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1 Introduction 

1.1 Motivation  

1.1.1 CLF Design Theory 
 
 Linear H2 and H∞ design methods are proven tools for designing control laws for 

guaranteed optimal and robust performance of linear systems. Zhou (1997) & Levine, et 

al. (1996) provide an introduction to these subjects. Linear structure allows controller 

design methods applicable to all linear systems that are controllable and observable. 

Although nonlinear systems do not lend themselves to a single design method, many 

engineering systems are linearizable and can be fit into the linear H2 and H∞ design 

framework. The drawback is that the resulting controllers exhibit degraded performance 

from being robust against the nonlinearities. 

A more general and less conservative controller design method for nonlinear 

systems is the use of control Lyapunov functions (CLFs) (Khalil, 1996), (Krstic, 1995). 

This approach forces the “energy” of the system to decrease with time. “Energy” is 

represented by a positive definite function of the system states, called the CLF. As the 

states increase in magnitude, the CLF increases. As an example, in a mechanical system, 

energy increases with increasing positions and velocities, such that an appropriate CLF 

also increases with the positions and velocities. The CLF time derivative can then be 

made a function of the control input(s), such that any control law that causes the CLF to 

constantly decrease over time (in a closed set of state space) is guaranteed to drive the 
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states to the equilibrium point(s). If the energy of the system continuously decreases, the 

system must settle to an equilibrium point. Lyapunov stability theory can be used to find 

a satisfactory control law from two broad approaches (Kokotovic & Arcak, 2001): 1. A 

control law is selected and a search for a Lyapunov function is conducted to prove the 

performance of the closed loop system, 2. A control Lyapunov function is selected, from 

which a control law is derived that yields certain performance measures. The difference 

between the two approaches is that the first relies primarily upon analysis, while the 

second relies on synthesis. Specifically, in the first approach the control law is fixed, such 

that the performance measures are invariant to the selection of the Lyapunov function. 

Hence the Lyapunov function acts merely as a tool to guarantee stability, and sometimes 

estimate the performance measures. In the second approach, the control law arises from 

guaranteed performance measures of the CLF (i.e. rate of convergence and region of 

attraction). The problem is that the CLF may not be a good selection for determining the 

desired performance measure because the CLF topology and parameter values are 

incapable of yielding “globally optimal” performance, where “global” means the set of 

all possible CLF’s. The work of Johansen (2000, a & b) offers a computational procedure 

for generating non-quadratic Lyapunov functions which can be used to estimate the 

performance of smooth nonlinear systems. The work shows that any Lyapunov function 

may be represented to arbitrary accuracy by a sufficiently large finite summation of 

quadratic functions weighted by smooth switching functions. Johansen’s work indirectly 

supports the need to appropriately tune a CLF so that an accurate estimate of the 

performance of the system may be obtained and used by the optimization algorithm. 
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1.1.2 CLF Design Examples 
 The manner in which the system states and control signal settle to equilibrium is 

the focus herein and will be referred to as the performance measure of the pair, control 

law and CLF. Typical performance measures include the RMS and maximum values of 

the system states and control signals, the rate of convergence of the system, and the 

maximum region of attraction, loosely defined as the set of points in state space such that 

the state returns to equilibrium (defined precisely below). Because of the dependence of 

the CLF on the control signals, the performance measures depend on both the selection of 

the CLF and the control law. In the work that follows, we first select the CLF and control 

law functions and use a numerical method for tuning the parameters of these functions to 

satisfy the performance requirements. We investigate the simultaneous numerical tuning 

of both the CLF and the control law parameters. By allowing both entities to vary when 

searching for a solution, shortcomings of other methods may be overcome. Henceforth, 

the resulting CLF and control law will correspond to the pair (P,K) where P stands for the 

vector of parameters of the CLF and K for the vector of parameters of the control law. In 

some situations, P and K may not be independent of each other due to the selection of 

CLF and controller topologies (e.g. PBK T

2
1

−= , nxnnx PB ℜ∈ℜ∈ ,1 ). To demonstrate the 

utility for this approach, consider as an example a parameterized 2nd order linear time 

invariant system given by the equation 

0,
1
0

1
10

>⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−−

= aux
a

x& , [ ] 12
21

xTxxx ℜ∈= , ℜ∈u  (1.1) 
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where dot notation indicates time differentiation. We wish to use CLF theory to design a 

stabilizing control, u, of the states, x. We select a parameterized form of the CLF, V(x), 

given by 

10,
10

0
),( <<⎥

⎦

⎤
⎢
⎣

⎡
−

= bx
b

b
xbxV T      (1.2) 

We use this form of CLF so that we may vary the influence of 1x  and 2x on the CLF. 

Suppose we seek to find a control such that  

2
2)( xxV −=&         (1.3) 

Computing V&  yields 

uxbxbaxxbbaxV 2
2
221 )1(2)1(2)12(2),,( −+−+−=&   (1.4) 

It is straightforward to show that (1.3) can be satisfied by selecting u as 

                      21 2
1

1
12),,( xaab

b
xbaxu ⎟

⎠
⎞

⎜
⎝
⎛ +−

−
+=      (1.5) 

            The pair (P,K) becomes (b, [a b]). Now suppose we desire to minimize the 

control effort inside the region defined by [ ] [ ]{ }11,11: 21
2 −∈−∈ℜ∈= xxxS  (a unit 

square centered at the origin in state-space) by varying the free parameter b. Considering 

a fixed, a suitable performance measure could be defined as 

∫ ∫− −
=

1

1

1

1 21
2),,()( dxdxbaxubJ   (1.6) 

in which we wish to minimize the control effort in S. It may be shown for the ranges of a 

and b, the minimum of (1.6) exists at the point  

                        
⎭
⎬
⎫

⎩
⎨
⎧ =ℜ∈= 0:*

db
dJbb .         (1.7) 

The derivative of J with respect to b is 
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                           ( )
( )31

112
3
2

−
+−

−=
b
ba

db
dJ         (1.8) 

In this special case, solving for *b  in (1.7) yields 

                                     
a

b
2
11* −=         (1.9) 

            We see that the selection of the CLF in (1.2) has an effect on the optimality of the 

resulting control. Our example minimized the control effort in a region of state space. 

Had we selected an arbitrary value for b, other than *b of (1.9), a suboptimal controller 

would have resulted. In addition, 
2
1

≤a  implies 0* ≤b , violating the 

requirement 10 << b , hence 1.3 cannot be satisfied if
2
1

≤a . 

           Now consider a similar investigation of a 2nd order nonlinear time invariant 

system. The system equations are 

                             ,)()( uxgxfx +=&  [ ] [ ] ℜ∈== uxgxxf TT ,10)(,0)( 3
1  (1.10) 

In this example, we begin by selecting Sontag’s Universal Formula (Sontag, 1989) as the 

control law                   

 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=
∂
∂

≠
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
∂
∂

−
=

00

0

42

g
x
Vif

g
x
Vif

g
x
V

g
x
Vf

x
Vf

x
V

u ,   (1.11) 

  where ℜ→ℜ2:V . 

Assuming a CLF, V(x), exists, the control law of (1.11) is a smooth globally asymptotic 

stabilizing control for (1.10) because it forces the state trajectories of (1.10) to follow the 
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gradient of the CLF. A problem with such a control law is the “ g
x
V
∂
∂ ” term in the 

denominator may cause u to become very large. To investigate the role of the CLF, we 

assume the quadratic function in  

2/0,10,
cossin
sincos

10
0

),,( πθ
θθ
θθ

θ <≤<<⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
−

= bx
b

b
xbxV T   (1.12) 

is a “local CLF” (specifically defined in the next section). Equation (1.12) is general 

quadratic function similar to (1.2), except that we introduce a new parameter,θ , which 

rotates the eigenvectors about the origin. The local CLF gradient is  

                                    ⎥
⎦

⎤
⎢
⎣

⎡
−−
−

=
∂
∂

θθ
θθ

cos)1(sin)1(
sincos

bb
bb

x
x
V T     (1.13) 

The specific expression for the control law (1.11) now becomes 

( )
( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=−−

≠−−
−−

−+−+

−+
+

−+

=

0cos)1(sin0

0cos)1(sin
cos)1(sin

cos)1(sin

sin)1(cos

sin)1(cos

21

21
21

4
21

2
2

3
1

4
1

2
3
1

4
1

θθ

θθ
θθ

θθ

θθ

θθ

bxbxf

bxbxif
bxbx

bxbx

bxxbx

bxxbx

u  (1.14) 

    Ensuring that (1.14) does not grow too large might involve minimizing the 

maximum control effort on some set S by tuning b and θ . Since a closed form optimal 

solution probably does not exist or is at least unknown, u would have to be computed and 

evaluated at all the points in S for every iteration of the optimization algorithm. Even for 

such a relatively simple system and control law, we clearly have a multimodal 

optimization problem which requires many function evaluations. It is much more 

desirable to find an optimization algorithm that scales nicely with problem complexity.  
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1.2 Definitions, Problem Statement, and Background Theory  

1.2.1 Scope of Systems and CLF’s 
 

In the following, we assume differentiable time-invariant nonlinear systems and 

controls of the form 

   ( ) ),()( Kxuxgxfx +=&     (1.15) 

where nx ℜ∈  is the n-dimensional state vector, pK ℜ∈  is the p-dimensional control 

gain vector, ℜ→ℜ + pnu :  is the control input, nngf ℜ→ℜ:,  are the system dynamics, 

and 1,, Cgfu ∈  , f(0)=0, where 1C  is the space of all differentiable functions. Chapter 2 

discusses the specific control laws selected for the study. 

 We restrict the analysis to quadratic Lyapunov functions of the form 

    PxxxV T=)(       (1.16) 

where 0, >=ℜ∈ Tnxn PPP . The optimization parameters shall be represented by the 

pair (P,K).  

Adapted from (Sontag, 1989), a local CLF is defined in this work as a smooth, 

proper, and positive definite function ℜ→ℜnV : , such that 
{ }

( ) 0,inf
0, 0

<
−∈ℜ∈

uxV
Xxu

& , 

where  

{ }00 ∪ℜ⊂ nX       (1.17) 

is the region of interest. The region of interest is defined as a subset of state-space where 

the controller is optimized that contains a neighborhood of the origin and only one 

equilibrium point. We shall use “local CLF” and “CLF” interchangeably from this point 

on in the discussion. 
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1.2.2 Performance Measures 
The performance measures considered herein are: 1) minimum rate of 

convergence, minγ ; 2)  region of attraction, X ; and 3) maximum control effort, 
max

u . 

These performance measures are defined below for all x in a region of state-space, 0X . 

The minimum rate of convergence, minγ , is defined by the expression (Johansen, 

2000 a) 

( ) ( ) 0,0,0 min
2

1

2
min

≥>≤
−

tex
c
c

tx
t

γ
γ

    (1.18) 

where, •  denotes the 2-norm, ,)( 2
1 xcxV ≥ ),()( min xVxV γ−≤&  and ( )Pc λ=2  the 

magnitude of the largest eigen-value of P. This performance measure means that the 

norm of the states will converge no slower than an exponential decay with time constant 

min/2 γ , and is based on uniform exponential stability. 

The region of attraction, X, is defined as (Johansen, 2000 a) 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≤∈=

∂∈
ξ

ξ
VxVXxX

X 0
inf0      (1.19) 

where inf denotes “infimum” of set theory and 0X∂  represents the border of the set 0X . 

This definition is based on the fact that the trajectory of the system cannot cross a level-

set aΩ  of the Lyapunov function, ( ){ }0,0 >=∈=Ω ααα xVXx , because the Lyapunov 

function is a decreasing function of time. The value for α  in this case is ( )ξα
ξ

V
X 0

inf
∂∈

= . 

Maximum control effort, maxu , will be defined as  

   uu
Xx∈

= supmax        (1.20) 
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where u is the output of the controller and sup denotes “supremum” of set theory. The 

utility of this performance measure is that, along with the minimum region of attraction 

performance measure (1.19), it may be used to design controllers for systems with sensor 

and actuator saturations by ensuring the saturation levels are avoided. 

1.2.3 Problem Statement 
The objective of this thesis is to demonstrate the effectiveness of tuning both the 

control law and the local CLF simultaneously to maximize the rate of convergence and 

minimize the control effort of nonlinear systems. The controller design intent is to find a 

controller tune specific to the nonlinear system that is less conservative than the tune 

based on robust linear systems theory. Two control laws, defined in Chapter 2, will be 

tested: 1. an LQR full-state feedback control law, and 2. a Sontag-like nonlinear full-state 

feedback control law. It is assumed that a quadratic Lyapunov function is a local CLF for 

the nonlinear systems studied herein. The proposed solution method does not offer a strict 

guarantee on performance level. However, it is suggested that with enough random 

performance sampling, the system will achieve the estimated performance level with 

sufficiently high confidence, making the proposed method a practical solution for real-

world controller design. 

1.2.4 Literature Review 
Convex optimization techniques were used in Johansen (2000, a & b) to 

numerically compute a generalized non-quadratic Lyapunov function for Lipschitz 

nonlinear systems. The work was based solely on the use of Lyapunov functions as tools 

to measure the performance of smooth (locally Lipschitz) nonlinear systems. Extensions 

to using the method for controller design were not addressed, however. Ghaoui & 
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Balakrishnan (1994) proposed the so-called “V-K” iteration technique for linear control 

systems (analogous to the “D-K” iteration of mu-synthesis (Zhou, 1997)), where the 

control gains, K, are held fixed and the quadratic Lyapunov matrix, P, is found using 

LMI techniques. This minimizes the time derivative of the Lyapunov function, and then 

P is held fixed while K is used to minimize the time derivative of the Lyapunov function. 

Although Johansen’s work was not used for controller design, an extension is 

fairly straightforward. While not covered herein, an interesting avenue of future research 

would be to replace the quadratic Lyapunov functions and linear control laws of Ghaoui 

& Balakrishnans’ V-K iteration method with the general non-quadratic Lyapunov 

functions of Johansen’s method, then employ control laws linear-in-the-parameters to 

extend the V-K iteration method to Lipschitz nonlinear systems that are affine in the 

control law. Johansen’s method exploits the structure of the selected Lyapunov function, 

which is linear-in-the-parameters. If a control affine system and a linear-in-the-

parameters control law were assumed, the controller parameters would also show up 

linearly in V& , so that a convex optimization method could be used to alternately tune 

both the CLF and controller parameters.  

1.2.5 Restrictions of Current Methods 
Ghaoui & Balakrishnans’ method is restricted to quadratic Lyapunov functions 

and linear systems. The possible extension to Johansen’s method outlined above is 

restricted to affine in the control nonlinear systems with linear-in-the-parameters control 

laws. In addition, these methods require that the CLF and the control law be tuned 

separately. Fixing one set of parameters and tuning another is a restriction in the 

optimization method, which may hinder the parameter search. Considering the 
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optimization mechanism known as “hill climbing”, holding some parameters constant 

while varying others is analogous to traveling up the hill in alternating orthogonal 

directions, whereas, tuning parameters simultaneously is analogous to following the 

gradient all the way up the hill. Following the gradient can be a more efficient search 

mode because it is instantaneously the fastest way to increase elevation. The approach 

taken herein exploits the interaction between the CLF and the control law as they are both 

varied simultaneously, with the intention of finding better controllers and/or a better 

optimization method.  

1.2.6 Checking Performance Measures for Nonlinear Systems 
The performance measures must be met everywhere in 0X . However, checking 

every point is impossible because 0X , although a compact set, is a dense uncountably 

infinite set of points. We must therefore find a way to sample 0X  and check the 

performance measures on a discrete finite subset, 0
dX , while guaranteeing that the points 

between the “checking points” of 0
dX  also satisfy the requirements.  

The following is taken from “Theorem 2” of Johansen (2000 a) and may be used 

to guarantee the Lyapunov conditions are met for all 0Xx∈ given that they are satisfied 

for all 0
dXx∈ . We first present some preliminary definitions used in the theorem. Define 

the checking set density function )(xε by 

d
Xx

xxx
dd

−=
∈ 0

inf)(ε       (1.21)  

which is the distance from some point in the region of interest, 0Xx∈ , to the closest 

neighbor in the checking set, 0
dd Xx ∈ . Define the Lipschitz constant for f as fL . The size 
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parameter will be defined as ),(sup
,0

kxfS
kXx Κ∈∈

= , where Κ  is the set of admissible values 

for the control gains, ( )PP λ= , and yxX
Xyx

−=
∈ 0,

0 sup . 

Theorem 1.1 (adapted from Theorem 2 of Johansen (2000 a)) 

Suppose 0X  is a compact set, 0)( >xV  for all { }00 −∈ Xx  and f is a bounded, locally 

Lipschitz function. Let 0>γ be given and suppose there exists an 0>> γα such that for 

all 0
dXx∈  

)()( xVxV α−≤&        (1.22) 

Assume the checking set grid density is such that 

  ( )
Q

xVx )()( minγαε −≤       (1.23) 

where  

 00 222 XPLPXPSQ f α++=      (1.24) 

Then for all 0Xx∈  

   )()( min xVxV γ−≤&       (1.25) 

Proof: (see Johansen 2000a) 

Johansen’s theorem allows us to ensure stability for the points not sampled. The 

theorem suggests that if the state space is sampled fine enough, then an accurate estimate 

of minγ  may be achieved. The required “closeness” of the sampling points is related 

through Q , a measure of how fast the system states change (proportional to the system 

Lipschitz constant). By (1.22), the size of minγ  in (1.25) is directly related toα , ε , V, and 

Q. We note, however, that computing Q is very difficult in practice because for highly 
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nonlinear systems, finding fL  can be very difficult. In addition, both P  and fL  are 

variables in the search for (P,K). Therefore any P  and fL  values used initially that 

satisfy (1.23) might change enough during the search to invalidate (1.23), causing the 

need to refine the checking grid and possibly invalidate the progress made by the search 

algorithm. We therefore propose a more practical method to fix 0,)( >= εεε x  and 

estimate minγ  via random sampling of 0X (described in Chapter 2). The estimation of 

minγ of course occurs after a (P,K) pair is found that satisfies (1.22).  

Finding a positive value of minγ  does not imply that the performance measures of 

(1.17)-(1.19) have been met. However, it does imply the satisfaction of performance 

measures of the form defined by (1.18)-(1.20), in the following ways: 1) a positive value 

of minγ  is precisely a minimum rate of convergence (1.18); 2) minγ  is defined on some 

region of 0X  containing the origin which must contain a connected level set of the 

Lyapunov function whose interior’s minimum rate of convergence is determined by minγ  

in (1.18), assuring the region 0X  contains a minimum region of attraction (1.19); and 3) 

u has an upper bound on X since u is differentiable and X is bounded. In other words, 

finding a (P,K) pair which yields 0min >γ means that on 0X , a decay rate, a region of 

attraction, and a maximum control effort exists, but not necessarily satisfying the desired 

amounts.  
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A Method for Relaxing the Checking Grid Density Requirements Around the Origin 
 
Theorem 1.2 

Suppose we have a system of the form (1.15) and CLF of the form (1.16). Let 0X  be a 

compact set containing the origin and, without loss of generality, assume the system is 

locally stable and u=0. Define
0=∂

∂
=

xx
fA and 

   
{ } V

V
Xx

&−
=

−∈ 0
min 0

infγ       (1.26) 

   
{ }

( )
Pxx

xPAPAx
T

TT

Xx

L +−
=

−∈ 0
min 0

infγ     (1.27) 

Then as 0sup
0,

0 →−=
∈

yxX
Xyx

, L
minmin γγ →      (1.28) 

Proof: 

The Taylor series expansion of f about the origin is 

   )()( xDAxxf +=       (1.29) 

where D(x) represents the higher order terms of the expansion. The time derivative of V 

becomes  

 =
V
V& ( )

Pxx
xPDxxPAPAx

V

xD
x
VAx

x
V

T

TTT )(2)( −+−
=∂

∂
+

∂
∂

   (1.30) 

decomposing minγ  into two parts 

 
{ }

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

+−
=

−∈ Pxx
xPDx

Pxx
xPAPAx

T

T

T

TT

Xx

)(2inf
0

min 0
γ     (1.31)  

and using the facts that )(inf)(inf
,,

baba
baba

+≤+  and baba
aba

+≤+ )(inf)(inf
,

, and the 

definition of L
minγ  (1.27) one may arrive at the inequality 
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{ }

( )

{ }

( )

{ }

( )
Pxx

xPDx
Pxx

xPDx
Pxx

xPAPAx

Pxx
xPDx

Pxx
xPAPAx

Pxx
xPDx

Pxx
xPAPAx

T

T

LT

T

T

TT

Xx

T

T

T

TT

Xx

T

T

T

TT

Xx

)(2)(2inf

)(2inf

)(2inf

0

0

0
min

0

0

0

+=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

+−
=

−∈

−∈

−∈

γ

γ

  (1.32) 

The inequality (1.32) implies  

  
Pxx

xPDx
T

T
L )(2minmin ≤− γγ      (1.33) 

Since the lowest order terms in the polynomial )(xD  are quadratic, the lowest order 

terms in the polynomial “ )(xPDxT ” are cubic ensuring that as 0sup
0,

0 →−=
∈

yxX
Xyx

, 

0)(
→

Pxx
xPDx

T

T

 implying L
minmin γγ → .      ■ 

 Because of the large number of sample points usually required to obtain a reliable 

estimate of minγ , it is more efficient to compute the eigenvalues of P and PAPAT +  and 

instead use the bounding relationship  

   ( )
( )

L
T

P
PAPA

minγ
λ

λ
≤

+−       (1.34) 

By Theorem 1.2, for a sufficiently small region about the origin, the difference between 

minγ  and L
minγ is small, making the left side of (1.34) a good estimate of minγ  for points 

near the origin and dramatically reducing the required size of the checking set 0
dX .  

