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CHAPTER 1 

INTRODUCTION 

1.1 The General Problem 

Recently, one area in which researchers have devoted much effort is the 

development of numerical codes designed to model manufacturing processes. It is a 

challenging problem because manufacturing processes involve large deformations. 

However, in many of these problems, the flow rate of the material through the process is 

much lower than the wave speed for either elastic or plastic wave propagation. There are 

numerous problems, which display material failure (fracture, separation) along both 

planar and curved surfaces. For both cases, it has been a cherished goal of many analysts 

to develop a numerical procedure that can predict such a phenomena. With such a 

capability, it would be possible to design materials with oriented properties (e.g., 

embedded fibers) to withstand failure in an optimal sense, to design machining process 

with more efficient cutting conditions that cause material failure, or provide a better 

indication of when structural failure might occur (e.g., seismic loading).  

Researchers are often interested in determining the motion of a medium such as a 

solid, liquid or gas when it is acted upon by given forces and subject to given conditions. 

One approach to achieving this goal is to treat the material as if it is a continuum. It is 

assumed that at each point of this continuous matter there is a unique value for each of 
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the variable properties of the material, such as velocity, pressure and density. The 

continuous material then obeys a set of conservation laws, which govern the values of the 

variables of the material. 

Eulerian or Lagrangian frames of reference are often used to describe such a 

continuous material. In the Eulerian frame, a control volume is fixed in space and the 

material is studied as it passes through this region. The solution in an Eulerian frame 

describes what is happening with the material at every point in the region as time passes. 

In a Lagrangian frame, a particular material point is selected and its motion is studied as 

time progresses. The solution in a Lagrangian frame describes the motion of each particle 

as a function of time. In either frame the governing equations for the material can be 

formulated as differential equations. Numerical techniques, such as FEM is one common 

technique used to determine the solution of the differential equations.    

 

1.2 Computational Methods 

There are large number of numerical methods described in the literature that 

attempt to provide approximate solutions of the differential equations governing the 

motion of a solid. One reasonable expectation of a numerical method is that it would 

compute sufficiently accurate solutions at a moderate cost. Ideally, such a method should 

also be easy to implement and resolve the material interfaces in a computationally 

efficient manner. 

As earlier pointed out, numerical methods are typically classified as Eulerian or 

Lagrangian, depending on the frame of reference used to arrive at the solution. Thus, in 

an Eulerian code, a set of spatial points is chosen and solutions are obtained at these 
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points as time progresses. In a Lagrangian code, the solution is calculated at points in the 

body of interest, following the motion of the point as deformation occur. Some codes 

combine these two frames of reference, performing a Lagrangian time step followed by a 

remapping step that maps the solution from the distorted Lagrangian frame to spatially 

fixed Eulerian frame. Depending on the choice of a new frame, these codes are usually 

referred to as Eulerian codes, arbitrary Lagrangian Eulerian (ALE) codes, or combined 

Eulerian Lagrangian codes [6].These methods have some advantages as well as some 

disadvantages. In the following, the special features of some of these methods are 

discussed starting with the Lagrangian methods. 

 

1.2.1 Lagrangian Methods 

 In the Lagrangian method a �mesh� is inserted in the domain of the material. The 

mesh is a discrete description of the continuous domain. Each body of the material has its 

own separate mesh. The differential equations are solved for each position of the mesh at 

discrete points in time. Since the mesh moves with the material, the motion of the mesh 

implies motion of the material [6]. This method is known as updated Lagrangian. There is 

another Lagrangian method used for solids that involve discretizing the reference 

configuration with a fixed grid and solving in those coordinates. Examples of Lagrangian 

codes used in the literature include HEMP, DYNA2D, DYNA3D, PRONTO, TENSOR 

AND EPIC [6]. 

 There are several advantages of using the Lagrangian method. The first one is a 

description of the equations in a Lagrangian framework removes the nonlinear convective 

term in the conservation of momentum equation. A linear derivative is much easier to 
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handle in terms of finite difference or a finite element discretization. A second advantage 

of the Lagrangian method is that material interfaces are resolved naturally since almost 

all Lagrangian formulations assume that each element is restricted to a single material 

[6]. This also allows for constitutive equations to be readily applied. The boundary of the 

material is easily followed since any node of the mesh that originates on the boundary of 

the domain will remain on the boundary as the mesh deforms [7]. 

 One consideration with the Lagrangian method is the determination of the relative 

motion of two or more meshes. Nothing in the basic method precludes separate bodies 

from overlapping. Contact algorithms have been developed to determine the relative 

motion of two or more meshes. Penalty methods and Lagrangian multiplier methods are 

two such contact algorithms. Special contact algorithms are necessary if a surface is 

allowed to come into contact with itself. The contact search is the dominant cost for many 

contact algorithms. Simplifying the problem geometry and the contact force calculations 

can reduce the computational costs of contact problems [6]. 

 Because the mesh is not allowed to tear, penetration calculations are difficult to 

perform with the Lagrangian code. To solve this problem algorithms have been 

developed to determine where and how to separate the nodes. 

 As the mesh distorts with the motion of the material, the smallest dimension of 

the mesh becomes the restricting factor in the time step size. Mesh distortion is also a 

concern in the Lagrangian method as too much distortion results in loss of accuracy of 

the solution. If the mesh becomes too entangled, the calculation must be halted. One way 

to deal with this problem is to allow the Lagrangian calculation to run until the mesh 

becomes unacceptably distorted, create a new undistorted mesh, map the solution from 
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the distorted mesh to the new mesh, and then continue the Lagrangian calculation. This 

process is referred to as rezoning [6]. Since such algorithms need to be quite general in 

nature to handle an arbitrary mesh, their implementation is somewhat complex. The 

process of rezoning is usually computationally intensive and of low order of accuracy [6]. 

Ensuring conservation of the mapped quantities requires more complex algorithm. To 

reduce the computational cost, remeshing is done only when necessary during an 

otherwise Lagrangian calculation. In the next section the Eulerian methods are discussed. 

 

1.2.2 Eulerian Methods 

 In the Eulerian method the mesh overlays the material being modeled. 

Calculations are made at the stationary nodes of this mesh as time progresses. The 

material flows through the mesh. The solution provides a �snapshot� of the material 

motion at a given set of spatial points as time progresses. The strengths and weakness as 

of an Eulerian method are almost exactly the opposite of those for the Lagrangian 

method. 

The ability of an Eulerian mesh to allow arbitrarily large deformations is the 

major advantage of this method. Since the mesh does not deform in an Eulerian 

calculation, mesh entanglement is not an issue. Eulerian calculations do not have the 

accuracy losses associated with highly distorted elements that are often found in the  

Lagrangian calculations [6]. Another advantage of using Eulerian codes is that they do 

not need contact algorithms since only one mesh is used for the entire computational 

area. 
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Eulerian methods also have their disadvantages. As with their Lagrangian 

counterparts, algorithms have been developed to address these issues at the expense of an 

increase in the computational costs and algorithmic complexity. One of the disadvantages 

of Eulerian methods is that use of Eulerian coordinates requires discretization of the 

nonlinear convective term in the equation for conservation of momentum. This 

discretization is the primary source of numerical diffusion in an Eulerian code. A 

nonlinear equation requires more complicated methods to solve numerically, especially 

when using an implicit solver.  

The nonlinearity can also be treated using an �operator split� technique. The 

equation is first solved using the Lagrangian motion of the grid and the resulting solution 

is then mapped back to the Eulerian grid. This is not a true operator split. There is no time 

step associated with the Eulerian step. Rather, it is simply a projection of the solution 

from one mesh onto another, with the Eulerian step acting as a continuous rezoning of the 

mesh [6]. Other than increase in the cost of remapping, the main disadvantage of this 

technique is the limitation on accuracy. Many material models are integrated in time with 

a first order method, with the result that the Lagrangian step is rarely fully second order 

accurate in time [6]. Also, some quantities such as kinetic energy may not be conserved 

by the remapping scheme. Care must also be taken when treating materials that require 

history variables to determine the current state. The calculation costs can be reduced 

considerably by performing the Eulerian remap only after several Lagrangian steps 

instead of after every step. 

Another major disadvantage of the Eulerian method is the lack of resolution of 

material interfaces due to use of only one mesh. Eulerian codes allow several materials to 
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lie within a single element. The amount of each material in an element must be known, 

and rules must be established to determine how each material is moving. These rules 

track, capture or reconstruct the interface between materials. Handling elements with 

several materials adds a significant computational cost. Eulerian methods were at one 

time regarded as a last resort for solving a problem because of their poor resolution of 

material interfaces. This has changed with the introduction of high�resolution interface 

tracking algorithms [6]. Second order accurate algorithms have been developed to 

calculate the material transport between elements. Thus, handling elements with several 

materials are no longer the limiting factor in the accuracy of Eulerian calculations [6] 

although robustness of these algorithms may still be an issue. 

Many Eulerian codes are restricted to rectangular zones, although some codes 

allow the use of meshes based on orthogonal curvilinear coordinate systems. This is 

especially true of methods that use edge-centered velocities rather than nodal velocities 

[6].   

As with their Lagrangian counterparts, the use of Eulerian methods has its own 

advantages and disadvantages. According to Ref.6, the accuracy of an Eulerian 

calculation is equal to a Lagrangian calculation for problems that have a changing 

topology. Because purely Eulerian and purely Lagrangian methods both have their short 

comings, attempts have been made to combine the positive features of both methods 

without too much compromising. Some of the negative effects of these methods are 

discussed in the next two sections.       
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1.2.3 Arbitrary Lagrangian - Eulerian Methods 

 Often, the problem of interest in a computation involves deformations that are too 

severe to be handled by the same Lagrangian mesh during the entire calculation. At some 

point in the calculation, a new mesh must be generated and the old solution must be 

mapped from the old mesh onto the new mesh. The frequency of remapping and the 

choice of new mesh define the differences between Eulerian, ALE and rezoned meshes 

[6, 18]. The boundaries between the three types are somewhat blurry, but general 

distinctions have been formed. Rezoned meshes are used in otherwise strictly Lagrangian 

methods, as described in section 1.2.1. A new mesh is generated as infrequently as 

possible, with the current mesh being used when doing so does not compromise the 

accuracy of the solution. In Eulerian methods as described in section 1.2.2, the solution of 

a Lagrangian step is calculated and then remapped usually every step or every few steps 

to a spatially fixed Eulerian mesh. If the solution is mapped onto a different mesh that 

moves in a manner that may be independent of the material motion, the method is 

referred to as an ALE method. These methods are briefly discussed in this section. 

