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NOMENCLATURE 
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1. Introduction 

The global energy crisis has led to the development of a number of new low 

energy systems for building heating and cooling.  These systems provide viable 

alternatives to conventional energy systems and have the capability to significantly 

reduce electrical energy usage.  To effectively design these systems, computer programs 

that simulate the building and its mechanical equipment as an integral system are needed. 

The Department of Energy’s (DOE), EnergyPlus and the National Institute of 

Science and Technology’s (NIST) HVACSim+ are two such programs.  They use 

integrated solution techniques to solve the source sides of zone, system and plant sub-

systems.  This solution technique makes EnergyPlus and HVACSim+ prime candidates 

for analyzing and designing low energy building systems.  Each aspect of these programs 

is based on mathematical computer models developed by researchers to accurately 

simulate complex environmental systems.  These computer models must be verified by 

experimental data gathered from real systems. 

1.1 Overview 

This thesis reports on the development of an experimental facility to test and 

validate the hybrid ground-source heat pump (HGSHP) models in EnergyPlus and 

HVACSim+.  A HGSHP system consists of a ground-loop heat exchanger (GLHE) with 

a supplemental heat rejecter (e.g., cooling tower, fluid cooler, pond coil, etc.).   This 

system is advantageous for buildings where the annual cooling loads are larger than the
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 annual heating loads.  For a HGSHP system, the borefield can be sized based on the 

heating loads.  The borefield in conjunction with a supplemental heat rejecter would 

allow the system to meet the cooling loads.  The main advantage of this system is that it 

more closely balances the heat rejected and extracted for the GLHE over the course of a 

year.  Another added benefit is the possible decrease in first cost and operating cost 

compared to conventional ground source heat pump systems. 

Although HGSHP systems show considerable promise, they have not been widely 

adopted.  This is largely due to the fact that until recently, tools capable of HGSHP 

system design were not available.  Recently HGSHP modeling capabilities have been 

developed for HVACSim+ and EnergyPlus, but both programs are based on quasi-steady 

state solution techniques and steady state models.  Over a ten or twenty year simulation 

using relatively short (ten minute to one hour) timesteps, the accumulation of error due to 

transient aspects of the system can be significant. 

The main objective of the research is to develop an experimental facility capable 

of accurately measuring system performance for a wide range of HGSHP system 

configurations.  Instrumentation and datalogging capabilities were specified to allow 

calculation of heat transfer rates, flow rates and power inputs required for the calculation 

of system performance metrics. 

A secondary objective of the research is to design and implement the control 

hardware and software required to develop optimal control strategies for HGSHP 

systems.  A related objective is to provide long term performance data for ground loop 

heat exchangers (GLHE)-a critical component in any HGSHP system.  In order to 

validate proposed GLHE models, the data set must include continuous flow and 
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temperature data.  Currently, such data sets do not exist in the literature.  The 

experimental facility was designed to provide this data. 

To achieve these objectives a HGSHP system consisting of two heat pumps, two 

storage tanks, 5 boreholes, a pond loop and a cooling tower was constructed.  The 

following sections will discuss design, construction, instrumentation and validation of the 

experimental facility. 
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2. Background and Literature Review 

This literature review focuses on both the design and simulation of HGSHP 

systems.  This focus will facilitate the design and instrumentation of a facility for the 

validation of simulation models. 

2.1 Hybrid Ground Source Heat Pump System Design 

A literature review for hybrid ground source systems yielded a small number of 

papers covering system experimentation and design.  Much of the literature consisted of 

system design with very little experimental data. 

2.1.1 Design  

The ASHRAE Ground Source Heat Pump Engineering Manual (ASHRAE, 

1995b) discusses the design and sizing of ground loop heat exchangers and supplemental 

heat rejecters.  The design procedure suggests that the ground loop be sized based on the 

average monthly heating and cooling loads.  The minimum and maximum temperatures 

entering the heat pump are set as limits for sizing the ground loop length.  In a cooling 

dominated application, the ground loop is sized for the heating load, and the 

supplemental heat exchanger is sized to meet the remainder of the cooling load.  For this 

system, a series of guidelines are given discussing the installation of the supplemental 

heat exchanger and internal piping, the use of an isolation plate heat exchanger when an 

open cooling tower is used, options on set point controls, and year round operation in 

warm, southern climates.  It is also suggested that the supplemental heat rejecter be used 

at night to facilitate cold storage in the ground. 
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Kavanaugh and Rafferty (1997) present a few hybrid ground source heat pump 

alternatives for the design and sizing of ground loop heat exchangers.  The sizing of the 

ground loop and supplemental heat rejecter is based on the peak block load at the design 

conditions.  The supplemental heat rejecter is sized to meet the difference between the 

required ground loop heat exchanger lengths for heating and cooling.  Recommendations 

are made to integrate the supplemental heat rejecter in parallel with the ground loop heat 

exchanger system to lower the pumping losses and to decrease operating costs by using 

variable speed pumps. 

Kavanaugh (1998) introduces a revised design method for sizing fluid coolers and 

cooling towers for hybrid ground loop heat exchanger systems.  The revised design 

procedure considers system controls, piping requirements, equipment efficiency, 

maintenance, freeze protection, and ground heat exchange and heat buildup.  To limit 

heat pump performance degradation due to heat buildup, the revised procedure proposes 

a method for balancing the heat extracted from the ground with heat rejected to the 

ground on an annual basis.  A set point control of the ground loop temperature (typically 

27 to 32°C; 80 to 90°F) is used to calculate the required operating hours of the 

supplemental heat rejecter to balance the heat extraction and rejection in the ground loop.  

The revised method is then utilized for the design of a hybrid ground source system for a 

four-story office building located in three different climate conditions.  The installation 

and operating costs are discussed.  The author concludes that the hybrid system is 

economically valuable in warm or hot climates where the differences between the heating 

and cooling loads are greatest.  The economic value of the hybrid system is somewhat 
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attractive in moderate climates but difficult to justify in cold climates except for buildings 

with high internal loads. 

Phetteplace and Sullivan (1998) present performance data for a 22-month period 

on a hybrid ground source system at a 24,000 ft2 military base administration building in 

Fort Polk, La.  The hybrid system consists of 70 vertical closed loop boreholes, 200 ft 

deep with 10 ft spacing.  This loop was designed to meet the heating requirements of the 

building and a 78-ton closed circuit cooling tower is used as a supplemental heat rejecter 

to meet the cooling requirements.  The data showed that the heat rejected to the ground 

was 43 times higher than the amount extracted.  The control system activates the cooling 

tower fan and circulation pump when the exiting water temperature from the heat pumps 

exceeds 97°F and deactivates when the temperature falls below 95°F.  The authors note 

some heat buildup in the ground loop due to the imbalance in the loop field heat transfer.  

Lowering the control set point or operating the cooling tower in the winter months could 

possibly offset the heat buildup.  Relative energy consumption for the major system 

components are 77% for the heat pumps, 19% for the circulating pumps, 3% for the 

cooling tower fan, and 1% for the tower circulating pump.  An estimate was performed 

on the possible conversion of the constant volume circulating pumps to variable speed 

pumps.  This estimate found that the pumping energy could possible be reduced by as 

much as 45%. 

2.1.2 Experimental Procedures 

A review of the literature for the experimental testing of a ground loop heat 

exchanger yields several test procedures.  One important procedure involves numerical 
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models and methods for estimating the thermal conductivity of the ground surrounding a 

ground loop.  Many of these methods are transient, varying the temperature with time.  

The development of a GLHE thermal response testing device and a two-

dimensional parameter estimation model are presented by Austin (1998).  Water is heated 

and circulated through the borehole. The water flow rate, inlet and outlet temperatures, 

and the power input to the water are recorded.  This data can then be analyzed to estimate 

the thermal conductivity of the borehole which can be used for system design.  A two-

dimensional parameter estimation model was then developed and tested against the more 

common line source and cylinder source methods.  The results from this model and the 

parameter estimation showed that a testing time of fifty hours would give an accurate 

number for determining the borehole thermal conductivity. 

Shonder and Beck (1999) present a new method for determining the soil 

conductivity and borehole resistance of a ground loop heat exchanger.  The method 

presented determines the transient conduction equation for a one-dimensional cylindrical 

model using parameter estimation.  By using a numerical method, the estimated solution 

to the heat conduction equation is calculated more accurately for tests where unstable 

voltage causes the power input into the water to vary over time.  The method is solved 

using a finite difference grid and a Crank-Nicolson scheme.  The method also provides 

confidence intervals for the parameter estimates, which can be used to assess the 

accuracy of the results.   

Shonder and Beck (2000) compare their one-dimensional model to the line source 

and cylinder source methods for three in-situ tests.  The time period for each model to 

converge varied for each test.  The line source and cylinder source methods were greatly 
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affected by power fluctuations and overestimated the thermal conductivity.  After a 50 

hour time period, the values of thermal conductivity predicted by these two methods, had 

not yet converged.  The authors concluded that the one-dimensional model was more 

accurate for tests that included variations in power input and for shorter test periods.  The 

model was implemented into a computer program that is available for download from 

Oakridge National Laboratory. 

There are a few papers that describe experimental procedures and testing 

experience.  Martin and Kavanaugh (2002) performed tests on four ground loop heat 

exchangers to observe the effects of power quality, test duration, and delay time for 

retesting.  The paper also presents results for thermal conductivity from several variations 

of the line source method, the cylinder source method, and the one-dimensional model 

presented by Shonder and Beck (1999).  The power quality was observed by creating a 

one hour power interruption in the test.  The results from each of the thermal conductivity 

models showed that this power interruption led to a significantly lower estimated value of 

thermal conductivity.  This shows that uninterrupted power is critical for obtaining good 

data sets for testing ground loop heat exchangers.  After a period of about 48 hours, each 

of the models converged to the same thermal conductivity.  The authors recommend a 

minimum of 11 days between tests on the same borehole to allow the heat from the 

previous test to fully dissipate.  Some of the thermal conductivity models showed errors 

of up to 24% if a retest was performed too quickly.  To determine the undisturbed ground 

temperature, the authors recommend recording the minimum loop temperature obtained 

from the test loop on start-up. 
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Witte et al. (2002) compared different methods and models for obtaining the 

thermal conductivity of a borehole.  The first method used to determine the soil thermal 

conductivity was a traditional approach of obtaining a detailed soil profile during drilling.  

This method can prove to be difficult and can give a wide range of values for the soil 

conductivity.  The second method was to analyze each of the soils in a laboratory.  The 

results obtained from this method were similar to the first method.  The final method was 

to perform an in-situ test on the borehole.  The results obtained from the test were then 

analyzed using the line source model and a two-dimensional finite volume model.  It was 

shown that atmospheric temperatures can affect the results.  If the test apparatus and the 

piping attached to the borehole were not insulated properly, unmeasured heat can be 

added or subtracted from the system.  Different time periods were analyzed for each 

model and the models exhibited no change after 72 hours of test data. 

Gehlin and Hellstrom (2003) evaluated four different models for determining the 

thermal conductivity of a ground loop heat exchanger.  Three of the models were 

analytical and based on line and cylinder source methods.  The fourth model was an 

explicit one-dimensional finite difference numerical model.  Three experimental data sets 

were then analyzed to determine their thermal conductivity. The analysis showed that the 

two line source models closely matched each other while the cylinder source model 

tended to overestimate the thermal conductivity of the ground loop heat exchanger.  The 

numerical model closely matched the results of the line source model.  The average 

deviation between the models was 1-5%.  The cylinder source model tended to be about 

10-15% higher than the other models but the deviation between all of the models 

decreases with longer measurement times.  The paper concluded that the line source 
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model works best with a minimum of 50 hours of data.  A note was made that the 

numerical model would work better if the test included variable heat injection.   

Gehlin and Nordell (2003) studied three methods for determining the undisturbed 

ground temperature for a ground loop heat exchanger.  Each method requires water to be 

placed in the borehole and remain undisturbed so that equilibrium with the surrounding 

ground is reached.  The first method involves lowering a temperature sensing device 

down a water filled borehole and logging temperatures at set distances.  The second 

approach requires the borehole be attached to a thermal response testing device.  Water is 

then circulated through the borehole and measurements of the inlet and outlet 

temperatures were taken at ten second intervals.  These measurements were then 

analyzed assuming plug flow, which states that measurements taken at specific times 

correspond to certain borehole depths.  The third method involves the circulation of the 

water for a period of time.  The temperature difference between the outlet and inlet 

temperatures will converge to the mean borehole temperature but steadily increase 

afterwards due to heat input from the circulation pump. 

Gehlin and Spitler (2003) reviewed the testing apparatus used throughout the 

world and how they differ.  They discuss the effect of test duration, uncontrolled heat loss 

or gain due to inadequate insulation of exposed pipes, instability fluctuation of the power 

supply and ground water flow around the ground loop.  Different analytical and 

numerical models for calculating the ground thermal conductivity are then discussed. 

2.2 Hybrid Ground Source Heat Pump System Simulation 

Yavuzturk and Spitler (2000) study a hybrid ground source heat pump system by 

applying a short time step simulation model to a small office building.  The hybrid 
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system consists of an open cooling tower coupled by an isolation plate heat exchanger to 

the ground loop.  The life cycle cost of set point control, differential control, and 

scheduled control are compared for two different climates over twenty years.  The set 

point control activates the cooling tower when the entering or exiting heat pump 

temperatures exceed 96.5°F.  The differential control scheme operates the cooling tower 

based on the temperature difference between the entering or exiting heat pump 

temperatures and the ambient wet bulb temperature.  The schedule control scheme 

activates the cooling tower during the evening for a set period of time at specific times of 

the year.  Set point control is also integrated into this scheme to prevent temperature 

spikes in the ground loop.  The results from the system simulation show a significant 

savings in the first cost over a conventional ground source system.  Additional savings 

are obtained from reduced operational costs due to the smaller circulating pumps used for 

the ground loop and cooling tower.  These reduced operational costs were more prevalent 

in cases where the building cooling loads were much greater than the heating loads. 
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3. Design Criteria 

3.1 Range and Types of Experiments 

The main design objective is to develop an experimental facility capable of 

accurately measuring system performance for a wide range of HGSHP system 

configurations.  To accomplish this goal, a configurable source system was installed to 

allow GLHE and component testing.  

The source side of the system conditions the water entering the heat pumps.  

Three independent source components are installed in the system: a ground loop heat 

exchanger, a pond loop heat exchanger, and an evaporative cooling tower.  Conventional 

water source heat pump systems use only one of these components.  A cooling tower is 

often installed along with a boiler in larger systems.  Other large commercial designs use 

a ground loop year round for heat extraction/rejection on the source side. 

In order to develop and validate hybrid system design procedures the facility must 

cover a range of source side configurations.  Experiments can be performed with a valve 

board that allows the source side components to be configured in any combination of 

parallel/series flows.  Even with these combinations, the experiments must cover a range 

of capacity splits between components.  To achieve this objective, a configurable 

borefield was installed that permits the selection of 1 to 5 boreholes.  A full sized cooling 

tower is installed so that it can be cycled to simulate part load operation.  Two heat 

pumps and a variable speed pump are included in the system to allow a wide range of 

loads and temperatures to be tested.     
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3.2 Simulation Validation Considerations 

3.2.1 Component Level Validation 

New component models can also be developed and validated using the test 

facility.  Instrumentation is installed on each component so that water side heat transfer 

rates and electric power use can both be determined.  Input parameters such as water 

temperature and flow rate can also be varied to validate mathematical component models 

over a range of operating conditions.   

Thermocouples measure water temperature at the inlet and outlet of each 

component.  Flowmeters are installed in each branch of the system to measure water flow 

rates.  Watt transducers measure power input to the circulating pumps, heat pumps, and 

the evaporative cooling tower.  A relative humidity sensor and thermocouple measure 

outdoor air conditions near the evaporative cooling tower.  These measurements provide 

sufficient information to validate component models over a range of steady-state and 

transient conditions.   

3.2.2 System Level Validation 

Component interaction such as loop capacitance and transient effects also needs 

to be measured in the system.  In commercial systems, the loop capacity is often large 

and can affect the operational control strategy.  The system capacity for the experimental 

facility is known from the size and lengths of piping and other components.  

Instrumentation is placed at the inlet and outlet of each component to measure these 

system effects.    

A secondary objective is the development of operational control strategies for 

HGSHP systems.  The EnergyPlus and HVACSim+ simulation environments allow the 
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development and testing of new strategies.  The experimental facility can support this 

effort with operating data.  To accommodate this requirement, control hardware and 

software was developed and implemented in the facility.  The program is modular 

allowing the user to create new control algorithms to operate the system.  Additional 

instrumentation, such as the thermocouple probes installed into the chilled and hot water 

storage tanks support investigation of control strategies. 

 A robust data acquisition system was installed to ensure that complete and 

accurate data sets could be collected.  The data sets can be analyzed and used for both 

short and long term trend prediction.  This is particularly important for HGSHP system 

simulation, since the simulation period is typically ten to twenty years.  
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4. Experimental Facility Design and Construction 

The experimental facility is located in a research park on the campus of 

Oklahoma State University.  The facility consists of two buildings: the test cell and the 

plant building. One of the two test cells as shown in Figure 4.1, provides a cooling or 

heating load on the plant.  Both the tests cells were constructed under a previous research 

project, ASHRAE 1117-RP (Eldridge et. al, 2003).  The plant building houses the water 

conditioning equipment along with the associated data acquisition system.  

Environmental heat exchangers are located near the plant building as shown in Figure 

4.1.   

 
Figure 4.1 – Plant Building 

For purpose of discussion, the system may be divided into three subsystems: the 

load side, the source side, and the primary equipment.  The load side consists of all 

piping and equipment connected to the test cell-side of the heat pump.  The source side 
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consists of the three environmental heat exchangers and the primary equipment 

encompasses the heat conditioning equipment, storage tanks, and circulation pumps.  In 

the following sections, an overview of the design procedure is followed by a detailed 

discussion of each subsystem. 

4.1 Design Procedure 

The design procedure included: determining the system requirements, sizing and 

selecting system components and determining component placement and connection.  

Each part of the procedure was critical to achieving the objective of a start-of-the-art 

experimental HGSHP facility. 

The most difficult task in the system design was configuring the hydronic loops.  

Circulation pumps were sized to specific design flow rates as required by environmental 

and load side heat exchangers and the system heat pumps.  The piping for each subsystem 

has an associated pressure loss based on a particular flow rate.  A spreadsheet program 

described below was used to calculate the pressure drop for each section of piping.  The 

input data used in pressure drop calculations is found in Appendix B.  This spreadsheet 

uses a modified and reduced version of the Bernoulli equation to calculate the head loss 

in a length of pipe as shown below. 

 1 2 fP P l− =  (4.1) 

The value for lf, the friction loss, can be found from the Darcy-Weisbach equation for 

head loss in a pipe (McQuiston et al., 2000). 

 
2

2f
L Vl f
D g

=  (4.2) 

Where: 
f = Moody friction factor 
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L = length of the pipe, ft or m 
D = diameter of the pipe, ft or m 
V = average pipe velocity, ft/sec or m/s 
g = acceleration due to gravity, ft/sec2 or m/s2

 
The value for f can be obtained from a Moody diagram or by solving the 

Colebrook equation.  The problem is that both of these methods require iteration to obtain 

the correct value of f.   Churchill (1977) derived a single expression that represents the 

friction factor for all flow regimes as given below. 
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 (4.3) 

Where: 
ReD = Reynolds number 
ε/D = relative pipe roughness 
 

The pressure drop for the heat pumps, pipe-fittings, flowmeters, strainers, and 

plate frame heat exchanger were added to the appropriate piping section.  The component 

pressure loss was calculated by the equation given below. 

 
2

2f
Vl K

g
=  (4.4) 

Where: 
K = loss coefficient 
V = average pipe velocity, ft/sec or m/s 
g = acceleration due to gravity, ft/sec2 or m/s2

 
The values for K where obtained from Crane (1957) for each pipe fitting. K-

values for the remaining equipment were based on manufactures’ catalog data. 
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4.2 Load Side Design 

The load side of the heat pump system meets the heating or cooling demands of 

the test cell.  The following sections describe the configuration and design of the load 

side system.   

4.2.1 Load Side Layout 

The load side consists of two subsystems: the test cell, and the plant fan coil.  The 

test cell is connected to the plant building by piping running through a 2 ft deep trench.  

The piping consists of hot and chilled water supply lines, and a common return line, as 

shown in Figure 4.3.  The piping terminates at T-fittings and ball valves located in a 3 ft 

diameter manhole as shown in Figure 4.2.   

 
Figure 4.2 – Load Side Manhole 
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The piping downstream of one set of valves leads to the test cell.  The piping 

downstream of the other set of valves is capped after it exits the manhole to allow for 

future expansion to the remaining test cell.  Pumps that circulate water to the test cell are 

located in the plant building on the return pipe as shown in Figure 4.3.  Placing the 

pumps on the return line allows the system to operate independently of the test cell flow 

rate requirements.  

The fan coil provides conditioning air to the plant building.  A manual three way 

valve determines whether hot or chilled water is circulated through the fan coil.  The 

return from the fan coil joins the common return from the test cell. 

Storage Tank-1

Storage Tank-2

Heat Pump-1

Heat Pump-2

Pump 5

Pump 4

Pump 2 Pump 3

Fan Coil

Pump 1

Return

Test Cell

 
Figure 4.3 – Load Side Schematic 

 

 4-18



4.2.2 ASHRAE 1117-RP Test Cell 

The test cell was previously constructed and instrumented to validate cooling load 

procedures (Eldridge et. al, 2003).  The buildings were constructed in a two-story fashion 

such that the test cell of each building is on the second story above a conditioned 

equipment and control room as shown in Figure 4.4.  

 
Figure 4.4 – Twin Test Cells 

A calibrated model of the test cell for use with system simulations was previously 

developed.  Measured diurnal and seasonal load profiles which can be used for HGSHP 

studies are also available.  The test cells were designed so that the cooling loads are 

greater than the heating loads.  This simulates a commercial building application where a 

HGSHP could be installed.        

