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CHAPTER 1

INTRODUCTION

The area of multiple autonomous vehicle systems has been one of the most studied

areas of autonomous systems and robotics in the last decade. A system of multiple

vehicles can accomplish tasks which are a combination of several subtasks or that they

can span a large geographical area more effectively than any single vehicle whose ca-

pabilities are limited. Multiple autonomous robots find use in a vast number of areas.

They can be used in defense applications like patrolling, search and rescue, disas-

ter management, etc. Automated highway systems is another important application.

Unmanned aerial vehicles, unmanned sea vehicle, vehicle platoons are some examples

of multiple vehicles systems.

1.1 Coordinated Control

Coordinated control refers to the control of individual systems of a group to achieve

a collective objective. It is widely used in many applications that involve control-

ling multiple interconnected systems. Coordinated control is used in maintaining

computer servers, data centers, traffic signals, memory management in operating sys-

tems, vehicle control, etc., [3–6]. Of all the areas perhaps the most interesting is the

coordination between autonomous or semi-autonomous vehicles in formations [7–9].

Figure 1.1 shows examples of various applications of coordination control.

Coordination in vehicle formations is used to achieve collective objectives and to

accomplish a wide variety of tasks. In many applications a group of vehicles is required

to maintain the formation and follow a trajectory. The advantages include robustness,

1



(a) Support systems in data centers [10]

(b) Traffic signals based on traffic flow in different routes [11]
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(c) Formation of air planes concept [12]

(d) Air and surface vehicle coordination [13]

Figure 1.1: Applications of coordinated control
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Figure 1.2: Controller architecture, (a) Centralized controller, (b) Decentralized con-

troller

reliability and accuracy. But one has to deal with many issues in coordination of

vehicles, such as formation stability, uncertainties in formation, controllability of

formations and inter-vehicle communication [8].

The architecture of a controller in coordinated control is divided mainly into two

types:

Centralized control: There is only one controller which generates the control inputs

for all the vehicles in the group. The control input is then communicated to

the individual vehicles. It is simple but as the number of vehicles increase, the

number of computations required to control the formation increase proportion-

ally.

Decentralized Control: Each vehicle is autonomous and has its own controller which

generates the control input for the respective vehicle. Each controller acts based

on a coordinated approach and takes as input among others the state of its own

vehicle and the neighboring vehicles.

It should be clear that even for a small number of vehicles, as the complexity of

the operations increases, a centralized controller fails to operate effectively. However,

the decentralized (distributed) controller is much more easy to implement since each

4



vehicle is autonomous and control inputs are locally generated based on the informa-

tion from the neighboring vehicles. Information flow between the vehicles is key in

a decentralized controller, and this is referred to as the inter-vehicle communication.

Information flow can occur in different ways. Each vehicle estimating the position

of neighboring vehicles using on board sensors is one way the information can flow

between vehicles. Another way is to have a communication link between vehicles

which is used to pass information like position, heading, velocity, etc.

1.2 Information Flow Graphs

Inter-vehicle information flow is vital for controlling multiple vehicle formations.

Graph theory is generally used to model the information flow between vehicles. A

graph which represents the information flow of a vehicle formation is called an In-

formation Flow Graph or Communication Graph. Information flow graph together

with closed loop control structure is used to study the stability and controllability of

formations [8, 14]. They are used to develop distributed controllers. Communication

graphs are classified mainly into two categories:

1. Directed Graph: A graph is directed if the information flows from node i to

node j but does not necessarily flow from node j to node i.

2. Undirected Graph: An undirected graph is a graph in which the information

flows from node i to node j and also from node j to node i.

Figure 1.3 shows a formation of five vehicles with directed and undirected infor-

mation flow graphs. Early coordination controllers were often based on undirected

information flow graphs [15–18]. In [15] Barooah et al. used continuous approxima-

tion to convert the vehicle dynamics into a partial differential equation and explained

the loss of stability as the number of vehicles increase and how mis-tuning the con-

troller helps reduce this stability loss. However, with this approach the loss of stability

5
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Figure 1.3: Formation of five vehicles with (a) Undirected graph and (b) Directed

information flow graph

is slowed down with increase in number of vehicles but not entirely eliminated. It

has been shown that a controller based on an undirected graph is not scalable as the

number of vehicles in the formation increases [15,19] and the formation is not string

stable. Hence, it is clear that one cannot use undirected information graphs for large

vehicular formations.

One of the alternatives is to use a directed graph. In some early works like [9,20]

a type of directed graph is used where each vehicle receives communication from

the preceding vehicle or vehicles. In this type of formation there is usually a leader

vehicle which has all the information of the trajectory and multiple follower vehicles

that follow the leader by maintaining a desired spacing. In [9] the author analyzed a

longitudinal control law for a vehicle platoon of identical and non-identical vehicles.

In this the information of first vehicle is communicated to all the other vehicles along

with the information of respective preceding vehicle. Although a leader-follower model

as in [9] is simple it is not string stable and the controllers are not scalable.

There has been a great deal of research in recent years on multi-vehicle formation

control using other types of directed graphs [21–24]. One key question is how does

one to generate a directed information flow graph for a given formation of N vehicles

that will satisfy all the requirements. While this is still an unanswered question,

there has been some work in literature in addressing this question for simple cases

6



like the 1D case [21–23]. In [22] Klinge and Middleton use L2− and L∞−norms of

the states to derive the conditions that guarantee string stability for a formation of

vehicles with unidirectional nearest neighbor communication. References [21, 23] use

the same unidirectional one to one communication but in the form of a ring. These

controllers are based on a circulant graph. Any graph whose Laplacian matrix is a

circulant matrix is called a circulant graph. Circulant matrices are a special case of

Toeplitz matrices [25]. The unique properties of circulant graphs provide a simple

directed communication topology for the entire platoon of vehicles.

1.3 Vehicle Platoons

A string of vehicles traveling together on a road is a called a vehicle platoon. Figure

1.4 shows examples of vehicle platoons. Vehicle platoons have been studied for many

decades due to many reasons. As the number of vehicles on highways continues

to increase the average travel time has also increased and so has the number of

accidents due to human errors. It is expected that platoons of automated vehicles

can increase highway capacity, reduce fuel consumption, reduce travel time, avoid

collisions, etc., [15,22]. Since the vehicles are all autonomous they are free of human

error and thus are expected to perform better even in demanding conditions like

smaller inter-vehicular distance, greater speeds, etc. The advantages of platoons of

vehicles are listed below:

1. Increased highway capacity due to small inter-vehicle spacing;

2. reduction in accidents that are caused due to human error;

3. reduction in fuel consumption owing to reduced speed fluctuations;

4. decrease in traffic congestion on highways;

7
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(b)
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(c)

Figure 1.4: Examples of vehicle platoons. (a),(b) Conceptual sketch and actual ex-

periment of road trains (SARTRE project [1]), (c) Vehicle platoon (PATH project [2])

5. Reduction in travel times due to increased speed and reduced traffic congestion.

These advantages have led to a considerable amount of research in vehicle platoons

over the past two decades [21,26–30]. Most of the earlier works are based on sensing

the position of preceding vehicle and maintaining a desired inter-vehicle spacing.

In [29] each vehicle is considered as a reactive agent whose behavior is based on the

position of the preceding vehicle. In [27] a non-linear vehicle model comprising of

the propulsion force and brake force is derived which is then used to calculate the

acceleration and deceleration based on the preceding vehicle position. An adaptive

controller which can deal with variations in model parameters such as mass, drag,

etc., is developed in [28]. One thing that is common to the reported work in literature

on vehicle platoons is the use of a coordinated decentralized or distributed controller.

This current thesis also uses a distributed controller developed for vehicle platoons

and is based on the communication graph being a ring graph.

9



1.4 Contributions

The contributions of this thesis are summarized as follows:� A platoon controller from the literature that is based on double integrator ve-

hicle dynamics is studied in detail. Scalability of the controller is analyzed.� The limitations of vehicles coupled in the form of a ring and the possible modi-

fications to the vehicle positions in the ring that would satisfy various physical

limitations are investigated. It has been shown that the same controller from the

literature is also stable for platoons with these modified platoons. Simulation

results for both basic and modified platoons are presented.� The effect of having multiple rings on a vehicle platoon are studied. Simulation

results are presented which show that for a platoon, multiple rings provide faster

convergence than a single ring.� The question of creating a ring graph over a vehicle formation is answered.

A method to create a ring graph for a linear vehicle platoon is presented and

demonstrated.� An investigative study into the TSP formulation and the solution algorithms

available in the literature to solve the TSP which are suitable for forming a

ring graph was undertaken. A modified TSP with a constraint on path length

is formulated to satisfy all the problem needs of finding a ring graph. An

algorithm based on the branch and bound technique is presented. The working

of the algorithm is demonstrated for a five vehicle and an eight vehicle platoon.� An experimental platform consisting of multiple mobile robots was developed

to test various coordinated vehicle control algorithms. Each robot has an au-

tonomous controller with a wireless transceiver to communicate with other

robots and a central monitoring station.

10



� Experiments of coordination control using the path and ring graphs at slow

speed are conducted to test the stability of the controllers on the platform

developed.

11



CHAPTER 2

VEHICLE FORMATIONS AND RING GRAPH

The properties of controllability and stability of a vehicle formation depend on the flow

of information between vehicles. Hence a study into the properties of the information

flow graph is essential prior to any practical implementation. This chapter focuses

on the properties of the ring graph over a vehicle platoon.

Section 2.1 provides an introduction to graph theory. The disadvantages of using

undirected graph as information flow graph are presented. The basic idea behind

a ring graph is also discussed in section 2.1. In section 2.2 the dynamics of vehicle

platoons with a ring graph are derived. A few important properties of a circulant

matrix are also discussed. The eigenvalues of the system are derived using the prop-

erties of circulant matrices and scalability of the platoon is explored. An important

limitation for a vehicle platoon is the communication range of sensors transmitting

information. Section 2.3 explains this limitation in detail and alternatives to the ring

graph discussed in section 2.2 and their stability.

2.1 Graph Theory and Information Flow Graphs

Graph theory is used widely for modeling multiple vehicle systems. Graphs are used to

describe the interconnection of vehicles and are also used to study various properties

of vehicle formations. A graph is an abstract representation of a set of objects with

some pairs of objects connected by links. It is defined below [31].

Definition 2.1 A graph is a pair G = (V ;E) of sets satisfying E ⊆ [V ]2. Thus, the

elements of E are 2-element subsets of V.

12



The elements of set V are called the vertices (or nodes or points) of the graph and that

of E are called the edges (or lines). The number of edges at a vertex v ∈ V is called

the degree (or valency) of the vertex. It is represented by dG(v) or d(v). A graph is

said to be connected if the degree of all the vertices is at least one (d(v) ≥ 1, ∀ v ∈ V ).