Examples of ALE methods adopted in the literature include CAVEAT, DYNA2D, 

HEMP, SALE, CALE, HELP and SHALE [6]. 

 ALE methods have the same advantages as Eulerian codes, allowing arbitrarily 

large deformations and avoiding mesh entanglement, element distortion and contact 

algorithms. Using an arbitrary mesh allows the added advantage of better resolution of 

features such as shock waves. The ALE and Eulerian methods have similar 

disadvantages. 
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 The algorithms for the remapping step are identical for both Eulerian and ALE 

codes. Eulerian codes are often less computationally costly than the ALE codes because 

of their spatially fixed mesh. Another disadvantage of ALE methods is that, like their 

Eulerian counterparts, these methods may have elements containing more than one 

material. The algorithms used to address this problem for Eulerian methods are also 

applicable to ALE methods. The complexity of handling elements with several materials 

can add a significant computational cost [6]. Algorithms to compute history variables on 

the remapped ALE mesh are also more complex than those for Eulerian methods, due to 

the arbitrary nature of an ALE mesh. Accurate remapping of the element-centered 

variables is the largest obstacle to attaining second accurate finite element ALE methods 

[6].  

ALE methods have properties that are desirable for certain types of problems. 

However, they tend to be more costly than strictly Eulerian or Lagrangian methods. 

Another type of method combining Eulerian and Lagrangian methods is described in 

section 1.2.4. 

 

1.2.4 Coupled Eulerian Lagrangian Methods 

 In some problems of interest the ability to represent one part of a problem with a 

Lagrangian mesh and another part with an Eulerian mesh is useful. Examples of this type 

of calculation include underwater explosions, where the fluid is Eulerian and the hull is 

Lagrangian, and a low velocity penetration calculation, where the penetrator is 

Lagrangian and the target is Eulerian [6]. This type of code is called an Eulerian 
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Lagrangian code. One code with this capability that is mentioned in the literature is 

PISCES [6]. 

 The Eulerian mesh is used for the target where large deformations occur. The 

response is like a fluid here. The Lagrangian mesh is used for the region that is more rigid 

and has relatively small deformations. This allows each of the meshes to model the part 

of the problem for which they are best suited. By combining the two meshes, the 

computational efficiency of the method is improved. 

 The major disadvantage of this type of method is that the Lagrangian mesh can 

move through the Eulerian mesh. If each method uses a separate mesh, some type of 

algorithm is needed to apply boundary conditions on the fluid mesh from the solid, and 

vice versa. Usually, continuity of the normal component of velocity and continuity of 

traction are imposed. This issue is similar to contact algorithms. 

 Coupled Eulerian Lagrangian methods allow a reduction in computational cost by 

using each mesh on the area of problem for which each is most suited. The computational 

cost is raised, however, due to the necessity of a contact algorithm. 

 Not all computational methods are based on a mesh. In the next section, 

�meshless� or particle methods are discussed. 

 

1.2.5 Particle Methods 

 Four variations of mesh-oriented numerical methods are discussed in the previous 

sections. Looking at the disadvantage of these methods, it appears that elimination of the 

mesh might result in methods that avoid some of these problems. Particle methods are a 

result of such attempts to remove the mesh. 
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 Particle methods attempt to construct the approximation to the solution strictly in 

terms of nodes [8]. In these methods, the domain of interest is discretized by a set of 

nodes or particles. A shape function with compact support is defined for each node. The 

region in the function�s support, usually a disc or rectangle, is called the domain of 

influence of the node [8]. The shape function typically has two parameters, providing the 

ability to translate and dilate the domain of influence of a shape function. The translation 

parameter allows the function to move around the domain, replacing the elements in a 

meshed method. The dilation parameter changes the size of the domain of influence of 

the shape function, controlling the number of calculations necessary to find a solution. As 

the dilation parameter becomes larger, larger time steps can be taken [34]. A set of basis 

functions also needs to be defined for a given problem. Examples of particle methods 

discussed in the literature include SPH, DEM, EFG, RKPM [6], PUFM [35], hp-clouds 

[36], finite point method [37] and FEAM [38]. 

 The major advantage of a particle method is that the particles are not treated as a 

mesh. Therefore, mesh entanglement is not a problem and large deformations can be 

treated with these methods. Creating new meshes and mapping between meshes is 

eliminated. Refinement can be obtained by simply adding points in the region of interest 

[34, 39]. It should be noted that most of these methods use a mesh to do integration. 

FEAM and some versions of SPH use a mesh or particle binning to find nearest 

neighbors. However, the mesh may be simpler than would be needed for standard 

element based solution. 

 Another advantage of particle method is that there is no need to track the material 

interfaces, since each particle has its own constitutive properties [6].  
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 There are also difficulties in using particle methods. One of the major 

disadvantages of these methods is their relatively high computational cost, particularly in 

the formation of the stiffness matrix. The supports of the shape functions usually cover 

more surrounding points than finite element shape functions do. In fact, the support of the 

kernel function must cover enough particles for the method to be stable [39]. The 

bandwidth of the resulting matrix is increased and more irregularity of the sparsity 

structure results, since the number of neighbors of a given point can vary from point to 

point. Thus, the number of numerical operations in the formation and application of these 

matrices is increases. Additionally, higher- order shape and basis functions are usually 

used, with the result that higher-order integrations are required. Construction of these 

shape functions is also costly [39]. 

 Another problem is that the shape functions are not interpolatory in many cases 

[8]. This makes essential boundary conditions more difficult to apply. Some techniques 

that have been developed to address this problem are Lagrange multipliers, modified 

variational principles, penalty methods and coupling to finite element methods. However, 

there can be difficulties with using techniques also. For example, the Lagrange multiplier 

method requires solution of an even larger system of equations. In addition, Lagrangian 

multipliers tend to destroy any structure, such as being banded or positive definite, that 

the system might exhibit [8]. The modified variational approach applies boundary 

conditions of a lower order of accuracy. Coupling to finite element methods by using 

particle methods only in regions with large deformations and finite element methods 

elsewhere in the problem can reduce the cost of the solution. However, the shape 

functions at the interface become quite complicated and require a higher order of 
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quadrature [8]. Another method by Chen [40] uses the map from nodal values to the 

function space to get nodal values of the function space to get nodal values of the 

function, applies the boundary conditions, then transforms back to nodal values. 

 Many of these codes have been restricted to static problems. Chen has developed 

a dynamic code, but all of the basis functions are constructed in the original configuration 

[40]. 

 Like their meshed counterparts, particle methods are useful for certain types of 

problems. However, as a result of their higher computational cost, they are not the 

method of choice for other types of problems. Particle-in-cell methods combine some 

aspects of both are meshed and meshless methods. These methods and the comparison 

between Explicit and Implicit methods are discussed in the next section. 

 

1.3 Explicit and Implicit Methods 

 Solving a system of partial differential equations numerically requires both spatial 

and temporal discretization of the equations. Numerical methods involving a spatially 

discretized mesh have typically been classified by the choice of frame of reference as 

either Lagrangian or Eulerian. Some methods have combined aspects of both of these 

types, while particle methods have eliminated the mesh in favor of particle based spatial 

shape functions. Some of these differences are discussed in previous sections. 

 In the terms of their temporal discretization, numerical methods are classified as 

either explicit or implicit methods. In an explicit method, each unknown can be evaluated 

directly in terms of known quantities. In an implicit method, two or more quantities in the 

discretized equation are unknown at the same time. More complex methods are needed to 
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solve an implicit system of equations and iterative methods for linear or nonlinear 

systems. 

 There are several advantages to using an explicit method over an implicit method. 

According to [7], typically an explicit method requires fewer computations per time step. 

An explicit method usually has simpler logic than an implicit method, making it easier to 

deal with complex nonlinearities. An explicit method generally requires less storage than 

either the direct methods or the iterative methods of solving an implicit system. An 

explicit method requires less coding, making it useful for testing purposes. An explicit 

method is usually very reliable as to accuracy and completion of the computation when 

stability requirements are met. 

 The major disadvantage of using an explicit method it is usually only 

conditionally stable [7]. The result is that a very large number of very small time steps 

may be required. 

 The advantages and disadvantages of using an implicit are essentially the opposite 

of the explicit method [7]. The major advantage of using an implicit method is that a 

much larger time step may be used. The disadvantages of using an implicit method are 

numerous. Implicit methods use more complicated logic, resulting in more complex, 

larger codes. More storage is required, especially if direct elimination methods are used. 

More computations are required per time step. When using an implicit method, care must 

be taken to ensure that time steps are not so large that accuracy is lost, as time steps used 

may be large enough that time integration errors become dominant. In contrast, spatial 

discretization errors tend to be dominant in explicit methods. 
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 Certain types of problems require small time steps in order to achieve appropriate 

accuracy in the solution, while others do not. Explicit methods are a more suitable 

approach to problems where high frequency components of the solution are a significant 

part of the response [41]. Examples of this type of problem include wave propagation 

problems such as shocks, blasts or any type of loading with a broad frequency range. 

Implicit methods, on the other hand, are more suited to problems with frequency 

components in the lower range. In particular, inertial structural dynamics problems fall 

into this category. 

 According to [41], for linear systems of equations, explicit and implicit methods 

are about equally difficult to apply and to implement. The only additional cost of implicit 

integration is the linear solution needed at each step. Explicit integration is usually 

straight forward. 