The cooling loads for the test cell were previously experimentally measured and 

are shown in Figure 4.5.   
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Figure 4.5 – Measured Test Cell Cooling Load 

As shown, the cooling load for the test cell is approximately 1-ton (12,000 Btu/hr 

or 3-kW).  A 3-ton system capable of meeting the combined load of the two test cells, 

and the load required for conditioning the equipment building was specified. 

Each test cell was originally designed with a water-to-air heat pump followed by a 

water-to-air reheat coil supplied from the ground loop.  Water is now supplied to the 

reheat coil from the HGSHP plant.  A radiant floor and radiant ceiling panels were also 

installed in the test cell to expand the hydronic system configurations supported by the 

test cell.  The system uses a combination of three-way and two-way electronic valves to 

control the temperature and flow of water in each of the sub-systems. 

4.2.3 Plant Fan Coil 

A McQuay fan coil (model number FTHC1H04AA70A00X17AZA1) was 

selected to provide conditioning to the plant building.  This fan coil is capable of 1.2-tons 

(14400 Btu/hr or 4.2 kW) of cooling and 2.2-tons (26400 Btu/hr or 7.7 kW) of heating at 
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the manufacturer’s design conditions.  The 2-pipe fan coil shown in Figure 4.6 is a self 

contained unit with a three speed fan.  

 
Figure 4.6 – Fan Coil Unit (McQuay, 2003) 

A thermostat controller was attached to the fan coil to control the room 

temperature, and the fan speed.  A circulating pump is wired to the thermostat controller 

so that it is engaged along with the fan coil.  The fan coil draws water from either the hot 

or chilled side of the system by changing a manual three-way valve. 

4.3 System Source Design 

4.3.1 Source Side Layout 

The source side consists of three separate heat exchangers: a ground loop heat 

exchanger, an evaporative cooling tower, and a pond loop heat exchanger.  Each heat 

exchanger is connected to the plant building with its own supply and return pipes running 

through a 5 ft deep trench.  The three supply pipes and three return pipes are routed 

separately through penetrations in the north wall of the plant building as shown in Figure 

4.7.     
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Figure 4.7 – Source Installation Into Plant Building 

The pipes terminate in a loop selection board, which consists of twelve ball valves 

and associated piping as shown in Figure 4.8.  The valves can be set to configure the 

environmental heat exchangers for any combination of series or parallel flow.  The figure 

also shows the Armaflex insulation used to insulate pipes and the water storage tanks.  

Armaflex is a flexible elastomeric thermal insulation that comes in varying thicknesses 

and has a nominal thermal conductivity of 0.27 BTU-in/hr-ft2-°F (0.0389 W/m-K).  Each 

water tank was insulated with 1 in Armaflex sheets while all of the piping in the plant 

side was insulated with 1/2 in Armaflex.   
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Figure 4.9, shows the valve layout required to set up the desired combinations of 

source side components.  There are 19 possible heat exchanger configurations that can be 

set by selecting different valve combinations.  These combinations represent the full 

range of HGSHP source side configurations. 

 
Figure 4.8 – Mounted Loop Board 
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Figure 4.9 – Source Side Schematic

 



4.3.2 Ground Loop Heat Exchanger 

The ground loop heat exchanger consists of 4 vertical boreholes with a diameter 

of 4.5 in, and 1 horizontal loop placed with a horizontal drilling machine.  The boreholes 

were installed as part of the 2003 International Ground Source Heat Pump Association 

(IGSHPA) Technical Conference and Expo.  A description of each borehole is shown in 

Table 4.1. 

Table 4.1 – Borehole Configuration 
Borehole # Orientation Length Pipe Size Grout Geo-Clip 

1 Vertical 250' ¾ " ThermoGrout Light 0.88 No 
2 Vertical 236' ¾ " ThermoGrout Light 0.88 No 
3 Vertical 249' ¾ " Barotherm 88 No 
4 Vertical 248' ¾ " E-Z Seal Yes 
5 Horizontal 245' ¾ " None No 
 

The pipe used in each borehole is ¾” IPS DR 11 DriscoPlex 5300, a high-density 

polyethylene designed for use in ground source systems, with a thermal conductivity of 

0.225 BTH-h/ft-°F (0.389 W/m-K).  To facilitate data collection, the boreholes were 

brought into a single 4.0 ft (1.22 m) diameter manhole and connected to a supply and 

return header shown in Figure 4.10.      
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Figure 4.10 – Ground Loop Manhole 

Valves placed in this header allow for individual or combinations of loops to be 

selected for purging and testing.  A schematic showing the relative location of the 

boreholes and the manhole are shown in Figure 4.11. 

  
Figure 4.11 – Ground Loop and Borehole Spacing 

4.3.3 Evaporative Cooling Tower 

A 3-ton, direct contact, evaporative cooling tower was installed on one of the 

three source side loops.  One drawback to an open-loop cooling tower is that 

contaminants can enter the rest of the piping system through the tower. 
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A solution to the open loop design is to use a cooling tower – plate heat exchanger 

(PHE) combination as shown in Figure 4.9.  This design allows the main system, 

including the heat pumps, to operate in a closed loop configuration.   

The cooling tower, shown in Figure 4.12, is a model ST-5 fiberglass unit 

manufactured by Amcot.  Four adjustable rotating sprinklers distribute water over the 

towers honeycomb PVC fill material.  A float system attached to an outdoor hydrant 

maintains a constant water level in the cooling tower basin.  A series of drain valves 

placed in the manhole allow the system to be drained during the winter months.   

 
Figure 4.12 – Evaporative Cooling Tower 

The counterflow PHE, shown in Figure 4.13, consists of a series of grooved plates 

that are individually gasketed and pressed tightly together by compression bolts within a 

frame. Fluid enters and exits the PHE through portholes in one end of the frame.  The 

counter flow design allows for maximum heat transfer efficiency.  A Paul Mueller PHE 

AT4C-20 that would transfer approximately 3-tons (36,000 BTU/hr or 10.55 kW) at a 
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flow rate of 9-10 gpm (34.07-37.85 lpm) was selected.  The PHE is available with a 

number of different plate materials and plate configurations.  For the plate material 316 

stainless steel was selected due to its excellent corrosion resistance and low cost.  The 

plate configuration was selected to give a pressure loss through the closed side of the 

PHE that was near the pressure loss through the ground loop.  Equal pressure drops 

through the two loops facilitates flow rate balancing when they are operated in a parallel 

configuration. 

 
Figure 4.13 – Plate Heat Exchanger 

4.3.4 Pond Loop Heat Exchanger 

The pond loop was constructed of two parallel 1 in. nominal (K) copper pipes, 90 

ft (27.43 m) long, arranged in a compact slinky configuration as shown in Figure 4.14.   

The installed loop is supported 18 in. (0.46 m) off the bottom of the pond.  Supply and 

return lines run along the bottom of the pond to the heat exchanger. 

The heat transfer rate of the pond heat exchanger was estimated by using the 

method described in section 3.4.1.7 of Chiasson (1999).  Nusselt numbers were 

calculated for the inside and outside of the copper tube.  The desired system heat transfer 
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The primary plant equipment which is located in the plant building consists of 

two heat pumps, six circulation pumps and two water storage tanks as shown in Figure 

4.15.  The figure also shows strainers installed at six locations in the system.  The 

strainers are glass-reinforced polypropylene units with an operating range of 30 to 140°F 

and removable screens rated at 149 microns

4.4 Primary Equipment Selection 

rate of 3-tons (36,000 BTU/hr or 10.55 kW) was used with the temperature difference 

between the pond and the circulating fluid to calculate an overall heat transfer coefficient.  

A pond temperature of 17°C was used with an average fluid circulating temperature of 

28°C.  The overall heat transfer coefficient was then used with the Nussult numbers and 

copper tubing conductivity to estimate the heat exchanger pipe length of 38 ft (11.5 m) 

per circuit.  This length was increased to 90 ft (27.43 m) to allow for extra capacity and to 

provide a safety factor in the heat transfer estimate.       

 
Figure 4.14 – Pond Loop Coil. 
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Figure 4.15 – Primary Equipment Schematic
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4.4.1 Heat Pump  

Two packaged, residential water to water heat pumps (WP036 – 1CSC – FXX 

Florida Heat Pump) as shown in Figure 4.16, condition the water in the system.  Each 

heat pump is rated at a nominal capacity of 3-tons (36,000 BTU/hr or 10.55 kW). 

 
Figure 4.16 – Residential Heat Pump Unit 

The major components in the heat pump include a Copeland ZR34K3-PFV-230 

scroll compressor, coaxial water to refrigerant heat exchangers, a thermostatically 

controlled expansion valve, and a refrigerant reversing valve.  The reversing valve allows 

the unit to heat or cool the load side water.   

4.4.2 Circulation Pumps 

The pumps located between the storage tanks and heat pumps as shown in Figure 

4.14 circulate water at a flow rate of 9-10 gpm (34.07-37.85 lpm).  Grundfos UP 43-75 F 

pumps were selected for this application based on pressure drop calculations.   The 

cooling tower requires a dedicated circulating pump to maintain a flow rate between 9-10 

gpm (34.07-37.85 lpm).  Based on the loop pressure drop calculations, a Grundfos UP 

26-64 F pump was selected.  A three speed Grundfos UPS 15-42 F/FR was chosen to 

 4-31



circulate water to the fan coil.  This pump was chosen based on a flow rate of 2.5-3.5 

gpm (9.46-13.25 lpm) and a pressure drop across the longest pipe length. 

A variable speed pump was selected to serve as the main circulation pump 

between the heat pumps and the three source side components.  The pump selected for 

this application was an ITT – Bell & Gossett 80 1-1/2X1-1/2X7B with a 6.5 in impeller.  

This pump was sized for a source side flow rate of 10 gpm (37.85 lpm) and the maximum 

system pressure drop that could occur with the three source side loops connected in 

series.  A Siemens SED2-1.5/22X model number 6SE6436-2UC21-5B80 variable 

frequency drive (VFD) shown in Figure 4.17, controls the speed of the pump and 

provides flow rate control for source side system configurations.   

 
Figure 4.17 – Siemens Variable Frequency Drive 

This VFD is designed specifically for HVAC applications and comes with options such 

as digital and analog inputs and outputs to allow for sensing and control.  
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 The load side requires a wide range of flows depending on the configuration of 

the test cell hydronic systems.  The pumps for this part of the system were sized based on 

a design flow rate of 14-16 gpm (53.00-60.57 lpm) through one of the supply lines.  Two 

ITT-Bell & Gossett PL-55B pumps were specified and installed prior to installation of 

the test cell hydronic ceiling and floor.  Pressure drop calculations based on the ceiling 

and floor design determine that a third PL-55B would be needed for experiments that 

bypassed the water storage tanks and used all test cell hydronic systems at maximum 

flow rate.  This extra pump was placed in the test cell due to limited room in the plant 

building.      

4.4.3 Water Storage Tanks 

Two, three hundred gallon water storage tanks were installed to provide a 

continuous supply of chilled and hot water for test cell experiments.  The 0.25 in. (6.35 

mm) sheet steel tanks add capacitance to the system and prevent short cycling of the heat 

pumps.  Tanks penetrations including inlet and outlet ports and thermocouple ports are 

shown in Figure 4.18.  
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Figure 4.18 – Water Storage Tanks 

The cooling mode heat pump conditions water from the top of the cold tank and 

returns it to the bottom of the tank.  The heating mode heat pump draws cold water from 

the bottom and returns it to the top of the warm tank.  Water is sent to the fan coil and 

tower from the center ports of the tanks.  The water storage tanks can also be isolated 

from the rest of the load side of the system.  For this configuration, circulating pumps 4 

and 5 are not operated, and the water from the return line is run directly into the heat 

pumps. 
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5. Instrumentation and Controls 

5.1 Instrumentation 

The main purpose of the instrumentation and control system is to provide high-

quality experimental data sets to validate system simulations and component models.  To 

achieve this goal, three types of measurements were required: water temperature 

measurements, water flow rate measurements and power measurements.  Temperature 

measurements were made using thermocouples.  Vortex and paddlewheel flow meters 

were used to measure volumetric flow rate throughout the system.  Power measurements 

were taken using precision watt transducers.  These instruments allow for various aspects 

of the system to be analyzed as well as to provide data for system control. 

For system simulation and component model validation, the primary metric is the 

experimental heat transfer rate.  This is calculated as: 

 w pQ m c T= ∆  (5.1) 

Where: 
Q = heat transfer rate 

wm = mass flow rate of water 
cp = specific heat of water 
∆T = temperature difference

Therefore, the general instrumentation scheme was to measure the temperature difference 

across each system component and the volumetric flow rate through each component as 

shown in Figures 5.1, 5.2 and 5.3. 

The electrical power measurements provide a check for equipment power usage 

against the manufactures’ catalog data.  Electrical power information is also required in 

the overall heat balance of the system.  Additional temperature measurements were taken 
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for equipment control.  An example is the temperature measurements used in the water 

storage tank.      

Each signal transmission line was labeled at the sensor and at the data acquisition 

unit.  A three wire twisted and shielded cable was used for sensors and controls to 

eliminate unwanted line noise.



 
Figure 5.1 – Source Instrumentation Schematic 
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Figure 5.2 – Load and Primary Equipment Instrumentation Schematic
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Figure 5.3 – Borehole Instrumentation Schematic 

5.1.1 Data Acquisition Unit 

Three Fluke/NetDAQ 2640 data loggers are used to collect temperature and DC 

voltage data.  To facilitate thermocouple use, the Fluke/NetDAQ cold junction 

compensation provides an isothermal connection box so that the reference junctions are at 

approximately the same temperature for all thermocouples.  The NetDAQ can be 

connected to a host computer through an isolated or general network.  NetDAQ Logger 

software installed on the host computer allows for Dynamic Data Exchange to other 

Windows application for real time display.  Figure 5.4 shows the data acquisition system, 

configured for 60 channels of data.  The system can be easily extended by installing 

additional 20 channel NetDAQs. 
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A software program was developed to provide a graphical interface for viewing 

and recording incoming data.  The program was developed in Excel and makes use of 

Dynamic Data Exchange from the NetDAQ logger software.  The program includes 

many features that make operating the system efficient and user friendly.  The interface 

displays a schematic of the system and the position of the instrumentation.  This allows 

the user to quickly scan the system and make sure that it is operating properly.  An 

example of the interface can be seen in Figure 5.5.  A record feature saves the current 

reading values from the data logger on a time interval set by the user.  

Figure 5.4 – Data Acquisition System  
 



 
Figure 5.5 – Graphical User Interface
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5.1.2 Thermocouples 

Thermocouple probes are located throughout the system as shown in Figure 5.2.  

OMEGA HTMQSS-125G-6 immersion probes are used for water temperature 

measurements.  These probes are a type T thermocouple and have a 6 in. (0.15 m) 

stainless steel protective sheath with a grounded thermocouple which increases its 

thermal response time.  The probes are inserted into the piping system through Watts 

Hydronic Heating Specialties Series TP-N temperature test plugs.  The test plugs consists 

of a neoprene washer that around the thermocouple probe. 

  The large storage tanks are instrumented with three thermocouple probes 

inserted into the tanks at the top, bottom, and middle elevations.  OMEGA T-type 

industrial thermocouples NB1-CPSS-18G-18 were chosen for the tanks.  These 

thermocouples contain a thermocouple grounded to a stainless steel sheath.  A cast iron 

head with an internal terminal block is used to protect the extension wire connection. 

Multi-pair thermocouple extension wire was used to gather temperature 

measurements from the borehole and also to facilitate organized installation of the 

thermocouples in the plant area.  The extension wire was purchased from Technical 

Industrial Products (part number MPW-T-20-PP-24S).  The wire is T type, 24 gauge, 

stranded extension grade with a polyvinyl jacket covering each wire and an outer jacket 

covering the entire 20 pair assembly.  The assembly is also covered with an aluminized 

mylar shield and a ground wire.  In the plant area, the multi-pair cable was attached to 

two 20 pair phenolic terminal strips as shown in Figure 5.6. 
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Figure 5.6 – Multi-pair Thermocouple Wire. 

Pelican Wire Company T type, 24 gauge thermocouple wire with FEP insulation 

was used to make the final connections to the thermocouple probes.  It was also used to 

measure the outdoor temperature. 

5.1.3 HOBO Data Logger 

 To eliminate long lengths of thermocouple extension wire, portable HOBO H8 

data loggers from Onset were chosen to measure the temperature at the pond loop heat 

exchanger and the cooling tower.  The H8 data logger is a self contained data logger unit 

that can accept a variety of external sensors and has a user-selectable sampling interval.  

A TCM6-HC stainless steel temperature probe was selected for use with the H-8 data 

logger.  The temperature probe has an un-calibrated accuracy of ± 0.9°F at 68°F ( ± 0.5°C 

at 20°C) with a resolution of 0.7°F at 68°F (0.41°C at 20°C). 
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5.1.4 Vortex Flowmeters 

Three vortex flowmeters (model V1-M1-A075F25-E1-X1-15GPM from 

ASAHI/America) were installed in the system as shown in Figure 5.1.  This model 

provides a 4 to 20 mA output corresponding to a flow rate from 0 to 15 gpm with an 

accuracy of 1.0% of the full-scale range and a repeatability of ± ± 0.25%.  The 0.75-in 

body size allows for enough system backpressure to prevent cavitation while imposing a 

pressure drop of 0.8 ft of head for a flow rate of 10 gpm.  To ensure accurate flow 

measurement, a straight length of 20 pipe diameters was installed upstream of the 

flowmeter and a straight length of 7 pipe diameters was installed downstream.  Unions 

were then placed at the ends of the pipes so that the flowmeters could be easily removed 

for repair or replacement. 

5.1.5 Paddle Wheel Flowmeters 

A Gems Sensors RFA-2500 Series Continuous Output RotoFlow paddle wheel 

flowmeter is used in the locations as shown in Figure 5.2.  This flowmeter utilizes a hall-

effect sensor to measure fluid flow rate.  It has a brass body that houses a magnetized 

composite rotor and electronics that are covered by a polysulfone lens.  Fluid flow turns 

the rotor and produces an analog 0-10 Vdc proportional to the flow rate for each specified 

unit.  The flow meter has an operating temperature range of -20 to 212°F (-29 to 100°C).  

An un-calibrated unit has an accuracy of ± 7-15% dependent on the unit size.  The 

manufacturer recommends placing 8 in of straight pipe before the flowmeter.  Each 

flowmeter was installed in an assembly using the same specifications previously 

discussed for the vortex flowmeters. 
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5.1.6 Watt Transducers 

Watt transducers measure power input to critical system components as shown in 

Figure 5.2.  The watt transducers are Ohio Semitronics GW5 precision units.  These units 

were selected because they are self powered and include an internal current sensor which 

facilitates placement in a confined area as shown in Figure 5.7. 

 
Figure 5.7 – Watt Transducer Box 

These units have an accuracy of ± 0.04% the full scale of the unit or ± 0.2% of 

the reading maintained over a wide temperature range.  Output for the models used is a 0-

10 Vdc proportional to the full scale watt range.  The model numbers and specifications 

can be seen in Table 5.1. 
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Table 5.1 – Watt Transducer Specifications 

Unit Model # Watt Range Voltage 
(Vac) Amps Phase 

WT-Pump 2 GW5-001C 0-500 85-135 0-5 1 
WT-Pump 3 GW5-001C 0-500 85-135 0-5 1 
WT-Pump 4 GW5-001C 0-500 85-135 0-5 1 
WT-Pump 5 GW5-001C 0-500 85-135 0-5 1 
WT-Pump 6 GW5-001C 0-500 85-135 0-5 1 
WT-Pump 7 GW5-005C 0-2000 200-280 0-5 3 

WT-HP 1 GW5-020CY148 0-5000 200-280 0-25 1 
WT-HP 2 GW5-020CY148 0-5000 200-280 0-25 1 
WT-CT GW5-002C 0-1000 200-280 0-5 1 

 

5.1.7 Relative Humidity Sensor 

An OMEGA HX302C relative humidity sensor measures the outdoor relative 

humidity.  This sensor is in a sealed unit that can be installed outdoors and uses a thin 

film capacitor to measure humidity.  The unit has a signal output of 4-20 mA for a range 

of 0-100% relative humidity with an accuracy of ± 2.5% at 77°F (25°C).  It was installed 

on the plant building underneath the roof overhang to protect it from rain.   

5.2 Controls 

5.2.1 Overview of Controls System 

The main objective in designing the control system for the test facility was to 

provide a flexible and programmable control system.  This allows future researchers the 

opportunity to add new features and control schemes to the test facility.  To achieve this 

goal, the system was designed in two parts: the hardware and software.  The hardware 

uses a computer with a digital input/output (I/O) board to control various solid state 

relays.  Each solid state relay completes an electrical circuit which provides power to the 

system equipment.  An electrical safety interlock is included in the system to shut down 
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the system in the event that the control computer fails.  The software consists of a 

program that is used to monitor and control the output of the I/O board.  The control 

program interfaces with the data acquisition system discussed in section 5.1.1.  Each part 

of the control system is described in detail in the following sections.   

5.2.2 Controls Hardware 

The hardware used to control the equipment in the system consists of four main 

components: the I/O board, control signal/power boards, solid state relays, and the timer 

board.  Component layout is shown in Figure 5.8. 

 
Figure 5.8 – Control Circuit Board Box 

 Crydom CSD2425 solid state relays were installed inline for the circulating 

pumps, the two heat pumps, and the cooling tower.  These relays have a load operating 

voltage of 24-280 Vac with a current capacity up to 25 A.  A control input voltage of 3.5-

15 Vdc activates the relay.  A Crydom DC60S7 relay is used to start the VFD and the 
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timer board as shown in Figure 5.9.  This relay will switch a 3-60 Vdc load with an input 

of 3.5-32 Vdc to close the relay. 