Graphs are classified into two broad types undirected (or symmetric) and directed

(or asymmetric). Only a graph which is connected can be classified into undirected

and directed graph. A spanning tree of a connected graph is defined as follows.

Definition 2.2 Given a connected, undirected graph, a spanning tree of that graph

is a subgraph that is a tree and connects all the vertices together.

A special case of spanning tree called the minimum spanning tree is used in the next

chapter to solve the Traveling Salesman Problem. We will now define two important

properties which are used in later sections and chapters. Let in a graph G of size (no.

of vertices) n, xi ∈ V represent the vertices and xixj ∈ E represent the edge between

vertices i and j, then one can define a path as follows.

Definition 2.3 A path is a non-empty graph P = (V,E) of the form

V = x0, x1, · · · , xk and E = x0x1, x1x2, · · · , xk−1xk

If P = x0 · · ·xk−1 is a path and k ≥ 3, then the path C := P + xk−1x0 is defined as

a cycle. If a graph is connected then there exists at least one path between any two

vertices. Using the concept of a cycle, we now define what is called a Hamiltonian

cycle.

Definition 2.4 A Hamiltonian cycle in a graph is a cycle passing through all the

vertices of the graph. A graph is called Hamiltonian if it has at least one Hamiltonian

cycle.

Before the application of graphs to the control of formations is discussed, the concept

of ‘rigid’ formation is introduced. A formation of vehicles is called a rigid formation

13



if the relative position of vehicles with respect to the neighbors is maintained con-

stant. In other words, one desires to maintain the pairwise distances between vehicles

constant throughout the motion of formation [19]. To maintain rigid formations one

uses a combination of control, actuation, sensing and inter-vehicle communication all

of which are part of coordinated control. Any typical coordinated controller must be

able satisfy two properties:

Stability: It should be capable of achieving the formation and keeping it stable

throughout the motion of the group of vehicles.

Scalability: The controller should remain stable for all sizes of formation. If the con-

troller is not scalable then as the number of vehicles in the formation increase,

the formation suffers from an effect called string instability.

String instability is defined below:

Definition 2.5 A vehicle platoon is said to be string instable if disturbances are not

attenuated as they propagate through the system [32].

Stability and scalability are strongly dependent on the type of information flow graphs

used in the formation [14, 19, 33]. It has been shown in [33] that for a rigid forma-

tion consisting of homogeneous vehicles undirected graphs cannot be used to design

a scalable controller. The same has been proved to be valid for formation of hetero-

geneous vehicles in [19]. As a consequence of these results one can conclude that, it

is not possible to design a scalable controller for a rigid vehicle formation using an

undirected information flow graph.

A possible alternative is to use a directed information flow graph. In this work a

type of directed graph called the ring graph is used where each vehicle in the formation

is coupled to the other vehicles in the form of a directed ring. A ring graph is defined

below.

14



Definition 2.6 A graph where each node i ∈ V is connected to only two other nodes

such that information is received from one node and transmitted to the other is called

a ring graph.

As a consequence of Definition 2.6 every ring graph is a Hamiltonian cycle or every

ring graph is a Hamiltonian graph with only one Hamiltonian cycle.

The basic idea of ring coupling for coordinated control has been used previously

in [23,34]. The references [23,35,36] are based on cyclic pursuits in which each agent

i starts from a point on the plane and captures its respective agent i+1 and pursues

it in a cyclic fashion as shown in Figure 2.1. In [23] each vehicle is modeled as a

kinematic unicycle. The system’s equilibrium formations and the global behavior are

studied. The control strategy for the pursuit is based on the concept of reducing

the distance between the ith vehicle and its neighbor. Reference [21] used a one

dimensional second order dynamic model for the vehicle and developed a controller

based on ring coupling for non-cyclic motion. In the present work the dynamics of

the system are developed and the analysis is carried out similar to [21].

Figure 2.1: Vehicles in cyclic pursuit

15



(a)

(b)

Figure 2.2: (a) Platoon of Vehicles, (b) Basic ring graph between the vehicles.

2.2 System Dynamics

Consider the platoon of vehicles shown in Figure 2.2(a). The closed loop dynamics

of this vehicle platoon are derived in this section. Here we assume that the platoon

moves only in the direction x. This is possible as the higher dimensions in some cases

can be decoupled and the same derivation can be applied in all the directions (y and

z). Considering second order dynamics, each vehicle i ∈ Φ in the platoon Φ is taken

as a moving point mass with dynamic equation,

miẍi + pẋi = ui (2.1)

where mi is the mass and xi is the position of the ith vehicle, respectively, p ≥ 0 is

the friction coefficient and ui is the input to ith vehicle. If a constant input ui = w

is given, the vehicle velocities will converge to the same value and an inter-vehicular

distance depending on the initial conditions of the platoon Φ0 will result.

All the vehicles are coupled in a unidirectional ring at communication level mean-

ing that the ith vehicle receives its information from the (i− 1)th vehicle and the ring

is closed with the last vehicle communicating with the first vehicle, i.e, x0 = xN where

N is the number of vehicles in Φ. Thus, the neighboring vehicle of each vehicle i is

(i+ 1)th vehicle and the neighboring vehicle of the last vehicle in the ring is the first
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vehicle. Figure 2.2(b) shows the vehicle platoon with the associated communication

graph. The following control law and the platoon solution based on the ring coupling

are used in [21]:

ui = wi +K(xi−1 − xi − Li − hẋi) (2.2)

where K > 0 is the coupling strength, h > 0 is the time headway and Li (i ∈ Φ) is a

real constant. Using the control input (2.2) in (2.1) yields the following closed loop

dynamics

ẋ =
(Ax−Kb+ w)

m
(2.3)

where

x =

[

x1 ẋ1 x2 ẋ2 · · · xN ẋN

]T

A = circ













0 1

−K −(p + hK)






, O2, O2, · · · , O2,







0 0

K 0













b =

[

0 L1 0 L2 · · · 0 LN

]T

w =

[

0 w1 0 w2 · · · 0 wn

]T

(2.4)

and O2 denotes a 2 × 2 null matrix. The solution of Equation (2.3) is called the

platoon solution and is given by

ϕ(t) = αt+ βi, (2.5)

where

α =
ωm −KLm

p+ hK
(2.6a)

βi−1 − βi =
ωi − ωm

K
+ Lm − Li (2.6b)

The value of the design parameters Li, h and wi are calculated based on the desired

properties. The coupling strength (K) is a constant gain. For a desired inter-vehicular
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distance (δd) and platoon velocity (υd), the parameter values are calculated using the

relations

Li = Nδd + L1 (2.7a)

h = −
L1 + (N − 1)δd

υd
−

p

mK
(2.7b)

where L1 is a parameter that is freely chosen. While deriving (2.7) it is assumed

that wi = 0, ∀ i ∈ Φ. Since we are primarily interested in a constant inter-vehicular

spacing irrespective of the velocity of the platoon, h is a constant which changes only

when the desired velocity (υd) of the platoon changes. Along with the position xi,

each vehicle should also communicate the values ofN , L1, δd and υd to the neighboring

vehicle. The system matrix in Equation (2.6b) is a circulant matrix. Some important

properties of the circulant matrix are discussed in the next section.

2.2.1 Circulant Matrices

Definition 2.7 Any matrix where each successive row is obtained by cyclically right

shifting the previous row by one step is called a Circulant matrix. An example of a

circulant matrix is given below.

C =



















c1 c2 c3 · · · cN

cN c1 c2 · · · cN−1

...
...

...
. . .

...

c2 c3 c4 · · · c1



















(2.8)

It is a special case of a broader class of matrices called the Toeplitz matrix. Appendix

A provides a brief introduction to Toeplitz matrices. Circulant matrices are commonly

used to approximate the behavior of Toeplitz matrices but they have a variety of uses

themselves.

The most important and useful property of a circulant matrix is that only one row

is enough to describe the entire matrix. This is of great significance in the analysis

of systems which are described by circulant matrices. Another important property is
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related to the eigenvalues. Let ck be the sequence of the elements of the first row of the

matrix C, then the eigenvalues of the matrix comprise of the coefficients of Discrete

Fourier transform (DFT) of the sequence ck. The converse is also true, i.e, the first

row of the circulant matrix is the inverse DFT of its eigenvalues [25]. The following

lemma summarizes the properties discussed above for a block circulant matrix.

Lemma 2.1 Let C ∈ RNm×Nm be a block circulant matrix

C = circ

(

C1 C2 C3 · · · CN

)

where Ci ∈ Rm×m ∀ i ∈ Φ. The matrix C can be block diagonalized into a matrix Λ

Λ = diag

(

Λ1, Λ2, · · · ΛN

)

(2.9)

with the blocks Λi ∈ Cm×m given by

Λi = C1 + ωi−1C2 + ω2(i−1)C3 + · · ·+ ω(N−1)(i−1)CN (2.10)

∀i ∈ Φ, with ω := e2πj/N .

2.2.2 Eigenvalues of the Closed-Loop System Matrix

Lemma 2.1 is used to find the eigenvalues of the system of vehicles in the platoon.

Block diagonalizing the system matrix A in (2.4), each diagonal blocks is

Ai :=







0 1

K(ω(N−1)(i−1) − 1) −(p+ hK)






, ∀ i ∈ Φ (2.11)

The eigenvalues of the matrix A are thus obtained from the matrices Ai as

λi± = −
γ

2
±

1

2

√

(γ2 + 4K(ω1−i − 1)) (2.12)

where γ = (p + hK). When i = 1 in (2.12) the eigenvalues are zero and −γ. The

zero eigenvalue corresponds to the rigid body mode and the system is thus spatially
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invariant [37]. It was proved in [21] that the eigenvalues λi are all in the left half of

the complex plane when

K <
(p+ hK)2

2 cos2(π/N)
(2.13)

The constant K can be selected so as to satisfy the inequality (2.13).
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Figure 2.3: Position and spacing error of the platoon with ring graph of Figure 2.2(b)

A platoon of five vehicles is simulated with both zero and non-zero spacing errors.

The desired inter-vehicular spacing of δd = 5 m and platoon velocity vd = 25 m/s are

used in the simulations. The evolution of position of the odd numbered vehicles and

their corresponding spacing errors is shown in Figure 2.3. It is important to choose

the values of K and L1 such that they satisfy the stability condition. To satisfy this,

the coupling strength is set to a desired value first and the value of spacing constant

(L1) is varied such that time headway is positive (> 0) and the stability condition is

satisfied. The parameter values for the current simulation are summarized in Table

2.1.
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Variable Value

Velocity (vd) 25 m/s

Inter-vehicular spacing (δd) 5m

Coupling strength (K) 25

Spacing constant (L1) -40

Mass (m) 1kg

Friction coefficient (p) 0.5

Table 2.1: Parameter values used in simulation of basic ring graph

2.2.3 Scalability of Ring Graph

As explained in Section 2.1, scalability is one of the two important properties that

a coordinated controller need to satisfy. In the following discussion it will be argued

that the controller discussed in the beginning of this section may not be scalable. For

this we show that as the size of the platoon increases, there is a group of eigenvalues

whose real parts are negative but tend to the origin.

