G6 = (gamma + 1) / (gamma - 1) 
     G7 = (2 * gamma) / (gamma - 1) 
     G17 = (gamma - 1) / (2 * gamma) 
     G35 = gamma / (gamma - 1) 
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     G67 = (gamma + 1) / (2 * gamma) 
      
      
     
    'Calculates all derived variables 
     
     Pratio = pinlet / p0 
     Xinlet = Pratio ^ G17 
     Tinlet = Tzero * Xinlet ^ 2 
     Rhozero = p0 / (gc * Tzero) 
     azero = Sqr(gamma * gc * Tzero) 
      
     
'*********************************************************************** 

'MESHING AND INITIALISATION OF VARIABLES 
     
'*********************************************************************** 
      
     'Meshing - sets up the mesh, length, diameter and area of each mesh by calling Mesher   
      subroutine 
      
     Call mesher 
        
      
     'Initialises all the pressure ratios, acoustic velocities, densities for all the meshes 
 
    For j = 1 To n 
      
     'For the first mesh the pressure ratio of wave towards right at left end of mesh 
     'is initialized as Xinlet and for all other meshes initialized as 1 
      
        If j = 1 Then 
            XR(j) = Xinlet 
        Else 
            XR(j) = 1 
        End If 
         
     'For all meshes the pressure ratio of wave towards left at left end of mesh 
     'and pressure ratio of wave towards left and right at right end of mesh 
     'is initialized as 1 
         
        XL(j) = 1 
        XR1(j) = 1 
        XL1(j) = 1 
         
      'The acoustic velocity and density are initialized here 
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        a0(j) = azero 
        Rho0(j) = Rhozero 
        T0(j) = Tzero 
         
         
   Next j 
         
        
'*********************************************************************** 
        'PRINT ALL VARIABLES FROM READ INPUT - INITIAL VALUES 
        
'*********************************************************************** 
         
        Worksheets("output_variables").Cells(5, 3) = XR(1) 
        Worksheets("output_variables").Cells(6, 3) = XR(n1) 
        Worksheets("output_variables").Cells(7, 3) = XR(n1 + 1) 
        Worksheets("output_variables").Cells(8, 3) = XR(n1 + n2) 
        Worksheets("output_variables").Cells(9, 3) = XR(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(10, 3) = XR(n) 
         
        Worksheets("output_variables").Cells(12, 3) = XR1(1) 
        Worksheets("output_variables").Cells(13, 3) = XR1(n1) 
        Worksheets("output_variables").Cells(14, 3) = XR1(n1 + 1) 
        Worksheets("output_variables").Cells(15, 3) = XR1(n1 + n2) 
        Worksheets("output_variables").Cells(16, 3) = XR1(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(17, 3) = XR1(n) 
         
        Worksheets("output_variables").Cells(19, 3) = XL(1) 
        Worksheets("output_variables").Cells(20, 3) = XL(n1) 
        Worksheets("output_variables").Cells(21, 3) = XL(n1 + 1) 
        Worksheets("output_variables").Cells(22, 3) = XL(n1 + n2) 
        Worksheets("output_variables").Cells(23, 3) = XL(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(24, 3) = XL(n) 
                 
        Worksheets("output_variables").Cells(26, 3) = XL1(1) 
        Worksheets("output_variables").Cells(27, 3) = XL1(n1) 
        Worksheets("output_variables").Cells(28, 3) = XL1(n1 + 1) 
        Worksheets("output_variables").Cells(29, 3) = XL1(n1 + n2) 
        Worksheets("output_variables").Cells(30, 3) = XL1(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(31, 3) = XL1(n) 
                 
        Worksheets("output_variables").Cells(33, 3) = Rho0(1) 
        Worksheets("output_variables").Cells(34, 3) = Rho0(n1) 
        Worksheets("output_variables").Cells(35, 3) = Rho0(n1 + 1) 
        Worksheets("output_variables").Cells(36, 3) = Rho0(n1 + n2) 
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        Worksheets("output_variables").Cells(37, 3) = Rho0(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(38, 3) = Rho0(n) 
                 
        Worksheets("output_variables").Cells(40, 3) = a0(1) 
        Worksheets("output_variables").Cells(41, 3) = a0(n1) 
        Worksheets("output_variables").Cells(42, 3) = a0(n1 + 1) 
        Worksheets("output_variables").Cells(43, 3) = a0(n1 + n2) 
        Worksheets("output_variables").Cells(44, 3) = a0(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(45, 3) = a0(n) 
         
        Worksheets("output_variables").Cells(47, 3) = T0(1) 
        Worksheets("output_variables").Cells(48, 3) = T0(n1) 
        Worksheets("output_variables").Cells(49, 3) = T0(n1 + 1) 
        Worksheets("output_variables").Cells(50, 3) = T0(n1 + n2) 
        Worksheets("output_variables").Cells(51, 3) = T0(n1 + n2 + 1) 
        Worksheets("output_variables").Cells(52, 3) = T0(n) 
               
         
          
        For j = 1 To n 
                      
            Worksheets("output_constants").Cells(j + 4, 5) = "L" 
            Worksheets("output_constants").Cells(j + 4, 6) = j 
            Worksheets("output_constants").Cells(j + 4, 7) = L(j) 
                    
            Worksheets("output_constants").Cells(j + 4, 8) = "diameter" 
            Worksheets("output_constants").Cells(j + 4, 9) = j 
            Worksheets("output_constants").Cells(j + 4, 10) = dia(j) 
             
            Worksheets("output_constants").Cells(j + 4, 11) = "C/S Area" 
            Worksheets("output_constants").Cells(j + 4, 12) = j 
            Worksheets("output_constants").Cells(j + 4, 13) = Area(j) 
                    
       Next j 
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'*********************************************************************** 
        'PRINT ALL CONSTANTS FROM READ INPUT 
        
'*********************************************************************** 
                   
        Worksheets("output_constants").Cells(5, 2) = pinlet 
        Worksheets("output_constants").Cells(6, 2) = pipedia 
        Worksheets("output_constants").Cells(7, 2) = gamma 
        Worksheets("output_constants").Cells(8, 2) = gc 
        Worksheets("output_constants").Cells(9, 2) = F 
        Worksheets("output_constants").Cells(10, 2) = Tw 
        Worksheets("output_constants").Cells(11, 2) = p0 
        Worksheets("output_constants").Cells(12, 2) = Tzero 
        Worksheets("output_constants").Cells(13, 2) = Pi 
        Worksheets("output_constants").Cells(14, 2) = Cp 
        Worksheets("output_constants").Cells(15, 2) = Cv 
        Worksheets("output_constants").Cells(16, 2) = Pratio 
        Worksheets("output_constants").Cells(17, 2) = Xinlet 
        Worksheets("output_constants").Cells(18, 2) = Rhozero 
        Worksheets("output_constants").Cells(19, 2) = azero 
         
        Worksheets("output_constants").Cells(24, 2) = G3 
        Worksheets("output_constants").Cells(25, 2) = G4 
        Worksheets("output_constants").Cells(26, 2) = G5 
        Worksheets("output_constants").Cells(27, 2) = G6 
        Worksheets("output_constants").Cells(28, 2) = G7 
        Worksheets("output_constants").Cells(29, 2) = G17 
        Worksheets("output_constants").Cells(30, 2) = G35 
        Worksheets("output_constants").Cells(31, 2) = G67 
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'*********************************************************************** 
'ALL INITIAL PRINTING OF MESH NUMBERS, TIME IS DONE HERE    

'*********************************************************************** 

        'At the start the representative mesh numbers are printed to several sheets 
       
'*********************************************************************** 

'SIMULATION LOOP VARIABLES SHEET    

'*********************************************************************** 

    
       k = 1 
     
       Do While k <= 62 
     
            Worksheets("simulation_loop_variables").Cells(k + 11, 2) = "1" 
            Worksheets("simulation_loop_variables").Cells(k + 12, 2) = n1 
            Worksheets("simulation_loop_variables").Cells(k + 13, 2) = n1 + 1 
            Worksheets("simulation_loop_variables").Cells(k + 14, 2) = n1 + n2 
            Worksheets("simulation_loop_variables").Cells(k + 15, 2) = n1 + n2 + 1 
            Worksheets("simulation_loop_variables").Cells(k + 16, 2) = n 
     
            k = k + 7 
     
       Loop 
     
       k = 67 
     
       Do While k <= 326 
     
            Worksheets("simulation_loop_variables").Cells(k + 11, 2) = "1" 
            Worksheets("simulation_loop_variables").Cells(k + 12, 2) = n1 
            Worksheets("simulation_loop_variables").Cells(k + 13, 2) = n1 + 1 
            Worksheets("simulation_loop_variables").Cells(k + 14, 2) = n1 + n2 
            Worksheets("simulation_loop_variables").Cells(k + 15, 2) = n1 + n2 + 1 
            Worksheets("simulation_loop_variables").Cells(k + 16, 2) = n 
     
            k = k + 7 
     
       Loop 
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'*********************************************************************** 
'OUTPUT VARIABLES SHEET    

'*********************************************************************** 

              
                
         
            k = 1 
             
            Do While k <= 85 
             
                 Worksheets("output_variables").Cells(k + 4, 2) = "1" 
                 Worksheets("output_variables").Cells(k + 5, 2) = n1 
                 Worksheets("output_variables").Cells(k + 6, 2) = n1 + 1 
                 Worksheets("output_variables").Cells(k + 7, 2) = n1 + n2 
                 Worksheets("output_variables").Cells(k + 8, 2) = n1 + n2 + 1 
                 Worksheets("output_variables").Cells(k + 9, 2) = n 
                  
                 k = k + 7 
                  
            Loop         
         
             
    
'*********************************************************************** 

'X,C,T,Rho,P,a,T0_Check SHEETS    

'*********************************************************************** 

         
         
        For i = 1 To n 
                     
            Worksheets("X").Cells(8, i + 3) = i 
            Worksheets("C").Cells(8, i + 3) = i 
            Worksheets("T").Cells(8, i + 3) = i 
            Worksheets("Rho").Cells(8, i + 3) = i 
            Worksheets("P").Cells(8, i + 3) = i 
            Worksheets("a").Cells(8, i + 3) = i 
            Worksheets("T0_Check").Cells(8, i + 3) = i 
         
        Next i 
         
End Sub 
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'*********************************************************************** 
'SIMULATION SUBROUTINE 

'ENTER TIMELOOP TO START SIMULATION    

'*********************************************************************** 

    Sub simulate() 
     
    Call input_read 
     
    Dim Msg, Style, Title, Response 
     
    If d2 < d1 Then 
     
        Msg = "                                                             d2 must be >= d1                                " 
                 
                Style = vbOKOnly 
                Title = "Error" 
                 
                Response = MsgBox(Msg, Style, Title) 
             
                GoTo endofprogram 
     
    End If 
     
     
     
    If d3 > d2 Then 
     
        Msg = "                                                             d3 must be <= d2                                " 
                 

    Style = vbOKOnly 
                Title = "Error" 
                 
                Response = MsgBox(Msg, Style, Title) 
                         
                GoTo endofprogram 
     
    End If 
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'This section evaluates the total time cycle for which the simulation has to be  
 performed and also the aggregate time completed after each time step 
     
        totaltime = 1 / F  'seconds 
        aggtime = 0  'seconds    
             
        
    'Prints all initial values of aggtime and total time to several output sheets 
     
        Worksheets("simulation_loop_variables").Cells(5, 3) = totaltime 
        Worksheets("X").Cells(4, 3) = totaltime 
        Worksheets("C").Cells(4, 3) = totaltime 
        Worksheets("T").Cells(4, 3) = totaltime 
        Worksheets("Rho").Cells(4, 3) = totaltime 
        Worksheets("P").Cells(4, 3) = totaltime 
        Worksheets("a").Cells(4, 3) = totaltime 
        Worksheets("T0_Check").Cells(4, 3) = totaltime 
                        
         
        Worksheets("output_variables").Cells(3, 3) = aggtime 
        Worksheets("X").Cells(10, 2) = aggtime 
        Worksheets("C").Cells(10, 2) = aggtime 
        Worksheets("T").Cells(10, 2) = aggtime 
        Worksheets("Rho").Cells(10, 2) = aggtime 
        Worksheets("P").Cells(10, 2) = aggtime 
        Worksheets("a").Cells(10, 2) = aggtime 
        Worksheets("T0_Check").Cells(10, 2) = aggtime 
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'*********************************************************************** 
'THE MAIN SIMULATION DO LOOP STARTS HERE    

'*********************************************************************** 

   counter = 0     'This is the counter for the time steps completed 
     
   'Do loop until total time is reached 
     
   Do Until aggtime >= totaltime 
 
             
  'Here the pulse generator routine assigns XR for mesh 1 checking aggregate time v/s   
   time of pulse 
             
   Call pulse_generator 
              
             
   'find the superposition velocities at either end of meshes for all meshes 
     
    
'*********************************************************************** 
                          'THE TIME STEP CALCULATION STARTS HERE - dt 

                          'PAGES 259-260 OF BOOK    

'*********************************************************************** 

     
     
        For j = 1 To n 
             
                'find the wave superposition velocities at either ends of the mesh 
                '(text p.178-179, eqn 2.2.9, 2.2.10) 
              
                alphasR(j) = a0(j) * (G6 * XR(j) - G4 * XL(j) - 1) 
                alphasL(j) = -a0(j) * (G6 * XL(j) - G4 * XR(j) - 1) 
                alphasR1(j) = a0(j) * (G6 * XR1(j) - G4 * XL1(j) - 1) 
                alphasL1(j) = -a0(j) * (G6 * XL1(j) - G4 * XR1(j) - 1) 
                 
                 
                'find the times for travel in the meshes (text p.260, eqn 2.20.7) 
                 
                dtL(j) = L(j) / alphasL(j) 
                dtR(j) = L(j) / alphasR(j) 
                dtL1(j) = L(j) / alphasL1(j) 
                dtR1(j) = L(j) / alphasR1(j) 
                 
                'dttemp(j) is the min dt value among the four above dt's for each mesh j 
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                dttemp(j) = Application.WorksheetFunction.Min(Abs(dtL(j)), Abs(dtR(j)),   
                Abs(dtL1(j)), Abs(dtR1(j)))            
                  
             
        Next j 
         
       'CALCULATE TIMESTEP dt 
             
       'find smallest dt among the dt's for all meshes 
               
            dtmin = dttemp(1) 
             
       For j = 2 To n 
             
       'This loop compares the times 'dt' for all the meshes from 1 to n and outputs least dt 
         
                            
                If dtmin < dttemp(j) Then 
                    dtmin = dtmin 
                Else 
                    dtmin = dttemp(j) 
                End If 
                       
       Next j             
                       
       'calculating the actual dt acc eqn 2.20.7 p260 
             
            dt = 0.99 * dtmin 
             
             
       'Here the time step is calculated in each loop and then added to aggregate time 
       'If the difference between total time and aggregate time is less than 'dt' then 
       'this difference value is assigned to 'dt' so as to complete the simulation in 
       'the total time 
         
        If (totaltime - aggtime) >= dt Then 
     
            dt = dt 
        Else 
     
            dt = (totaltime - aggtime) 
             
        End If         
 
            aggtime = aggtime + dt 
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'*********************************************************************** 

'PRINT ALL VARIABLES FROM TIME CALCULATION   

'*********************************************************************** 

    
   'Here the initial counter value is printed to X,C,P,T,Rho,T0_Check sheets 
    
        If counter = 0 Then 
         
            Worksheets("X").Cells(10, 1) = counter 
            Worksheets("C").Cells(10, 1) = counter 
            Worksheets("T").Cells(10, 1) = counter 
            Worksheets("Rho").Cells(10, 1) = counter 
            Worksheets("P").Cells(10, 1) = counter 
            Worksheets("a").Cells(10, 1) = counter 
            Worksheets("T0_Check").Cells(10, 1) = counter 

         
        End If 
         
 'Here the counter, dtmin, dt and aggtime values are printed to the simulation loop   
  variables sheet 
    
    
   If counter < 253 Then 'This is to avoid the program crashing after it has reached the  
     ‘limit of columns of excel sheet for printing 
    
    
        Worksheets("simulation_loop_variables").Cells(6, counter + 3) = counter + 1 
        Worksheets("simulation_loop_variables").Cells(7, counter + 3) = dtmin 
        Worksheets("simulation_loop_variables").Cells(8, counter + 3) = dt 
        Worksheets("simulation_loop_variables").Cells(10, counter + 3) = aggtime 
          
         
        'Here the variables used in 'dt' calculation are printed 
         
        Worksheets("simulation_loop_variables").Cells(12, counter + 3) = alphasR(1) 
        Worksheets("simulation_loop_variables").Cells(13, counter + 3) = alphasR(n1) 
        Worksheets("simulation_loop_variables").Cells(14, counter + 3) = alphasR(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(15, counter + 3) = alphasR(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(16, counter + 3) = alphasR(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(17, counter + 3) = alphasR(n)         
        Worksheets("simulation_loop_variables").Cells(19, counter + 3) = alphasL(1) 
        Worksheets("simulation_loop_variables").Cells(20, counter + 3) = alphasL(n1) 
        Worksheets("simulation_loop_variables").Cells(21, counter + 3) = alphasL(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(22, counter + 3) = alphasL(n1 + n2) 
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        Worksheets("simulation_loop_variables").Cells(23, counter + 3) = alphasL(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(24, counter + 3) = alphasL(n)         
        Worksheets("simulation_loop_variables").Cells(26, counter + 3) = alphasR1(1) 
        Worksheets("simulation_loop_variables").Cells(27, counter + 3) = alphasR1(n1) 
        Worksheets("simulation_loop_variables").Cells(28, counter + 3) = alphasR1(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(29, counter + 3) = alphasR1(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(30, counter + 3) = alphasR1(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(31, counter + 3) = alphasR1(n)           
        Worksheets("simulation_loop_variables").Cells(33, counter + 3) = alphasL1(1) 
        Worksheets("simulation_loop_variables").Cells(34, counter + 3) = alphasL1(n1) 
        Worksheets("simulation_loop_variables").Cells(35, counter + 3) = alphasL1(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(36, counter + 3) = alphasL1(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(37, counter + 3) = alphasL1(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(38, counter + 3) = alphasL1(n) 
         
        Worksheets("simulation_loop_variables").Cells(40, counter + 3) = dtL(1) 
        Worksheets("simulation_loop_variables").Cells(41, counter + 3) = dtL(n1) 
        Worksheets("simulation_loop_variables").Cells(42, counter + 3) = dtL(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(43, counter + 3) = dtL(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(44, counter + 3) = dtL(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(45, counter + 3) = dtL(n)            
         
        Worksheets("simulation_loop_variables").Cells(47, counter + 3) = dtR(1) 
        Worksheets("simulation_loop_variables").Cells(48, counter + 3) = dtR(n1) 
        Worksheets("simulation_loop_variables").Cells(49, counter + 3) = dtR(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(50, counter + 3) = dtR(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(51, counter + 3) = dtR(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(52, counter + 3) = dtR(n)         
         
        Worksheets("simulation_loop_variables").Cells(54, counter + 3) = dtL1(1) 
        Worksheets("simulation_loop_variables").Cells(55, counter + 3) = dtL1(n1) 
        Worksheets("simulation_loop_variables").Cells(56, counter + 3) = dtL1(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(57, counter + 3) = dtL1(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(58, counter + 3) = dtL1(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(59, counter + 3) = dtL1(n)         
         
        Worksheets("simulation_loop_variables").Cells(61, counter + 3) = dtR1(1) 
        Worksheets("simulation_loop_variables").Cells(62, counter + 3) = dtR1(n1) 
        Worksheets("simulation_loop_variables").Cells(63, counter + 3) = dtR1(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(64, counter + 3) = dtR1(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(65, counter + 3) = dtR1(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(66, counter + 3) = dtR1(n) 
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Worksheets("simulation_loop_variables").Cells(68, counter + 3) = dttemp(1) 
        Worksheets("simulation_loop_variables").Cells(69, counter + 3) = dttemp(n1) 
        Worksheets("simulation_loop_variables").Cells(70, counter + 3) = dttemp(n1 + 1) 
        Worksheets("simulation_loop_variables").Cells(71, counter + 3) = dttemp(n1 + n2) 
        Worksheets("simulation_loop_variables").Cells(72, counter + 3) = dttemp(n1 + n2 + 1) 
        Worksheets("simulation_loop_variables").Cells(73, counter + 3) = dttemp(n) 
         
         
   End If 
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'*********************************************************************** 
'THE FIRST LAW THEORY STARTS HERE - TO CALCULATE NEW T0, a0  