A digital I/O board, model number PCI-DIO24 board from Measurement 

Computing, is installed in the data acquisition computer.  The I/O board is interfaced to 

the PCI bus of the computer, and its 24 I/O channels are accessible through the board’s 

standard 37-pin connector.  This I/O board outputs a control signal to a control 

signal/power board shown in Figure 5.9.  The control signal/power board, as shown in 

Figures 5.10 and 5.11, conditions each I/O channel signal through a buffer chip (74C902) 

which is used to ensure that the solid state relays controlled by the I/O card receive the 

proper voltage and current.  To safeguard against unwanted input signals, each channel is 

tied to a pull down resistor.  This maintains each channel in the normally open position 

unless the channel is energized with the I/O board.  To provide a quick visual check of 

active channels, LED’s on the circuit board are lit with the output signal transmitted from 

the I/O board for each channel.  This board also includes connections for the flowmeters 

and relative humidity sensor.  A 24 Vdc power supply is attached to the board from 

which the flowmeter and relative humidity sensor can draw power.  The output signal is 

then returned to the board and passed on to the data logger. 

A timer board, as shown in Figure 5.12, monitors an event control pulse sent from 

the data acquisition computer every few seconds.  The pulse is used to keep a model 

CD4040 counter reset.  In the event the computer hangs, and the control pulse is not 

received in approximately 1.5 minutes, the counter will count up until line Q14 on the 

counter goes high.  Q14 triggers an astable multivibrator made from the model CD4013 

chip.  When this occurs, the output signal of the CD4013 is latched high which opens a 
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solid state relay which supplies 24 Vdc to operate the control signal/power board as 

shown in Figure 5.9.  With no input power to the signal/power board, all digital outputs 

are forced to ground through pull down resistors and the circuits for all equipment are 

opened, interrupting power.  The latch on the timer board must be manually reset with a 

momentary switch on the timer board to resume normal operation.  Another double pole 

single throw switch allows a 'test' mode which disables the timer board for 

troubleshooting and a 'run' mode for normal operation.



 
Figure 5.9 – Control Hardware Wiring Schematic
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Figure 5.10 – Control Signal/Power Board Schematic (1) 
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Figure 5.11 – Control Signal/Power Board Schematic (2)
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Figure 5.12 – Timer Board Schematic
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6. Instrumentation Calibration and Uncertainty Analysis 

The uncertainty in calculated results is related to the primary uncertainty for each 

independent variable.  This is based on the method of Kline and McClintock (1953) 

which state: 

 
22 2

1 2
1 2

...R
n

R R Re e e
x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + + + ⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ne ⎟  (6.1) 

Where: 
R is the calculated results, R =R(x1, x2, .. xn) 
eR is the uncertainty interval in the result 
ei is the uncertainty interval in the ith variable 

i

R
x

∂
∂

is the sensitivity of the result to a single variable, xi 

In the following sections this method is applied to primary temperature and 

flowrate measurements and calculated heat transfer rates. 

6.1 Instrumentation Calibration and Uncertainty 

An in-situ calibration was performed on the thermocouples and flowmeters 

installed in the facility.  The sensors and instruments were calibrated with operating flow 

conditions, wire lengths and datalogger connections.  In-situ calibration curves were 

generated and an uncertainty analysis was performed for each type of instrument as 

discussed in the following sections.    

6.1.1 Thermocouples 

Thermocouples were calibrated using a constant temperature water bath with an 

operating range of -40 to 302°F (-40 to 150°C) and a temperature stability of 0.09°F 

(0.05°C).  The user can set the temperature of the water bath to within 0.18°F (0.1°C).  

±
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For calibration purposes the temperature range used was 32 to 140°F (0 to 60°C) with 

temperature increments of 27°F (15°C).  

Each of the thermocouples was placed into the water bath after it had stabilized at 

a set point temperature for 30 minutes.  The channels of each thermocouple were scanned 

and recorded by the NetDAQ over a period of 10 seconds.  Simultaneously values were 

recorded from a reference thermistor probe.  The values for each channel along with the 

reference thermistor were then average over the 10 second time period.  This procedure 

was repeated for the remaining calibration points. 

The NetDAQ logger allows the user to apply a linear correction to each channel.  

The linear correction takes the form: 

 y m x b= ⋅ +  (6.2) 

Where: 
x = un-calibrated data logger reading 
m = slope coefficient 
b = offset coefficient    

The calibration data for each thermocouple channel was used to perform a least squares 

fit on the m and b coefficients.  The coefficients were then applied to each channel and a 

new set of temperatures determined.  Table 6.1 shows the results from an error analysis 

between the corrected and reference temperature points.  Data from the analysis shows 

that the linear correction provided an excellent fit to the reference temperature points.   
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Table 6.1 – Thermocouple Calibration Results   
Channel m b High Low Average RMS 

A1 0.998 -0.135 0.24 0.00 0.08 0.12 
A2 0.993 -0.179 0.19 0.00 0.09 0.12 
A3 0.994 -0.197 0.13 0.00 0.07 0.09 
A4 0.992 -0.242 0.13 0.02 0.07 0.09 
A5 0.989 -0.233 0.08 0.00 0.04 0.05 
A6 0.990 -0.193 0.12 0.02 0.08 0.09 
A7 0.990 -0.219 0.09 0.01 0.05 0.06 
A8 0.995 -0.244 0.12 0.01 0.06 0.07 
A9 0.987 0.041 0.11 0.01 0.06 0.08 
A10 0.991 0.110 0.06 0.01 0.04 0.05 
A11 0.993 0.258 0.16 0.02 0.07 0.09 
A12 0.994 0.037 0.22 0.01 0.09 0.12 
A13 0.993 0.130 0.12 0.01 0.06 0.07 
B1 0.992 0.007 0.05 0.01 0.03 0.03 
B2 0.990 0.042 0.05 0.02 0.03 0.03 
B3 0.990 0.075 0.05 0.01 0.03 0.03 
B4 0.990 0.022 0.06 0.00 0.03 0.04 
B5 0.989 -0.002 0.02 0.00 0.01 0.02 
B6 0.990 0.003 0.04 0.01 0.02 0.02 
B7 0.990 0.015 0.06 0.00 0.02 0.03 
B8 0.991 -0.051 0.02 0.00 0.01 0.01 
B9 0.991 -0.086 0.03 0.00 0.02 0.02 
B10 0.995 0.017 0.05 0.00 0.03 0.03 
B11 0.991 0.336 0.09 0.03 0.05 0.06 
B12 0.995 -0.097 0.04 0.00 0.02 0.03 
B13 0.990 0.230 0.07 0.03 0.05 0.05 
B14 0.993 -0.019 0.06 0.01 0.04 0.04 
B15 0.993 -0.034 0.06 0.00 0.03 0.04 
B16 0.990 0.376 0.08 0.01 0.04 0.05 
B17 0.993 0.015 0.05 0.01 0.03 0.04 
B18 0.993 -0.006 0.05 0.01 0.02 0.03 
B19 0.997 -0.044 0.06 0.01 0.03 0.04 
B20 0.985 0.728 0.12 0.01 0.05 0.06 
BH1 0.988 0.023 0.06 0.01 0.04 0.04 
BH2 0.991 -0.137 0.09 0.00 0.04 0.04 
BH3 0.991 -0.250 0.11 0.02 0.05 0.06 
BH4 0.991 -0.134 0.09 0.01 0.05 0.05 
BH5 1.020 -0.541 0.24 0.01 0.11 0.12 
BH6 0.991 -0.144 0.06 0.01 0.04 0.04 
BH7 0.991 -0.122 0.09 0.00 0.04 0.05 
BH8 0.993 -0.122 0.05 0.01 0.03 0.03 
BH9 0.991 -0.044 0.07 0.01 0.05 0.05 

BH10 0.993 0.040 0.04 0.01 0.03 0.03 
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The water bath reference temperature was calculated as the average of a Hart 

Scientific 1504 Thermometer readout and a Hart Scientific 5610 reference thermistor 

probe.  The 1504 is a high-accuracy digital thermometer readout designed to be used with 

various thermistor or RTDs and has a temperature resolution of 0.0001°F (0.0001°C) and 

a temperature accuracy of: 

eT1504 = 0.01°C, measuring between 0 and 75°C ±

The 5610 reference thermistor probe is a 6 in. (0.15 m) immersion probe with a 

stainless steel protective sheath.  The probe comes with a NIST-traceable calibration 

curve and has a temperature accuracy of: 

eT5610 = 0.015°C, measuring between 0 and 100°C ±

The total uncertainty in the reference temperature measurement is then: 

( ) ( )2 20.01 0.015 0.018 CTRefe = ± + = ± °  

For the HOBO sensor, the total uncertainty for the reference temperature measurement is 

smaller than the resolution of the data logger which is: 

 eTHOBO = ± 0.41°C, at 20°C 

With the values from the cold temperature bath averaged over a time period, a 

repeatability test was performed using two thermocouple probes at three points 

throughout the calibration range.  The thermocouple probes were placed into the water 

bath for a one minute period while the data logger recorded on a one second interval.  

Each thermocouple was then removed for 20 seconds and returned to the water bath.  

This process was repeated three times for each of the temperature set points.  The 

temperature data was then average and analyzed over the three time periods.  Table 6.2 

shows the time average values obtained from the data. 
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Table 6.2 – Repeatability Temperature (°C) 
 Probe 1 Probe 2 Probe 1 Probe 2 Probe 1 Probe 2 

Test 1 0.27 0.15 30.33 30.22 60.36 60.22 
Test 2 0.25 0.18 30.32 30.22 60.35 60.23 
Test 3 0.25 0.14 30.33 30.22 60.36 60.27 

 

Studying the data shows an error due to the repeatability of temperature 

measurements.  This error can add to the uncertainty of the temperature measurements 

and can be defined as the largest temperature difference between repeated tests.  With 

this criterion, the repeatability error is: 

_ 0.04°CT repeate = ±  

 Figure 6.1 shows the raw test data for a set point temperature.  Temperature 

points measured for each of the thermocouples bounced around a range of 0.1°C.  With 

the current data acquisition system, data points are recorded at a user specified interval 

instead of time averaging the values between each logging event.  This introduces further 

error into the calibration giving: 

±

       eT_stability = ± 0.1°C 
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Figure 6.1 – Temperature Stability 

Adding the total uncertainty for the Fluke temperature measurement gives: 

( ) ( ) ( ) ( ) ( ) ( )2 22 2 2
Ref _ _ 0.018 0.04 0.1 0.11TFluke T T repeat T stabilitye e e e≈ + + ≈ + + ≈2 C°  

For the HOBO datalogger the total uncertainty is: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2
Ref _ _

2 2 2 20.018 0.04 0.1 0.41 0.42

THOBO T T repeat T stability THOBO

THOBO

e e e e e

e C

≈ + + +

≈ + + + ≈ °

 

6.1.3 Flowmeters 

The flowmeters are calibrated in-situ using a stopwatch, bucket, and precision 

weight scale.  Performing the tests in-situ accounts for the dynamics of the system at each 

flowmeter and increases the accuracy achieved during calibration.  First, the empty 

bucket is placed on the weight scale and is zeroed.  One person then starts the data logger 

that scans the channel to which the flowmeter is connected.  An outlet valve to the piping 

system is then adjusted until the desired flow rate is reached.  The stopwatch and water 
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flow is started simultaneously and the bucket is filled to a predetermined point.  Once this 

point is reached, the stopwatch and water flow is stopped and the bucket is weighed and 

the value recorded.  The recorded information for each point is then used to calculate the 

actual flow rate given by the equation: 

 448.98w

w

mV
t ρ
⋅

=
⋅

 (6.3) 

Where 448.98 is a unit conversion factor and: 
V = volumetric flow rate of water, gpm 
mw = mass of water, lbm 
t = time, seconds 
ρw = density of water, lbm/ft3

 
The values recorded for the data logger are averaged for each calibration point.  

The linear correction given by Equation 6.2 is used and least squares fit performed on the 

calibration data to obtain the m and b coefficients for each flowmeter.  Table 6.3 shows 

an error analysis performed on the corrected flow rate values to ensure that the linear 

correlation matched the measured flow rates.  The results of this analysis show that the 

linear correlation provides a good fit to the measured data.     

Table 6.3 – Flowmeter Calibration Results 
Channel m b High Low Average RMS 
Flow 1 2.133 -4.312 3.33 0.03 0.70 1.01 
Flow 2 2.133 -4.407 1.68 0.001 0.64 0.81 
Flow 3 1.744 -3.470 4.69 0.07 0.89 1.34 
Flow 4 2.379 1.782 4.69 0.03 1.48 1.93 
Flow 5 2.347 1.894 4.27 0.11 1.10 1.61 
Flow 6 2.238 1.590 1.86 0.07 0.69 0.87 
Flow 7 0.957 0.732 5.25 0.09 1.95 2.57 

 

The scale used for calibration was an A&D EP-20KA precision industrial balance.  

This balance has a resolution of 0.005 lbs with an accuracy of: 

0.01
wme = ±  
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A stop watch with a resolution of 0.01 seconds was used to record the time.  An 

estimated accuracy for the time measurement due to human error is: 

0.5te = ±  

The accuracy of voltage measurements associated with the Fluke/NetDAQ 2640 

dataloggers is: 

eVfluke = ± 0.042% + 3.9 mV 

The total uncertainty in the flowrate measurement can then be found by calculating the 

partial derivatives in terms of mw and t for equation 6.3, which are: 

2

448.98

448.98
w w

w

w

V
m t

mV
t t

ρ

ρ

∂
=

∂ ⋅

⋅∂
= −

∂ ⋅

 

Therefore, the uncertainty in flow rate is: 

( )
2 2

2
2

448.98448.98 0.01 0.5 0.00042 0.0039w
FlukeV

w w

me V
t tρ ρ

⎛ ⎞ ⎛ ⎞− ⋅
≈ ± ⋅ + ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠

 (6.4) 

Where: 
VFluke = voltage measurement at Fluke, Vdc 

A second order polynomial was fit to the calculated uncertainty of equation 6.4 

for the range of calibrated flow rates.  This allows the uncertainty to be easily calculated 

for any flow rate.  Two equations are given for the different flowmeters, as they each 

have a specified uncertainty.  

 ( ) ( )2

_ 0.00217 0.00042 0.00525V Paddlee V V= − +  (6.5) 

 
 ( ) ( )2

_ 0.00191 0.00008 0.00044V Vortexe V V= − +  (6.6) 
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Where: 
V = flow rate of water, gpm  

6.1.4 Watt Transducer 

The watt transducers installed in the system measure the power used by the 

cooling tower, circulating pumps, and heat pumps.  These watt transducers are calibrated 

from the factory and are NIST traceable.  This accuracy is decreased with the uncertainty 

added by the Fluke/NetDAQ logger which is: 

eVfluke = ± 0.042% + 3.9 mV 

The Fluke/NetDAQ uncertainty can then be converted for any instrument that uses an 

output voltage signal to correspond to a measurement range.  A general equation for this 

conversion is given by: 

 ( )0.00042 0.0039Fluke
VFluke

V Range
e

V
⋅ + ⋅∆

=
∆

 (6.7) 

Where: 
VFluke = voltage measurement at Fluke, Vdc 
∆Range = measurement range of instrument 
∆V = output signal range  

The power drawn by the constant speed circulating pumps are measured with an 

Ohio Semitronics GW5-001C watt transducer.  This transducer has an accuracy of ± 0.2 

W, and an output signal of 0 to 10 Vdc for a 0 to 500 W range.  Therefore, the largest 

uncertainty introduced from the data logger is: 

( )0.00042 10 0.0039 500
0.405 W

10VFlukee
⋅ + ⋅

= =  

The total uncertainty for this watt transducer is: 

( ) ( )2 2
001 0.20 0.405 0.452 WWe = ± + = ±  
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An Ohio Semitronics GW5-002C watt transducer is used to measure the power 

used by the cooling tower.  This transducer has an internal sensor that is accurate to 

within 0.4 W.  The output signal of the transducer is 0 to 10 Vdc for a 0 to 1000 W 

range.  The uncertainty introduced from the data logger for this measurement is: 

±

( )0.00042 10 0.0039 1000
0.810 W

10VFlukee
⋅ + ⋅

= =  

The total cooling tower uncertainty is therefore: 

( ) ( )2 2
002 0.40 0.810 0.903 WWe = ± + = ±  

The power for the variable speed circulation pump is measured with an Ohio 

Semitronics GW5-005C watt transducer.  It has an accuracy of ± 0.8 W, with an output 

signal of 0 to 10 Vdc for a 0 to 2000 W range.  An uncertainty introduced from the 

datalogger is:   

( )0.00042 10 0.0039 1000
1.620 W

10VFlukee
⋅ + ⋅

= =  

The total uncertainty for the variable speed pump is: 

( ) ( )2 2
005 0.80 1.620 1.807 WWe = ± + = ±  

The heat pumps use an Ohio Semitronics GW5-020C to measure the power drawn 

during operation.  The internal sensor for this transducer is accurate to within 2.00 W.  

The transducer has an output signal of 0 to 10 Vdc with a measurement range of 0-5000 

W.  The uncertainty introduced from the data logger for this measurement is: 

±

( )0.00042 10 0.0039 5000
4.050 W

10VFlukee
⋅ + ⋅

= =  

The total uncertainty in power measurement for the heat pumps is: 
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( ) ( )2 2
020 2.00 4.050 4.517 WWe = ± + = ±  

6.1.5 Relative Humidity Sensor 

The relative humidity for the outdoor air is measured with an OMEGA HX302C.  

The thin film capacitor for this sensor is accurate to within ± 2.5% RH.  The sensor 

output is 4 to 20 mA signal that corresponds to 0 to 100% RH.  The output current is sent 

through a fixed precision 500 ohm resistor.  This converts the output signal to a Vdc 

range of 2 to 10.  The data logger introduces an uncertainty of: 

( )0.00042 10 0.0039 100
0.101% RH

8VFlukee
⋅ + ⋅

= =  

The total uncertainty for the humidity measurement is: 

( ) ( )2 22.5 0.101 2.502% RHRHe = ± + = ±  

6.2 Calculated Heat Transfer Rates 

The heat transfer rate is calculated from the measurements of flow rate and the 

inlet and outlet temperature across various components and pipe sections.  The equation 

takes the form: 

 0.0631 w pQ Vρ c T= ⋅ ∆  (6.8) 

Where 0.0631 is a unit conversion factor and: 
Q = heat transfer rate, W 
ρw = density of water, kg/m3  
V = volumetric flow rate of water, gpm 
cp = specific heat of water, kJ/kg-0C 
∆T = air temperature difference, To-Ti 
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The uncertainty for temperature is obtained in Section 6.1.1 for both the Fluke 

and HOBO data loggers.  Since the uncertainties in temperature are the same at both the 

inlet and outlet, the uncertainty in the temperature difference is: 

( ) ( )

( ) ( )

2 2

2 2

0.11 0.11 0.16 C

0.42 0.42 0.59 C

T

T HOBO

e

e

∆

∆ −

= ± + = ± °

= ± + = ± °

 

Evaluating the partial derivatives of Q  in terms of V and ∆T gives: 

0.0631

0.0631

w p

w p

Q c T
V
Q c V
T

ρ

ρ

∂
= ⋅ ∆

∂
∂

= ⋅
∂∆

 

Substituting the results into equation 6.8 and using the uncertainty calculated from 

equations 6.5 and 6.6, the uncertainty for the heat transfer rate is: 

 ( ) ( )22
0.0631 0.0631w p w p TVQe c T e cρ ρ ∆= ± ⋅ ∆ ⋅ + ⋅ ⋅V e  (6.9) 
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7. Experimental Results 

7.1 System Performance and Heat Balance 

Data was obtained from experiments performed over 24 hour periods and 

analyzed to validate system performance.  Heat transfer rates through system components 

were determined and compared to catalog data where applicable.  Heat losses through the 

system were also calculated. 

7.1.1 Heat Pump  

Source side heat transfer rates, load side heat transfer rates and compressor power 

can be obtained from heat pump instrumentation.  This allows for analysis of transient 

and steady-state operation and the calculation of an overall heat balance for the heat 

pumps.  Each heat pump is thermostatically controlled by the tank temperature.  Heat 

pump 1 was operated in cooling mode, and the data obtained from the experiment can be 

seen in Figures 7.1 and 7.2. 
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Figure 7.1 – Power Usage for Heat Pump 1 
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Figure 7.2 – Heat Pump 1 Heat Transfer Rate 

Figure 7.2 shows how the heat pump cycles according to the control program.  

The heat pump is operated until the user setpoint temperature for the storage tank is 

reached.  Once this temperature is reached, the heat pump and circulating pumps are 

turned off.     

Figures 7.3, 7.4 and 7.5 show the typical transient operation for heat pump 1.  

These transient points can have a significant impact on the overall system performance 

and cause simulation results to be inaccurate.  This is due to measured heat transfer rates 

or power usage below or above the steady state values obtained after the system has 

operated for a short time.  Currently most system simulation programs use steady-state 

models and either neglect the transient effect or use a degradation factor to correct for the 

start-up transient.  These models tend to over predict both the heat transfer rate and the 

energy use.  By capturing the transient data, the experimental facility will support the 

development and validation of more realistic heat pump models. 
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Figure 7.3 – Transient Power Usage for Heat Pump 1  
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Figure 7.4 – Transient Heat Transfer for Source Side on Heat Pump 1 
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Figure 7.5 – Transient Heat Transfer for Load Side on Heat Pump 1 

Figure 7.3, 7.4 and 7.5 show that the heat pump can take 4 to 9 minutes to 

approach a steady state condition.  This is a significant portion of the overall 70 minute 

cycle time.  A particularly interesting trend in all the figures is the varying power 

consumption and heat transfer that takes place as the heat pump continues to operate.  A 

closer look at the data in Figure 7.6 reveals that the trend is correct for a decreasing tank 

temperature.  As the heat pump operates, the temperature of the water entering the load 

side decreases and the temperature of the water entering the source side increases.  This 

increases the power drawn by the heat pump compressor.   
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Figure 7.6 – Heat Pump Power Usage 

When the cooling tower is operated, the heat pump power consumption is even 

greater.  Figure 7.7 shows the power consumption for the heat pump when the cooling 

tower is in operation plotted with the outside air temperature.  Of particular interest is the 

sinusoidal pattern observed in the power measurement.  The cooling tower uses ambient 

air to evaporatively cool the source side fluid.  As the outside air temperature decreases, 

the source loop fluid temperature decreases.  This causes the heat pump to consume less 

power to maintain heat transfer rates through the load side.  During the day, the outside 

air temperature increases causing the source fluid loop temperature to increase.  As the 

loop temperature increases, the heat pump power consumption increases to maintain heat 

transfer rates through the load side.    
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Figure 7.7 – Heat Pump 1 during Cooling Tower Operation   

The results for heat pump 2 are similar to the results obtained for heat pump 1.  

