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Chapter 1: Introduction 
 

1.1: Need for Chemical Mechanical Planarization 
 

In an integrated circuit, there are millions of micro-devices such as transistors, capacitors, diodes, 

and resistors on a single chip [1]. Each of the micro-device is formed by semiconductor, metal, and 

dielectric layers arranged in a particular pattern. Further, these micro-devices are interconnected through 

metal interconnects which are isolated using a dielectric material. Multiple layers of such patterns are 

repeatedly stacked over each other to accommodate millions of micro-devices in order to have high speed 

and high performance of the IC chip. Such an arrangement is called as multilevel metallization [2]. This 

scheme created enormous challenges for fabrication at the wafer level. The major source of challenge is 

the uneven topography buildup as the number of interconnect levels increase as shown in Fig. 1-1a. This 

surface unevenness has negative impact on pattern transfer which would subsequently lead to failure of 

multilevel interconnect network.  Thus, the levels are required to be planarized to a very high degree of 

planarization enabling very even interconnect  levels over each other as shown in Fig. 1-1b. The method 

most commonly used in the semiconductor industry for planarization is Chemical Mechanical 

Planarization (CMP) process.  

In CMP, extremely small abrasive particles on the order of a few nanometers are used compared 

to micrometer sized abrasive particles in conventional polishing or lapping processes. Also, in CMP, the 

chemistry of the slurry plays an important role in softening and dissolving a thin layer of material on the 

surface which is further polished due to abrasive action. In contrast  to this,  in  the conventional polishing   
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Fig. 1-1: Schematic of (a) non-planarized  and (b) planarized multilevel metallization structure [2] 
 

the material is removed only by abrasion from abrasive particles. Because of selective dissolution of 

material, MRR tends to be lower in CMP. This facilitates in giving precise removal, uniformity in 

polishing and fewer scratches and defects. The CMP process is therefore, preferred for planarization in 

ICs [3]. The advantages of CMP over other planarization methods are tabulated in Table 1-1. 

Table 1-1:  Advantages of CMP over other polishing methods [3] 
 

Benefits Remarks 

Planarization  Achieves global planarization 

Planarize different materials  A wide range of wafer surfaces can be planarized 

Reduce severe topography  Reduces severe topography to allow fabrication with tighter 

design rules and additional interconnection levels 
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Alternative method of metal patterning  

 

Provides an alternate means of patterning metal, eliminating the 

need to plasma etch, difficult to etch metals and alloys  

Improved metal step coverage  Improves metal step coverage due to reduction in topography 

Increased IC reliability  

 

Contributes to increasing IC reliability, speed, yield (lower 

defect density) of sub 0.5 mm and circuits 

Reduce defects  CMP is a subtractive process and can remove surface defects 

 

1.2: Chemical mechanical polishing process 
 

Chemical mechanical planarization is a polishing process for smoothening the topography of 

surfaces. It is used in devices to reduce their vertical heights, hence shrinking the size of the devices and 

maintaining the flatness of the devices to ensure pattern transfer with maximum precision. Depending on 

whether CMP is used to planarize metal or dielectric, the CMP process can be classified as metal or 

dielectric CMP.  

              A typical setup of CMP is shown in Fig. 1-2. A wafer carrier holds the wafer which is pressed 

and rotated against a polishing pad made up of a polymeric material. The direction of rotation of the pad 

can be in the same direction or opposite that of the wafer. Polishing process utilizes rotary motion and 

orbital or translational-type between the pad and the wafer. Slurry is circulated on the pad which acts as a 

coolant and also provides abrasive action. The slurry also consists of various other chemicals which react 

with the layer being polished and makes the layer softer by partial dissolution. The surface layer gets 

modified to more fragile state making material removal easy by abrasive action. Since the pad gets worn, 

eventually with the polishing process depleting its sharp asperities, the pad tends to remove material with 

non-uniform material removal rate. For this reason, the pad is simultaneously conditioned by a 
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conditioner which is a diamond grit disc pressed against the polishing pad maintaining the pad roughness 

as the polishing progresses. The relative motion between the wafer and the pad and the down force makes 

the abrasives in the slurry to get embedded in the pad which ploughs out the material from the wafer layer 

being polished [4].  

Copper has replaced aluminum  for metal interconnect  in ICs because of its various advantages 

over aluminum such as lower resistivity, lower RC delay, higher heat dissipation, better thermo- 

mechanical properties and better stress migration resistance. Copper CMP is the process applied to 

remove and planarize copper layers on the substrates. Copper CMP is prone to some problems such as 

dishing and erosion. Dishing is the recessed height of copper line compared to the neighboring oxide line 

whereas erosion is the difference between the original oxide height and the height of oxide after polishing 

[5]. 