1.3  Thesis Outline  
 Chapter 1 motivates the search for an optimization method for tuning CLF’s and 

their corresponding control laws. Chapter 2 poses the specific optimization problem and 
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describes the specific genetic algorithm used to solve the optimization problem. Chapter 

3 provides examples of how to use the genetic algorithm of Chapter 2 to tune full state 

feedback CLF controllers. Chapter 4 provides an outline of future research that explores 

the addition of uncertainty and adaptation in the control systems, and also addresses the 

use of more generalized CLFs, as well as discrete time control. 
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2 A Genetic Algorithm for CLF Optimization 

2.1 Genetic Algorithm Motivation 
 Genetic algorithms (GA’s) are ideal candidates for a general optimization method 

for solving the dual tuning problem described in chapter 1. The reader is referred to 

Flemming & Purshouse (2002) for an excellent survey on evolutionary algorithms in 

control engineering. GA’s are parallel global stochastic search algorithms that do not 

depend on derivatives to perform the optimization – their most attractive feature. The 

stochastic nature of the algorithm allows it to make random jumps into hard-to-reach 

regions of search space that may contain a local extrema. These regions would otherwise 

be inaccessible using only local gradient information. Metaphorically speaking, they are 

capable of jumping over valleys onto other mountains in search of the highest peak. The 

parallel search feature emerges from the population of search points being spread-out 

among the parameter search space. This allows the simultaneous exploration of several 

regions in search space containing local maxima. Non-differentiable fitness functions 

may be used as the optimization objective function because the search movements are not 

based on gradients, but occur from either random jumps called mutations or selective 

combinations of two or more highly fit individuals called crossovers. The crossovers 

effectively serve as interpolations and extrapolations of the existing search points in the 

GA population. 

 The GA is capable of making fast progress in the parameter search effort for 

difficult problems. However, unlike gradient-based methods, GA’s lack a guarantee of 
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making steady progress towards a local maxima. A remedy to this problem is decreasing 

the mutation step size. This mimics the small incremental progress made by a gradient 

method because a small random jump in some situations is likely to have a positive 

projection upon the gradient direction so that a step in the right direction is made. 

Gradient and other methods that use only local objective function information are not 

attractive here for three major reasons: (1) the multimodal nature of the objective 

function leads to convergence to local extrema; (2) the objective function evaluation 

points drift in time (explained below), giving the objective function a time varying nature 

which calls for a variable step rate to balance numerical stability with making fast enough 

progress, adding an unnecessary degree of difficulty to the problem; and (3) the non-

differentiability of an objective function is incompatible with a gradient method calling 

for the use of a finite difference approximation to the gradient which can be inefficient 

for a large parameter space (many function evaluations must be made just to move a 

small amount in parameter space). A general rule of thumb in ensuring GA’s make 

sufficient progress is that the population have sufficient size and time. This typically 

makes them inefficient for searching low dimensional parameter spaces. However, out-

weighing this drawback is their ability to make fast progress in large parameter search 

spaces, as well as their ability to optimize both the parameters and topology of functions, 

as with genetic programming, a subset of genetic algorithms (Koza et al., 1999).  

2.2 Tailoring to the Specific Problem 

2.2.1 Optimization Objectives  
The objective of the optimization algorithm is to find a (P,K) pair that satisfies the 

exponential stability conditions  
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    0)( 2 >≥ vxvxV      (2.1) 

and 

    0)()( minmin >−≤ γγ xVxV&     (2.2) 

for all sampled points 0
dXx∈ . In addition to (2.1) and (2.2), we also consider the 

maximum allowable control effort on the sample set labeled
max

u ,  

    uu
dXx 0

sup
max

∈
≥       (2.3) 

We define an admissible (P,K) pair as the set of parameter values that make the system 

(1.15) and Lyapunov function (1.16) satisfy (2.1) , (2.2), and (2.3) for some user 

specified triple ( )
maxmin ,, uv γ on the checking set 0

dX . Typically, desired values of 

( )
maxmin ,, uv γ  are not known, so they are allowed to “float” with progressive 

improvement during the optimization, and the user decides if the values obtained are 

good enough at the end of the optimization run.  

2.2.2 Simplifying the Search 
We restrict our investigation to quadratic Lyapunov functions. Due to 

computational restrictions and the use of Theorem 1.2 to reduce the required size of 0
dX , 

we also restrict the design optimization to closed convex sets about the origin. To add an 

additional degree of local robustness and optimality to the closed loop nonlinear system, 

we also assume the CLF is locally 2H  inverse optimal (Kokotovic & Arcak, 2001). That 

is, the CLF matrix P is the solution to the LQR problem for the linearized system for 

some set of states and control effort weighting matrices in the objective function. The 
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problem reduces to using the GA to find nxnE ℜ∈ such that      

   cIEEQ T +=  , 0≥c       (2.4) 

 so that ( ) cQ ≥λ . We compute a 0>= TPP  that satisfies the Hamilton-Jacobi-Bellman 

(HJB) equation (also known as the Algebraic Riccati Equation) for linear time invariant 

systems (Levine et al., 1996) 

   0=+−+ QPPBBPAPA TT      (2.5)  

The solution to (2.5) satisfies the minimization of the performance index 

∫
∞

+=
t

T dtuQxxJ 2  when we assign the control as 

    PxBu T−=        (2.6) 

 We thus use E to generate the CLF PxxV T= . An additional utility to the approach is 

the direct computation of a full state feedback linear control (2.6), if such a control law is 

desired. One may argue that selecting (2.6) for the control is like using the gradient 

direction of V normalized to satisfy the HJB equation (Primbs, et al 2000). Therefore, 

similar to the argument presented in Theorem 1.2, any control law that approaches 

PxBu T−= as x approaches the origin will also be a locally optimal controller for the 

nonlinear system. In addition, because we sample the performance index for the nonlinear 

system on the set 0
dX , the controller shall be optimal on 0

dX . In summary, we attempt to 

maximize the rate of convergence and minimize the control effort on 0
dX  using controllers 

whose linearization is inverse optimal for the linearized system dynamics.  

 A more general version of the control (2.6) based on the proposed control of 

Primbs, et al (2000) is  
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The control is a modified version of Sontag’s Universal Formula (Sontag, 1989) for 

nonlinear systems that are single input and affine in the control. The performance index 

minimized by (2.7) has the form ∫
∞

+=
0

2)( dtuxqJ , ℜ→ℜnq : , 

0)0(,0,0)( =≠∀> qxxq , and arises from the solution of a more general version of the 

HJB equation (Primbs, et al 2000) 

   0)(
4
1 2

=+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−
∂
∂ xqg

x
Vf

x
V      (2.8) 

 Notice (2.7) and (2.8) are equivalent to (2.6) and (2.5), respectively, for the case of LTI 

systems. Using the control of (2.7) with a quadratic CLF and the linearized dynamics of 

the nonlinear system reduces to the LQR control of (2.6). Therefore (2.7) combined with 

a quadratic CLF and the nonlinear system dynamics yields globally asymptotically stable 

dynamics with local optimality. In this work, we shall consider (2.6) only for linear 

controllers and (2.7) only for nonlinear controllers. 

2.3 Genetic Algorithm Description 
The objective of the genetic algorithm is to maximize the fitness function which is 

used to measure how well the controller performs on 0X . We choose to maximize the 

minimum rate of convergence while minimizing the maximum control effort on the 

discrete checking set 0
dX . Therefore, the fitness function is defined as  
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where ⎟⎟
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i γγ φφ max= , 
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φφ min= , i

uiu φφ max= . The iE  is left in the function arguments to remind the reader 

that the ith CLF and control are dependent upon the ith matrix iE  defined by (2.4) in the 

population. The two major components of the fitness function,  ⎟
⎟
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1 , are considered sub-fitness functions and are used to normalize the rate of 

convergence and control effort to eliminate numerical problems due to scale mismatch 

between these two quantities. The selection process tends to select species good at 

achieving both high rate of convergence and low control effort. The weights, w, are used 

to emphasize more selection pressure towards a high rate of convergence, γφ , or low 

control effort, uφ . They may be left as constants or changed dynamically as the algorithm 

progresses. In fact, it was found that pulsing the w’s dynamically helps control the 

composition of the GA population so that members of the population or species that 

satisfy one sub-fitness function well are combined with those that satisfy the other sub-

fitness function well, speeding up the search process for species that do both tasks well. 

Future work could quantify this improvement. To aid in understanding the 

interdependencies of the variables involved with the fitness function, the diagram (Figure 

2-1) below illustrates the computational flow of the fitness function. 
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Figure 2-1: Flow of Fitness Computation  

The genetic algorithm used in this work, employs the basic evolutionary operators 

“copy”, “crossover”, and “mutate”. They are defined as 

 Copy(E) = E       (2.9) 

 2121 )1(),( EEEECrossover ββ −+=    (2.10) 

where β  is a uniformly distributed random number on the interval [0 2]. 

 EEEMutate Δ+=)(       (2.11) 

where EΔ  is a uniformly distributed random matrix with dimensions matching those of 

E. The elements of EΔ lie on the interval [ ]EE σσ−  where Eσ  is the user defined 

mutation step size of E. The Copy operator (also known as reproduction in the genetic 

algorithm literature) is used to preserve well fit individuals in the population so that they 

may be used in future generations for generating better individuals via the Crossover or 

Mutation operators. The Crossover operator takes two highly fit individuals and either 

creates a new individual that interpolates between the two when 1<β  or extrapolates 

along the line connecting the two individuals in E search space when 1>β . The Mutation 

operator takes a single highly fit individual and creates a new individual via randomly 

perturbing its elements about the hyper-cube of width EΔ .  
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 To demonstrate the simplicity of imposing constraints on the GA optimization 

and to further support the use of a genetic algorithm, we place an additional constraint on 

the control gains. All the elements of the LQR gain vector of (2.6) must be limited in 

magnitude by some upper bound, maxK . This constrains the control effort as well as 

focuses the search to areas in parameter space that yield physically realizable control 

signals. For the nonlinear control law (2.7) this upper bound affects the gains of the 

linearized controller. By (2.4) and (2.5), decreasing the norm of E  will decrease the norm 

of K. Therefore we select the following filter on E to ensure the maximum gain constraint 

is satisfied: 

  
⎩
⎨
⎧ >

= =

otherwiseE
KKE

EFilterLimitGain ini max2,1
max

)(__ K
η

 , 10 <<η  (2.12) 

The genetic algorithm uses this ad-hoc filter to update E such that controller gain 

limitations are enforced: if a gain is too high, then E is scaled down, indirectly scaling 

down the entire gain vector. 

 The GA performs a parallel search of the parameter search space (Jamshidi, et. 

al). That is, rather than search via a single point at a time, as with typical optimization 

methods, an entire set of points (i.e. the population) are considered at once. Members of 

the population are randomly selected for evolutionary operation to create the next 

population (or to move the population as a whole though the search space). To bias the 

population motion towards “progress”, highly fit individuals are more likely to be chosen 

for evolutionary operation. The members of the population are first arranged by fitness in 

ascending order. The individuals with the highest fitness are placed at the beginning of 

the ordered list, denoted { }popfit NI ,,2,1 K⊂ , where popN  denotes the size of the 
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population. The probability density function (pdf) for the selection of the ith member of 

fitI  is  

( ) 0,

1

>

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=∈

∑
=

s

N
j

N
i

SelectedIP
popN

j

s

pop

s

popi
fit    (2.14) 

where s acts as a fitness bias parameter. The form of the pdf of (2.14) was selected for 

the following reason. By changing s, we may adjust the size of the most likely portion of 

the population we use during the selection process. The higher s becomes, the more we 

restrict selection to highly fit individuals. For example, if s = 0 then we have a uniform 

probability of selecting any member of fitI . If s is very large, the only member of fitI  

likely selected is the individual with the highest fitness, i.e., the first member in the 

ordered list fitI .  

Once a species is selected, a random decision on which operation to perform must 

be made. The probability for Copy, Crossover, and Mutation are labeled rp , cp , and mp , 

respectively. The restrictions for these parameters are 

    
1

0,,
=++

≥

mcr

mcr

ppp
ppp

     (2.15)  

Typically we insert the best fit individual into the next generation and set 0=rp . This is 

because two copies of the same individual are often selected for the Crossover operation, 

which results in another copy of the two same individuals, implicitly implementing the 

Copy function. The usual settings for the evolutionary operation probabilities in this work 

are 5.0,0 === mcr ppp . 
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2.3.1 Making
0
dX  Dynamic 

 The required size of the checking set 0
dX  grows exponentially with the dimension 

of the system state, hence the need to strategically assign 0
dX  such that a minimal number 

of points is used. The objective is to maximize the minimum value of VV /&−  on 0
dX , i.e. 

maximize minγ , and to minimize the maximum value of u on 0
dX , i.e. minimize 

max
u . 

For all practical purposes, if we knew where in 0X  these max/min and min/max 

conditions occurred, we could define 0
dX  as the set of these points, denoted critical 

points, so that the fitness function is evaluated only at the points that matter, i.e. the 

critical points. The argument is that we don’t have to check all the points in 0X , just the 

critical points. Unfortunately, the critical points for each species in the population are 

unknown and are also functions of (P,K), hence functions of E  and change after every 

generation. The clusters of E’s in any population are perturbations of an average E for 

that cluster, so taking the critical points for each E on the set 0
dX  is a way to create a 

perturbation cluster of critical points labeled dC . The set dC  represents the best 

estimation of where the population of controllers (i.e. the E’s) are yielding the minimum 

rate of convergence and maximum control effort on 0X . Therefore, it makes sense to 

evaluate the controllers of the next generation at these points. Hence, at the beginning of 

every generation, we redefine the checking set as ddd RCX +=0 : the critical points from 

the last generation ( dC ) plus a set of randomly selected new points, dR , that act as 

“exploration points” for finding better critical points for the current population. Better 
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means yielding a lower fitness value than any point in dC . This method reduces the 

needed size of 0
dX  and increases the speed of the GA.  

2.4 Stochastic Estimation of minγ  
Once a satisfactory (P,K) pair is found, the stochastic checking method is used. 

The sampling method used to estimate the value of minγ  (1.18) is based on the Chebyshev 

inequality of probability theory (Resnick, 1999)(Stark & Woods, 1994). We assume the 

probability density function (pdf) of γ  is a uniformly distributed random variable, Γ , 

with mean, Γμ , and variance, 2
Γσ . The pdf for Γ  is 

  
⎪⎩

⎪
⎨
⎧ +≤≤−

= ΓΓΓΓ
ΓΓ

otherwise

z
zp

0

33
32
1

)(
σμσμ

σ    (2.16) 

This type of pdf is chosen because it is reasonable to assume we know only that the 

distribution of Γ  is bounded from above and below, when we uniformly sample it on 0X . 

Future work could use a better estimate of the distribution of Γ  by using the actual 

function 
V
V&

− , since it is a known function of x.  

 The Chebyshev inequality may be expressed as 

   [ ] 2

2

ˆ
ε

σ
εμμ

n
P Γ

ΓΓ ≤≥−      (2.17) 

where )(AP denotes probability of event A and 

    ∑
=

Γ Γ=
n

i
in 1

1μ̂       (2.18) 
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is the maximum likelihood estimate of Γμ  (Stark & Woods, 1994), i.e. the sample 

average of Γ . If we knew the value of Γσ  then we could use (2.17) to specify a probable 

lower bound on γ , which from the pdf (2.16) would be 

   ( ) ΓΓ
∈

−−== σεμγγ 3ˆinf
0min

Xx
    (2.19) 

The lower bound probability of (2.17), denoted 
minγP , is a free parameter which may be 

specified by setting n large enough in (2.17), i.e. 

   2
min
ε

σ

γP
n Γ≥        (2.20) 

We do not have the luxury of knowing Γσ , however, such that an upper bound of Γσ  

must be estimated. The maximum likelihood estimate of Γσ  (Stark & Woods, 1994), 

denoted Γσ̂ , is given by 

   ( )∑
=

ΓΓ −Γ=
n

i
in 1

2ˆ1ˆ μσ      (2.21) 

along with its uncertainty, σ̂u , may be used to express the total value of Γσ , given by 

   σσσ ˆˆ u+= ΓΓ        (2.22) 

By Taylor series expansion of continuous functions, an approximation for the bound of 

σ̂u  (for sufficiently smallε ) is 

   ε
μ
σ

σ
Γ

Γ

∂
∂

≤
ˆ
ˆ

ˆu        (2.23) 

where the term “
Γ

Γ

∂
∂
μ
σ
ˆ
ˆ

” may be thought of as the sensitivity of Γσ̂  to the Γμ̂ estimate, 

and ε as the uncertainty of Γμ̂ . The absolute value of
Γ

Γ

∂
∂
μ
σ
ˆ
ˆ

 is used to make a conservative 
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estimate of Γσ . Computing 
Γ

Γ

∂
∂
μ
σ
ˆ
ˆ

 and substituting it, along with the right sides of (2.21) 

– (2.23) into (2.20) yields   
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≥      (2.24) 

The result is a transcendental inequality, which when satisfied, guarantees that for small 

enough ε ,  
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min ˆˆ3ˆ μεμεμγ    (2.25) 

with probability 
min

1 γP− . To solve (2.24) we specify the desired values of ε  and 
minγP , 

and guess a value for n. The right side of (2.24) is then computed and the inequality is 

checked. If the left side is greater than the right side, a larger value of n is chosen. This 

process repeats until n is large enough. After (2.24) is satisfied, (2.25) is computed. 

 If minγ is positive, then we have, with probability
min

1 γP− , an exponentially stable 

control law on the domain 0XX ⊂  with a Lyapunov function to prove it.  Equation 

(2.25) in practice turns out to be an overly conservative estimate of minγ , however. This 

is because Γ is not truly a uniformly distributed random variable. It is a nonlinear 

function of a uniformly distributed random variable, making Γ  a non-uniformly 

distributed random variable (Stark & Woods, 1994). We can roughly estimate minγ  

directly by taking the lowest value of Γ  while sampling 0X . Therefore, a better estimate 

of minγ can be made by computing the uncertainty of the estimate and using it to compute 

a worst case minγ . Hence we define the sample minimum of Γ , minΓ given by 
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   ( )Γ=Γ
∈ 0

minmin
dXx

       (2.26) 

and the estimate of minγ  as 

   minmin Γ=γ        (2.27) 

 We have used the stochastic arguments above to derive a reasonable estimate of 

the size of the checking set for post-GA numerical estimation of the minimum rate of 

convergence. We shall assume that this checking set is sufficient for checking the 

maximum magnitude of the control signal as well. Note that for pdf’s with substantially 

higher order moments (moments beyond the mean and variance), we expect this estimate 

to be invalid. It is, however, a good starting point for the size of the checking set and 

could be increased until the estimates of minγ and 
max

u do not change substantially. 

Randomly sampling minγ and 
max

u as discussed above, along with a few numerical 

simulations usually suffices as a confidence builder to the control engineer that the 

controller is indeed stable and with the allowable maximum control effort. 

2.4.1 GA Flow-chart 
The flow chart of the algorithm is given below in Figure 2-2. At the beginning of 

the algorithm, a randomly generated set of E’s is inserted into the first population (i.e. 

generation 0). The set of E’s is used to compute a set of (P,K) pairs, which in our case 

means solving the HJB equation (2.5) for P and using it to solve for K depending on the 

selection of the control law (2.6) or (2.7). The fitness computation of Figure 2.1 follows, 

and the fitness of the population is used to select the best individuals for performing the 

evolutionary operations defined in (2.9) through (2.11). The E with the highest fitness 

denoted “best E” is returned along with the corresponding (P,K) pair. The controller 
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performance, i.e. minimum rate of convergence and maximum control effort are 

numerically estimated by randomly sampling 0X using the sample size defined by (2.24). 

If the performance is good enough then the CLF and controller are accepted as a solution 

to the optimization problem or used possibly in some other performance simulation. If the 

performance is unacceptable, the GA parameters are tuned or the controller performance 

requirements are relaxed and the process is repeated.  

 In the next chapter we use the ideas outlined above to tune the linear and 

nonlinear controllers of (2.6) and (2.7), respectively, for a set of nonlinear systems that 

are relatively difficult to control. 

 

Figure 2-2: GA Optimization Algorithm 
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3 Full State-Feedback CLF Control 

3.1 Selection of Benchmark Examples 
 
 The purpose of this chapter is to demonstrate how to use the ideas of Chapter 2 to 

tune full-state feedback CLF controllers. The reader is reminded that the discussion is 

limited to the two controller types of (2.6) and (2.7) re-listed below:  

Linear (2.6):   PxBu T−=         (3.1) 

Nonlinear (2.7):  
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where P is the solution to the algebraic Ricatti equation 0=+−+ QPPBBPAPA TT  

using the linearized dynamics (A,B) of the nonlinear control-affine system defined by 

uxgxfx )()( +=& , nnn gfux ℜ→ℜℜ∈ℜ∈ :,,, , and the selected Q matrix defined by 

the quadratic integral performance index ∫
∞

+
0

2dtuQxxT . 

 The following example systems are taken from Ngamsom (2001). The theory 

developed by Ngamsom is based partially on maximizing the region of attraction (region 

of stability) of nonlinear systems using linear control laws. The drawback of the method 

proposed by Ngamsom is the controller is synthesized using an uncertain linearized 

model of a nonlinear system. Therefore, the theory is based on linear control of nonlinear 

systems, i.e. only local information about the system dynamics and worst case 
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assumptions on the effects of the nonlinearities are used. The controller design intent is to 

find a controller tune specific to the nonlinear system that is less conservative than the 

tune based on robust linear systems theory. We use the genetic algorithm described in 

Chapter 2 to tune linear controllers (3.1) and compare with those of Ngamsom. For 

nonlinear control, we use the augmented Sontag’s universal control law (3.2) from 

Primbs, et al (2000) because of its inherent global stability and local inverse optimality. 

However, we show how the genetic algorithm’s tuning of the CLF and quadratic 

performance index q(x)=xTQx results in using less control effort than the CLF resulting 

from linear dynamics-based methods. The main reason for the selection of the nonlinear 

control law is that it converges to the linear control law in a sufficiently small 

neighborhood about the origin. This allows the P matrix of Ngamsom’s linear control 

method to be used directly in the nonlinear control law for an additional mode of 

comparison between Ngamsom’s controller and the genetic algorithm tuned CLF 

controller. Ngamsom’s linear control method happens to be a very effective design 

procedure for a robust linear controller. It is considered a good benchmark for the 

methods proposed in this thesis. 