'PAGES 271-279 OF BOOK    

'*********************************************************************** 

             
       'CALCULATE VARIABLES FOR THE MESH SPACE - ASSUMED TO BE THE   
       'AVERAGEOF THE SUPERPOSITION VALUES - PAGE 258 
             
             
             
        For j = 1 To n 
         
            X(j) = ((XR(j) + XL(j) - 1) + (XR1(j) + XL1(j) - 1)) / 2    'pressure amplitude ratio 
            p(j) = p0 * X(j) ^ G7                                                'average pressure 
            Rho(j) = Rho0(j) * X(j) ^ G5                                              'Density 
            Temp(j) = T0(j) * X(j) ^ 2                                                  'Temperature 
            Tb(j) = Temp(j) 
            ainitial(j) = a0(j) * X(j) 
            mb(j) = Rho(j) * Area(j) * L(j)                                            'Mass in the mesh 
            cb(j) = G5 * a0(j) * (X(j) - 1) 
         
        Next j 
         
                
     
                 
         
        'PRINTING ALL INITIAL REPRESENTATIVE VALUES 
         
        If counter = 0 Then 
         
            Worksheets("output_variables").Cells(54, 3) = X(1) 
            Worksheets("output_variables").Cells(55, 3) = X(n1) 
            Worksheets("output_variables").Cells(56, 3) = X(n1 + 1) 
            Worksheets("output_variables").Cells(57, 3) = X(n1 + n2) 
            Worksheets("output_variables").Cells(58, 3) = X(n1 + n2 + 1) 
            Worksheets("output_variables").Cells(59, 3) = X(n) 
                     
            Worksheets("output_variables").Cells(61, 3) = p(1) 
            Worksheets("output_variables").Cells(62, 3) = p(n1) 
            Worksheets("output_variables").Cells(63, 3) = p(n1 + 1) 
            Worksheets("output_variables").Cells(64, 3) = p(n1 + n2) 
            Worksheets("output_variables").Cells(65, 3) = p(n1 + n2 + 1) 
            Worksheets("output_variables").Cells(66, 3) = p(n) 
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            Worksheets("output_variables").Cells(68, 3) = Rho(1) 
            Worksheets("output_variables").Cells(69, 3) = Rho(n1) 
            Worksheets("output_variables").Cells(70, 3) = Rho(n1 + 1) 
            Worksheets("output_variables").Cells(71, 3) = Rho(n1 + n2) 
            Worksheets("output_variables").Cells(72, 3) = Rho(n1 + n2 + 1) 
            Worksheets("output_variables").Cells(73, 3) = Rho(n) 
             
            Worksheets("output_variables").Cells(75, 3) = Temp(1) 
            Worksheets("output_variables").Cells(76, 3) = Temp(n1) 
            Worksheets("output_variables").Cells(77, 3) = Temp(n1 + 1) 
            Worksheets("output_variables").Cells(78, 3) = Temp(n1 + n2) 
            Worksheets("output_variables").Cells(79, 3) = Temp(n1 + n2 + 1) 
            Worksheets("output_variables").Cells(80, 3) = Temp(n) 
                     
            Worksheets("output_variables").Cells(82, 3) = ainitial(1) 
            Worksheets("output_variables").Cells(83, 3) = ainitial(n1) 
            Worksheets("output_variables").Cells(84, 3) = ainitial(n1 + 1) 
            Worksheets("output_variables").Cells(85, 3) = ainitial(n1 + n2) 
            Worksheets("output_variables").Cells(86, 3) = ainitial(n1 + n2 + 1) 
            Worksheets("output_variables").Cells(87, 3) = ainitial(n) 
                 
            Worksheets("output_variables").Cells(89, 3) = cb(1) 
            Worksheets("output_variables").Cells(90, 3) = cb(n1) 
            Worksheets("output_variables").Cells(91, 3) = cb(n1 + 1) 
            Worksheets("output_variables").Cells(92, 3) = cb(n1 + n2) 
            Worksheets("output_variables").Cells(93, 3) = cb(n1 + n2 + 1) 
            Worksheets("output_variables").Cells(94, 3) = cb(n) 
                
                
            For j = 1 To n 
                               
               Worksheets("X").Cells(10, j + 3) = X(j) 
               Worksheets("C").Cells(10, j + 3) = cb(j) 
               Worksheets("T").Cells(10, j + 3) = Temp(j) 
               Worksheets("Rho").Cells(10, j + 3) = Rho(j) 
               Worksheets("P").Cells(10, j + 3) = p(j) 
               Worksheets("a").Cells(10, j + 3) = ainitial(j) 
               Worksheets("T0_Check").Cells(10, j + 3) = T0(j) 
                
            Next j 
                
                       
                
        End If 
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'*********************************************************************** 
'HERE WE SELECT A COMBINATION OF CASES FROM THE FOUR CASES 

PP 274-275 ‘BASED ON THE VALUE OFDIFFERENCE IN PRESSURE 

AMPLITUDE RATIOS OF ‘RIGHT AND LEFT WAVES AT BOTH ENDS OF 

THE MESH 

'BOOK PP 274-275       

'*********************************************************************** 

         
         
       'Calls a subroutine "case_selector_1_2" to output case number. If case number is 1, it   
       'corresponds to case I. if 2, it corresponds to case II 
         
        For j = 1 To n 
             
            Call case_selector_1_2(XR(j), XL(j), casenumber) 
            
            
            If casenumber = 1 Then 
                GoTo 1 
            ElseIf casenumber = 2 Then 
                GoTo 2 
            End If 
         
         
1:     'CASE I - OUTFLOW FROM LEFT END - "IN" SIDE OF ALL MESHES 
                              
        
'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED TO   
'BE RECALCULATED 
             
            cin1(j) = G5 * a0(j) * (XR(j) - XL(j))              'Particle velocity 
             
            Call supersonic_check(XR(j), XL(j), XRmod, XLmod) 
             
            XR(j) = XRmod 
            XL(j) = XLmod 
             
             
       'Checks back again for the appropriate case 
             
            Call case_selector_1_2(XR(j), XL(j), casenumber) 
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            If casenumber = 1 Then 
             
                cin1(j) = G5 * a0(j) * (XR(j) - XL(j))              'Particle velocity 
             
            Else 
             
            GoTo 2 
             
            End If 
         
       'CALCULATE ALL VARIABLES 
         
            Xin1(j) = XR(j) + XL(j) - 1                           'Pressure 
            Rhoin1(j) = Rho0(j) * Xin1(j) ^ G5                  'Density 
            dhin1(j) = Cp * Temp(j) + ((cin1(j) ^ 2) / 2)       'Specific enthalpy 
            dmassin1(j) = Rhoin1(j) * Area(j) * cin1(j) * dt     'Mass flow increment 
            denthalpyin1(j) = dhin1(j) * dmassin1(j)             'Enthalpy increment 
             
                   
            dmassin(j) = dmassin1(j) 
            denthalpyin(j) = denthalpyin1(j) 
            cin(j) = cin1(j) 
             
          If casenumber = 1 Then 
           
            GoTo case_selection_3_4 
           
          End If 
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2:     'CASE II - INFLOW FROM LEFT END - "IN" SIDE OF ALL MESHES 
         
 
        If j = 1 Then             
                    
        'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED  
        'TO BE RECALCULATED 
                                 
                cin2(j) = G5 * azero * (XR(j) - XL(j))              'Particle velocity 
                 
                Call supersonic_check(XR(j), XL(j), XRmod, XLmod) 
             
                XR(j) = XRmod 
                XL(j) = XLmod 
                 
                 
       'Checks back again for the appropriate case 
                 
                Call case_selector_1_2(XR(j), XL(j), casenumber) 
             
                If casenumber = 2 Then 
             
                    cin2(j) = G5 * azero * (XR(j) - XL(j))              'Particle velocity 
             
                Else 
             
                GoTo 1 
             
                End If 
                                         
       'CALCULATE ALL VARIABLES 
                 
                Xin2(j) = XR(j) + XL(j) - 1                          'Pressure 
                Rhoin2(j) = Rhozero * Xin2(j) ^ G5                   'Density                 
               dhin2(j) = Cp * Tinlet + ((cin2(j) ^ 2) / 2)            'Specific enthalpy                 
                dmassin2(j) = Rhoin2(j) * Area(j) * cin2(j) * dt    'Mass flow increment 
                denthalpyin2(j) = dhin2(j) * dmassin2(j)             'Enthalpy increment 
             
            Else 
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       'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED  
       ' TO BE RECALCULATED 
                 
                 
                cin2(j) = G5 * a0(j - 1) * (XR(j) - XL(j))          'Particle velocity 
                 
                Call supersonic_check(XR(j), XL(j), XRmod, XLmod) 
             
                XR(j) = XRmod 
                XL(j) = XLmod 
                 
                 
       'Checks back again for the appropriate case 
                 
                Call case_selector_1_2(XR(j), XL(j), casenumber) 
             
                If casenumber = 2 Then 
             
                cin2(j) = G5 * a0(j - 1) * (XR(j) - XL(j))          'Particle velocity 
             
                Else 
             
                GoTo 1 
             
                End If 
                 
                      
       'CALCULATE ALL VARIABLES 
         
                Xin2(j) = XR(j) + XL(j) - 1                         'Pressure 
                Rhoin2(j) = Rho0(j - 1) * Xin2(j) ^ G5              'Density 
                dhin2(j) = Cp * Temp(j - 1) + ((cin2(j) ^ 2) / 2)   'Specific enthalpy 
                dmassin2(j) = Rhoin2(j) * Area(j) * cin2(j) * dt    'Mass flow increment 
                denthalpyin2(j) = dhin2(j) * dmassin2(j)            'Enthalpy increment 
             
             
            End If 
             
             
            dmassin(j) = dmassin2(j) 
            denthalpyin(j) = denthalpyin2(j) 
            cin(j) = cin2(j) 
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case_selection_3_4:       
'*********************************************************************** 
'HERE WE USE A SELECT CASE OPTION FOR THE FOUR CASES AND 

'SELECT THE CORRECT COMBINATION OF CASES BASED ON THE 

'VALUE OF DIFFERENCE IN PRESSURE AMPLITUDE RATIOS OF RIGHT 

'AND LEFT WAVES AT BOTH ENDS OF THE MESH       

'***********************************************************************             

       'Calls a subroutine "case_selector_3_4" to output case number.If case number is 3, it  
        corresponds to case III. if 4, it corresponds to case IV 
         
            Call case_selector_3_4(XR1(j), XL1(j), casenumber) 
             
            If casenumber = 3 Then 
                GoTo 3 
            ElseIf casenumber = 4 Then 
                GoTo 4 
            End If             
             
3:     'CASE III - INFLOW FROM RIGHT END - "OUT" SIDE OF ALL MESHES 
 
            If j = n Then              
                 
       'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED   
        TO BE RECALCULATED 
                 
                cout3(j) = G5 * azero * (XR1(j) - XL1(j))             'Particle velocity 
                 
                Call supersonic_check(XR1(j), XL1(j), XRmod, XLmod) 
             
                XR1(j) = XRmod 
                XL1(j) = XLmod                               
                 
       'Checks back again for the appropriate case 
                 
                Call case_selector_3_4(XR1(j), XL1(j), casenumber) 
             
                If casenumber = 3 Then 
             
                    cout3(j) = G5 * azero * (XR1(j) - XL1(j))             'Particle velocity 
             
                Else             
                GoTo 4             
                            
                End If 
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         'CALCULATE ALL VARIABLES 
         
                Xout3(j) = XR1(j) + XL1(j) - 1                          'Pressure 
                Rhoout3(j) = Rhozero * Xout3(j) ^ G5                    'Density 
                dhout3(j) = Cp * Tzero + ((cout3(j) ^ 2) / 2)           'Specific enthalpy 
                dmassout3(j) = Rhoout3(j) * Area(j) * cout3(j) * dt    'Mass flow increment 
                denthalpyout3(j) = dhout3(j) * dmassout3(j)            'Enthalpy increment 
             
            Else 
     
                                      
       'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED  
        TO BE RECALCULATED 
                 
                cout3(j) = G5 * a0(j + 1) * (XR1(j) - XL1(j))        'Particle velocity 
                 
                Call supersonic_check(XR1(j), XL1(j), XRmod, XLmod) 
             
                XR1(j) = XRmod 
                XL1(j) = XLmod 
                                 
       'Checks back again for the appropriate case 
                 
                Call case_selector_3_4(XR1(j), XL1(j), casenumber) 
             
                If casenumber = 3 Then 
             
                cout3(j) = G5 * a0(j + 1) * (XR1(j) - XL1(j))        'Particle velocity 
             
                Else 
             
                GoTo 4             
                            
                End If                 
                 
       'CALCULATE ALL VARIABLES 
          
          
                Xout3(j) = XR1(j) + XL1(j) - 1                          'Pressure 
                Rhoout3(j) = Rho0(j + 1) * Xout3(j) ^ G5              'Density 
                dhout3(j) = Cp * Temp(j + 1) + ((cout3(j) ^ 2) / 2)        'Specific enthalpy 
                dmassout3(j) = Rhoout3(j) * Area(j) * cout3(j) * dt    'Mass flow increment 
                denthalpyout3(j) = dhout3(j) * dmassout3(j)            'Enthalpy increment 
             
            End If 
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                dmassout(j) = dmassout3(j) 
                denthalpyout(j) = denthalpyout3(j) 
                cout(j) = cout3(j) 
                 
                If casenumber = 3 Then 
                    GoTo firstlaw 
                End If 
               
              
4:     'CASE IV - OUTFLOW FROM RIGHT END - "OUT" SIDE OF ALL MESHES 
             
             
       'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED  
        TO BE RECALCULATED 
                 
                cout4(j) = G5 * a0(j) * (XR1(j) - XL1(j))               'Particle velocity 
                 
                Call supersonic_check(XR1(j), XL1(j), XRmod, XLmod) 
             
                XR1(j) = XRmod 
                XL1(j) = XLmod 
                 
                 
                Call case_selector_3_4(XR1(j), XL1(j), casenumber) 
             
                If casenumber = 4 Then 
             
                cout4(j) = G5 * a0(j) * (XR1(j) - XL1(j))               'Particle velocity 
             
                Else 
             
                GoTo 3             
                            
                End If 
                 
                  
                Xout4(j) = XR1(j) + XL1(j) - 1                            'Pressure 
                Rhoout4(j) = Rho0(j) * Xout4(j) ^ G5                      'Density 
                dhout4(j) = Cp * Temp(j) + ((cout4(j) ^ 2) / 2)            'Specific enthalpy 
                dmassout4(j) = Rhoout4(j) * Area(j) * cout4(j) * dt      'Mass flow increment 
                denthalpyout4(j) = dhout4(j) * dmassout4(j)               'Enthalpy increment 
                 
                         
                dmassout(j) = dmassout4(j) 
                denthalpyout(j) = denthalpyout4(j) 
                cout(j) = cout4(j) 
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firstlaw: 
   
'*********************************************************************** 
   '    APPLICATION OF FIRST LAW OF THERMODYNAMICS FOR EACH  

   '    MESH TO UPDATE REFERENCE TEMPERATURES   

'*********************************************************************** 

             
       'FIRST LAW OF THERMODYNAMICS APPLICATION page 276-277 
             
       'New system mass and velocity in Mesh J derived from the continuity equation 
             
              
            ma(j) = mb(j) + dmassin(j) - dmassout(j) 
            ca(j) = Sqr((cin(j) ^ 2 / 2) + (cout(j) ^ 2 / 2)) 
       
             
       Next j        
        
   
'*********************************************************************** 
 '    PRINT ALL VARIABLES FROM FIRST LAW OF THERMODYNAMICS 

 '    CALCULATION   

'*********************************************************************** 

        
        
       'If counter < 253 Then 'This is to avoid the program crashing after it has reached the  
       'Limit of columns of excel sheet for printing 
        
            For j = 1 To n 
             
             
                 Worksheets("simulation_loop_variables").Cells(78, counter + 3) = X(1) 
                 Worksheets("simulation_loop_variables").Cells(79, counter + 3) = X(n1) 
                 Worksheets("simulation_loop_variables").Cells(80, counter + 3) = X(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(81, counter + 3) = X(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(82, counter + 3) = X(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(83, counter + 3) = X(n) 
                  
                  
                 Worksheets("simulation_loop_variables").Cells(85, counter + 3) = p(1) 
                 Worksheets("simulation_loop_variables").Cells(86, counter + 3) = p(n1) 
                 Worksheets("simulation_loop_variables").Cells(87, counter + 3) = p(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(88, counter + 3) = p(n1 + n2) 
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                 Worksheets("simulation_loop_variables").Cells(89, counter + 3) = p(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(90, counter + 3) = p(n) 
                  
                 Worksheets("simulation_loop_variables").Cells(92, counter + 3) = Rho(1) 
                 Worksheets("simulation_loop_variables").Cells(93, counter + 3) = Rho(n1) 
                 Worksheets("simulation_loop_variables").Cells(94, counter + 3) = Rho(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(95, counter + 3) = Rho(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(96, counter + 3) = Rho(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(97, counter + 3) = Rho(n) 
                  
                                
                 Worksheets("simulation_loop_variables").Cells(99, counter + 3) = Temp(1) 
                 Worksheets("simulation_loop_variables").Cells(100, counter + 3) = Temp(n1) 
                 Worksheets("simulation_loop_variables").Cells(101, counter + 3) = Temp(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(102, counter + 3) = Temp(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(103, counter + 3) = Temp(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(104, counter + 3) = Temp(n) 
                                 
                                 
                 Worksheets("simulation_loop_variables").Cells(106, counter + 3) = mb(1) 
                 Worksheets("simulation_loop_variables").Cells(107, counter + 3) = mb(n1) 
                 Worksheets("simulation_loop_variables").Cells(108, counter + 3) = mb(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(109, counter + 3) = mb(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(110, counter + 3) = mb(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(111, counter + 3) = mb(n) 
                           
                  
                 Worksheets("simulation_loop_variables").Cells(113, counter + 3) = cb(1) 
                 Worksheets("simulation_loop_variables").Cells(114, counter + 3) = cb(n1) 
                 Worksheets("simulation_loop_variables").Cells(115, counter + 3) = cb(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(116, counter + 3) = cb(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(117, counter + 3) = cb(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(120, counter + 3) = cb(n) 
                  
                       
                 Worksheets("simulation_loop_variables").Cells(120, counter + 3) = Xin1(1) 
                 Worksheets("simulation_loop_variables").Cells(121, counter + 3) = Xin1(n1) 
                 Worksheets("simulation_loop_variables").Cells(122, counter + 3) = Xin1(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(123, counter + 3) = Xin1(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(124, counter + 3) = Xin1(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(125, counter + 3) = Xin1(n) 
                  
                        
                 Worksheets("simulation_loop_variables").Cells(127, counter + 3) = cin1(1) 
                 Worksheets("simulation_loop_variables").Cells(128, counter + 3) = cin1(n1) 
                 Worksheets("simulation_loop_variables").Cells(129, counter + 3) = cin1(n1 + 1) 
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                 Worksheets("simulation_loop_variables").Cells(130, counter + 3) = cin1(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(131, counter + 3) = cin1(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(132, counter + 3) = cin1(n) 
                  
                  
                 Worksheets("simulation_loop_variables").Cells(134, counter + 3) = Rhoin1(1) 
                 Worksheets("simulation_loop_variables").Cells(135, counter + 3) = Rhoin1(n1) 
                 Worksheets("simulation_loop_variables").Cells(136, counter + 3) = Rhoin1(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(137, counter + 3) = Rhoin1(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(138, counter + 3) = Rhoin1(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(139, counter + 3) = Rhoin1(n) 
                  
                  
                 Worksheets("simulation_loop_variables").Cells(141, counter + 3) = dhin1(1) 
                 Worksheets("simulation_loop_variables").Cells(142, counter + 3) = dhin1(n1) 
                 Worksheets("simulation_loop_variables").Cells(143, counter + 3) = dhin1(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(144, counter + 3) = dhin1(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(145, counter + 3) = dhin1(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(146, counter + 3) = dhin1(n) 
                       
                              
                 Worksheets("simulation_loop_variables").Cells(148, counter + 3) = dmassin1(1) 
                 Worksheets("simulation_loop_variables").Cells(149, counter + 3) = dmassin1(n1) 
                 Worksheets("simulation_loop_variables").Cells(150, counter + 3) = dmassin1(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(151, counter + 3) = dmassin1(n1 + n2) 
                Worksheets("simulation_loop_variables").Cells(152, counter + 3) = dmassin1(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(153, counter + 3) = dmassin1(n) 
                  