The heat pump, controlled by the tank thermostat, warmed the water to the setpoint 

temperature.  The transient effects of the system matched the results found from heat 

pump 1.  Operating results for heat pump 2 can be seen in Figures 7.8 and 7.9. 
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Figure 7.8 – Power Usage for Heat Pump 2 
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Figure 7.9 – Heat Pump 2 Heat Transfer Rate  

In most residential systems the heat pump operates with a short run-time cycle 

which can increase the operating efficiency.  This trend is shown in Figure 7.10 and 7.11 

with the transient performance of a heat pump operating in heating and cooling mode 

utilizing a GLHE.  Upon start-up the water circulating through the heat pump is near the 

surrounding ground temperature which increases the efficiency of the heat pump.  By the 

time the system reaches steady-state operation 10 minutes have elapsed which is 

approximately the cycle time for a normal residential system. 
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Figure 7.10 – Heat Pump 1 EER 
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Figure 7.11 – Heat Pump 2 COP  

A heat balance across each heat pump was calculated in order to check the 

calculated uncertainty in the temperature and flow rate measurements.  This heat balance 

equations for heating and cooling are: 

 0Balance Heating L SQ Q W Q− = − − =  (7.1) 
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 0Balance Cooling S LQ Q W Q− = − − =  (7.2) 

The predicted uncertainty for this calculated error is: 

 ( ) ( ) ( )
2 2 2

020Balance wQ L Q Se e e e− −= ± + +  (7.3) 

Where and are calculated according to Equation 6.9.  To obtain a percentage for 

the heat balance and the uncertainty, each was divided by the side into which the heat 

pump power was added to give the following: 

Q Le − Q Se −

 % Balance Heating
Heating

L

Q
Q

−=  (7.4) 

 % Balance Cooling
Cooling

S

Q
Q

−=  (7.5) 

 %
Heating

Balance Heating
e

L

e
Q

−=  (7.6) 

 %
Cooling

Balance Cooling
e

S

e
Q

−=  (7.7) 

The results for a short steady state period can be seen for both heat pumps in Figures 7.12 

and 7.13. 
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Figure 7.12 – Heat Balance Across Heat Pump 1 
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Figure 7.13 – Heat Balance Across Heat Pump 2 

As seen from the figures above, the heat balance for the heat pumps is within the 

calculated uncertainty interval for the measurements.   

There does appear to be a slight systematic error associated with the heat pump 1 

measurements and a significant systematic error associated with heat pump 2 
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measurements.  Table 7.1 shows the measured data at steady state compared to catalog 

data operating at the same conditions.  The measured data is shown to be systematically 

low. 

Table 7.1 – Heat Pump Catalog Comparison 
 Heating Cooling 
 Catalog Measured % Error Catalog Measured % Error 

Load 
Capacity (W) 

13700 13500 1.5 9400 9000 4.3 

Source 
Capacity (W) 

10500 10000 4.8 11600 10900 6.0 

Input Power 
(W) 

3200 3000 6.3 2250 2050 8.9 

 

One measurement not taken, internal piping and compressor shell heat transfer, could at 

least partially account for the systematic error.  Additional control and instrumentation of 

the heat pump enclosure (cabinet) would be required to improve the heat balances shown 

in Figures 7.12 and 7.13. 

7.1.2 Storage Tanks 

The data obtained for the load side measurements was analyzed to determine if 

the primary equipment was operating to the design specifications.  This includes 

observing the storage tanks to make sure that the controls maintain the user specified set 

points.  Heat pump 1 was set to operate in cooling mode to condition storage tank 1 and 

heat pump 2 was to operate in heating mode to condition storage tank 2.  The chilled 

water tank was set to maintain a temperature between 7 and 9°C while a set point of 43 

and 45°C was used for the hot water tank.  The mid-elevation thermocouple in each tank 

was used as the reference temperature monitored by the control program.  The 

temperatures for each tank are shown in Figures 7.14 and 7.15. 
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Figure 7.14 – Chilled Storage Tank Temperatures 
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Figure 7.15 – Hot Storage Tank Temperatures 

As shown in the figures above, the tanks can be controlled (by cycling the heat 

pumps) to maintain between their setpoint range.  The chilled water tank heat pump 

cycles more frequently because of the loads being drawn for the fan coil and test cell.  

The temperatures at the three elevations in the tank show approximately 0.4°C of 
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stratification with warmer temperatures at the top and cooler temperatures near the 

bottom.  The hot water tank temperature initially drops upon startup of the heat pump.  

Water circulated back into the tank is initially cooler than the water at the top of the tank.  

This is an artifact of the ‘no-load’ condition on the tank.  Upon heat pump start-up, water 

that has been stagnated in the pipes for over twelve hours is pumped into the tank.  Once 

this water is well mixed with the tank water, the entire tank is quickly heated. 

One important consideration is the tank heat loss to the ambient air.  The linear 

change in hot tank temperature between heat pump cycles, is due entirely to heat loss to 

the surroundings.  This heat loss is calculated from the experimental data as: 

 
1000w pV c T

Q
t

ρ⋅ ⋅ ⋅∆ ⋅
=  (7.8) 

Where 1000 is a unit conversion factor and: 
Q = heat transfer rate, W 
V = tank volume, m3

ρw = density of water, kg/m3  
cp = specific heat of water, kJ/kg-°C 
∆T = tank temperature difference, Tt=0-Tt=i

t = time, sec

The tank resistance was then found by: 

 
( )tank ,ambient airT T

R
Q

A− ⋅
=  (7.9) 

Where: 
R = thermal resistance, m2–°C/W 
Q = heat transfer rate, W 
A = surface area of tank, m2

The resistance was calculated for the hot water tank and found to be 

approximately 0.7 m2–°C/W.  Since the insulated tank walls are identical for both tanks, 

this thermal resistance may also be used to estimate heat gain to the chilled water tank. 
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7.1.3 Pond Loop Heat Exchanger 

The pond heat exchanger was operated using a flow rate of 12 gpm.  This would 

give a flow rate of 6 gpm through each heat pump.  Figure 7.16 shows the calculated heat 

transfer across the pond heat exchanger.  The remote HOBO data logging unit discussed 

in Chapter 5 measured inlet and outlet water temperature at the pond loop heat 

exchanger.  These water temperature measurements are then used in Equation 6.8 to 

calculate the source side heat transfer rate.  Load side temperature measurements are 

made with thermocouples probes located at the inlet and outlet pipes into the plant. 
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    Figure 7.16 – Pond Heat Exchanger Heat Transfer 

Figure 7.17 shows the 1200 W increase in the heat transfer rate for a single cycle 

during steady-state operation.  This large increase is due to the 0.4°C resolution of the 

HOBO datalogger.  The overall temperature difference ( 3 C≈ ° ) is small enough so that a 

0.4°C change in the reported temperature represents a large change in the heat transfer 

rate.  The uncertainty in the temperature measurement, results in an average uncertainty 

in the heat transfer rate of approximately 20% during steady-state operation.  This is 
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unacceptably high for model development and validation.  It is recommended that the 

remote Hobo dataloggers to upgraded to a higher resolution dataloggers. 
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Figure 7.17 – Heat Transfer Temperature Sensitivity 

Another consideration for model development and simulation validation is the 

relatively long transients for each cycle.  As shown in Figure 7.18, the transient time 

accounts for almost a third of the total time the system is operational.  The supply to the 

pond heat exchanger included 500 ft (152.4 m) of buried, uninsulated pipe which would 

increase the time required for the system to reach steady state.  The typical time for 

steady state conditions to be reached is a function of the pipe wall, the conductivity and 

initial temperature of the surrounding ground, and the system flowrate. 
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Figure 7.18 – Pond Transient Effects 

7.1.4 Cooling Tower 

The cooling tower was operated at a flow rate of 12.4 gpm on the heat pump side 

of the plate heat exchanger and 9.3 gpm on the cooling tower side.  The cooling tower 

and its’ associated circulating pump were operated so that the cooling tower fan and 

circulation pump are turned on anytime one of the heat pumps is in operation.   

A HOBO datalogging unit was also used for this remote datalogging operation.  

Water temperature measurements were taken at ports on the inlet and outlet of the 

cooling tower.  As shown in Figure 7.19, the measurement problem associated with the 

HOBO datalogging (discussed in the previous section) affects the tower heat transfer 

measurement as well.  
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Figure 7.19 – Cooling Tower Heat Transfer 

The uncertainty associated with the cooling tower heat transfer can be seen in 

Figure 7.20.  It shows that after the cooling tower has reached steady state operation, an 

uncertainty greater than 12% can be expected in the heat transfer rate. 
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Figure 7.20 – Cooling Tower Heat Transfer Uncertainty 
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 The heat transfer across the plate heat exchanger closely matches the design 

value of 36,000 BTU/hr (10.55 kW).  Trends seen in Figure 7.21 closely match the 

cooling tower heat transfer. 
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Figure 7.21 – Plate Heat Exchanger Heat Transfer   

The data shows longer cooling tower run times during the daylight hours.  This is 

due to higher outdoor temperatures, which create a larger load on the system and also 

lower the sensible heat transfer through the cooling tower.  Figure 7.22 shows the typical 

transient response time of the tower.  The cooling tower reaches steady-state operation 

after approximately 11 minutes.  This time period is dominated by the buried pipe on the 

cooling tower side of the heat exchanger.  
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Figure 7.22 – Cooling Tower Transient Effects 

The plate heat exchanger heat transfer rate data shows that the source side heat 

transfer rate is systematically higher than the load side.  The error in the heat balance is 

shown in Figure 7.23. 
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Figure 7.23 – Plate Heat Exchanger Heat Balance 
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As shown, approximately 70% of the measured points are within the uncertainty 

interval.  The systematic shift can be accounted for by heat loss to the ambient air.  On 

the source side, average temperature difference between the water circulating and the 

ambient air is negligibly small.  On the load side however, this difference is +11°C.  The 

large temperature difference on the load side results in a heat loss to the plant building 

and accounts for the systematic error in the measured calculated heat balance.  This error 

can be significantly reduced by insulating the heat exchanger. 

7.1.5 GLHE 

The GLHE was tested with the four vertical boreholes in operation.  A flow rate 

of 12.4 gpm through the source system was set by adjusting the VFD.  This would result 

in a flow rate of approximately 3 gpm through each borehole and 6.2 gpm through each 

heat pump.  The heat transfer results for each borehole are shown in Figures 7.24-7.27. 
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Figure 7.24 – Borehole 1 Heat Transfer 
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Figure 7.25 – Borehole 2 Heat Transfer 
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Figure 7.26 – Borehole 3 Heat Transfer 
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Figure 7.27 – Borehole 4 Heat Transfer 

The heat transfer rate for each borehole exhibits the same general pattern and 

cycles with the heat pumps.  As shown, the heat pump operates in heating mode two 

times during the test resulting in a positive heat transfer rate.  The heat pump operating in 

cooling mode cycles 12 times during the same twenty four hour period. 

An interesting feature of the figures is the magnitude of the transient heat transfer 

rate spike, which can be nearly twice the steady state value.  Figure 7.28 shows that the 

high heat transfer rates are obtained in the first couple of minutes because the water 

temperature at the top of the borehole is heated to near ambient temperature.  The exiting 

water temperatures are low since the water has been sitting in the borehole and is close to 

the ground temperature.  The values then go from a high to a low heat transfer rate 

because the water being circulated through the boreholes is closer to the ground 

temperature so the temperature drop across the borehole is low.   
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Figure 7.28 – GLHE Transient Effects 

The transient time of 19 minutes is similar to the time found for the pond loop.  

This is because of the long pipe length that the water has to travel.  The uncertainty for 

the heat transfer was also calculated and can be seen in Figure 7.29.  It shows the 

calculated uncertainty as a percentage of the heat transfer rate from the borehole at near 

steady state conditions. 
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Figure 7.29 – GLHE Uncertainty 
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7.2 Borehole In-situ Tests 

7.2.1 Undisturbed Ground Temperature 

As shown in the literature review, the undisturbed ground temperature is an 

important parameter in determining the thermal properties of a ground loop heat 

exchanger.  The method of lowering a temperature sensor into a water filled borehole 

(Gehlin and Nordell, 2003) was used to estimate the undisturbed ground temperature.  

The temperature sensor was a thermocouple calibrated to ± 0.18°F (0.1°C) attached to a 

Fluke Hydra Data Logger.  Temperatures were measured at 10 ft (3.048 m) increments.  

The temperature profile for borehole 3 as shown in Figure 7.30 represents the typical 

temperature profile for an undisturbed borehole. 
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Figure 7.30 – Temperature Profile Along Borehole 
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 The temperature profile for each borehole tested was similar with a small 

variation in average temperature.  The average temperature was calculated from 10 ft 

(3.048 m) below the surface to the bottom of each borehole.  The first 10 ft (3.048 m) of 

the borehole are affected by ambient conditions such as air temperature and rain.  An 

average temperature was calculated as, 63.1°F (17.3°C), 63.3°F (17.4°C), 62.8°F 

(17.1°C), for borehole 1, 2, and 3 respectively.     

7.2.2 In-situ Results 

In-situ tests were performed on each borehole following the procedure presented 

by Austin (1998).  Data from the tests were used to estimate the thermal conductivity of 

the grout and soil as well as the borehole thermal resistance.  Heat input to the water, the 

mass flow rate as well as water inlet and outlet temperatures were measured.  An example 

of the temperature results obtained from an in-situ test is shown in Figure 7.31. 
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Figure 7.31 – In-situ Results for Borehole #3 

The data from the in-situ tests for each borehole were then analyzed to ensure that 

ambient conditions did not affect the results.  Inadequate insulation of the test apparatus 
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resulted in a fluid temperature oscillation that coincided with the ambient air temperature 

as shown in Figure 7.32.  
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Figure 7.32 – In-situ Results with Improper Insulation 

Tests were performed for a minimum of 50 hours as recommended by Austin 

(1998).  To further verify that the results obtained for each test were good, a heat balance 

was performed. The results from the heat balance are shown in Table 7.2. 

Table 7.2 – In-situ Test Error Comparison Results 
Error 1 2 3 4 5 
Average % 3.62 1.05 1.10 8.97 7.46 
RMS 3.74 1.30 1.36 9.09 7.90 
Max % 6.48 7.16 4.42 12.09 17.37 

 

As shown the power input based on the temperature difference compares well 

with the heat input measured by current and amperage transducers.  This shows that any 

extra heat input into the system by outside conditions is negligible and that the data will 

accurately represent the borehole properties. 

The Geothermal Properties Measurement program (Shonder and Beck, 2000) 

developed at Oakridge National Laboratory was used to estimate the soil and grout 
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conductivity as well as the borehole resistance.  This program uses the data recorded 

from an in-situ test along with the U-tube diameter, borehole diameter, borehole depth, 

deep earth temperature, and the soil and grout volumetric heat capacity.  All of these 

parameters were known except for the soil and grout volumetric heat capacity, which can 

vary from an average range of 20 to 40 (Btu/ft3-°F).  A sensitivity analysis was 

preformed using the program and the corresponding values for the first borehole can be 

found in Table 7.3. 

Table 7.3 – Sensitivity Analysis of Volumetric Heat Capacity 

Soil Volumetric 
Heat Capacity 

(Btu/ft3-oF) 

Grout Volumetric 
Heat Capacity 

(Btu/ft3-oF) 

RMS of 
Model 

Thermal 
Conductivity of Soil 

(Btu/hr-ft-oF) 

Thermal 
Conductivity of 
Grout (Btu/hr-ft-

oF) 

Borehole 
Resistance (hr-

ft-oF/Btu) 

20 20 0.135 1.45 0.69 0.26 
20 30 0.135 1.53 0.69 0.26 
20 40 0.158 1.59 0.69 0.26 
30 20 0.119 1.41 0.64 0.28 
30 30 0.096 1.50 0.64 0.28 
30 40 0.098 1.57 0.64 0.28 
40 20 0.129 1.37 0.62 0.29 
40 30 0.097 1.45 0.61 0.29 
40 40 0.088 1.53 0.61 0.29 

 

As shown in the table, varying the grout thermal heat capacity changes the 

estimated thermal conductivity of the soil but has little effect on the borehole resistance.  

Changing the soil heat capacity changes the thermal conductivity of the grout and the 

borehole resistance.   

From this data, it was decided to estimate the thermal conductivity and borehole 

resistance using an average capacity of 30 for both the soil and grout.  This value was 

chosen because Austin (1998) found that changing the volumetric heat capacity changed 

the design length of a borehole by less than 10% and would give a conservative result.  
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The results for each vertical borehole are given in Table 7.4 using an average value of 

63.1°F (17.3°C) for the undisturbed ground temperature.   

Table 7.4 – Thermal Conductivity and Borehole Resistance of Vertical Boreholes 

Borehole Thermal Conductivity 
of Soil (Btu/hr-ft-oF)

Thermal 
Conductivity of 
Grout (Btu/hr-ft-

oF) 

Borehole 
Resistance (hr-

ft-oF/Btu) 

1 1.50 0.63 0.28 
2 1.55 0.63 0.28 
3 1.37 0.62 0.28 
4 1.46 0.69 0.25 

 

7.3 System Modeling Considerations 

7.3.1 System Pressure Drop Characteristics 

An important part of performing any system simulation is the ability to accurately 

predict the power usage for a particular configuration or operating point.  This is 

especially true for EnergyPlus which does not model the flow characteristics of a system.  

The user is required to enter the equipment power usage for circulating pumps and fans.  

Without system flow characteristics, it is difficult to estimate the correct power usage for 

the equipment at the true operating conditions.   

For this reason the design spreadsheet mentioned in section 4.1 was modified by 

adding every fitting, pipe length and piece of equipment.  The pressure drop for each 

source component and four different hybrid configurations were calculated for a range of 

flowrates.  Figure 7.33 shows the various system curves.  The GLHE included only two 

vertical boreholes so that the system would be undersized and used for moderate loads. 
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Figure 7.33 – System Pressure Drop Characteristics  

As expected the series combination of the source components creates the largest 

pressure drop through the system followed by the individual components and then 

parallel combination.  Each system curve was then modeled as a second order polynomial 

so that the pressure drop in the system could be determined without the design 

spreadsheet.  The polynomial equation is given below: 

 2P aV bV c∆ = + +  (7.10) 

Where: 
∆P = pressure drop, Ft. of Head 
V = volumetric flow rate of water, gpm 
a = coefficient 
b = coefficient 
c = coefficient 

The values for the coefficient can be found in Table 7.5.  

 

 

 

 

 7-94



 

Table 7.5 – System Pressure Drop Coefficients  
Configuration a b c 

GLHE 0.420 0.348 -0.056 
Cooling Tower 0.134 0.186 0.004 

Pond Loop 0.212 -0.094 0.030 
GLHE-Cooling 
Tower (Series) 0.556 0.517 0.000 

GLHE-Pond 
Loop (Series) 0.633 0.246 0.000 

GLHE-Cooling 
Tower (Parallel) 0.109 0.098 0.038 

GLHE-Pond 
Loop (Parallel) 0.104 0.014 0.038 

   

7.3.2 Source System Pumping Characteristic 

With the system characteristics being calculated, the circulating pump needs to be 

modeled.  The pump model needs to be able to accurately determine the pressure drop in 

the system for a certain flow rate and calculate the pump power.  Since the source side 

pump is a variable speed pump and can operate under varying conditions, the circulating 

pump model presented in (Brandemuehl et al. 1992) was used to model the circulating 

pump.  This circulation pump model allows for the estimation of the pressure drop given 

a volumetric flow rate and can estimate the power consumption.  Another benefit is the 

model accounts for variable speed pumps. 

First a dimensionless flow variable is defined: 

 ( )3/V N dφ = ⋅  (7.11) 

Where: 
V = volumetric flow rate of water, m3/s 
N = rotational speed, rev/s 
d = density, m 

Then a dimensionless pressure rise is defined as: 
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 ( )2 2/P N dψ ρ= ∆ ⋅ ⋅  (7.12) 

Where: 
P∆ = pressure rise across pump, Pa 

ρ = impeller diameter, kg/m3

The efficiency is defined as: 

 /  (7.13) V P Wη = ⋅∆

4

Where: 
W = pump power, W 

The values for ψ and η can then be estimated from catalog data as a forth order 

polynomial function of φ as given below: 

 2 3
0 1 2 3 4a a a a aψ φ φ φ= + + + + φ

4

 (7.14) 

 2 3
0 1 2 3 4b b b b bη φ φ φ φ= + + + +  (7.15) 

Catalog data was gathered for the main circulating pump used on the source side 

of the system.  The data points were collected with a finer grid closer to the lower flow 

rate range where the pump would be operating.  Table 7.6 shows the coefficients 

developed from these catalog points.   

Table 7.6 – Pump Model Coefficients 
a0 a1 a2 a3 a4

5.79 42.3 -3406 60774 -1226291 
b0 b1 b2 b3 b4

0.06 38.1 -239 -30782 482037 

 
To verify that the model is accurately representing the circulating pump, the 

results from the model were compared against the catalog data and can be seen in Figure 

7.34 and 7.35.    
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Figure 7.34 – Model vs. Catalog Comparison 
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Figure 7.35 – Model vs. Catalog Comparison 

   As seen from the figures the model agrees very well with the catalog data.  Both 

the power and pressure drop values produced by the model are within 5% of the catalog 

data.  
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The pump model and system characteristic curves were then used to estimate the 

power input for the circulating pump for different flow rates and source configurations.  