3.1.1 Comparing GAC to LARC 
 To facilitate comparison between Ngamsom’s work and ours, we shall refer to the 

controller and CLF resulting from the method proposed herein as the “Genetic Algorithm 

Controller” (GAC). The GAC implementing the control law from (3.1) shall be referred 

to as the linear GAC (LGAC) and the GAC implementing the control law from (3.2) shall 

be referred to as the nonlinear GAC (NGAC). The linear controller that maximizes the 

region of stability is called the Lyapunov Attractive Region Controller (LARC), after 
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Ngamsom. Similar to the GAC terminology, the LARC implementing the control law 

from (3.1) shall be referred to as the linear LARC (LLARC) and the LARC implementing 

the control law from (3.2) shall be referred to as the nonlinear LARC (NLARC).  

Ngamsom’s design method is a systematic method for designing linear controllers 

for a class of nonlinear systems. The method uses the linearized dynamics of the 

nonlinear system along with assumptions on how the nonlinearities, treated as 

uncertainties, affect the linearized system. We observe that the size of the region of 

stability is a “side-effect” of the LARC. That is, the region of stability of the LARC is not 

explicitly selected – it is an inherent result of the combined nonlinear system and linear 

controller. The proposed GAC method offers the ability to explicitly select the region of 

stability, in addition to direct tuning of both the minimum rate of convergence and 

maximum control effort. This freedom comes with a price, however. For all of the 

examples examined in this study, the region of stability for the GAC was smaller than the 

region of stability for the LARC overall. On the other hand, the GAC allows the 

flexibility to select where in state space to attempt to achieve stability, as well as the 

ability to vary the rate of convergence while varying the control effort in this region. 

3.1.2 Displaying Results 
 We display the performance of our example controllers in the region defined by 

0X  in a set of Tables. The Tables list the estimated values for the minimum rate of 

convergence minγ , the mean rate of convergence γμ , the standard deviation of the rate of 

convergence γσ , the maximum control effort magnitude 
max

u , the mean control effort 

uμ , and the standard deviation of control effort uσ . These quantities are estimated by 

uniform random sampling in 0X . Equation (2.24) is used to determine a sufficient sample 
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size. For the second order system of the first example, we include 3D plots in 0X  of the 

level sets of the Lyapunov function, the value ofγ , and the locations of the estimated 

critical points defined as the location estimates where minγ  and 
max

u  occur for every 

controller in the GA population. The 3D plots aid in visualizing the effects the CLF shape 

has on the rate of convergence and the locations of the critical points. We leave blank the 

rate of convergence plot where it is negative or very close to the origin where it is 

numerically ill-conditioned. The blank spots where the rate of convergence is negative 

depict “holes” where the system becomes unstable with respect to the specific CLF.  

3.2 Example 1:   Artificial System  
 The equations of motion for the artificial 2nd order system considered by 

Ngamsom (2001) are: 
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The linearized dynamics about the origin are: 
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 Table 3-1 displays the results from the LARC method. The Lyapunov function 

matrix P, the linear control gains K, and the matrix for the quadratic performance index 

Q, are listed. The structure of Q in Ngamsom’s work is typically fixed as a diagonal 

matrix, and the norm of Q is tuned via an optimization method. One advantage of the 

proposed GAC method lies in its ability to find a more general Q (non-zero off-diagonal 

elements) to optimize the performance index.  
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P K Q 
    4160.8    125.6
    125.6    54.4 

-157.49  -68.244 16000           0 
           0       16000 

Table 3-1: LLARC Parameters for System (3.3) (Ngamsom, 2001) 

 
 Table 3-2 displays the randomly sampled performance of the linear LARC in 

Table 3-1 on the artificial system (3.3). The range of 0X  is selected to be [ ]25251 −∈x  

and [ ]1001002 −∈x . Note the negative value for minγ , implying instability.  

  X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
[ ]100100

2525

2

1

−∈
−∈

x
x

 
-76.935 47.769 80.6 10709 3805.6 2515.5 

Table 3-2: Performance of LLARC on System (3.3) 

 
 The randomly sampled performance of the nonlinear LARC on the artificial 

system (3.3) is displayed in Table 3-3. The minimum rate of convergence is positive by 

design, and the control effort is very high. 

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
[ ]100100

2525

2

1

−∈
−∈

x
x

 
1.0294 135.75 128.340 1.4878x107 17928 1.6251x105

Table 3-3: Performance of NLARC on System (3.3)  

 
 Table 3-4 displays the randomly sampled performance of the LLARC on the 

linearized artificial system dynamics. This Table is used to quantify the local 

performance of both controllers about the origin. The Table allows the comparison 

between the linear and nonlinear behavior of the system and helps quantify the effects the 

nonlinearities have on the system performance. 
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  X0 
Range 

minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
[ ]100100

2525

2

1

−∈
−∈

x
x

 
3.7641 91.364 93.507 10709 3796.5 2518.9 

Table 3-4: Performance of LLARC on Linearized System (3.4) 

 
 Consider the level sets of the CLF using P from Table 3-1 in Figure 3-1. The 

shape and orientation of the elliptical “rings” determine the path of the state trajectory 

when under the CLF control law. A true CLF control law forces the state trajectory to 

cross into successively smaller rings. The trajectory in Figure 3-1 actually increases the 

CLF value initially, yet eventually converges to the origin. This behavior explains the 

negative value for minγ in Table 3-2. The CLF is therefore only a local CLF and not a CLF 

on 0X .  The system is unstable with respect to the CLF, but may be locally stable for 

some other Lyapunov function; perhaps one whose level sets are turned slightly more 

counter-clockwise so that the state trajectory does not cross into a higher level set. 

 

Figure 3-1: Level Sets of V for LLARC on System (3.3) 



 38

 
 The rate of convergence of the CLF from Figure 3.1 is displayed in Figure 3-2. 

The points in 0X  where 0<γ or points close to the origin that are numerically ill-

conditioned due to division by a very small number, are left blank. The points 

where 0<γ are points where the trajectory crosses into larger level sets and exit 0X , 

possibly never to return. We see that the region where the trajectory crosses into 

successively higher level sets, the rate of convergence is negative as expected. 

 
Figure 3-2:  “Gamma” (γ ) for LLARC on System (3.3)  

 
 Figure 3-3 is an estimated region of attraction for the controller reported in 

Ngamsom (2001) using Monte Carlo simulation. The shaded blocks represent regions 

that yield a stable trajectory when used as the region of the initial state. All other blocks 

represent regions that yield an unstable trajectory when used as the region of the initial 

state.  A Lyapunov function with level sets that line up with the edge of stability in Figure 

3-3 (where white and black boxes are in contact) would be a better selection to prove the 
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true region of stability for the artificial system (3.3) via Lyapunov Stability Theory. The 

values for γ  here are negative, supporting the results of the Monte Carlo simulation used 

to generate Figure 3-3. The objective of the GA optimization is to make all values of γ  

positive and large while minimizing the amount of control effort it takes to do so. 

 

Figure 3-3: Stability Table from Ngamsom (2001)  

 
 Figure 3-4 and Figure 3-5 display the states and control signal for the linear 

LARC on the artificial system (3.3) for the initial condition (-10,-20). The states converge 

shortly after 0.2s while 
max

u reaches approximately 2700.  
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Figure 3-4: States of System (3.3) Using LLARC 

 

 
Figure 3-5: Control Signal of LLARC on System (3.3) 

 
 Figure 3-6 displays the level sets of the CLF for the nonlinear LARC and the state 

trajectory of the artificial system (3.3) for the initial condition (-10,-20). The state 
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trajectory is forced to cross successively lower levels of the CLF and yields very sudden 

discrete “switch-like” direction changes. Such behavior is due toV&  having a strict 

equality to a function of the states ( ( ) ( )( )22 PgxQxxPfxV TTT +=& ). Viewing Figure 

3-7, we see that the rate of convergence is positive everywhere by design of the control 

law. The peaks in the γ  plot correspond to the fastest rates of change and they are 

evident in the state transition plot of Figure 3-8. The control law forces γ  to be strictly 

positive so that the part of the trajectory in Figure 3-1 under the linear LARC that crosses 

into higher levels of the CLF is now steered inward toward successively lower levels of 

the CLF. Figure 3-8 and Figure 3-9 display the states and control signal for the (-10,-20) 

initial condition trajectory. The states do not converge much faster in the nonlinear 

LARC case than with the linear LARC case, however the maximum magnitude of 2x is 

smaller for the nonlinear LARC because the trajectory is forced to stay inside the level 

set corresponding to the initial condition. The control effort is of course much larger for 

the nonlinear LARC. Figure 3-9 shows the cost of the renewed stability by using the 

nonlinear controller instead of the linear controller – excessively large control effort. The 

need for reorienting the CLF level sets to help decrease the large control effort is made 

evident in this example. 
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Figure 3-6: Level Sets of V for NLARC on System (3.3) 

 

 
Figure 3-7:  “Gamma” (γ ) for NLARC on System (3.3) 
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Figure 3-8: States of System (3.3) Using NLARC 

 

Figure 3-9: Control Signal of NLARC on System (3.3) 

 
 The LARC method does not directly use information about the rate of 

convergence nor information about the control effort of the nonlinear control system. In 
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fact, P is not explicitly treated as the matrix for the quadratic CLF, PxxV T= , but it may 

be viewed as such. The following question is the primary motivation for this work. 

Question 3.1 

            Can we achieve better control performance over that of Ngamsom (2001) for the 

nonlinear system in terms of minimum rate of convergence and maximum control 

effort in 0X by using the CLF, PxxV T= , and directly checking these 

performance measures at all points on 0
dX  to maximize the performance index 

defined by the fitness function (2.13)?  

We now attempt to answer Question 3.1 by applying the proposed GAC method to the 

example systems. 

3.2.1 GAC Case #1: Linear GAC 
 The genetic algorithm parameters for case #1 and the resulting GAC performance 

are given Table 3-5. This case implements linear control. The GA parameters are 

described in Chapter 2 and in the appendix where they are used in the Matlab code that 

implements the GA optimization procedure.  

System: 
Artificial (3.3) 

Controller 
Type: 
linear 

Generations: 
50 

Population 
Size: 
50 

Checking 
points: 100 

Critical Points: 
33 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
 [ ]25251 −∈x  

[ ]1001002 −∈x

Table 3-5: GA Parameters to Optimize LGAC for System (3.3) 

 
 The GA results of the optimization of the linear GAC for the artificial system 

(3.3) are listed in Table 3-6. The W vector contains the weighting factors used in the 

fitness function defined in (2.13) to vary the weight between rate of convergence and 
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control effort. The results in Table 3-6 include the three sets of weights [ ]01=W , 

[ ]11=W , and [ ]10=W . They represent 3 cases where the GA selects population 

members with a large minγ and ignores 
max

u , large minγ  and small
max

u , and lastly a small 

max
u while ignoring minγ , respectively. The reader is reminded that ultimately, the GA is 

tuning Q to yield a favorable set of P and K. Therefore comparing GAC to LARC begins 

with comparing their respective Q matrices. As can be seen the Q’s of the linear GAC are 

very different than the Q’s of the linear LARC. An obvious difference is the non-diagonal 

terms in the set of Q’s resulting from the GA optimization. 

Weight Case Weights P K Q 
1 W=[1 0] 2768.8    347.3 

347.3      71.8 
-868.23  -179.38 6.9845x105    1.1141x105

1.1141x105    20450 
2 W=[1 1] 2993.0    352.2 

352.2      62.1 
-880.42  -155.16 715290    102800 

102800    16910 
3 W=[0 1] 3.9147    3.5413

3.5413    3.5308
-8.8532  -8.8269 0.0854    0.0452 

0.0452    0.0267 
Table 3-6 Optimized Parameters of LGAC for System (3.3) 

 
   Table 3-7 lists the randomly sampled performance of the GAC for the 3 weight 

cases. As one might expect, minγ  decreases and 
max

u increases as the emphasis on 

minimum rate of convergence shifts to an emphasis on maximum control effort. 

Unfortunately, this is not always the case as we shall see in the later examples. The first 

two cases in Table 3-7 yielded a much better performance than the LARC on 0X  for the 

minimum rate of convergence, but not for maximum control effort. Only the third case 

yielded a better value for maximum control effort, however the third case yielded an 

unstable system and therefore is not a fair comparison to the LARC control effort. Except 

for the last case, the controller gains are much larger for the GAC than the LARC. The 

design objective of achieving a simultaneous better rate of convergence and better 
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maximum control effort over the LARC is not met. Though not explored here, it is 

posited that a weight case that is somewhere between cases 2 and 3 may result in a 

controller that achieves the design objective or at least yield a controller closer to the 

design objective. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 34.564 301.74 208.37 39514 13381 9303.7 
2 W=[1 1] 29.737 269.47 174.48 37392 12829 8786.4 
3 W=[0 1] -319.66 6.3853 76.592 1099.2 449.21 270.73 

Table 3-7: Performance of LGAC on System (3.3) 

 
 Table 3-8 lists the randomly sampled performance of the GA controller on the 

linearized system (3.4). All minimum rates of convergence are positive, as expected for 

the linear system, because the linear GAC is a linear quadratic regulator. From Table 3-8 

we observe that the local rate of convergence is faster, indicating the system 

nonlinearities work against the controller’s effort to stabilize the system. 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  
W=[1 0] 76.5938 522.89 230.55 3933.4 13250 9287.8 
W=[1 1] 92.0664 470.25 174.51 3730.0 12781 8801.2 
W=[0 1] 0.05950 20.733 3.6937 1096.7 449.46 270.17 

Table 3-8: Performance of LGAC on Linearized System (3.4) 

 
  Figure 3-10, Figure 3-11, and Figure 3-12 contain plots of the level sets of the 

CLF with the state trajectory for initial condition (-10,-20), the rate of convergenceγ , and 

the locations of the estimated critical points for all controllers in the GA population. We 

see that 0>γ  on all of 0X , i.e. there are no “holes” in the γ  plot unlike that of the 

LARC. Many critical points exist in the top left side of Figure 3-12 where the value for 

γ is low (see Figure 3-11) for many members of the GA population. Had we not used the 
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critical point estimation and just selected a fixed or random grid as the checking set 0
dX , 

many of these points would have been missed and much of the processing time would 

have been spent checking irrelevant points with a highγ  value or a low 
max

u value. The 

number of critical points was set to 33. The placement of these points by the critical point 

search algorithm (Chapter 2 – “Making 0
dX  Dynamic”) is displayed in Figure 3-12. The 

total number of points is 100; three times the number of critical points. The critical point 

searching algorithm clustered the majority of the critical points in the top left corner. It is 

reasonable to assume the spacing of these points is close to the spacing required to satisfy 

Theorem 1.1. If this is the case, then it would require many more points than the 100 

search points used in 0
dX  to satisfy the spacing requirements of Theorem 1.1, hence the 

search procedure would be much slower. The heuristic formulated in Chapter 2 for 

moving the search points around to find the critical points seems to be effective.  

 
Figure 3-10: Level Sets of V for LGAC on System (3.3) (W=[1 0]) 
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Figure 3-11: “Gamma” (γ ) for LGAC on System (3.3) (W=[1 0])  

 

      
Figure 3-12: Critical Points for LGAC Population Using System (3.3) (W=[1 0]) 

 
 It is apparent from Figure 3-8, Figure 3-9, Figure 3-13 and Figure 3-14 that the 

time of convergence is much faster for the linear GAC with W=[1 0] than the linear 
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LARC, but the control effort is higher. Such a result is acceptable because no weight was 

placed on the control effort during the optimization. Another notable observation is how 

the trajectory of Figure 3-10 uniformly crosses into successively lower level sets, even 

though the control law is linear and does not possess the restrictive effect on the state 

trajectories as the nonlinear controller. Figure 3-15 through Figure 3-19 are very similar 

to Figure 3-10 through Figure 3-14. This is expected given that the optimization yielded 

very similar sets of control gains. The control effort is slightly smaller because the 

control effort has an equal weight to the rate of convergence rather than zero in the 

previous case. It is interesting how sensitive the rate of convergence and control effort are 

to the weights. Figure 3-20 through Figure 3-24 are the results of not considering the rate 

of convergence during the optimization (i.e. W=[0 1]). For W=[0 1], a very low control 

effort is achieved but for much of 0X  we have 0<γ . Because we have open level sets, 

even if 0>γ , the trajectory can exit 0X  into the region of state space where the 

performance has not been checked and no stability guarantees can be made. Although 

more research must be performed, it is reasonable to assume that some weight vector 

between W=[1 1] and W=[0 1] (setting w1 between 0 and 1) might yield a stable 

controller with a smaller value for 
max

u than the linear LARC. Such a nonlinear 

dependence on W for the performance measures makes tuning W a nontrivial task.  
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Figure 3-13: States of System (3.3) Using LGAC (W=[1 0]) 

 

 
Figure 3-14: Control Signal of LGAC on System (3.3) (W=[1 0]) 
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Figure 3-15: Level Sets of V for LGAC on System (3.3) (W=[1 1]) 

 

 
Figure 3-16: “Gamma” (γ ) for LGAC on System (3.3) (W=[1 1])  
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Figure 3-17: Critical Points for LGAC Population Using System (3.3) (W=[1 1]) 

 

 
Figure 3-18: States of System (3.3) Using LGAC (W=[1 1]) 
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Figure 3-19: Control Signal Profile of LGAC on System (3.3) (W=[1 1]) 

 

 
Figure 3-20: Level Sets of V for LGAC on System (3.3) (W=[0 1]) 
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Figure 3-21: “Gamma” (γ ) for LGAC on System (3.3) (W=[0 1]). 

 
 

 
Figure 3-22: Critical Points for LGAC Population Using System (3.3) (W=[0 1]) 
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Figure 3-23: States of System (3.3) Using LGAC (W=[0 1]) 

 

 

Figure 3-24: Control Signal of LGAC on System (3.3) (W=[0 1]) 
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Summarizing the comparison between the linear LARC and the linear GAC on 

the artificial system (3.3), we make the following observations. The linear GAC yields a 

strictly positive γ  on 0X  for the two instances that the rate of convergence has an effect 

on the fitness function (W=[1 0] & W=[1 1]). The minimum rate of convergence is 

higher for the linear GAC for the weight settings W=[1 0] and W=[1 1], but the 

maximum control effort is also much higher. The linear GAC for the weight setting W=[0 

1] yields a much lower maximum control effort than the linear LARC but the controller is 

unstable which raises the question: With the correct setting of W can both minγ and 

max
u be improved on 0X ? Although further research would be needed, viewing the trend 

of minγ and 
max

u with the settings of W in Table 3-7, it is reasonable to assume such a 

weight setting exists.  

3.2.2 GAC Case #2: Nonlinear GAC 
 We now consider nonlinear control of the artificial system (3.3). The genetic 

algorithm parameters for this case are given in Table 3-9. 

System: 
Artificial (3.3) 

Controller 
Type: 

nonlinear 

Generations: 
50 

Population 
Size: 
50 

Checking 
points: 100 

Critical Points: 
33 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
 [ ]25251 −∈x  

[ ]1001002 −∈x

Table 3-9: GA Parameters to Optimize NGAC for System (3.3) 

 
 Table 3-10 lists the results of the optimization of the nonlinear GAC for the 

artificial system (3.3) using the parameters from Table 3-9. As with the case of the linear 

GAC, the GA found non-diagonal solutions for Q in all three cases.  
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Weight Case Weights P K Q 
1 W=[1 0] 292.952  239.153 

239.153  195.615 
-597.88   -489.04 3.5160x105    2.8683x105 

2.8683x105    2.3398x105 

2 W=[1 1] 1664.4    348.60 
348.60    77.100 

-871.55   -192.71 7.2631x105    1.3836x105 
1.3836x105    0.2661x105 

3 W=[0 1] 3.9109    3.5506 
3.5506    3.5455 

-8.8766   -8.8638 
 

0.5750    0.5136 
0.5136    0.4625 

Table 3-10: Optimized Parameters of NGAC for System (3.3) 

 
 Table 3-11 displays the randomly sampled performance of the nonlinear GAC on 

the artificial system (3.3). Here we see that the rates of convergence are positive even for 

the case where the rate of convergence is not a factor in the fitness function (W=[0 1]). 

The control effort is, however, much higher for the nonlinear GAC than the linear GAC, 

similar to the comparison between the LARC and the nonlinear controller using P from 

the LARC optimization. A much better minγ  is achieved along with a much better 
max

u  

using the nonlinear GAC, but the nonlinear GAC has a higher average control effort than 

the nonlinear LARC. If such a feature is undesirable to the control engineer, the GA 

fitness function may be easily augmented with a term that favors low average control 

effort, although more points in 0
dX  would be required to get a realistic estimate of the 

average control effort. 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  
W=[1 0] 12.685 1446.3 679.85 68306 25642 15525 
W=[1 1] 7.8767 476.99 251.86 51756 14837 10615 
W=[0 1] 0.0384 53.520 57.022 62062 1394.0 2103.7 

Table 3-11: Performance of NGAC on System (3.3) 

 
 Table 3-12 presents the randomly sampled performance of the nonlinear GAC on 

the linearized artificial system (3.4). In all three cases, the local performance substantially 

differs from that across the entire set 0X . 
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Weights minγ  γμ  γσ  
max

u  uμ  uσ  
W=[1 0] 2.3226 2394.2 169.28 6362.4 25038 15347 
W=[1 1] 45.683 786.90 205.97 40986 13668 9612.2 
W=[0 1] 0.0287 20.980 3.6402 1102.7 452.00 269.85 

Table 3-12: Performance of NGAC on Linearized System (3.4) 

  
 Figure 3-25, Figure 3-26, and Figure 3-27 contain plots of the CLF with the state 

trajectory for the initial condition (-10,-20), the rate of convergenceγ , and the locations 

of the estimated critical points for all controllers in the GA population. The GA yielded 

open level sets on 0X . The sampled performance yielded 3226.2min =γ , however the 

true value is clearly negative given the unstable trajectory. This is a problem that occurs 

when the ratio )(/)( PP λλ  is small (e.g. )(/)( PP λλ = 4.68x10-4 for the W=[1 0] case). 