 For nonlinear problems, more elaborate methods of solution are needed. Implicit 

integration of nonlinear systems is much more expensive. Each nonlinear iteration entails 

the solution of a linear system containing a tangent matrix. The evaluation of this matrix 

and the solution of the associated linear system account for most of the cost of a 

nonlinear iteration. The use of methods that remains stable for large time steps, that 

minimize the number of evaluations of the tangent matrix, and that minimize the number 

of iterations per time step can help to reduce these costs. Matrix-free implementations 

that do not require actual formation of the tangent stiffness matrix and preconditioners 

can be used for this purpose. 

 The choice between implicit and explicit methods generally depends on the type 

of problem to be solved. For problems requiring high-frequency components, an explicit 
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method is a more appropriate choice. For problems with only low-frequency components, 

either type of method could be used. In this case, the implicit method becomes the 

solution of choice when the gain in size of the time step outweighs the higher cost of the 

iterative solution. 

 

1.4 Outline of the Thesis 

 This thesis is divided into 8 chapters. Chapter 1 presents a description of several 

methods currently available to numerically model plastic deformation processes. In 

Chapter 2, a review of literature on topics of interest to the present investigation, namely 

particle-in cell method and other methods which lead to the developments of Material 

Point Method (MPM) are presented. Chapter 3 gives an introduction to the MPM and  

description of the governing equations used in MPM. Numerical implementation and 

discussion of various algorithms are used in the conventional MPM algorithm are also 

covered in this chapter. Chapter 4 gives the problem statement of the investigation. In 

Chapter 5, simulation of mixed mode crack by Material Point Method is discussed and 

methods to determine the fracture parameters are presented.  

Chapter 6 describes a new MPM algorithm. MPM is particularly suited the 

problems undergoing large material distortions [12, 14, 36-38]. Chapter 7 presents results 

and discussion of MPM simulation of a tensile model with and without a crack for 

different times and loads. These results are compared with FEM simulation using 

ABAQUS/Explicit. Chapter 8 gives conclusions arising out of the present investigation 

and offers some suggestions for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Particle-In-Cell Methods (PIC) 

According to Harlow [1] the Particle-in-Cell (PIC) method was developed in 1955 

at Los Alamos National Laboratory for the solution of complex fluid dynamics problems. 

It is a combination of Lagrangian and Eulerian methods that naturally can handle no slip 

interfaces between materials and large slippage and distortions. Details of the code are 

discussed by Amsden [3]. 

In general idea behind the PIC method is to solve the governing equation on an 

Eulerian grid where derivatives can be conveniently defined. Information is then 

transferred from the grid to Lagrangian material particles via mapping functions. The 

material particles move or convect and carry with them certain properties. Variations on 

the method can occur by changing the mapping method. That is, the mapping functions 

themselves may be changed. In Harlow�s classical version of PIC, velocities were 

mapped from the grid to the particle. In a less dissipative version called FLIP (FLuid-

Implicit-Particle) [42, 43] material particle velocities are only updated from the grid 

solution. 

An outline of a FLIP-type algorithm is as follows: 
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1. Solve the governing equation to obtain magnitudes of acceleration at the grid 

nodes. 

2. Integrate accelerations to obtain velocities on the grid. 

3. Map the acceleration to the particles to update the velocity. 

4. Move the particles based on the velocity determined in Step 2. 

5. Map particle quantities to the grid in preparation for the solution at the next time 

step, 

6. Determine velocity gradient, strains, and stresses at nodes (or vertices), 

7. Determine grid forces from stresses. 

Sulsky and Brackbill [12] used a method similar to Peskin�s [44] but based on the PIC 

method, to simulate suspended bodies moving in a fluid.  

 A force density term, F(x, t), is added to equations for Stokes� flow for an 

incompressible fluid  

                     
0u .              

0Fµ∆u
=∇

=++∇−
     (2.1) 

 where the gradient, ∇  and Laplacian, ∆ are taken with respect to the current position, x, 

velocity u, and pressure p, and the force, F, is determined from the sum of the internal 

and external forces. The external forces may be those due to gravity or magnetic fields. 

The internal forces only exist in the suspended body and are due to the strains within the 

body. 

 The basic ideas behind the PIC or FLIP methods have been adapted recently to 

solid mechanics by changing step (6) of the FLIP-type algorithm. These field variables 

are evaluated at material points, and the resulting approach is applied to impact problems 

with elastic and elastic-plastic constitutive equations [2] 
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2.2 Material Point Method (MPM) 

Sulsky and Schreyer [5] presented the general description of the material point 

method (MPM), along with special considerations relevant to axisymmetric problems. 

The method utilizes a material or Lagrangian mesh defined on the body under 

investigation, and a spatial or Eulerian mesh defined over the computational domain. The 

set of material points making up the material mesh is tracked throughout the deformation 

history of the body and these points carry with them a representation of the solution in a 

Lagrangian frame. Interactions among these material points are computed by projecting 

information they carry onto a background finite element mesh where equations of motion 

are solved. They reported that the material point method does not exhibit locking or an 

overly stiff response in simulations of upsetting. 

The material point method (MPM) has recently been developed as a numerical 

method for solving problems in dynamic solid mechanics [2, 4, 5, and 45]. In MPM, a 

solid body is discretized into a collection of points much like a computer image is 

represented by pixels. As the dynamic analysis proceeds, the solution is tracked on the 

material points by updating all required properties, such as position, velocity, 

acceleration, stress state, etc. At each time step, the particle information is extrapolated to 

a background grid which serves as a calculational tool to solve the equations of motions. 

Once the equations are solved, the grid-based solution is used to update all particle 

properties. This combination of Lagrangian and Eulerian methods has proven useful for 

solving solid mechanics problems including those with large deformations or rotations 

and involving materials with history dependent properties such as plasticity or 

viscoelasticity effects [2, 4, 5, and 45]. MPM is amendable to parallel computation [46], 
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implicit integration methods [24] and alternative interpolation schemes that improve 

accuracy [47]. 

Although MPM uses a background grid and is frequently compared to finite 

element methods, a new derivation of MPM [24] presents it as a Petrov-Galerkin method 

that has similarities with meshless methods, such as Element-Free Galerkin (EFG) 

methods [48] and Meshless-Local Petrov-Galerkin (MLPG) methods [50, 51, 52]. The 

�meshless� aspect of MPM, despite the use of a grid, derives from the fact that the body 

and the solution are described on the particles while the grid is used solely for 

calculations. The body can translate through the grid. Furthermore, the grid can be 

discarded at each time step and redrawn which makes MPM suitable for adaptive mesh 

methods. It is essential for any extension to MPM, such as presented here, to preserve the 

separation between the grid and the particles. MPM, EFG, and MLPG differ in their 

approach to derive shape functions and in their selection of test functions during 

numerical implementation [47, 50]. One potential application of MPM is its use as a tool 

in dynamic fracture modeling. It was recently shown that MPM can accurately calculate 

fracture parameters, such as energy release rate [10] but those results were for a crack at a 

symmetrical plane and thus the crack could be described by symmetry conditions alone. 

Conventional MPM is not capable of handling explicit, internal cracks.  

MPM has found application in the solution of a wide variety of problems, 

including silo discharge [15], membrane stretching [22], landfill settlement [19], elastic 

vibrations [17], collisions [4, 14�16], and the response of granular materials [9, 14,16]. 
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CHAPTER 3 

MATERIAL POINT METHOD 

3.1 Introduction 

The Material Point Method (MPM) is a numerical scheme for dynamically 

modeling problems in solid mechanics. MPM is an extension of the Fluid Implicit 

Particle method (FLIP) [42], a particle-in-cell (PIC) method. The PIC method proved 

useful for modeling highly distorted flows. On the other hand, the method exhibited a 

large dissipation of kinetic energy. When other more accurate methods were developed, 

PIC methods were thought to be obsolete. However, in the 1980s, Brackbill developed 

the FLIP particle-in-cell method [12, 42]. By mapping only the changes in the quantities 

of interest and by tracking more of these quantities on the particles, the accuracy of the 

computation was increased. Sulsky and her colleagues developed the MPM method in the 

1990s [2, 4, 5]. In this method, a mesh of Lagrangian material points is used to discretize 

one or more solid bodies. 

 The material point method (MPM) is a particle method for simulations in 

computational fluid and solid mechanics. The method uses a regular structured grid as a 

computational scratchpad for computing spatial gradients of field variables. The grid is 

convected with the particles during deformations that occur over a time step, eliminating 

the diffusion problems associated with advection on an Eulerian grid. The grid is restored 
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to its original location at the end of a time step. In addition to avoiding the Eulerian 

diffusion problem, this approach also circumvents problems with mesh entanglement that 

can plague fully Lagrangian-based techniques when large deformations are encountered. 

MPM has also been successful in solving problems involving contact, having an 

advantage over traditional finite element (FE) methods in that the use of the regular grid 

eliminates the need for doing costly searches for contact surfaces.  

  

            

Figure 3.1 MPM Grid showing Particles and Background Grid. 

 It is only necessary to avoid taking a time step too large to tangle the mesh in one-

step. It is not necessary to generate complex grids for this purpose. The method easily 

tracks contact discontinuities and material interfaces, since each material point maintains 

its material properties throughout the calculation. For the same reason, it is easy to apply 

constitutive equations on the material points. 

 The main disadvantage of MPM methods is the computational expense. Mapping 

quantities between the material points and the nodes of the grid and calculating the 

location of the material points on the new grid are the major additional costs. There can 

be fluctuations in solutions due to the transport of discrete material points across element 

 Background Grid 

Particles 
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boundaries. Thin layers of material can be hard to resolve. Using more material points per 

element can reduce these last two problems.  