Table 7.7 shows the results obtained from this estimation compared to measured data for 

the operating system.  

Table 7.7 – Pump Power Validation 
Configuration Flow (gpm) Model Power (W) Measured Power (W) Error %

6.2 90 198 54 GLHE 
10.1 369 588 37 
9.1 63 162 61 Cooling Tower 
12.0 141 278 49 
9.7 110 233 53 Pond Loop 
12.8 262 528 50 
6.2 137 286 52 GLHE-Cooling Tower (Series)
7.2 209 400 48 
5.9 130 249 48 GLHE-Pond Loop (Series) 
7.0 205 406 50 
10.2 63 143 56 GLHE-Cooling Tower (Parallel)
14.1 162 274 41 
10.7 62 174 64 GLHE-Pond Loop (Parallel) 
14.7 159 342 53 

 
The results from this experiment show a systematically large error between the 

model results and the measured data.  A voltmeter was used to verify the output signal 

from the watt transducer and to eliminate possible errors with the Fluke/NetDAQ 

datalogger.  To eliminate the possibility of a damaged watt transducer, the unit was 

replaced.  The measured power usage for the new transducer matched the previous unit 

measurements.  An ammeter was placed around each phase leg to measure the current.  

This value along with the voltage measured across each leg was used to calculate the 

power used by the operating pump.  Results from this test matched the measurements 

obtained from the watt transducers.  Correct installation of the watt transducer was 

verified by the manufacturer.   
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The pump manufacturer was then contacted to determine if the pump was 

operating properly and to ensure that the catalog data used in the model development was 

accurate.  After a brief discussion it was determined that the pump was operating 

correctly and the error would not be due to the VFD which has an efficiency of 

approximately 97%.  One possible source of error suggested is that the catalog data was 

generated with a circulating pump operating at 230Vac.  While the facility operates at 

208Vac, the manufacturer indicated that this should not create an error of this magnitude 

in the power usage.  It was mentioned that the shaft bearings for the pump could be 

damaged, creating a drag on the motor and causing larger power usage.  The 

manufacturer stated that this problem would worsen and eventually cause the pump to 

seize.  It is recommended that during a system maintenance period, this issue be pursued 

further with the pump manufacturer. 

Table 7.8 shows the pump model coefficients obtained from a least squares fit of 

the measured power data.  Estimated power from the model was compared to the 

measured data as shown in Figure 7.36.  The model was able to estimate power usage at 

higher pump rpm and flowrates. 

Table 7.8 – Measured Pump Model Coefficients 

b0 b1 B2 b3 b4

-2.66 1711 -382210 37009076 -1305746117 
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Figure 7.36 – Model vs. Measured Power Comparison   

       

7.3.3 Circulation Piping Thermal Heat Transfer 

Heat gain or loss from the circulation piping can be significant and may introduce 

significant error in the simulation if unaccounted for.  For this reason, thermocouples 

were placed in the circulation pipe on the supply and return lines in the plant building and 

at each component.  This allows the heat transfer rates from the un-insulated pipes to be 

measured. 

Data gathered for the cooling tower and pond heat exchanger was analyzed to 

determine the heat transfer from the supply and return pipes.  Figures 7.37-40 show the 

results for a steady cycle time with the heat pump.  The uncertainty associated with this 

measurement is rather large as shown by the error bars attached to each data point. 
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Figure 7.37 – Pond Loop Supply Pipe Heat Transfer 
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Figure 7.38 – Pond Loop Return Pipe Heat Transfer 
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Figure 7.39 – Cooling Tower Supply Pipe Heat Transfer 
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Figure 7.40 – Cooling Tower Return Pipe Heat Transfer 

As shown in the figures, the heat transfer through the pipes can be quite large.  

The pond loop piping exhibits a greater heat transfer rate than the cooling tower due to 

the increased length of the buried pipe.  The high uncertainty is, due primarily to the 
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accuracy of the HOBO data loggers.  Upgrading these data loggers as previously 

recommended would significantly improve the accuracy of these calculations.   

The temperature drop through the circulation piping for the GLHE was less than 

the uncertainty in the measurement, so the heat loss from these pipes could not be 

calculated with the current instrumentation.  The relatively high flow rate and short 

length of these pipes results in an estimated heat loss that is typically less than 5% of the 

ground loop heat transfer rate. 
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8. Conclusions and Recommendations 

8.1 Conclusions 

Using current design techniques, an HGSHP experimental facility was 

constructed to validate existing and develop new HGSHP models for energy simulation 

programs.  This facility included three independent source components: a ground loop 

heat exchanger, a pond loop heat exchanger, and an evaporative cooling tower.  A range 

of source side configurations can be tested under variable flowrates, loads, and 

temperatures. 

Sufficient instrumentation was installed to allow calculation of heat transfer rates, 

flow rates and power inputs at both the system and the component level.  In addition, 

sufficient control hardware was installed to allow development of control algorithms and 

operating strategies for HGSHP systems. 

Instrumentation was calibrated in situ to minimize measurement error.  

Calibration coefficients were listed along with an uncertainty analysis for each 

measurement.  An uncertainty analysis was also performed for the calculated heat 

transfer rate. 

Experiments were performed to demonstrate system performance and validate the 

calculated measurement uncertainties.  Several conclusions were drawn from the results 

of these experiments. 

• System control hardware and software operated as designed for the case of simple 

setpoint control of the heat pumps.  Each heat pump was operated to maintain the 

setpoint temperatures of the hot and chilled water tanks. 
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• Measured temperatures, flow rates and power input showed an error in the heat 

pump energy balance of less than 5.0%.  This was well within the predicted 

uncertainty of 5.7% for the heat pump energy balance.  The plate heat exchanger 

energy balance error was also within the estimated uncertainty for the calculation.   

• Transient operation was shown to have a significant impact on the overall system 

performance.  The heat pump transient of approximately 9 minutes was estimated 

as 13% of the duty cycle for part load cooling operation.  The cooling tower loop 

transient of 11 minutes was 13% of the duty cycle, and the pond loop transient of 

28 minutes was 40% of the duty cycle for the part load cooling experiments. 

• In-situ calibration of thermocouples and flowmeters resulted in an estimated 

uncertainty of ±0.11°F for temperature measurements with the Fluke NetDAQ 

dataloggers and an estimated uncertainty of ±0.42°C for temperature 

measurement with existing HOBO data loggers.  The uncertainty associated with 

the HOBO loggers was unacceptably large and they are recommended for 

replacement in the following section.  Flow measurement uncertainty is a function 

of the calibration time, weight, and voltage.  For a flow rate of 10 gpm, the 

measurement uncertainty is approximately ±0.2 gpm. 

• The GLHE transient response behaves as expected.  Large heat transfer rates are 

obtained in the first couple of minutes because the water temperature at the top of 

the borehole is heated to near ambient temperature.  The exiting water 

temperatures are low since the water has been sitting in the borehole and is close 

to the ground temperature.  The heat transfer rate then decreases because the 

water being circulated through the boreholes is closer to the ground temperature 
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so the temperature drop across the borehole is low.  After a short time period, the 

heat input from the heat pumps increases the input water temperature through the 

borehole and the heat transfer increases. 

• Proper insulation is critical for the accurate measurement of borehole thermal 

properties.  Inadequate insulation of the test apparatus results in a fluid 

temperature oscillation that coincides with the ambient air temperature.  This 

unmeasured heat transfer can affect the estimated thermal conductivity of the 

borehole. 

• The heat transfer rate from the uninsulated piping in a system can be a significant 

source of heat loss or gain.  The experimental data showed that as much as     

3000 W can be transferred in the installed system.      

8.2 Recommendations and Future Work 

Although this thesis presents a state-of-the-art experimental facility for HGSHP 

systems, the author suggests the following to improve facility performance: 

• Replace the H-8 HOBO datalogger that measures the pond loop heat exchanger 

inlet and outlet temperature.  The current datalogger has a temperature resolution 

which creates an unacceptable uncertainty in the measured heat transfer rate.  A 

HOBO U-12 is recommended by the author to replace the H-8 remote datalogger.  

The U-12 can utilize the temperature probe used with the H-8 but increases the 

resolution to 0.03°C at 20°C.  After calibration the accuracy of the temperature 

measurement would be increased from 0.42°C to 0.11°C. 

• Convert the HOBO temperature measurements used at the cooling tower inlet and 

outlet to thermocouple probes.  The two thermocouple probes could be attached to 
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the extra Fluke NetDAQ channels in the GLHE manhole.  A potential problem 

with this setup is the requirement of an additional Fluke/NetDAQ datalogger. 

• Use the remaining 8 thermocouples channels in the GLHE manhole to increase 

instrumention on the cooling tower.  Thermocouples can be placed on the entering 

and leaving air screen of the cooling tower to give dry bulb temperatures to 

facilitate cooling tower model validation. 

• Install a vortex flowmeter on the source side of each heat pump to increase the 

accuracy of measured flowrate into each heat pump. 

• Modify the flowmeter calibration procedure to lengthen the flow measurement 

time well beyond the recommended 90 second minimum.  Recalibrate the 

flowmeters using a flow measurement time of 100 seconds or more. 

• Enclose each heat pump in and insulated, sealed cabinet with a single air inlet and 

a single air outlet.  Measure air inlet and outlet conditions as well as the air flow 

rate.  Using these measurements estimate the heat transfer rate from the heat 

pump to the surroundings.  This estimate will significantly improve the overall 

heat balance on the heat pump. 

• The current method of purging the cooling tower requires a significant time 

period to ensure that air is removed from the system.  Installing a purge and 

isolation valve on the return piping line next to the cooling tower would facilitate 

purging. 

• A pond loop heat exchanger component model needs to be developed that 

accounts for both pond thermal stratification and natural convection.  
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Development of this model would require additional pond instrumentation 

including a pond thermocouple grid around the heat exchanger. 

• Work in conjunction with the manufacturer to determine the source of error found 

in the power measurement for the main circulation pump. 
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APPENDICES 

Appendix A: Data Logger Channels 

Table A1 – Data Logger Channels 
Data Logger 1 Data Logger 2 Data Logger 3 

No Name No Name No Name 
A1 A1 B1 B1 C1 BH1 
A2 A2 B2 B2 C2 BH2 
A3 A3 B3 B3 C3 BH3 
A4 A4 B4 B4 C4 BH4 
A5 A5 B5 B5 C5 BH5 
A6 A6 B6 B6 C6 BH6 
A7 A7 B7 B7 C7 BH7 
A8 A8 B8 B8 C8 BH8 
A9 A9 B9 B9 C9 BH9 
A10 A10 B10 B10 C10 BH10 
A11 A11 B11 B11 C11 WT Pump 2 
A12 A12 B12 B12 C12 WT Pump 3 
A13 A13 B13 B13 C13 WT Pump 4 
A14 Flow 1 B14 B14 C14 WT Pump 5 
A15 Flow 2 B15 B15 C15 WT Pump 6 
A16 Flow 3 B16 B16 C16 WT Pump 7 
A17 Flow 4 B17 B17 C17 WT HP1 
A18 Flow 5 B18 B18 C18 WT HP2 
A19 Flow 6 B19 B19 C19 WT CT 
A20 Flow 7 B20 Outside Temp. C20 RH 

 

 



Appendix B: Piping Schematic and Bill of Materials 

 
Figure B1 – Source Piping and Valve Schematic 
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Figure B2 – Primary Equipment and Load Side Piping and Valve Schematic 
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Figure B3 – Ground Loop Piping and Valve Schematic 

Note: Pipe sizes are nominal (in) and are copper Type L unless a (-P) follows which designates HDPE. 

 Pipe length is in (ft). 

 Expander and reducer sizes are nominal pipe sizes (in). 

Table B1 – Pipe Bill of Materials 
Section 
Name 

Pipe 
Size 

Length     Strainer Ball
Valve

Union Check Expander 
Size 

No. Reducer 
Size 

No. Elbow Flowmeter T-Branch T-Through

1               1 2.167 0 0 1 0 .75-1 2 1-.75 1 3 0 1 0
0.75 1.75 0 0 2 0 0 0 0 0 0 1 0 0

2               1 3.667 0 1 1 0 0 0 0 0 2 0 1 1
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3               1 0.333 0 1 0 0 0 0 0 0 0 0 2 0
4               1 0.833 0 1 1 0 0 0 0 0 1 0 0 0
5               1 4.583 0 0 0 0 0 0 0 0 0 0 0 1
6               1 1.833 1 0 0 1 1-1.5 1 0 0 1 0 0 1

1.5-P
7               1 2 0 0 0 0 0 0 0 0 2 0 1 0
8               1 2.25 0 0 0 0 0 0 0 0 3 0 1 0
9               1 3 0 0 1 1 0 0 1-.75 1 2 0 0 1

0.5 1.167 0 0 2 0 .5-1 1 1-.5 1 0 1 0 0
10               1 5.833 0 0 1 0 .75-1 1 0 0 2 0 0 1
11               1.5 0.75 0 0 0 0 0 0 1.5-1 1 1 0 0 0

1 0.333 0 0 0 0 0 0 0 0 0 0 1 1
2-P 0 0 2-1.5 1

12               1 5 0 0 1 0 0 0 0 0 1 0 1 1
13               1 7.25 0 0 2 1 0 0 0 0 2 0 0 0
14               1 0.333 0 1 0 0 0 0 0 0 0 0 1 0
15               1 1 0 1 1 0 0 0 0 0 1 0 2 0
16               1 0.5 0 1 0 0 1-1.5 1 1.5-1 1 0 0 0 1
17               1 5.917 1 0 1 0 0 0 1-.75 1 6 0 1 0
18               1 7.333 0 0 2 0 .75-1 2 1-.75 1 4 0 1 1

0.75 1.75 0 0 2 0 0 0 0 0 0 1 0 0
19               1 6 0 1 0 0 0 0 0 0 0 0 1 0
20               1 2.417 0 1 1 0 0 0 0 0 2 0 1 1
21               1 0.833 0 1 1 0 0 0 0 0 1 0 0 0
22               1 0.333 0 0 0 0 0 0 0 0 0 0 0 2
23              1 1.917 1 0 0 0 1 1-1.5 1 0 0 0 0 1

1.5-P
25               1 0.333 0 1 0 0 0 0 0 0 0 0 1 0
26               1 0.5 0 1 0 0 0 0 0 0 0 0 1 0
27               1 1.167 0 1 0 0 1-1.5 1 1.5-1 1 2 0 0 0
28               1 14.75 1 0 2 0 0 0 1-.75 1 4 0 2 0
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29              1.5 2.417 0 0 1-.75" 0 .75-1.5 1 0 0 1 0 1 1
1.5 0.5 0 0 1-.75" 0 .75-1.5 1 0 0 0 0 2 0

31            1.5 2.417 0 1-.75" 1-.75" 0 0 0 1.5-.75 1 0 0 1 1
32             1.5 0.5 0 1-.75" 1-.75" 0 0 0 1.5-.75 1 0 0 2 0
33              1.5 10.33 0 2 0 0 0 0 0 0 4 0 0 1
34               1.5 11.67 1 2 1 0 0 0 0 0 4 0 0 1
35               1.5 5.667 0 1 0 0 0 0 0 0 1 0 0 2
36               1.5 1.583 0 1 0 0 0 0 0 0 0 0 1 0
37               1.5 2.667 0 1 0 0 0 0 0 0 0 0 1 1
38               1.5 1.333 0 1 0 0 0 0 0 0 2 0 1 2
39               1.5 4 0 1 0 0 0 0 0 0 2 0 1 0
40               1.5 2.667 0 1 0 0 0 0 0 0 2 0 1 1
41               1.5 0.667 0 0 0 0 0 0 0 0 0 0 1 0
42               1.5 11 0 0 0 0 0 0 0 0 3 0 0 2

2-P 496 0 0 0 0 0 0 2-1.5 1 1 0 0 0
43               1.5 7.75 0 0 0 0 .75-1.5 1 1.5-.75 1 3 0 0 1

0.75 1.75 0 0 2 0 0 0 0 0 0 1 0 0
2-P 496.5 0 0 0 0 1.5-2 1 0 0 1 0 0 0

44               1.5 0.667 0 0 0 0 0 0 0 0 0 0 0 1
45               1.5 1.333 0 0 0 0 0 0 0 0 0 0 0 1
46               1.5 15.75 0 0 0 0 0 0 0 0 5 0 0 1

1 0.333 0 0 1 0 0 0 1.5-1 0 0 0 1 0
47               1.5 17.17 0 0 0 0 .75-1.5 1 1.5-.75 1 5 0 0 2

1 0.167 0 0 1 0 1-1.5 1 0 0 0 0 0 0
0.75 1.75 0 0 2 0 0 0 0 0 0 1 0 0

48               1.5 0.667 0 0 0 0 0 0 0 0 0 0 0 1
49               1.5 2.667 0 0 0 0 0 0 0 0 0 0 0 1
50               1.5 11.25 0 0 0 0 0 0 0 0 3 0 0 1

1.5-P 123 0 0 0 0 0 0 0 0 3 0 0 0
51               1.5 11.17 0 0 0 0 .75-1.5 1 1.5-.75 1 3 0 0 1

1.5-P 120.5 0 0 0 0 0 0 0 0 3 0 0 0

30              
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               0.75 1.75 0 0 2 0 0 0 0 0 0 1 0 0
52               1.5 0.667 0 0 0 0 0 0 0 0 0 0 0 1
53               1.5 2.167 0 1 0 0 0 0 0 0 3 0 2 0
54               1.5 2.5 0 1 0 0 0 0 0 0 3 0 2 0
55               1.5 2.5 0 1 0 0 0 0 0 0 3 0 2 0
56               1.5 4.167 0 1 0 0 0 0 0 0 3 0 2 0
57               1.5 2.167 0 1 0 0 0 0 0 0 3 0 2 0
58               1.5 3.333 0 1 0 0 0 0 0 0 3 0 2 0
59               1.5 1 0 0 0 0 1-1.5 1 0 0 1 0 0 0

1.5-P 144 0 0 0 0 0 0 0 0 5 0 1 1
1 2.833 0 0 1 0 0 0 0 0 1 0 1 0

60               1.5 0.167 1 0 0 0 0 0 1.5-.75 1 1 0 0 0
1.5-P 144.5 0 0 1 0 0 0 0 0 5 0 1 1

1 0.583 0 0 1 0 .75-1 1 0 0 0 0 1 0
0.75 1.75 0 0 2 0 0 0 0 0 0 1 0 0

61               1.5-P 0.333 0 0 0 0 0 0 0 0 0 0 0 1
62               1.5-P 0.167 0 0 0 0 0 0 1.5-.75 1 0 0 0 1

.75-P 0.167 0 0 0 0 0 0 0 0 0 0 0 0
63               .75-P 0.333 0 0 0 0 0 0 0 0 0 0 0 1
64               .75-P 0.333 0 0 0 0 0 0 0 0 0 0 0 1
65               1.5-P 0.167 0 0 0 0 1.5-.75 1 0 0 0 0 0 1

.75-P 0.167 0 0 0 0 0 0 0 0 0 0 0 0
66               1.5-P 0.333 0 0 0 0 0 0 0 0 0 0 0 1

BH1               1.5-P 0.333 0 0 0 0 0 0 1.5-.75 1 0 0 1 0
.75-P 550 0 2 0 0 0 0 0 0 1 0 0 2

BH2               1.5-P 0.333 0 0 0 0 0 0 1.5-.75 1 0 0 1 0
.75-P 482 0 2 0 0 0 0 0 0 0 0 1 2

BH3               .75-P 508 0 2 0 0 0 0 0 0 0 0 2 2
BH4               1.5-P 0.333 0 0 0 0 .75-1.5 1 0 0 0 0 1 0

.75-P 524 0 2 0 0 0 0 0 0 0 0 1 2
BH5               1.5-P 0.333 0 0 0 0 .75-1.5 1 0 0 0 0 1 0
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               .75-P 658 0 2 0 0 0 0 0 0 1 0 0 2

 



Appendix C: Standard Operating Procedures 

Note: Any number with a V-# references a valve found in Figures B1-3. 

Purging the Source Side 

Connecting the purge cart.  

1) Obtain the large purge cart. 

2) Attach the supply and return hoses to the barbed connections on the V-14 and V-

17. 

3) Connect a water hose to the purge cart from the outside faucet. 

4) Turn on the water and fill the purge cart. 

5) Connect the power cord to the 120 Vac outlet located on the west wall below the 

circuit breaker box.  This outlet and circuit breaker are rated to be able to handle 

the amperage that the purge cart can use when in operation. 

6) Adjust the 3-way valves on the purge cart to supply and return water from the 

system. 

Purging the heat pumps. 

7) Shut valves V-13 and V-16.  Open valves V-15, V-18, V-19 and V-20. 

8) Turn on the purge cart making sure to maintain at least ½ of a tank full of water 

so that no air will be pumped into the system.  Purge the system for the time 

period according to IGSHPA (1991). 

9) After the time period has passed, turn V-17 off and then V-14 off.  Turn the purge 

cart off.  This sequence will maintain pressure in the system so that any leak can 

be detected and to keep air out of the system. 
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Purging the source components. 

10) Shut valves V-15 and V-18.  Open valves V-13 and V-16. 

11) Open V1-12 based upon which source component needs to be purged. 

12) Turn on the purge cart making sure to maintain at least ½ of a tank full of water 

so that no air will be pumped into the system.  Purge the system for the time 

period according to IGSHPA (1991). 

13) Adjust V-22 so that the flow rate through each vortex flowmeter stays below 16 

gpm.  Any flow operation above this value for an extended period could damage 

the flowmeter. 

14) After the time period has passed, turn V-14 off and then V-17 off.  Turn the purge 

cart off.  This sequence will maintain pressure in the system so that any leak can 

be detected and to keep air out of the system. 

Purging the Load Side 

Purging the Buffer Tanks. 

1) Attach a water hose to the valve located on the bottom of the buffer tanks. 

2) Open the valve located on the top of each tank. 