The eigenvalues of the system are given by Equation (2.12) where the complex

number ω(1−i) can be written as ω = cos
(

2π(1−i)
N

)

+ j sin
(

2π(1−i)
N

)

. Substituting the

complex number and separating the eigenvalues into their respective real and complex

parts we get

λi,± = −
γ

2
±

1

2
(ai + jbi)

1/2 (2.14)

where

ai = γ2 + 4K cos

(

2π(1− i)

N

)

− 4K

bi = 4K sin

(

2π(1− i)

N

)

Taking the square root of the complex number ai + jbi and substituting it in

Equation (2.14), the equation for real part of the eigenvalue is obtained as

λℜ,i,± = −
γ

2
±

1

2

√

|ai + jbi|+ ai
2

(2.15)
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Using the values of ai and bi in the above equation and simplification gives

λℜ,i,± = −
γ

2
±

1

2

√

κ + γ2 + 4K(cos(2π(1− i)/N)− 1)

2
(2.16)

where

κ =
√

γ4 − 16Kγ2 sin2(π(1− i)/N) + 64K2 sin2(π(1− i)/N).

Let the value of i be such that π(1−i)/N ≈ 0, π. This approximation is reasonable

if N is high and i is close to 0 or N . Using this approximation in the expression for

κ and in Equation (2.16) the eigenvalue equation can be simplified as,

λℜ,i,± = −
γ

2
±

1

2

√

√

γ4 + γ2

2

= −
γ

2
±

γ

2

= 0, − γ (2.17)
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Eigenvalues of 5 vehicle platoon

Figure 2.4: Eigenvalues of a five vehicle platoon

Thus with the increase in the number of vehicles the eigenvalues are concentrated

near the points 0 and −γ. Figure 2.4 shows the eigenvalues for a platoon of five
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Figure 2.5: Eigenvalues of platoons with (a) 25 and (b) 50 vehicles
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vehicles with coupling strength K = 10 and the time headway h = 1. There is one

eigenvalue at zero and the rest are in the left half plane. The farthest eigenvalue

from the origin is at −γ = −10. It can be observed that there is a pair of complex

conjugate pair above and below ≈ −0.7 on real axis.

The position of eigenvalues for vehicle platoons with 25 and 50 vehicles with same

coupling strength and time headway as that of a five vehicle platoon are shown in

Figures 2.5 (a) and (b). It can be seen that although the eigenvalue at 0 and −10

remain at the same location, there are multiple complex conjugate pairs of eigenvalues

near zero instead of a single pair as in the five vehicles case. The two groups of

eigenvalue that are symmetrical about the line passing through −γ/2. Changing the

value of coupling strength merely moves the second group (since the group is formed

near −γ which changes with K and h). Therefore, as the size of the platoon increases,

low frequency sinusoidal disturbances on the platoon are sustained and propagated.

If the frequency of the sinusoidal disturbance is same as the resonant frequency due

to a pair of complex conjugate eigenvalues whose damping ratio is less than 0.5, then

these disturbances are amplified.

2.3 Limitations of Basic Ring Graph

The ring graph shown in Figure 2.2 suffers from feasibility issues such as the size (N)

of the platoon which may be a major impediment not only because of the scalability

but also because of the link between the first and the last vehicle. Communication

may suffer if the length of the platoon is greater than the communication range of

the sensing device, if there is an obstacle between the vehicles, etc. So an alternative

ring graph needs to be in place which does not involve such long links. Development

of such a graph, its behavior based on the controller parameters set in the previous

section and stability are discussed in this section. It is beneficial to communicate

with the nearest possible neighbor, that is to keep the edge length of the graph as
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small as possible for all edges.

2.3.1 Design of Small Platoons with Ring Structure

One method of keeping the edge length small is by having small platoons. Any large

platoon can be split into multiple smaller platoon which is equivalent of saying a large

ring can be split into a number of small rings as shown in Figure 2.6.

1 2 3 4 5

Figure 2.6: Platoon of five vehicles with two small rings. 1−2−3−1 and 3−4−5−3

In order to maintain the platoon objectives, there has to be information flow

between each individual platoon. This can be achieved either by having a common

vehicle between two successive platoons or by having one vehicle in each platoon

communicating with any one vehicle in the neighboring platoon. However in both

the cases the system matrix ceases to be circulant as the rows corresponding to the

common vehicles have an additional non-zero block. The matrix in (2.18) represents

the system matrix of a 5 vehicle platoon with two small rings with vehicle 3 as the

common vehicle. It can be seen that row 3 has an additional non-zero element.

Therefore, we cannot apply the properties of the circulant matrix for system analysis.

The system may or may not be stable but its discussion is out of the scope of this
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work.

A =



























M O2 M1 O2 O2

M1 M O2 O2 O2

O2 M1 M O2 M1

O2 O2 M1 M O2

O2 O2 O2 M1 M



























(2.18)

where

M =







0 1

−K −(p + hK)






and M1 =







0 0

K 0







2.3.2 Alternative Ring Graphs

Alternative ring graphs are obtained by rearranging the position of the vehicles in the

ring. It should be noted that only the information flow in the ring has been changed

but not the physical position of the vehicle in the platoon. Figure 2.7 shows a possible

alternative configuration of a platoon with five vehicles. It can be seen that instead

of a link between ith and (i− 1)th vehicle, now the communication is between ith and

(i− 2)th vehicle.

1 2 3 4 5

Figure 2.7: Alternate ring graph with i− 2 to i i.e., 1-3-5-2-4-1

Consider the double integrator dynamics from (2.1). Using the ring graph from

Figure 2.7 the control input u can be written as,

ui = ωi +K(xi−2 − xi − Li − hẋi) (2.19)
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This control input leads to the following closed loop dynamics

ẋ = Ax−Kb+ ω (2.20)

where

x =

[

x1 ẋ1 x2 ẋ2 · · · xN ẋN

]T

A = circ













0 1

−K −(p + hK)






, O2, O2







0 0

K 0






, O2,







b =

[

0 L1 0 L2 · · · 0 LN

]T

w =

[

0 w1 0 w2 · · · 0 wN

]T

(2.21)

and K, Li and h all have the same definition as before. Let the solution of (2.20) is

exactly the same as (2.5). Substituting the platoon solution in (2.1) and solving for

α and βi we get

α =
ωm −KLm

p+ hK
(2.22a)

βi−1 − βi =
ωi − ωm

K
+ Lm − Li (2.22b)

Comparing the above equations (2.22) with the corresponding α and βi of the basic

ring graph (2.6), it is clear that both are the same. In fact it can be shown that no

matter how the vehicles are connected in a vehicle platoon as long as the information

flow graph forms a ring, the resultant system matrix is always circulant and the

platoon solution is given by (2.22). It is also noted that all the platoon solutions

only differ in the absolute position of the platoon and hence the system is spatially

invariant, and as a consequence of the spatial invariance, the system has one zero

eigenvalue.

Stability of Alternate Ring Graphs

Eigenvalues of the alternative ring structures are analyzed to determine the condition

for stability. Since the closed loop system matrix is circulant, we use Lemma 2.1 to
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write it in the block diagonal form. Considering the ring from Figure 2.7 the system

matrix of the platoon is given by (2.4). Using the Lemma on matrix A each block on

the diagonal is given by

Ai =







0 1

K(ω2(1−i) − 1) −(p+ hK)






(2.23)

The eigenvalues of the system are the union of the eigenvalues of the matrices given

by (2.23) for all i. The eigenvalues thus obtained are

λi,± = −
p + hK

2
±

√

(p + hK)2 + 4K(ω2(1−i) − 1)

2
(2.24)

Substituting i = 1 yields the zero and the smallest eigenvalues of the system. The

system is stable if the real part of the eigenvalues is negative, i.e,

γ

2
±

1

2
ℜ(ai + jbi)

1/2 < 0 (2.25)

where γ = (p+hK), ai = γ2+4K cos(4π(i−1)/N)−4K and bi = 4K sin(4π(i−1)/N).

From Equation (2.25) we conclude that the system is asymptotically stable if

K < min
γ2

2 cos2
(

2π(i−1)
N

) =
γ2

2 cos2
(

2π
N

) (2.26)

Comparing the above stability condition with the condition from previous section we

see that both are similar but not exactly the same.

Thus for any number of vehicles N , a coupling strength K and given conditions of

travel (velocity and inter-vehicular distance), the stability depends only on the value

of ‘h’ which is the time headway. From the Equation (2.7) time headway depends

on the structure of the ring, that is the inter-vehicular spacing between successive

members of the ring. Since δm is always positive and is less than the magnitude of

L1 chosen, the value of h is always strictly positive. Therefore, the eigenvalues are

always in the negative left half plane as long as the stability condition is satisfied.

However, the problem of scalability still persists.
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Figure 2.8: Position and spacing error of graph in Figure(2.7)

Simulation results for the five vehicle platoon with alternate graph configuration

are shown in Figure 2.8. The values of coupling strength K and L1 are chosen as in

Table 2.1. The other conditions of simulation also remain the same. However since

the position of vehicles with respect to the ring is different, inter-vehicular spacing

of adjacent vehicles in ring is different and hence Li and time headway values are

different.

2.4 Multiple Vehicle Communication

The previous sections are based on communication from a single vehicle, i.e, each

vehicle i receives the information of only one vehicle. But a controller based on

communication from a single vehicle can lead to problems in some situations. For

instance if one of the communication links is broken, then there is collision among the

following vehicles or the entire platoons comes to a halt. This problem can be averted

by using a two vehicle communication instead of one. Figure 2.9 shows a platoon

where each vehicle communicates with two of its immediate neighbors downstream.

Notice that if each vehicle receives information from the vehicle on either side then
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the communication graph is symmetric.

1 2 3 4 5

Figure 2.9: Vehicle platoon with each vehicle receiving communication from multiple

vehicles. Ring1: 1-2-3-4-5-1, Ring2: 1-4-2-5-3-1

The platoon dynamics for this situation are,

ẋ = Ax− (K1b1 +K2b2) + ω (2.27)

A = circ













0 1

−(K1 +K2) −(p + h1K1 + h2K2)






, O2, O2,







0 0

K1 0






,







0 0

K2 0













b1 =

[

0 L11 0 L12 · · · 0 L1N

]T

b2 =

[

0 L21 0 L22 · · · 0 L2N

]T

(2.28)

Here K1 and K2 are the coupling strengths between the ith vehicle and the two

neighbors it is communicating with. With δi1 and δi2 being distance between ith

vehicle and its communication neighbors, the values of Li1 and Li2 and h1, h2 are

calculated from (2.7).

Equation (2.27) is simulated for a platoon of five vehicles with gains K1 = 25 and

K2 = 5. The resulting path and error of the each vehicle is plotted in Figure 2.10.