 

Fig. 1-2: Chemical Mechanical Planarization setup [3] 
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Fig. 1-3: Various parameters governing the CMP process [6] 
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1.3: Parameters governing CMP 
 

The parameters and variables that govern CMP have been illustrated in Fig. 1-3.  

Influence of machine parameters:  The machine parameters in CMP mainly include the down force, 

sliding velocity, and the slurry flow. Higher down force and sliding velocity increases the MRR. It is 

discussed in detail in Section 2.5. With lower down force, the planarization improves but uniformity 

decreases.  Slurry flow pattern is an important parameter which effects both material removal rate and 

within-wafer-non-uniformity (WIWNU). Because of the rotation of the platen the flow pattern would be 

different as the slurry is fed at different positions on the pad. Fig. 1-4a shows different positions of slurry 

feeding on the platen. The material removal would not be uniform if the slurry cannot reach the pad-wafer 

contact points. Fig. 1-4b shows the material removal rate obtained at various points on the pad. It can be 

observed that position around the center is a better location to feed slurry to attain high MRR [7]. 

 

 

                                                                            (a) 

Pad 

Slurry feeding 
positions 

 

Slider  

(Sample holder) 
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                                                                                       (b) 

Fig. 1-4: (a) Slurry feeding positions in the experiment (b) Average MRR obtained corresponding to 
these positions [7] 

 

1.4: CMP consumables 
 

CMP Pads:  Pad is an important consumable in CMP. Pad transports and delivers slurry on the wafer 

surface. Pad also transmits normal and shear forces from polisher to wafer. The polishing pad has 

significant influence on the removal rate, WIWNU, wafer-to-wafer-non-uniformity (WTWNU) and 

defects.  CMP process is a combination of chemical and mechanical processes. The polishing pad is 

exposed to repeated mechanical stress and chemical attacks. The consistent down force, shear force, and 

frictional force applied on the pad makes it prone to severe compression and abrasion. Various chemicals 

like oxidizers and acids present in the slurry tend to corrode and weaken the pad. Thus the pad should 

have sufficient mechanical strength and chemical resistance to cope up with these conditions. Also pad 

has an important function of transporting slurry efficiently. Pad should be sufficiently hydrophilic in 

nature and should have either pores or grooves to enhance the transfer of slurry. Polishing pads are 
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usually made of polymeric materials, such as polycarbonates, nylons, polysulphones and polyurethane 

[8]. The main types of pads used in CMP are:  

Type I: Felts and polymer impregnated felts 

Type II: Porometrics (microporous synthetic leathers) 

Type III: Filled polymer sheets (films) 

Type IV: Unfilled textured polymer sheets (films) 

Pads can have a wide range of microstructures, textures, and fillers and are fabricated using 

various manufacturing processes, such as casting, molding, extrusion, web coating, and sintering. Not 

only the mechanical and chemical properties of the pad are important, but also the microstructure of the 

pad plays major role in the polishing process. Whether the pad surface is flat or has pores or grooves, 

their properties have significant influence on the polishing performance. The polishing performance at a 

wafer level mainly includes MRR, polishing non uniformity, edge effects, micro scratches, and pad life. 

At a die level, it includes planarization and defectivity.  At the feature level, it includes dishing, erosion, 

defects, and surface roughness [9]. How pad properties affect the polishing performance is discussed 

further.  

Pad roughness: Pad roughness is the presence of pores and asperities which hold the abrasive particles 

and contribute to the material removal.  As the polishing process progresses, the asperities wear-off and 

the surfaces gets flattened. If the pad is not conditioned to get back sharp asperities, the material removal 

rate decreases. But a rougher pad causes more defects, such as scratches and residual particles on the 

wafer surfaces. This is because, for the same load, rougher pad tends to indent the abrasives deeper into 

the wafer. In the case of patterned wafer polish, the rougher pad gives more dishing problem [10]. 
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Pad porosity/density: Pad having more pores has lesser density and stiffness. Pad pores help in 

transporting the slurry over pad surface and thereby removing the material. Pads having lesser porosity 

have lower removal rates because of this reason. Since nonporous pads have higher stiffness and strength, 

they have lesser variations in their physical properties and thus give more consistent and uniform polish. 

Also, because of being harder and stronger, the nonporous pads have higher abrasion resistance or lower 

pad wear rate than porous pads for the same polishing conditions. Porous pads can trap polishing debris 

and residual particles and thus tend to give more scratches and defects [11]. 