3) Turn on the water from the hydrant.  Leave the top valve on each tank until water 

starts to emerge.  At this point, close the top valve.   

4) Close the bottom valve and then shut off the water hydrant. 

Purging the load components. 

5) Obtain the large purge cart. 

6) Attach the supply and return hoses to the barbed connections located under the 

airflow measurement box. 
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7) Connect a water hose to the purge cart from the outside faucet. 

8) Turn on the water and fill the purge cart. 

9) Connect the power cord to the 120 Vac outlet located on the north face of the 

military supply box east of the south test cell.  This outlet and circuit breaker are 

rated to be able to handle the amperage that the purge cart can use when in 

operation. 

10) Adjust the 3-way valves on the purge cart to supply and return water from the 

system. 

11) Turn on the purge cart.  Open the valves under the airflow measurement box. 

12) Adjust the appropriate values in both the tower and plant side to purge each 

specific pipe leg.  Note that the actuated 2 and 3-way valves will need to be 

changed to purge different part of the test cell supply piping. 

13) Close the supply and return valves and then turn off the purge cart. 

Experimental Test Procedures 

Plant Building Startup 

1) Turn on the circuit breakers for the equipment needed for the plant operation 

2) Turn on the computer and NetDAQ loggers. 

3) Plug in the power supplies in the control circuit board box. 

4) Move the switch on the timer board into the “Test” position.  The bottom LED 

will light and the timer board will then be set to high. 

Buffer Tank Operation 

5) If using Buffer Tank 1, open V-21, V-22, V-25 and V-26.  Close V-23 and V-24. 

6) If using Buffer Tank 2, open V-27, V-29, V-30 and V-32.  Close V-25 and V-31. 
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Plant Source Setup 

7) Open V-19 and V-20 to operate both heat pump 1 and 2. 

8) Open V-13, V-15, V-16, V-18. 

9) Open V-1: V-12 on the valve chest to select the source components and 

configuration needed for testing. 

GLHE Setup 

10) Remove the manhole lid and adjust V-BH1: V-BH10 to select the boreholes 

needed for testing. 

Cooling Tower Setup 

11) Turn on the power disconnect located at the base of the cooling tower. 

12) Clean the basin of the cooling tower to remove any dirt of foreign materials. 

13) Attach a hose to the water hydrant and small pipe stub-out located next to the 

GLHE manhole. 

14) Turn on the hydrant and fill the cooling tower water basin. 

15) Adjust the basin float and overflow drain to the desired position. 

Data Acquisition Setup 

16) In Windows, click on Start-Programs-Fluke NetDAQ Logger-NetDAQ Logger. 

17) In the NetDAQ logger program, open the file “final setup” to bring in the correct 

setup for the data loggers. 

18) Click on the button “Start All Instruments”.  The data loggers will then start 

collecting data. 

19) On the Desktop, open the latest “input-output.xls” file.  This will load the data 

acquisition and controls program. 
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20) In the “input-output.xls” file, click on the “options” worksheet.  Select the 

equipment that is going to be in operation. 

21) Click on the “status” worksheet.  Adjust the minimum flow set points, delay 

times, and tank temperatures to the desired values. 

22) Click on the “recorded data” worksheet. Adjust the timer period between recorded 

data readings and the time period between control outputs. 

System Startup 

23) Click on the “Start” button located on the “recorded data” worksheet.  Click 

“Yes” if a new data set is being started. 

24) Click on the “options” worksheet.  Click the button “Turn on the Equipment”.  

After a short time, the equipment will start. 

25) The flow rate of each source component can be seen on the “Realtime-Sources” 

worksheet.  Adjust the VFD to obtain the desired flow rate through the source 

components.  Press the button labeled “Hand” on the VFD control panel.  Use the 

arrow buttons to adjust the frequency until the pump is providing the desired flow 

rate.  Press the “Auto” button to the place the VFD back into auto mode so that it 

can be controlled by the computer. 

26) Move the switch on the timer board to “Run”.  After a few seconds, the bottom 

LED should blink indicating that the data acquisition program is working. 

27) Monitor the equipment for a few minutes to make sure that the system appears to 

be operating correctly. 
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Maintenance 

 Strainers 

1) To ensure that the system operates to peak performance, each strainer needs to be 

cleaned after 1000 hours of operation or if the system flow rate is below the 

normal operation point. 

2) Find the closest isolations valves immediately up and downstream of the strainer.  

Close each valve so that the system will need very little purging after cleaning. 

3) Unscrew the strainer housing and remove the cartridge. 

4) Clean the cartridge and reinstall. 

5) Open the isolation valves and then purge the system where the strainer was 

removed. 

Cooling Tower 

1) When the cooling tower is not in operation, always drain the basin so that moss 

and algae will not grow.   

2) The supply and return lines need to be drained to prevent water from freezing and 

breaking the piping. 

3) Open V-BH11 and V-BH12 to drain the supply and return lines. 

4) Use compressed air or a vacuum to remove the water from the makeup water line. 
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Appendix D: Equipment Specifications 

Fan Coil – (McQuay, http://www.mcquay.com/mcquaybiz/literature/lit_at_fc/ 
Catalogs/Cat700-1Rev10-04.pdf, 12-08-04) 

Per formance Data  – THC Hor izontal Concealed (4-Pipe System) 
ARI Approved Standard Coil Water Cooling Capacity Ratings ~ 

 FTHC HO RIZONT AL CONCE ALE D UNIT 

COOLING CAP ACITY~ UNIT 
SIZE TOTAL 

BTUH 
SENS IBLE 

BTUH 

WATE R 
FLOW 
GP M 

WATE R 
P.D. 

FT. W.C. 

H02 8500 6100 1.94 5.10 

H03 11,100 8400 2.51 3.26 

H04 14,500 10,800 3.26 5.80 

H06 21,200 16,100 4.70 12.82 

H08 22,700 18,000 5.14 3.68 

H10 25,300 20,000 5.70 4.76 

H12 34,200 27,000 7.75 8.29 

Standard Coil Water 1-Row Heating Capacity Ratings ~ 

 FTHC HO RIZONT AL CONCE ALE D UNIT 

1-ROW HE ATING CAPACITY~ UNIT 
SIZE SENS IBLE 

BTUH 

WATE R 
FLOW 
GP M 

WATE R 
P.D. 

FT. W.C. 

H02 11,500 0.64 1.47 

H03 16,300 0.91 2.89 

H04 20,400 1.12 5.32 

H06 29,600 1.65 10.72 

H08 36,100 2.00 3.24 

H10 40,300 2.24 4.07 

H12 49,800 2.76 6.45 

Water heating coils at 70°F DB entering air, 180°F entering water, 40°F water temperature drop and high f an speed with standard 115/60/1 motor. 
For heating coil capacity ratings at conditions other than those listed ref er to the RepTools Computer Selection Program or consult y our McQuay  representativ e. 

General Unit Data 
 Unit Siz e  

 H02 H03 H04 H06 H08 H10 H12 
Fan 

Ty pe Centrif ugal Fan (f orward-curv ed galv anized steel f an wheel) 
Number of Fans 1 1 2 2 3 3 4 

Fan Housing Galv anized Steel 

Coil 
Number of Rows 3/1 Split 

Ty pe Water - (3-Row Chilled Water) (1-Row Hot Water) 
Testing Pressure 425 psi f or 1 minute; leak test: 225 psi f or 5 minutes 

Motor (s) 
Ty pe PSC 

Number of Motors 1 1 1 1 2 2 2 
Power Supply  115/60/1, 208-230/50/60/1, 277/60/1 

Watts - High Speed 
50Hz 62 91 109 171 242 249 321 
60Hz 75 109 131 205 291 299 385 

Coil Connection 3/4" FPT 

Dr ain Pipe 3/4" MPT 

Unit wi th Retur n Air  Plenum and Fil ter  
Length in. 21.90 21.90 21.90 21.90 21.90 21.90 21.90 

Width in. 32.05 38.74 43.86 51.73 61.57 65.51 75.75 
Height in. 9.88 9.88 9.88 9.88 9.88 9.88 9.88 

Ship Weight lb. 63.00 73.00 88.00 102.00 134.00 143.00 153.00 

Condi tions: 
~ Cooling Capacity: Entering air temp.80°F (DB), 67°F (WB); Entering water temp.45°F, Leav ing water temp. 55°F. ~ Heating 
Capaci ty : Entering air temp.70°F (DB); Entering water temp.180°F. 

Air  Flow: Under dry  coil conditions, fan speed high. 
Weight: Includes return air plenum and packing.  
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Di me n si o nal  D a ta  –  THC Horizontal Concealed, with Extended 
Drain Pan and Plenum Filter Box 

Filter s  
Unit Siz e 

 
A B  

 
C D  

 
E F  Number  

of Fans Size Qty 
H02 32.05" 17.64" 19.17" 19.96" 18.46" 21.13" 1 181/8" x 8" x 1" 1 

H03 38.74" 24.33" 25.87" 26.65" 25.15" 27.82" 1 247/8" x 8" x 1" 1 

H04 43.86" 29.45" 30.98" 31.77" 30.20" 32.94" 2 297/8" x 8" x 1" 1 

H06 51.73" 37.32" 38.86" 39.65" 38.07" 40.82" 2 187/8" x 8" x 1" 2 

H08 61.57" 47.17" 48.70" 49.49" 47.91" 50.66" 3 233/4" x 8" x 1" 2 

H10 65.51" 51.10" 52.64" 53.43" 51.85" 54.60" 3 253/4" x 8" x 1" 2 

H12 75.75" 61.34" 62.87" 63.66" 62.09" 64.83" 4 307/8" x 8" x 1" 2 

 

 

 

 

1.02"

5.75" 9.75"

1.40" FILTER 
RAIL 

FRONT VIEW CONDENSATE 
DRAIN 3/4" MPT 

8.125"
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Air Volum e Capacity Data
Air volume versus external static  pressure 

 Fan Mo tor  Sp eed  

High Med ium Low 
Uni t Siz e External Static Pressure (INCHES OF WATER) External Static Pressure (INCHES OF WATER) External Static Pressure (INCHES OF WATER) 

 .00 .05 .10 .15 .20 .25 .30 .00 .05 .10 .15 .20 .25 .30 .00 .05 .10 .15 .20 .25 .30 
Air Flow cfm 311 288 270 255 236 224 207 231 211 195 178 164 152 134 181 157 139 125 111 94 87 

H02 
RPM 1043 1138 1172 1194 1240 1262 1291 869 879 966 1012 1051 1108 1119 704 773 826 887 965 1032 1091
Air Flow cfm 423 398 383 366 343 326 308 298 277 262 244 229 213 197 235 218 200 184 165 148 133

H03 
RPM 1143 1172 1202 1226 1255 1282 1313 838 890 945 992 1043 1097 1144 714 756 833 886 953 1023 1081
Air Flow cfm 507 472 444 416 386 359 326 340 298 267 239 209 181 153 274 234 197 170 143 111 83 

H04 
RPM 1122 1165 1201 1221 1258 1285 1314 788 851 903 964 1043 1093 1156 678 737 811 891 957 1028 1091
Air Flow cfm 798 770 742 714 688 654 627 578 549 534 508 483 456 432 518 497 471 444 425 406 376

H06 
RPM 1295 1311 1333 1361 1382 1399 1416 990 1017 1060 1102 1151 1182 1230 894 937 994 1049 1086 1141 1181
Air Flow cfm 949 918 874 833 788 747 716 740 703 671 632 594 550 517 662 632 601 554 521 490 449

H08 
RPM 1172 1192 1221 1259 1286 1320 1341 931 1003 1027 1072 1124 1167 1219 892 935 956 1014 1070 1121 1174
Air Flow cfm 1032 981 932 881 836 712 716 775 723 688 631 582 533 493 697 643 602 538 496 463 410

H10 
RPM 1251 1279 1303 1331 1344 1386 1412 984 1037 1068 1115 1169 1245 1255 902 969 1001 1062 1123 1161 1204
Air Flow cfm 1428 1380 1334 1287 1229 1173 1114 1067 1022 976 927 875 833 781 960 912 877 826 788 806 705H12 
RPM 1344 1367 1389 1408 2845 2886 1462 1039 1062 1106 1149 1192 1235 1277 958 1003 1043 1095 1141 1178 1224

Note: Based on 115V operation, and dry coils.  
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Evaporative Cooling Tower (Amcot, 
http://www.amcot.com/temp/Fiberglass.pdf, 12-08-04) 

Dimensions and Pipe Connections 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ST 3-30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
ST 40-175 

 
 
 
 
 

PIPING: 
ST-3-60 
THREAD TYPE 

ST-70-1500 
IN & OUT: FLANGE TYPE 
OTHERS: THREAD TYPE 

 
ST 200-350                                                                                                                                        ST 400-1500 

 
 
 

ST  
M ODEL 

 
 
 
DIM ENSIONS 

(INCH) 
 

 
AM COT  COOLING T OWER 

 
PIPE CONNECT IONS (INCH)                FAN 

M OT OR 
 

 
 
 

FAN 
DIAM ETER 
 

 
 
 

AIR 
VOLUME 

 
 
 

NOM INAL 
WAT ER FLOW 
 

HEIGHT              DIA.         IN     OUT       O      Dr      FLO     Q (HP) (INCH) (CFM ) (GPM ) 
 

3 
5 
8 

10 
15 
20 
25 
30 
40 
50 
60 
70 
80 

100 
125 
150 
175 
200 
225 
250 
300 
350 
400 
500 
600 
700 
800 

1000 
1250 
1500 

 
50 
52 
56 
54 
59 
63 
71 
68 
75 
75 
75 
80 
80 
85 
87 
90 
98 

118 
126 
126 
132 
134 
153 
155 
171 
181 
194 
203 
231 
240 

 
27 
34 
34 
42 
46 
54 
54 
62 
72 
79 
79 
86 
86 

105 
120 
130 
130 
149 
149 
149 
175 
189 
204 
220 
260 
260 
299 
299 
332 
332 

 
½1        1½   1        ¾ 
½1        1½   1        ¾ 
½1        1½   1        ¾ 
½1        1½   1        ¾ 
2        2         1        1 
2        2         1        1 
½2        2½   1        1 
½2        2½   1        1 
½2        2½   1        1 
3        3         1        1 
3        3         1        1 
4        4         1        1 
4        4         1        1 
4        4         1        1 
5        5         2        1 
5        5         2        2 
5        5         2        2 
6        6         2        2 
6        6         2        2 
8        8         2        2 
8        8         2        2 
8        8         2        2 
8        8         4        2 
10      10       4        2 
10      10       4        2 
10      10       4        2 
12      12       4        3 
12      12       4        3 
12      12       4        3 
14      14       4        3 

 
½ 

½ 

½ 

½ 
½ 

½ 

½ 

½ 

¾ 

¾ 

¾ 

¾ 

¾ 

1 
1 
1 
1 
¼1         1¼ 
¼1         1¼ 
¼1         1¼ 
¼1         1¼ 
¼1         1¼ 
2         2 
2         2 
2         2 
2         2 
2         2 
2         2 
½2         2½ 
½2         2½ 

 
1/6 
1/6 
1/6 

¼ 
¼ 

½ 

¾ 

1 
1½ 
1½ 
1½ 
1½ 
2 
3 
3 
5 
5 
5 
7½ 
7½ 
10 
10 
15 
15 
20 
20 
30 
30 
40 
50 

 
19½ 
19½ 
19½ 
26½ 
26½ 
30 
30 
30 
38 
38 
46 
46 
46 
58 
58 
69 
69 
69 
93 
93 
93 
93 
117 
117 
133 
133 
141 
141 
168 
168 

 
870 

2,100 
2,620 
3,500 
4,700 
6,300 
7,000 
8,100 
9,800 

11,500 
14,700 
17,500 
18,900 
24,500 
29,060 
33,260 
40,250 
43,760 
61,270 
61,270 
77,020 
77,020 
91,030 
91,030 

125,000 
125,000 
175,000 
175,000 
218,900 
264,800 

 
6 

10 
16 
20 
30 
40 
50 
61 
83 

105 
125 
145 
168 
208 
262 
318 
369 
426 
460 
520 
620 
744 
845 

1113 
1278 
1546 
1703 
2253 
2824 
3380 

NOMINAL WATER FLOW IS DEFINED AS RATE OF WATER COOLED FROM 950 F TO 850 F WITH 780 F WET BULB TEMPERATURE  
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MUELLER ACCU-THERM 
PLATE HEAT EXCHANGER SPECIFICATION SHEET 
Design Data

Hot-Side
Cold-Side

 
 
Heat Transfer Media: 

Water  
Water  

 
 
Volume Flow Rate: 

10.00  
10.00  

gpm  
 
Mass Flow Rate: 

4975.4  
4990.7  

LB/HR  
 
Inlet Temperature: 

100.0  
75.0  

°F  
 
Outlet Temperature: 

92.8  
82.2  

°F  
 
Density: 

8.30  
8.32  

LB/GAL  
 
Specific Heat: 

0.998  
0.998  

BTU/LB F  
 
Viscosity: 

0.71  
0.87  

CPS  
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Thermal Conductivity: 

0.360  
0.351  

BTU/FT H F  
 
Pressure Drop: 

2.3  
4.0  

PSI  
 
Operating Pressure: 

50.  
50.  

PSI GAGE  
 
Heat Transfer Rate: 

35746.  
BTU/H  
 
Log Mean Temp Diff: 

17.8  
°F  
 
Heat Transfer Area (All Frames): 

3.0  
FT2  
 
 
Mechanical Description
 
Frame  
 
Type 

C -20 Carbon Steel  
 
Design Code 

ASME Section VIII, DIV. 1  
 
Design Pressure 

100 PSI GAGE  
 
Design Temp. Max/Min 

150 °F /32 °F  
 
Test Pressure 

130 PSI GAGE  
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Frames In Parallel/Series/Total 
1/ 1/ 1  

 
A-Dim. Min./Max. 

0.85/ 0.87 Inch  
 
Overall Length 

11.62 Inch  
 
Overall Width 

7.31 Inch  
 
Overall Height 

26.00 Inch  
 
Guide Bar Length 

11.00 Inch  
 
Compression Bolt Length 

5.00 Inch  
 
Weight Operating/Empty 

88./ 86. LB  
 
 
Plates
 
Type 

4 G  
 
Plate Material 

0.50 MM 316 S/S  
 
Plates/Frame 

8  
 
Passes-H/C 

1/ 1  
 
Channels-H/C 

4/ 3  
 
Gasket Material 

NBR  
 
 
 
Connections 
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Location
 
Hot In 

1.00 Inch 316L S/S TOE Pipe  
 

1F 
 
Out 

1.00 Inch 316L S/S TOE Pipe  
 

4F 
 
Cold In 

1.00 Inch 316L S/S TOE Pipe  
 

3F 
 
Out 

1.00 Inch 316L S/S TOE Pipe  
 

2F 
 
 
 

 
 
 
Copper Pipe Specification 
 

Type  K Type  L/ACR 

HARD COILS HARD COILS 
20’ Lengths 

WALL 

60’ thru 1-1/2 
100’ thru 1-1/4 
40’ and 60’-2” 

onl y 
WGT/FT 

20’ Lengths 

WALL 

60’ thru 1-1/2 
100’ thru 1-1/4 

40’ - 2” onl y 

WGT/FT 

.035 .145 .030 .126

.049 .269 .035 .198 

.049 .344 .040 .285 

.049 .418 .042 .362 

.065 .641 .045 .455 

.065 .839 .050 .655 

.065 1. 04 .055 .884 

.072 1. 36 .060 1.14 

.083 2.06 .070 1.75 

.095 2.93 .080 2.48 

.109 4.00 .090 3.33 

.120 5.12 .100 4.29 

.134 6.51 .110 5.38 

.160 9.67 .125 7.61 

.192 13.90 .140 10.20 

.271 25.90 .200 19.30 

S ize 

NOM O.D. 
STANDARD 
LENGTHS 

NOM O.D. 
1/4" 3/8" 
3/8" 1/2" 
1/2" 5/8" 
5/8" _____ 3/4" 
3/4" 7/8" 

1" 1-1/8" 
1-1/4" 1-3/8" 
1-1/2" 1-5/8" 
2" _______2-1/8" 
2-1/2" 2-5/8" 
3" _______3-1/8" 
3-1 /Ú2" 3-5/8" 
4" _______4-1/8" 
5" _______5-1/8" 
6" _______6-1/8" 
8" 8-1/8" 

 



WP036-072 Series 
Reverse Cycle Chillers 

 
Dimensions 

MODEL          A             B              C             D              E              F             G              H              J               K             L          Water 
Height     Width      Depth                                                                                                                                        Conn. 

WP036            24.25      32.50       24.00       2.50         2.00       14.88       2.25         2.50        8.25        14.88       2.25      0.75 FPT 
WP060            24.25      32.50       24.00       3.00         2.50       17.00       2.50         4.00        3.38        18.00       3.38      1.00 FPT 
WP072            24.25      32.50       24.00       3.38         2.50       22.75       4.38         3.38        4.38        22.75       2.50      1.00 FPT 

 
NOTES: All dimensions within +/- 0.125". 

Specifications subject to change without notice. 
 