                    
                 Worksheets("simulation_loop_variables").Cells(155, counter + 3) = denthalpyin1(1) 
                 Worksheets("simulation_loop_variables").Cells(156, counter + 3) = denthalpyin1(n1) 
                 Worksheets("simulation_loop_variables").Cells(157, counter + 3) = denthalpyin1(n1 + 1) 
                Worksheets("simulation_loop_variables").Cells(158, counter + 3) = denthalpyin1(n1 + n2) 
                Worksheets("simulation_loop_variables").Cells(159, counter + 3) = denthalpyin1(n1 + n2+1) 
                 Worksheets("simulation_loop_variables").Cells(160, counter + 3) = denthalpyin1(n) 
                  
                       
                 Worksheets("simulation_loop_variables").Cells(162, counter + 3) = Xin2(1) 
                 Worksheets("simulation_loop_variables").Cells(163, counter + 3) = Xin2(n1) 
                 Worksheets("simulation_loop_variables").Cells(164, counter + 3) = Xin2(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(165, counter + 3) = Xin2(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(166, counter + 3) = Xin2(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(167, counter + 3) = Xin2(n) 
                  

                  
                 Worksheets("simulation_loop_variables").Cells(169, counter + 3) = cin2(1) 
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                 Worksheets("simulation_loop_variables").Cells(170, counter + 3) = cin2(n1) 
                 Worksheets("simulation_loop_variables").Cells(171, counter + 3) = cin2(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(172, counter + 3) = cin2(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(173, counter + 3) = cin2(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(174, counter + 3) = cin2(n) 
                             
                  
                 Worksheets("simulation_loop_variables").Cells(176, counter + 3) = Rhoin2(1) 
                 Worksheets("simulation_loop_variables").Cells(177, counter + 3) = Rhoin2(n1) 
                 Worksheets("simulation_loop_variables").Cells(178, counter + 3) = Rhoin2(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(179, counter + 3) = Rhoin2(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(200, counter + 3) = Rhoin2(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(201, counter + 3) = Rhoin2(n) 
                             
                       
                 Worksheets("simulation_loop_variables").Cells(203, counter + 3) = dhin2(1) 
                 Worksheets("simulation_loop_variables").Cells(204, counter + 3) = dhin2(n1) 
                 Worksheets("simulation_loop_variables").Cells(205, counter + 3) = dhin2(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(206, counter + 3) = dhin2(n1 + n2) 
                 Worksheets("simulation_loop_variables").Cells(207, counter + 3) = dhin2(n1 + n2 + 1) 
                 Worksheets("simulation_loop_variables").Cells(208, counter + 3) = dhin2(n) 
                  
                      
                 Worksheets("simulation_loop_variables").Cells(190, counter + 3) = dmassin2(1) 
                 Worksheets("simulation_loop_variables").Cells(191, counter + 3) = dmassin2(n1) 
                 Worksheets("simulation_loop_variables").Cells(192, counter + 3) = dmassin2(n1 + 1) 
                 Worksheets("simulation_loop_variables").Cells(193, counter + 3) = dmassin2(n1 + n2) 
                Worksheets("simulation_loop_variables").Cells(194, counter + 3) = dmassin2(n1 + n2 + 1) 

   Worksheets("simulation_loop_variables").Cells(195, counter + 3) = dmassin2(n) 
                  
  Worksheets("simulation_loop_variables").Cells(197, counter + 3) = denthalpyin2(1)                   
Worksheets("simulation_loop_variables").Cells(198, counter + 3) = denthalpyin2(n1) 
Worksheets("simulation_loop_variables").Cells(199, counter + 3) = denthalpyin2(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(200, counter + 3) = denthalpyin2(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(201, counter + 3) = denthalpyin2(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(202, counter + 3) = denthalpyin2(n) 
                  
                      
 Worksheets("simulation_loop_variables").Cells(204, counter + 3) = Xout3(1) 
 Worksheets("simulation_loop_variables").Cells(205, counter + 3) = Xout3(n1) 
 Worksheets("simulation_loop_variables").Cells(206, counter + 3) = Xout3(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(207, counter + 3) = Xout3(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(208, counter + 3) = Xout3(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(209, counter + 3) = Xout3(n) 
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 Worksheets("simulation_loop_variables").Cells(211, counter + 3) = cout3(1) 
 Worksheets("simulation_loop_variables").Cells(212, counter + 3) = cout3(n1) 
 Worksheets("simulation_loop_variables").Cells(213, counter + 3) = cout3(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(214, counter + 3) = cout3(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(215, counter + 3) = cout3(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(216, counter + 3) = cout3(n) 
                               
                  
 Worksheets("simulation_loop_variables").Cells(220, counter + 3) = Rhoout3(1) 
 Worksheets("simulation_loop_variables").Cells(219, counter + 3) = Rhoout3(n1) 
 Worksheets("simulation_loop_variables").Cells(220, counter + 3) = Rhoout3(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(221, counter + 3) = Rhoout3(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(222, counter + 3) = Rhoout3(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(223, counter + 3) = Rhoout3(n) 

                       
                  

Worksheets("simulation_loop_variables").Cells(225, counter + 3) = dhout3(1) 
Worksheets("simulation_loop_variables").Cells(226, counter + 3) = dhout3(n1) 
Worksheets("simulation_loop_variables").Cells(227, counter + 3) = dhout3(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(228, counter + 3) = dhout3(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(229, counter + 3) = dhout3(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(230, counter + 3) = dhout3(n) 
                  
Worksheets("simulation_loop_variables").Cells(232, counter + 3) = dmassout3(1) 
Worksheets("simulation_loop_variables").Cells(233, counter + 3) = dmassout3(n1) 
Worksheets("simulation_loop_variables").Cells(234, counter + 3) = dmassout3(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(235, counter + 3) = dmassout3(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(236, counter + 3) = dmassout3(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(237, counter + 3) = dmassout3(n) 
                  
                       
Worksheets("simulation_loop_variables").Cells(239, counter + 3) = denthalpyout3(1) 
Worksheets("simulation_loop_variables").Cells(240, counter + 3) =denthalpyout3(n1) 
Worksheets("simulation_loop_variables").Cells(241, counter + 3) = denthalpyout3(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(242, counter + 3) = denthalpyout3(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(243, counter + 3) = denthalpyout3(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(244, counter + 3) = denthalpyout3(n) 
                              
                  
Worksheets("simulation_loop_variables").Cells(246, counter + 3) = Xout4(j) 
Worksheets("simulation_loop_variables").Cells(247, counter + 3) = Xout4(n1) 
Worksheets("simulation_loop_variables").Cells(248, counter + 3) = Xout4(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(249, counter + 3) = Xout4(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(250, counter + 3) = Xout4(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(251, counter + 3) = Xout4(n) 
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 Worksheets("simulation_loop_variables").Cells(253, counter + 3) = cout4(1) 
 Worksheets("simulation_loop_variables").Cells(254, counter + 3) = cout4(n1) 
 Worksheets("simulation_loop_variables").Cells(255, counter + 3) = cout4(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(256, counter + 3) = cout4(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(257, counter + 3) = cout4(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(258, counter + 3) = cout4(n) 
                  
                       
 Worksheets("simulation_loop_variables").Cells(260, counter + 3) = Rhoout4(1) 
 Worksheets("simulation_loop_variables").Cells(261, counter + 3) = Rhoout4(n1) 
 Worksheets("simulation_loop_variables").Cells(262, counter + 3) = Rhoout4(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(263, counter + 3) = Rhoout4(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(264, counter + 3) = Rhoout4(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(265, counter + 3) = Rhoout4(n) 
                  
                  
 Worksheets("simulation_loop_variables").Cells(267, counter + 3) = dhout4(1) 
 Worksheets("simulation_loop_variables").Cells(268, counter + 3) = dhout4(n1) 
 Worksheets("simulation_loop_variables").Cells(269, counter + 3) = dhout4(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(270, counter + 3) = dhout4(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(271, counter + 3) = dhout4(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(272, counter + 3) = dhout4(n) 
                  
                  
 Worksheets("simulation_loop_variables").Cells(274, counter + 3) = dmassout4(1) 
 Worksheets("simulation_loop_variables").Cells(275, counter + 3) = dmassout4(n1) 
 Worksheets("simulation_loop_variables").Cells(276, counter + 3) = dmassout4(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(277, counter + 3) = dmassout4(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(278, counter + 3) = dmassout4(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(279, counter + 3) = dmassout4(n) 
                  
                        
Worksheets("simulation_loop_variables").Cells(281, counter + 3) = denthalpyout4(1) 
Worksheets("simulation_loop_variables").Cells(282, counter + 3) = denthalpyout4(n1) 
Worksheets("simulation_loop_variables").Cells(283, counter + 3) = denthalpyout4(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(284, counter + 3) = denthalpyout4(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(285, counter + 3) = denthalpyout4(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(286, counter + 3) = denthalpyout4(n)                  
                  
                  
  Worksheets("simulation_loop_variables").Cells(288, counter + 3) = dmassin(1) 
  Worksheets("simulation_loop_variables").Cells(289, counter + 3) = dmassin(n1) 
  Worksheets("simulation_loop_variables").Cells(290, counter + 3) = dmassin(n1 + 1) 
  Worksheets("simulation_loop_variables").Cells(291, counter + 3) = dmassin(n1 + n2) 
  Worksheets("simulation_loop_variables").Cells(292, counter + 3) = dmassin(n1 + n2 + 1) 
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  Worksheets("simulation_loop_variables").Cells(293, counter + 3) = dmassin(n) 
                  
                  
  Worksheets("simulation_loop_variables").Cells(295, counter + 3) = dmassout(1) 
  Worksheets("simulation_loop_variables").Cells(296, counter + 3) = dmassout(n1) 
  Worksheets("simulation_loop_variables").Cells(297, counter + 3) = dmassout(n1 + 1) 
  Worksheets("simulation_loop_variables").Cells(298, counter + 3) = dmassout(n1 + n2) 
  Worksheets("simulation_loop_variables").Cells(299, counter + 3) = dmassout(n1 + n2 + 1) 
  Worksheets("simulation_loop_variables").Cells(300, counter + 3) = dmassout(n) 
                  
                  
  Worksheets("simulation_loop_variables").Cells(302, counter + 3) = denthalpyin(1) 
  Worksheets("simulation_loop_variables").Cells(303, counter + 3) = denthalpyin(n1) 
  Worksheets("simulation_loop_variables").Cells(304, counter + 3) = denthalpyin(n1 + 1) 
  Worksheets("simulation_loop_variables").Cells(305, counter + 3) = denthalpyin(n1 + n2) 
  Worksheets("simulation_loop_variables").Cells(306, counter + 3) = denthalpyin(n1 + n2 + 1) 
  Worksheets("simulation_loop_variables").Cells(307, counter + 3) = denthalpyin(n) 
                        
                  
 Worksheets("simulation_loop_variables").Cells(309, counter + 3) = denthalpyout(1) 
 Worksheets("simulation_loop_variables").Cells(310, counter + 3) = denthalpyout(n1) 
 Worksheets("simulation_loop_variables").Cells(311, counter + 3) = denthalpyout(n1 + 1) 
 Worksheets("simulation_loop_variables").Cells(312, counter + 3) = denthalpyout(n1 + n2) 
 Worksheets("simulation_loop_variables").Cells(313, counter + 3) = denthalpyout(n1 + n2 + 1) 
 Worksheets("simulation_loop_variables").Cells(314, counter + 3) = denthalpyout(n) 
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Worksheets("simulation_loop_variables").Cells(316, counter + 3) = cin(j) 
Worksheets("simulation_loop_variables").Cells(317, counter + 3) = cin(n1) 
Worksheets("simulation_loop_variables").Cells(320, counter + 3) = cin(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(319, counter + 3) = cin(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(320, counter + 3) = cin(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(321, counter + 3) = cin(n) 
                  
                              
Worksheets("simulation_loop_variables").Cells(323, counter + 3) = cout(1) 
Worksheets("simulation_loop_variables").Cells(324, counter + 3) = cout(n1) 
Worksheets("simulation_loop_variables").Cells(325, counter + 3) = cout(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(326, counter + 3) = cout(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(327, counter + 3) = cout(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(328, counter + 3) = cout(n) 
                  
                  
Worksheets("simulation_loop_variables").Cells(330, counter + 3) = ma(1) 
Worksheets("simulation_loop_variables").Cells(331, counter + 3) = ma(n1) 
Worksheets("simulation_loop_variables").Cells(332, counter + 3) = ma(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(333, counter + 3) = ma(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(334, counter + 3) = ma(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(335, counter + 3) = ma(n) 
                        
                  
Worksheets("simulation_loop_variables").Cells(337, counter + 3) = ca(1) 
Worksheets("simulation_loop_variables").Cells(338, counter + 3) = ca(n1) 
Worksheets("simulation_loop_variables").Cells(339, counter + 3) = ca(n1 + 1) 
Worksheets("simulation_loop_variables").Cells(340, counter + 3) = ca(n1 + n2) 
Worksheets("simulation_loop_variables").Cells(341, counter + 3) = ca(n1 + n2 + 1) 
Worksheets("simulation_loop_variables").Cells(342, counter + 3) = ca(n) 
                                   
             
 Next j 
               
 End If 
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'***********************************************************************                          

'THE Xp, Xq CALCULATIONS START HERE 

'EVALUATION OF dQf AND dQh IS ALSO DONE HERE 

'PAGES 260-265 OF BOOK    

'*********************************************************************** 

         
                
        For j = 1 To n 
                  
            If XR(j) = XR1(j) And XL(j) = XL1(j) Then 
             
                Xq(j) = XL1(j) 
                Xp(j) = XR1(j) 
                 
                ElseIf XR(j) = XR1(j) Then 
                 
                    E(j) = a0(j) * dt / L(j) 
             
                    B(j) = E(j) * (XL(j) - XL1(j)) 
                    D(j) = XL(j) / B(j) 
             
                    Xp(j) = XR1(j) 
                 
                    Xq(j) = (1 + D(j) + G4 * Xp(j)) / (G6 + (1 / B(j))) 
             
                ElseIf XL(j) = XL1(j) Then 
                 
                    E(j) = a0(j) * dt / L(j) 
                     
                    A(j) = E(j) * (XR1(j) - XR(j)) 
                 
                    C(j) = XR1(j) / A(j) 
                           
             
                    Xq(j) = XL1(j) 
                     
                    Xp(j) = (1 + C(j) + G4 * Xq(j)) / (G6 + (1 / A(j))) 
                 
                Else 
                 
                    E(j) = a0(j) * dt / L(j) 
                     
                    A(j) = E(j) * (XR1(j) - XR(j)) 
                    B(j) = E(j) * (XL(j) - XL1(j)) 
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                    C(j) = XR1(j) / A(j) 
                    D(j) = XL(j) / B(j) 
                     
                    FR(j) = (G6 + (1 / A(j))) / G4 
                    FL(j) = (G6 + (1 / B(j))) / G4 
                 
                 
                    Xp(j) = (1 + D(j) + FL(j) + FL(j) * C(j)) / (G4 * (FR(j) * FL(j) - 1)) 
                     
                    Xq(j) = (1 + C(j) + FR(j) + FR(j) * D(j)) / (G4 * (FR(j) * FL(j) - 1)) 
                 
            End If 
             
                    XR1new(j) = Xp(j) 
                    XLnew(j) = Xq(j) 
                     
        'SUPERPOSITION VARIABLE CALCULATIONS 
              
        'SUPERSONIC CHECK DONE HERE, IF SUPERSONIC THE X VALUES NEED   
        'TO BE RECALCULATED 
                 
                cs(j) = G5 * a0(j) * (Xp(j) - Xq(j))                    'Superposition velocity 
                 
                Call supersonic_check(Xp(j), Xq(j), XRmod, XLmod) 
             
                Xp(j) = XRmod 
                Xq(j) = XLmod 
                 
                cs(j) = G5 * a0(j) * (Xp(j) - Xq(j))                    'Superposition velocity 
                                 
         
           'Calculation of Updated Representative parameters in the mesh is calculated here 
           'The pressure amplitude ratio is assumed to be the average of the superposition 
           'pressures at either end of the mesh 
                     
                     
                    XR1new(j) = Xp(j) 
                    XLnew(j) = Xq(j) 
                     

'pressure amplitude ratio 
                      

        X(j) = ((XR(j) + XLnew(j) - 1) + (XR1new(j) + XL1(j) - 1)) / 2 
        p(j) = p0 * X(j) ^ G7                                            'average pressure 

                    Rho(j) = Rho0(j) * X(j) ^ G5                                     'Density 
                    Temp(j) = T0(j) * X(j) ^ 2                                          'Temperature 
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            'Calculation of Superposition variables for each mesh is done here 
             
                    Xs(j) = Xp(j) + Xq(j) - 1 
                    ps(j) = p0 * Xs(j) ^ G7 
                    Rhos(j) = Rho0(j) * Xs(j) ^ G5 
                    Ts(j) = T0(j) * Xs(j) ^ 2 
              
            'Calculating the Thermal conductivity coefficient,viscosity coefficient 
            'friction factor and Convection heat transfer coefficient from 
            'Superposition Temperature values 
             
             
            'Thermal conductivity 
             
            Ck(j) = 6.1944 * 0.001 + 7.3814 * 0.00001 * Ts(j) - 1.2491 * 0.00000001 * Ts(j) ^ 2  

'W/mK 
             
            'Coefficient of Viscosity 
                                     
            mhu(j) = 0.000007457 + 0.000000041547 * Ts(j) - 7.4793 * (10 ^ -12) * Ts(j) ^ 2  

'kg/ms 
             
            'Reynolds number 
             
            Re(j) = Rhos(j) * dia(j) * cs(j) / (mhu(j)) 
             
             
            'Checking for turbulent or laminar flow and calculating appropriate friction factor 
             
            If Re(j) >= 4000 Then 
                 
                Cf(j) = 0.0791 / (Re(j) ^ 0.25) 
                 
            Else 
             
                Cf(j) = 0.01 
                 
            End If 
             
            Ch(j) = (Ck(j) * Cf(j) * Re(j)) / (2 * dia(j)) 
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 'Here the Heat transfer due to friction and Convective heat transfer from the wall to 
 'the gas is calculated 
             
                         
            Areasurf(j) = Pi * dia(j) * L(j) 'Surface area of wall 
            
 'Heat transfer due to friction 
             
             dQf(j) = Abs(Cf(j) * Areasurf(j) * Rhos(j) * (cs(j) ^ 3) * dt / 2)  
 
'Convective Heat transfer from wall 
        
            dQh(j) = Ch(j) * Areasurf(j) * (Tw - Ts(j)) * dt               
         
        Next j                 
    
'*********************************************************************** 
'THE FIRST LAW CALCULATIONS START HERE                        

'CALCULATING NEW REFERENCE CONDITIONS FOR EACH MESH SPACE 

'PAGES 276-279 OF BOOK    

'***********************************************************************        

         
        For j = 1 To n 
         
            dU(j) = dQf(j) + dQh(j) + denthalpyin(j) - denthalpyout(j) 
             
        Ta(j) = (mb(j) * Tb(j) + ((dU(j) - 0.5 * (ma(j) * ca(j) ^ 2 - mb(j) * cb(j) ^ 2)) / Cv)) / ma(j) 
             
            T0(j) = Ta(j) / X(j) ^ 2        'New reference temperature 
                                     
                         
            Worksheets("T0_Check").Cells(counter + 11, j + 3) = T0(j) 
             
            If T0(j) < 0 Then 
             
                Msg = "                                     T0 value negative                                          " 
                Style = vbOKOnly 
                Title = "Error" 
 
                Response = MsgBox(Msg, Style, Title) 
 
                GoTo endofprogram 
 
            End If 
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           'Here new reference acoustic velocity and density are calculated 
             
            a0(j) = Sqr(gamma * gc * T0(j))  'New reference acoustic velocity 
         
            Rho0(j) = p0 / (gc * T0(j))      'New reference density 
         
         
        Next j            
         
    
'*********************************************************************** 
' THE Xp, Xq CALCULATIONS ARE REDONE HERE TO UPDATE THE 
' PRESSURE AMPLITUDE VALUES WITH NEW 
' ACOUSTIC VELOCITY FOR EACH MESH AS IN PAGES 260-265 OF BOOK 
         
 ' XR1new = XR1 (+/-) friction (+/-) heat transfer effects 
 ' XLnew = XL (+/-) friction (+/-) heat transfer effects 
    
'*********************************************************************** 
         
                
        For j = 1 To n 
                  
            If XR(j) = XR1(j) And XL(j) = XL1(j) Then 
             
                Xq(j) = XL1(j) 
                Xp(j) = XR1(j) 
                 
                ElseIf XR(j) = XR1(j) Then 
                 
                    E(j) = a0(j) * dt / L(j) 
             