 Pad Young’s modulus/flexibility: Pads having higher Young’s modulus give good overall planarization 

because they do not bend and thereby planarize the high points first which tones down the topography 

differences on the surface. But as the pads with higher modulus do not comply with the wafer surface, 

they do not give a uniform polishing. In contrast to this, the flexible pads comply with the surface profile 

variations and remove material equally from all the regions. The flexible pads maintain the surface profile 

being polished and give a uniform polish but the overall planarization is poor. Dishing and erosion 

problems increase with more bending ability of the pad [12], [13]. Table 1-2 summarizes various pad 

properties and their effects on polishing at wafer, die, and feature scale. 

Table 1-2: Relation between pad properties and polishing performance [8] 
 

Pad Property 
Polishing scale 

Wafer Die Feature 

Density (porosity) Removal rate, non uniformity Defectivity Dishing, erosion 

Hardness Macroscratches Defectivity Defectivity, roughness, dishing, 

erosion 

Tensile strength Pad life   
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Abrasion resistance Pad life   

Modulus Non uniformity Planarization  

Thickness Pad life   

Pad texture Pad life, removal rate, non 

uniformity 

  

Pad roughness Removal rate, non uniformity Planarization Dishing, erosion 

Hydrophilicity Removal rate   

  

CMP Slurry : Slurry is the carrier of abrasive particles and various chemicals which cause mechanical 

and chemical removal of material respectively. Thus slurry is the basic component of the CMP process. 

There can be numerous parameters in CMP slurry such as pH, solution chemistry, charge type, 

complexing agent, oxidizers, buffering agents, corrosion inhibitors, surfactants, etchants, chelating agents, 

abrasive related properties, such as size, shape, hardness, and concentration of the abrasives. These 

parameters are selected according to the polishing requirements [14]. Ideal CMP slurry should achieve 

high MRR, excellent global planarization, good surface finish, low defectivity, high selectivity and should 

prevent corrosion. There should be a synergy between the chemical etching and mechanical material 

removal. Mechanical material removal produces higher friction forces, thus can produce scratches and 

adversely affect surface topography. Also, the pressure variations at local points vary the removal rate and 

thus effect global planarization. In contrast to this, excess chemical etching adversely effects surface 

planarity and induce defects associated with corrosion. Thus the chemical and mechanical parameters of 

the slurry have to be optimized [3]. The prime design concerns for CMP slurry are shown in Fig. 1-5. 
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Fig. 1-5:  Main concerns during selection of a CMP slurry [6] 
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As shown in Fig. 1-6, a passivation layer is formed at the interface between the wafer and the pad 

which is softer than the substrate material and thus can be abraded with more ease. The passivation layer 

has to be thinner than the difference in the height of the high and low regions in wafer and pad to avoid 

within-wafer-non-uniformity (WIWNU) [6]. The formation of passivation layer is accelerated by 

oxidizers, such as hydrogen peroxide and corrosion damage to the surface is prevented by corrosion 

inhibitors, such as Benzotriazole (BTA) [15]. Maintaining a particular pH, which depends on the 

substrate, is important for the formation of passivation layer. The time required for the formation of a 

passivation layer should be minimized to avoid surface defects [16].  

 

Fig. 1-6: Schematic diagram of passivation layer at (a) microscale and (b) nanoscale level [18] 
 

Selectivity is an important feature of the slurry. It is the difference in the removal rates of 

different materials by the same slurry.  Higher the selectivity of the slurry, the more effective is the end 
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point detection for polishing of a particular step. For example, to polish copper the slurry should act 

separately on copper and should spare the barrier layer of Ta and underlying layer of silica [17].  

In addition to the chemical components, abrasives are present in the slurry to remove material by 

cutting action. The abrasive particles enhance the mechanical strength of the pad and transmit the 

downforce and shear force to the wafer thereby removing material by wear. Also the abrasives serve as 

adsorption sites to the reaction by-products and polishing debris and assist in their transportation and 

removal from the wafer surface. A wide variety of materials have been used as abrasive particles in the 

CMP process. They include alumina, silica, ceria, zirconia, titania and diamond. The selection of the 

abrasives are done on the basis of their properties, such as hardness, particle size, bulk particle density, 

particle crystallinity and shape as suitable to the polishing requirements. Nano particle size silica and 

alumina are the most commonly used abrasives in CMP. The physical appearance of these abrasives is 

white powder. These materials should be ultrapure and have nearly uniform size and shape to ensure 

consistent polishing [9].  