 

3.2 Material Point Method  

 In this section, the conventional material point method (MPM) developed by 

Sulsky et al. [2, 4] will be summarized. In MPM, the material continuum is discretized 

into a finite collection of material points. Fig. 3.1 is a schematic MPM for a two-

dimensional (2D) calculation. The solid line is the outline of the body to be analyzed. The 

black dots are the material points. Each material point is given an initial mass consistent 

with the material density and volume of the point. Material parameters, such as mass, 

displacement, velocity, stress, strain, internal energy, and temperature are assigned to 

each material point according to the material it represents. As the numerical solution 

proceeds, the material points are tracked and their states updated so that they carry the 

complete solution. Information from the material points is transferred to background 

computational grid nodes. The continuum equations are discretized at grid nodes using 

standard finite difference or finite element methods. The solutions at grid nodes are then 

used to update the position and velocity of the material points. Strain increments 

computed on the grid are interpolated to the material points and used in conjunction with 

constitutive equations to update stress states for each material point.  

A material continuum is divided into a finite collection of discrete infinitesimal 

regions pΩ ( pNp ,...,1= ) called material points. Each material point is assigned a mass 
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pm  in pΩ , where ∫=
p

dxmp Ω Ωρ )(  and pΩΩ U= . Mass density can then be 

approximated as a sum of point masses using a Dirac function 

∑ −=
=

pN

1p
pp )xx(δm)x(ρ                                                                                             (3.1) 

 
All variables )(xφ  such as coordinate, displacement, velocity, and acceleration need to be 

transferred between grid nodes to material points using the shape functions N(x), 

∑=
=

N

n

nn xNx
1

)()( )()( φφ .                             (3.2)                     

where N is the number of nodes in the grid and superscript (i) refers to the nodal values of 

)(xφ . The details are given in Ref. [4]. The grid point accelerations are then used to 

update the position, velocity, stress, strain and temperature of the material points. 

To begin the next time step, the velocity at grid points in the new grid can be 

calculated by extrapolation from material points as 

∑ ∑=
= =

n

1'n

N

1p

)n)(p()p(k
ip

)'n(k
i

)'nn(k p

Nvmvm .                                                                           (3.3) 

)p(,s
ijσ∆  at )p(L

iX  are obtained from the strain increment with standard constitutive 

equation. The following extrapolation scheme will be used to transfer displacement, 

stress and strain information from particles to nodes at every time step 
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=
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The mesh in the conventional MPM in all cases is considered as a square grid. 

This approach has limitations, the limitations are that the size of the grid cell mesh cannot 

be refined near the crack tip to account for the stress gradient and the crack can be 

created only in x or y directions. Details are given in next chapter. To overcome this 

limitations a new MPM algorithm has been developed (Chap. 6) which deals with the 

shortcomings of the conventional MPM. To prove the robustness of the new MPM 

algorithm a tensile problem with an inclined crack is solved (Chap. 7). 

In MPM, three different algorithms can be used to update stress. The first one is 

update material point stresses average (USAVG) which is commonly used. The second 

one is the update material point stresses last (USL) algorithm and the third one is update 

material point stresses first (USF) algorithm [13].These algorithms are discussed in the 

following section. All the three algorithms are implemented in the conventional MPM 

code. 

 

3.3 Update Material Point Stresses First (USF) Algorithm  

As outlined in the previous section on the MPM algorithm, the stress on the 

material points may be updated based on the strain increment, calculated from the initial 

material point velocities interpolated to the grid. This option is referred to subsequently 

as the update-stress-first (USF) algorithm [13]. For this case, stress is calculated from the 

equation specified in the previous section and the grid velocity increment is determined 

from the updated stress. 
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3.4 Update Material Point Stresses Last (USL) Algorithm  

 The other option, equally valid from an algorithmic standpoint, is to update the 

stress on the material points at the end of the time step, using the strain increment, 

calculated from the updated material point velocities interpolated to the grid. This option 

is referred to subsequently as the update-stress-last (USL) algorithm [13]. For this case 

stress is calculated as specified above, but the grid velocity increment is determined from 

the initial stress. 

 

3.5 Update Material Point Stresses Average (USAVG) Algorithm  

 The common option is used to update the stress on the material points before the 

current time step and after the time step and the calculated average value is taken into 

computation. This option is referred as the update-stress-average algorithm [11]. For this 

case, the grid velocity increment is determined from the average of initial and the final 

stress. 
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CHAPTER 4 

PROBLEM STATEMENT 

 The material point method (MPM) proposed by Sulsky et al. [2, 4, 5, 9] has 

received increased applications to simulate dynamic problems in solid mechanics. MPM 

has demonstrated capabilities in the simulation of impact/contact, penetration, and 

interfacial crack growth problems. In MPM, a material continuum is discretized into a 

finite collection of material points. Two descriptions are used in MPM - one based on a 

collection of material points (Lagrangian) and the other based on a computational 

background grid (Eulerian). The background rectangular grid is used solely for 

calculations. The material points are followed throughout the deformation of a solid and 

provide a Lagrangian description that is not subjected to mesh entangling. As a result, 

MPM takes advantage of both the Eulerian and Lagrangian descriptions to possess 

capability to handle large deformations in a more natural manner so that mesh lock-up is 

avoided. Parallel computation is also straightforward because of the use of a grid 

structure that is consistent with parallel computing grids. Additionally, for problems 

involving contact [10], MPM is able to provide a naturally non-slip contact algorithm to 

avoid the penetration between two bodies based on a common background mesh. 

 Recently, MPM has been used for modeling fracture in materials [10-11]. Tan and 

Nairn [10] utilized MPM to model a crack in a plane problem, and computed dynamic 

energy release rates. Their work has considered the condition that that there should be no 
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interaction of particles between two free crack surfaces. The conventional MPM 

approach used a regular computation grid in which all MPM cells are of square shape and 

same size [10, 11, 13, 14, 20-22]. This results in two major limitations:  

1) The crack orientations are confined to be only along x- or y- directions 

  

 

 

 

 

 

 

Figure 4.1 Horizontal Crack on Regular Mesh  

2) The size of the grid cell mesh cannot be refined near the crack tip to account for the 

stress gradient.  

 Figure 4.2 Model showing Stress Concentration 

In reality, cracks can exist in arbitrary orientations. While a single crack in a structure can 

always be brought to be aligned with coordinate axes, un-aligned multiple cracks and 

crack kinking cannot be all brought to align with abscissa or ordinate. To model the 

Horizontal Crack 
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inclined cracks, and to use fine mesh close to the crack and coarse mesh in the far field 

for minimization of computational time while maintaining accuracy, a new approach is 

needed. This approach is the implementation of irregular mesh in MPM which is the 

subject of present investigation. 

 Validation was first made with a tension problem using two MPM models 

(regular and irregular mesh) and the results are compared with the results obtained from 

ABAQUS/explicit code. An inclined crack problem is solved as an example to 

demonstrate the capability of the arbitrary quadrilateral cells in the new algorithm. The 

stress and deformation fields are determined as a function of time. For this mixed mode 

crack fracture, energy release rates are calculated using the virtual crack closure method 

based on the nodal force and relative displacements at the crack tip. Stress intensity 

factors were also calculated using the displacement extrapolation method in terms of 

relative displacement and locations along free crack surfaces. The same problem is also 

solved using FEM. 
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CHAPTER 5 

NEW MPM ALGORITHM  

5.1 MPM Algorithm 

A new algorithm was developed involving an irregular mesh in MPM that can 

handle mixed mode crack propagation [58]. The algorithm adopted in the MPM code 

(which is looped till user-defined end time, with user-defined time step*) is: 

In the preprocessing stage the data is read from the input file and the background 

grid is build. After building the background then the material points are placed in the cell 

based upon the shape functions derived from the natural co-ordinates. 

1. �PrepMassmatrix�: In this particle a Lumped Mass Matrix is prepared:  

Mp = particle mass = 
( ) ( )

( )celleachinparticlesofnumbertotal
densityCellvolume ×

 

            the total number of particles in cell is 4 in case of 2D and 8 in 3D.This is done for 

the conservation of mass. After determining the mass, the time step is computed. 

The time step is the ratio of cell size to the wave speed. The smallest time step is 

taken for computation. 

2. Find dimensionless particle locations and find grid momentum:  

a) ξ, η, and shape-functions are calculated for each particle based on 4-node 

isoparametric representation. 

b) Lumped Mass Mapping (particles to nodes) 
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c) Momentum is mapped (particles to nodes) (for i =1 and 2 axes, i.e. x and y axes)  
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where, Vp is the particle velocity 

d) Strain update: 

• Straintime = ( timestep)/2 

• Impose displacement boundary conditions: This is done by making 

respective momentum equal to zero. 

• Get grid velocities: 
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• Update strain: 
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( )damping
n

external
n

ernalint
n

TOTAL
n FFFF ++=

• Specific stiffness matrix used to find stress from strain (constitutive 

matrix) is given by 

E/(1-ν2)*ρ nu* E/(1-ν2)* ρ 0 

Nu* E/(1-ν2) * ρ E/(1-ν2) * ρ 0 

0 0 G/ ρ 

 

• Particle stress and strain are calculated using, hypoelastic and adjusting for 

rotations using midpoint or endpoint derivatives 

e) Get total grid point forces:  

 
 
 where, external

nF  is given by 

• External Force (for i=1 and 2 axes) 

          external
nF   = ( )∑ ∑

=

=

=

=

×
)D2for4(8max

1cell_ngneighbouri

4cell_in_particle_of_no

1p
p

external
p NF  

 where, Np is the Shape Function 

    =external
nF Mapped external force on node 

    =external
pF User applied external force on particle 

• Internal Force (for i=1 and 2 axes) 

             ernalint
nF   = ( )∑ ∑

=

=

=

=

×
)D2for4(8max

1cell_ngneighbouri

4cell_in_particle_of_no

1p
p

ernalint
p NF  

   where,  internal force on particle is 

             =ernalint
pF ( ) ( )[ ] p2

s
1

s M,N)2,i(,N)1,i( ××σ+×σ �For 2D-MPM 

   where,  
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    N,1 is the derivative of shape function w.r.t. local-x (ξ) 

    N,2 is the derivative of shape function w.r.t. local-y (η) 

    σs(i, j) is the specific stress, with force in I-direction 

• Currently no damping; Hence, 0FF damping
p

damping
n ==   

f) Impose Zero Ftotal on Displacement BC nodes. 