Observing the error plots in Figures 2.3 and 2.8 it can be seen the settling time and

overshoot of error have improved compared to that of the previous case with single

neighbor communication. Hence, a two neighbor is better than a single neighbor

communication in terms of error and collision avoidance; of course we have to keep

in mind that this is true for only ring graphs.
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Figure 2.10: Position and error vs time for a platoon with each vehicle receiving

information from two vehicles

2.4.1 Stability Analysis

Using the eigenvalue analysis discussed in Section 2.2 with the present case of two ve-

hicle communication. Using the Lemma 2.1 on Equation (2.27) the diagonal matrices

and the respective eigenvalues are

Λi =







0 1

K1(ω
2(1−i) − 1) +K2(ω

(1−i) − 1) −γ







λi,± = −
γ

2
±

1

2

√

γ2 + 4 (K1(ω2(1−i) − 1) +K2(ω(1−i)−1)) (2.29)

For stability the real part of the above eigenvalues should be in the left half of the

complex plane. Solving the inequality we finally obtain the condition for stability

with two vehicle feedback

(K1 +K2) > max

[(

K1 sin
4π(1−i)

N
+K2 sin

2π(1−i)
N

4γ

)2

+K1 cos
4π(1− i)

N
+K2 cos

2π(1− i)

N

]

(2.30)
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Hence, as long as the sum of coupling strengths satisfies Equation (2.30) the

platoon is stable. However, it is noted that this may not guarantee string stability. It

should also be noted that there are symmetric links in the two vehicle communication

graph shown in Figure 2.9.

2.5 Two Dimensional platoons

So far the characteristics of ring coupling for platoons moving in a single direction

have been investigated. Single dimension travel would mean that the path has to be

straight without any turns or curves. The path should be free of any obstacles because

if there are any, the vehicles would either collide or would come to a stop (the later

being possible if any avoidance detection system is in place). But this is practically

not possible as any highway would have turns and there are also disturbances in the

path. In order to overcome these issues the vehicle should be steerable which in turn

would mean that the platoon should be steerable making the path two dimensional

(2D). In some special cases, for example the differential drive model, the higher order

dynamics of the vehicle can be decoupled into individual directions [38].

A simple 2D model is given by Equation (2.31) where directions x and y are

decoupled. Although this is practically not possible always and the directions are

coupled in many cases, the model can be used for a basic analysis to see if the ring

coupling would actually work with 2D travel.

ẍ+ pxẋ = ux

ÿ + pyẏ = uy (2.31)

where px, py is the friction in respective directions and ux,uy the inputs. Simulating

the above dynamics using control input (2.33) for a square platoon of the form in

Figure 2.11 with zero initial conditions gives the error plot shown in Figure 2.12.
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Figure 2.11: Two dimensional square formation

ux = Kx(xi−1 − xi − Lxi
− hxẋi) (2.32)

ux = Ky(yi−1 − yi − Lyi − hy ẏi) (2.33)

where, L, h,K represent the spacing constant, time headway and coupling strength

in the respective dimension. This control input will result in the following closed loop

system which is similar to the system in (2.20)

ẋ = Ax−Kb+ ω (2.34)

where,

x =

[

x1 y1 ẋ1 ẏ1 · · · xN yN ẋN ẏN

]T

A = circ
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b =

[

0 0 Lx1 Ly1 · · · 0 0 LNx
LNy

]T

(2.35)
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Figure 2.12: Error vs time for 2D square formation with decoupled dynamics

Since the dynamics are decoupled each direction is similar to 1D linear platoon model

and hence is stable as long as the conditions in Equation (2.13) is satisfied.
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CHAPTER 3

ALGORITHM TO FORM A RING GRAPH

The vehicle platoons discussed in the previous chapters are all small in size and

may not be suitable for many practical applications. For a large formation, it is

difficult to create a directed communication graph other than few simple graphs such

as a path graph. Hence, it is important to have a strategy for creating a direct

communication graph. In this chapter two possible algorithms to find a ring graph

for a given formation are discussed. Section 3.1 discusses an algorithm to find a ring

graph for a given platoon of vehicles. In section 3.2, the Traveling Salesman Problem

(TSP) is introduced and the methods used to solve the TSP are explored. Section

3.3 the ring graph is formulated as a special case of TSP. An algorithm based on

the branch and bound method is formulated to form a ring graph for a given vehicle

formation. The details of this algorithm are presented in section 3.4.

3.1 Ring Graph for a Vehicle Platoon

As discussed in Chapter 2 a platoon is a linear formation of vehicles maintaining

an inter-vehicular spacing and a constant speed. A platoon is one of the simplest

formations even if it involves a large number of vehicles. The position of vehicles

can be joined using a straight line or a curve. Forming a ring graph on a platoon of

vehicles is also easy relative to other more complex formations, that require a lot of

computations and time taking computer programs.

An algorithm to form a ring graph for a given vehicle platoon consisting of N

vehicles, with a constant inter-vehicular spacing δ, and a communication range ξ ∋
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ξ ≥ 2δ, is the following:

1. Denote the first vehicle by setting i = 1, the second vehicle i = 2, and so on till

the last vehicle i = N .

2. Starting from the first vehicle, establish edges between successive odd numbered

vehicles, that is one to three, three to five, five to seven and so on.

3. Repeat last step until N th vehicle if N is odd or, (N − 1)th vehicle if N is even.

4. If N is odd, create an edge from N th vehicle to (N −1)th vehicle or, if N is even

create an edge from (N − 1)th vehicle to the N th vehicle.

5. Beginning from the vehicle in last step, move towards the front of platoon and

create an edge between every successive even numbered vehicles until vehicle

two.

6. Finally create an edge from vehicle two to vehicle one.

The above algorithm gives a ring graph with the length of the longest edge less

than or equal to the communication range since the longest distance two successive

vehicles is less than or equal to twice the inter-vehicular spacing in the ideal situation

where there are no spacing errors. Figure 3.1 shows this algorithm in action for a five

vehicle and eight vehicle platoon.

Although this algorithm is simple to use, it is only suited for platoons, i.e., linear

formations. It is unclear if the same approach will work with formations that are

two- and three-dimensional. For instance, intuitively the algorithm does not yield a

feasible solution with a two dimensional triangle formation or square formation. In

the next section of this chapter the TSP formulation and related solution methods

are used to create an algorithm which will work for any kind of formation.
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Figure 3.1: Illustration of the algorithm for a platoon of (a) Five vehicles (b) Eight

vehicles

3.2 Traveling Salesman Problem

Definition 3.1 Given a list of n cities and their pairwise distances, find a tour, that

is, a simple path visiting all cities, so that the total traversed distance is the least

possible [39]

The TSP has many application in planning, scheduling tasks, manufacture of inte-

grated circuits, geographical mapping, etc. Considered one of the toughest problems

to solve in combinatorial optimization and classified as NP-hard, it is also used for

testing the efficiency of any algorithm developed to solve combinatorial optimization
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problems. There is a vast amount of literature on TSP formulations, special forms

of TSP, and polynomial-time algorithms to solve special cases. The reader is referred

to [40, 41] for more information.

In graph theory given a completely weighted graph the problem of finding a Hamil-

tonian Cycle such that the total weight is the smallest is a TSP formulation. There

are two types of weighted graphs: Asymmetric graphs, where the distance from node

i to j is not equal to the distance from node j to i. For example, in traffic related

problems when one way streets are encountered, distance traveled from point A to

B is not the same as that from point B to A. Symmetric graphs, where the distance

between any two nodes are equal both ways.

The formulation of a standard TSP problem is the following. We start with a cost

matrix C = cij where each element cij represents the distance between city i and j,

the problem is to minimize
n
∑

i=0

n
∑

j=0

cijxij (3.1)

where xij is how the traveler goes from city i to j. xij = 1 if person goes immediately

from i to j. Equation (3.1) is minimized subjected to constraints

n
∑

i=0

xij = 1,

n
∑

j=0

xij = 1 (3.2)

The constraints in the above equation limits the tours where traveler goes from

city i to only one city and comes to city j from only one city. Thus the formulation

so far gives us tours where the traveler visits all the cities while visiting each city

only once. This is called an assignment problem or scheduling problem. But the

assignment problem may include sub-tours. Figure 3.2 shows a possible solution of

a five city assignment problem. There are two sub-tours in the solution, yet all the

cities are assigned once. Hence for a TSP it is obvious that these sub-tours should be

eliminated.
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1 2 3 4 5

Figure 3.2: Possible solution of assignment problem with five cities

3.2.1 Sub-Tour Elimination Constraint

A tour of length less than the total number of nodes is called a sub-tour. To eliminate

sub-tours we have to eliminate tours of length 1, 2, ......(n − 1). The tours of length

1 are the tours which start and end at the same node or city. To eliminate this we

can include the following condition, xjj = 0, ∀ j = [1, n]. This will give an extra

n constraints. We can avoid this by including the constraint directly into the cost

matrix by simply setting cjj = ∞. By this the sub-tours of length 1 are automatically

eliminated from any solution since they cost infinity.

Sub-tours of length 2 are eliminated by setting the constraint xij + xji ≤ 1. This

gives an additional nC2 constraints. Sub-tours of length 3 are eliminated by setting

xij + xjk + xki ≤ 2 which gives a total of nC3 constraints. Writing the conditions for

all the other sub-tours we will get

nC2 +
n C3 + ....+n Cn(n−1)

2

constraints if, n is odd

nC2 +
n C3 + ....+n Cn

2
constraints if, n is even (3.3)

One can see that many constraints need to be included in the problem. Another for-

mulation of the sub-tour elimination constraints also known as Miller-Tucker-Zemlin

(MTZ) formulation [42] is given by the inequality (3.4).

ui − uj + nxij ≤ (n− 1) ∀i = [1, n− 1], j = [2, n] (3.4)

where ui (i = 1, 2, 3, · · · , n) are arbitrary real numbers. Every tour satisfies this

constraint including the complete tour of all n cities. This formulation reduces the

total number of sub-tour constraints to n2 from the order of n!. Thus the Equation
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(3.1) is minimized subject to constraints (3.2) and (3.4). This kind of formulation is

used in Integer Programming methods, which was popular during the early years of

TSP literature [41, 42]. But TSP is seldom solved using integer programming today.

However, it is discussed here because it is easy to understand how the problem is

constructed. Many algorithms have been developed over the period to solve the TSP

some of which are approximate algorithms and others are exact algorithms based on

branch and bound techniques [40, 43, 44].

3.2.2 Exact Algorithms

These algorithms find the exact solution of a given TSP. Dynamic programming

and branch and bound methods are commonly employed in early algorithms. These

algorithms can be used to solve TSP’s consisting of cities less than 100; [40,41,43] are

good references for a variety of exact algorithms. Although dynamic programming is

simpler of all the methods, it requires considerable computation and is very slow when

the number of cities increases beyond 10. For this reason branch and bound methods

are preferred to find an exact solution. The upper bounds are usually generated by

solving a heuristic algorithm. There are many kinds of heuristic algorithms which

generate an approximate solution. The cost of this solution is used as an upper

bound.