                    B(j) = E(j) * (XL(j) - XL1(j)) 
                    D(j) = XL(j) / B(j) 
             
                    Xp(j) = XR1(j) 
                 
                    Xq(j) = (1 + D(j) + G4 * Xp(j)) / (G6 + (1 / B(j))) 
             
                ElseIf XL(j) = XL1(j) Then 
                 
                    E(j) = a0(j) * dt / L(j) 
                     
                    A(j) = E(j) * (XR1(j) - XR(j)) 
                 
                    C(j) = XR1(j) / A(j) 
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                    Xq(j) = XL1(j) 
                    Xp(j) = (1 + C(j) + G4 * Xq(j)) / (G6 + (1 / A(j))) 
                 
                Else 
                 
                    E(j) = a0(j) * dt / L(j) 
                     
                    A(j) = E(j) * (XR1(j) - XR(j)) 
                    B(j) = E(j) * (XL(j) - XL1(j)) 
                    C(j) = XR1(j) / A(j) 
                    D(j) = XL(j) / B(j) 
                     
                    FR(j) = (G6 + (1 / A(j))) / G4 
                    FL(j) = (G6 + (1 / B(j))) / G4 
                 
                 
                    Xp(j) = (1 + D(j) + FL(j) + FL(j) * C(j)) / (G4 * (FR(j) * FL(j) - 1)) 
                    Xq(j) = (1 + C(j) + FR(j) + FR(j) * D(j)) / (G4 * (FR(j) * FL(j) - 1)) 
                 
            End If 
             
                    XR1(j) = Xp(j) 
                    XL(j) = Xq(j) 
         
        Next j 
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'*********************************************************************** 
' THE WAVE REFLECTION AT INTERSECTIONS /EXPANSIONS /    

' CONTRACTIONS/ OPEN END CALCULATIONS START HERE AS 

' IN PAGES 194-195,213-217 OF BOOK    

'*********************************************************************** 

         
        'INTERSECTIONS BETWEEN MESHES (PAGES 194-195) 
         
        For i = 1 To n - 1 
             
    
'*********************************************************************** 
 'HERE THE WAVE EXPANSION AND CONTRACTION ROUTINES ARE  

 ' INCORPORATED 

 ' If d2>d1 then call expansion,d3<d2 call contraction 

 ' IF i = n1 then call expansion, i = n1 + n2 call contraction 

 ' OUTPUT WILL BE REFLECTED PRESSURE WAVE VALUES X1d AND X2d    

'*********************************************************************** 

             
          If i = n1 Then 
             
                If d2 > d1 Then 
                 
                    Call sudden_expansion 
                     
                    XL1(i) = Xref1 
                     
                    XR(i + 1) = Xref2 
                     
                    T0(i + 1) = (a02 ^ 2) / (gamma * gc) 
                     
                    'Here new reference acoustic velocity and density are recalculated 
             
                    a0(i + 1) = Sqr(gamma * gc * T0(i + 1)) 'New reference acoustic velocity 
         
                    Rho0(i + 1) = p0 / (gc * T0(i + 1))  'New reference density 
                                         
                                           
                 Else 
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                 'Assigning values to temporary variables 
                 
                    x1(i) = XR1(i) 
                    x2(i) = XL(i + 1) 
                     
                    'Reflection calculations 
                     
                    X2d(i) = (2 * x2(i) - x1(i) * (1 - ((a0(i) * G5) / (a0(i + 1) * G5)))) / (1 +  

((a0(i) * G5) / (a0(i + 1) * G5))) 
                     
                    X1d(i) = x1(i) + X2d(i) - x2(i) 
                        
                    'Reassigning the reflected values to the appropriate variables 
                     
                    XR(i + 1) = X1d(i) 
                    XL1(i) = X2d(i) 
                                           
                                           
                End If 
                 
            Else 
             
'*********************************************************************** 
             
            If i = (n1 + n2) Then 
 
                If d3 < d2 Then 
 
                    Call sudden_contraction 
 
                    XL1(i) = Xref1 
                     
                    XR(i + 1) = Xref2 
 
                 
                 Else 
 
                 'Assigning values to temporary variables 
 
                    x1(i) = XR1(i) 
                    x2(i) = XL(i + 1) 
 
                    'Reflection calculations 
 
                    X2d(i) = (2 * x2(i) - x1(i) * (1 - ((a0(i) * G5) / (a0(i + 1) * G5)))) / (1 +  

((a0(i) * G5) / (a0(i + 1) * G5))) 
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                    X1d(i) = x1(i) + X2d(i) - x2(i) 
 
                    'Reassigning the reflected values to the appropriate variables 
 
                    XR(i + 1) = X1d(i) 
                    XL1(i) = X2d(i) 
 
                     
                End If 
 
 
 
            Else 
             
                    'Assigning values to temporary variables 
                 
                    x1(i) = XR1(i) 
                    x2(i) = XL(i + 1) 
                     
                    'Reflection calculations 
                     
                    X2d(i) = (2 * x2(i) - x1(i) * (1 - ((a0(i) * G5) / (a0(i + 1) * G5)))) / (1 +  

((a0(i) * G5) / (a0(i + 1) * G5))) 
                     
                    X1d(i) = x1(i) + X2d(i) - x2(i) 
                        
                    'Reassigning the reflected values to the appropriate variables 
                     
                    XR(i + 1) = X1d(i) 
                    XL1(i) = X2d(i) 
                 
              End If 
             
            End If 
             
                                
        Next i 
         
          'OPEN END OF LAST MESH (PAGE 200) 
         
                XL1(n) = 2 - XR1(n) 
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'*********************************************************************** 
' TIMESTEP CALCULATIONS END HERE    

'*********************************************************************** 

         
 ' CALCULATING REPRESENTATIVE VARIABLES FOR EACH MESH 
 ' (FINAL OUTPUT) 
         
        For j = 1 To n 
         
            'pressure amplitude ratio 
             

Xfinal(j) = ((XR(j) + XL(j) - 1) + (XR1(j) + XL1(j) - 1)) / 2 
  

            Pfinal(j) = p0 * Xfinal(j) ^ G7                                  'average pressure 
            Rhofinal(j) = Rho0(j) * Xfinal(j) ^ G5                       'Density 
            Tfinal(j) = T0(j) * Xfinal(j) ^ 2                                'Temperature 
            afinal(j) = a0(j) * Xfinal(j)                                    'Acoustic velocity 
            cfinal(j) = ca(j)                                                 'Particle velocity 
             
             
            'cfinal(j) = G5 * a0(j) * (Xfinal(j) - 1)                       'Velocity 
             
       Next j 
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'*********************************************************************** 
' PRINTING RESULTS TO OUTPUT SHEET    

'*********************************************************************** 

         
        For j = 1 To n 
         
            Worksheets("output").Cells(j + 6, 1) = j 
            Worksheets("output").Cells(j + 6, 2) = Xfinal(j) 
            Worksheets("output").Cells(j + 6, 3) = Pfinal(j) 
            Worksheets("output").Cells(j + 6, 4) = Rhofinal(j) 
            Worksheets("output").Cells(j + 6, 5) = Tfinal(j) 
            Worksheets("output").Cells(j + 6, 6) = afinal(j) 
            Worksheets("output").Cells(j + 6, 7) = cfinal(j) 
             
             
        Next j         
     
    
    
   

'*********************************************************************** 

' PRINTING OUTPUT VARIABLES FOR SELECT MESH LOCATIONS -1, n1, 

n1+1, ' n1+n2,n1+n2+1,n   

'*********************************************************************** 

             
            If counter < 253 Then 
 

 'This is to avoid the program crashing after it has reached the limit                                    
 'of columns of excel sheet for printing 

             
                Worksheets("output_variables").Cells(5, counter + 4) = XR(1) 
                Worksheets("output_variables").Cells(6, counter + 4) = XR(n1) 
                Worksheets("output_variables").Cells(7, counter + 4) = XR(n1 + 1) 
                Worksheets("output_variables").Cells(8, counter + 4) = XR(n1 + n2) 
                Worksheets("output_variables").Cells(9, counter + 4) = XR(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(10, counter + 4) = XR(n) 
                 
                 
                 
                       
                Worksheets("output_variables").Cells(12, counter + 4) = XR1(1) 
                Worksheets("output_variables").Cells(13, counter + 4) = XR1(n1) 
                Worksheets("output_variables").Cells(14, counter + 4) = XR1(n1 + 1) 
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                Worksheets("output_variables").Cells(15, counter + 4) = XR1(n1 + n2) 
                Worksheets("output_variables").Cells(16, counter + 4) = XR1(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(17, counter + 4) = XR1(n) 
                 
                 
                Worksheets("output_variables").Cells(19, counter + 4) = XL(1) 
                Worksheets("output_variables").Cells(20, counter + 4) = XL(n1) 
                Worksheets("output_variables").Cells(21, counter + 4) = XL(n1 + 1) 
                Worksheets("output_variables").Cells(22, counter + 4) = XL(n1 + n2) 
                Worksheets("output_variables").Cells(23, counter + 4) = XL(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(24, counter + 4) = XL(n) 
                 
                Worksheets("output_variables").Cells(26, counter + 4) = XL1(1) 
                Worksheets("output_variables").Cells(27, counter + 4) = XL1(n1) 
                Worksheets("output_variables").Cells(28, counter + 4) = XL1(n1 + 1) 
                Worksheets("output_variables").Cells(29, counter + 4) = XL1(n1 + n2) 
                Worksheets("output_variables").Cells(30, counter + 4) = XL1(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(31, counter + 4) = XL1(n) 
                 
                Worksheets("output_variables").Cells(33, counter + 4) = Rho0(1) 
                Worksheets("output_variables").Cells(34, counter + 4) = Rho0(n1) 
                Worksheets("output_variables").Cells(35, counter + 4) = Rho0(n1 + 1) 
                Worksheets("output_variables").Cells(36, counter + 4) = Rho0(n1 + n2) 
                Worksheets("output_variables").Cells(37, counter + 4) = Rho0(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(38, counter + 4) = Rho0(n) 
                 
                 
                Worksheets("output_variables").Cells(40, counter + 4) = a0(1) 
                Worksheets("output_variables").Cells(41, counter + 4) = a0(n1) 
                Worksheets("output_variables").Cells(42, counter + 4) = a0(n1 + 1) 
                Worksheets("output_variables").Cells(43, counter + 4) = a0(n1 + n2) 
                Worksheets("output_variables").Cells(44, counter + 4) = a0(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(45, counter + 4) = a0(n) 
                 
                Worksheets("output_variables").Cells(47, counter + 4) = T0(1) 
                Worksheets("output_variables").Cells(48, counter + 4) = T0(n1) 
                Worksheets("output_variables").Cells(49, counter + 4) = T0(n1 + 1) 
                Worksheets("output_variables").Cells(50, counter + 4) = T0(n1 + n2) 
                Worksheets("output_variables").Cells(51, counter + 4) = T0(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(52, counter + 4) = T0(n) 
                 
                      
                Worksheets("output_variables").Cells(54, counter + 4) = Xfinal(1) 
                Worksheets("output_variables").Cells(55, counter + 4) = Xfinal(n1) 
                Worksheets("output_variables").Cells(56, counter + 4) = Xfinal(n1 + 1) 
                Worksheets("output_variables").Cells(57, counter + 4) = Xfinal(n1 + n2) 
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                Worksheets("output_variables").Cells(58, counter + 4) = Xfinal(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(59, counter + 4) = Xfinal(n) 
                 
                 
                Worksheets("output_variables").Cells(61, counter + 4) = Pfinal(1) 
                Worksheets("output_variables").Cells(62, counter + 4) = Pfinal(n1) 
                Worksheets("output_variables").Cells(63, counter + 4) = Pfinal(n1 + 1) 
                Worksheets("output_variables").Cells(64, counter + 4) = Pfinal(n1 + n2) 
                Worksheets("output_variables").Cells(65, counter + 4) = Pfinal(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(66, counter + 4) = Pfinal(n) 
                 
                   
                Worksheets("output_variables").Cells(68, counter + 4) = Rhofinal(1) 
                Worksheets("output_variables").Cells(69, counter + 4) = Rhofinal(n1) 
                Worksheets("output_variables").Cells(70, counter + 4) = Rhofinal(n1 + 1) 
                Worksheets("output_variables").Cells(71, counter + 4) = Rhofinal(n1 + n2) 
                Worksheets("output_variables").Cells(72, counter + 4) = Rhofinal(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(73, counter + 4) = Rhofinal(n) 
                 
                 
                Worksheets("output_variables").Cells(75, counter + 4) = Tfinal(1) 
                Worksheets("output_variables").Cells(76, counter + 4) = Tfinal(n1) 
                Worksheets("output_variables").Cells(77, counter + 4) = Tfinal(n1 + 1) 
                Worksheets("output_variables").Cells(78, counter + 4) = Tfinal(n1 + n2) 
                Worksheets("output_variables").Cells(79, counter + 4) = Tfinal(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(80, counter + 4) = Tfinal(n) 
                                       
                 
                Worksheets("output_variables").Cells(82, counter + 4) = afinal(1) 
                Worksheets("output_variables").Cells(83, counter + 4) = afinal(n1) 
                Worksheets("output_variables").Cells(84, counter + 4) = afinal(n1 + 1) 
                Worksheets("output_variables").Cells(85, counter + 4) = afinal(n1 + n2) 
                Worksheets("output_variables").Cells(86, counter + 4) = afinal(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(87, counter + 4) = afinal(n) 
                      
                      
                Worksheets("output_variables").Cells(89, counter + 4) = cfinal(1) 
                Worksheets("output_variables").Cells(90, counter + 4) = cfinal(n1) 
                Worksheets("output_variables").Cells(91, counter + 4) = cfinal(n1 + 1) 
                Worksheets("output_variables").Cells(92, counter + 4) = cfinal(n1 + n2) 
                Worksheets("output_variables").Cells(93, counter + 4) = cfinal(n1 + n2 + 1) 
                Worksheets("output_variables").Cells(94, counter + 4) = cfinal(n) 
                 
            End If 
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For j = 1 To n 
                    
                Worksheets("X").Cells(counter + 11, j + 3) = Xfinal(j) 
                Worksheets("C").Cells(counter + 11, j + 3) = cfinal(j) 
                Worksheets("T").Cells(counter + 11, j + 3) = Tfinal(j) 
                Worksheets("Rho").Cells(counter + 11, j + 3) = Rhofinal(j) 
                Worksheets("P").Cells(counter + 11, j + 3) = Pfinal(j) 
                Worksheets("a").Cells(counter + 11, j + 3) = afinal(j) 
                                      
            Next j             
                         
        counter = counter + 1 
             
            If counter < 253 Then 
             
                Worksheets("output_variables").Cells(3, counter + 3) = aggtime 
             
            End If 
             
            Worksheets("X").Cells(counter + 10, 2) = aggtime 
            Worksheets("C").Cells(counter + 10, 2) = aggtime 
            Worksheets("T").Cells(counter + 10, 2) = aggtime 
            Worksheets("Rho").Cells(counter + 10, 2) = aggtime 
            Worksheets("P").Cells(counter + 10, 2) = aggtime 
            Worksheets("a").Cells(counter + 10, 2) = aggtime 
            Worksheets("T0_Check").Cells(counter + 10, 2) = aggtime 
             
            Worksheets("X").Cells(counter + 10, 1) = counter 
            Worksheets("C").Cells(counter + 10, 1) = counter 
            Worksheets("T").Cells(counter + 10, 1) = counter 
            Worksheets("Rho").Cells(counter + 10, 1) = counter 
            Worksheets("P").Cells(counter + 10, 1) = counter 
            Worksheets("a").Cells(counter + 10, 1) = counter 
            Worksheets("T0_Check").Cells(counter + 10, 1) = counter             
                          
    Loop                     
                 
                Msg = "                                      Solution is done!                                            " 
                Style = vbOKOnly 
                Title = "Simulator" 
                Response = MsgBox(Msg, Style, Title) 
        
endofprogram: 
 
    End Sub 
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'*********************************************************************** 
'MESHER SUBROUTINE 
      
' This routine sets up the mesh. The inputs required are lengths and diameters of   
' individual segments of the geometry. 
      
' The output is the number of meshes for each segment and total number of meshes 
and 
'  length and diameter of each mesh  
'*********************************************************************** 
 
'Here the meshes are as closest as possible in length while maintaining a general purpose 
routine 
 
Sub mesher () 
 
     If L1 > 25 Then 
 
'Here the number of meshes is calculated by dividing segment lengths by 25.Then the 
integer part is taken and subtracted from the actual float value. This is multiplied by 
25mm to get the size of the last mesh. if the difference is zero then the no of meshes is 
equal to the integer part else it is one more than the integer part. 
 
            'eg : for 250mm length n1initial = 10 
                 'n1x = 0, n1 = 10 
 
            '   : for 255mm length n1initial = 10.2 
                 'n1x = 0.2, n1 = 26 
 
 
            n1initial = L1 / 25 
            n1x = n1initial - Int(n1initial) 
 
            
            If n1x = 0 Then 
 
                n1 = Int(n1initial) 
 
            Else 
 
                n1 = Int(n1initial) + 1 
 
            End If 
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For i = 1 To n1 
 
                L(i) = (L1 / n1) * 0.001 
 
            Next i 
 
        Else 
 
            n1 = 1 
            L(n1) = L1 * 0.001 
 
        End If 
 
 
        For i = 1 To n1 
 
            dia(i) = d1 
            Area(i) = Pi * dia(i) ^ 2 / 4 
 
        Next i 
 
'CALCULATES THE MESH LENGTH AND NUMBER OF MESHES FOR SEGMENT 2 
' AND APPENDS THE MESH LENGTH, DIAMETER AND AREA TO GLOBAL MESH   
'  LENGTH ARRAY L(i) AND dia(i) 
 
        

 If L2 > 25 Then 
 
'Here the number of meshes is calculated by dividing segment lengths by 25.Then the 
integer part is taken and subtracted from the actual float value. This is multiplied by 
25mm to get the size of the last mesh. if the difference is zero then the no of meshes is 
equal to the integer part else it is one more than the integer part. 
 
            'eg : for 250mm length n1initial = 10 
                 'n1x = 0, n1 = 10 
 
            '   : for 255mm length n1initial = 10.2 
                 'n1x = 0.2, n1 = 26 

 
n2initial = L2 / 25 

            n2x = n2initial - Int(n2initial) 
 
 
            If n2x = 0 Then 
 
                n2 = Int(n2initial) 
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            Else 
 
                n2 = Int(n2initial) + 1 
 
            End If 
 
            For i = (n1 + 1) To (n1 + n2) 
 
                L(i) = (L2 / n2) * 0.001 
 
            Next i 
 
        Else 
 
            n2 = 1 
            L(n1 + n2) = L2 * 0.001 
 
        End If 
 
        For i = (n1 + 1) To (n1 + n2) 
 
            dia(i) = d2 
            Area(i) = Pi * dia(i) ^ 2 / 4 
 
        Next i 
 
' CALCULATES THE MESH LENGTH AND NUMBER OF MESHES FOR SEGMENT 3 
' AND APPENDS THE MESH LENGTH, DIAMETER AND AREA TO GLOBAL MESH 
' LENGTH ARRAY L(i) AND dia(i) 
 
        If L3 > 25 Then 
 
'Here the number of meshes is calculated by dividing segment lengths by 25.Then the 
integer part is taken and subtracted from the actual float value. This is multiplied by 
25mm to get the size of the last mesh. if the difference is zero then the no of meshes is 
equal to the integer part else it is one more than the integer part. 
 
            'eg : for 250mm length n1initial = 10 
                 'n1x = 0, n1 = 10 
 
            '   : for 255mm length n1initial = 10.2 
                 'n1x = 0.2, n1 = 26 
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n3initial = L3 / 25 
            n3x = n3initial - Int(n3initial) 
 
 
            If n3x = 0 Then 
 
                n3 = Int(n3initial) 
 
            Else 
 
                n3 = Int(n3initial) + 1 
 
            End If 
 
            For i = (n1 + n2 + 1) To (n1 + n2 + n3) 
 
                L(i) = (L3 / n3) * 0.001 
 
            Next i 
 
        Else 
 
            n3 = 1 
            L(n1 + n2 + n3) = L3 * 0.001 
 
        End If 
 
        For i = (n1 + n2 + 1) To (n1 + n2 + n3) 
 
            dia(i) = d3 
            Area(i) = Pi * dia(i) ^ 2 / 4 
 
        Next i 
 
    'CALCULATES THE TOTAL NUMBER OF MESHES 
 
        n = n1 + n2 + n3 
 
 
End Sub 
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'*********************************************************************** 
                            'PULSE GENERATOR SUBROUTINE      

'This routine assigns value to XR(1) by comparing values of aggregate time and time 

of pulse (Tp). 