3. Update Information 

• Update grid momentum (for all the nodes): 

  ( )timestepFpkpk total
n

t
n

tt
n ×+=∆+  

• Find new velocity at particles: 

                       ∆ pV   =
( )

∑
=

∆+ ×)D2for4(
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p
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n

m
Npk

 

• Find new particle acceleration: 

∆ pA   =
( )

∑
=

×)D2for4(

1node_ngneighbouri n

p
total
n

m
NF

 

• Update particle position: 

                                          Pos = ∆ Vp x (timestep) 

• Update particle velocity: 

                                          Velocity particle = ∆ Ap x (timestep) 

4. Rezero the momentum on grid and map the momentum from particle to grid  

again and again update particle strain (step number 2 ( c) and 2 (d) ) 

5. A loop is run to check assign the particles to the respective cells in which they 

fall. This is done using Ray Crossing Algorithm (Sec. 5.3) 



 34

In this investigation, the conventional MPM algorithm is modified to 

accommodate irregular mesh. The important thing is the modification involving  

determination of the local coordinates of the particle positions and the development of 

ray crossing algorithm to investigate which particle belongs to which cell after each time 

step.  

 

5.2 Local (Natural) Coordinates for Updated Positions of Particles 

 These equations are derived with the help of Dr. Bo Wang. After the particle 

locations in the grid cells are determined, local (natural) coordinates for updated positions 

of particles are calculated for the next iteration in the MPM computation. In 2D situation, 

the shape function is of the same form as that used in finite element analysis and can be 

expressed as 

)1)(1(
4
1

00 ηξ ++=iN      iξξξ =0 , iηηη =0     ( 4,3,2,1=i )                                    (5.1) 

and ),( iii ηξ : 1 (-1, -1); 2 (1,-1); 3 (1, 1); 4(-1,1). The coordinates of the material points 

could be determined in terms of the coordinates of cell nodes which material points are 

associated with. 
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That is,  
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2 ηξ −+=N                  (5.2.b) 
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)1)(1(
4
1

3 ηξ ++=N                  (5.2.c) 

)1)(1(
4
1

4 ηξ +−=N                  (5.2d) 

44332211 xNxNxNxNXp +++=                 (5.3) 

44332211 yNyNyNyNYp +++=                 (5.4) 

Substitute the values of 1N , 2N , 3N , 4N  in to Eqs. (5.3) and (5.4) 

4321 )1)(1(
4
1)1)(1(

4
1)1)(1(

4
1)1)(1(

4
1 xxxxXp ηξηξηξηξ +−++++−++−−=   (5.5) 

Multiplication by 4 on both sides would give 

4321 )1)(1()1)(1()1)(1()1)(1(4 xxxxXp ηξηξηξηξ +−++++−++−−=              (5.6) 

Taking the common terms  

))1()1)((1())1()1)((1(4 3241 xxxxXp ηηξηηξ ++−++++−−=              (5.7) 

Similarly, substituting the values in Eq (5.3) and taking the common terms will give  

))1()1)((1())1()1)((1(4 3241 yyyyYp ηηξηηξ ++−++++−−=                 (5.8) 

 

5.2.1 Parallel in X-direction    
 

Applying the condition 4321 , yyyy ==  in Eq. (5.8) yields 
 

4141 22)22(4 yyyyYp +++−= η                  (5.9) 
 
 Eq (5.7)  becomes 
 

4321

432143214321

xxxx
)xxxx()xxxx()xxxx(Xp4

++++
ξη−+−+η++−−+ξ−++−=

      (5.10) 

 
Solving Eq. (5.9) and Eq. (5.10) 
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X 

Y 

1( 11, yx ) 2( 22 , yx ) 

3( 33, yx ) 4( 44 , yx ) 

p( 00 , yx ) 

( ',' yx ) ( "," yx ) 

We can find η  from Eq. (5.9) and substitute the value of η  in Eq. (5.10) to find ξ  
 

5.2.2 Parallel in Y-Direction 

 Applying this condition in Eq. (5.7) 3241 , xxxx ==  
 
Eq. (5.7) comes  
 

2121 22)22(4 xxxxXp +++−= ξ         (5.11) 
 
 Eq (5.8)  becomes 
 

ξη−+−+η++−−+ξ−++−= )yyyy()yyyy()yyyy(Yp4 432143214321  
 4321 yyyy ++++          (5.12)  
 
solving Eq. (5.11) and Eq. (5.12) 
 
we can find ξ from Eq (5.11) and plug in the value of ξ  in Eq. (5.12) to find η  
 

 

 

Figure 5.1 Quadrilateral Cell 

 

5.2.3 Not Parallel in Either Direction 

 
4321432143214321 )()()(4 xxxxxxxxxxxxxxxxXp ++++−+−+++−−+−++−= ξηηξ  

           (5.13) 
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4321432143214321 )()()(4 yyyyyyyyyyyyyyyyYp ++++−+−+++−−+−++−= ξηηξ  
                      (5.14) 
 
Taking the co-efficients of  ξ ,η ,ξη from eq (5.13)  and eq(5.14) 
   
α1 = )( 4321 xxxx −++−                β1 = )( 4321 yyyy −++−  
 
α2 = )( 4321 xxxx ++−−               β2= )( 4321 yyyy ++−−  
 
α3 = )( 4321 xxxx −+−                  β3 = )( 4321 yyyy −+−  
 
α4=  4Xp-( 4321 xxxx +++ )     β4=  4Yp-( 4321 yyyy +++ ) 
 
       
      α4=α1ξ + α2η + α3ξη                               (5.15) 
 
      β4= β1ξ + β2η + β3ξη         (5.16) 
 
Solving Equations (5.15) and (5.16)  
 
(5.15) x  β3 gives      α4 . β3= β3 . α1ξ + β3 . α2η + β3 . α3ξη      (5.17) 
 
(5.16) x  α3 gives     β4. α3= α3. β1ξ + α3 .  β2η + α3 . β3ξη        (5.18) 
 
(5.17) - (5.18) yields    
 
α4 . β3 � β4 . α3= (β3.  α1 � α3 . β1) ξ +( β3 .  α2 � α3 . β2) η                           (5.19) 
 
from Eq. (5.19) 
  
   ξ  = (α4 . β3 � β4 . α3 - (β3 .  α2 � α3 . β2) η )/ (β3  .  α1 � α3 . β1)                 (5.20) 
 
Plug  Eq. (5.20)  in Eq. (5.15) which gives  
 
   α4 = α1 . ((α4 . β3 � β4 . α3 - (β3  . α2 � α3 . β2) η )/ (β3 .  α1 � α3 . β1))+ α2η  

+ α3  . ((α4 . β3  � β4 . α3 - (β3 .  α2 � α3 . β2) η )/ (β3 .  α1 � α3 . β1)) η    (5.21)  

Solving Eq. (5.21) 
 

  (α3 .  (α2 . β3- β2 . α3 )/ β3 .  α1- α3 . β1 ) η 2+  
(α1 .  (α2 . β3- β2 . α3 )/( β3  . α1- α3 . β1)- α2 - α3  . (α4 . β3- β4 . α3 )/( β3 .  α1- α3 . β1)) η + 
  α4-(α1 (α4 . β1- β4 . α3 )/( β3 .  α1- α3 . β1)) =0        (5.22)   
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Taking the co-efficents of η 2  , η  and the constants from Eq.(5.22) 
 
   A = α3. (α2. F- β2. α3)/ β3. α1- α3. β1;   co-efficents of η 2 
 
    B = α1* (α2. β3- β2. α3)/ (β3 α1- α3. β1) - α2 - α3. (α4. β3- β4 . α3)/ (β3. α1- α3. β1);   
           co-efficents of  η  
 
    C= α4 - (α1. (α4. β3- β4. α3)/ (β3.  α1- α3. β1)); constant 
    
Solving the above quadratic equation Eq. 5.22 by using the formula  
 
  η 1 = (-B + √ (B*B-4*A*C))/ (2*A);         (5.23) 
  
 η 2 = (-B - √ (B*B-4*A*C))/ (2*A);         (5.24) 
           
The absolute values of η 1  and η 2  are compared and which ever values lie within �1� is  
 
taken as η  
 
And substituting the value of η  in the Eq. (5.20) will give ξ  

 

5.3 Ray Crossing Algorithm  

 In MPM computation, the ray crossing algorithm [Fig. 5.2] is employed to 

determine which cell in the background grid mesh a particle belongs after the 

deformation [55]. In this section, the ray crossing algorithm is summarized as follows: A 

polygon made up of N vertices (xi,yi) where i ranges from 0 to N-1 is considered herein. 

The last vertex (xN,yN) is assumed to be the same as the first vertex (x0,y0), i.e., the 

polygon is closed in Fig. 5.2. To determine the status of a point (xp,yp) consider a 

horizontal ray emanating from (xp,yp) and to the right. If the number of times this ray 

intersects with the line segments making up the polygon is even, the point is outside the 
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1 

2 

3 

A 

B 

C 

polygon. Whereas if the number of intersections is odd, the point (xp,yp) lies inside the 

polygon. Fig. 5.2 is a schematic illustrating the principle of ray crossing technique.  

 The number of intersections made by A is odd; so, the point is inside. The same 

case can be made for point C. Similarly, we can see in the Fig 5.2 points B and D crosses 

the polygon in even number. Therefore, these points are outside the polygon.   

     

  

 

 

  

Figure 5.2 Ray Crossing Algorithm [55] 

  

5.4 MPM Computational Algorithm 

 The MPM computational algorithm is summarized as follows: 

1.   Initialize material point locations, velocities, strains and stresses, 

2.   Add external load to the material points, 

3.   Determine the local co-ordinates. The difference between the conventional MPM and     

the new MPM algorithm is in this step, where a new approach has been derived for 

computing the local co-ordinates (Sec. 5.2). 