Branch and Bound Algorithms

In a nutshell the branching starts with a lower bound and at each step select the

minimum cost and branch further from that node. The essential parts of this method

are a branching strategy and selection of bounds which vary with the algorithm. A

rudimentary branch and bound uses the sum of row minimum to generate the bounds

and the branching is done from the node which has the least cost.

Some algorithms use the cost of the tour generated by solving the assignment
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problem. The assignment problem may be solved by any available algorithms like the

Hungarian algorithm [45]. The cost of tour is used as the lower bound and branches

are extended towards eliminating the sub-tours present in the assignment. The node

which results in the minimum cost is selected and the assignment problem is solved

again at that node.

Example 3.1 Let C be a cost matrix of a five city problem and is given by
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then the resultant tour and the optimum cost using the Eastman’s branch and bound

algorithm are Tour = 1− 3− 4− 2− 5− 1, Cost = 34. The evolution of branches

is shown in Figure 3.3. The number on the branch is the path and the value in the

node is the minimum cost after reaching that node.

Advantages and Disadvantages

The advantages and disadvantages discussed are more suited for branch and bound

methods and should not be taken for granted for the advanced methods. The biggest

advantage of using the exact algorithms is of-course that they give the exact solution

if it exists. The disadvantages are as follows:

1. The exact algorithms are usually very slow for large number of nodes.

2. Calculating lower bounds is difficult in many cases since at each instance the

assignment problem has to be solved to get a lower bound.

3. These algorithms are usually not executed in polynomial times.
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Figure 3.3: Working of branch and bound algorithm

4. They are associated with large computational costs.

Although these algorithms suffer from the above mentioned disadvantages, they are

used widely if an exact solution is desired.

3.2.3 Approximation Algorithms

Approximation algorithms for solving the TSP are based on heuristic methods. They

are used to solve a TSP in polynomial time. These algorithms do not give an exact

solution but they give an upper bound on the solution. There are many approxima-

tion algorithms which are used depending on the quality of solution desired. Refer-

ences [40,41,46,47] explain some of the heuristic methods, the quality of solution for

each of the methods, and the approximate time required to run the algorithm for a

given number of cities n. Some typical approximate algorithms are nearest neighbor

algorithm or greedy algorithm, Twice Around the Tree algorithm, Christofide’s algo-

rithm, etc. Twice Around the Tree algorithm and Christofide’s algorithm are both

based on the concept of the minimum spanning tree (MST). MST algorithms can only
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be used by cost matrices that obey triangle inequality. MST is defined as follows:

Definition 3.2 Given a connected, undirected graph, a minimum spanning tree (MST)

is a spanning tree with weight less than or equal to the weight of every other spanning

tree.

1
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5

7

6

5

8

Figure 3.4: MST of cost matrix from Example 3.1

Given a connected and undirected graph the minimum spanning tree is the tree which

connects all the nodes together. Figure 3.4 shows the minimum spanning tree of the

cost matrix from Example 3.1. An algorithm based on the minimum spanning tree

known as the Twice Around the Tree algorithm is

1. Get the minimum spanning tree (MST) of a given graph using any algorithm.

2. Starting from any arbitrary vertex or node, perform a nearest neighbor traversal

of the MST and add each vertex visited to a list.

3. Start from the first vertex in the list and remove every vertex that has been

previously visited until the first vertex is reached.

The step by step results from the algorithm are shown in Figure 3.5.

Advantages and Disadvantages

The approximation algorithms have several advantages over the exact algorithms.
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Figure 3.5: Steps in Twice Around the Tree algorithm. (a) Nearest neighbor traversal

of MST, (b) The actual tour of cost 34 obtained from (a).

1. The algorithms are very fast and are executed in polynomial time.

2. A variety of heuristics exist for any type of problem.

3. In few special cases, the approximation algorithms may give the exact solution.

4. Computational costs are very small compared to exact algorithms.

5. These algorithms provide at least an upper bound to be used with exact algo-

rithms.

Generally the chance of being close to the optimum varies based on a wide range

of characteristics. The approximate algorithms are also widely used when a quick
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solution is required.

3.3 Ring Graph as a TSP

As explained in Section 3.2 the TSP in graph theory can be formulated as finding the

least Hamiltonian path. The Hamiltonian path is defined as follows

Definition 3.3 Given a connected, undirected graph G(V,E), a path which passes

through all the vertices in the graph once and returns to the vertex from which it

started is called a Hamiltonian path.

Only connected graphs have a Hamiltonian path. If a graph is connected but not

undirected there may not be a Hamiltonian path. Any algorithm that is used to solve

a TSP can also be used to find a Hamiltonian path at no extra cost. Note that a

Hamiltonian cycle defined in 2.4 is the same as in Definition 3.3.

Comparing Definition 2.6 of ring graph with that of Hamiltonian path in Defi-

nition 3.3 it is clear that finding a Hamiltonian path is equivalent to finding a ring

graph. Thus finding a ring graph can be seen as a relaxed form of solving a TSP, i.e,

finding a feasible solution. But a feasible solution may not satisfy the constraint on

communication range of the transmitters. Thus there is a need for tighter bounds on

this problem than the TSP itself.

3.3.1 Constraint Introduced by Transmitter Range

The range of a transmitter corresponds to the greatest distance it can transmit. Thus,

a range of ξ will represent the greatest distance a tour can be between two cities or

the tours where all the edges have a length less than ξ. Hence, we are looking for

solutions where

cijxij < ξ, ∀ i, j ∈ [1, n] (3.5)
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This constraint makes sure that each traverse between two cities in the tour should be

less than ξ. This is a total of n2 additional constraints that need to be satisfied. Hence

the problem can be formulated as minimizing Equation (3.1) subjected to constraints

(3.2), (3.4) and (3.5), that is,

min

n
∑

i=1

n
∑

j=1

cijxij

subjected to
n
∑

i=1

xij = 1,

n
∑

j=1

xij = 1,

ui − uj + nxij ≤ (n− 1),

cijxij < ξ, ∀i, j ∈ [1, n] (3.6)

It should be noted that even the optimum solution of TSP may not satisfy the range

constraint. It can also be seen that for a given number of nodes or cities n, the time

required to solve the problem is smaller than that of solving the TSP itself. This is

due to two reasons:� The communication range constraint (3.5) limits the number of branches at

each step.� The algorithm does not look for an optimum solution but stops as soon as a

feasible solution is found since we do not need an optimum solution, i.e, we only

need a Hamiltonian path but it need not be of minimum weight.

Finally, we make the following assumptions which are true for most of the formations

1. The cost matrix is symmetric

2. The problem is Eulerian, i.e, the cost of traveling between any three cities obey

triangle inequality.
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3.4 Algorithm to Form a Ring Graph Using TSP Formulation

An algorithm is developed using the branch and bound method described in Section

3.2.2. At every step branches extend only to the nodes which lie in the communication

range. The steps involved in the algorithm are given in the following.

Given a cost matrix C = cij ∈ R+ and a communication range ξ, a Hamiltonian

path is found by the following algorithm

1. The sum of row minima of the cost matrix C is taken as the initial lower bound.

2. Starting from a node with minimum cost, branches are extended to all possible

cities which satisfy Equation (3.5)

3. For each branch the costs are calculated by fixing the cost of already traveled

path and adding it to the sum of row minimum corresponding to the cities not

traveled.

4. The node with minimum cost is selected and branching is continued.

5. Steps 2, 3 and 4 are repeated until the tour has n− 1 cities.

6. At the (n−1)th city it is verified that the last two paths satisfy Equation (3.5). If

it does, then the current tour is taken as the feasible solution and the algorithm

stops. If the tour fails the constraint, then the current tour is discarded and

branching starts from the node with the minimum cost.

The algorithm is implemented in MATLAB. The working of the algorithm can be

seen from the Example 3.2.

Example 3.2 Let C be the cost matrix of the distances between every vehicle pair

i, j (i, j = 1, 2, 3, ..., n) and ξ = 2δ be the communication range, where δ = 5 is the

inter-vehicular spacing and n = 5. The evolution of the branches is shown in Figure
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3.6 with the following as the cost matrix.

C = cij where (3.7)

cij = ∞, ∀i = j

cij = cji = |(i− j)|δ ∀i, j = 0, 1, 2, · · ·n

As seen from the branches in Figure 3.6, at each node, the branches extend only to

the vehicles satisfying the communication range constraint. The branches marked

with a ‘×’ are terminated by the algorithm. This is because either the following

branch or the terminal branch violates the constraint. The exit condition for the

algorithm is the feasible solution. If the execution continues after a feasible solution

is found, the algorithm returns the optimum solution which is not necessary since the

main objective is to find a Hamiltonian path that satisfies the communication range

constraint. Using the algorithm on the eight vehicle platoon, the solution is obtained

as 1− 2− 4− 6− 8− 7− 5− 3− 1. Coincidentally, the solution obtained for a linear

vehicle platoon with δ = 2 is also the optimum solution.

Using the results from both the algorithms, it can be summarized that for a linear

vehicle platoon, the minimum cost ring graph can be formed as,

1− 3− 5− · · · − (n− 1)− n− (n− 2)− · · · − 2− 1, when n is even

and

1− 3− 5− · · · − (n− 2)− n− (n− 1)− · · · − 2− 1, when n is odd
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Figure 3.6: Evolution of branches for five vehicles in Example 3.2 using the algorithm

for ring graph
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CHAPTER 4

VEHICLE FORMATION EXPERIMENTAL SETUP

To verify the simulation results discussed in the previous sections and to verify the

results of other coordinated control problems in hardware, a platoon of autonomous

mobile robots is planned. A group of five differentially driven robots are built for this

purpose. Each robot has two independent driven wheels and an on board autonomous

controller. Encoders are used to measure the velocity and displacement of the robot.

The development of this experimental setup, the details of the components, their

specifications and the controller used are discussed in detail in this chapter. The

mathematical model for a two wheeled differentially driven robot is derived in Section

4.1. A two stage controller for control of both velocity and position is explained in

Section 4.2. The components of the robots and position sensors are discussed in

Section 4.3.

A few basic requirements that the robot platoon has to satisfy in order to run the

experiments are conceived. These are as follows:

1. The robots should be small and of compact design so that they can be used

indoors.

2. All the robots should be autonomous. They should have their own on board

controllers to control position and velocity.

3. All robots should have sensors to measure their own position accurately at any

point of time.

4. There should be a central station to monitor the experiment, log data and to
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change the trajectory or any other parameters online.

5. All robots should be equipped with wireless communication infrastructure to

communicate with each other and with the central computer.

6. Lastly, each robot should be capable of handling any other extra accessories

(sensors etc.,.) which may be required to carry out some experiments.