'If aggregate time is greater than Tp, then XR(1)= 1. Else XR(1) = Xinlet 

'*********************************************************************** 

     
     
    Sub pulse_generator() 
 
        If aggtime > Tp Then 
         
            XR(1) = 1 
         
        Else 
             
            XR(1) = Xinlet 
             
        End If 
 
 
    End Sub 
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'*********************************************************************** 
                            'SUPERSONIC CHECK SUBROUTINE      

'This routine calculates the particle Mach number and checks for supersonic 

condition. 

'If found to be supersonic, modifies the opposite moving pressure wave amplitudes 

for a shock condition and outputs the new amplitudes 

'*********************************************************************** 

         
    Sub supersonic_check(Xa As Double, Xb As Double, Xanew As Double, Xbnew As  

          Double) 
 
 
        'Rankine - Hugoniot equations 
         
        'Xa and Xb are existing Pressure amplitude ratios 
        'Xanew and Xbnew are modified Pressure amplitude ratios 
         
        Dim Xsup As Double 
        Dim Msup As Double 
        Dim tau1 As Double 
        Dim tau2 As Double 
        Dim tau3 As Double 
        Dim tau4 As Double 
         
               
        Xsup = (Xa + Xb - 1) 
        Msup = Abs(G5 * (Xa - Xb) / Xsup) 
         
        If Msup > 1 Then 
         
            tau1 = ((Msup ^ 2) + (2 / (gamma - 1))) / 
                                                                      (((2 * gamma * Msup ^ 2) / (gamma – 1)) - 1) 
             
            tau2 = ((2 * gamma * Msup ^ 2) / (gamma + 1)) - ((gamma - 1) / (gamma + 1)) 
             
            tau3 = (gamma - 1) * (Sqr(tau1)) / 2 
             
            tau4 = Xsup * (tau2 ^ ((gamma - 1) / (2 * gamma))) 
             
             
            Xanew = (1 + tau4 + tau3 * tau4) / 2 
             
            Xbnew = (1 + tau4 - tau3 * tau4) / 2 
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             'new mach number 
             
            Xsup = (Xanew + Xbnew - 1) 
            Msup = Abs(G5 * (Xanew - Xbnew) / Xsup) 
         
        Else 
         
        Xanew = Xa 
        Xbnew = Xb 
         
        End If 
         
    End Sub 
     
'***********************************************************************                         

'CASE SELECTOR SUBROUTINE 

' This routine decides which case is applicable from among the two values possible 

' for the first law application at the "in" side of all meshes. 

'*********************************************************************** 

Sub case_selector_1_2(Xc As Double, Xd As Double, caseno As Integer) 
 
    If (Abs(Xc) - Abs(Xd)) >= 0 Then 
     
        caseno = 2 
     
    Else 
     
        caseno = 1 
         
    End If 
     
End Sub 
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'*********************************************************************** 
                            'CASE SELECTOR SUBROUTINE      

'This routine decides which case is applicable from among the two values possible  

' for the first law application at the "out" side of all meshes. 

'*********************************************************************** 

Sub case_selector_3_4(Xe As Double, Xf As Double, caseno As Integer) 
 
    If (Abs(Xe) - Abs(Xf)) >= 0 Then 
     
        caseno = 4 
     
    Else 
     
        caseno = 3 
         
    End If 
     
End Sub 
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'*********************************************************************** 
'CLEAR SUBROUTINE 

 
'This routine clears all the output cells at user discretion. 

                                     
'*********************************************************************** 
 
Sub clearcells() 
 
    Worksheets("output").Range("A7:G100").ClearContents 
    Worksheets("output_variables").Range("B3: IV94").ClearContents 
    Worksheets("simulation_loop_variables").Range("B5: IV342").ClearContents 
    Worksheets("output_constants").Range("B5: B19").ClearContents 
    Worksheets("output_constants").Range("B24: B31").ClearContents 
    Worksheets("output_constants").Range("E5: M100").ClearContents 
    Worksheets("X").Range("A10: IV1200").ClearContents 
    Worksheets("X").Range("D8: IV8").ClearContents 
    Worksheets("X").Cells(4, 3).ClearContents 
    Worksheets("C").Range("A10: IV1200").ClearContents 
    Worksheets("C").Range("D8: IV8").ClearContents 
    Worksheets("C").Cells(4, 3).ClearContents 
    Worksheets("T").Range("A10: IV1200").ClearContents 
    Worksheets("T").Range("D8: IV8").ClearContents 
    Worksheets("T").Cells(4, 3).ClearContents 
    Worksheets("Rho").Range("A10: IV1200").ClearContents 
    Worksheets("Rho").Range("D8: IV8").ClearContents 
    Worksheets("Rho").Cells(4, 3).ClearContents 
    Worksheets("P").Range("A10: IV1200").ClearContents 
    Worksheets("P").Range("D8: IV8").ClearContents 
    Worksheets("P").Cells(4, 3).ClearContents 
    Worksheets("a").Range("A10: IV1200").ClearContents 
    Worksheets("a").Range("D8: IV8").ClearContents 
    Worksheets("a").Cells(4, 3).ClearContents 
    Worksheets("T0_Check").Range("A10: IV1200").ClearContents 
    Worksheets("T0_Check").Range("D8: IV8").ClearContents 
    Worksheets("T0_Check").Cells(4, 3).ClearContents 
     
 
End Sub 
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'*********************************************************************** 
'               NEWTON-RAPHSON WITH GAUSS-ELIMINATION 

'               EXPANSION IN PIPE AREA - EQNS 2.10.7, 2.10.8, 2.10.9 PP 213-214 

'               PROGRAM FOR SOLUTION OF SYSTEM OF NONLINEAR 

'               EQUATIONS USING NEWTON-RAPHSON ITERATIVE METHOD 

'*********************************************************************** 
 
'Ref Source :   Gordon.P.Blair,Design and simulation of four stroke engines-ch.2 
 
' A subroutine for sudden expansion in pipe area is developed. This routine solves the  
' equations denoted by the equation numbers above. A newton - raphson methodology is 
' used. initial guesses are obtained by benson's method as in pp207 - 208 of ch2. 
 
'The equations are 
 
'CONTINUITY 
 
'Rho01(Xi1+Xr1-1)^G5 A1 G5 a01(Xi1-Xr1) + Rho02(Xi2+Xr2-1)^G5 A2 G5 a02(Xi2-
Xr2) = 0 
 
'FIRST LAW OF THERMODYNAMICS 
 
'[(G5 a01(Xi1-Xr1))^2 + G5 a01^2 (Xi1+Xr1-1)^2 ]- [(G5 a02(Xi2-Xr2))^2 + G5 a02^2 
(Xi2+Xr2-1)^2 ] = 0 
 
'MOMENTUM 
 
'p0 A2 [(Xi1+Xr1-1)^G7 - (Xi2+Xr2-1)^G7 ] + [Rho01(Xi1+Xr1-1)^G5 A1 G5 a01(Xi1-
Xr1) ] 
'                                          x[G5 a01(Xi1-Xr1)+ G5 a02 (Xi2-Xr2)] = 0 
 
 
'The unknowns are Xr1, Xr2, a02. 
 
'Initial guesses by Bensons solution eq 2.9.7 and 2.9.8 is as follows 
 
'Xr1 = [(1-Ar)Xi1 + 2Xi2 Ar ]/[1+Ar] 
 
'Xr2 = [2Xi1-Xi2(1-Ar)]/[1+Ar] 
 
'a02 = sqrt (gamma * R * T02) 
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'Sonic velocity case 
 
'If the Mach number at station1 (Ms1) i.e the smaller pipe exceeds unity it is brought 
back to unity 
'and this directly gives Xr1 and then this value is fed into the next iteration 
 
           
                      
  Sub sudden_expansion() 
   
   
  Xi1 = XR1(n1) 
  Xi2 = XL(n1 + 1) 
  a01 = a0(n1) 
  T02 = T0(n1 + 1) 
   
  A1 = Area(n1) 
  A2 = Area(n1 + 1) 
  Rho01 = Rho0(n1) 
  Rho02 = Rho0(n1 + 1) 
   
  a02 = Sqr(gamma * gc * T02) 
   
   
      'The input variables are Xi1,Xi2,a01,T02,A1,A2,gc,Rho01, Rho02. 
      'The output variables are Xref1,Xref2,a02. 
 
       
       
      'Declaration of variables 
       
      Dim Ar As Double, Ms1 As Double 
       
      Dim n As Integer, m As Integer, i As Integer, j As Integer 
      Dim maxi As Integer, p As Integer, k As Integer 
      Dim AM(3, 4) As Double, XM(3) As Double, HM(3) As Double, DX(3) As Double 
      Dim xmtemp(3) As Double 
       
      'Number of equations 
 
      n = 3 
 
      'Initialising the variables 
 
'Calculation of  initial guesses using benson's approximations 
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        Ar = A2 / A1 
         
        'XM(1) = Xr1 
        'XM(2) = Xr2 
        'XM(3) = a02 
 
'*********************************************************************** 
'Initial guesses by Bensons solution eq 2.9.7 and 2.9.8 is as follows 

'*********************************************************************** 
 
        XM(1) = ((1 - Ar) * Xi1 + 2 * Xi2 * Ar) / (1 + Ar) 'Xr1 
        XM(2) = (2 * Xi1 - Xi2 * (1 - Ar)) / (1 + Ar) 'Xr2 
        XM(3) = Sqr(gamma * gc * T02)   'a02 
  
'Number of iterations 
        maxi = 1000 
        m = n + 1 
        i = 0 
       
'*********************************************************************** 
' HERE THE MACH NUMBER CHECK AT STATION 1 NEEDS TO BE   

' PERFORMED AND XM(1) NEEDS TO BE MODIFIED IF REQD 

'*********************************************************************** 
 
'Mach number check at station 1 - eqn 2.10.10 
 
 
        Ms1 = G5 * (Xi1 - XM(1)) / (Xi1 + XM(1) - 1) 
 
        If Ms1 >= 1 Then 
         
            XM(1) = (1 + G4 * Xi1) / G6 'Xr1 
             
        End If 
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For i = 1 To maxi 
 
'     function evaluation 
 
         Call FUN_EXPN(XM, HM) 
         
          
'     compute partial derivatives 
         Call PAR_EXPN(XM, n, AM) 
 
'     form the matrix by augmenting function values 
      For k = 1 To n 
      AM(k, m) = -HM(k) 
      Next 
 
'     solve the jacobian matrix 
         Call GAUSS_EXPN(AM, n, DX) 
 
'     apply the correction to XM values 
       For k = 1 To n 
          XM(k) = XM(k) + (DX(k)) 
       Next 
           
       i = i + 1 
        
       'Mach number check at station 1 - eqn 2.10.10 
 
 
        Ms1 = G5 * (Xi1 - XM(1)) / (Xi1 + XM(1) - 1) 
 
        If Ms1 >= 1 Then 
         
            XM(1) = (1 + G4 * Xi1) / G6 
             
        End If 
        
       For k = 1 To n 
            If Abs(XM(k) - xmtemp(k)) <= 0.01 Then Exit For 
            xmtemp(k) = XM(k) 
       Next 
        
      ' if xmtemp 
Next i 
 
'     error upon substituting the solution in the equations 
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'      Call FUN_EXPN(XM, HM) 
       
      Xref1 = XM(1) 'Xr1 
      Xref2 = XM(2) 'Xr2 
       
      a02 = XM(3)   'a02 
 
 
End Sub 
 
'*********************************************************************** 
'                   GAUSS ELIMINATION 
'*********************************************************************** 
 
Sub GAUSS_EXPN(AM, n, YM) 
 
     Dim XM(3) As Double 
     Dim ORDC(3) As Double, ORD(3) As Double, qt As Double 
     Dim t As Double, epsil As Double, sum As Double 
     Dim i As Integer, j As Integer, m As Integer, nn As Integer 
     Dim k As Integer, kk As Integer, p As Integer, r As Integer, index As Integer 
     Dim determ As Integer, chec As Integer 
 
     'convergence factor while triangularising the matrix 
 
      epsil = 0.00000001 
      m = n + 1 
      nn = n - 1 
      chec = 1 
 
'     establishing the initial order in the column order vector 
 
      For i = 1 To n 
        ORDC(i) = i 
      Next 
 
'     segment for partial pivoting 
      For p = 1 To nn 
      Call PIVOT_EXPN(AM, n, ORD, ORDC, p) 
 
'     triangularization by eliminating the variables 
 
      kk = p + 1 
      For i = kk To n 
         If (Abs(AM(p, p)) < epsil) Then 
           chec = 0 
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         Else 
           qt = AM(i, p) / AM(p, p) 
         End If 
         For j = p To m 
           AM(i, j) = AM(i, j) - qt * AM(p, j) 
         Next 
        Next 
      Next 
 
'     checking for the singularity of coefficient matrix 
 
      determ = 1 
      For i = 1 To n 
        If ((Abs(AM(i, i)) < epsil) Or (chec = 0)) Then 
         determ = 0 
 
        MsgBox "Coefficient matrix is singular or nearly singular,No Solution exists " 
 
        End If 
      Next 
      If (determ = 1 And chec = 1) Then 
 
'     back substitution 
 
      XM(n) = AM(n, m) / AM(n, n) 
      For i = nn To 1 Step -1 
         sum = 0 
         k = i + 1 
         For j = k To n 
           sum = sum + AM(i, j) * XM(j) 
             Next 
         XM(i) = (AM(i, m) - sum) / AM(i, i) 
          Next 
 
'     rearranging the solution vector 
 
      For i = 1 To n 
         j = ORDC(i) 
         YM(j) = XM(i) 
          Next 
      End If 
 
End Sub 
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'*********************************************************************** 
'                   COMPLETE PIVOTING (Loop in the calling program) 

'*********************************************************************** 
 
Sub PIVOT_EXPN(A, n, ORD, ORDC, i) 
 
      Dim t As Double, tem As Double 
      Dim j As Integer, ii As Integer, jj As Integer 
      Dim col As Integer, row As Integer, p As Integer, r As Integer, m As Integer 
 
'   complete pivoting - finds the biggest value in the whole matrix 
 
    row = i 
    col = i 
    For p = i To n 
      For r = i To n 
        If (Abs(A(row, col)) < Abs(A(p, r))) Then 
          row = p 
          col = r 
        End If 
      Next 
    Next 
 
    If (col <> i) Then 
      For ii = 1 To n 
        tem = A(ii, i) 
        A(ii, i) = A(ii, col) 
        A(ii, col) = tem 
      Next 
      t = ORDC(i) 
      ORDC(i) = ORDC(col) 
      ORDC(col) = t 
    End If 
 
    m = n + 1 
    If (row <> i) Then 
      For jj = 1 To m 
         tem = A(i, jj) 
         A(i, jj) = A(row, jj) 
         A(row, jj) = tem 
      Next 
      t = ORD(i) 
      ORD(i) = ORD(row) 
      ORD(row) = t 
    End If 
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End Sub 
 
'*********************************************************************** 
'                   SUBROUTINE FOR PARTIAL DERIVATIVE 

'*********************************************************************** 
 
Sub PAR_EXPN(X, n, A) 
 
        Dim i As Integer, j As Integer 
 
'     compute partial derivatives and store it in the array A 
 
        For j = 1 To n 
            For i = 1 To n 
            Call DER_EXPN(X, A) 
            Next 
        Next 
 
End Sub 
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'*********************************************************************** 
'                   SUBROUTINE FOR FUNCTION EVALUATION 

'*********************************************************************** 
 
Sub FUN_EXPN(XX, F) 
 
      Dim x1 As Double, x2 As Double, x3 As Double, x4 As Double 
       
 
      x1 = XX(1)    'Xr1 
      x2 = XX(2)    'Xr2 
      x3 = XX(3)    'a02 
       
 
      'Listing the four functions 
 
      F(1) = Rho01 * (Xi1 + x1 - 1) ^ G5 * A1 * G5 * a01 * (Xi1 - x1) +  
                  Rho02 * (Xi2 + x2 - 1) ^ G5 * A2 * G5 * x3 * (Xi2 - x2) 'F(1) = 0 
       
       
      F(2) = ((G5 * a01 * (Xi1 - x1)) ^ 2 + G5 * a01 ^ 2 * (Xi1 + x1 - 1) ^ 2) 
                   - ((G5 * x3 * (Xi2 - x2)) ^ 2 + G5 * x3 ^ 2 * (Xi2 + x2 - 1) ^ 2) 'F(2) = 0 
       
       
       
      F(3) = p0 * A2 * ((Xi1 + x1 - 1) ^ G7 - (Xi2 + x2 - 1) ^ G7) +  
                  (Rho01 * (Xi1 + x1 - 1) ^ G5 * A1 * G5 * a01 * (Xi1 - x1)) * (G5 * a01 *        
                                                                          (Xi1 - x1) + G5 * x3 * (Xi2 - x2)) 'F(3) = 0 
             
       
 
End Sub 
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'*********************************************************************** 
'                   SUBROUTINE FOR EVALUATION OF PARTIAL DERIVATIVES 

'*********************************************************************** 
Sub DER_EXPN(XX, DFDX) 
 
      Dim x1 As Double, x2 As Double, x3 As Double, x4 As Double 
       
      x1 = XX(1)    'Xr1 
      x2 = XX(2)    'Xr2 
      x3 = XX(3)    'a02       
       
             
      DFDX(1, 1) = Rho01 * A1 * G5 * a01 * (-(Xi1 + x1 - 1) ^ G5 +  
                             (Xi1 - x1) * (G5 * (Xi1 + x1 - 1) ^ (G5 - 1))) 'dF1/dX1 
            
      DFDX(1, 2) = Rho02 * A2 * G5 * x3 * (-(Xi2 + x2 - 1) ^ G5 +  
                               (Xi2 - x2) * (G5 * (Xi2 + x2 - 1) ^ (G5 - 1))) 'dF1/dX2 
                 
      DFDX(1, 3) = Rho02 * A2 * G5 * (Xi2 + x2 - 1) ^ G5 * (Xi2 - x2) 'dF1/dX3 
       
       
      DFDX(2, 1) = (-2 * G5 ^ 2 * a01 ^ 2 * (Xi1 - x1) + 
                                                                         2 * G5 * a01 ^ 2 * (Xi1 + x1 - 1)) 'dF2/dX1 
                  
      DFDX(2, 2) = -(-2 * G5 ^ 2 * x3 ^ 2 * (Xi2 - x2) + 
                                                                           2 * G5 * x3 ^ 2 * (Xi2 + x2 - 1)) 'dF2/dX2 
                  
      DFDX(2, 3) = -(2 * G5 ^ 2 * x3 * (Xi2 - x2) ^ 2 + 
                                                                           2 * G5 * x3 * (Xi2 + x2 - 1) ^ 2) 'dF2/dX3 
             
      DFDX(3, 1) = (p0 * A2 * G7 * (Xi1 + x1 - 1) ^ (G7 - 1)) _ 
                    + (Rho01 * A1 * G5 ^ 2 * a01 ^ 2 * (-2 * (Xi1 + x1 - 1) ^ G5 * (Xi1 - x1) +   
                      G5 * (Xi1 - x1) ^ 2 * (Xi1 + x1 - 1) ^ (G5 - 1))) _ 
                    + (Rho01 * A1 * G5 ^ 2 * a01 * x3 * (Xi2 - x2) * (-(Xi1 + x1 - 1) ^ G5 + G5  
                                                                               * (Xi1 - x1) * (Xi1 + x1 - 1) ^ (G5 - 1))) 
                                        
                                                                                                                                 'dF3/dX1 
             
      DFDX(3, 2) = (-p0 * A2 * G7 * (Xi2 + x2 - 1) ^ (G7 - 1)) –  
                               (Rho01 * A1 * G5 ^ 2 * a01 * x3 * (Xi1 + x1 - 1) ^ G5 * (Xi1 - x1))   
                                                                                                                                 'dF3/dX2 
       
      DFDX(3, 3) = Rho01 * A1 * G5 ^ 2 * a01 * (Xi1 + x1 - 1) ^ G5 * (Xi1 - x1) * (Xi2 - 
x2) 'dF3/dX3 
 
End Sub 
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'*********************************************************************** 
'               NEWTON-RAPHSON WITH GAUSS-ELIMINATION 

'               CONTRACTION IN PIPE AREA - EQNS 2.11.7, 2.11.8 PP 217-220 

'               PROGRAM FOR SOLUTION OF SYSTEM OF NONLINEAR 

'               EQUATIONS USING NEWTON-RAPHSON ITERATIVE METHOD 

'*********************************************************************** 
 
'Ref Source :   Gordon.P.Blair, Design and simulation of four stroke engines-ch.2 
 
'A subroutine for sudden expansion in pipe area is developed. This routine solves the 
equations 
'denoted by the equation numbers above. A newton - raphson methodology is used. initial 
guesses are 
'obtained by benson's method as in pp207 - 208 of ch2. 
 