 
 

WP Series Reverse Cycle Chiller Nomenclature 
WP___-_ __ _-_ _ _ 

 
Series:                                                                                Supply Air Location:
WP-Water-to-Water                                                          X-None 

 
Nominal  Capacity:                                                            Return Air Location:

X-None 
Voltage: 
1-208/230-1-60                                                                 Water 
Connections: 
3-208/230-3-60                                                                 F-Front 
4-460-3-60 
5-575-3-60 

 
Cabinet Type:                                                                    Condenser  Material
CS-Condensing Section                                                 C-Copper 

N-Cupro-Nickel 
 
 
  

Heat Pump (Florida Heat Pump, http://www.fhp-mfg.com/ftp/pub/WP%204-04.pdf, 12-08-04) 
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FLUID FLOW & PRESSURE DROP 
Chilled Fluid Side (@ 55OF) Cond. Fluid Side (@ 85OF) 

Flow (GPM) P (FOH) Flow (GPM) P (FOH) 
4 2.8 4 2.7 
5 5.9 5 5.6 
7 9.9 7 9.3 
9 14.8 9 14 
11 20.6 11 19.4 

 
HEATING PERFORMANCE 
Based on 100F load temp. rise & 7 GPM source fluid flow. 
Leaving 

Load 
Fluid (F) 

Entering 
Source 
Fluid (F) 

Heating 
Capacity 
(BtuH) 

Power 
Input 
Watts 

COP 
Heat of 
Absorb. 
(BtuH) 

 35O 29,085 2,219 3.8 21,513 

 40O 31,872 2,321 4 23,953 

100O 50O 37,802 2,502 4.4 29,266 

 60O 44,205 2,651 4.9 35,158 

 70O 51,090 2,767 5.4 41,649 

 35O 27,432 2,296 3.5 19,599 

 40O 30,205 2,417 3.7 21,958 

110O 50O 36,035 2,640 4 27,027 

 60O 42,308 2,831 4.4 32,649 

 70O 49,024 2,988 4.8 38,829 

 35O 25,686 2,350 3.2 17,667 

 40O 28,418 2,494 3.3 19,910 

120O 50O 34,177 2,759 3.6 24,765 

 60O 40,311 2,993 3.9 30,098 

 70O 46,859 3,193 4.3 35,963 

 35O 24,772 2,370 3.1 16,685 

 40O 27,508 2,524 3.2 18,897 

125O 50O 33,210 2,811 3.5 23,618 

 60O 39,282 3,068 3.8 28,813 

 70O 45,747 3,291 4.1 34,519 

 35O 23,839 2,385 2.9 15,703 

 40O 26,565 2,549 3.1 17,866 

130O 50O 32,227 2,860 3.3 22,470 

 60O 38,236 3,139 3.6 27,526 

 70O 44,606 3,385 3.9 33,056 
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CHILLER PERFORMANCE 
Based on 7 GPM chilled fluid & 100F condenser fluid temp. rise. 

Leaving 
Chilled 

Fluid (F) 

Entering 
Cond. Fluid 

(F) 

Total 
Capacity 
(Tons) 

Total 
Capacity 
(BtuH) 

Power Input 
(Watts) EER 

Heat 
Rejection 

(BtuH) 
 75O 2.66 31,965 2,251 14.2 39,645 
 80O 2.56 30,717 2,330 13.2 38,667 

40O 85O 2.45 29,456 2,403 12.3 37,654 
 90O 2.35 28,184 2,469 11.4 36,609 
 95O 2.24 26,906 2,529 10.6 35,536 
 75O 2.78 33,410 2,277 14.7 41,177 
 80O 2.68 32,120 2,360 13.6 40,174 

42O 85O 2.57 30,817 2,438 12.6 39,135 
 90O 2.46 29,505 2,509 11.8 38,066 
 95O 2.35 28,187 2,574 11 36,969 
 75O 2.91 34,899 2,300 15.2 42,749 
 80O 2.8 33,565 2,389 14.1 41,717 

44O 85O 2.68 32,219 2,471 13 40,651 
 90O 2.57 30,864 2,548 12.1 39,556 
 95O 2.46 29,504 2,617 11.3 38,434 
 75O 2.97 35,669 2,311 15.4 43,555 
 80O 2.86 34,312 2,402 14.3 42,509 

45O 85O 2.75 32,943 2,487 13.3 41,429 
 90O 2.63 31,566 2,566 12.3 40,320 
 95O 2.51 30,167 2,639 11.4 39,171 
 75O 3.04 36,450 2,322 15.7 44,371 
 80O 2.92 35,054 2,416 14.5 43,298 

46O 85O 2.81 33,662 2,503 13.5 42,203 
 90O 2.69 32,262 2,584 12.5 41,080 
 95O 2.57 30,858 2,659 11.6 39,931 
 75O 3.17 38,032 2,342 16.2 46,023 
 80O 3.05 36,603 2,440 15 44,930 

48O 85O 2.93 35,148 2,533 13.9 43,792 
 90O 2.81 33,701 2,619 12.9 42,638 
 95O 2.69 32,250 2,699 12 41,460 
 75O 3.31 39,663 2,361 16.8 47,717 
 80O 3.18 38,183 2,464 15.5 46,589 

50O 85O 3.06 36,693 2,561 14.3 45,431 
 90O 2.93 35,181 2,653 13.3 44,232 
 95O 2.81 33,682 2,738 12.3 43,022 
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Circulation Pump (Grundfos, http://www.us.grundfos.com/web/download.nsf/ 
Pages/DB9E15987978351F88256C4E006EA652/$File/L-UP-PG-001.pdf, 12-08-04 
*Effective in USA only and information provided is subject to change without 
notice.*) 
U PS 15-42F/FR Closed Systems, 6 0 Hz

CLOSED SYSTEM MODELS A B C D E F Connection Type and Size Shipping Wt. 
(Lbs.) 

UPS15-42F 6 1/2 5 1/4 4 4  3/16 3 1/4 3  5/32 Flange – (2) 1/2" Dia. Bolt Holes 7 1/4 

UPS15-42FR 6 1/2 5 15/16 4 3 3/4 3 1/4 3  5/32 Flange – (2) 1/2" Dia. Bolt Holes 7 1/4 

 

Flow range: 0 - 17.5 U.S. GPM 
Head range: 0 - 17 FEET 

Motors: 2 Pole, Single Phase 

Maximum fluid temperature: 230°F (110°C) 

Min. fluid temperature: 36°F (2°C) 

Maximum working pressure: 145 PSI 

MODEL Spd. VOLTS AMPS WATTS HP CAPACITOR
 3  0.74 85 1/25 10mF/180V 

UPS15-42F/FR 2 115 0.57 65 --- --- 
 1  0.4 45 --- --- 
 3  0.43 95 1/25 2mF/400V 

UPS15-42F/FR 2 230 0.19 40 --- --- 
 1  0.14 30 --- --- 
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U P 26-64F Closed Systems, 60 Hz  

Flow range: 

Head range: 
Motors: 
Maximum fluid temperature: 

Min. fluid temperature: 

Maximum working pressure: 

0 - 34 U.S. GPM 

0 - 24 FEET 

2 Pole, Single Phase 

230°F (110°C) 

36°F (2°C) 

145 PSI 

 
MODEL VOLTS AMPS W ATTS HP CAPACI TOR  

115 1.7 185 1/12 8mF/180V  UP26-64F 
230 0.8 175 1/12 2.5mF/380V  

            

    
CLOSED SYSTEM MODELS A B C D E F Connection Type and Size Shipping 

Wt. (Lbs.) 

UP26-64F 6 1/2 6 3/8 5  1/16 4 1/8 3 1/2 3  5/32 Flange – (2) 1/2" Dia. Bolt Holes 11 1/4 
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UP 43-75F Closed Systems, 6 0  Hz  

Flow range: 

Head range: 

Motors: 
Maximum fluid temperature: 

Min. fluid temperature: 

Maximum working pressure: 

0 - 45 U.S. GPM 

0 - 26 FEET 
2 Pole, Single Phase 

230°F (110°C) 

36°F (2°C) 

145 PSI 

 
MODEL VOLTS AMPS W ATTS HP CAPACI TOR  

115 2.15 185 1/6 10mF/180V  UP43-75F 
230 1.07 175 1/6 2.5mF/380V  

            

    
CLOSED SYSTEM MODELS A B C D E F Connection Type and Size Shipping 

Wt. (Lbs.) 

UP43-75F 8 1/2 6 2/3 5  3/16 4 3/4 3 1/2 3  7/16 Flange – (2) 1/2" Dia. Bolt Holes 13 1/2 
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Circulation Pump (ITT Bell and Gossett, http://fhaspapp.ittind.com/ 
literature/files/155.pdf, 12-08-04) 

 
CAST IRON BRONZE STANDARD 60 CYCLE SINGLE PHASE 

MOTOR CHARACTERISTICS 
MODEL 
NUMBER 

PART 
NUMBER QTY.

MODEL 
NUMBER

PART 
NUMBER QTY. HP VOLTAGE

F.L. 
AMPS RPM 

PL-30 1 BL012  PL-30B 1 BL013 1/12 115 1.4 2650 
PL-30 1 BL014  PL-30B 1 BL015 1/12 230 0.8 2650 
PL-36 1 BL001  PL-36B 1 BL003 1/6 115 2.1 3300 
PL-36 1 BL006  PL-36B 1 BL008 1/6 230 1.1 3300 
PL-45 1 BL002  PL-45B 1 BL004 1/6 115 2.1 3300 
PL-45 1 BL007  PL-45B 1 BL009 1/6 230 1.1 3300 
PL-50 1 BL016  PL-50B 1 BL017 1/6 115 1.8 3300 
PL-50 1 BL018  PL-50B 1 BL019 1/6 230 1.0 3300 
PL-55 1 BL032  PL-55B 1 BL068 2/5 115 4.7 3250 
PL-55 1 BL033  PL-55B 1 BL069 2/5 230 2.4 3250 
PL-75 1 BL034  PL-75B 1 BL035 1/6 115 2.1 3400 
PL-75 1 BL036  PL-75B 1 BL037 1/6 230 1.1 3400 

PL-130/2" 1 BL063  PL-130B/2" 1 BL065 2/5 115 4.8 3200 
PL-130/2" 1 BL064  PL-130B/2" 1 BL066 2/5 230 2.4 3200 
PL-130/3" 1 BL070  PL-130B/3" 1 BL072 2/5 115 4.8 3200 
PL-130/3" 1 BL071  PL-130B/3" 1 BL073 2/5 230 2.4 3200 
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Circulation Pump (ITT Bell and Gossett, http://fhaspapp.ittind.com/ 
literature/files/484.pdf, 12-08-04) 
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Variable Frequency Drive (Siemens, http://www.us.sbt.siemens.com/HVP/ 
Components/Documentation/1253202.pdf, 12-08-04) p

Specification Description 

Operating temperature ranges IP20 and NEMA Type 1: 14°F to 104°F (–10°C to 40°C) 
IP54 and NEMA Type 12: 14°F to 104°F (–10°C to 40°C) 

Storage temperature –40°F to 158°F (–40°C to 70°C) 

Humidity 95% relative humidity — non-condensing. 

Altitude Up to 3280 ft (1000 m) above sea level without performance decrease. 

Overload capacity 10% periodic overload capacity for 60 seconds within 5 minutes relative to 
the nominal output current. 

Protection functions Protection against: Undervoltage, overvoltage, ground fault, short-circuit, 
stall, rotor jam, motor overtemperature, SED2 overtemperature. 

Electromagnetic compatibility Integrated EMC filter as per EN 55011 class B as footprint filter for frame 
sizes A to C, IP20. The filter is integrated in the SED2 for frame sizes D to 
F, IP20 and for all IP54 devices. Satisfies the requirements of EMC 
product standard EN 61800-3. 

Input frequency 47 to 63 Hz 

Setpoint resolution 0.01 Hz digital, 
0.01 Hz serial, 
10 bit analog 

Switching frequency 4 to 16 kHz (2 kHz steps). 

Fixed frequencies 15 programmable 

Masking frequencies 4 programmable 

Analog inputs Number: 2 

Can be changed over to 0/2 to 10V (programmable scaling) or 
0/4 to 20 mA (programmable scaling). 

Terminals used: 3, 4, 10, 11 
Resolution: 10 bits 

Read cycle: 10 ms. 

Analog inputs AIN1 and AIN2 are configurable for direct connection of an 
Ni 1000 temperature sensor.  

 142



Specification Description 

Digital inputs 6 (potential-free) inputs (extendable to 8) 

Freely programmable and possible changeover (sink, source) 

Terminals used: 5, 6, 7, 8, 16, 17 

Min. input current: 6 mA (actual: 8 mA) at 15V 

Logical 0 = <3V, logical 1 = >13V 

Max. input voltage: 33V 

Analog outputs Number: 2 

Can be changed over for 0 to 10V or 0/4 to 20 mA, (programmable 
scaling/parameter). Factory setting: 0 to 10V. 

Terminals used: 12, 13, 26, 27 

Impedance on configuration 0 to 10V: 1 K 

Read cycle: 10 ms 

Relay outputs 2 programmable relays, 6 contacts. 

 Relay 1 Terminals: 18, 19, 20 

Relay 2 Terminals: 23, 24, 25 

Max. contact rating: DC 30V/5 A, (resistive) 
AC 250V/2 A (resistive) 

Auxiliary supply 24V Galvanically separated, unregulated auxiliary supply (18 to 32V), 100 mA 

Terminal 9. 

Serial interface RS-485 (RS-232 optional with converter) 
Protocols: USS, P1, and N2 

Transmission rate: Up to 38.4K Baud (default 9.6K Baud) 

Power factor 0.7 total PF 

0.98 displacement 

VFD degree of efficiency 96 to 97% 

Switch-on current: Less than nominal input current 

Braking DC braking, dynamic braking 

CE conformity Corresponds to the requirements of the low-voltage guideline 73/23/EEC, 
supplemented by guideline 98/68/EEC and EMC. 

If installed according to the recommendations issued in this manual, the 
SED2 satisfies all EMC guideline requirements as defined in the EMC 
Product Standard for Power Drive Systems EN 61800-3. 
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Armaflex Insulation (Armacell, http://www.armaflex.com/www/armacell/ 
ACwwwAttach.nsf/ansFiles/017S-001-NA(NA).pdf/$File/017S-001-NA(NA).pdf,    
10-08-04) 
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Fluke NetDAQ (Fluke, http://assets.fluke.com/manuals/ 
netdaq__umeng0200.pdf, 12-08-04) 

 2640A/2645A General Specifications

Specification Characteristic 

Channel Capacity 20 

I/O Lines Total 12 

Size 9.3 cm high, 21.6 cm wide, 36.2 cm deep 
(3.67 in high, 8.5 in wide, 14.28 in deep) 

Weight Net, 4 kg (8.8 lb.) 
Shipping, 6.0 kg (13.2 lb.) 

Power 107 to 264V ac (no switching required), 50 and 
60 Hz, 15VA maximum 

9V dc to 16V dc, 6W maximum 

If both sources are applied simultaneously, ac 
voltage is used if it exceeds approximately 8 
times the dc voltage. 

Automatic switchover occurs between ac and 
dc without interruption. 

Safety Standards Both instruments comply with: 
IEC 1010-1 
UL 1244 
CSA Bulletin 556B. 
ANSI/ISA-S82.01-1994 
CSA C22.2 No. 1010.1-92 

EMC Standards When shielded cables are used, both 
instruments comply with: 
Vfg. 243/1991 
FCC-15B, at the Class B level 
EN 50081-1 
EN 50082-1 

Serial Interface (RS-232C) Connector: 9 pin male (DI-9P) 
Signals: TX, RX, DTR, RTS, GND 
Modem Control: full duplex 
Baud rates: 4800, 9600, 19200, 38400 
Data format: 8 data bits, no parity bit, one stop 
bit 
Flow control: XON/XOFF 
Echo: Off 

Common Mode Voltage 2640A 150V (300V on channels 1 and 11) 
2645A 50V dc or 30V ac rms. 
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2640A/2645A General Specifications (cont) 

Specification Characteristic 

Maximum Measurement Speed (Scanning 
Rates) 

2640A 

Slow - 6 readings per second 
Medium - 45 readings per second (60 Hz) 
Fast - 143 readings per second 
(20 configured channels) 

2645A 

Slow - 54 readings per second (60 Hz) 
Medium - 200 readings per second 
Fast - 1000 readings per second 
(20 configured channels) 
Fast single Channel - 400 readings per second 

Accuracy of Medium Scanning Rate = (Fast Accuracy + Slow Accuracy)/2 

Additional error if “Automatic drift correction” is 
turned off. 

If the instrument was fully warmed-up at the 
time drift correction was disabled, i.e. turned- 
on at least 1 hour earlier; 1/10 of the 90 day 
specification per C change in ambient 
temperature from the temperature when drift 
correction was disabled. 

If the instrument was NOT fully warmed-up at 
the time drift correction was disabled; Add an 
error equal to the 90 day specification for 
instrument warm-up + 1/10 of the 90 day 
specification per C change in ambient 
temperature from the temperature when drift 
correction was disabled. 
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        2640A DC Voltage Measurement General Specifications 

Specification Characteristic 

Input Impedance 100 M in parallel with 150 pF maximum for 
ranges 3V 

10 M in parallel with 100 pF maximum for ranges 
>3V 

Normal Mode Rejection 50dB minimum at 50 Hz/60 Hz 0.1 %, Slow Rate 

Common Mode Rejection 
120dB minimum at dc, 50 Hz/60 Hz 0.1 %, 1 
imbalance, Slow Rate 

 80dB minimum at dc, 50 Hz/60 Hz 0.1 %, 1 
imbalance, Medium and Fast Rates 

Channel-to-Channel Crosstalk 120dB minimum Slow Rate (e.g., 30V dc on 
channel 1 may cause a 30µV error on channel 2) 

100dB minimum Medium and Fast Rates (e.g., 1V 
dc on channel 1 may cause a 10 µV error on 
channel 2) 

Temperature Coefficient Add 1/10th the 90-day specification per C above 
28C or below 18C. (Generally, only the %input 
portion is affected.) 

Accuracy at -20C Multiply the -10C to + 60C accuracy specification 
by 2. After 1 hour warm-up. For accuracy between 
-10C and -20C, interpolate linearly. 

Maximum Input Voltage 150V (300V for channels 1 and 11) to any input 
terminal. 

    2640A DC Voltage Range and Resolution Specifications 

 Resolution 
Range Slow Fast 

90 mV .3 µV 1 µV 
300 mV 1 µV 3 µV 
3V 10 µV 30 µV 
30V 100 µV 300 µV 
150V/300V 1 mV 3 mV 

Note 300V range applies to channels 1 and 11 only.  
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    2640A DC Voltage Accuracy Specifications 

 Accuracy, 3 (% input + V) 

18C to 28C -10C to 60C 
Range 90 Day 1 Year 1 Year 

 Slow Fast Slow Fast Slow Fast 

90 mV .01%+7 µV .01%+17 µV .013%+8 µV .013%+18 µV .042%+18.2µV .042%+44.2µV 

300 mV .01%+15 µV .01%+30 µV .013%+17 µV .013%+35 µV .042%+39 µV .042%+78 µV 

3V .01%+.1 mV .01%+.2 mV .013%+.15 mV .013%+.2 mV .042%+.26 mV .042%+.52mV 

30V .01%+1.5 mV .02%+3 mV .013%+1.7 mV .026%+3.5 mV .042%+3.9 mV .084%+7.8mV 

150/300V .01%+15 mV .04%+30 mV .013%+17 mV .052%+35 mV .042%+39 mV .168%+78 mV 

Note 300V range applies to channels 1 and 11 only. 

 
 
 

                  2640A Thermocouple General Specifications 

Specification Characteristic 

Input Impedance 100 M minimum in parallel with 300 pF 

Open Thermocouple Detect Operates by injecting a small ac signal into the 
input after each measurement. A thermocouple 
resistance greater than 1 k to 10k is 
detected as an open input. 

Temperature Coefficient To calculate thermocouple accuracy for 
temperatures between 28ºC and 60ºC, or -10ºC 
and 18ºC, use a linear interpolation between 
the two applicable points. e.g., if the applicable 
spec at 28ºC is .6 and the spec at 60ºC is 1.1, 
then the spec at 40ºC = (1.1-.6)*(40-28)/(60- 
28)+.6= .5* (12/32) + .6 = .7875. 

Accuracy at -20C Multiply the -10C to + 60C accuracy 
specification by 2. After 1 hour warm-up. For 
accuracy between -10C and -20C, interpolate 
linearly. 
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          2640A Thermocouple Specifications 

  Accuracy ºC 

Thermocouple Resolution 18ºC to 28ºC -10ºC to 60ºC 
  90 Day 1 Year 1 Year 

Type Temperature ºC Slow Slow Slow Fast Slow Fast 
-100 to 80 .03 0.45 0.50 0.80 0.60 0.80 
80 to 230 .02 0.35 0.50 0.70 0.60 0.80J 
230 to 760 .02 0.40 0.50 0.70 0.80 0.90
-100 to -25 .04 0.55 0.60 0.90 0.70 1.00
-25 to 120 .03 0.40 0.50 0.80 0.60 0.90
120 to 800 .03 0.50 0.65 0.90 1.00 1.20

K 

800 to 1372 .03 0.70 1.00 1.30 1.60 1.90
-100 to -25 .05 0.65 0.75 1.20 0.80 1.30
-25 to 120 .05 0.55 0.60 1.00 0.70 1.10
120 to 1000 .04 0.45 0.60 0.90 1.00 1.20

N 

1000 to 1300 .03 0.55 0.75 1.00 1.20 1.50
-100 to -25 .03 0.45 0.50 0.80 0.60 0.80
-25 to 20 .02 0.35 0.40 0.60 0.50 0.70
20 to 600 .02 0.30 0.40 0.60 0.50 0.80

E 

600 to 1000 .02 0.40 0.50 0.70 0.90 1.00
-100 to 0 .04 0.60 0.65 1.00 0.70 1.10
0 to 150 .03 0.40 0.50 0.80 0.60 0.90T 
150 to 400 .02 0.30 0.40 0.60 0.60 0.80
250 to 600 0.1 0.90 1.00 2.10 1.20 2.20
600 to 1500 0.1 0.80 0.90 1.80 1.30 2.00R 
1500 to 1767 0.1 0.85 0.85 1.90 1.70 2.50
250 to 1000 0.1 0.95 1.10 2.30 1.30 2.40
1000 to 1400 0.1 0.80 1.00 1.90 1.40 2.30S 
1400 to 1767 0.1 1.00 1.30 2.20 1.80 2.80
600 to 900 0.2 1.20 1.40 3.10 1.50 3.20
900 to 1200 0.2 0.90 1.00 2.20 1.20 2.40B 
1200 to 1820 0.1 0.75 1.00 1.90 1.30 2.20
0 to 150 0.2 0.80 0.90 1.60 1.00 1.70
150 to 650 0.1 0.65 0.75 1.40 1.00 1.50
650 to 1000 .05 0.65 0.85 1.40 1.20 1.80
1000 to 1800 .05 1.00 1.30 2.10 2.10 2.80

C 

1800 to 2316 .05 1.60 2.10 3.20 3.40 4.60  
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HOBO Data Logger (Onset, http://www.onsetcomp.com/Products/ 
Product_Pages/pdfs/external_sensors.pdf, 12-08-04) 
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Vortex Flowmeter (Asahi, http://www.asahi-america.com/pdf/flowMeters/ 
universalVortex/operationsManual/Vortex_Manual.pdf, 12-08-04) 
V1 SERIES VORTEX FLOW TRANSMITTERS 

 
 
 

V1 MECHANICAL INSTAL LATION 
This meter will provide years of accurate 
service if good flow meter ins tallation 
practices  are followed. The flow tube 
should be ins talled where pipe vibration is 
minimal. Observe the upstream  piping 
requirem ents  l ist ed un der “Piping R eq uire- 
m ent s”. Upstream valves should not be 
used to control flow rate.  They should 
always be kept fully  open. Good quality 
ball valves with integral unions may be 
connected directly to  the flow tube if the 
valves are full y open during operation. 
This  allows  easy isolation and rem oval o f 
the flow  tube, should m aintenance 
be required. Cavita tion and  flow ra te 
pulsation will adversely affect flow meter 
performance. 