4.1 Robot Model

The differential drive robot model is selected because of its simplicity in deriving the

dynamics. This model has been extensively used in the literature [48–53]. There

are two independently actuated wheels on a common axis with a caster wheel for

maintaining balance. The robot has two motors for actuating the two wheels. For

linear motion perpendicular to the axle, both the motor shafts need to rotate in the

same direction and with same velocity. To make a turn the wheels turn at different

velocities, hence the name differential drive. Figure 4.1 illustrates a differential drive

vehicle.

4.1.1 Robot Kinematics

To derive the kinematics of the robot, consider the simple illustration of a vehicle

in Figure 4.1. The position and orientation of the robot at any instant of time are

described by the vector q = [x, y, θ]T , where x, y denote the position of point CR

(the center of line joining both wheels) in the global coordinate frame and θ is the

orientation of vehicle with respect to the global x−axis. The angular velocity of the

left and right wheels are denoted by ωl and ωr respectively. There are three variables

to control and only two control inputs (the wheel velocities) hence a transformation

is used to reduce the number of variables to two namely the linear velocity v of the
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point CR and the angular velocity of the robot ω. This transformation is given by
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Figure 4.1: Two wheeled differential drive vehicle

The above equation represents the kinematics of the vehicle. It should be noted

that if one point on the robot changes then all its points change owing to its rigidity.

It is seen that the center of the robot is not necessarily the center of gravity or the

center of rotation. The mid-point on the longitudinal axis of the robot, between

the wheels is the reference point of rotation. Hence, the velocity at this point CR

is taken as the velocity of the robot. The rotation angle is not restricted to the

robot’s reference frame, because as a rigid body all points undergo the same change

in orientation. When ωr > ωl then the robot turns to the left of its current position

and the orientation angle increases and if ωl > ωr the robot turns right. The rate of

change in orientation which is the angular velocity ω can be written as

ω =
dθ

dt
=

r(ωr − ωl)

b
(4.2a)
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v =
r(ωr + ωl)

2
(4.2b)

where r is the radius of the wheel and b is the length of the wheel base, that is,

the distance between the wheels measured along the rotation axis of the wheels. The

linear velocity of the robot is the average of wheel velocities. Although it is not used

in designing a kinematic controller it is worthy to note an important constraint on

the robot’s motion. This constraint is non-holonomic and is called the no-slip or

no-skid constraint. This constraint restricts lateral slip of the wheels thus restricting

any lateral motion and is given by the following equation.

ẋi sin θi = ẏi cos θi (4.3)

4.1.2 Robot Dynamics

Equation (4.1) represent the kinematics of the vehicle and Equation (4.3) is the no-

skid constraint. The dynamics are derived using the Euler-Lagrange equations. The

Lagrangian is formed by the total energy of the system which is given by,

L =
1

2
m(ẋ2 + ẏ2) + Jθ̇2 (4.4)

The Euler-Lagrange equation is

d

dt

∂L

∂q̇
−

∂L

∂q
= JT (q)λ+B(q)τ (4.5)

where q is the generalized coordinate vector i.e, q = [x, y, θ]T , J(q) is the non-

holonomic constraint matrix, λ is the Lagrange multipliers of constraint forces, B(q)

is the input transformation matrix obtained from the kinematics of the robot and

τ is the input torque vector. Substituting total energy (4.4), the transformation of

coordinates (4.1) and no-skid constraint (4.3) in Equation (4.5) the dynamics are

obtained as
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λ (4.6)
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where m is the mass and I the inertia of the robot about its rotational axis. There are

several methods to eliminate the Lagrangian multiplier λ. One can use the vehicle

kinematics to get the accelerations and substitute the accelerations in the above

equation. Another method is to use Boltzmann - Hamel equations [48]. Here the

kinematics based method is used since the equations are relatively simple.

Since there is no lateral torque on the vehicle, the total applied torque is the sum

of linear (τL) and angular (τA) torques. The linear and angular torques are

τL =
1

r
(τl + τr)

τA =
b

r
(τl − τr) (4.7)

where τl and τr are the torques of left and right motor respectively. Using the linear

and angular torques, Equation (4.6) can be written as

ẍi =
1

m
(τLi

cos θi + λ sin θi)

ÿi =
1

m
(τLi

sin θi − λ cos θi)

θ̈i = τAi
/I (4.8)

Differentiating the vehicle kinematics from Equation (4.1), substituting the vector

[ẍi, ÿi, θ̈i]
T in Equation (4.8) and solving for [v̇i, ω̇i]

T we get






v̇i

ω̇i






=







τLi
/m

τAi
/I






(4.9)

Equation (4.9) is the dynamic equation of the individual vehicle. These dynamics are

used in designing a torque based motor velocity controller.

4.2 Trajectory and Velocity Control

The trajectory controller used by every individual vehicle is derived in this section.

There are different types of controllers available in literature for controlling the posi-

tion and velocity of an autonomous robot. These controllers are based on the type of

54



application in which the robot is used; avoidance control, point to point control, etc.

The closed loop controllers are designed based on the type of problem that needs to

be solved [54].

1. Point-to-point control: The robot should reach the final point from a given

starting point irrespective of the path it takes.

2. Path following control: The robot must reach a predefined path and follow the

path starting on or off the path.

3. Trajectory tracking control: The robot must reach the trajectory (i.e, a path

with associated timing law) and follow the trajectory starting on or off the

trajectory.

The current work focuses on tracking a reference trajectory, hence, a trajectory track-

ing controller is used.

-

+

-

+Non-linear 
Kinematic 
Path Controller

Velocity 
PI

Wheel
Actuators

Robot

Vd A qa,q̇a

q̇qa

qref

Figure 4.2: Two loop trajectory tracking kinematic controller

The strategy involves two control loops. The outer control loop is a path con-

troller which controls the desired velocity. A non-linear kinematic path controller

first developed by Kanayama et al. in [55], is used to calculate the desired velocities

to track the reference trajectory. Different variations of this controller were used in

the literature [48, 51]. The controller takes the position of the vehicle and the ref-

erence position as the inputs and, outputs the desired linear and angular velocities

which are required to make the position error zero. The desired velocities are used as
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inputs to the inner loop which controls the voltage to the individual motors. Since the

dynamics of the robot are ignored, we assume that the motors are capable of gener-

ating the required velocity and accelerations. The working of the controller is better

understood from the controller block diagram in Figure 4.2, where Vd = [vd, ωd]
T is

the vector of desired velocities, A = [Vl, Vr]
T is the vector of actuation voltages and

qa, q̇a are the actual position and velocity.

4.2.1 Outer Path Control loop

In order to use the path controller, the position error should be calculated. Let qr be

the reference position of the robot and qa be the actual position, that is calculated

from the measured wheel displacement. Referring to Figure 4.3, the tracking error is

written as
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
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











ėx
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(4.11)

where subscript d refers to the desired value of the corresponding variable. Equation

(4.11) is the dynamics of the path error. The control input for the error dynamics

[vd, wd]
T are given by the following equations:

vd = vr cos eθ + kxex (4.12a)

wd = wr + vf(kyey + kθ sin eθ) (4.12b)

where kx, ky and kθ are positive gains. These desired velocities act as the reference

to the inner loop controller which controls the motor velocities.
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Figure 4.3: Trajectory tracking vehicle model

4.2.2 Inner Velocity Control loop

The inner loop uses the desired linear and angular velocities from (4.12) to generate

the voltage inputs for the individual motors. The velocities of the individual motors

are calculated using the Equation (4.2). These calculated velocities are used as the

feedback for the inner velocity loop. A simple proportional integral (PI) controller is

used for velocity control. It is given by

V = KpWe +Ki

∫ t

0

We(τ)dτ (4.13)

where V = [Vl, Vr]
T is the voltage input for each motor, We = [ωel, ωer ]

T is the error

vector of the left and right motor velocities, Kp, Ki are the proportional and integral

gains, t is the time.

4.3 Components of Robot

The robot consists of three main components. The robot base and actuators, con-

troller and wireless modules, and position sensors. Each component is explained in

detail in this section.
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4.3.1 Robot Base and Actuators

A two wheeled differential drive model has been used to make the robot. For simplicity

of dynamics and to avoid wheel lift off on uneven surfaces the two driven wheels are

placed at the back of the base plate. There is a caster wheel in front to maintain

balance. In order to keep the center of gravity of the entire robot close to the center

of wheel axis the battery is placed between the wheels on the centerline of the base.

The base of the robot is machined from a sheet of aluminum of length 9 in, width

7 in, and thickness 0.1 in. The initial configuration of the base was made such that

the wheels are mounted at the center of plate. There were two caster wheels, one in

the front and the other in the rear for balance. The model was machined, assembled

and tested. But, this model suffered from the wheel lift problem on uneven surfaces.

The two caster wheels lifted the whole vehicle up when the surface got uneven, which

resulted in wheel slippage. So, the wheel location was shifted to the rear of the base.

A computer model of the base plate is create in Solidworks with the exact dimensions

of the plate, the hole and cutout locations. The drawing of the base plate is shown

in Figure 4.4.

The two motors to power the wheels are mounted under the base plate using

aluminum brackets. The wheels are directly mounted on the motor shafts. A steel

ball caster is used to maintain the balance and level of the vehicle. This is mounted on

the front end of the base, close to the edge. A plastic box that houses the controller is

mounted on the top of the base such that the plate and box centers are aligned. The

battery is mounted under the plate between the motors along the longitudinal axis

of the plate. The battery is held in place with a flange. This flange is also made of

aluminum. This makes it easy to charge the battery without dissembling it from the

vehicle. Finally, a switch is also assembled on the top of the plate for convenience.

Two DC motors each with a no-load speed of 350 rpm and a stall torque of 8 kg-

cm are used to power the wheels of the robot. Each motor has an encoder attached to
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Figure 4.4: Computer generated drawing of the robot base

its back shaft which generate 1856 pulses for every revolution of the shaft. The axis

of motor shafts are aligned and intersect the longitudinal axis of the robot. Other

specifications of the robot are given in Appendix B. The entire robot weighs about

5 lbs and the base plate is 2.48 in high from the ground. Figure 4.5 shows the actual

robot.

4.3.2 Controller and Wireless Module

The hardware used to implement the controller is saught based on the following

conditions:� The controller should be fast and should have sufficient memory to execute the

control program in a given sampling period.
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Figure 4.5: Robot view (a) Top, (b) Bottom, (c) Robot with sensors mounted
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� It must support various communication interfaces including I2C, it should be

capable of actuating the motors and read the data from encoders.� It should be programmable and must have necessary interfaces to connect with

a computer.� It should support all the extra hardware needed to run the motors, communicate

via wireless, provide power to encoders.� It must be cheap, reliable and should have necessary support.