'The equations are 
 
'CONTINUITY 
 
'(Xi1+Xr1-1)^G5 A1(Xi1-Xr1) + (Xi2+Xr2-1)^G5 A2(Xi2-Xr2) = 0 
 
'FIRST LAW OF THERMODYNAMICS 
 
'[G5(Xi1-Xr1)^2 + (Xi1+Xr1-1)^2 ]- [G5 (Xi2-Xr2)^2 + (Xi2+Xr2-1)^2 ] = 0 
 
 
 
'The unknowns are Xr1, Xr2 
 
'Initial guesses by Bensons solution eq 2.9.7 and 2.9.8 is as follows 
 
'Xr1 = [(1-Ar)Xi1 + 2Xi2 Ar ]/[1+Ar] 
 
'Xr2 = [2Xi1-Xi2(1-Ar)]/[1+Ar] 
 
 
'Sonic velocity case 
 
'If the Mach number at station1 (Ms2) i.e the smaller pipe exceeds unity it is brought 
back to unity 
'and this directly gives Xr2 and then this value is fed into the next iteration 
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  Sub sudden_contraction() 
   
   
  Xi1 = XR1(n1 + n2) 
  Xi2 = XL(n1 + n2 + 1) 
     
   
  A1 = Area(n1 + n2) 
  A2 = Area(n1 + n2 + 1) 
   
   
   
      'The input variables are Xi1,Xi2. 
      'The output variables are Xref1,Xref2. 
 
       
       
      'Declaration of variables 
       
       
      Dim Ar As Double, Ms2 As Double 
       
      Dim n As Integer, m As Integer, i As Integer, j As Integer 
      Dim maxi As Integer, p As Integer, k As Integer 
      Dim AM(2, 3) As Double, XM(2) As Double, HM(2) As Double, DX(2) As Double 
      Dim xmtemp(2) As Double 
       
      'Number of equations 
 
      n = 2 
 
      'Initialising the variables 
 
'Calculation of  initial guesses using benson's approximations 
 
 
        Ar = A2 / A1 
         
        'XM(1) = Xr1 
        'XM(2) = Xr2 
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'*********************************************************************** 
'Initial guesses by Bensons solution eq 2.9.7 and 2.9.8 is as follows 

'*********************************************************************** 
 
        XM(1) = ((1 - Ar) * Xi1 + 2 * Xi2 * Ar) / (1 + Ar) 'Xr1 
        XM(2) = (2 * Xi1 - Xi2 * (1 - Ar)) / (1 + Ar) 'Xr2 
         
  
'Number of iterations 
 
        maxi = 100 
        m = n + 1 
        i = 0 
       
'***********************************************************************       

'HERE THE MACH NUMBER CHECK AT STATION 1 NEEDS TO BE 

PERFORMED AND XM(1) NEEDS TO BE MODIFIED IF REQD 

'*********************************************************************** 
 
'Mach number check at station 2 - eqn 2.11.9 
 
 
        Ms2 = G5 * (Xi2 - XM(2)) / (Xi2 + XM(2) - 1) 
 
        If Ms2 >= 1 Then 
         
            XM(2) = (1 + G4 * Xi2) / G6 'Xr1 
             
        End If 
         
 
'Providing the label for the goto statement that follows later 
 
For i = 1 To maxi 
 
 
'     function evaluation 
 
         Call FUN_CONTRN(XM, HM) 
          
'     compute partial derivatives 
 
         Call PAR_CONTRN(XM, n, AM) 
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'     form the matrix by augmenting function values 
 
      For k = 1 To n 
      AM(k, m) = -HM(k) 
      Next 
 
'     solve the jacobian matrix 
 
         Call GAUSS_CONTRN(AM, n, DX) 
 
'     apply the correction to XM values 
 
       For k = 1 To n 
          XM(k) = XM(k) + (DX(k)) 
       Next 
           
       i = i + 1 
        
       'Mach number check at station 2 - eqn 2.11.9 
 
 
        Ms2 = G5 * (Xi2 - XM(2)) / (Xi2 + XM(2) - 1) 
 
        If Ms2 >= 1 Then 
         
            XM(2) = (1 + G4 * Xi2) / G6 'Xr1 
             
        End If 
        
       For k = 1 To n 
          If XM(k) = xmtemp(k) Then Exit For 
          xmtemp(k) = XM(k) 
       Next 
      
Next i 
 
'     error upon substituting the solution in the equations 
 
      Call FUN_CONTRN(XM, HM) 
       
      Xref1 = XM(1) 'Xr1 
      Xref2 = XM(2) 'Xr2 
       
 
 
End Sub 
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'*********************************************************************** 
'                                                  GAUSS ELIMINATION 

'*********************************************************************** 
 
Sub GAUSS_CONTRN(AM, n, YM) 
 
     Dim XM(2) As Double 
     Dim ORDC(2) As Double, ORD(2) As Double, qt As Double 
     Dim t As Double, epsil As Double, sum As Double 
 
     Dim i As Integer, j As Integer, m As Integer, nn As Integer 
     Dim k As Integer, kk As Integer, p As Integer, r As Integer, index As Integer 
     Dim determ As Integer, chec As Integer 
 
     'convergence factor while triangularising the matrix 
 
      epsil = 0.00000001 
      m = n + 1 
      nn = n - 1 
      chec = 1 
 
'     establishing the initial order in the column order vector 
 
      For i = 1 To n 
        ORDC(i) = i 
      Next 
 
'     segment for partial pivoting 
 
      For p = 1 To nn 
      Call PIVOT_CONTRN(AM, n, ORD, ORDC, p) 
 
'     triangularization by eliminating the variables 
 
      kk = p + 1 
      For i = kk To n 
         If (Abs(AM(p, p)) < epsil) Then 
           chec = 0 
         Else 
           qt = AM(i, p) / AM(p, p) 
         End If 
         For j = p To m 
           AM(i, j) = AM(i, j) - qt * AM(p, j) 
         Next 
        Next 
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      Next 
 
'     checking for the singularity of coefficient matrix 
 
      determ = 1 
      For i = 1 To n 
        If ((Abs(AM(i, i)) < epsil) Or (chec = 0)) Then 
         determ = 0 
 
        MsgBox "Coefficient matrix is singular or nearly singular,No Solution exists " 
 
        End If 
      Next 
      If (determ = 1 And chec = 1) Then 
 
'     back substitution 
 
      XM(n) = AM(n, m) / AM(n, n) 
      For i = nn To 1 Step -1 
         sum = 0 
         k = i + 1 
         For j = k To n 
           sum = sum + AM(i, j) * XM(j) 
             Next 
         XM(i) = (AM(i, m) - sum) / AM(i, i) 
          Next 
 
'     rearranging the solution vector 
 
      For i = 1 To n 
         j = ORDC(i) 
         YM(j) = XM(i) 
          Next 
      End If 
 
End Sub 
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'*********************************************************************** 
'                       COMPLETE PIVOTING (Loop in the calling program) 

'*********************************************************************** 
Sub PIVOT_CONTRN(A, n, ORD, ORDC, i) 
 
      Dim t As Double, tem As Double 
      Dim j As Integer, ii As Integer, jj As Integer 
      Dim col As Integer, row As Integer, p As Integer, r As Integer, m As Integer 
 
'   complete pivoting - finds the biggest value in the whole matrix 
 
    row = i 
    col = i 
    For p = i To n 
      For r = i To n 
        If (Abs(A(row, col)) < Abs(A(p, r))) Then 
          row = p 
          col = r 
        End If 
      Next 
    Next 
 
    If (col <> i) Then 
      For ii = 1 To n 
        tem = A(ii, i) 
        A(ii, i) = A(ii, col) 
        A(ii, col) = tem 
      Next 
      t = ORDC(i) 
      ORDC(i) = ORDC(col) 
      ORDC(col) = t 
    End If 
 
    m = n + 1 
    If (row <> i) Then 
      For jj = 1 To m 
         tem = A(i, jj) 
         A(i, jj) = A(row, jj) 
         A(row, jj) = tem 
      Next 
      t = ORD(i) 
      ORD(i) = ORD(row) 
      ORD(row) = t 
    End If 
 
End Sub 
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'*********************************************************************** 
'                                 SUBROUTINE FOR PARTIAL DERIVATIVE 

'*********************************************************************** 
 
Sub PAR_CONTRN(X, n, A) 
 
        Dim i As Integer, j As Integer 
 
'     compute partial derivatives and store it in the array A 
 
        For j = 1 To n 
            For i = 1 To n 
            Call DER_CONTRN(X, A) 
            Next 
        Next 
 
End Sub 
 
'*********************************************************************** 
'                            SUBROUTINE FOR FUNCTION EVALUATION 

'*********************************************************************** 
 
Sub FUN_CONTRN(XX, F) 
 
      Dim x1 As Double, x2 As Double 
       
 
      x1 = XX(1)    'Xr1 
      x2 = XX(2)    'Xr2 
       
       
 
      'Listing the four functions 
 
      F(1) = (Xi1 + x1 - 1) ^ G5 * A1 * (Xi1 - x1) + (Xi2 + x2 - 1) ^ G5 * A2 * (Xi2 - x2) 
'F(1) = 0 
       
       
      F(2) = (G5 * (Xi1 - x1) ^ 2 + (Xi1 + x1 - 1) ^ 2) - (G5 * (Xi2 - x2) ^ 2 + (Xi2 + x2 - 
1) ^ 2) 'F(2) = 0 
               
       
 
End Sub 

  243 



  244 

 
'*********************************************************************** 
'                   SUBROUTINE FOR EVALUATION OF PARTIAL DERIVATIVES 

'*********************************************************************** 
 
Sub DER_CONTRN(XX, DFDX) 
 
      Dim x1 As Double, x2 As Double 
       
      x1 = XX(1)    'Xr1 
      x2 = XX(2)    'Xr2 
             
       
             
      DFDX(1, 1) = A1 * (-(Xi1 + x1 - 1) ^ G5 + (Xi1 - x1) * G5 * (Xi1 + x1 - 1) ^ (G5 - 
1)) 'dF1/dX1 
            
      DFDX(1, 2) = A2 * (-(Xi2 + x2 - 1) ^ G5 + (Xi2 - x2) * G5 * (Xi2 + x2 - 1) ^ (G5 - 
1)) 'dF1/dX2 
                 
       
       
       
      DFDX(2, 1) = -2 * G5 * (Xi1 - x1) + 2 * (Xi1 + x1 - 1) 'dF2/dX1 
                  
      DFDX(2, 2) = -(-2 * G5 * (Xi2 - x2) + 2 * (Xi2 + x2 - 1)) 'dF2/dX2 
                  
       
       
 
 
End Sub 
 
 
 



APPENDIX C 

Detailed Results 

Input parameters for Virtual 4 Stroke® software test case 
 
The input parameters for the Virtual 4 Stroke® software test case discussed in section 5.2 

are tabulated below. 

 
Engine details

Overview

Engine.OriginalID PROD00.00000020
Engine.Description EXPMODEL2
Engine.Ambients.Ambient(1).Name Int1
Engine.Ambients.Ambient(2).Name Exh1
Engine.Connections.Connection(1).LeftSideComponentCode 1
Engine.Connections.Connection(1).LeftSideComponentName Int1
Engine.Connections.Connection(1).RightSideComponentCode 2
Engine.Connections.Connection(1).RightSideComponentName Int1
Engine.Connections.Connection(1).X1 864
Engine.Connections.Connection(1).Y1 576
Engine.Connections.Connection(1).X2 2016
Engine.Connections.Connection(1).Y2 576
Engine.Connections.Connection(2).LeftSideComponentCode 2
Engine.Connections.Connection(2).LeftSideComponentName Int1
Engine.Connections.Connection(2).RightSideComponentCode 13
Engine.Connections.Connection(2).RightSideComponentName Inv1
Engine.Connections.Connection(2).X1 2016
Engine.Connections.Connection(2).Y1 576
Engine.Connections.Connection(2).X2 3168
Engine.Connections.Connection(2).Y2 576
Engine.Connections.Connection(3).LeftSideComponentCode 13
Engine.Connections.Connection(3).LeftSideComponentName Inv1
Engine.Connections.Connection(3).RightSideComponentCode 6
Engine.Connections.Connection(3).RightSideComponentName TEST
Engine.Connections.Connection(3).X1 3168
Engine.Connections.Connection(3).Y1 576
Engine.Connections.Connection(3).X2 4032
Engine.Connections.Connection(3).Y2 1152
Engine.Connections.Connection(4).LeftSideComponentCode 13
Engine.Connections.Connection(4).LeftSideComponentName Exv1
Engine.Connections.Connection(4).RightSideComponentCode 2
Engine.Connections.Connection(4).RightSideComponentName Exh1
Engine.Connections.Connection(4).X1 5184
Engine.Connections.Connection(4).Y1 576
Engine.Connections.Connection(4).X2 6336
Engine.Connections.Connection(4).Y2 576
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Overview (cont'd)

Engine.Connections.Connection(5).LeftSideComponentCode 6
Engine.Connections.Connection(5).LeftSideComponentName TEST
Engine.Connections.Connection(5).RightSideComponentCode 13
Engine.Connections.Connection(5).RightSideComponentName Exv1
Engine.Connections.Connection(5).X1 4032
Engine.Connections.Connection(5).Y1 1152
Engine.Connections.Connection(5).X2 5184
Engine.Connections.Connection(5).Y2 576
Engine.Connections.Connection(6).LeftSideComponentCode 2
Engine.Connections.Connection(6).LeftSideComponentName Exh1
Engine.Connections.Connection(6).RightSideComponentCode 1
Engine.Connections.Connection(6).RightSideComponentName Exh1
Engine.Connections.Connection(6).X1 6336
Engine.Connections.Connection(6).Y1 576
Engine.Connections.Connection(6).X2 7488
Engine.Connections.Connection(6).Y2 576
Engine.Connections.Connection(7).LeftSideComponentCode 1
Engine.Connections.Connection(7).LeftSideComponentName Exh1
Engine.Connections.Connection(7).RightSideComponentCode 0
Engine.Connections.Connection(7).RightSideComponentName 0
Engine.Connections.Connection(7).X1 7488
Engine.Connections.Connection(7).Y1 576
Engine.Connections.Connection(7).X2 0
Engine.Connections.Connection(7).Y2 0

 

Table C-1. Overview of Engine input parameters for software test case
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Cylinder details

Engine.Cylinders.Cylinder(1).Name TEST
Engine.Cylinders.TEST.ClosedCycle.CombustionEfficiency 0.85
Engine.Cylinders.TEST.ClosedCycle.IgnitionDelay 13
Engine.Cylinders.TEST.ClosedCycle.IgnitionDuration 44
Engine.Cylinders.TEST.ClosedCycle.IgnitionTiming -27
Engine.Cylinders.TEST.ClosedCycle.TrappedAirFuelRatio 12
Engine.Cylinders.TEST.ClosedCycle.WiebeA 6.02
Engine.Cylinders.TEST.ClosedCycle.WiebeM 1.64
Engine.Cylinders.TEST.ClosedCycle.IsBurnByUser 0
Engine.Cylinders.TEST.ClosedCycle.IsDebug 0
Engine.Cylinders.TEST.ClosedCycle.IsSynch 0
Engine.Cylinders.TEST.ConnectingRod.Diameter 0
Engine.Cylinders.TEST.ConnectingRod.Length 0.148
Engine.Cylinders.TEST.Piston.CompressionHeight 0.04
Engine.Cylinders.TEST.Piston.Height 0.08
Engine.Cylinders.TEST.Piston.InitialTemperature 300
Engine.Cylinders.TEST.Bore 0.088
Engine.Cylinders.TEST.Stroke 0.082
Engine.Cylinders.TEST.FrictionFactor 350
Engine.Cylinders.TEST.FrictionConstant 100000
Engine.Cylinders.TEST.SquishClearance 0.00125
Engine.Cylinders.TEST.ClearanceVolume 0.00003788
Engine.Cylinders.TEST.HeadSurfaceFactor 1.5
Engine.Cylinders.TEST.InitialGasPresFactor 4
Engine.Cylinders.TEST.InitialGasTemp 927
Engine.Cylinders.TEST.WallTemp 150
Engine.Cylinders.TEST.HeadTemp 300
Engine.Cylinders.TEST.HeadType 4 Stroke 2 Valve
Engine.Model.Model Unknown
Engine.Model.Year 0
Engine.Model.Manufacturer Unknown

 

 

Table C-2. Cylinder input parameters for software test case 
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Manifold details

Inlet piping

Engine.Pipes.Pipe(1).Name Int1
Engine.Pipes.Int1.Sections.Section(1).EntranceDiameter 0.05
Engine.Pipes.Int1.Sections.Section(1).ExitDiameter 0.0381
Engine.Pipes.Int1.Sections.Section(1).RestrictionDiameter 0
Engine.Pipes.Int1.Sections.Section(1).Length 0.04
Engine.Pipes.Int1.Sections.Section(1).ForcesContinuity -1
Engine.Pipes.Int1.Sections.Section(2).EntranceDiameter 0.0381
Engine.Pipes.Int1.Sections.Section(2).ExitDiameter 0.0381
Engine.Pipes.Int1.Sections.Section(2).RestrictionDiameter 0
Engine.Pipes.Int1.Sections.Section(2).Length 0.175
Engine.Pipes.Int1.Sections.Section(2).ForcesContinuity -1
Engine.Pipes.Int1.Sections.Section(3).EntranceDiameter 0.0381
Engine.Pipes.Int1.Sections.Section(3).ExitDiameter 0.0381
Engine.Pipes.Int1.Sections.Section(3).RestrictionDiameter 0
Engine.Pipes.Int1.Sections.Section(3).Length 0.1
Engine.Pipes.Int1.Sections.Section(3).ForcesContinuity -1
Engine.Pipes.Int1.Thickness 0.002
Engine.Pipes.Int1.InitialPurity 1
Engine.Pipes.Int1.WallTemp 30
Engine.Pipes.Int1.GasTemp 25

Exhaust piping

Engine.Pipes.Pipe(2).Name Exh1
Engine.Pipes.Exh1.Sections.Section(1).EntranceDiameter 0.0069
Engine.Pipes.Exh1.Sections.Section(1).ExitDiameter 0.0069
Engine.Pipes.Exh1.Sections.Section(1).RestrictionDiameter 0
Engine.Pipes.Exh1.Sections.Section(1).Length 0.08
Engine.Pipes.Exh1.Sections.Section(1).ForcesContinuity -1
Engine.Pipes.Exh1.Sections.Section(2).EntranceDiameter 0.0069
Engine.Pipes.Exh1.Sections.Section(2).ExitDiameter 0.0157
Engine.Pipes.Exh1.Sections.Section(2).RestrictionDiameter 0
Engine.Pipes.Exh1.Sections.Section(2).Length 0.001
Engine.Pipes.Exh1.Sections.Section(2).ForcesContinuity -1
Engine.Pipes.Exh1.Sections.Section(3).EntranceDiameter 0.0157
Engine.Pipes.Exh1.Sections.Section(3).ExitDiameter 0.0157
Engine.Pipes.Exh1.Sections.Section(3).RestrictionDiameter 0
Engine.Pipes.Exh1.Sections.Section(3).Length 0.135
Engine.Pipes.Exh1.Sections.Section(3).ForcesContinuity -1
Engine.Pipes.Exh1.Sections.Section(4).EntranceDiameter 0.0157
Engine.Pipes.Exh1.Sections.Section(4).ExitDiameter 0.0069
Engine.Pipes.Exh1.Sections.Section(4).RestrictionDiameter 0
Engine.Pipes.Exh1.Sections.Section(4).Length 0.001
Engine.Pipes.Exh1.Sections.Section(4).ForcesContinuity -1
Engine.Pipes.Exh1.Sections.Section(5).EntranceDiameter 0.0069
Engine.Pipes.Exh1.Sections.Section(5).ExitDiameter 0.0069
Engine.Pipes.Exh1.Sections.Section(5).RestrictionDiameter 0
Engine.Pipes.Exh1.Sections.Section(5).Length 0.08
Engine.Pipes.Exh1.Sections.Section(5).ForcesContinuity -1
Engine.Pipes.Exh1.Thickness 0.002
Engine.Pipes.Exh1.InitialPurity 1
Engine.Pipes.Exh1.WallTemp 350
Engine.Pipes.Exh1.GasTemp 600