4.  Determine the shape function (based upon the derived local co-ordinates) for that  

particle with respect to the four surrounding   nodes, 
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5. Map particle momentum, mass to the grid, using shape function based upon 

conservation of momentum and mass, 

6.  Update strain. The strain is updated here if the method is USAVG (Sec. 3.5), if the  

method is USL (Sec. 3.4) then the strain is not updated in this step, 

7.   Compute the internal force on node, 

8.    Map the external load from the particles to the nodes using shape function, 

9.    Calculate the total force on the nodes, 

10.  Impose the displacement boundary condition on the nodes. 

11.  Update momentum on the grid,  

12.  If the method is USL then determine the grid velocities, 

13.  Update material point locations based on grid velocity and update their velocities, 

14.  If the method is USL then update strain and stresses at the material points, 

15.  If the method is USAVG then extrapolate new particle velocities to the grid and  

      determine new velocity gradients and strains and stresses at the material points, 

16. Check whether the material point has crossed the element boundary using ray-

crossing algorithm (Sec. 5.3). In case of conventional MPM, there is no need of 

special algorithm, as the grid cells are always square or rectangle in shape.  

17.  Regrid 

18.  Go to step 2.   

These steps are repeated until the user defined time is reached. The program stops 

computing if the material point crosses the element boundary. 

 Grid mass is determined by mapping material point masses to the grid with the 

shape functions. Thus the small grid mass is due to the small values of shape functions. 
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When momentum is used, the numerator and denominator of the material point equations 

are balanced by the shape function value. That is, the numerator and denominator both 

contain a multiplication by the shape function, and numerical problems are avoided. 

 

5.5 3D Material Point Method (MPM) 

 The analysis of complex three-dimensional components has become a common 

task in recent years in several fields. The implementation of 3D MPM should address  

more complex shapes. The 2D new MPM algorithm is extended to 3D, which can handle 

both the regular and irregular 3D elements. The modifications are made in the 2D MPM 

algorithm (Sec. 5.1) to extend to 3D. 

The changes that are made in 2D to make it work for 3D  are as follows, The 

update is made by extending the global co-ordinates from x, y to x, y and z and the local 

coordinates from ηξ, to ηξ, and τ  . The local coordinates of the particles are determined 

by using Newton-Raphson method [56]. The shape functions are extended to 8-node 

isoparametric representation. The stiffness matrix is extended to 3D [57]. All the other 

variables such as position, velocity, acceleration, strain, stress are extended to �Z�. The 

ray crossing algorithm which is used in 2D MPM is extended to 3D which is explained in 

the following section. 

 

 5.5.1 3D Ray Crossing Algorithm 

 The first step is to test the point along the XY axis same as 2D, but an extra loop 

is added to loop through all the faces of the element. We trace the point along the XY 
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plane in all the faces by generating a ray from the test point and the crossing number is 

tracked through all the faces. The next step is to trace the point along the Z axis and then 

store the crossing number in both the cases and check whether the crossing is odd or 

even, if the crossing is odd then the point is inside or if it is even then the point is outside. 

If the point is exactly on any vertex then it is checked by computing the equation of plane 

and checking its value to be exactly equal to zero, if yes then we consider the point to be 

inside. 

 

5.5.2 Newton-Raphson Method 

 An iteration method for solving a system of n non-linear equations 

  ( ) ( ) ( ) 0xf.....xfxf n21 ====  

for the n variables x = (x1, x2,........,xn). An approximate solution x must be known. Then a 

better approximation x� = x + ∆x is found from the approximate equations 

 fj(x + ∆x) = fj(x) + ∑
=

∆
n

1k
kjk x)x(J = 0,         j = 1,...,n, 

which are linear equations in the unknown ∆x. The matrix J is the Jacobi matrix, 

 Jjk = 
k

j

x
f

∂
∂

 

The process is iterated until it converges, usually until ∆x  is smaller than the accuracy 

wanted in the solution, or until all the fj(x) are �sufficiently close to 0�. Convergence 

may, of course, not be obtained if the first approximation was poor. In the two-

dimensional case the Newton-Raphson formula  

 x� = x + ∆x = x � f (x)/ f�(x)  
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 has a very simple geometrical interpretation: it is the extrapolation to 0 along the tangent 

to the graph of f(x) (also called Newton's  rule). Only approximate solutions for ∆x are 

required. A small error in ∆x will not destroy the convergence completely, but may make 

it linear instead of quadratic. Hence also the Jacobian matrix J needs to be calculated only 

approximately, in particular it need often not be recalculated for each iteration. Double 

computer precision for x and f(x) but single precision for J and ∆x may give double 

precision for the final solution. 

In fact, the Newton-Raphson method may be applied even to linear equations in 

order to give double precision solutions using single precision subroutines. 
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CHAPTER 6 

MIXED MODE CRACK IN MPM 

6 .1 Introduction 

 As a demonstration of the capability of the new MPM with irregular mesh, one 

can consider a inclined crack problem in mixed mode fracture. The theoretical framework 

on the numerical analysis of mixed mode fracture is explained in this chapter. 

In engineering applications, cracks subjected to mixed mode loading can be attributed 

primarily due to three factors:  

1. Mixed remote loading, i.e., remote normal and shearing forces acting on a 

component having a crack perpendicular to the normal loading direction,  

2.   Deflected or inclined crack under normal/uniaxial remote loading, and  

3. Mechanical and/or thermal loads combined with arbitrary restraint conditions, 

producing a multiaxial loading conditions on a crack. 

 As mixed mode fracture problems are common in structural analysis [25], the 

understanding and analysis of mixed mode fracture problem is important in fracture 

mechanics. In numerical analysis, there are at least three methods available for the 

computation of the stress intensity factor (SIF) under mixed mode I/mode II loading 

conditions [26]:  

1.  The displacement extrapolation method,  
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2.  The potential energy release rate method computed by means of a modified crack-

closure integral technique, and  

3. The direct J-integral computation method using the equivalent domain integral 

together with a mode decomposition scheme.  

Bittencourt et al. [28] showed that for sufficiently refined finite element meshes all three 

methods give essentially the same results. Among the three methods, the displacement 

extrapolation method is the most convenient method to calculate Mode I and Mode II 

stress intensity factors in terms of relative displacements and locations along the free 

crack surfaces. This method is discussed in detail in the following sections and included 

in the MPM.    

 

6.2 Fracture Modes 

 One of the most common failure modes for composite structures is delamination 

[19]. Figure 6.1 shows common fracture modes [49]. The remote loadings applied to 

composite components are typically resolved into interlaminar tension and shear stresses 

at discontinuities that create mixed-mode I, II, and III delaminations. To characterize the 

onset and growth of these delaminations the use of fracture mechanics has become a 

common practice over the past two decades [9-11]. The total strain energy release rate, 

GT, the mode I component due to interlaminar tension, GI, the mode II component due to 

interlaminar sliding shear, GII, and the mode III component, GIII, due to interlaminar 

scissoring shear need to be calculated. In order to predict delamination onset or growth 

for two-dimensional problems, these calculated G components are compared to 

interlaminar fracture toughness properties measured over a range from pure mode I 
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loading to pure mode II loading [10-11, 17].  The virtual crack closure technique (VCCT) 

[24-26] is widely used for computing energy release rates. 

             

Figure 6.1 Fracture Modes [49] 

 

6.3 Fracture Parameters for a Mixed Mode Crack 

 In computational fracture mechanics, the energy release rate for the crack 

propagation can be calculated using the Irwin�s virtual crack closure method [29-30]. In 

this the crack is assumed to propagate an infinitesimal increment and the energy released 

during crack growth equals that required to close the propagated crack to its initial crack 

size. Based on this assumption, the total energy release rate for a mixed crack growth 

increment a∆  is given by 

∫ ∫ ∫ ∆σ+∫ ∆σ+∆σ
∆

=∆⋅σ
∆
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and for the 2D case, the Mode I and Mode II energy release rates for a mixed crack 

fracture will be 
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(c)  Final stage 

Figures 6.2 (a) � (c) Schematic of Irwin Crack Closure Technique [29-30] 
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In numerical methods, the integral can be approximated using the nodal forces and nodal 

displacements of the crack tip. In Figs. 6.2 (b)-(c), the work required to close the 

propagated crack to its original crack size is given by 

)]()()([
2
1

gfzgfygfx wwFvvFuuFW −+−+−=∆                                               (6.4) 

 
Based on the definition of G in Eq. (6.3), the energy release rate can be expressed as 
 

A
WG

∆
∆=                                                                                                                  (6.5) 

 
where A∆  is the crack area increment due to the crack extension increment a∆ . Thus, the 

Irwin�s virtual crack closure technique can be implemented in FE and MPM methods. 

Usually, in elastic regime the stress intensity factor is directly related to the energy 

release rate. However, in the mixed mode situation this relation cannot be used easily.  

 

6.3.1 Displacement Extrapolation Method 

 The displacement extrapolation method is used to determine the Mode I and 

Mode II stress intensity factors. Elastic solutions for the displacements at and near the 

crack tip are used in this method. Paris and Sih [31] gave the displacements for linear 

elastic materials as 
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)(
2

sin
2

2 rOr
G
Kw III += θ

π
                                                                                    (6.6c) 

 
where u, v, w are the local Cartesian displacements, (r, θ ) are the local polar coordinates, 

G is the shear modulus, νχ 43 −= for plain strain or axisymmetric conditions, and 

)1/()3( ννχ +−=  for plane stress conditions, ν is the Poisson�s ratio, and )(rO  

represents terms of order r or higher.  

Neglecting the higher order terms, and evaluating Eqs. [6.6(a to c)] at o180θ ±=  gives 

displacements along the free crack faces as 
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Eqs. [6.7(a) - (c)] yield to 
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where u∆ , v∆ , and w∆ are the relative displacements of one crack face with respect to 

the other. 
r
v∆ ,

r
u∆ , and 

r
w∆  can be calculated based on the nodal displacements and 

locations along the free crack faces determined from the MPM computation. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

The main objective of this investigation is to develop a new algorithm in MPM 

computation to allow the use of arbitrary quadrilateral cells in the background grid.  