The level sets are nearly open andγ  is actually slightly negative at some points along the 

line that the trajectory follows to exit 0X  in Figure 3-25. Trajectories originating in this 

region are pulled into the crevice of negative γ  values and follow it to the outside of 0X .  

The points along this line (“escape manifold”) are hard to find with a small checking set, 

causing the GA to use a bad estimate of the true value of minγ when evaluating the 

controllers.  One solution is to simply increase the number of checking points in 0
dX . The 

next GA optimization run (“Case #3”) in the discussion is based on this approach. The 

ultimate solution, recommended for future research, is to guarantee 0X  contains only 

closed level sets. That is, guarantee that 0, ,)()( XyxyVxV ∂∈∀= .  
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Figure 3-25: Level Sets of V for NGAC on System (3.3) (W=[1 0]) 

 
 

 
Figure 3-26: “Gamma” (γ ) for NGAC on System (3.3) (W=[1 0]) 
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Figure 3-27: Critical Points for NGAC Population Using System (3.3) (W=[1 0]) 

 
 

 
Figure 3-28: States of System (3.3) Using NGAC (W=[1 0]) 
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Figure 3-29: Control Signal of NGAC on System (3.3) (W=[1 0]) 

 
The case with W=[1 1] (Figure 3-30 through Figure 3-34) yields a stable 

trajectory. In fact, the nonlinear GAC with W=[1 1] yields a trajectory that converges 

about twice as fast with about half the maximum control effort than the nonlinear LARC. 

The design objective is therefore carried despite the problem of not using a large enough 

checking set 0
dX . 
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Figure 3-30: Level Sets of V for NGAC on System (3.3) (W=[1 1]) 

 

 
Figure 3-31: “Gamma” (γ ) for NGAC on System (3.3) Using W=[1 1] 

       



 63

Critcal Points

x2

x1

Critcal Points

x2

x1  
Figure 3-32: Critical Points for NGAC Population Using System (3.3) (W=[1 1]) 

 

 
Figure 3-33: States of System (3.3) Using NGAC (W=[1 1]) 
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Figure 3-34: Control Signal of NGAC on System (3.3) (W=[1 1]) 

 
Weight case 3 suffers from the same problem as weight case 1 (Figure 3-35 through 

Figure 3-39). However, using more search points or guaranteeing 

0, ,)()( XyxyVxV ∂∈∀=  would not necessarily guarantee a stable controller since 

minγ has zero weight in the fitness function. Case 3 is used to show the GA’s ability to 

minimize the maximum control effort of the given CLF and controller topologies. 
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Figure 3-35: Level Sets of V for NGAC on System (3.3) (W=[0 1]) 

 

 
Figure 3-36: “Gamma” (γ ) for NGAC on Artificial System (3.3) (W=[0 1]) 
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Figure 3-37: Critical Points for NGAC Population Using System (3.3) (W=[0 1]) 

 
Figure 3-38: States of System (3.3) Using NGAC (W=[0 1]) 
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Figure 3-39: Control Signal of NGAC on System (3.3) (W=[0 1])  

 

3.2.3 GAC Case #3: Denser Checking Sets 
 The genetic algorithm parameters for Case #3 are given in Table 3-13. We use the 

same GA parameters as Case #2 with nonlinear control, but the number of checking 

points in 0
dX  has been doubled. The intention is to catch the numerically ill-condition 

“crevice” in the γ  plots of Case #2 and tune P such that the )(/)( PP λλ  ratio is not too 

small, yet is not restricted by some predefined lower threshold. 

System: 
Artificial (3.3) 

Controller 
Type: 

nonlinear 

Generations: 
20 

Population 
Size: 
50 

Checking 
points: 200 

Critical Points: 
100 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
 [ ]25251 −∈x  

[ ]1001002 −∈x

Table 3-13: GA Parameters to Optimize NGAC for System (3.3) (High Density 0
dX ) 
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 Table 3-14 lists the results of the optimization of the nonlinear GAC for the 

artificial system (3.3) using the parameters from Table 3-13. Comparing Table 3-10 to 

Table 3-14 the doubling of the size of 0
dX  seems to have substantially affected the GA’s 

output for the Weight Case 1.  

Weight Case Weights P K Q 
1 W=[1 0] 4976.2    339.00

339.00    36.100
-847.46  -90.348 5.8939x105  19600

19600          1060 
2 W=[1 1] 4287.3    376.90

376.90    45.800
-942.37 -114.517 8.0232x105  60900

60900          5480 
3 W=[0 1] 3.8772    3.5242

3.5242    3.5240
-8.8106   -8.8100 0.0829    0.0751 

0.0751    0.0688 

Table 3-14: Optimized Parameters of NGAC for System (3.3) (High Density 0
dX ) 

 
 Table 3-15 displays the randomly sampled performance of the nonlinear GAC on 

the artificial system (3.3) using double the number of elements in 0
dX . Table 3-16 

displays the randomly sampled performance of the nonlinear GAC on the linearized 

artificial system (3.4) using double the number of elements in 0
dX .  The change in the 

performance of the nonlinear GAC for W=[1 0] between Case #2 and Case #3 is 

understandable given the substantial change in P and K. The change in minγ of the 

nonlinear GAC for W=[0 1] between Case #2 and Case #3 was not expected because P 

and K are very similar between the two cases. A likely cause of the discrepancy is the 

small )(/)( PP λλ = 0.0238 ratio where the true value of minγ  lies on a thin “escape 

manifold” as discussed in Case #2. 
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Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 32.628 174.013 62.836 87234 14322 12010 
2 W=[1 1] 33.280 234.056 101.40 73692 14871 11249 
3 W=[0 1] 0.3079 53.8784 57.666 57181 1399.1 2042.3 

Table 3-15: Performance of NGAC on System (3.3) (High Density 0
dX ) 

 
Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 151.578 254.15 31.559 30036 11165 7067.5 
2 W=[1 1] 128.115 361.94 75.626 34929 12711 8190.3 
3 W=[0 1] 0.00120 20.715 3.6789 1090.8 447.79 268.42 

Table 3-16: Performance of NGAC on Linearized System (3.4) (High Density 0
dX ) 

    
 For Weight Cases 1 and 2, Figure 3-40 & Figure 3-45 display closed V contours, 

showing stable trajectories and well conditionedγ ’s (Figure 3-41 & Figure 3-46). Figure 

3-51 still possesses the negativeγ  as in Case #2, however this is expected because the 

GA search ignores γ  altogether. Hence, it is advisable to put some small weight on γ  

when searching for controllers that yield low
max

u . Comparing the state and control 

response of the nonlinear LARC in Figure 3-8 & Figure 3-9 to those of the nonlinear 

GAC with weight settings W=[1 0] and W=[1 1] in Figure 3-43, Figure 3-44, Figure 

3-48, & Figure 3-49, we see that the nonlinear GAC converges about 4 times faster with 

about 20% less maximum control effort. 
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Figure 3-40: Level Sets of V for NGAC on System (3.3) (W=[1 0], High Density 0

dX ) 

 
Figure 3-41: “Gamma” (γ ) for NGAC on System (3.3) (W=[1 0], High Density 0

dX ) 
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Figure 3-42: Critical Points for NGAC Using System (3.3) (W=[1 0], High Density 0
dX ) 

 

 
Figure 3-43: States of System (3.3) Using NGAC (W=[1 0], High Density 0

dX ) 
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Figure 3-44: Control Signal of NGAC on System (3.3) (W=[1 0], High Density 0

dX ) 

 

 
Figure 3-45: Level Sets of V for NGAC on System (3.3) (W=[1 1], High Density 0

dX ) 
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Figure 3-46: “Gamma” (γ ) for NGAC on System (3.3) (W=[1 1], High Density 0

dX ) 

 

 
Figure 3-47: Critical Points for NGAC Using System (3.3) (W=[1 1], High Density 0

dX ) 
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Figure 3-48: States of Artificial System (3.3) Using NGAC (W=[1 1], High Density 0

dX ) 

 

 
Figure 3-49: Control Signal of NGAC on System (3.3) (W=[1 1], High Density 0

dX ) 
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Figure 3-50: Level Sets of V for NGAC on System (3.3) (W=[0 1], High Density 0

dX ) 

 
 
 

Figure 3-51: “Gamma” (γ ) for NGAC on System (3.3) (W=[0 1], High Density 0
dX ) 
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Figure 3-52: Critical Points for NGAC Using System (3.3) (W=[0 1], High Density 0

dX ) 

 

 
Figure 3-53: States of System (3.3) Using NGAC (W=[0 1], High Density 0

dX ) 
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Figure 3-54: Control Signal of NGAC on System (3.3) (W=[0 1], High Density 0

dX ) 

 
 In conclusion, we have seen in this example that while the LARC, by design, has 

a larger region of stability, the GAC can yield a better performance in terms of minimum 

rate of convergence and maximum control effort. The GAC also offers the ability to 

select the region of state space to perform the optimization. To answer question 3.1, 

checking the performance of the nonlinear system directly on 0
dX  using the 

CLF, PxxV T= , does offer a clear advantage over the robust linear control theory based 

procedure of Ngamsom’s LARC. It is important, however, to set both elements of W to a 

positive number and use a sufficient number of elements in 0
dX  (found via 

experimentation) to yield closed level sets for the CLF ( )(/)( PP λλ >>0).  
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3.3 Example 2:   Double Inverted Pendulum System 
 The system in Figure 3-55 was taken originally from Misawa (1995) where it is 

described in detail.  

 

Figure 3-55: Double Inverted Pendulum System (Misawa et al, 1995) 

 
The equations of motion are 

   ( ) ( )uxgxfx +=&       (3.5) 

where 4ℜ∈x , 44:, ℜ→ℜgf , ℜ∈u , and 
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The linearized dynamics about the upright position are: 

BuAxx +=&  , with 
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3.3.1 LARC Results 
  Two ranges of the checking set 0

dX were used for all controllers in this example. 

The small range, [ ] 4,3,2,1,1.01.0 =−∈ ixi , is used to capture the local slightly 

nonlinear behavior about the origin. The large range, [ ] 4,3,2,1,11 =−∈ ixi , is used to 

capture the highly nonlinear behavior away from the origin. Table 3-17 displays the 

LARC results for the double inverted pendulum system as reported in Ngamsom (2001).  

 P K Q 
0.3882    0.9764    0.1241   0.1412
0.9764    9.2923    1.0084   1.2328
0.1241    1.0084    0.1211   0.1429
0.1412    1.2328    0.1429   0.1759

0.1036    5.2008    0.3618 0.8021      2     0     0     0
     0     2     0     0
     0     0     2     0
     0     0     0     2

Table 3-17: LLARC Parameters for System (3.5) (Ngamsom, 2001) 
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 Table 3-18 lists the randomly sampled performance of the linear LARC on the 

double inverted pendulum system (3.5). For the small range, minγ  is negative (although 

Ngamsom reports the system to be stable). It turns out that the system is unstable with 

respect to the particular quadratic CLF dictated by P in Table 3-17 and not necessarily 

quadratically unstable. For the large range, Ngamsom (2001) reports the system to be 

unstable. The minγ  value found here is highly negative supporting Ngamsom’s report. 

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi  

-2.6472 0.0127 1.5402 0.6262 0.2628 0.1543 

[ ]
4,3,2,1

11
=

−∈
i
xi  

-166.31 -30.482 36.980 6.4308 2.6432 1.5451 

Table 3-18: Performance of LLARC on System (3.5) 

 
 Table 3-19 shows the randomly sampled performance of the nonlinear LARC on 

the double inverted pendulum system (3.5). Because the linear LARC performs poorly 

for the large range, we may attest that the system nonlinearities cause the nonlinear 

controller to use high control effort to keep the state trajectory within the level sets whose 

“angle” and “skewing” (if one can visualize in 4-D!) are optimized for the locally linear 

behavior of the system.  

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi  

0.4378 10.837 4.3018 1.4729 0.5487 0.3318 

[ ]
4,3,2,1

11
=

−∈
i
xi  

0.0914 11.313 4.5151 17982 12741 174.81 

Table 3-19: Performance of NLARC on System (3.5) 

 
 Table 3-20 lists the randomly sampled performance of the linear LARC on the 

linearized double inverted pendulum system (3.6).  The rate of convergence is negative 
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for the linear LARC on the nonlinear dynamics and relatively slow for the linear LARC 

on the linear dynamics which suggests that significant nonlinearities will destabilize the 

system. 

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi  

0.0208 0.4217 1.4648 0.6187 0.2634 0.1546 

[ ]
4,3,2,1

11
=

−∈
i
xi  

0.0207 0.4017 1.2807 6.2708 2.6458 1.5476 

Table 3-20: Performance of LLARC on Linearized System (3.6) 

 
 Figure 3-56 & Figure 3-57 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the linear LARC on the double inverted pendulum system (3.5). 

Figure 3-58 & Figure 3-59 contain the system signal responses to the initial condition 

(0.5,0,0,0) for the nonlinear LARC on the double inverted pendulum system (3.5). The 

nonlinear LARC response is interesting with the chattering of the control signal (Figure 

3-59) hence the chattering of the state variables. Such is the nature of the nonlinear 

controller combined with a finite time stepping numerical simulation method. The 

infamous denominator term of the Sontag-like control law, PgxT , gets very close to zero 

and rapidly switches sign during the first second of the simulation. With progressively 

smaller time stepping, the switching is less severe, however the smallness of the time step 

becomes impractically small to produce a reasonably long enough simulation. The 

problem reflects an actual control law physical implementation issue: discrete-time 

sampling. The digital implementation of the control law will have the same problem that 

most likely will be even worse given the limitations of sampling rates in real-time digital 

control systems. 
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Figure 3-56: States of System (3.5) Using LLARC 

 

 
Figure 3-57: Control Signal of System (3.5) Using LLARC 
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Figure 3-58: States of System (3.5) Using NLARC 

 

 
Figure 3-59: Control Signal of System (3.5) Using NLARC 

 
 
 
 
 



 84

3.3.2 Linear GAC with Small Checking Set Range 
 Table 3-21 lists the genetic algorithm parameters used to optimize the linear GAC 

for the double inverted pendulum system (3.5) using a small 0
dX  range.  The checking set 

range is set low to minimize the effects of the system nonlinearities. The control gain 

upper limit, Kmax, is set to 10.  

System: 
Double 
Inverted 

Pendulum (3.5) 

Controller 
Type: 
linear 

Generations: 
50 

Population 
Size: 
50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
10 

maxK : 
10 

c:  
0 

X0 Range: 
[ ]

4,3,2,1
1.01.0

=
−∈

i
xi  

Table 3-21: GA Parameters to Optimize LGAC for System (3.5) (Small 0
dX  Range) 

  
 Table 3-22 shows the genetic algorithm results of the optimization of the linear 

GAC for the double inverted pendulum system (3.5) using a small 0
dX  range. It is 

interesting that the optimal Q has a structure such that the first diagonal element is 

dominate and all other elements are almost negligible besides the terms involving the 

state 1x . It is also interesting that some terms are negative which suggests that an optimal 

controller will ensure that the states that are coupled to these terms are opposite in sign 

during most of the state trajectory. This type of solution is not obvious so would probably 

not have been selected by a human designer, yet it becomes a useful insight for the 

controller design. 
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Weight 
Case 

Weights P K Q 

1 W=[1 0] 0.3010  0.6116  0.0781  0.0914 
0.6116  2.0038  0.2208  0.2984 
0.0781  0.2208  0.0258  0.0330 
0.0914  0.2984  0.0330  0.0445 

0.3922  5.1569  0.4182  0.7570 
 

 0.4513  0.0053  -0.0021  -0.0041      
 0.0053   0.0001   0.0000   0.0000     
-0.0021   0.0000   0.0001   0.0001 
-0.0041  0.0000    0.0001   0.0002 

2 W=[1 1] 0.1179  0.2750  0.0367  0.0418 
0.2750  1.2195  0.1267  0.1819 
0.0367  0.1267  0.0144  0.0190 
0.0418  0.1819  0.0190  0.0272 

0.0676  4.0455  0.2904  0.5908 
 

 0.0559   0.0019   0.0010  -0.0004 
 0.0019   0.0001   0.0000  -0.0001 
 0.0010   0.0000   0.0000    0.0000    
-0.0004  -0.0001  0.0000    0.0001 

3 W=[0 1] 0.1300  0.2955  0.0392  0.0448 
0.2955  1.2698  0.1327  0.1895 
0.0392  0.1327  0.0151  0.0199 
0.0448  0.1895  0.0199  0.0283 

0.0901  4.1270  0.2997  0.6029  0.0765   -0.0021  -0.0007  -0.0010 
-0.0021    0.0001   0.0000    0.0000 
-0.0007    0.0000    0.0000    0.0000 
-0.0010    0.0000    0.0000    0.0000 

Table 3-22: Optimized Parameters of LGAC for System (3.5) (Small 0
dX  Range) 

 
 Table 3-23 displays the randomly sampled performance of the linear GAC on the 

double inverted pendulum system (3.5) using a small 0
dX  range. Unlike the linear LARC 

(Table 3-17), the linear GAC yields a positive minimum rate of convergence with a much 

higher average rate of convergence and without a significant difference between control 

effort or gains for all sets of fitness function weights.  

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.2212 12.6432 6.5883 0.6455 0.2597 0.1526 
2 W=[1 1] 0.0568 12.6826 6.5130 0.4851 0.2049 0.1192 
3 W=[0 1] 0.0739 12.5958 6.4883 0.5028 0.2090 0.1229 

Table 3.22: Performance of LGAC on System (3.5) (Small 0
dX  Range) 

 
 Table 3-23 displays the randomly sampled performance of the linear GAC on the 

linearized double inverted pendulum system (3.6) using a small 0
dX  range. The rate of 

convergence is fairly close to that of Table 3-22 which suggests that the nonlinearities do 

not play as significant a role locally as they do with the linear LARC where the difference 

in minγ between the nonlinear and linear dynamics is substantial.  
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Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.1113 13.1476 6.9741 0.6540 0.2605 0.1539 
2 W=[1 1] 0.0799 13.0182 6.8206 0.4877 0.2048 0.1198 
3 W=[0 1] 0.0168 13.0161 6.8388 0.5043 0.2068 0.1218 

Table 3-23: Performance of LGAC on Linearized System (3.6) (Small 0
dX  Range) 

 
 Figure 3-60 through Figure 3-65 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the linear GAC on the double inverted pendulum system (3.5) 

using a small 0
dX  range. The weight setting W=[1 0] yields a much faster response but at 

the cost of more control effort than the linear LARC. The weight setting W=[1 1] does 

not yield a noticeably different response speed than the linear LARC, but the control 

effort is higher. The weight setting W=[0 1] yields a much faster response and with 

slightly more control effort than the linear LARC. The linear GAC for W=[0 1] would 

probably be selected over the linear LARC. 
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Figure 3-60: States of System (3.5) Using LGAC (W=[1 0], Small 0
dX  Range) 

 

Figure 3-61: Control Signal of System (3.5) Using LGAC (W=[1 0], Small 0
dX  Range) 
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Figure 3-62: States of System (3.5) Using LGAC (W=[1 1], Small 0
dX  Range) 

 

Figure 3-63: Control Signal of System (3.5) Using LGAC (W=[1 1], Small 0
dX  Range) 
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Figure 3-64: States of System (3.5) Using LGAC (W=[0 1], Small 0
dX  Range) 

 

Figure 3-65: Control Signal of System (3.5) Using LGAC (W=[0 1], Small 0
dX  Range) 
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3.3.3 Linear GAC with Large Checking Set Range 
 Table 3-24 shows the genetic algorithm parameters used to optimize the linear 

GAC for the double inverted pendulum system (3.5) using a large 0
dX  range. The 

checking set range is set high to demonstrate the affects of the system nonlinearities. The 

control gain upper limit, Kmax, is set to 10.  

System: 
Double 
Inverted 

Pendulum (3.5) 

Controller 
Type: 
linear 

Generations: 
50 

Population 
Size: 

50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
10 

maxK : 
10 

c:  
0 

X0 Range: 
[ ]

4,3,2,1
11

=
−∈

i
xi  

Table 3-24: GA Parameters to Optimize LGAC for System (3.5) (Large 0
dX  Range) 

 
 Table 3-25 displays the GA results of the optimization of the linear GAC for the 

double inverted pendulum system using a large 0X  range. The results are somewhat 

similar to those of the linear GAC run with a small 0X  range indicating low sensitivity to 

the 0X  range. 