 
 
 

Table C-3. Manifold input parameters for software test case 
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Valve details

Intake valve details

Engine.PoppetValveSystems.PoppetValveSystem(1).Name Inv1
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).OuterSeatDiameter 0.0502
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).InnerSeatDiameter 0.0482
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).SeatAngle 45
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).StemDiameter 0.0079
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).PortDiameter 0.0472
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).ManifoldDiameter 0.0381
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).ValveOpen 305
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).ValveClose 616
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).RampUpPeriod 40
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).RampUpRatio 0.2
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).RampDownPeriod 40
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).RampDownRatio 0.2
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).MaxLift 0.012
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).Count 1
Engine.PoppetValveSystems.Inv1.PoppetValves.PoppetValve(1).CDMapName Masked

Exhaust valve details

Engine.PoppetValveSystems.PoppetValveSystem(2).Name Exv1
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).OuterSeatDiameter 0.0413
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).InnerSeatDiameter 0.0393
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).SeatAngle 45
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).StemDiameter 0.0111
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).PortDiameter 0.0385
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).ManifoldDiameter 0.0413
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).ValveOpen 195
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).ValveClose 355
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).RampUpPeriod 40
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).RampUpRatio 0.2
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).RampDownPeriod 40
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).RampDownRatio 0.2
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).MaxLift 0.01
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).Count 1
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).InterValveClearance 0.005
Engine.PoppetValveSystems.Exv1.PoppetValves.PoppetValve(1).CDMapName Masked

 

 

Table C-4. Valve input parameters for software test case 
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Units

Engine.UnitProfile.LengthUnitName mm
Engine.UnitProfile.AreaUnitName sq mm
Engine.UnitProfile.VolumeUnitName cc
Engine.UnitProfile.PressureUnitName atm
Engine.UnitProfile.TemperatureUnitName deg C
Engine.UnitProfile.DensityUnitName kg/cu m
Engine.UnitProfile.MassUnitName kg
Engine.UnitProfile.ForceUnitName N
Engine.UnitProfile.PowerUnitName kW
Engine.UnitProfile.EnergyUnitName kWh
Engine.UnitProfile.ConsumptionUnitName g/kWh
Engine.UnitProfile.VelocityUnitName m/s
Engine.UnitProfile.AccelerationUnitName m/s/s
Engine.UnitProfile.MassFlowUnitName g/s
Engine.UnitProfile.AngularVelocityUnitName RPM

 

 

Table C-5. Units used for software test case 
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Detailed results for Virtual 4 Stroke® software test cases  

Pressure and velocity plots for frequencies 60 Hz and 225 Hz are shown below 
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Figure C.1 Pressure plot for software test case – 60 Hz 

 

 

 

   251 



 

 

 

 

 

 

Time (secs)

0.00 0.02 0.04 0.06 0.08

Ve
lo

ci
ty

 (m
/s

)

-100

0

100

200

300

400

500

600

inlet
exit

 

 

 

Figure C.2 Velocity plot for software test case – 60 Hz 
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Pulse frequency 225 Hz (6000 RPM) 
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Figure C.3 Pressure plot for software test case – 225 Hz 
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Figure C.4 Velocity plot for software test case – 225 Hz 
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Detailed results for flow simulation test case  

Plots of parameters not shown in sections 5.3.1 and 5.3.2 are given below. 

 

Test case 1 – section 5.3.1 
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Figure C.5 Pressure at transducer locations 
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Figure C.6 Acoustic velocity at transducer locations 
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Figure C.7 Fluid density at transducer locations 
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Figure C.8 Reference temperature at transducer locations 
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Test case 2 – section 5.3.2 
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Figure C.9 Pressure at transducer locations 
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Figure C.10 Acoustic velocity at transducer locations 
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Figure C.11 Fluid density at transducer locations 
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Figure C.12 Reference temperature at transducer locations 
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Effect of mesh size 

 

Detailed results for the test case for assessing the effect of mesh size – section 5.4.1 
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Figure C.13 Temperature plots for three mesh sizes, station 1 - comparison 
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Figure C.14 Pressure plots for three mesh sizes, station 1 - comparison 
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Figure C.15 Acoustic velocity plots for three mesh sizes, station 1 - comparison 
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Figure C.16 Fluid density plots for three mesh sizes, station 1 - comparison 
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Figure C.17 Reference temperature plots for three mesh sizes, station 1 - comparison 
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Station 2 
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Figure C.18 Temperature plots for three mesh sizes, station 2 - comparison 
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Figure C.19 Pressure plots for three mesh sizes, station 2 - comparison 
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Figure C.20 Acoustic velocity plots for three mesh sizes, station 2 - comparison 
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Figure C.21 Fluid density plots for three mesh sizes, station 2 - comparison 
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Figure C.22 Reference temperature plots for three mesh sizes, station 2 - comparison 
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Station 3 
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Figure C.23 Temperature plots for three mesh sizes, station 3 - comparison 
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Figure C.24 Pressure plots for three mesh sizes, station 3 - comparison 

 

 

 

   274 



 

 

 

 

Time (secs)

0.000 0.002 0.004 0.006 0.008 0.010

A
co

us
tic

 v
el

oc
ity

 - 
m

/s

342

343

344

345

346

347

348

349

35 mm mesh
40 mm mesh
50 mm mesh

 

 

 

 

Figure C.25 Acoustic velocity plots for three mesh sizes, station 3 - comparison 
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Figure C.26 Fluid density plots for three mesh sizes, station 3 - comparison 
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Figure C.27 Reference temperature plots for three mesh sizes, station 3 – comparison 
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Effect of time step 

 

Detailed results for the test case for assessing the effect of time step – section 5.4.3 
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Figure C.28 Pressure plots for station 1 with varying under-relaxation factors 
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Figure C.29 Acoustic velocity plots for station 1 with varying under-relaxation factors 
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Figure C.30 Fluid density plot for station 1 with varying under-relaxation factors 
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Figure C.31 Reference temperature plot for station 1 with varying 
under-relaxation factors 
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Figure C.32 Pressure plot for station 2 with varying under-relaxation factors 
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Figure C.33 Acoustic velocity plots for station 2 with varying under-relaxation factors 
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Figure C.34 Fluid density plot for station 2 with varying under-relaxation factors 
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Figure C.35 Reference temperature plot for station 2 with varying 
under-relaxation factors 
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Figure C.36 Pressure plots for station 3 with varying under-relaxation factors 
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Figure C.37 Acoustic velocity plots for station 3 with varying under-relaxation factors 
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Figure C.38 Fluid density plot for station 3 with varying under-relaxation factors 
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Figure C.39 Reference temperature plot for station 3 with varying 
under-relaxation factors 

 
 

   289 



Comparison to analytical solution (section 5.6)  – Table of results 
 
 

Analytical solution 
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p0 101325
T0 293
R 287

Rho0 1.204945
a0 343.1143

Pm 150000
s 0.2
f 100

gamma 1.4
G5 5
G17 0.142857

 

t=0 dt 0 0.002 0.004 0.006 0.008 0.01

step time p X Rho a u x x x x x

0 0 150000 1.057643 1.594642 362.8925 98.89125 0.923568 1.847135 2.770703 3.69427 4.617838
1 0.0001 151884.47 1.059531 1.608927 363.5403 102.1303 1.854909 3.709818 5.564727 7.419635 9.274544
2 0.0002 153761.50 1.061392 1.623104 364.1788 105.3226 2.793912 5.587823 8.381735 11.17565 13.96956
3 0.0003 155623.68 1.063219 1.637121 364.8056 108.4567 3.740436 7.480872 11.22131 14.96174 18.70218
4 0.0004 157463.64 1.065006 1.650923 365.4187 111.522 4.694317 9.388635 14.08295 18.77727 23.47159
5 0.0005 159274.12 1.066747 1.66446 366.0159 114.5084 5.655366 11.31073 16.9661 22.62146 28.27683
6 0.0006 161047.97 1.068436 1.677679 366.5955 117.4063 6.62337 13.24674 19.87011 26.49348 33.11685
7 0.0007 162778.18 1.070068 1.690534 367.1556 120.2066 7.598094 15.19619 22.79428 30.39238 37.99047
8 0.0008 164457.93 1.071639 1.702977 367.6945 122.901 8.579285 17.15857 25.73785 34.31714 42.89642
9 0.0009 166080.57 1.073143 1.714962 368.2106 125.4814 9.566669 19.13334 28.70001 38.26668 47.83334

10 0.001 167639.69 1.074576 1.726446 368.7024 127.9406 10.55995 21.11991 31.67986 42.23982 52.79977
11 0.0011 169129.15 1.075935 1.737389 369.1686 130.2717 11.55884 23.11767 34.67651 46.23534 57.79418
12 0.0012 170543.05 1.077215 1.747751 369.6079 132.4682 12.56299 25.12598 37.68896 50.25195 62.81494
13 0.0013 171875.81 1.078414 1.757496 370.0192 134.5245 13.57208 27.14415 40.71623 54.2883 67.86038
14 0.0014 173122.17 1.079528 1.76659 370.4013 136.4352 14.58575 29.1715 43.75724 58.34299 72.92874
15 0.0015 174277.20 1.080554 1.775001 370.7533 138.1953 15.60365 31.20729 46.81094 62.41458 78.01823
16 0.0016 175336.34 1.081489 1.782699 371.0744 139.8005 16.6254 33.25079 49.87619 66.50158 83.12698
17 0.0017 176295.41 1.082332 1.789659 371.3637 141.247 17.65062 35.30123 52.95185 70.60247 88.25308
18 0.0018 177150.62 1.083081 1.795856 371.6205 142.5311 18.67892 37.35784 56.03676 74.71568 93.3946
19 0.0019 177898.60 1.083733 1.801269 371.8442 143.6498 19.70991 39.41982 59.12972 78.83963 98.54954
20 0.002 178536.38 1.084287 1.805879 372.0344 144.6006 20.74318 41.48636 62.22953 82.97271 103.7159
21 0.0021 179061.45 1.084742 1.809671 372.1905 145.3811 21.77832 43.55664 65.33496 87.11328 108.8916
22 0.0022 179471.74 1.085097 1.812632 372.3122 145.9897 22.81492 45.62985 68.44477 91.2597 114.0746
23 0.0023 179765.62 1.08535 1.814751 372.3992 146.4248 23.85257 47.70515 71.55772 95.41029 119.2629
24 0.0024 179941.94 1.085502 1.816023 372.4514 146.6856 24.89085 49.78169 74.67254 99.56339 124.4542
25 0.0025 179999.99 1.085553 1.816441 372.4686 146.7715 25.92933 51.85865 77.78798 103.7173 129.6466
26 0.0026 179939.56 1.0855 1.816005 372.4507 146.6821 26.96759 53.93519 80.90278 107.8704 134.838
27 0.0027 179760.87 1.085346 1.814717 372.3978 146.4178 28.00522 56.01045 84.01567 112.0209 140.0261
28 0.0028 179464.63 1.085091 1.81258 372.3101 145.9791 29.0418 58.0836 87.12541 116.1672 145.209
29 0.0029 179052.02 1.084734 1.809603 372.1877 145.3671 30.07691 60.15382 90.23074 120.3076 150.3846
30 0.003 178524.65 1.084277 1.805794 372.0309 144.5831 31.11014 62.22028 93.33042 124.4406 155.5507
31 0.0031 177884.63 1.083721 1.801167 371.8401 143.629 32.14108 64.28216 96.42323 128.5643 160.7054
32 0.0032 177134.47 1.083067 1.795739 371.6156 142.5069 33.16932 66.33865 99.50797 132.6773 165.8466
33 0.0033 176277.13 1.082316 1.789526 371.3582 141.2195 34.19448 68.38896 102.5834 136.7779 170.9724
34 0.0034 175316.01 1.081471 1.782551 371.0682 139.7698 35.21615 70.43231 105.6485 140.8646 176.0808
35 0.0035 174254.89 1.080534 1.774838 370.7465 138.1614 36.23397 72.46794 108.7019 144.9359 181.1699
36 0.0036 173097.98 1.079506 1.766413 370.3939 136.3982 37.24755 74.49511 111.7427 148.9902 186.2378
37 0.0037 171849.83 1.078391 1.757306 370.0112 134.4846 38.25655 76.51309 114.7696 153.0262 191.2827

 



 

38 0.0038 170515.39 1.07719 1.747548 369.5994 132.4254 39.2606 78.52119 117.7818 157.0424 196.303
39 0.0039 169099.91 1.075908 1.737174 369.1595 130.2261 40.25937 80.51873 120.7781 161.0375 201.2968
40 0.004 167609.00 1.074548 1.72622 368.6927 127.8924 41.25254 82.50507 123.7576 165.0101 206.2627
41 0.0041 166048.53 1.073113 1.714725 368.2004 125.4307 42.2398 84.4796 126.7194 168.9592 211.199
42 0.0042 164424.68 1.071608 1.702731 367.6838 122.8479 43.22086 86.44173 129.6626 172.8835 216.1043
43 0.0043 162743.85 1.070036 1.690279 367.1445 120.1513 44.19545 88.39091 132.5864 176.7818 220.9773
44 0.0044 161012.69 1.068402 1.677417 366.584 117.3489 45.16332 90.32664 135.49 180.6533 225.8166
45 0.0045 159238.03 1.066712 1.66419 366.0041 114.4492 46.12423 92.24845 138.3727 184.4969 230.6211
46 0.0046 157426.89 1.06497 1.650648 365.4065 111.4611 47.07796 94.15592 141.2339 188.3118 235.3898
47 0.0047 155586.41 1.063183 1.636841 364.7931 108.3943 48.02434 96.04867 144.073 192.0973 240.1217
48 0.0048 153723.86 1.061355 1.62282 364.166 105.2589 48.96319 97.92637 146.8896 195.8527 244.8159
49 0.0049 151846.61 1.059494 1.60864 363.5274 102.0656 49.89437 99.78874 149.6831 199.5775 249.4719
50 0.005 149962.07 1.057605 1.594354 362.8794 98.82569 50.81778 101.6356 152.4533 203.2711 254.0889
51 0.0051 148077.67 1.055696 1.580018 362.2245 95.55095 51.73333 103.4667 155.2 206.9333 258.6667
52 0.0052 146200.87 1.053774 1.565688 361.565 92.25371 52.64097 105.2819 157.9229 210.5639 263.2049
53 0.0053 144339.07 1.051847 1.55142 360.9036 88.9468 53.54067 107.0813 160.622 214.1627 267.7034
54 0.0054 142499.63 1.049921 1.537272 360.243 85.64349 54.43244 108.8649 163.2973 217.7298 272.1622
55 0.0055 140689.81 1.048006 1.523301 359.5858 82.35751 55.31633 110.6327 165.949 221.2653 276.5817
56 0.0056 138916.77 1.046109 1.509564 358.9349 79.10298 56.19241 112.3848 168.5772 224.7696 280.962
57 0.0057 137187.50 1.044239 1.496117 358.2931 75.89432 57.06078 114.1216 171.1823 228.2431 285.3039
58 0.0058 135508.84 1.042404 1.483018 357.6635 72.74623 57.9216 115.8432 173.7648 231.6864 289.608
59 0.0059 133887.42 1.040612 1.470321 357.049 69.67358 58.77505 117.5501 176.3251 235.1002 293.8752
60 0.006 132329.63 1.038874 1.458081 356.4525 66.69133 59.62133 119.2427 178.864 238.4853 298.1067
61 0.0061 130841.64 1.037197 1.446351 355.8772 63.81447 60.46072 120.9214 181.3822 241.8429 302.3036
62 0.0062 129429.32 1.03559 1.435183 355.3258 61.05784 61.29348 122.587 183.8805 245.1739 306.4674
63 0.0063 128098.25 1.034062 1.424624 354.8015 58.4361 62.11996 124.2399 186.3599 248.4798 310.5998
64 0.0064 126853.68 1.032621 1.414724 354.307 55.96353 62.9405 125.881 188.8215 251.762 314.7025
65 0.0065 125700.54 1.031275 1.405526 353.8451 53.65396 63.7555 127.511 191.2665 255.022 318.7775
66 0.0066 124643.37 1.030031 1.397072 353.4184 51.52061 64.56538 129.1308 193.6961 258.2615 322.8269
67 0.0067 123686.35 1.028898 1.389402 353.0295 49.57594 65.37059 130.7412 196.1118 261.4824 326.8529
68 0.0068 122833.26 1.027881 1.38255 352.6806 47.83156 66.17161 132.3432 198.5148 264.6864 330.8581
69 0.0069 122087.48 1.026987 1.376549 352.3739 46.29806 66.96896 133.9379 200.9069 267.8758 334.8448
70 0.007 121451.94 1.026222 1.371427 352.1112 44.9849 67.76315 135.5263 203.2894 271.0526 338.8157
71 0.0071 120929.16 1.025589 1.367208 351.8943 43.90029 68.55474 137.1095 205.6642 274.2189 342.7737
72 0.0072 120521.20 1.025094 1.363912 351.7245 43.05111 69.34429 138.6886 208.0329 277.3772 346.7214
73 0.0073 120229.67 1.02474 1.361554 351.6028 42.44278 70.13238 140.2648 210.3971 280.5295 350.6619
74 0.0074 120055.73 1.024528 1.360147 351.5301 42.07921 70.9196 141.8392 212.7588 283.6784 354.598
75 0.0075 120000.05 1.02446 1.359696 351.5068 41.96275 71.70654 143.4131 215.1196 286.8261 358.5327
76 0.0076 120062.87 1.024537 1.360205 351.5331 42.09416 72.49379 144.9876 217.4814 289.9752 362.469
77 0.0077 120243.94 1.024757 1.36167 351.6088 42.47258 73.28195 146.5639 219.8459 293.1278 366.4098
78 0.0078 120542.53 1.02512 1.364084 351.7334 43.09558 74.07161 148.1432 222.2148 296.2865 370.3581
79 0.0079 120957.47 1.025624 1.367436 351.9061 43.95914 74.86334 149.7267 224.59 299.4534 374.3167
80 0.008 121487.12 1.026264 1.371711 352.1258 45.05774 75.65771 151.3154 226.9731 302.6308 378.2886
81 0.0081 122129.39 1.027037 1.376887 352.3912 46.38444 76.45526 152.9105 229.3658 305.821 382.2763
82 0.0082 122881.74 1.027939 1.38294 352.7005 47.93095 77.25652 154.513 231.7696 309.0261 386.2826
83 0.0083 123741.19 1.028963 1.389842 353.0518 49.68773 78.062 156.124 234.186 312.248 390.31
84 0.0084 124704.37 1.030103 1.397561 353.4431 51.64413 78.87218 157.7444 236.6165 315.4887 394.3609
85 0.0085 125767.45 1.031353 1.40606 353.872 53.78848 79.6875 159.375 239.0625 318.75 398.4375
86 0.0086 126926.25 1.032705 1.415302 354.3359 56.10827 80.50839 161.0168 241.5252 322.0335 402.5419
87 0.0087 128176.18 1.034152 1.425243 354.8323 58.59024 81.33523 162.6705 244.0057 325.3409 406.6762
88 0.0088 129512.31 1.035685 1.43584 355.3584 61.22053 82.16839 164.3368 246.5052 328.6736 410.8419
89 0.0089 130929.36 1.037297 1.447044 355.9112 63.98483 83.00818 166.0164 249.0245 332.0327 415.0409
90 0.009 132421.73 1.038977 1.458806 356.488 66.86847 83.85489 167.7098 251.5647 335.4196 419.2745
91 0.0091 133983.53 1.040719 1.471075 357.0856 69.8566 84.70878 169.4176 254.1263 338.8351 423.5439
92 0.0092 135608.59 1.042513 1.483798 357.7011 72.93423 85.57005 171.1401 256.7101 342.2802 427.8502
93 0.0093 137290.50 1.04435 1.496919 358.3315 76.0864 86.43889 172.8778 259.3167 345.7555 432.1944
94 0.0094 139022.60 1.046223 1.510385 358.9739 79.29824 87.31543 174.6309 261.9463 349.2617 436.5772
95 0.0095 140798.07 1.048121 1.524138 359.6253 82.55508 88.19979 176.3996 264.5994 352.7992 440.999
96 0.0096 142609.87 1.050037 1.538122 360.2828 85.84249 89.09204 178.1841 267.2761 356.3682 445.4602
97 0.0097 144450.87 1.051963 1.552278 360.9435 89.1464 89.99222 179.9844 269.9767 359.9689 449.9611
98 0.0098 146313.78 1.053891 1.566552 361.6049 92.45311 90.90034 181.8007 272.701 363.6013 454.5017
99 0.0099 148191.25 1.055812 1.580884 362.2641 95.74935 91.81636 183.6327 275.4491 367.2655 459.0818