The controller is implemented on a Arduino Mega 2560 development board. The

board is based on the ATmega2560 micro controller. Some important features of the

ATmega2560 include 256 KB of flash memory, 8 KB of SRAM and 4 KB of EEPROM,

clock speed of 16MHz, 14 pins to provide 8-bit PWM output, 6 external interrupt

pins and I2C communication interfaces [56] . The board has an interface to connect

directly to a PC via USB, internal voltage regulators of 5 V and 3.3 V. The board

can operate from an external supply between 6-20 V and has a USB over-current

protection. It can be programmed using Arduino Software Development Kit [57].

Figure 4.6(a) shows an Arduino Mega 2560 board.

The direction and velocity PWM signals are sent to the motor controller board

which takes in the PWM and generates the voltages required to run the motors. An

Arduino Motor shield shown in Figure 4.6(b) is used. It is based on the L298 dual

full-bridge driver. The board can run two 12 V motors with a maximum of 2 A

current. It also has an on board current sensor for each motor channel which is useful

when a torque based motor velocity controller is used. A 2.4 GHz Xbee module from

Digi is used for wireless communication. This module takes the 802.15.4 stack and

wraps it into a simple to use serial command set [58,59]. The Xbee module operates

at 3.3 V @ 50 mA. It transmits data at a maximum rate of 250 kbps. It has a range

61



of 300 ft and has a 128-bit encryption. Figure 4.6(c) shows an XBee wireless module

with an on-chip antenna.

The motor controller and the XBee wireless module are stacked on the top of the

Arduino board as in Figure 4.6(d). The whole setup along with an input voltage

regulator is enclosed in a box which is mounted on top of the base plate. This

eliminates any interference to the wireless communication.

The stacked controller is capable handling all the required functionalities. It can

execute the control algorithm, control the motors, communicate via wireless and

obtain data from mouse sensors using I2C bus. It can also handle the encoder pulses

using four external interrupts.

4.4 Position Sensor

The whole experiment is based on accurately sensing the position of the robot by itself.

Hence, a position sensor is of utmost importance. The encoders on the motor shafts

act as the primary position sensors. As mentioned earlier they have a resolution of

1856 counts per revolution of output shaft. Each encoder is powered by a 5 V supply

and has two data channels A and B. The voltage in the channels is either 5 V or

0 V and it pulsates as the motor shaft rotates. This is illustrated in Figure 4.7.

Channels A and B of the left motor encoder are connected to pins 20, 21 and that

of the right motor encoder are connected to pins 18 and 19. Each of these pins can

function as external interrupt pins. The interrupt pins change their state when the

voltage in the channel changes. An interrupt sub-routine is executed every time the

pins change their states. This interrupt sub-routine counts the number of pulses in

both the channels and the direction of the rotation, comparing the sequence in which

the pins change their respective states. The binary coding for clock-wise and counter

clock-wise rotation of shaft is shown in Tables 4.1 and 4.2. The bit 1 represents the

high state or 5 V and 0 represents low state or 0 V.
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Figure 4.6: (a)Arduino Mega 2560 R3 Development board, (b) Arduino Motor Shield

R3, (c)Xbee wireless communication module, (d) Arduino Motor Shield and Xbee

Shield with Xbee module stacked on top of Arduino Mega 2560
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Figure 4.7: Pulses in channels A and B of quadrature encoder

Phase A B

1 0 0

2 0 1

3 1 1

4 1 0

Table 4.1: Clock-wise rotation

Phase A B

1 1 0

2 1 1

3 0 1

4 0 0

Table 4.2: Counter clock-wise rotation

The encoder output is measured for every time interval δt. This measurement

gives the counts of each individual wheel which when divided by the time interval

and the resolution give the velocity of each wheel.

W =
EncoderCounts× 2× π

δt× 1856
rad/s (4.14)

The displacement of the robot is calculated from the measured counts during the

time interval δt and is added to the position at the time sample (t − 1) gives the

position at time t.

X = X0 +
b(vr + vl)

2(vr − vl)







sin(θ)− sin(θ0)

−(cos(θ)− cos(θ0))






(4.15)

whereX = [x, y]T andX0 are the current and previous position of the robot. Although

encoders are cheap, they are prone to errors which creep in due to the wheel slip.

This error can quickly grow as the time increases and become a considerable part of

measurement, if the trajectory involves rapid accelerations and decelerations.
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CHAPTER 5

EXPERIMENTAL RESULTS

The experimental platform discussed in Chapter 4 was used to carry out a series of

experiments using the path and ring graphs. Three robots are used in this series

of experiments. Section 5.1 discusses the tests on individual robots. The tracking

controller discussed in Section 4.2 is implemented on the robots and the gains kx,

ky and kθ of the outer path control loop and the PI gains Kp and Ki of the inner

velocity control loop are tuned. Experiments with the path controller where robot

1 is completely independent and the remaining robots follow 1 are conducted. The

results of these experiments are presented in Section 5.2. The experiments conducted

with ring graph and the corresponding results are presented in Section 5.3.

5.1 Trajectory Tracking

The tracking controller derived in Section 4.2 is used on the robots 1 and 2 and

the gains are tuned for each robot to follow a trajectory. Since, all the coordination

experiments with path and ring graph involve tracking a trajectory, this set of tests are

essential. The controller gains are tuned in two steps. First the inner motor control

PI is tuned by setting the reference linear velocity of the robot to a constant value

of 24 inches/sec and the angular velocity to 0 rad/s. The proportional and integral

gains are tuned with the aforementioned values and the gains thus obtained are tested

at different velocities. Once the inner loop is tuned, a straight line trajectory is used

to tune the outer loop gains. The robot starts at zero velocity and reaches a steady

velocity 24 inches/sec smoothly. The points on the trajectory are obtained from the
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equations

vr =















24 sin
(

πt
t

)

0 ≤ t ≤ 5

24 t > 5

xr(t) = xr(t− 1) + vrδt cos(θr)

yr(t) = yr(t− 1) + vrδt sin(θr) (5.1)

where vr is the reference linear velocity and t is the time interval. The tuned controller

is used at different velocities and different trajectories. The gains thus obtained are

summarized in Table 5.1.

Kp 0.5

Ki 0.01

kx 3

ky 0.001

kθ 0.07

Table 5.1: Gains of trajectory controller

Linear Velocity vr 18 in/s

Angular Velocity ωr 0 rad/s

Controller Interval 150 ms

Velocity PI Interval 5 ms

Table 5.2: Experimental parameters for testing the tuned trajectory controller

The reference position and actual position of robot 1 and 2 are calculated using

the encoders and are shown in Figure 5.2. Table 5.2 shows the parameters used for

this test. Both the robots show good tracking capabilities. The error in x− and y−

directions is of the order 0.1 in.
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5.2 Path Graph

The path graph is defined in Definition 2.3 in Chapter 2. For a vehicle platoon,

a path graph is obtained by simple connecting each vehicle to its following vehicle

or by breaking the last link of a ring graph. Figure 5.1 illustrates an example of

D�������� �� ������� �otion

Figure 5.1: Vehicle platoon with a path graph

the path graph for a five vehicle linear platoon. The path graph is one of the most

basic forms of a directed graph, hence, experiments using path graph will test the

parameters required for coordination controllers. Limitations of the hardware like the

wireless range, data transfer rates practically feasible, time interval between control

loop execution, etc., can be better understood by testing the platoon with a path

graph. The properties tested are essential for evaluation of a coordination controller.

The conditions for the test are listed in Table 5.3. For tests involving the path graph

and the ring graph in the later section, a start-up delay of five seconds was included

before the coordination algorithm is turned on. During this delay the robots are

controlled independently without coordinating with each other, and they are also

accelerated to a starting velocity. This delay helps in reducing the accelerations and

also sets non-zero initial conditions.

Experiments were conducted by considering two cases. In the first case, the robot

motion is mimicked by simply running the wheels without touching the floor; this

case is referred to as ‘off the floor’ setup. In this case the measurements are devoid

of slip effects. The second is an ‘on floor’ test where the robots are placed on ground

and are free to move on the floor. The first robot in the platoon, the leader uses
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Property Value

Linear Vvlocity vr 12 in/s

Angular velocity ωr 0 rad/s

Spacing δr 24 in

Control loop interval 150 ms

Velocity PI interval 5 ms

Communication interval 75 ms

Baud-rate 9600

Start-up delay 5 sec

Table 5.3: Test conditions for path graph on a platoon of three robots

an independent trajectory input similar to that discussed in Section 5.1 with an

addition of a communication subroutine which is used to transmit its position and

velocity data and to parse the received data. The communication follows the ring

structure in the sense that the second robot transmits only when the first robot has

finished transmitting and the third robot does not transmit until it receives from the

second robot.

The results for a three robot platoon with a path graph in off the floor and on

floor test settings are shown in Figure 5.3. The following are some observations from

these experiments.� The first and most important problem which surfaced during this experiment is

related to the wireless communication. It was observed that the communication

stops abruptly after a couple of seconds into the experiments. On further diag-

nosis, it was found that this is caused by the communication chain. Since each

robot waits to receive information from the preceding robot to transmit its own

information, any loss of communication will immediately break the chain and

the communication loop comes to a halt. An additional variable in the form
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of a tracker is added to the communication routine of the third robot. This

tracker keeps track of the time elapsed since the last out-going transmission.

If the value of the tracker goes beyond a set point, the program is forced to

send out a transmission, thereby, restarting the communication loop. Figure

5.3 shows the results after implementing this strategy.� From the plots it can be observed that in both on and off the floor settings, the

robots 2 and 3 follow the first robot along the trajectory. The average inter-

vehicular spacing between robots 2 and 3 is maintained close to the desired

value of 24 inches with a maximum spacing error of 0.5 inches in off the floor

setup. But, the spacing between robots 1 and 2 is 26±2 inches, which is higher

than the desired inter-vehicular spacing. This might be attributed to the path

graph and the independent lead vehicle.� Average velocity is maintained approximately at 12 ± 2 inches/sec. It was

observed that the velocity of the follower robots is oscillatory due to the large

delay of 150 ms between the successive control loops.� It was observed at the end of the test that the actual position of robots 2 and

3 is different from the recorded position. This is due to wheel slip caused by

rapid accelerations and decelerations along the path. The controller gain kx is

lowered to 2 which reduced the oscillations thereby reducing wheel slip. But the

slip is not totally eliminated. Any further reduction in gains resulted in poor

coordination and large spacing errors.

The following conclusions can be made from the results of the path graph.� There are losses in communication which should be eliminated to have better

coordination. A strategy needs to be implemented that is more effective than

using the communication tracker.
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� The controller gains which worked in the single robot case may not yield satis-

factory results with coordination control.� The path graph has the inherent problem of having one completely independent

vehicle which results in higher inter-vehicular spacings and non-zero velocity

errors.

5.3 Ring Graph

A series of experiments were conducted using the ring graph with different initial

conditions. The experiments and their results are discussed in this section. Some

parameters are fixed for these experiments. The reference velocity is chosen to be

12 in/s. The velocity value is set only in robot 1 which communicates it to the

robot 3 which in turn communicates it to robot 2. The communication flows from

robot to robot in the manner discussed in the previous section. The communication

tracker discussed in the previous section is added to the communication routine of

robot 3. The interval between successive control loop executions is set to 150 ms and

communication loop is executed every 75 ms. Other test conditions are summarized

in Table 5.4.