Weight 
Case 

Weights P K Q 

1 W=[1 0]  0.1009  0.2370  0.0322  0.0363 
 0.2370  1.1231  0.1154  0.1678 
 0.0322  0.1154  0.0131  0.0174   
 0.0363  0.1678  0.0174  0.0251 

0.0237  3.8883  0.2727  0.5673  0.0186    0.0019  -0.0002  0.0008 
 0.0019    0.0002  -0.0000  0.0000   
- 0.0002 -0.0000    0.0000  0.0001 
  0.0008   0.0000    0.0001  0.0002 

2 W=[1 1]  0.1724  0.3756  0.0496  0.0574 
 0.3756  1.4711  0.1574  0.2202 
 0.0496  0.1574  0.0182  0.0237    
 0.0574  0.2202  0.0237  0.0330 

0.1804  4.4422  0.3357  0.6500   0.1694 -0.0010    0.0005  0.0025 
 -0.0010  0.0000  -0.0000  0.0000 
  0.0005 -0.0000   0.0000  0.0000    
  0.0025 -0.0000   0.0000  0.0001 

3 W=[0 1]  0.1581  0.3498  0.0458  0.0528 
 0.3498  1.4030  0.1484  0.2091 
 0.0458  0.1484  0.0170  0.0223   
 0.0528  0.2091  0.0223  0.0312 

0.1486  4.3311  0.3230  0.6336   0.1348 -0.0014 -0.0011 -0.0017 
 -0.0014  0.0001 -0.0000 -0.0001 
 -0.0011 -0.0000  0.0000  0.0000 
 -0.0017 -0.0001  0.0000  0.0002 

Table 3-25: Optimized Parameters of LGAC for System (3.5) (Large 0
dX  Range) 
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 Table 3-26 lists the randomly sampled performance of the linear GAC on the 

double inverted pendulum system (3.5) using a large 0
dX  range. Weight case 1 yielded a 

faster rate of convergence than the LARC, but a larger maximum control effort. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.1073 9.7520 3.4343 45061 11.004 332.63    
2 W=[1 1] -158.19 -17.641 35.302 5.4339 2.2438 1.3166    
3 W=[0 1] -148.99 -16.986 34.249 5.2611 2.1870 1.2875 

Table 3-26: Performance of LGAC on System (3.5) (Large 0
dX  Range) 

 
 Table 3-27 displays the randomly sampled performance of the linear GAC on the 

linearized double inverted pendulum system (3.6) using a large 0
dX  range.  Notice minγ is 

negative for W=[0 1]. This is because the minimum eigenvalue for P is slightly negative 

( 5104331.1)( −−= xPλ ) due to Q having an eigenvalue close to zero. The linear system is 

stable, with the closed loop poles for the linearized dynamics all in the left half plane 

closed loop poles = { }9369.5,7300.7,0095.22235.7 −−±− i ). However it is unstable with 

respect to the CLF. Though it is expected when not checking the rate of convergence, this 

sort of problem is solved by setting c>0 in Table 3-24 such that the smallest eigenvalue 

of Q is equal to c.  

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.0604 13.024 6.7999 4.6734 1.9640 1.1540 
2 W=[1 1] 0.0235 13.001 6.7290 5.3853 2.2410 1.3147 
3 W=[0 1] -0.7703 12.994 6.8051 5.2696 2.1968 1.2867 

Table 3-27: Performance of LGAC on Linearized System (3.6) (Large 0
dX  Range) 

 
 Figure 3-66 through Figure 3-71 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the linear GAC on the double inverted pendulum system (3.5) 
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using a large 0
dX  range. The controller gains of this set of controllers are similar, hence 

the dynamic responses are similar; none of them being an improvement over the linear 

LARC. It is suspected that the number of checking points used is insufficient for the 

large 0
dX  range. The same number of points was used in this case as with the smaller 0

dX  

range, meaning the estimates of minγ and 
max

u were better for the small 0
dX  range, making 

the controllers better. The large range is 10 times larger than the small range. Given a 4th 

order system, to duplicate the checking set density of the small range for the large range, 

the large range checking set size would have to be increased by a factor of 10,000! We 

now see the major drawback of direct point-wise CLF checking of performance. The 

random search of the critical points relaxes the checking set size requirements, however 

the sufficient number of checking points still becomes prohibitively large for higher 

dimensional systems. Future research should focus on reducing the scale rate of the 

required checking set size with the system dimension.  

 



 93

 

Figure 3-66: States of System (3.5) Using LGAC (W=[1 0], Large 0
dX  Range) 

 
Figure 3-67: Control Signal of System (3.5) Using LGAC (W=[1 0], Large 0

dX  Range) 
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Figure 3-68: States of System (3.5) Using LGAC (W=[1 1], Large 0

dX  Range) 

 
Figure 3-69: Control Signal of System (3.5) Using LGAC (W=[1 1], Large 0

dX  Range) 
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Figure 3-70: States of System (3.5) Using L GAC (W=[0 1], Large 0

dX  Range) 

 
Figure 3-71: Control Signal of System (3.5) Using LGAC (W=[0 1], Large 0

dX  Range) 
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3.3.4 Nonlinear GAC with Small Checking Set Range 
 Table 3-28 shows the genetic algorithm parameters used to optimize the nonlinear 

GAC for the double inverted pendulum system (3.5) using a small 0
dX  range. The 

checking set range is set small to minimize the effects of the system nonlinearities. The 

control gain upper limit, Kmax, is set to 10.  

System: 
Double 
Inverted 

Pendulum (3.5) 

Controller 
Type: 

nonlinear 

Generations: 
50 

Population 
Size: 
50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
10 

maxK : 
10 

c:  
0 

X0 Range: 
 

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi

Table 3-28: GA Parameters to Optimize NGAC for System (3.5) (Small 0
dX  Range) 

 
 Table 3-29 displays the GA results of the optimization of the nonlinear GAC for 

the double inverted pendulum system (3.5) using a small 0X  range. The results are 

similar to those of the linear GAC run.  

Weight 
Case 

Weights P K Q 

1 W=[1 0] 0.1536  0.3442  0.0453  0.0522 
0.3442  1.3934  0.1474  0.2079 
0.0453  0.1474  0.0169  0.022 
0.0522  0.2079  0.0222  0.0311 

0.1442  4.3183  0.3216  0.6321 0.1301  -0.0019  0.0011  -0.0000 
-0.0019 0.0000  -0.0000  -0.0000 
 0.0011 -0.0000  0.0001    0.0002 
-0.0000 -0.0000  0.0002   0.0006 

2 W=[1 1] 0.1524  0.3407  0.0449  0.0518 
0.3407  1.3835  0.1465  0.2067 
0.0449  0.1465  0.0168  0.0220 
0.0518  0.2067  0.0220  0.0309 

0.1420  4.3067  0.3202  0.6298 0.1279  0.0021  0.0011  0.0007 
0.0021  0.0002  0.0000 -0.0001 
0.0011  0.0000  0.0001  0.0001  
0.0007 -0.0001  0.0001  0.0001   

3 W=[0 1] 0.1665  0.3652  0.0480  0.0554 
0.3652  1.4418  0.1535  0.2154 
0.0480  0.1535  0.0177  0.0231 
0.0554  0.2154  0.0231  0.0322 

0.1666  4.3942  0.3302  0.6428 0.1541 -0.0022  -0.0005  -0.0002 
-0.0022 0.0001   0.0000   0.0000 
-0.0005 0.0000  0.0000    0.0000 
-0.0002 0.0000  0.0000    0.0000 

Table 3-29: Optimized Parameters of NGAC for System (3.5) (Small 0
dX  Range) 

 
 Table 3-30 lists the randomly sampled performance of the nonlinear GAC on the 

double inverted pendulum system (3.5) using a small 0
dX  range. The nonlinear LARC’s 

minimum rate of convergence is about twice as fast as the nonlinear GAC’s, but the 
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nonlinear LARC’s maximum control effort is over twice as much as the nonlinear 

GAC’s.  

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.2230 12.9758 6.7768 0.5439 0.2201 0.1311 
2 W=[1 1] 0.0416 12.9448 6.7075    0.5349 0.2216 0.1311 
3 W=[0 1] 0.1084 12.9666 6.7272 0.5400 0.2256 0.1338 

Table 3-30: Performance of NGAC on System (3.5) (Small 0
dX  Range) 

 
 Table 3-31 tabulates the randomly sampled performance of the nonlinear GAC on 

the linearized double inverted pendulum system (3.6) using a small 0
dX  range. As with the 

linear GAC, the linearized dynamics are close to the nonlinear dynamics locally 

decreasing the effect of the system nonlinearities. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.2890 13.0663 6.9025 0.5251 0.2170 0.1291 
2 W=[1 1] 0.1984 12.9550 6.7552 0.5317 0.2176 0.1283 
3 W=[0 1] 0.0433 12.9104 6.8273 0.5330 0.2215 0.1303 

Table 3-31: Performance of NGAC on Linearized System (3.6) (Small 0
dX  Range) 

 
 Figure 3-72 through Figure 3-77 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the nonlinear GAC on the double inverted pendulum system 

(3.5) using a small 0
dX  range. As with the nonlinear LARC, the nonlinear GAC for the 

first two weight settings yields a choppy control response that in turn causes the response 

be choppy. The weight setting W=[0 1] is ideal and is a major improvement over that of 

the nonlinear LARC. 
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Figure 3-72: States of System (3.5) Using NGAC (W=[1 0], Small 0

dX  Range) 

 
Figure 3-73: Control Signal of System (3.5) Using NGAC (W=[1 0], Small 0

dX  Range) 
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Figure 3-74: States of System (3.5) Using NGAC (W=[1 1], Small 0

dX  Range) 

 
Figure 3-75: Control Signal of System (3.5) Using NGAC (W=[1 1], Small 0

dX  Range) 
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Figure 3-76: States of System (3.5) Using NGAC (W=[0 1], Small 0

dX  Range) 

 
Figure 3-77: Control Signal of System (3.5) Using NGAC (W=[0 1], Small 0

dX  Range) 
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3.3.5 Nonlinear GAC with Large Checking Set Range 
 Table 3-32 shows the genetic algorithm parameters used to optimize the nonlinear 

GAC for the double inverted pendulum system (3.5) using a large 0
dX  range. The 

checking set range is set high to demonstrate the affects of the system nonlinearities. The 

control gain upper limit, Kmax, is set to 10.  

System: 
Double 
Inverted 

Pendulum (3.5) 

Controller 
Type: 

nonlinear 

Generations: 
50 

Population 
Size: 

50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
10 

maxK : 
10 

c:  
0 

X0 Range: 

 
[ ]

4,3,2,1
11

=
−∈

i
xi  

Table 3-32: GA Parameters to Optimize NGAC for System (3.5) (Large 0
dX  Range) 

 
 Table 3-33 displays the GA results of the optimization of the nonlinear GAC for 

the double inverted pendulum system (3.5) using a large 0X  range.   

Weight 
Case 

Weights P K Q 

1 W=[1 0] 0.1009  0.2370  0.0322  0.0363 
0.2370  1.1231  0.1154  0.1678 
0.0322  0.1154  0.0131  0.0174 
0.0363  0.1678  0.0174  0.0251 

0.0237  3.8883  0.2727  0.5673 0.0186  0.0019 -0.0002  0.0008 
0.0019  0.0002 -0.0000  0.0000 
-0.0002 -0.0000  0.0000 0.0001 
0.0008   0.0000  0.0001  0.0002 

2 W=[1 1] 0.2060  0.4427  0.0577  0.0670 
0.4427  1.6272  0.1759  0.2432 
0.0577  0.1759  0.0204  0.0264 
0.0670  0.2432  0.0264  0.0364 

0.2423  4.6634  0.3609  0.6830 0.2426  -0.0081  0.0009 -0.0009 
-0.0081  0.0003 -0.0000  0.0000 
 0.0009 -0.0000  0.0000  0.0000 
-0.0009  0.0000  0.0000  0.0000 

3 W=[0 1] 0.1272  0.2925  0.0390  0.0445 
0.2925  1.3032  0.1371  0.1950 
0.0390  0.1371  0.0158  0.0207 
0.0445  0.1950  0.0207  0.0292 

0.0807  4.1851  0.3027  0.6116  0.0677 -0.0005  0.0006  0.0001 
-0.0005  0.0001  0.0002  0.0000 
 0.0006  0.0002  0.0015  0.0003 
0.0001   0.0000  0.0003  0.0001   

Table 3-33: Optimized Parameters of NGAC for System (3.5) (Large 0
dX  Range) 

 
 Table 3-34 lists the randomly sampled performance of the nonlinear GAC on the 

double inverted pendulum system (3.5) using a large 0
dX  range. 
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Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.1073 9.7520 3.4343    45061 11.004 332.63    
2 W=[1 1] 0.1202 10.819 3.6796 9902.3 9.0307 107.42 
3 W=[0 1] 0.0798 9.9874 3.2041 9128.9 8.2549 92.792 

Table 3-34: Performance of NGAC on System (3.5) (Large 0
dX  Range) 

 
 Table 3-35 tabulates the randomly sampled performance of the nonlinear GAC on 

the linearized double inverted pendulum system (3.6) using a large 0
dX  range. In theory, 

the nonlinear GAC should yield a positive minγ for the linearized double inverted 

pendulum system since the nonlinear GAC becomes the LQR for Q in Table 3-33. 

However, weight case 3 yielded a P with an eigenvalue of -0.00001313 due to Q having 

eigenvalues so close to zero, which caused minγ  to have a small negative value. Setting 

c>0 forces the eigenvalues of Q to be no less than c and alleviates the problem. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.1505 12.9276 6.6813 5.0258 2.1126 1.2399 
2 W=[1 1] 0.0933 13.1822 6.9588 5.9003 2.3706 1.3879 
3 W=[0 1] -0.0045 12.9970 6.8068 4.6618 1.9632 1.1494 

Table 3-35: Performance of NGAC on System (3.6) (Large 0
dX  Range) 

 
 Figure 3-78 through Figure 3-83 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the nonlinear GAC on the double inverted pendulum system 

(3.5) using a large 0
dX  range. All three sets of weights yield controller chattering. The 

cause is attributed to lack of sufficient number of checking points in 0
dX . 
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Figure 3-78: States of System (3.5) Using NGAC (W=[1 0], Large 0

dX  Range) 

 
 
 

 
Figure 3-79: Control Signal of System (3.5) Using NGAC (W=[1 0], Large 0

dX  Range) 
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Figure 3-80: States of System (3.5) Using NGAC (W=[1 1], Large 0

dX  Range) 

 

 
Figure 3-81: Control Signal of System (3.5) Using NGAC (W=[1 1], Large 0

dX  Range) 
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Figure 3-82: States of System (3.5) Using NGAC (W=[0 1], Large 0

dX  Range) 

 

 
Figure 3-83: Control Signal of System (3.5) Using NGAC (W=[0 1], Large 0

dX  Range) 
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3.4 Example 3:   Cart-and-Pole System 
 The cart-and-pole system in figure 3.82 was taken originally from Slotine and Li 

(1991) and Ogata (1997) where it is described in detail. 

 

Figure 3.83: A Cart-and-Pole System (Slotine and Li, 1991),(Ogata, 1997) 
 

The equations of motion are 

   ( ) ( )uxgxfx +=&       (3.7) 

where 4ℜ∈x , 44:, ℜ→ℜgf , ℜ∈u , and 

( ) ( ) ( )
( )

( ) ( )
( )( )

( ) ( )
( )2

2

2
422

2
2

2
4

2
2

22
2
42

3

42

31

sin
cossin

sin
sin

sin
cossinsin

xmM
xxxm

lxmM
xgmMf

xmM
xxmgxxmlf

xf
xf

+
−

+
+

=

+
−

=

=
=

 



 107

( )

( )2
24

2
23

2

1

sin
/1
sin
1

0
0

xmM
lg

xmM
g

g
g

+
=

+
=

=
=

 

The linearized dynamics about the upright position using the parameter values M = 2 kg, 

m = 0.1 kg, l= 0.5 m, and g = 9.81 2s
mkg ⋅  are: 

BuAxx +=&  , with 
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3.4.1 LARC Results 
 As with the double inverted pendulum system example, two ranges of the 

checking set 0
dX were used for all controllers in this example. The small range, 

[ ] 4,3,2,1,1.01.0 =−∈ ixi , is used to capture the local slightly nonlinear behavior about 

the origin. The large range, [ ] 4,3,2,1,11 =−∈ ixi , is used to capture the highly nonlinear 

behavior away from the origin. Table 3-36 displays the LARC results for the cart-and-

pole system (3.7) as reported in Ngamsom (2001).  
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Px10-4 K Q 
0.3192    0.4116    0.1548    0.0819 
0.4116    2.0490    0.5752    0.3236 
0.1548    0.5752    0.2051    0.1097 
0.0819    0.3236    0.1097    0.0640 

22.3607  180.0604   35.6916   46.0217 2000        0           0           0 
0        2000           0           0 
0           0        2000           0 
0           0           0        2000 

Table 3-36: LLARC Parameters for System (3.7) (Ngamsom, 2001)  

 
 Table 3-37 lists the randomly sampled performance of the linear LARC on the 

cart-and-pole system (3.7). The minimum rate of convergence is negative and increases 

in magnitude as the range increases. 

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi  

-0.1902 0.7238 1.3742 27.4543 9.3467 5.7675 

[ ]
4,3,2,1

11
=

−∈
i
xi  

-27.6645 -6.5949 7.9197 265.8421 93.6272 57.7435 

Table 3-37: Performance of LLARC on System (3.7) 

 
 Table 3-38 displays the randomly sampled performance of the nonlinear LARC 

on the cart-and-pole system (3.7). Although positive, the minimum rate of convergence 

decreases with increasing range while the average rate of convergence stays about the 

same. The maximum control effort becomes very large for large checking set range. 

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi  

0.7839 5.7403 3.0464 56.152 19.247 12.0453 

[ ]
4,3,2,1

11
=

−∈
i
xi  

0.1096 5.5442 3.3907 2.8400x106 896.46 2.3882x104

Table 3-38: Performance of NLARC on System (3.7) 

 
 Table 3-39 displays the randomly sampled performance of the linear LARC on 

the linearized cart-and-pole system (3.8).   

 

 



 109

X0 Range minγ  γμ  γσ  
max

u  uμ  uσ  

[ ]
4,3,2,1

1.01.0
=

−∈
i
xi  

0.0857 0.8288 1.5351 27.2465 9.3589 5.7781 

[ ]
4,3,2,1

11
=

−∈
i
xi  

0.0856 0.8175 1.5193 280.6155 94.1132 57.9198 

Table 3-39: Performance of LLARC on Linearized System (3.8) 

 
 Figure 3-84 & Figure 3-85 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the linear LARC on the cart-and-pole system (3.7). Figure 3-86 

& Figure 3-87 contain the system signal responses to the initial condition (0.5,0,0,0) for 

the nonlinear LARC on the cart-and-pole system (3.7). The responses are very similar 

however the nonlinear LARC has a higher initial control effort due to the strict 

requirement ( ) ( )( )22 PgxQxxPfxV TTT +=& . 

 
Figure 3-84: States of System (3.7) Using LLARC 
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Figure 3-85: Control Signal of System (3.7) Using LLARC 

 

 
Figure 3-86: States of System (3.7) Using NLARC 
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Figure 3-87: Control Signal of System (3.7) Using NLARC 

 

3.4.2 Linear GAC with Small Checking Set Range 
 Table 3-40 tabulates the GA parameters used to optimize the linear GAC for the 

cart-and-pole system (3.7) using a small 0
dX  range. 

  System: 
Cart-and-Pole 

(3.7) 

Controller 
Type: 
linear 

Generations: 
50 

Population 
Size: 
50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
[ ]

4,3,2,1
1.01.0

=
−∈

i
xi

Table 3-40: GA Parameters to Optimize LGAC for System (3.7) (Small 0
dX  Range) 

 
 Table 3-41 shows the GA results of the optimization of the linear GAC for the 

cart-and-pole system (3.7) using a small checking set 0
dX  range. The first set of control 

gains are similar in magnitude to the LARC. The second set is about half the magnitude 

of the LARC gains while the last set is substantially smaller. 
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Weight 
Case 

Weights P K Q 

1 W=[1 0] 2641.9    3145.2    1155.5    641.40 
3145.2    5997.7    1782.9    1109.3 
1155.5    1782.9    750.60    426.50 
641.40    1109.3    426.50    261.80 

63.60 217.84 51.17 48.54 4045.3   1215.4    612.90   -57.800 
1215.4   3519.9   -410.80   -604.10 
612.90   -410.80   307.60    59.800 
-57.800  -604.10   59.800    137.80 

2 W=[1 1] 228.92     315.43   112.01    71.407 
315.43     949.23    236.53   210.02 
112.01     236.53    77.047   53.585 
71.407     210.02    53.585   47.538 

15.40  91.75  15.06  20.74 216.03  -1.6800    2.7972    3.4266 
-1.6800  0.3278    0.7261    1.3324 
2.7972   0.7261    2.2937    3.6616 
3.4266  1.3324     3.6616    8.3791 

3 W=[0 1] 0.0011    0.0604    0.0142    0.0136 
0.0604   193.63    1.5486    42.699 
0.0142   1.5486    0.3615    0.3498 
0.0136   42.699    0.3498    9.4160 

.0065 41.924 0.169 9.241 10-3 x 
0.0414   0.0022   -0.0256   -0.0148 
0.0022   0.0597   -0.0477    0.2025 
-0.0256 -0.0477   0.1143   -0.1535 
-0.0148  0.2025   -0.1535    0.7241 

Table 3-41: Optimized Parameters of LGAC for System (3.7) (Small 0
dX  Range) 

 
 Table 3-42 lists the randomly sampled performance of the linear GAC on the cart-

and-pole system (3.7) using a small 0
dX  range. The minimum and average rate of 

convergence is better than the linear LARC for all three cases. The maximum and 

average control effort is also better only for the last two cases. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 1.7672 6.9593 2.8508  35.607 11.533 7.3452    
2 W=[1 1] 0.0506 7.0643 2.8946 13.735 4.6982 2.9125 
3 W=[0 1] 9.0619x10-4 8.7534 1.1504 5.0841 2.1292 1.2615 

Table 3-42: Performance of LGAC on System (3.7) (Small 0
dX  Range) 

 
 Table 3-43 shows the randomly sampled performance of the linear GAC on the 

linearized cart-and-pole system (3.8) using a small 0
dX  range. The minimum and average 

rate of convergence is better than the linear LARC for the first weight case but the 

maximum and average control effort is higher. The second weight case has a slightly 

better minimum rate of convergence, a much better average rate of convergence, and half 

the maximum and average control effort. The third weight case yields a CLF that is 

locally numerically ill-conditioned because minγ was not checked during the optimization. 