100 0.01 150075.87 1.05772 1.595218 362.9187 99.02232 92.74025 185.4805 278.2207 370.961 463.7012

 
Table C-6. Analytical solution – table of results 
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Numerical solution 
 

 
 
 
 

 
 
 
 
 

p0 101325
T0 293
R 287

Rho0 1.204944643
a0 343.1142667

Pm 150000
s 0.2
f 100

gamma 1.4
G5 5
G17 0.142857

 

t=0 dt 0 0.002 0.004 0.006 0.008 0.01

step time p X Rho a u x x x x x

0 0 131984.49 1.038487 1.455364 356.3196 66.02651 0.844692 1.689384 2.534076 3.378769 4.223461
1 7.7166E-05 160248.38 1.067676 1.609338 373.3681 93.37558 1.77818 3.556359 5.334539 7.112718 8.890898
2 0.00015242 169639.75 1.076398 1.667312 377.4152 118.6349 2.77028 5.540559 8.310839 11.08112 13.8514
3 0.00022708 172652.39 1.079109 1.708125 376.1755 133.2748 3.78918 7.578361 11.36754 15.15672 18.9459
4 0.000301465 174406.70 1.080668 1.744031 374.1696 138.618 4.814755 9.629511 14.44427 19.25902 24.07378
5 0.000375361 175894.29 1.08198 1.774809 372.4896 141.4317 5.842598 11.6852 17.52779 23.37039 29.21299
6 0.000449133 177326.88 1.083235 1.801681 371.2038 143.7264 6.872458 13.74492 20.61738 27.48983 34.36229
7 0.000522577 178758.28 1.08448 1.825682 370.241 145.9098 7.90476 15.80952 23.71428 31.61904 39.5238
8 0.000595952 180182.69 1.08571 1.847465 369.5153 148.0232 8.939837 17.87967 26.81951 35.75935 44.69919
9 0.000669104 181596.08 1.086922 1.867544 368.9622 150.0938 9.977949 19.9559 29.93385 39.9118 49.88975

10 0.000742214 182992.95 1.088113 1.886308 368.5318 152.1126 11.01924 22.03848 33.05771 44.07695 55.09619
11 0.000815163 184367.79 1.089277 1.90401 368.1899 154.0792 12.06378 24.12755 36.19133 48.2551 60.31888
12 0.000888059 185715.78 1.090411 1.92084 367.9111 155.9863 13.11157 26.22314 39.33471 52.44628 65.55785
13 0.000960855 187033.21 1.091513 1.936924 367.6775 157.833 14.16259 28.32518 42.48778 56.65037 70.81296
14 0.001033586 188316.21 1.092579 1.952345 367.4765 159.6143 15.21677 30.43355 45.65032 60.86709 76.08387
15 0.001106258 189561.81 1.093609 1.967157 367.2991 161.3283 16.27403 32.54806 48.82208 65.09611 81.37014
16 0.001178855 190766.86 1.094599 1.981389 367.1391 162.9724 17.33425 34.6685 52.00275 69.33701 86.67126
17 0.00125139 191928.59 1.095549 1.995054 366.9919 164.5439 18.39732 36.79465 55.19197 73.58929 91.98661
18 0.00132387 193044.60 1.096457 2.008156 366.8548 166.0409 19.46311 38.92623 58.38934 77.85246 97.31557
19 0.001396283 194112.47 1.097321 2.020689 366.7254 167.4618 20.53149 41.06298 61.59447 82.12595 102.6574
20 0.00146863 195129.97 1.098141 2.032645 366.6023 168.8044 21.6023 43.2046 64.80691 86.40921 108.0115
21 0.001540919 196095.13 1.098916 2.044009 366.4848 170.0675 22.67541 45.35081 68.02622 90.70163 113.377
22 0.00161309 197005.71 1.099643 2.054769 366.3717 171.2497 23.75065 47.5013 71.25195 95.0026 118.7532
23 0.00168515 197859.76 1.100323 2.064905 366.2627 172.3489 24.82787 49.65575 74.48362 99.31149 124.1394
24 0.001757111 198655.93 1.100954 2.074402 366.1578 173.3643 25.90692 51.81383 77.72075 103.6277 129.5346
25 0.001828983 199392.97 1.101537 2.083246 366.0569 174.2953 26.98762 53.97524 80.96286 107.9505 134.9381
26 0.001900776 200069.74 1.10207 2.091424 365.9601 175.1415 28.06982 56.13965 84.20947 112.2793 140.3491
27 0.001972499 200685.18 1.102554 2.098922 365.8672 175.9023 29.15336 58.30673 87.46009 116.6135 145.7668
28 0.002044165 201238.36 1.102988 2.10573 365.7784 176.5774 30.23808 60.47615 90.71423 120.9523 151.1904
29 0.002115782 201728.40 1.103371 2.111836 365.6937 177.1663 31.3238 62.64759 93.97139 125.2952 156.619
30 0.00218736 202154.55 1.103703 2.117232 365.613 177.6688 32.41036 64.82072 97.23108 129.6414 162.0518
31 0.002258911 202516.15 1.103985 2.121908 365.5364 178.0847 33.4976 66.9952 100.4928 133.9904 167.488
32 0.002330444 202812.62 1.104216 2.125858 365.4638 178.4136 34.58536 69.17071 103.7561 138.3414 172.9268
33 0.002401968 203043.47 1.104396 2.129075 365.3954 178.6555 35.67346 71.34692 107.0204 142.6938 178.3673
34 0.002473496 203208.33 1.104524 2.131555 365.331 178.8102 36.76174 73.52348 110.2852 147.047 183.8087
35 0.002545035 203306.89 1.1046 2.133294 365.2706 178.8777 37.85004 75.70007 113.5501 151.4001 189.2502
36 0.002616597 203338.97 1.104625 2.134289 365.2142 178.8578 38.93818 77.87636 116.8145 155.7527 194.6909
37 0.002688192 203304.46 1.104598 2.13454 365.1618 178.7506 40.02601 80.05201 120.078 160.104 200.13
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38 0.002759813 203203.35 1.10452 2.134047 365.1131 178.5561 41.11334 82.22669 123.34 164.4534 205.5667
39 0.00283147 203035.77 1.10439 2.132812 365.0682 178.2743 42.20003 84.40006 126.6001 168.8001 211.0001
40 0.002903149 202801.99 1.104208 2.13084 365.0267 177.9056 43.28589 86.57179 129.8577 173.1436 216.4295
41 0.002974823 202502.49 1.103975 2.128141 364.9884 177.4501 44.37077 88.74154 133.1123 177.4831 221.8539
42 0.003046498 202137.95 1.103691 2.124717 364.9534 176.9086 45.45449 90.90899 136.3635 181.818 227.2725
43 0.003118172 201709.11 1.103356 2.120579 364.9215 176.2815 46.5369 93.0738 139.6107 186.1476 232.6845
44 0.00318985 201216.85 1.102971 2.115735 364.893 175.5696 47.61783 95.23565 142.8535 190.4713 238.0891
45 0.003261533 200662.12 1.102536 2.110195 364.8677 174.7736 48.69711 97.39422 146.0913 194.7884 243.4855
46 0.003333221 200046.05 1.102052 2.103972 364.8455 173.8944 49.77459 99.54918 149.3238 199.0984 248.8729
47 0.003404917 199369.84 1.101519 2.09708 364.8264 172.9329 50.85011 101.7002 152.5503 203.4004 254.2505
48 0.003476623 198634.81 1.100938 2.089533 364.8103 171.8902 51.92351 103.847 155.7705 207.694 259.6175
49 0.003548337 197842.44 1.100309 2.081348 364.7971 170.7674 52.99464 105.9893 158.9839 211.9785 264.9732
50 0.00362006 196994.28 1.099634 2.072543 364.7867 169.5658 54.06334 108.1267 162.19 216.2534 270.3167
51 0.003691795 196092.01 1.098913 2.063138 364.779 168.2867 55.12947 110.2589 165.3884 220.5179 275.6474
52 0.003763541 195137.39 1.098147 2.053151 364.774 166.9316 56.19288 112.3858 168.5787 224.7715 280.9644
53 0.003835297 194132.32 1.097337 2.042605 364.7713 165.5021 57.25343 114.5069 171.7603 229.0137 286.2672
54 0.003907065 193078.81 1.096485 2.031523 364.7711 163.9999 58.31097 116.6219 174.9329 233.2439 291.5549
55 0.003978844 191978.92 1.09559 2.019928 364.7731 162.4269 59.36537 118.7307 178.0961 237.4615 296.8269
56 0.004050636 190834.84 1.094655 2.007845 364.7773 160.785 60.4165 120.833 181.2495 241.666 302.0825
57 0.00412244 189648.82 1.093681 1.995299 364.7834 159.0762 61.46422 122.9284 184.3927 245.8569 307.3211
58 0.004194256 188423.23 1.092668 1.982317 364.7914 157.3028 62.50841 125.0168 187.5252 250.0336 312.542
59 0.004266085 187160.51 1.091619 1.968927 364.8012 155.4673 63.54894 127.0979 190.6468 254.1958 317.7447
60 0.004337926 185863.17 1.090535 1.955157 364.8126 153.572 64.58571 129.1714 193.7571 258.3428 322.9286
61 0.00440978 184533.78 1.089417 1.941035 364.8256 151.6197 65.6186 131.2372 196.8558 262.4744 328.093
62 0.004481648 183174.98 1.088267 1.926591 364.8399 149.6131 66.64751 133.295 199.9425 266.59 333.2375
63 0.004553529 181789.50 1.087088 1.911856 364.8554 147.5551 67.67233 135.3447 203.017 270.6893 338.3616
64 0.004625422 180380.12 1.08588 1.89686 364.8721 145.449 68.69297 137.3859 206.0789 274.7719 343.4649
65 0.004697329 178949.66 1.084645 1.881635 364.8898 143.2979 69.70935 139.4187 209.128 278.8374 348.5467
66 0.004769248 177500.98 1.083387 1.866211 364.9085 141.1053 70.72137 141.4427 212.1641 282.8855 353.6069
67 0.004841182 176036.99 1.082106 1.850621 364.928 138.8747 71.72898 143.458 215.1869 286.9159 358.6449
68 0.004913129 174560.63 1.080804 1.834897 364.9482 136.6098 72.7321 145.4642 218.1963 290.9284 363.6605
69 0.00498509 173074.88 1.079485 1.819071 364.9692 134.3146 73.73066 147.4613 221.192 294.9227 368.6533
70 0.005057063 171582.78 1.078151 1.803176 364.9907 131.9931 74.72463 149.4493 224.1739 298.8985 373.6232
71 0.005129049 170087.34 1.076804 1.787243 365.0129 129.6496 75.71396 151.4279 227.1419 302.8558 378.5698
72 0.005201049 168591.58 1.075446 1.771305 365.0356 127.2884 76.6986 153.3972 230.0958 306.7944 383.493
73 0.005273063 167098.55 1.07408 1.755394 365.059 124.914 77.67855 155.3571 233.0357 310.7142 388.3928
74 0.005345091 165611.29 1.072709 1.739542 365.0829 122.5311 78.65378 157.3076 235.9613 314.6151 393.2689
75 0.005417132 164132.86 1.071336 1.72378 365.1076 120.1446 79.62428 159.2486 238.8728 318.4971 398.1214
76 0.005489185 162666.31 1.069963 1.70814 365.133 117.7593 80.59007 161.1801 241.7702 322.3603 402.9503
77 0.005561252 161214.67 1.068594 1.692652 365.1594 115.3805 81.55115 163.1023 244.6534 326.2046 407.7557
78 0.005633333 159780.91 1.067231 1.677346 365.1868 113.0132 82.50755 165.0151 247.5226 330.0302 412.5377
79 0.005705428 158368.02 1.065877 1.662253 365.2155 110.6629 83.4593 166.9186 250.3779 333.8372 417.2965
80 0.005777537 156978.93 1.064537 1.6474 365.2458 108.3349 84.40647 168.8129 253.2194 337.6259 422.0323
81 0.005849659 155616.56 1.063212 1.632816 365.2778 106.0348 85.34909 170.6982 256.0473 341.3964 426.7455
82 0.005921794 154283.78 1.061906 1.618529 365.312 103.7682 86.28725 172.5745 258.8618 345.149 431.4363
83 0.005993942 152983.39 1.060623 1.604565 365.3486 101.5408 87.22103 174.4421 261.6631 348.8841 436.1052
84 0.006066103 151718.14 1.059366 1.59095 365.3882 99.35816 88.15052 176.301 264.4516 352.6021 440.7526
85 0.006138279 150490.72 1.058137 1.577709 365.431 97.22607 89.07584 178.1517 267.2275 356.3033 445.3792
86 0.006210469 149303.75 1.056941 1.564866 365.4776 95.15021 89.99709 179.9942 269.9913 359.9884 449.9855
87 0.006282672 148159.79 1.05578 1.552444 365.5285 93.13628 90.91442 181.8288 272.7433 363.6577 454.5721
88 0.006354887 147061.31 1.054658 1.540464 365.5842 91.18997 91.82797 183.6559 275.4839 367.3119 459.1399
89 0.006427116 146010.70 1.053578 1.528948 365.6453 89.31685 92.7379 185.4758 278.2137 370.9516 463.6895
90 0.006499358 145010.25 1.052544 1.517916 365.7123 87.52241 93.64436 187.2887 280.9331 374.5775 468.2218
91 0.006571614 144062.16 1.051558 1.507386 365.7858 85.81202 94.54756 189.0951 283.6427 378.1902 472.7378
92 0.006643884 143168.50 1.050624 1.497376 365.8662 84.19089 95.44767 190.8953 286.343 381.7907 477.2384
93 0.006716167 142331.30 1.049744 1.487904 365.9542 82.66408 96.34491 192.6898 289.0347 385.3796 481.7246
94 0.006788182 141553.97 1.048923 1.479 366.0505 81.23649 97.23949 194.479 291.7185 388.9579 486.1974
95 0.0068545 140866.98 1.048194 1.470942 366.1599 79.91786 98.13164 196.2633 294.3949 392.5266 490.6582
96 0.006920182 140263.33 1.047551 1.463648 366.2838 78.80226 99.02181 198.0436 297.0654 396.0873 495.1091
97 0.00698676 139710.55 1.046961 1.45686 366.412 77.78914 99.91022 199.8204 299.7306 399.6409 499.5511
98 0.00705461 139203.49 1.046417 1.450534 366.5431 76.8579 100.797 201.594 302.3911 403.1881 503.9851
99 0.007123782 138744.71 1.045924 1.444686 366.6785 76.01127 101.6824 203.3648 305.0472 406.7296 508.412

100 0.007194152 138338.84 1.045486 1.439351 366.8198 75.25772 102.5666 205.1331 307.6997 410.2662 512.8328
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101 0.007264905 137992.6044 1.045112 1.434581 366.969 74.60751 103.4497 206.8994 310.3491 413.7988 517.2485
102 0.007336088 137710.0565 1.044806 1.43041 367.1271 74.07509 104.3321 208.6642 312.9963 417.3284 521.6605
103 0.007407523 137493.2199 1.044571 1.42686 367.2942 73.66384 105.214 210.4281 315.6421 420.8561 526.0701
104 0.00747927 137343.578 1.044408 1.423946 367.4696 73.37819 106.0957 212.1914 318.2872 424.3829 530.4786
105 0.007551258 137262.3576 1.04432 1.421684 367.6531 73.22044 106.9775 213.9549 320.9324 427.9099 534.8873
106 0.007623489 137250.5477 1.044307 1.420088 367.8438 73.19299 107.8595 215.7191 323.5786 431.4382 539.2977
107 0.007695984 137308.9229 1.04437 1.419173 368.0406 73.29741 108.7422 217.4844 326.2267 434.9689 543.7111
108 0.007768683 137438.1266 1.044511 1.41895 368.2426 73.53494 109.6258 219.2515 328.8773 438.5031 548.1289
109 0.007841637 137638.5285 1.044728 1.419433 368.4483 73.90605 110.5105 221.021 331.5314 442.0419 552.5524
110 0.007914823 137910.4641 1.045023 1.420633 368.6563 74.4111 111.3966 222.7932 334.1898 445.5865 556.9831
111 0.007988233 138253.9682 1.045394 1.42256 368.865 75.04967 112.2844 224.5689 336.8533 449.1378 561.4222
112 0.008061908 138669.0132 1.045842 1.425226 369.0726 75.82086 113.1742 226.3485 339.5227 452.6969 565.8712
113 0.008135831 139155.4584 1.046365 1.42864 369.2774 76.72379 114.0662 228.1325 342.1987 456.2649 570.3312
114 0.008209996 139712.821 1.046963 1.432809 369.4775 77.75657 114.9607 229.9214 344.8821 459.8428 574.8035
115 0.008284434 140340.5841 1.047634 1.437741 369.6709 78.9169 115.8579 231.7158 347.5736 463.4315 579.2894
116 0.008359164 141038.2196 1.048376 1.443443 369.8559 80.20254 116.758 233.516 350.274 467.032 583.79
117 0.008434153 141804.7769 1.049188 1.449917 370.0308 81.61077 117.6613 235.3226 352.9838 470.6451 588.3064
118 0.008509425 142639.0818 1.050068 1.457164 370.1937 83.13747 118.5679 237.1359 355.7038 474.2718 592.8397
119 0.008585006 143540.1238 1.051013 1.465187 370.343 84.77911 119.4782 238.9564 358.4346 477.9127 597.3909
120 0.008660905 144506.6863 1.052021 1.473984 370.4773 86.53189 120.3922 240.7844 361.1766 481.5688 601.961
121 0.008737101 145537.1037 1.05309 1.483548 370.5955 88.39132 121.3102 242.6204 363.9305 485.2407 606.5509
122 0.008813614 146629.5541 1.054215 1.49387 370.6964 90.35182 122.2323 244.4645 366.6968 488.9291 611.1614
123 0.008890466 147782.3566 1.055395 1.504942 370.7793 92.40841 123.1586 246.3173 369.4759 492.6346 615.7932
124 0.008967675 148993.6898 1.056627 1.516752 370.8435 94.55588 124.0894 248.1789 372.2683 496.3578 620.4472
125 0.009045225 150261.2937 1.057906 1.529282 370.8888 96.78876 125.0248 250.0496 375.0744 500.0992 625.124
126 0.009123122 151582.6034 1.05923 1.542511 370.9152 99.10025 125.9648 251.9297 377.8945 503.8593 629.8242
127 0.009201385 152955.1773 1.060595 1.556415 370.9227 101.484 126.9096 253.8193 380.7289 507.6386 634.5482
128 0.009280031 154376.5071 1.061998 1.570971 370.9117 103.9338 127.8593 255.7187 383.578 511.4374 639.2967
129 0.009359075 155843.9293 1.063434 1.586151 370.8827 106.4432 128.814 257.628 386.442 515.256 644.0699
130 0.009438506 157354.3601 1.0649 1.601922 370.8368 109.0056 129.7737 259.5473 389.321 519.0947 648.8684
131 0.009518228 158903.4457 1.066391 1.618228 370.7754 111.6134 130.7385 261.4769 392.2154 522.9538 653.6923
132 0.009597537 160479.8349 1.067896 1.634906 370.7045 114.256 131.7084 263.4167 395.1251 526.8335 658.5419
133 0.009676443 162072.2632 1.069404 1.651862 370.6223 116.9029 132.6834 265.3668 398.0503 530.7337 663.4171
134 0.009754954 163676.574 1.07091 1.669049 370.5294 119.5465 133.6636 267.3272 400.9907 534.6543 668.3179
135 0.009833078 165288.7288 1.07241 1.686423 370.4268 122.1798 134.6488 269.2976 403.9464 538.5952 673.2439
136 0.009910825 166904.8082 1.073902 1.703937 370.3153 124.7961 135.639 271.278 406.917 542.556 678.1951
137 0.009988206 168521.0132 1.075381 1.721547 370.1959 127.3895 136.6342 273.2684 409.9025 546.5367 683.1709
138 0.01 169466.1348 1.076241 1.728457 370.4898 129.9541 137.6351 275.2701 412.9052 550.5403 688.1753

 
 
 

Table C-7. Numerical solution – table of results 
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Comparison of analytical and numerical solutions (section 5.6)  – plots 
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Figure C.40 Comparison of analytical and numerical solutions for time of 0.006 seconds 
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Figure C.41 Comparison of analytical and numerical solutions for time of 0.008 seconds 
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Figure C.42 Comparison of analytical and numerical solutions for time of 0.01 seconds 
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