Simple tensile specimens with/without an inclined crack are simulated using the refined 

MPM. The same models are analyzed using the commercially available 

ABAQUS/Explicit code. All the models have the same material properties. The linear 

elastic properties of the material are given as:  

Mass density, ρ = 1gm/cm3  

Young�s modulus, E = 10000 MPa and  

Poisson�s ratio, ν = 0.001. [20] 

 

7.1 MPM and FEM Modeling 

To validate the new MPM algorithm with an irregular mesh, a simple tensile test 

is simulated using two MPM models (regular and irregular mesh), and one FEM model 

using the commercially available ABAQUS/Explicit code. The geometry and boundary 

conditions of the tensile model without a crack is shown in Fig. 7.1. For the model 

without a crack the tensile load is applied at one end and the other end is fixed. Both ends 
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  15 mm 

10mm 

A (4.0, 5.45) C (7.71, 5.49) 

B (8.0, 7. 96)

are subjected to tensile loads for the specimen with a crack. The geometry and boundary 

conditions of the tensile model with an inclined crack is shown in Fig. 7.2. 

 

 

 

 

 

 

Figure 7.1 Tensile  Model  without  crack   

15 m m

10 m m55°2 m
m

 

Figure 7.2 Tensile Model with an Inclined Crack 

In both MPM and FEM models free crack surfaces are introduced using an 

approach that allows the placement of two sets of nodes at the same locations along the 

crack line to avoid the interaction between neighboring cells/elements on the two sides of 

the crack line, as shown in Fig. 7.3.  

To allow direct comparison between MPM and FE results, meshes used in both 

models are the same. Details of the FEM tensile model with an inclined crack are shown 

x

y 
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x 

y 

(r, θ) Free crack surfaces 

in Fig 7.4. Preprocessing code I-Deas is used to generate the MPM and FEM meshes and 

ABAQUS/Explicit is used for FE analysis. 

 

 

 

 

                                   Crack tip 
 
Figure 7.3 Model showing Free Crack Surfaces 
 

To characterize the stress singularity near the crack tip, very fine mesh is used 

around the crack and a coarse mesh is used in the far field to minimize the computation 

time and to raise the computation capacity as shown in Fig 7.4. This adaptive mesh will 

also improve the accuracy of fracture parameter calculations. During the entire 

computation in MPM, the background grid mesh never changes. Thus, material points 

can move in or out of the cells after deformation.    

 

     --- 50 N        --- -50N   -- 25N   --- -25N 
 
Figure 7.4 FE Crack Model Showing Boundary Conditions 
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Figs. 7.5 (a) �(c) show the MPM and FEM mesh for the tensile models without 

crack and Figs. 7.6 (a) � (b) with an inclined crack, respectively. MPM can create regular 

square or rectangular elements, if we specify the required dimensions. It does not require 

any preprocessor to create the mesh. There are 600 particles in the MPM model with 

regular mesh as shown in Fig. 7.5 (a). 

 

Figure 7.5 (a) Regular MPM  Mesh 

 To create the irregular mesh, first the mesh is modeled using I-Deas. The I-Deas 

software will generate an input file, which will have the nodal co-ordinates and the 

element connectivity. The generated input file is then converted into MPM format by 

using a macro developed in EXCEL and then the corresponding load and the material 

properties are updated for the current input file and then given as an input to the MPM 

program. Thus, the MPM model with irregular mesh is created. The model shown in Fig 

7.5 (b) contains 1,616 particles.  
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             Figure 7.5 (b) Irregular MPM Mesh  

For FEM model, the input file that is generated by I-Deas is given as an input to 

ABAQUS/Explicit code, which is used for the computation of FEM models. There are 

433 nodes and 404 elements in the FEM model as shown in Fig. 7.5 (c).  

 

            Figure 7.5 (c) Irregular FEM Mesh 

For the tensile model with an inclined crack, the MPM model is created by the 

same procedure as we have used to create the MPM irregular mesh. The MPM model 

with an inclined crack has 14,628 particles as shown in Fig. 7.6 (a)  
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Figure 7.6 (a) MPM mesh with crack          

The same input file, used to create the MPM model with a crack, is used in 

creating the FEM model. It has 3,767 nodes and 3,697 elements as shown in Fig. 7.6 (b).  

 

            Figure 7.6 (b) FE Mesh with Crack 

For explicit dynamic MPM/FEM analyses, the time step increment depends on the 

length of the cell/element and the stress wave speed. The minimum time step increment is 

taken to implement the numerical simulations. At the end of each time step, the deformed 

grid is effectively reset to its undeformed position. The details about the total time and 

the time step increment for each model are given in Table 7.1. 



 57

Table 7.1 Total time and time step increment for each model 
 

Model Total time, µs Time step increment, ns 

MPM with a 
regular mesh 

5.1  14  

MPM with an 
irregular mesh 

5.1  73 

FEM  5.1  73 

  MPM with a 
crack 

5.1  14 

   FEM with a 
crack 

5.1  14 

 

 

7.2 Tensile Model without a Crack 

Explicit dynamic simulations were conducted on the tensile specimen without a 

crack using two MPM models (regular and irregular mesh) and one FEM model. A 

tensile load of 400 N is applied at one end and the other end is fixed. After running MPM 

and FEM simulations, displacement and stress fields were obtained for these three tensile 

models. To validate the new algorithm the following validations are performed. 

The first validation is done by comparing the overall stress profiles of the three 

models. The stresses are calculated using the USL method (Sec 3.4). To ensure direct 

comparison, the von Mises stress contour plots are compared at the final time step for all 

three models. The FEM von Mises stress contour plot is directly obtained from 

ABAQUS. As MPM cannot directly generate contour plots, the output data is passed on 

to TECPLOT to generate the von Mises stress contours. Figs. 7.7 (a) � (c) shows von 

Mises stress distribution contours for t = 5µs for the MPM models with irregular/regular 

mesh and FE model without crack. In Fig. 7.7 (c), the FE results are smooth, because the 
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ABAQUS does post processing to smoothen the data. The overall stress profiles of all the 

models are same which exhibits the robustness of the code. 

                  

 (a) Irregular MPM Mesh    

 

(b) Regular MPM Mesh 

 

(c) FE Mesh 

Figure 7.7 (a)-(c) Comparison of the von Mises Stress Contours for Irregular    

MPM/Regular MPM and FE Mesh at t = 5µs  
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The second validation is performed by comparing the displacements along x-

direction and von Mises stress as a function of time at some specific locations A, B, C 

(Fig. 7.1) as shown in Fig. 7.9 (a) �(c). As the load is applied on one end, the stress wave 

travels from right to left side with time at the stress wave speed of C = 3162.3 m/sec.  

In Fig. 7.8 (a) � (c) the von Mises stress is plotted for MPM (regular/irregular) 

models and compared with FEM. In this figures the stresses are calculated using the 

USAVG method (Sec 3.5), where as in Fig. 7.9 (a) � (c) the values are calculated using 

the USL method ( Sec 3.4)  which gives the smooth result than the USAVG case ,  that�s 

the reason why USL method is chosen for the computation. 

The von Mises stress and the displacement values are taken from the nodes in the 

case of FEM model. In the case of MPM models (irregular/regular) one cannot take the 

values from the nodes as the background grid in the MPM does not deform, so one has to 

take the values from the surrounding particles closer to the node and take the average of 

those values. Thus, slight differences are observed in the values between the FEM and the 

MPM models. 

At t = 0.5 L/C where L is the length of the model, the stress wave reaches exactly 

at the center of the model at t = 2.3µs. The deformation of the particle closer to location 

A starts deforming at t = 3µs, as location A is closer to the left side of the model. The 

stress wave takes time to reach the location where as at location B and C the deformation 

starts at t = 2µs as they are closer to the right end of the model. This can be observed in 

cases of both the displacements and the von Mises stress.  
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 (a) von Mises stress vs. time at location A (4.0 mm, 5.45 mm) 
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  (b) von Mises stress vs. time at location B (8.0 mm, 7.96 mm) 
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(c) von Mises stress vs. time at location C (7.71 mm, 5.49 mm) 
 
Figure 7.8 (a) � (c) von Mises stress (USAVG) plot vs. time 
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The deformation of particles at locations B and C are the same as they are in the 

same section of the model. The von Mises stresses in the Figs 7.9 (a) � (c) are close to the 

theoretical value of 40 MPa.  

It can be seen from Figs 7.7 (a) � (c) and 7.9 (a) � (c) that FEM and MPM 

(irregular/regular) are in good agreement, indicating the validity of the new MPM 

algorithm using irregular grid mesh.  
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Figure 7.9 (a) Comparison of the X-displacement and the von Mises Stress with time at 
location A (4.0 mm, 5.45 mm) 
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Figure 7.9 (b) Comparison of the X-displacement and the von Mises Stress with time at 
location B (8.0 mm, 7.96 mm) 
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Figure 7.9 (c) Comparison of the X-displacement and the von Mises Stress with time at 
location C (7.71 mm, 5.49 mm) 

 

7.3 Tensile Model with an Inclined Crack 

A specimen with an inclined crack is subjected to a tensile load to demonstrate the 

capability of arbitrary quadrilateral cells in the background mesh. As shown in Fig. 7.6 

(a) � (b) the MPM and FEM mesh are modeled using I-Deas as discussed in the previous 
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sections. On both ends of the model an equivalent tensile load of 2000N is applied. In the 

case of FEM model the same load is applied as shown in Fig. 7.4. As soon as the load is 

applied the stress wave starts moving from both ends as time increases from t = 0 to 

5.1µs. Figs 7.10 (a) � (f) show the snapshots of the movement of the stress wave for the 

MPM model showing various stages of the crack opening at different time steps. 