The same result occurred in the previously discussed weight case 3 of Table 3-27. 
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Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 1.7182 7.0822 2.8899 35.389 11.654 7.3918 
2 W=[1 1] 0.0921 7.1671 2.9032 13.309 4.7735 2.9160 
3 W=[0 1] -0.0086 8.7801 1.1480 5.0915 2.1214 1.2660 

Table 3-43: Performance of LGAC on Linearized System (3.8) (Small 0
dX  Range) 

 
 Figure 3-88 through Figure 3-93 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the linear GAC on the cart-and-pole system (3.7) using a 

small 0
dX  range. W=[1 0] yields a much faster convergence than the linear LARC, but at a 

higher 
max

u . W=[1 1] is the case where the convergence rate is faster and the control 

effort is smaller than the linear LARC. W=[0 1] yields a prohibitively slow response for 

an extremely small 
max

u . 

 
Figure 3-88: States of System (3.7) Using LGAC (W=[1 0], Small 0

dX  Range) 
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Figure 3-89: Control Signal of System (3.7) Using LGAC (W=[1 0], Small 0

dX  Range) 

 
 

 
Figure 3-90: States of System (3.7) Using LGAC (W=[1 1], Small 0

dX  Range) 
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Figure 3-91: Control Signal of System (3.7) Using LGAC (W=[1 1], Small 0

dX  Range) 

 

 
Figure 3-92: States of System (3.7) Using LGAC (W=[0 1], Small 0

dX  Range) 
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Figure 3-93: Control Signal of System (3.7) Using LGAC (W=[0 1], Small 0

dX  Range) 

 

3.4.3 Linear GAC with Large Checking Set Range 
 Table 3-44 tabulates the GA parameters used to optimize the linear GAC for the 

cart-and-pole system (3.7) using a large 0
dX  range. 

System: 
Cart-and-Pole 

(3.7) 

Controller 
Type: 
linear 

Generations: 
50 

Population 
Size: 

50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
[ ]

4,3,2,1
11

=
−∈

i
xi  

Table 3-44: GA Parameters to Optimize LGAC for System (3.7) (Large 0
dX  Range) 

 
 Table 3-45 shows the GA results of the optimization of the linear GAC for the 

cart-and-pole system (3.7) using a large 0
dX  range. All three sets of control gains are very 

close and much smaller than those of the LARC. 

 



 117

Weight 
Case 

Weights P K Q 

1 W=[1 0] 0.0250  0.4884  0.1181  0.1102 
0.4884  206.11  4.5277  45.517 
0.1181  4.5277  1.0732  1.0227 
0.1102  45.517  1.0227  10.053 

0.0511 43.252  0.486  9.541 0.0026    0.0002   -0.0001   -0.0004 
0.0002    0.0000    0.0000    0.0001 
-0.0001    0.0000    0.0000    0.0001 
-0.0004    0.0001    0.0001    0.0004 

2 W=[1 1] 0.1983  1.9905  0.5018  0.4498 
1.9905  226.55  9.5821  50.135 
0.5018  9.5821  2.3253  2.1645 
0.4498  50.135  2.1645  11.096 

0.1989 45.344 1.001 10.013  0.0396    0.0013    0.0009    0.0010 
 0.0013    0.0001    0.0000    0.0000 
 0.0009    0.0000    0.0001    0.0001 
 0.0010    0.0000    0.0001    0.0003 

3 W=[0 1] 0.2022  2.0147  0.5068  0.4542 
2.0147  226.75  9.6325  50.180 
0.5068  9.6325  2.3375  2.1756 
0.4542  50.180  2.1756  11.106 

0.2008 45.364  1.007 10.018  0.0403    0.0029   -0.0000   -0.0028 
 0.0029    0.0016   -0.0003   -0.0002 
 -0.0000   -0.0003   0.0001    0.0000 
 -0.0028   -0.0002   0.0000    0.0003 

Table 3-45: Optimized Parameters of LGAC for System (3.7) (Large 0
dX  Range) 

 
 Table 3-46 lists the randomly sampled performance of the linear GAC on the cart-

and-pole system (3.7) using a large 0
dX  range. While still unstable, the rate of 

convergence is much less negative than the linear LARC.  Unlike the linear LARC, the 

average rate of convergence is positive on 0X . Because of the smaller control gains, the 

maximum and average control effort is much smaller for the GAC cases. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] -0.1516 6.0398 2.2173  52.693 22.107 12.966  
2 W=[1 1] -0.0758 5.7345 2.3488 55.447 23.146 13.733 
3 W=[0 1] -0.0551 5.7263 2.3473 55.231 22.974 13.668 

Table 3-46: Performance of LGAC on System (3.7) (Large 0
dX  Range) 

 
 Table 3-47 displays the randomly sampled performance of the linear GAC on the 

linearized cart-and-pole system (3.8) using a large 0
dX  range. The linear LARC minimum 

rate of convergence is better than all three linear GAC cases, however the average rate of 

convergence is better for the linear GAC cases. 
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Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 7.3976x10-4 8.6143 1.4466 52.945 22.119 13.091 
2 W=[1 1] 7.1437x10-4 8.4254 1.7404 55.494 23.023 13.757 
3 W=[0 1] 0.0022 8.4241 1.7325 55.849 23.024 13.745 

Table 3-47: Performance of LGAC on Linearized System (3.8) (Large 0
dX  Range) 

     
 Figure 3-94 through Figure 3-99 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the linear GAC on the cart-and-pole system (3.7) using a 

large 0
dX  range. All three controllers yield a very slow response with a very small control 

effort. Again, it is believed the most likely cause for this is an insufficient number of 

checking points. 

 
Figure 3-94: States of System (3.7) Using LGAC (W=[1 0], Large 0

dX  Range) 
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Figure 3-95: Control Signal of System (3.7) Using LGAC (W=[1 0], Large 0

dX  Range) 

 
 

 
Figure 3-96: States of System (3.7) Using LGAC (W=[1 1], Large 0

dX  Range) 
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Figure 3-97: Control Signal of System (3.7) Using LGAC (W=[1 1], Large 0

dX  Range) 

 

 
Figure 3-98: States of System (3.7) Using LGAC (W=[0 1], Large 0

dX  Range) 
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Figure 3-99: Control Signal of System (3.7) Using LGAC (W=[0 1], Large 0

dX  Range) 

 

3.4.4 Nonlinear GAC with Small Checking Set Range 
 Table 3-48 displays the GA parameters used to optimize the nonlinear GAC for 

the cart-and-pole system (3.7) using a small 0
dX  range. 

System: 
Cart-and-Pole 

(3.7) 

Controller 
Type: 

nonlinear 

Generations: 
50 

Population 
Size: 

50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
[ ]

4,3,2,1
1.1.

=
−∈

i
xi  

Table 3-48: GA Parameters to Optimize NGAC for System (3.7) (Small 0
dX  Range) 

 
 Table 3-49 shows the GA results of the optimization of the nonlinear GAC for the 

cart-and-pole system using a small 0
dX  range. Unlike the linear GAC, the first two sets of 

gains are larger than those of the LARC for the nonlinear GAC. The last set of gains are 

smaller. 
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Weight 
Case 

Weights P K Q 

1 W=[1 0] 29040 39800 16690 8570.0 
39800 192950 40750 21310 
16690 40750 13670 7040.0 
8570.0 21310 7040.0 3820.0 

222.773 933.871 202.77 304.469 49628  39780  16132  28030 
39780  34576  11375  16121 
16132  11375  7730.0 12420 
28030  16121  12420  50086 

2 W=[1 1] 59914  45370 19098 9885.0 
45370  39161 16214 8699.0 
19098  16214  7232.0 3815.0 
9885.0  8699.0 3815.0  2040.0 

335.88 592.155 199.519 132.529 100240  4700   5550  -890 
4700      6720  -1810   -670 
5550      -1810  1310    280 
-890       -670    280   130.00 

3 W=[0 1] 0.4961 3.7086 0.9600 0.8384 
3.7086 241.93 13.510 53.609 
0.9600 13.510  3.3321 3.0517 
0.8384  53.609 3.0517 11.881 

0.3584  46.8542  1.3857 10.3546 0.1285  -0.0022 0.0005  0.0024 
-0.0022  0.0001 0.0000  0.0000 
0.0005   0.0000  0.0001  0.0001 
0.0024   0.0000  0.0001  0.0001 

Table 3-49: Optimized Parameters of NGAC for System (3.7) (Small 0
dX  Range) 

 
 Table 3-50 tabulates the randomly sampled performance of the nonlinear GAC on 

the cart-and-pole system (3.7) using a small 0
dX  range. The first case yields worse 

minimum rate of convergence and maximum control effort for the nonlinear GAC than 

for the nonlinear LARC. The second case yields a much better minimum rate of 

convergence, but still possesses a higher maximum control effort. The last case has a 

slower rate of convergence than the nonlinear LARC, but possesses a tenfold decrease in 

maximum control effort. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.7616 5.4053 5.8597  179.86 52.375 34.966  
2 W=[1 1] 2.3045 9.5942 8.2171 132.03 35.450 24.977 
3 W=[0 1] 0.0017 8.3313 1.8583 5.7884 2.3860 1.4252 

Table 3-50: Performance of NGAC on System (3.7) (Small 0
dX  Range) 

 
   Table 3-51 lists the randomly sampled performance of the nonlinear GAC on the 

linearized cart-and-pole system (3.8) using a small 0
dX  range. The first and second cases 

have a faster rate of convergence than the linear LARC on the linearized system but use 

more control effort. The last case has a slower minimum rate of convergence but uses less 

control effort than the linear LARC on the linear system. 
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Weights minγ  γμ  γσ  
max

u  uμ  uσ  
W=[1 0] 0.6930 5.5483 6.9042 159.35 49.888 32.019 
W=[1 1] 1.9508 9.6642 8.3087 122.07 34.542 23.704 
W=[0 1] 0.0028 8.3309 1.8672 5.724 2.3808 1.4171 

Table 3-51: Performance of NGAC on Linearized System (3.8) (Small 0
dX  Range) 

 
 Figure 3-100 through Figure 3-105 contain the system signal responses to the 

initial condition (0.5,0,0,0) for the nonlinear GAC on the cart-and-pole system (3.7) using 

a small 0
dX  range. The first controller yields a faster response than the nonlinear LARC, 

but the control effort is higher. The second controller yields a much faster response but 

the control effort is much higher. The third controller yields a much slower response but 

the control effort is also very small. A weight set that yields a controller with a faster rate 

of convergence and lower control effort than the nonlinear LARC may be somewhere in 

between the weight sets W=[1 1] and W=[0 1], but further investigation must be done to 

know for sure. 
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Figure 3-100: States of System (3.7) Using NGAC (W=[1 0], Small 0
dX  Range) 

 

 
Figure 3-101: Control Signal of System (3.7) Using NGAC (W=[1 0], Small 0

dX  Range) 
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Figure 3-102: States of System (3.7) Using NGAC (W=[1 1], Small 0

dX  Range) 

 

 
Figure 3-103: Control Signal of System (3.7) Using NGAC (W=[1 1], Small 0

dX  Range) 
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Figure 3-104: States of System (3.7) Using NGAC (W=[0 1], Small 0

dX  Range) 

 

 
Figure 3-105: Control Signal of System (3.7) Using NGAC (W=[0 1], Small 0

dX  Range) 
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3.4.5       Nonlinear GAC with Large Checking Set Range 
 Table 3-52 shows the GA parameters used to optimize the nonlinear GAC for the 

cart-and-pole system (3.7) using a large 0
dX  range. 

System: 
Cart-and-Pole 

(3.7) 

Controller 
Type: 

nonlinear 

Generations: 
50 

Population 
Size: 

50 

Checking 
points: 200 

Critical Points: 
50 

EΔ : 
100 

maxK : 
1000 

c:  
0 

X0 Range: 
[ ]

4,3,2,1
11

=
−∈

i
xi  

Table 3-52: GA Parameters to Optimize NGAC for System (3.7) (Large 0
dX  Range) 

 
 Table 3-53 tabulates the GA results of the optimization of the nonlinear GAC for 

the cart-and-pole system using a large 0
dX  range. The gains for the large range tend to be 

smaller than those for the small range.  

Weight 
Case 

Weights Px10-4 K Qx10-4 

1 W=[1 0] 2.0718  1.5909  0.6450  0.3434 
1.5909  2.0248  0.6508  0.3643 
0.6450  0.6508  0.3453  0.1861 
0.3434  0.3643  0.1861  0.1033 

209.28  388.82  134.66  102.60 4.3030  1.2062  0.6749  0.5097 
1.2062  0.6109 -0.0143 -0.0581 
0.6749 -0.0143  0.4241  0.3138 
0.5097 -0.0581  0.3138  0.2625 

2 W=[1 1] 1.3437  1.6011  0.6749  0.3475 
1.6011  6.0468  2.0370  1.0880 
0.6749  2.0370  1.2199  0.6351 
0.3475  1.0880  0.6351  0.3395 

100.24  695.46  251.80  219.28 1.0048   0.1478   1.1804   0.5970 
0.1478   5.5554   3.4311   2.5243 
1.1804   3.4311   4.9908   3.1371 
0.5970   2.5243   3.1371   2.6324 

3 W=[0 1] 10-4x 
0.0445  0.7230  0.1765  0.1632 
0.7230  210.38  5.5668  46.482 
0.1765  5.5668  1.3263  1.2574 
0.1632  46.482  1.2574  10.271 

0.0750  43.698  0.5943  9.6417 10-4x 
0.0056  0.0007  0.0000  -0.0002 
0.0007  0.0004  -0.0001  0.0001 
0.0000 -0.0001   0.0001 -0.0000 
-0.0002 0.0001  -0.0000  0.0000 

Table 3-53: Optimized Parameters of NGAC for System (3.7) (Large 0
dX  Range) 

 
 Table 3-54 displays the randomly sampled performance of the nonlinear GAC on 

the cart-and-pole system (3.7) using a large 0
dX  range. For the first two cases, the 

minimum rate of convergence is smaller than that of the nonlinear LARC with less 

maximum control effort. For the last case, the minimum rate of convergence is much 
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slower than the nonlinear LARC but the maximum control effort is 5 orders of magnitude 

smaller than the nonlinear LARC. 

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 0.0895 7.0395 3.9501 1.4010x106 699.22 1.3568x104

2 W=[1 1] 0.0837 12.738 10.508 1.7821x106 723.97 1.3329x104

3 W=[0 1] 3.3456x10-4 7.9549 1.4253 91.308 27.959 20.1231 

Table 3-54: Performance of NGAC on System (3.7) (Large 0
dX  Range) 

 
 Table 3-55 lists the randomly sampled performance of the nonlinear GAC on the 

linearized cart-and-pole system (3.8) using a large 0
dX  range. The local behavior of the 

controller is much different than the behavior on 0
dX .     

Weight 
Case 

Weights minγ  γμ  γσ  
max

u  uμ  uσ  

1 W=[1 0] 1.4295 6.2835 1.9826 765.33 225.85 151.81 
2 W=[1 1] 0.7794 7.8585 3.8187 1.1782x103 375.43 243.90 
3 W=[0 1] 2.4382x10-4 8.5672 1.5073 53.385 22.117 13.185 

Table 3-55: Performance of NGAC on Linearized System (3.8) (Large 0
dX  Range) 

 
 Figures 3.104 through 3.111 contain the system signal responses to the initial 

condition (0.5,0,0,0) for the nonlinear GAC on the cart-and-pole system (3.7) using a 

large 0
dX  range. The trends of the responses with the settings of the weights are similar to 

the previous small 0
dX  range case, however the set of weights that yield the target 

controller with a better response than the nonlinear LARC probably lies somewhere in 

between W=[1 0] and W=[1 1]. 
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Figure 3-106: States of System (3.7) Using NGAC (W=[1 0], Large 0

dX  Range) 

 

 
Figure 3-107: Control Signal of System (3.7) Using NGAC (W=[1 0], Large 0

dX  Range) 
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Figure 3-108: States of System (3.7) Using NGAC (W=[1 1], Large 0

dX  Range) 

 

 
Figure 3-109: Control Signal of System (3.7) Using NGAC (W=[1 1], Large 0

dX  Range) 
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Figure 3-110: States of System (3.7) Using NGAC (W=[0 1], Large 0

dX  Range) 

 

 
Figure 3-111: Control Signal of System (3.7) Using NGAC (W=[0 1], Large 0

dX  Range) 
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3.5 Discussion of Results 
We list the following observations and discuss them below: 

1. The fitness function is nonlinearly dependent on W and more importantly is non-

monotic in W.  

2. The linear GAC can achieve a higher minγ on 0
dX  than the linear LARC, but minγ  

is still negative in some cases. 

3. Although at the cost of a large
max

u , both the nonlinear GAC and LARC yield 

0min >γ  globally, but the nonlinear GAC yields a smaller 
max

u . 

4.  GAC yields a non-intuitive Q matrix with non-zero diagonal terms that are 

sometimes negative.  

5. Most of the time the GAC has a smaller local minγ  but yields a high 

overall minγ on 0
dX . 

Point 1: 

 One should expect that focusing solely on the rate of convergence should result in 

the controllers with a close to optimal value for minγ on 0
dX . Likewise, we should expect 

that using only the maximum control effort in the fitness function should yield an optimal 

value for 
max

u on 0
dX . Therefore, when considering both minγ and 

max
u in the fitness 

function, a trade-off in the optimal values should be made. This is not always the case, 

however. The search for both minγ and 
max

u leads the GA search to regions of parameter 

space that would otherwise not be searched, hence better values of both minγ and 
max

u are 

achieved. In other words, looking for a controller with a fast rate of convergence 

sometimes produces a controller that also yields a small control effort because it restricts 
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the search to regions of parameter space that yield good values for both sets of 

performances.  

Point 2:  

 The GAC considers the actual nonlinearities rather than conservative estimates in 

the form of uncertainties. This yields a less conservative controller with a better 

performance on 0
dX . A negative rate of convergence is expected in situations where the 

system is not linearly stabilizable or a quadratic CLF does not exist.  

Point 3: 

 The Sontag-like control law is both globally asymptotically stable and inverse 

optimal by design. It does however, yield control laws with high 
max

u because of the 

restriction that 
22

)( ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= g
x
Vxqf

x
VV& . The high control effort occurs 

when f
x
Vg

x
V

∂
∂

<<
∂
∂ . The GAC is able to find a CLF such that this inequality condition 

is less extreme. 

Point 4:  

 An important feature to notice is that the GA found non-diagonal Q matrices to be 

the optimal solution for all cases. Selecting the relative weighting between the diagonal 

elements of Q is fairly straight-forward when observing the response of the system. RMS 

values of the states and control go down as their weighting factor goes up. However, 

there is no straightforward intuition for selecting the off-diagonal terms which highlights 

one of the advantages of using the GAC method. 

 Point 5:  
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 The GAC uses the linear model to compute a CLF, but uses the nonlinear model 

to evaluate the CLF. Hence, the locally linear behavior is not as important as the entire 

behavior on 0
dX .  

 In summary, the GAC is advantageous because treating nonlinear systems as 

linear systems with uncertainties (structure and unstructured) as done in Ngamsom 

(2001) will yield a conservative controller, since the nonlinearity is rarely at its worst-

case value all the time. However, a disadvantage of the GAC is that it only approximates 

the effects of the nonlinearities on the CLF because we don’t know exactly where the 

critical points are located. Therefore the controller may not be conservative enough. The 

GAC also requires the tuning of the fitness function to achieve the desired performance 

and is not guaranteed to find a solution nor does it determine if one exists. Future work 

should involve better estimates of the critical point locations as well as an investigation of 

the required number of checking points and tuning of the fitness function weights to 

achieve the desire performance characteristics. 
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4 Future Directions and Conclusions 
 
 Numerical checking of CLF conditions is useful for control system design 

because it relaxes the need to analytically solve for the control. Instead, a desired 

performance level on a subset of state space may be achieved via automatic offline tuning 

of the CLF and controller. In practice, probabilistic performance checking in a desired 

region of state space may suffice. PID control is still the dominant controller type in 

industry even though it is usually not globally stable nor guaranteed in any theoretical 

sense for the actual nonlinear and uncertain dynamics. The transient and steady-state 

response of the controller to specified initial conditions and set points is the ultimate 

concern. The work proposed in this thesis is the beginning of the development of an 

alternative method for nonlinear system controller design. Four major directions are 

proposed below for future research in extending this work.  

4.1 Generalized Control Lyapunov Functions 
 The modified Sontag universal control law is equivalent to using the gradient 

direction of V normalized to satisfy the HJB equation (Primbs, et al 2000). The control 

law forces the vector x&  to have a positive projection along the negative gradient direction 

of the CLF. Therefore, because the level sets of the CLF are closed, the trajectory must 

settle towards the origin, i.e. the state vector cannot escape the enclosure and 

continuously enters smaller and smaller enclosures. However, staying within elliptically 

shaped enclosures for a quadratic CLF may require a large amount of control effort, 



because such trajectories may approach singularities (i.e. the “ g
x
V
∂
∂ ” term in the control 

law approaches zero). Using a CLF with level sets whose shape is close to the unforced 

stated trajectory is the key to lowering the control effort when using CLF-based control 

laws. Johansen (2000 a) showed that a Lyapunov function candidate of the form 

   xxPxxV T )(
2
1)( =       (4.1) 

could approximate any Lyapunov function to arbitrary degree of accuracy, where the 

matrix valued function ( ) nxnXxP ℜ→0: is defined by the following linear 

parameterization: 

   ( ) ( )∑
=

=
N

i
ii xpPxP

1
      (4.2) 

where ℜ→0: Xpi  are smooth basis-functions (typically normalized Gaussians) 

and iP are parameter matrices for all i =1,2,…,N. To ensure the CLF has closed level sets, 

the parameters are restricted such that 0>iP and ( ) 1
1

=∑
=

N

i
i xp . Although Johansen applies 

the use of such Lyapunov function candidates to quantify nonlinear system performance, 

the work herein did not explicitly address the use of such generalized functions as CLFs.  

The Lyapunov function described by (4.1) and (4.2) is easily blended into the 

GAC framework proposed in this thesis. The parameter matrices iP , the number of basis 

functions N, and any parameters related to )(xp i  (e.g. mean and variance of Gaussian 

basis functions) could be included in the set of parameters to be tuned by the GA. The 

level sets of (4.1) may take on arbitrary closed shapes by restricting 0>iP , such that the 
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state trajectories could be shaped to yield high convergence rates with small control effort 

using CLF-based controllers such as the modified Sontag control law. 