 
Diaphragm or piston pumps may not 
be used. Do not use Teflon tape or any 
kind of pipe dope when piping. I f 
flanges are used, do not allow gaskets 
to protrude into the flow stream. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SP EC I FIC ATIONS 
 

 
 
 
Turndown Ratio:      12: 1 (ex c ept 1/4"; 8:1 

and 1/2" L.C.; 10:1) 
Accuracy:                 ±1 %  of des igned 

full scale 
Repeatabili ty :           ±0.25% actual flow 
Output Signal:          Linear 4 – 20 mA 
Power Supply:          13 to 30 Vdc 
 

CSA Certi fied:          CSA- LR 1 10 81 4 
Weatherproof:          Ty pe 4X 
Maximum                  125% for  1/2  hour 
Overrange:                (st andard) 

No overrange for 
Hi-tem p units  

Response time:        1.5 sec, firs t order: 
a 7.5 sec delay 
until true flowrate 
is  indicated 

 
 
 
 
 
 

 
The simple appearance of the flow meter 
may tempt an installer to handle it as an 
ordinary nipple. Remember, it is  a pre- 
cision electronic instrument. Treat it 
with care. 

 
D o not use excessive force. Mating 
fittings  (F N PT ) an d f lang es  s hould b e 
screwed into flow meter tightly by hand. 
Then tighten an additional 1/2  to 3/4  turn 
with a wrench. 

Max Fluid Temp                        Max Operating Pressure, PSIG (KPa) 
° F (°  C )                   PVC                     PP                  CPVC                   PVD F 

 

203                      N. R .                    N. R .                   C F                        C F  
(95) 

 

150                      N. R .                     90                     63                       130 
(66)                                                 (621)                 (434)                     (896) 

 
100                        93                      130                   120                      150 
(38)                      (641)                   (896)                 (827)                    (1034) 

 

70                        150                     150                   150                      150 
(21)                     (1034)                 (1034)               (1034)                   (1034) 

 
 

Always use two wrenches when turning 
the flow tube into a fitting, one across  the 
flats  on the flow tube end, close to the 
fitting, and one on the fitting. 

 
Do not use tools  inside the flow tube, as 
this may damage the vortex sensor, and 
invalidate the warranty. 

 
The flow tube m ay be m ounted in any 
orientation. Three holes, tapped .250 –20 
UNC-2B, .375-inch deep, on .75-inch 
centers are provided on the 3/4-inch and 
smaller flow meters. These holes may be 
us ed (at  t he us er’s  discretion) to provide 

 
 
 
ELECTRONICS MODULE 
CONTAINMENT 
 
 

COVER 
 

CONDUIT ADAPTOR 
RETAINING RING 
ELEC TRONICS MODULE 
SIGNAL ADAPTOR 

 
 

FLOW BODY 
 
 

 
 
 
ELECTRONICS MODULE 
T O P VI E W 
 

A D J U S TM E N T S : 
ZE R O,  VI S C OS I TY, S PA N 
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VORTEX FLOW TRANSMITTERS V1 SERIES (C ON T I N U ED ) 

 
 
 
V1 SERIES 

 
 

 
 
 
 
 
1/2 N P T E L E C TR I C A L  C ON N E C TI O N 

 
 
 
D IM E N SI O N S 
 
 

 
 
 
 
 
P V C  
 

(1/2" S TR A I GH T TH R E A D – JI S O N LY Si z e A                  B                   C                  D                   E                   F                   I                 

B S P P C OM PATI B L E ) (in ch e s) (in)    (m m )    (in)     (m m )     (in)    (m m )    (in)     (m m ) (in)    (m m )    (in)     (m m )     (in)    (m m) 
1/4         3.8 1     97     1.7 5     45     5.2 5    13 3    2. 5 0     64       . 3 0       8      2.8 8     73     3.0 0     76 
1/2         3.8 1     97     1.7 5     45     7.1 3    18 1    2. 5 0     64  . 5 5     14 2. 8 8     7 3     3.0 0     76 

F                                                   3/4         3.8 1     97     1. 7 5     45     7.6 3    19 4    2. 5 0     64 
  1        3.9 2    10 0    1.7 5     45     8.0 3    20 4    2. 5 0     64 
  11/2      3.9 0     99     2.0 0     51     8.3 7    21 3    2. 5 0     64 
  2        4.3 1   10 9     2.0 0     51     8.3 7    21 3    2. 5 0     64 

 . 7 4     19     2.8 8     73     3.0 0     76 
 . 9 6     24     2.8 8     73     3.0 0     76 

1. 5 0     3 8     2.8 8     73     3.3 8     86 
1. 9 4     4 9     2.8 8     73     3.3 8     86 

 
DIMENSIONS 

I 

 
 
 
PVDF (BUTT FUSION ONLY) 

 
A                                                Size A                   B                    C                    D                    E                    F                     I                    

NP T/B U TT 
 END (in ch e s) (in)    (mm)    (in)     (mm)     (in)    (mm)    (in)     (mm) (in)    (mm)    (in)     (mm)     (in)    (mm) 

1/4         5.90    150      .63      16      4.87    124    1.31      33 
1/2         5.75    146      .78      20      4.87    124    1.31      33 
3/4         5.75    146      .94      24      4.87    124    1.44      37 

B                                                  1         5.88    149    1.19      30      5.09    129    2.00      51 
  11/2      6.21    158    1.50      38      6.24    158    2.50      64 

E                                 2         6.60    168    1.88      48      6.77    172    3.00      76 
DC 

 .302      8      2.88      73      3.00     76 
 .550    14      2.88      73      3.00     76 
 .740    19      2.88      73      3.00     76 
 .960     24     2.88      73      3.00     76 

1.500    38     2.88      73      3.38     86 
1.940    49     2.88      73      3.38     86 
 

 
 
 

Replacement electronics: To order  m od ules 
by nu m ber, m at c h m et er line siz e as f ollow s: 

 
L i n e  S i z e                 Part 

(i n ch e s)               Number 

1/4, 1/2  LC             8642010 
1/2                           8642015 

3/4  and 1              8642020 
1/2  and 2             86420301 

 

 
 
20 
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5 

 
2 
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Paddle Wheel Flowmeter (Gems Sensors, http://www.gemssensors.com/
PDF/Catalog/RFA.pdf, 12-08-04) 

 

Brass and Stainless Steel Bodies - .25~ and .50~ Ports 

 

Not es : 
1.  Standard  on  S tai nl ess  S teel  bodi es. 
2.  For hi gher p ress ure /t emperatu re rati ngs stai nless stee l face  pl a tes a re  ava ilabl e.  Cons ul t fac tory. 

How To  Order 
For standard configurations, specify Part Number based on desired body material and 
port size. 

 Flow Ranges – GPM  Body 
Material 

Port Size 
NPT Low Range Part Standard Range Part 

  (Accuracy) Number (Accuracy) Number 
 .25~ 0.1 to 1. 0 (±7.0%) 170290 0.5 to 5. 0 (±7.0%) 170280 
Poly propy lene 

.50~ 1.5 to 12.0 (±7. 0%) 170291 4.0 to 20.0 (±15.0%) 170281 
 .25~ 0.1 to 1. 0 (±7.0%) 170292 0.5 to 5. 0 (±7.0%) 170282 
 .50~ 1.5 to 12.0 (±7. 0%) 170293 4.0 to 20.0 (±15.0%) 170283 

Brass 
.75~ — — 5.0 to 30.0 (±10.0%) 180407 

 1.00~ — — 8.0 to 60.0 (±15.0%) 182098 
D   9/16~-18 0.1 to 1. 0 (±7.0%) 170295 0.5 to 5. 0 (±7.0%) 170285 

Stainless .50~ 1.5 to 12.0 (±7. 0%) 170296 4.0 to 20.0 (±15.0%) 170286 
Steel .75~ — — 5.0 to 30.0 (±10.0%) 182097 

 1.00~ — — 8.0 to 60.0 (±15.0%) 182099 

 

Specificat ions  
Wetted Materials 

Body Brass, 316 Stainless Steel or Poly propy lene 
(Hy droly tical ly  Stable, Glass Reinforced) 

Rotor Pin Ceramic 
Rotor PPS Composi te, Black1 
Lens Poly sulfone 
O-Ring Viton® (Al loy  Bodies); Buna N (Poly propy lene Body ) 
Low Flow Adaptor Glass Reinforced Poly propy lene 

Operating Pressure, Maximum 
Brass or Stainless Steel Body__________ 200 PSIG @ 70°F, 100 PSIG @ 212°F2 
Polypropylene Body________ 100 PSIG @ 70°F, 40 PSI Max . @ 180°F ________  

Operating Temperature, 
Brass or Stainless Steel Body -20°F to 212°F (-29°C to 100°C) 
Polypropylene Body -20°F to 180°F (-29°C to 82°C) 

Electronics 150°F (65°C) Ambient 
Viscosity, Maximum 200 SSU 
Input Power 24 VDC, ±10% 
Output Signal 0-10 VDC Analog Signal @ 1 mA, Max . 
Current Consumption 25 mA, Max . 
Current Source Output, Max. 70 mA 
Frequency Output Range 15 Hz (Low  Flow ) to 225 Hz (High Flow ) 
Accuracy See Table Below  
Electrical Termination 22 AWG PVC-Jacketed, 24~ Cable. Color Coded: 

Red = +VDC; Black = Ground; Whi te = Signal Output 

Dimens ions 
Polypropylene Bodies 

Flow Rate Monitoring – RFA Types 
 0 to 1 0 VDC  A nal og Ou tpu t 
GEMS Sensors popularized the RotorFlow’s paddlewheel design by combining high 
visibility rotors with solid-state electronics that are packaged into compact, panel 
mounting housings. They provide accurate flow rate output with integral visual 
confirmation...all with an unprecedented price/perfor mance ratio. RFA Types feature a 
0 to 10 VDC analog output which is proportional to flow rate. 
Typical Applicat ions  
• Water Purification/Dispensing Systems • Chemical Metering Equipment 
• Lasers and Welders • Water Injection Systems 
• Semiconductor Processing Equipment • Chillers and Heat Exchangers 

 

High Resolution 
Black Rotor 
PP S c omposi te.  E ac h of  the six  
ro to r a rms is magnetized. A PTFE 
loaded  bus hi ng ensures  long li f e. 
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Watt Transducer (Ohio Semitronics, http://www.ohiosemi.com/pdf/gw5.pdf,    
12-08-04) 

PRECISION AC WATT TRANSDUCER MODEL   GW5 
 
 
 
 
DESCRIPTION 

 
 
ACCURATE TO  0.2% OF READING 
 
 

The model GW5 provides power measurement to within 
±0.2% of reading accuracy in single or polyphase 
systems.  The electrically isolated dc output is propor- 
tional to the instantaneous power averaged over several 
cycles. 

 
Currents up to 20 amperes and voltages up to 600Vac 
can be directly connected to the GW5, thus eliminating 
the additional cost and additive errors of current and 
voltage transformers for these ranges.  The GW5 can be 
used with OSI metering class current trans formers for 
measurements up to 10 kiloamperes. 

Specific outputs can be selected to 
interface with any data acquisition 
system from a simple recorder 
to computer, SCADA, or PLC 
based system. 
 
The GW5 is widely used in a variety of applications, 
including hydro electric generator  output measure- 
ment, end-of-line appliance testing for energy consump- 
tion, building automation, energy management, and 
cogeneration systems. 
 

 
FEATURES: 
•      Accurate regardless of variations in voltage, current, 

power factor, or load. 

 
APPLICATIONS: 
*      Equipment monitoring for process control. 
* 

 
Available with 1, 1 1/2, 2, 2  1/2 or 3 element 
configurations.  Provides bi-directional operation. 

 
Accuracy maintained over  wide temperature range, 
calibration traceable to NIST. 

Integration into energy management systems, or a 
variety of sub-metering applications. 

 
*      Measurement using direct-connection, current 

transformers, and/or potential transformers. 
 

 
 
 
 

SINGLE-PHASE MODELS - INTERNAL SENSOR (ONE ELEMENT) 
 

INPUTS 
 
F.S. 

 
STANDARD OUTPUTS, MODEL GW5- 

VOLTS AMPS (WATTS) ±1mA*        ±1mA ±10Vdc* ±10Vdc 4-20mA 4-20mA*    ±5Vdc*      ±5Vdc 
 

0 -  150 
 
 

0 -  300 
 
 

0 -  600 
 
 

 
0 -    5 
0 -  10 
0 -  20 
0 -    5 
0 -  10 
0 -  20 
0 -    5 
0 -  10 
0 -  20 

 
500 

1000 
2000 
1000 
2000 
4000 
2000 
4000 
8000 

 
001A 
010A 
019A 
002A 
011A 
020A 
003A 
012A 
021A 

 
001B 
010B 
019B 
002B 
011B 
020B 
003B 
012B 
021B 

 
001C 
010C 
019C 
002C 
011C 
020C 
003C 
012C 
021C 

 
001D 
010D 
019D 
002D 
011D 
020D 
003D 
012D 
021D 

 
001E 
010E 
019E 
002E 
011E 
020E 
003E 
012E 
021E 

 
001EG 
010EG 
019EG 
002EG 
011EG 
020EG 
003EG 
012EG 
021EG 

 
001CX5 
010CX5 
019CX5 
002CX5 
011CX5 
020CX5 
003CX5 
012CX5 
021CX5 

 
001X5 
010X5 
019X5 
002X5 
011X5 
020X5 
003X5 
012X5 
021X5 

 
 

THREE-PHASE, THREE-WIRE MODELS - INTERNAL SENSOR (TWO ELEMENT) 
 

INPUTS 
 
F.S. 

 
STANDARD OUTPUTS, MODEL GW5- 

VOLTS AMPS (WATTS) ±1mA* ±1mA ±10Vdc* ±10Vdc      4-20mA 4-20mA*    ±5Vdc* ±5Vdc 
 

0 -  150 
 
 

0 -  300 
 
 

0 -  600 
 
 

 
0 -    5 
0 -    5 
0 -  10 
0 -  20 
0 -    5 
0 -  10 
0 -  20 
0 -    5 
0 -  10 
0 -  20 

 
1000 

  1000 
..2000 
..4000 
2000 

..4000 

..8000 
4000 

..8000 
16000 

 
004A 
4.5A 
013A 
022A 
005A 
014A 
023A 
006A 
015A 
024A 

 
004B 
4.5B 
013B 
022B 
005B 
014B 
023B 
006B 
015B 
024B 

 
004C 
4.5C 
013C 
022C 
005C 
014C 
023C 
006C 
015C 
024C 

 
004D 
4.5D 
013D 
022D 
005D 
014D 
023D 
006D 
015D 
024D 

 
004E 
4.5E 
013E 
022E 
005E 
014E 
023E 
006E 
015E 
024E 

 
004EG 
4.5EG 
013EG 
022EG 
005EG 
014EG 
023EG 
006EG 
015EG 
024EG 

 
004CX5 
4.5CX5 
013CX5 
022CX5 
005CX5 
014CX5 
023CX5 
006CX5 
015CX5 
024CX5 

 
004X5 
4.5X5 
013X5 
022X5 
005X5 
014X5 
023X5 
006X5 
015X5 
024X5 
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MODEL   GW5 
 
 

ACCURATE TO  0.2% OF READING 
 
 

THREE-PHASE, FOUR-WIRE MODELS - INTERNAL SENSOR (THREE  ELEMENT) 
 

INPUTS 
 
F.S. 

 
STANDARD OUTPUTS MODEL GW5- 

VOLTS AMPS (WATTS) ±1mA* ±1mA ±10Vdc* ±10Vdc      4-20mA 4-20mA*    ±5Vdc* ±5Vdc 
 

0 -  150 
 
 

0 -  300 
 
 

 
0 -    5 
0 -    5 
0 -  10 
0 -  20 
0 -    5 
0 -  10 
0 -  20 

 
1500 
1500 
3000 
6000 
3000 
6000 
12000 

 
007A 
7.5A 

016A 
025A 
008A 
017A 
026A 

 
007B 
7.5B 
016B 
025B 
008B 
017B 
026B 

 
007C 
7.5C 
016C 
025C 
008C 
017C 
026C 

 
007D 
7.5D 
016D 
025D 
008D 
017D 
026D 

 
007E 
7.5E 
016E 
025E 
008E 
017E 
026E 

 
007EG 
7.5EG 
016EG 
025EG 
008EG 
017EG 
026EG 

 
007CX5 
7.5CX5 
016CX5 
025CX5 
008CX5 
017CX5 
026CX5 

 
007X5 
7.5X5 

016X5 
025X5 
008X5 
017X5 
026X5 

 
NOTE:  PART NUMBER 7.5  DENOTES 2 1/2 ELEMENT UNIT. 

 
 
 

Highlighted models, (5A), can be used  with customer's 
existing current transformers, or OSI Low Cost Current 
Transformers shown on page 89. 
Voltage specifications are line-to-neutral voltage. 
*Denotes self-powered unit, limiting input voltage ranges to: 

85 - 135 for 150V models 
200 - 280 for 300V models 
380 - 550 for 600V models 

All others require 85 - 135 Vac instrument power, (60 Hz.). 
All option "- 22" for 220Vac instrument power 

 

 
 
 
 

ORDERING  INFORMATION 
Example:  Self-powered, three-phase, four-wire, 
120V, 5A input with 0 - 5Vdc output, proportional 

to 0 - 1500 Watts. 
GW5-007CX5 

 
 
 

50  HERTZ  MODELS 
Self-powered units - Add suff ix "- 50" to part number. 

Units requiring external instrument pow er: 
120V, 50Hz. - Add suff ix "- 51" to part number. 
220V, 50Hz. - Add suff ix "- 52" to part number. 

 
 
 
 
 

INPUT 
VOLTAGE:  See tables 
CURRENT:  See tables 
FREQUENCY RANGE:  58 - 62 Hz. 
IIII       Optional 50 Hz.:   48 - 52 Hz. 
POWER FACTOR:  Any 
BURDEN: 

 
 
 
MODEL  GW5  SPECIFICATIONS 
 

OUTPUT 
ACCURACY:  ±0.2% RDG.; ±0.04% F.S. 

(Includes combined effects of voltage, current, 
    load and power factor.) 
OUTPUT RIPPLE:  Less than 0.5% F.S. 
OUTPUT LOADING (ohms): 

0 - 1mA:    0 - 10K 
Voltage:     Less than 0.1VA per phase 
Current:     Less than 0.28VA per phase 
Output amplifier:     2 Watts 

OVERLOAD: 
Voltage (cont.):        150V range: 175V 

300V range: 350V 
600V range: 600V 

Current (cont.):        5A range: 2 times full-scale 
10A range:  2 times full-scale 
20A range:  Full-scale 

        (transient):       All  ranges 
50A (10 sec./hr.) 
250A (1 sec./hr.) 

DIELECTRIC TEST (Input/Output/Case): 1800Vac (RMS) 
SURGE:  Withstands IEEE SWC test 

0 - 10Vdc: 2K  min. 
4 - 20mA:  0 - 500 
0 - 5Vdc:    2K  min. 

RESPONSE TIME (99%):  Less than 200 milliseconds 
FIELD ADJUSTABLE CAL.:  ±2% min. 
COMPLIANCE VOLTAGE:  12Vdc min. 
OPEN CIRCUIT VOLTAGE: 

0 - 1mA, 0 - 10Vdc, 0 - 5Vdc outputs:  ±15Vdc 
4 - 20mA output:  15Vdc 

TEMPERATURE EFFECT (-20 o to  +65oC): 
±0.005% per degree C 

OPERATING HUMIDITY:  0 - 95% non-condensing 
INSTRUMENT POWER (std.):  85 - 135Vac, 60 Hz, 7VA. 
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I/O Board (Measurement Computing, http://www.measurementcomputing.com/ 
pdf pd 04) s/pci-dio24_24h. f, 12-08-g p p

Dig ital Type 82C55 
Configurat ion 2 banks of 8, 2 banks of 4, p rogrammable by bank as input or output
Number of channels 24 I/O
Output High 3.7 volts min @ -2.5 mA 
Output Low 0.4 volts max @ 2.5 mA
Input High 2.2 volts min, 5.3 volts absolute max
Input Low 0.8 volts max, -0.3 volts absolute min 
Power-up / reset state Input mode (high impedance)
Interrupts INTA# - mapped to IRQn via PCI BIOS at boot- time 
Interrupt enable External (IR ENABLE, active low, disabled by default through internal 

resistor to TTL high) and programmable through PCI9052. 
0 = disabled 
1 = enabled (default )

Interrupt sources External source (IR INPUT), polarity programmable through PCI9052. 
1 = active high 
0 = active low (default)
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