Three sets of experiments are conducted with three different initial conditions. In

all the three cases, the vehicles start at zero velocity and accelerate for 5 seconds after

which the coordination algorithm is turned on. The three sets of experiments are run

at three different initial inter-vehicular spacing.

5.3.1 Initial spacing equal to the desired spacing

In the first set of experiments, the initial inter-vehicular spacing is made equal to the

desired inter-vehicular spacing. The robots 1, 2 and 3 are initially positioned at 48,

24 and 0 inches respectively, from the base line. Several runs of the test are carried
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Property Value

Linear velocity vr 12 in/s

Angular velocity ωr 0 rad/s

Inter-vehicular spacing δr 24 in

Control loop interval 150 ms

Velocity PI interval 5 ms

Communication interval 75 ms

Baud-rate 9600

Start-up delay 5 sec

Table 5.4: Test conditions for ring graph on a platoon of three robots

out. The results of the tests are shown in Figure 5.4. The plot shows the evolution

of positions of robots 1, 2 and 3 with respect to time.

It can be observed from the plot that all three vehicles maintain their respective

positions in the workspace. After the start-up delay of 5 seconds there is a small

adjustment where the robots 1 and 2 move back to drive the spacing error to zero.

After this adjustment, the platoon moves smoothly along the trajectory. The average

inter-vehicular spacing between robots 1 and 2 and robots 2 and 3 is maintained within

±0.5 inches of the desired value. The velocity of the platoon is also maintained close

to the desired value, 12± 0.2 in/s.

5.3.2 Initial spacing less than the desired spacing

The second set of experiments start with a smaller inter-vehicular spacing. The initial

spacing is set to 12 in and the robots 1, 2 and 3 are positioned at 36, 24 and 12 inches

from the base line. The results after several runs are represented in the robot position

plots in Figure 5.5.

The plots shows a bigger bump right after the coordination algorithm starts work-
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ing. This is due to the large magnitude of spacing error caused by the initial robot

positions. Once the positions are adjusted, the rest of the plot is smooth with inter-

vehicular spacing maintained within ±0.2 inches as in the previous case. The platoon

velocity is also maintained close to the desired value at 12± 0.1 in/s.

5.3.3 Initial spacing more than the desired spacing

In the last set of experiments, the initial spacing is set to 12 inches more than the

desired spacing. The robots are positioned at 60, 24 and -12 inches from the base

line. The results are plotted in Figure 5.6.

Although the plots shows a bigger bump similar to the previous case, the platoon

does not settle. It can be observed from the plot that is the platoon is still trying

to adjust the positions between 16 and 18 seconds into the experiment. The spacing

error between robots 1 and 2 is found to be of the order 0.5 inches, while the error

between robots 2 and 3 is maintained around 0.2 inches. The reason for this might

be the time delay between successive control loop executions.

The following conclusions are made based on the results� The inter-vehicular spacing is maintained for all the three tests compared to

that of the path graph. The inter-vehicular spacing is an average of 24 ± 0.5

in/s all through the test even with non-zero initial conditions.� The platoon tracked the desired trajectories. The separation between robots

is caused when the coordination algorithm tries to adjust the positions of the

robots.� The platoon velocity is maintained at approximately 12± 0.2 in/s.� The effect of wheel slip is also observed with the ring graph. The actual displace-

ment of the robots in the lateral direction is not captured in the measurements
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from the encoders. In case of the ring graph, the first robot also slips since it is

also a part of the coordination.
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Figure 5.2: Reference and actual position of robots 1 and 2

74



0 5 10 15 20 25
0

50

100

150

200

250

300

350

mopq rsqtu

v
w
xy
zy
w
{
|y
{
}

~q�ot�q ��so�o�� �s timq �o�� ���� �����

~q�ot�q �

~q�ot�q �

~q�ot�q �

(a)

Time (sec)

P
os

it
io

n
 (

in
)

Vehicle position vs time with path graph

0 2 4 6 8 10 12 14 15
0

50

100

150

200

250

Vehicle 1

Vehicle 2

Vehicle 3

(b)

Figure 5.3: Position plots for robots 1, 2 and 3 with path graph, (a) Off the floor

test, (b) On floor test
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

The focus of this thesis was on coordination of multiple autonomous vehicles with

the information flow between vehicles given by a special kind of directed graph called

the ring graph. The effect of the ring graph based information flow structure was

investigated in detail for coordination of multiple autonomous vehicles.

In Chapter 2 the literature on ring graphs is reviewed in detail. It was shown that

the ring graph may not be scalable due to the presence of multiple conjugate pairs

of eigenvalues close to zero as the formation size increases. Limitations due to the

basic ring structure are examined and possible alternative solutions are explored. It

was shown that having multiple vehicle groups with inter-group communication will

result in losing the circulant nature of the closed loop system matrix. We considered

the double integrator dynamics of the vehicle and analyzed the eigenvalues of the

platoon with a ring graph, to show that the platoon is stable as long as a closed ring

is formed irrespective of actual vehicle positions. The change in the location of the

eigenvalues due to change in the position of vehicles in ring is also studied. We also

studied the effect of multiple rings graphs over a platoon. A controller similar to the

controller based on single ring graph was used to show that the convergence rate is

faster with multiple ring graphs than that of single ring graph. The condition for

stability of closed loop system is derived using eigenvalue analysis.

In Chapter 3 we address the question of forming a ring graph for a given formation.

Two algorithms were presented for this purpose. The first algorithm is a simple
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assignment which is demonstrated for a linear vehicle platoon. An investigative study

into the Traveling Salesman Problem and some algorithms to solve the TSP was

undertaken. The problem of finding the ring graph is formulated as the problem of

finding the Hamiltonian path of a given set of nodes. An additional constraint on the

path length of TSP formulation was introduced which is due to the communication

range of the vehicle transmitters. A solution algorithm based on the branch and

bound methods for TSP is presented. The working of this algorithm for a linear

vehicle platoon is demonstrated.

In Chapter 4, details of an experimental setup to test the coordination control

algorithms are presented. The differential drive robot model is discussed. The kine-

matic model of the differential drive robot is derived and the dynamics are derived

using Euler-Lagrange equation. The two-loop controller strategy that controls the

position and velocity of each individual robot is presented. The non-linear kinematic

path controller which forms the outer loop controls the robots linear and angular ve-

locity and the Proportional Integrator (PI) controller of the inner loop which controls

the individual motor velocities are presented. The components of each robot, that

is, the mechanical base, wheel actuators, controller and other electronics, and motor

shields are discussed in detail. The process of estimating the position from the wheel

encoders and the associated limitations are discussed.

Chapter 5 discusses the experiments carried out using the robotic vehicles dis-

cussed in Chapter 4. Experiments are conducted to test the performance of a trajec-

tory controller and wireless communication devices, effect of wheel slip, and sensor

measurements. The multiple robot setup was also used to run experiments with a

ring graph using different intial spacing conditions. The results of these experiments

are presented and discussed. Some conclusions about the merits of the ring graph

were drawn based on these results.
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6.2 Future Work

There are some open problems resulting from this work which can be studied in the

future.

The issue with the scalability of the controller using ring graph should be ad-

dressed. The string stability of the platoon with multiple communication rings needs

to be investigated. The presence of some symmetric edges in the graph makes this

problem more interesting. In Chapter 2 a ring graph is applied to 2D formations

where the dynamics can be decoupled; however, this may not always be feasible. The

effect of ring graph on stability of 2D formations need to be investigated when the

dynamics cannot be decoupled.

In Chapter 4, the inner loop is a pure velocity controller, and it does not account

for the robot and motor dynamics. This controller should be replaced with a dynamic

torque based controller that accounts for the robot’s mass and inertia.

More experiments should be conducted to quantitatively and qualitatively show

the robustness properties of the ring graph. Experiments should be conducted with

all the five robots that were built. So far the experiments are only concentrated on a

single direction of transport with a linear vehicle platoon. Future experiments should

focus on implementing ring graph on a two dimensional formation such as a delta

formation or a square formation.

All the robots that are used in the current work are identical with same dynamics.

Coordination control experiments should be carried out with vehicles that are not

identical and have different dynamics.
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APPENDIX A

TOEPLITZ MATRICES

Toeplitz matrices are an important class of matrices in engineering applications. A

Toeplitz matrix is defined as

Definition A.1 Any matrix T ∈ Cn×n which is diagonal constant i.e., the elements

on any diagonal are equal is called a Toeplitz Matrix. It has the form
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These kind of matrices are common in discrete time systems [25]. The discrete time

causal time-invariant filter is an example application of the above matrix. A sym-

metric Tri-diagonal matrix, Identity matrix are some special examples of Toeplitz

matrices.

There are several special cases of Toeplitz matrix the most important of which is a

Circulant matrix presented in Definition 2.7 in Chapter 2. Circulant matrices can be

used to analyze the behaviour of otherwise complex Toeplitz matrix. The following

Lemma is from [25].
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Lemma A.1 Let Tn(f) = tk−j where

∞
∑

k=−∞

|tk| < ∞

and

f(λ) =

∞
∑

k=−∞

tke
ikλ, f̂n(λ) =

n−1
∑

k=−(n−1)

tke
ikλ

Define the circulant matrices Cn(f) and Cn(f̂n). Then,

Cn(f) Cn(f̂n) Tn (A.1)

This means that there is a sequence of circulant matrices Cn(f) that is asymptotically

equivalent to the sequence Tn(f). This is useful since we have eigenvalues, inverses

and products of the circulant matrices that are known exactly and are easy to analyze

than the Toeplitz matrices themselves.
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APPENDIX B

ROBOT SPECIFICATIONS

The following tables gives all the specifications of various components of the robot.

Property Value

Length of base plate 9 in

Width of base plate 7 in

Height of base plate from ground 2.48 in

Weight of robot 5 lbs

Speed 3.75 ft/s

Battery 12V @ 2800mAh

Wheel Diameter 2.75 in

Drive Motors

Rated Voltage 12 V

Torque 110 oz-in (8 kg-cm)

Speed 350 rpm

Free run current 300mA

Gear ration 29:1

Stall current 5 A

Encoder Resolution 64 CPR

Output shaft resolution 1856 CPR

Table B.1: Specifications of Robot
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Property Value

Controller

Board Arduino Mega 2560 R1, R3

Micro controller ATmega2560

Type 8-bit

Clock Speed 16MHz

Flash 256 KB

Voltage 5V

Motor Controller DFrobot DRI00009

Amplifier L298P

Voltage, Max. Current 7-12V, 2A

Channels 2

Wireless Communication XBee Series 1

Range 100ft indoor

Transmission Rate 250kbps Max

Table B.2: Specifications of Controller
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