4.2 Improved the Critical Point Computation 
Theorem 1.1 implies that the major cause of inefficiency in point-wise numerical 

optimization of CLFs is the required checking set density. Theorem 1.2 helps relax the 

required number of checking points by allowing the use of the linearized dynamics to 

obtain a local guarantee of positive rate of convergence (e.g. by checking the ratio of the 

eigenvalues of ATP+PA and P). This way, a small region about the origin is removed 

from the need to check the rate of convergence. However, for a wide spanning 0X , local 

stability is not a good assumption for the entire set being stable or having some positive 

minimum rate of convergence. Theorem 1.2 could be used at many points on 0X , and 

many locally linearized system models could be used to check the local minimum rate of 

convergence. Although the required total number of checking points would be reduced 

substantially, the points in the regions between the linearizations must also be checked (a 

problem similar to unstable switching in gain scheduling). 

A few approaches to improving the search for the critical points are listed below: 

1. Spend time converging towards the critical points rather than taking a single guess:  

The work herein assumed that minγ and 
max

u occur at only one place each on 0X . 

These locations must be estimated and the rate of convergence and control effort 

need to be computed only at these points. Because the CLF changes with the 

adjustment of its parameters, the critical point locations change, making the 

required checking set, 0
dX , dynamic. The method proposed in Chapter 2 for 

adapting 0
dX  is basically a random walk using memory of the critical point 
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estimations of the controllers of past generations. A problem with such a search 

method is that the algorithm spends little time looking for the critical points; it 

merely uses a new randomly generated set of guesses along with the best guesses 

from the previous generations. Genetic algorithms could do a better job at finding 

the critical points. A method could be used similar to the method of Jamshidi et 

al, (2003), where linear optimal control, specifically, mixed 2H and 

∞H optimization, is performed using a GA to tune the controllers. In the method 

of Jamshidi et al., an additional GA is used to find the worst case uncertainities 

and disturbances, along with finding the frequencies at which the ∞H norm occurs. 

Such an approach would be better than using a single set of guess points because 

the GA would spend time converging towards the critical points so that the 

narrow escape manifolds seen in Chapter 3 are found during the controller 

optimization and not during the controller verification simulation.  

2. Rather than use a GA, try a specially designed particle filter: 

Another interesting avenue of research is the use of particle filters (Arulampalam 

et al, 2002) for searching for the critical point locations. Particle filters 

approximate the pdf of a variable by a discrete set of weighted points (particles). 

In this case, the variable would be the location of a critical point. Using a particle 

filter in an optimization application would be similar in operation to a GA that 

uses only Copy and Mutation. However, the difference would be that particle 

filters have a stronger theoretical basis in Bayesian statistics; therefore they may 

offer more resources for a analyzing the convergence of the algorithm towards the 

critical points. In addition, because particle filters are generalizations of Kalman 
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filters, the dynamics of the system may be used to guide the search towards the 

points in state space where the rate of convergence becomes negative (instability) 

for the CLF (i.e. the critical points). For example, the direction of the state time 

derivative at a particular location in state space could be used by the particle filter 

as a guess towards a better estimate of the critical point. 

3. Create an empirical mapping of the relationship between critical points, and controller  

and CLF parameters.   

With the current critical point searching method, no memorization occurs of the 

locations of the critical points for the given set of controller and CLF parameters. 

Therefore when a similar set of parameters is introduced to the GA population, 

the search effort for the critical points is duplicated (although sometimes reduced 

by the use of the “random walk with memory” approach introduced in Chapter 2). 

Neural networks with their excellent generalized mapping ability, could be used 

to learn the mapping between the controller and CLF parameters and the locations 

of the critical points. A clustering neural network, such as ARTMAP (Carpenter 

et al. 1991) could be trained to provide close initial guesses of locations of the 

estimated critical points for any set of controller and CLF parameters, rather than 

searched for blindly at each generation. The 2nd GA procedure proposed in Item 1 

above would use the output of the neural network as the initial starting point to 

fine tune the critical point estimation, and then the neural network would be 

retuned with the better estimation point. 
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4.3 Output-feedback, Adaptive, and Robust Control 
 The work herein exclusively considered full state-feedback control. Output-

feedback, adaptive and robust control all fit into the CLF framework (Kokotovic & 

Arcak, 2001). Output feedback requires the addition of observer states and the tuning of 

observer gains. The GAC method could be used to achieve similar control objectives to 

those in this thesis as well as to hinder the well known “peaking phenomenon” 

(estimation error growing very high during transients) by appropriate tuning of the CLF 

and observer gains. For adaptive control, the adapted controller parameters may be 

thought of as additional states of the system, and the GAC method could be used to tune 

the adaptation gains to carry out the performance objectives. Robust control, as with the 

critical point searching concept, involves finding a “worst-case” set of admissible 

structured and unstructured uncertainties and disturbances, while the controller gains are 

tuned to carry out the performance objective despite the effects of the uncertainties and 

disturbances. Genetic algorithms are proven solutions to such dynamic game problems 

(Jamshidi et al, 2003).  

4.4 Discrete-Time Control 
 The control systems literature is dominated by continuous time analysis. 

Likewise, CLF theory for continuous time control is generally simpler than discrete time 

control. Often a continuous time control signal can be separated from the remaining terms 

in V& and solved to satisfy the CLF condition 0, >−< ααVV& . For example, in control 

affine systems, the Sontag-like control laws exploit the fact that the control is multiplied 

by ( )xg
x
V
∂
∂  in V&  and division by ( )xg

x
V
∂
∂  of both sides of the V&  equation separates out 

the control. In addition to the difficulty of solving for the control analytically, tuning the 
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continuous time controller does not guarantee that the discrete time implementation will 

satisfy the performance requirements. It is desirable to use a more direct design method 

in the discrete time domain. The proposed GAC method is easily modified to ensure the 

discrete-time CLF condition 1,1 <<+ αα kk VV (k is the time step index) is satisfied in 

place of the continuous time CLF condition 0, >−< ααVV& . Another attraction of tuning 

the discrete time CLF and controller is that a discrete time model based on system 

identification techniques, including system time delays, may be used to check and 

optimize the performance measures. In addition, given that the actual system can sustain 

the use of “bad” controllers during the GA search phase, the GA could bypass the system 

model altogether and tune the system directly using online system identification. Such a 

notion has been coined “genetic adaptive control” by Spooner et al. (2002). 

4.5 Putting It All Together For Practical Control Design 
System analysis is used to determine an appropriate controller and CLF structure. 

However, using a genetic algorithm to tune controllers and CLFs does not call for 

rigorous analysis of the system. The algorithm simply finds a set of parameters of the 

specified controller that meets all the desired requirements. In a sense, the GA makes 

some very complex controllers “practical” because it tunes them to work even if the 

system does not fall into the particular class of systems assumed during the controller 

synthesis procedure. Such “inappropriate” mixing of controllers and systems happens in 

practice more often than not. A common example is the tuning of PID controllers, a 

linear control method, for highly nonlinear industrial robot arms (Rocco, 1996). Another 

such mismatch between controller and system type is seen in a typical system 

identification procedure where a linear model is “fit” to input/output response to a known 
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input with the data taken most likely from a nonlinear system. The “best fit” model is 

then often used to design a robust linear controller.  

With such a large number of research publications on adaptive, robust, and digital 

control, it is clear that a design procedure that implements all three concepts for a broad 

class of systems is very useful. However, such a procedure is difficult to find because of 

the level of difficulty involved in the analysis of discrete time systems. While a large host 

of control design philosophies exist in the literature, many are not used in practice 

because of their complexity and a general lack of understanding of their theoretical basis 

by typical control engineers with terminal B.S. degrees. For example, many control 

engineers do not recognize when a system is in a particular canonical feedback form (e.g. 

strict feedback form), so an appropriate back-stepping control design is not considered. 

On the other hand, many times the use of a practical control law may not be appropriate 

for a given system, but since it is a method well known to the particular control engineer, 

it is implemented. Such is the legacy of PID control. In this light, many times there is a 

reason to simply “guess” a suitable controller type, even if the actual system does not 

perfectly fit into the theoretical framework upon which the controller is based.  

The genetic algorithm optimization procedure in this thesis is a way to may be a 

way to address these problems simultaneously, using discrete time CLFs subject to a 

specified set of states, uncertainties, and disturbances. A particular control type may be 

selected or guessed, and the algorithm tunes the parameters to satisfy a specified level of 

performance. This leads us to outline a general approach to controller design for a broad 

class of systems. The background and primary interest area of the author is the control of 

mechanical systems; therefore such systems shall be the primary focus. Many mechanical 
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systems fall into the control affine category, so restricting the analysis to such form still 

yields broad applicability. Let the system of interest have the following form, where the 

meaning of the terms are explained in the paragraph following (4.3) and (4.4): 

( ) ( )
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( )
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Let the observer of the system of interest have a similar form 
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with the signals of interest being defined exclusively on the 
set Δ×Θ××Δ×Θ×=Ψ ˆˆX̂X . 

 
The system dynamics are dependent on the states x , parameters θ , and 

disturbances δ , with all three signals existing on closed bounded real sets X , Θ , and Δ , 

respectively. These sets along with the sets where the estimated signals x̂ , θ̂ , and δ̂  
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exist, X̂ , Θ̂ , and Δ̂ , respectively, are specified by the controller designer. These signals 

also exist on closed bounded real sets X̂ , Θ̂ , and Δ̂ , respectively, and may be the same 

as X , Θ , and Δ , when the signal estimates, x̂ , θ̂ , and δ̂ , are estimates of the real 

signals, x , θ , and δ . The control u , is assumed to be dependent on the system’s 

measurable output(s) y , and estimates of the states x̂ , parameters θ̂ , and disturbances 

δ̂ .  As with the state derivatives, the output(s) y, is dependent on x , θ , and δ . The 

system parameters and disturbances are assumed to be time dependent and 

autoregressive. Note that the set of observer equations and parameters are not necessarily 

the same type and order as the system equations and parameters. That is 

δθ ˆˆ ,,ˆ,ˆ,ˆ FandFhgf may not have the same form as δθ FandFhgf ,,,, . For example, the 

system may be a 4th order double inverted pendulum with a sinusoidal torque disturbance, 

while the observer is a 6th order linear parameter time varying system, or a 6th order 

nonlinear system with neural network functions of the states with many network weights. 

This selection is made to preserve the control system generality. The structure of the 

observer is similar to the actual system in that it is also control affine. However, an 

additional term is added that acts as the observer correction function, L(e) in (4.4). In a 

Luenberger-type observer, this function has the linear form “ eL ⋅ ”. The estimates of the 

system parameters and disturbances are assumed to be time dependent and 

autoregressive, but also dependent on the estimates of each other, the states, and the 

tracking error.  

Ultimately the control law will likely be digitally implemented such that 

discretization of the controller must be performed. Because of the inclusion of 

unstructured uncertainty terms in the proposed framework, discretization errors may be 
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attenuated by proper tuning of the control law. To maintain the theme of controller 

practicality, very simple discretization methods may be used. Euler’s approximation is 

the simplest approximation to use for the time derivatives of the continuous time control 

law and CLF, such that it is a prime candidate for our purposes. The discretized CLF is 

checked directly to ensure it monotonically decreases with time, decreasing and any 

quantization error effects are assumed to act as disturbances. Since the critical point 

searching algorithm will consider the full range of admissible disturbance values, the 

quantization effects will be accounted for in the controller and CLF tuning. Another 

feature of the proposed method is the elimination of the need to compute V& , which can 

be very laborious and computational intensive when using many basis functions in (4.2). 

Computing V&  in (4.18) can be very lengthy due to the lengthy jp&  terms: 
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where ψ is the vector of all signals of interest (e.g. x , θ , and δ ) and ψ~ is the error 

between these signals and their estimates, ψψψ ˆ~ −= . Rather than computing V& , the 

performance checking may instead include checking the change in value of V between 

current time step and the next time step. To clarify, let “ [ ]k• ” denote a signal at time step 

k. Then V for the next time sample is expressed as 
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where 

[ ] [ ]kk t ψψψ &~~~
1 ⋅Δ+=+         (4.21) 
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Under this regime of approximation, the time stepping of all time dependent signals 

involved in the terms of (4.3) and (4.4) is approximated by the form (4.21). The rate of 

convergence for the discrete time case becomes [ ] [ ]kk VV /1+ rather than [ ] [ ]kk VVtV /&⋅Δ+ , 

with the latter expression being much more complicated because V& must be computed. In 

fact, the former quantity is a more accurate estimate of the rate of convergence, because 

V& does not dictate the performance of the system, only ψ& . 

The idea behind the proposed routine is for the optimization method to adjust the 

parameters of the controller and CLF to maximize the performance objective, while at the 

same time search for a combination of δδθθ ˆ,,ˆ,,ˆ, andxx (i.e. the critical points) on 

Ψ that minimizes the performance objective for a given set of controller and CLF 

parameters. The controller and CLF parameters are then evaluated using the estimated 

critical points. Finally, the controller and CLF parameters are updated. The process is 

repeated until a desired performance level is achieved or progress has stagnated.  

To demonstrate the generalized approach outlined above, consider a particular 

nonlinear system approximated as a linear parameter time varying system and use a 

robust adaptive controller for linear systems with a very fast parameter adaptation rate to 

compensate for the parameter changes due to the nonlinearities. The adaptive controller 

may be synthesized in the continuous time domain, but it must be discretized as above by 

approximating the time stepping of all signals. The uncertainty caused by the 

discretization is assumed to be attenutable by proper tuning of the control law parameters 

by the GA. We may address the time variability of the linear system coefficients by using 

Krstic et al.’s (1995, Chapter 10) adaptive back-stepping controller with tuning functions 

for linear systems, denoted ABC. We shall assume that along with the controller’s 
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inherent robustness to parameter perturbations, the parameter adaptation rate may be 

tuned fast enough to account for the coefficient variability. The Laplace transform model 

of the linear system may be expressed as  

nmsu
asasas

bsbsb
sy n

n
n

m
m <

++++
+++

= −
−

),()(
01

1
1

01

L

L
    (4.5) 

For ease of analysis, the state space model is used and expressed in observer canonical 

form: 

1

00

111

1

11

121

xy
ubyax

ubyaxx

ubyaxx
yaxx

yaxx

n

nn

mm

m

n

=
+−=

+−=

+−=

−=

−=

−

+

+−

−

&

&

M

&

&

M

&

ρρ

ρρ

       (4.6)  

Equation (4.6) may also be expressed in a more compact and convenient form: 
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M , and je is the unit vector whose jth element 

is equal to 1. 

The set of K-filters below is used to reconstruct the state vector via the relationship 

θξ Tx Ω+= : 
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where TkeAA 10 −=  with k being the Luenberger observer gains. 
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The rationale behind using such a filter structure lies in it’s minimal order (Krstic et al., 

1995).  

Next is the structure of the control law. The variable z represents the tracking 

error and it’s successive derivatives: 
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where ( )1−i
ry  is the ( )thi 1−  derivative of the reference output trajectory and σ̂  is the 

estimate of the inverse if the high frequency gain mb , that is mb/1  ( mb̂/1 is not used 

because of the possibility of division by zero during controller operation). The variable 

α  represents the well known virtual control concept of the back-stepping procedure and 

is defined in (4.11): 
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where ic  and id  are CLF parameters, Γ  is the adaptation rate matrix, θ̂ is the estimate of 

the linear system coefficients from (4.5), [ ]Tab ˆˆˆ =θ , and finally 
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One of the unique concepts of ABC is the use of the so-called tuning functions τ . Tuning 

functions are used to update the parameter estimates without causing bad transients. For 

the current controller design, the tuning functions are defined as 
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Finally the control and parameter update laws are 
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Note that the sign of the high frequency gain, )sgn( mb , is assumed to be known for the 

adaptation law of σ .  

The structure and parameters of the controller are the result of an analytical 

process that is so procedural that symbolic math procedures exist to automate the 

controller synthesis process and output the controller code (Rios-Bolivar & Zinober, 

1997). However, the number of parameters to tune becomes very high with high system 

order, such that tuning the controller is still an ad hoc procedure.  

As with the relatively simple controllers presented in this thesis, the same GA 

tuning algorithm may be used for the more complex ABC controller. The ABC controller 

synthesis process is based on constructing the following CLF:  
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where xx ˆ−=ε , θθθ ˆ~
−= , and σσσ ˆ~ −= . Because the CLF is the result of human 

analysis, it is relatively simple in that it is quadratic with no cross-coupling of the various 

error signal types. For the proposed generalized control design procedure, one would use 

the same error signals in (4.16) with the proposed generalized CLF of (4.1) & (4.2). Thus 

the generalized CLF would have the form:  
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The idea is that a simple CLF (4.15) is used to tractably derive a control law and key 

error signals (e.g. σθε ~&,~,,z ) while a more general yet more complex CLF (4.17) that 

varies with the error signals and exploits cross-coupled terms is used to tune the 

controller parameters and measure the performance. Based on the results of Chapter 3, 
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there is reason to believe tuning the controller parameters using the CLF of (4.17) could 

achieve a superior performance over that of using (4.16). 

To demonstrate the usefulness of checking the change in V between time steps 

rather than V&  for the generalized CLF in (4.17), consider the structure of V& : 
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θθξε &&&&&& ˆˆ)()(ˆ TTuxgxfxx Ω−Ω−−+=−=   with θξ ˆˆ Tx Ω+=  

The alternative method of performance checking that uses the Euler approximation for 

the signal time derivatives is expressed as 
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The expression in (4.20) is much simpler than (4.18), especially when using many basis 

functions in the CLF and when the signal space is very large. 

While the use of an adaptive controller is analogous to online system identification, it 

is not a “complete” online system identification procedure because the model order must 

be determined by the controller designer. The GA can readily handle this problem by 

selecting the order of the state and zero dynamics (e.g. m and n of equation (4.5)). Xian et 

al. (2003) has shown how the linear system back-stepping controller using tuning 

functions can not only adaptively stabilize an uncertain system, but also employ the 

internal model principle by tuning the “additional dynamics” (the part of the system that 

represents the external signal dynamics) to match the dynamics of disturbances. In other 

words, both the system and it’s external time varying disturbances can be approximated 

by a sufficiently high order model. The GA could tune both the controller parameters and 

the system order, or the “observer” order for the general framework outlined in this 

chapter, to robustly achieve the performance objectives in the face of disturbances and 

uncertainties. 

The following list of theoretical work must accompany the proposed controller design 

method: 

1. A method must be developed that guarantees that the critical point searching 

algorithm checks only the interior of the level sets of the CLF that are completely 

contained inΨ . Points not enclosed by level sets contained byΨ  have no 

guarantee to stay inΨ .  

2. Johansen’s proof of the generalized Lyapunov function represented by equations 

(4.1) and (4.2) must be extended to the discrete time case.  
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3. Inter-sample behavior of the discretized dynamics must be addressed.  

4. A probabilistic framework must be developed for evaluating and guaranteeing the 

operation of the optimization method (e.g. genetic algorithm, particle filter, etc. 

convergence analysis). 

With a generalized method for automated controller tuning, the use of complex 

control laws will be made more practical, hence more widely used in real-world 

applications. In addition, a step is made towards the endeavor of truly automated systems 

with automated controller selection and tuning. 

4.6 Conclusion 
In conclusion, we make the following assertions on the contributions of this thesis: 

1. A genetic algorithm for tuning CLF controllers using arbitrary fitness 

functions including hard constraints on controller gains, control effort, 

and rate of convergence is presented. The genetic algorithm is novel in 

that it is based on point-wise CLF minimum rate of convergence and 

maximum control effort estimates rather than the use of simulations of 

the system responses to tune the controller parameters. 

2. A procedure for designing full state-feedback linear controllers for 

nonlinear systems using combined local and non-local information of 

the system dynamics is presented. The controllers are locally inverse 

optimal and CLF-based. 

3. A procedure for designing full-state feedback Sontag-like controllers 

with minimal control effort for nonlinear systems is presented. As with 
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the linear controllers, they are locally inverse optimal and by definition 

are CLF-based. 

4. A general framework has been outlined for future research on a 

constructive control procedure for optimized output feed-back, 

nonlinear, adaptive, robust, and discrete time control. The framework 

will allow for practical implementation and tuning of complex control 

algorithms and may lead to the development of truly automated systems 

that have the ability to select and tune their own control systems. 
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Appendix: Matlab Code Listing and How to Use It 
 

The following is the recommended controller design process using the algorithms 

proposed in the thesis. The relevant Matlab files (files with “.m” extension) and variables 

are referenced in the process steps to aid in the use of the listed code that follows. 

1. Select control law  change equations in “f.m” and “uc.m” 

2. Select the region in state space to optimize the controller’s performance (i.e. span 

of 0X )  set “range” in “compLyaK.m” 

3. Select the maximum magnitude of the controller gains  set “maxK” in 

“compLyaK.m” 

4. Select GA population size, GA maximum number of generations, and the number 

of checking points (i.e. number of elements in 0
dX )  set “popsize”, “maxgen”, 

and “numPoints” in “compLyaK.m” 

5. Run GA  execute “compLyaK.m” 

6. Compute controller performance statistics  “getgamma.m” 

7. Simulate controller’s performance over time against various initial conditions, 

disturbances and inputs of interest  a user constructed Simulink model is 

suggested  

8. If controller performance is satisfactory, implement on real system, otherwise 

repeat process from step 1. 
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The following is the listing of the code used to perform the optimization and 

performance evaluation of the controllers in the thesis. Note that for the code to work 

properly, the programs must be run in the same Matlab workspace because they share 

some of the same variables. Below, the program titles are listed in quotations 

followed by a brief description of the program’s functionality and along with the 

code. The code is commented (text following the “%” symbol) in the more crucial 

areas. All other areas are assumed to be straightforward to readers familiar with basic 

Matlab programming. 