Fig 7.10 (a) shows the initial stage of the model. At this stage the load is not yet 

applied to the model so one cannot observe any deformation in the particles. In Fig 7.10 

(b), the particle starts moving as the stress wave reaches the center of the model. The 

particles on the free crack surface starts deforming and one can observe the starting stage 

of the crack opening. As time step increases the stress wave travels further to the end of 

the model, Figs 7.10 (c) � (e) show the intermediate and the final stages of the crack 

opening. The stress wave after reaching the left end of the model, reflects back and 

becomes a compressive wave and the crack opening gets reduced which one can observe 

in the Fig 7.10 f.  

Figs 7.11 (a) � (f) shows different stages of the stress wave movement for the 

FEM model. Fig. 7.11 (a) show the initial stage of the model. At t = 2.5 µs the stress 

wave starts moving and reaches the center of the model. In Fig 7.11 (c) � (f)  one can 

observe the stress profiles of the model gradually moving and as the crack starts opening 

there exist high stress near the crack which shows the stress singularity near the crack tip.  
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                     (a) At t = 0µs 

 

(b) At t = 2.5µs 

 

(c) At t = 3µs 



 66

 

(d) At t = 3.5µs 

 

(e) At t = 4µs 

 

  (f) At t = 5µs 

Figures 7.10 (a) � (f) Simulation of MPM crack model showing various stages of crack   
opening 
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(a) At t = 0µs 

 

(b) At t = 2.5µs 

 

(c) At t = 3µs 
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(d) At t = 3.5µs 

 

(e) At t = 4µs 

 

(f) At t =5µs 

Figures 7.11 (a) � (f) Simulation of FEM crack model showing various stages of crack   
opening and stress contours. 
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To validate the tensile model with an inclined crack, the stress distributions along 

the crack line are compared for FEM and MPM at t = 4µs as shown in Fig 7.13. Stress 

distribution curve for MPM model at different times with respect to the distance from the 

crack tip is shown in Fig 7.12. In this figure, there exists a high stress gradient near the 

crack tip showing the stress singularity of the crack. It starts decreasing as one moves 

away from the crack tip. The trend is similar at different time steps showing the stress 

distribution well in agreement with the stress singularity. It can be seen from Fig 7.13 the 

results of both MPM and FE models are consistent. The small difference may be due to 

the computational errors in averaging the values of the particles to the corresponding 

nodes of FEM. 

 

7.3.1 Energy Release Rate 

An adaptive mesh is used in MPM to improve the accuracy of fracture parameter 

calculations. Using the crack closure technique described in Sec. 6.3, the dynamic energy 

release rates in Mode I and Mode II are calculated. As we are solving a mixed mode 

crack problem both Mode I and Mode II plays an important role. The total energy release 

rate is obtained by adding Mode I and Mode II energy release rates. The Mode I, Mode II 

and the total energy release rate are compared with FEM and it can be seen from Fig. 

7.14 (a) � (c) that MPM results are in good agreement. From these figures it can be seen  

that as soon as the stress wave reaches the center of the model at approximately t = 2.3µs, 

the crack gradually starts opening as shown in Fig 7.14 b and the energy release rate 

starts increasing as shown in the Figs 7.14 (a) �(c). 
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Figure 7.12 Stress distributions along the crack line near the crack tip at different times 
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Figure 7.13 Stress distribution along the crack line near the crack tip at t = 4µs 
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    (a) Mode I Energy release rate vs. time 
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(b) Mode II energy release rate vs. time 
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           (c) Total energy release rate vs. time 

Figure 7.14 (a) � (c) Mode I, Mode II, and Total Energy Release Rate vs. Time 
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7.3.2 Stress Intensity Factor 

 The displacement extrapolation method (Sec. 6.3.1) is used to determine the 

Mode I and Mode II stress intensity factors for MPM and FE models. The Mode I and 

Mode II stress intensity factor vs. time curves are shown in Fig 7.15 (a) and (b). After the 

stress wave from both ends of the model arrives to the center of the model, the crack 

starts opening and KI and KII starts increasing with time.  
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(a) Mode I stress intensity factor vs. time 
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(b) Mode II stress intensity factor vs. time 

Figure 7.15 (a) � (b) Mode I and Mode II Stress Intensity Factor vs. Time 
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 From the above results from MPM and FEM models with an inclined crack, it can 

be seen that the proposed MPM algorithm with an irregular grid mesh can be used to 

simulate the mixed mode crack growth and explicit dynamic fracture mechanics 

computations can be implemented. 

 

7.4 3D Irregular MPM 

 To validate the new 3D MPM algorithm with an irregular mesh, a simple tensile 

specimen was used to simulated two MPM models (regular and irregular mesh) and 

compared with the analytical solution [20]. The geometry and boundary conditions of the 

tensile model are shown in Fig. 7.16. A tensile load is applied at one end and the other 

end is fixed.  

 

 

 

 

Figure 7.16 Schematic of the 3D Tensile Model showing geometry and boundary 
conditions 

 
 Explicit dynamic simulations are conducted on regular and irregular MPM 

models. A tensile load of 1N is applied on one end and fixed along x-direction in the 

other end. The load is equally distributed on all the 8 particles. The material properties 

used for the tensile model are the same as the ones used for 2D. 

10 mm 

1mm 

1mm 

1N 
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 The 3D regular mesh shown in Fig 7.17 has 80 material points and it is simulated 

for t = 5µs. The boundary conditions are applied as shown in Fig 7.16. 

 

Figure 7.17 3D Regular MPM Mesh 

 The 3D irregular mesh shown in Fig 7.18 has 80 material points and to ensure 

direct comparison same boundary conditions are applied to the irregular model and 

simulated for the same time as the regular mesh model.  

 

Figure 7.18 (a) Front View of 3D Irregular MPM Mesh 

 

Figure 7.18 (b) Tilted View of 3D Irregular MPM Mesh 

 Chen and Brannon [20] has reported an analytical solution for a dynamic problem 

with same material properties, geometry, and boundary conditions. This analytical 

solution is used to validate the 3D MPM algorithm.  

 Fig 7.19 shows the stress Sxx along the length of the model at t = 0.5 L/C where L 

is the length of the tensile bar shown in Fig 7.16 and C is the wave speed which can be 

calculated based upon the material properties of the model. The plot shows that the 

regular and irregular mesh are good in agreement. As the mesh is too coarse it is not 

consistent with the theoretical model. It is possible to get good agreement by refining the 

mesh. 
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 Fig. 7.20 shows the stress wave propagation at t = 1.5 L/C, i.e when the stress 

wave has reached one end of the model and reflected back to the center. The stress wave 

is plotted for regular mesh, irregular mesh and the analytical model as referred before the 

values would agree if we refine the mesh further. 
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Figure 7.19 Stress along the length of the Model for Regular, Irregular MPM and 
Analytical Model at t = 0.5 L/C (1.6µs) 
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Figure 7.20 Stress along the length of the Model for Regular, Irregular MPM and 
Analytical Model at t = 1.5 L/C (4.8µs) 
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To resolve the large difference in the stress values the coarse mesh is refined as 

shown in fig. 7.21 and fig. 7.22. The dimensions and boundary conditions of the models 

are as shown in fig. 7.16. An equivalent load of 1N is applied on all the material points to 

the left end of the model. The irregular mesh shown in fig. 7.21 is created using 

ABAQUS and there are 6880 material points in the model. The regular mesh is created 

using the MPM code. 

 
Fig 7.21 Irregular refined MPM mesh  
 

 
Fig 7.22 Regular refined MPM mesh 
 
 

Fig. 7.23 shows the stress wave propagation at t = 0.5 L/C, i.e when the stress wave has 

reached the center of the model. The stress wave is plotted for regular mesh, irregular 

mesh and the analytical model. The plot shows that the regular and irregular mesh are 

good in agreement with the theoretical value when we refine the mesh.  
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Fig 7.23   Stress along the length of the Refined Model for Regular, Irregular MPM and 

Analytical Model at t = 0.5 L/C (1.6µs) 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions  

1.  A new 2D MPM algorithm with an irregular mesh has been developed to enable the 

use of arbitrary quadrilateral cells so that meshes can be generated to align an inclined 

crack with a set of nodes on MPM cells. 

2.  The introduction of arbitrary quadrilateral MPM cells enable cell refinement at high 

stress-gradient convenient to implement. 

3.  The new MPM algorithm can accommodate inclined crack issues and implement 

explicit fracture mechanics computations. 

4. MPM simulations of tension model indicate that results from both regular and   

irregular mesh are consistent and agree with FEM using ABAQUS/Explicit. 

5.  For dynamic mixed mode crack fracture, a tensile model with an inclined crack has 

been simulated using this new MPM algorithm with adaptive mesh. This adaptive 

mesh can improve the accuracy of fracture parameter calculations.  

6.  From MPM simulations, the energy release rates were calculated and these results are 

in good agreement with those from FE analysis. Mode I and Mode II stress intensity 

factors were also calculated from MPM simulations. 
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8.2 Future Work 

1.  The new 2D MPM algorithm with irregular mesh should be extended to elastic-plastic 

and meso-plastic materials. After detailed verifications of the elastic-plastic algorithm 

in the conventional MPM code, it will be implemented in the new MPM algorithm 

and the validation would be done by simulating a tensile model with a regular mesh 

with the irregular mesh in the new MPM code and comparing with the FEM. The 

same method should be applied in meso-plastic case. 

2. To simulate crack propagation in a elastic and elastic-plastic models. The crack �

propagation can be implemented in the new MPM algorithm by introducing the 

critical shear stress, if it exceeds that value then the crack starts propagating.  

3. The 3D MPM algorithm with irregular mesh should be extended to elastic-plastic and 

meso-plastic materials. 

4. To simulate dislocations in the crystal, computational fracture mechanics should be 

used with irregular mesh MPM algorithm in elastic materials. 

5.  To investigate fracture behavior of cracks, computational fracture mechanics should 

be used with the new MPM algorithm for elasticity, elastic-plasticity and meso-

plasticity. 

6. To implement adaptive mesh in new MPM algorithm for simulating crack 

propagation problems. 

7.  To introduce contour integral method to compute energy release rate for an elastic-

plastic models. 
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