“compLyaK.m” 

This is the initialization and main loop of the program. Variables are initialized 

including the settings of the three example problems in chapter 3.  After initialization, the 

genetic algorithm loops a number of times specified by the variable “maxgen” (i.e. the 

maximum number of generations). 

code: 
clear;%clear workspace 
tic;%start timer 
%Initialization 
%set range of X0 (performance checking set) 
if 1 %set to 0 for 2nd order system example; set to 1 for 4th order examples 
    range(1)=0.1; 
    range(2)=range(1); 
    range(3)=range(1); 
    range(4)=range(1); 
else 
    range=[25 100]; 
end 
numPoints=200;%number of points in X0 
maxgen=50;%number of GA generations 
popsize=50;%size of GA population 
pr=0;%probability of reproduction  
pc=0.5;%probability of crossover  
%probability of mutation = 1-pr-pc 
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%sys = system number  
%sys=1 --> 2nd order nonlinear artificial system 
%sys=2 --> 2nd order linearized artificial system 
%sys=3 --> 4th order nonlinear double inverted pendulum system 
%sys=4 --> 4th order linearized double inverted pendulum system 
%sys=5 --> 4th order nonlinear cart-and-pole system 
%sys=6 --> 4th order linearized cart-and-pole system 
sys=5; 
 
%ctype = controller type: 1-->linear, 2-->nonlinear 
ctype=2; 
c=1;%Q=E'*E+cI from equation 2.4 
maxK=1000;%upper controller gain magnitude limit 
sigmaE=100;%variance of E mutation steps 
W=[10 1];%fitess function weights 
W=W/norm(W);%normalize weight vector to length=1 
%Linearized System Matrices 
if (sys==1)|(sys==2) 
    A=[10 10;0 1]; 
    B=[0 2.5]';  
    dimf=2;%dimension of states 
    bestp=[4160.8 125.6;125.6 54.4];%set best P of population to Ngamsom's 
    bestk=-[157.487 68.244];%set best K of population to Ngamsom's 
end 
if (sys==3)|(sys==4) 
    B=[0 0 113.4536 -101.2405]'; 
    A=[0 0 1 0;0 0 0 1;43.0258 -9.6925 -.2541 .1202;-38.3942 51.7297 .4787 -.3593]; 
    dimf=4;%dimension of states 
    %set best P of population to Ngamsom's 
    bestp(1,1:4)=[3.8822 9.7644 1.2414 1.4116]; 
    bestp(2,2:4)=[92.9231 10.0839 12.3278]; 
    bestp(3,3:4)=[1.2109 1.4285]; 
    bestp(4,4)=1.7592; 
    bestp(2:4,1)=bestp(1,2:4)'; 
    bestp(3:4,2)=bestp(2,3:4)'; 
    bestp(4,3)=bestp(3,4); 
    bestp=.1*bestp; 
    bestk=[.1036 5.2008 .3618 .8021];%set best K of population to Ngamsom's 
end 
if (sys==5)|(sys==6) 
    B=[0 0 .5 -1]'; 
    A=[0 0 1 0;0 0 0 1;0 -.495 0 0;0 20.6 0 0]; 
    dimf=4;%dimension of states 
    %set best P of population to Ngamsom's 
    bestp(1,1:4)=[3.1924 4.1163 1.5478 .8186]; 
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    bestp(2,2:4)=[20.4904 5.7517 3.236]; 
    bestp(3,3:4)=[2.0509 1.0969]; 
    bestp(4,4)=.6405; 
    bestp(2:4,1)=bestp(1,2:4)'; 
    bestp(3:4,2)=bestp(2,3:4)'; 
    bestp(4,3)=bestp(3,4); 
    bestp=1000*bestp; 
    bestk=[22.3607 180.0604 35.6916 46.0217];%set best K of population to Ngamsom's 
end 
E=.5*randn(dimf,dimf,popsize);%generate initial set of E matrices 
P=zeros(size(E));%allocate set of P matrices 
bestspecies=1;%index of best E 
fitness(1:popsize)=0;%vector of fitness values for set of E matrices 
V(1:numPoints,1:popsize)=0;%matrix of CLF values 
Vdot(1:numPoints,1:popsize)=0;%matrix of CLF rate of change values 
gamma(1:numPoints,1:popsize)=0;%matrix of gamma values 
u(1:numPoints,1:popsize)=0;%matrix of control effort values  
 
%genetic algorithm main loop 
for gen=1:maxgen %perform fixed number of iterations (generations) 
    %randomly distribute search points 
    for ii=1:dimf 
        X(:,ii)=2*range(ii)*(rand(numPoints,1)-.5); 
    end 
    %set some of the search points equal to the estimated critical points 
    if gen>1 
        numPoints2=min(round(numPoints/3),size(problemXg,1)); 
        X(1:numPoints2,1:dimf)=problemXg(1:numPoints2,1:dimf); 
        X(numPoints2+1:2*numPoints2,1:dimf)=problemXu(1:numPoints2,1:dimf); 
    end     
    operatePK;%genetic operations on P and K (actually E) 
    evalPK;%evaluate P and K (actually E)               
end  
toc; 
 
“operatePK.m” 

Implicitly performs genetic operations on “P” and “K” by manipulating “E”. 

code: 
%Genetic Operations 
if gen>1     
    %create a sorted list of species from highest to lowest fitness 
    [sortedfitness sortedindices]=sort(-fitness);     
    %tempE holds the population for the next generation 
    tempE(:,:,1)=bestE;%auto copy best from last generation 
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    for specimen=2:popsize         
        %select two species 
        first=round(rand^2*(popsize-1))+1;%s: rand^s (from chapter 2)  
        second=round(rand^2*(popsize-1))+1;         
        first=sortedindices(first); 
        second=sortedindices(second);         
        %select operation based on 'decision' variable 
        decision=rand;         
        if decision<=pr %reproduce 
            tempE(:,:,specimen)=E(:,:,first); 
        end         
        if and(decision>pr,decision<=pr+pc) %crossover             
            for state1=1:dimf                 
                for state2=1:dimf 
                    betaE=2*rand; 
                    tempE(state1,state2,specimen)=betaE*E(state1,state2,first)+… 
(1-betaE)*E(state1,state2,second); 
                end                 
            end             
        end         
        if and(decision>pr+pc,decision<=1)%mutate 
            tempE(:,:,specimen)=E(:,:,first)+sigmaE*randn(dimf); 
        end                 
    end         
    %replace old population 
    E=tempE;   
end 
for specimen=1:popsize 
    % compute P from continuous-time algebraic ricatti equation solver 
    P(:,:,specimen)=care(A,B,E(:,:,specimen)'*E(:,:,specimen)+c*eye(dimf));  
    %compute K 
    K(:,:,specimen)=-(B'*P(:,:,specimen))';          
end 
 
 
“evalPK.m” 

Implicitly evaluates “E” by evaluating “P” and “K”. “P” and “K” are evaluated by 

their effect on the estimated minimum rate of convergence “mingamma” and the 

estimated maximum control effort “maxu”.  

code: 
    %Fitness Calculation 
    for specimen=1:popsize %cycle through entire population      
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        for point=1:numPoints             
            %compute V for 'specimen' at 'point' on the checking set 
            V(point,specimen)=X(point,:)*P(:,:,specimen)*X(point,:)';             
            %compute Vdot for 'specimen' at 'point' on the checking set            
Vdot(point,specimen)=f(X(point,:),K(:,:,specimen),P(:,:,specimen),sys,ctype)*… 
(P(:,:,specimen)'+P(:,:,specimen))*X(point,:)';             
            %compute rate of convergence for 'specimen' at 'point' on the checking set 
            gamma(point,specimen)=-Vdot(point,specimen)/(V(point,specimen)+10^(-8));              
            %compute control effort for 'specimen' at 'point' on the checking set 
            u(point,specimen)=uc(X(point,:),K(:,:,specimen),P(:,:,specimen),sys,ctype); 
        end         
        if numPoints>0 
            %among all the checking points find the minimum gamma and its index 
            [mingamma(specimen) badindex(specimen)]=min(gamma(:,specimen));             
%estimated critical point for gamma among all the checking points (plus a random 
%perturbation)            
problemXg(specimen,1:dimf)=X(badindex(specimen),:)+.01*min(range)*randn(1,dimf); 
            if norm(problemXg(specimen,1:dimf))>min(range) 
                for ii=1:dimf 
                    if abs(problemXg(specimen,ii))>range(ii) 
                        problemXg(specimen,ii)=sign(problemXg(specimen,ii))*range(ii); 
                    end 
                end 
            end 
            [maxu(specimen) badindex(specimen)]=max(abs(u(:,specimen)));       
 %estimated critical point for u among all the checking points (plus a random 
%perturbation)                  
problemXu(specimen,1:dimf)=X(badindex(specimen),:)+.01*min(range)*randn(1,dimf); 
            if norm(problemXu(specimen,1:dimf))>min(range) 
                for ii=1:dimf 
                    if abs(problemXu(specimen,ii))>range(ii) 
                        problemXu(specimen,ii)=sign(problemXu(specimen,ii))*range(ii); 
                    end 
                end 
            end 
        else 
            mingamma(specimen)=0; 
            maxu(specimen)=0; 
        end 
        maxKval(specimen)=max(abs(K(:,:,specimen)));             
    end%end fitness calculation   
 
%compute fitness 
    L1max=max(mingamma); 
    L1min=min(mingamma); 
    L2max=max(maxu); 



 163

    L2min=min(maxu);     
    if numPoints==0 
       L1max=1; 
       L2max=1; 
    end     
    if L1max==L1min 
        L1min=0; 
    end 
     if L2max==L2min 
        L2min=0; 
    end    
    for specimen=1:popsize       
        f1(specimen)=(mingamma(specimen)-L1min)/(L1max-L1min); 
        f2(specimen)=(1-(maxu(specimen)-L2min)/(L2max-L2min)); 
        if (maxKval(specimen)<=maxK) 
            fitness(specimen)=W(1)*f1(specimen)+W(2)*f2(specimen); 
        else 
            fitness(specimen)=0; 
            E(specimen)=.9*E(specimen);%reduce magnitude of E to reduce magnitude of K 
        end 
    end       
        
     %get best species 
     [fit bestspecies]=max(fitness); 
     bestfitgen(gen)=fit; 
     disp('---------------------------------------------') 
     disp(strcat('generation #',num2str(gen)))      
     disp('  mingamma     maxu') 
     disp([mingamma(bestspecies) maxu(bestspecies)])           
     disp('subfitnesses') 
     disp([f1(bestspecies) f2(bestspecies)])           
     plot(bestfitgen);   
     title(strcat('Best Fitness of Generation = ',num2str(bestfitgen(gen)))); 
     xlabel('Generation'); 
     ylabel('Best Fitness'); 
     pause(.01) 
  
disp('best P') 
disp(P(:,:,bestspecies)) 
disp('best K') 
disp(K(:,:,bestspecies)') 
bestE=E(:,:,bestspecies); 
disp('best Q') 
disp(bestE'*bestE+c*eye(dimf)) 
bestp=P(:,:,bestspecies); 
bestk=K(:,:,bestspecies); 
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save c:\matlabr12\work\bestE bestE bestp bestk; 
 
“f.m” 

This is the function for the time derivatives of the states. The following arguments 

are used: the state vector “x”, the controller and CLF parameters “k” and “p”, 

respectively, the system number “sys” (out of 6 choices), and the controller type “ctype” 

(linear or nonlinear). 

  
code: 
function y=f(x,k,p,sys,ctype); 
if sys==1 
    %artificial system  
    y(1)=10*x(2)+10*x(1)+10*(sin(x(1))^2)*sin(x(2))-x(1)^2; 
    y(2)=5*x(1)^2+sin(x(2))+(cos(x(2))+1.5)*uc(x,k,p,sys,ctype);     
end 
if sys==2 
    %linearized artificial system  
    y(1)=10*x(2)+10*x(1); 
    y(2)=x(2)+2.5*uc(x,k,p,sys,ctype);     
end 
if sys==3 
    %double inverted pendulum 
    a(1)=x(3); 
    b(1)=0; 
    a(2)=x(4); 
    b(2)=0; 
    a(3)=sin(x(1)-x(2))*x(3)^2+.2824*x(3)-.2824*x(4)+48.2776*sin(x(2)); 
    a(3)=a(3)*cos(x(1)-x(2))+.9833*x(3)+1.1206*sin(x(1)-x(2))*x(4)^2; 
    a(3)=a(3)-.3165*x(4)-214.3082*sin(x(1)); 
    a(3)=a(3)/(-5.9809+cos(x(1)-x(2))^2); 
    b(3)=-565.1008/(-5.9809+cos(x(1)-x(2))^2);     
    a(4)=-.8774*x(3)-sin(x(1)-x(2))*x(4)^2+.2824*x(4)+191.2383*sin(x(1)); 
    a(4)=a(4)*cos(x(1)-x(2))-5.3371*sin(x(1)-x(2))*x(3)^2-1.5071*x(3); 
    a(4)=a(4)+1.5071*x(4)-257.6614*sin(x(2)); 
    a(4)=a(4)/(-5.9809+cos(x(1)-x(2))^2); 
    b(4)=504.2688*cos(x(1)-x(2))/(-5.9809+cos(x(1)-x(2))^2);     
    y=a+b*uc(x,k,p,sys,ctype);     
end 
if sys==4 
    %linearized double inverted pendulum 
    a(1)=x(3); 



 165

    b(1)=0; 
    a(2)=x(4); 
    b(2)=0; 
    a(3)=[43.0258   -9.6925   -0.2541    0.1202]*[x(1) x(2) x(3) x(4)]'; 
    b(3)=113.4536; 
    a(4)=[-38.3942   51.7297    0.4787   -0.3593]*[x(1) x(2) x(3) x(4)]'; 
    b(4)=-101.2405;   
    y=a+b*uc(x,k,p,sys,ctype);     
end 
if sys==5 
    %cart and pole  
    a(1)=x(3); 
    a(2)=x(4); 
    a(3)=(.05*sin(x(2))*x(4)^2-.981*sin(x(2))*cos(x(2)))/(2+.1*sin(x(2))^2); 
    a(4)=41.2*sin(x(2))/(2+.1*sin(x(2))^2)-… 
.1*(cos(x(2))*sin(x(2))*x(4)^2)/(2+.1*sin(x(2))^2);     
    b(1)=0; 
    b(2)=0; 
    b(3)=1/(2+.1*sin(x(2))^2); 
    b(4)=-2*cos(x(2))/(2+.1*sin(x(2))^2);     
    y=a+b*uc(x,k,p,sys,ctype);     
end 
if sys==6 
    %linearized cart and pole  
    a(1)=x(3); 
    a(2)=x(4); 
    a(3)=-0.4950*x(2); 
    a(4)=20.6000*x(2);     
    b(1)=0; 
    b(2)=0; 
    b(3)=.5; 
    b(4)=-1;     
    y=a+b*uc(x,k,p,sys,ctype);     
end 
 
 
 “uc.m” 

This is the function for the controller. The arguments are the same as “f.m”: the 

state vector “x”, the controller and CLF parameters “k” and “p”, respectively, the system 

number “sys” (out of the 6 choices), and the controller type “ctype” (linear or nonlinear). 

code: 
function u=uc(x,k,p,sys,ctype) 
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if (sys==1)|(sys==2)     
    if ctype==1 
        u=k(1)*x(1)+k(2)*x(2); 
    end     
    if ctype==2 
        a(1)=10*x(2)+10*x(1)+10*(sin(x(1))^2)*sin(x(2))-x(1)^2; 
        b(1)=0; 
        a(2)=5*x(1)^2+sin(x(2)); 
        b(2)=cos(x(2))+1.5;                         
        dVdx=2*x*p; 
        dVdxg=dVdx*b'; 
        if abs(dVdxg)>0 
            dVdxf=dVdx*a';             
            A=[10 10;0 1]; 
            B=[0 2.5]';  
            Q=(-A'*p-p*A+p*B*B'*p); 
            q=x*Q*x'; 
            u=-(dVdxf+sqrt(dVdxf^2+q*dVdxg^2))/dVdxg;             
        else 
            u=0;     
        end 
    end 
end 
if (sys==3)|(sys==4)     
    if ctype==1 
        u=k(1)*x(1)+k(2)*x(2)+k(3)*x(3)+k(4)*x(4); 
    end     
    if ctype==2 
        a(1)=x(3); 
        b(1)=0; 
        a(2)=x(4); 
        b(2)=0; 
        a(3)=sin(x(1)-x(2))*x(3)^2+.2824*x(3)-.2824*x(4)+48.2776*sin(x(2)); 
        a(3)=a(3)*cos(x(1)-x(2))+.9833*x(3)+1.1206*sin(x(1)-x(2))*x(4)^2; 
        a(3)=a(3)-.3165*x(4)-214.3082*sin(x(1)); 
        a(3)=a(3)/(-5.9809+cos(x(1)-x(2))^2); 
        b(3)=-565.1008/(-5.9809+cos(x(1)-x(2))^2);         
        a(4)=-.8774*x(3)-sin(x(1)-x(2))*x(4)^2+.2824*x(4)+191.2383*sin(x(1)); 
        a(4)=a(4)*cos(x(1)-x(2))-5.3371*sin(x(1)-x(2))*x(3)^2-1.5071*x(3); 
        a(4)=a(4)+1.5071*x(4)-257.6614*sin(x(2)); 
        a(4)=a(4)/(-5.9809+cos(x(1)-x(2))^2); 
        b(4)=504.2688*cos(x(1)-x(2))/(-5.9809+cos(x(1)-x(2))^2);         
        dVdx=2*x*p; 
        dVdxg=dVdx*b'; 
        if abs(dVdxg)>0 
            dVdxf=dVdx*a';             
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            B=[0 0 113.4536 -101.2405]'; 
            A=[0 0 1 0;0 0 0 1;43.0258 -9.6925 -.2541 .1202;-38.3942 51.7297 .4787 -.3593]; 
            Q=(-A'*p-p*A+p*B*B'*p); 
            q=x*Q*x'; 
            u=-(dVdxf+sqrt(dVdxf^2+q*dVdxg^2))/dVdxg;             
        else 
            u=0;     
        end 
    end     
end 
if (sys==5)|(sys==6)     
    if ctype==1 
        u=k(1)*x(1)+k(2)*x(2)+k(3)*x(3)+k(4)*x(4); 
    end     
    if ctype==2 
        a(1)=x(3); 
        a(2)=x(4); 
        a(3)=(.05*sin(x(2))*x(4)^2-.981*sin(x(2))*cos(x(2)))/(2+.1*sin(x(2))^2); 
        a(4)=41.2*sin(x(2))/(2+.1*sin(x(2))^2)-… 
.1*(cos(x(2))*sin(x(2))*x(4)^2)/(2+.1*sin(x(2))^2);         
        b(1)=0; 
        b(2)=0; 
        b(3)=1/(2+.1*sin(x(2))^2); 
        b(4)=-2*cos(x(2))/(2+.1*sin(x(2))^2);         
        dVdx=2*x*p; 
        dVdxg=dVdx*b'; 
        if abs(dVdxg)>0 
            dVdxf=dVdx*a';             
            B=[0 0 .5 -1]'; 
            A=[0 0 1 0;0 0 0 1;0 -.495 0 0;0 20.6 0 0]; 
            Q=(-A'*p-p*A+p*B*B'*p); 
            q=x*Q*x'; 
            u=-(dVdxf+sqrt(dVdxf^2+q*dVdxg^2))/dVdxg;             
        else 
            u=0;     
        end 
    end     
end 
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getgamma.m 

Randomly sample “gamma” and “u” to compute statistical quantities: “gammamin” 

( minγ ), “gammamu” ( γμ ), “gammasig” ( γσ ), “umax” (
max

u ), “ummu” ( uμ ), “usig” 

( uσ ). 

code: 
clear X V Vdot u gammarec; 
samplesize=20000; 
gammamin=10000; 
Vdotmax=0; 
gammarec(1:samplesize)=0; 
X(1:samplesize,1:dimf)=0; 
V(1:samplesize)=0; 
Vdot(1:samplesize)=0; 
u(1:samplesize)=0; 
for sample=1:samplesize     
    X(sample,:)=range.*(2*rand(1,dimf)-1); 
     if norm(X(sample,:))<.01 
         X(sample,:)=0; 
     end         
    V(sample)=X(sample,:)*bestp*X(sample,:)'; 
    Vdot(sample)=f(X(sample,:),bestk,bestp,sys,ctype)*(bestp'+bestp)*X(sample,:)'; 
    u(sample)=uc(X(sample,:),bestk,bestp,sys,ctype);                     
    if and(not(Vdot(sample)==0),not(V(sample)==0)) 
        gammamin=min(-Vdot(sample)/V(sample),gammamin); 
        gammarec(sample)=-Vdot(sample)/V(sample); 
    end    
         Vdotmax=max(Vdot(sample),Vdotmax); 
end 
 plot(u); 
%display quantities 
disp( range) 
disp(gammamin) 
gammamu=mean(gammarec) 
gammasig=std(gammarec) 
umax=max(abs(u)) 
umu=mean(abs(u)) 
usig=std(abs(u)) 
Pgammamin=.01;% for 99% confidence  
eps=gammamu/2; 
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%”residual” is the difference between terms in left and right hand side of equation 2.24. 
%If it is positive, then the number of sample points is sufficient to the specified 
%confidence level (1-“Pgammamin”) 
residual=samplesize^2-(gammasig^2+eps*abs(mean(gammarec-
gammamu)))/((Pgammamin)*eps^2) 
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The control law and the local CLF are tuned simultaneously to maximize the rate of 
convergence and minimize the control effort of nonlinear systems. Two control laws are 
tested: 1. an LQR full-state feedback controller, and 2. a Sontag-like nonlinear full-state 
feedback controller. It is assumed that a quadratic Lyapunov function is a local CLF for 
the nonlinear systems considered. The proposed optimization method does not offer a 
strict guarantee on controller performance. However, it is suggested that with enough 
randomized performance sampling, the controller will achieve the estimated performance 
level with sufficiently high confidence, making the proposed method a practical solution 
for real-world controller design.  
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