 

 

 

 

 

 

 



 

 

 

Chapter 2:
 

2.1: Friction and heat generation in
 

In the CMP process heat is generated during polishing. The reason for this heat is the friction 

between the pad, wafer and abrasive

polishing slurry are responsible for causing abrasion 

abrasion, namely two-body and three

shown in Fig. 2-1: 

Two-Body abrasive wear: In this the abrasives get embedded in the pad and are rigid en

cutting tool to remove the material from the wafer. 

Three-Body abrasive wear: In this the abrasive particles are free to move and thus roll and slide between 

the wafer and the pad. The material removal is a

Fig. 2-1: Two types of mode of abrasion in CMP [1
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Chapter 2: Literature Review 

2.1: Friction and heat generation in CMP 

In the CMP process heat is generated during polishing. The reason for this heat is the friction 

abrasive particles in the slurry. The abrasives which are present in the 

polishing slurry are responsible for causing abrasion on the copper wafer. There can be two kinds of 

body and three-body abrasion, in which the material is removed by the abrasives as 

Body abrasive wear: In this the abrasives get embedded in the pad and are rigid en

cutting tool to remove the material from the wafer.  

Body abrasive wear: In this the abrasive particles are free to move and thus roll and slide between 

the wafer and the pad. The material removal is about ten times slower in this kind of abrasion [1

1: Two types of mode of abrasion in CMP [19] 

In the CMP process heat is generated during polishing. The reason for this heat is the friction 
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Body abrasive wear: In this the abrasive particles are free to move and thus roll and slide between 

nd of abrasion [19]. 
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The abrasives not only remove the material from the wafer but also from the pad. However, the 

material removal from the pad is relatively less because pad is softer than the wafer. The asperities 

present in the pad are responsible for trapping the abrasive particles and to enhance two-body abrasion 

which is the main contributor to the material removal and the heat generation process. The asperities of 

the pad and the abrasive particles embedded in the pad are directly related to the overall friction between 

the wafer and the pad during polishing. The work done to generate relative motion between the wafer and 

the pad in the presence of this friction is the frictional work. Assuming that frictional force is proportional 

to the normal load but independent of the contact area, the mechanical work would be:  

W = Ff.V, where Ff is the frictional force exerted by the contact area and V is the relative velocity 

between the wafer and the pad. This can also be written as: 

  W = µFV, where µ is the coefficient of friction and F is the normal force applied on the pad by 

the wafer.  

This work is converted into heat completely which is conducted /convected into the wafer, pad 

and slurry. Thus, the factors which mainly contribute to the amount of heat generated are load or pressure 

(P), relative velocity between the wafer and the pad (V), pad properties and the abrasive properties. 

Increase in P or V increase the product of P and V, i.e. PV value which is the mechanical power input and 

thus the heat generated increases. Pad properties, such as pad asperity density, pad asperity hardness, 

ability of the pad to hold the abrasive particles in the pad influences the heat generated. Abrasive 

properties, such as hardness, shape, size, and concentration in the slurry influence the heat generated [19].   

 

 

 

 

 



 

 

2.2: Heat flow in the CMP process
 

Fig. 2
 

As shown in Fig. 2-2, the heat generated between the wafer and the pad is transferred to 

wafer and slurry. The heat is primarily partitioned or 

medium which takes away part of heat from 

away from the pad and the wafer by the surrounding air. 

increase their temperatures. This heat is then transferred to the wafer carrier in case of wafer and

case of pad.  

The heat partitioning depends upon various things, such as

slurry properties and sliding velocity. Regarding

conducting material takes away more heat which is always 

the size of the wafer. The smaller the wafer, more heat is partitioned in it. Heat partitioning also de

on the slurry properties, such as slurry flow rate an

heat capacity more heat would be taken off from the wafer as well as pad by 

the heat partitioning factor between 

wafer [21].  
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Fig. 2-2:  Heat flow in the CMP process [20] 

2, the heat generated between the wafer and the pad is transferred to 

slurry. The heat is primarily partitioned or divided between pad and wafer [21
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wafer by the surrounding air. Rest of the heat goes inside the wafer or pad and 
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conducting material takes away more heat which is always the wafer. Heat partitioning also depends upon 

the size of the wafer. The smaller the wafer, more heat is partitioned in it. Heat partitioning also de

slurry flow rate and slurry heat capacity. More the slurry flow rate and 

heat capacity more heat would be taken off from the wafer as well as pad by the slurry. Given below is 

the heat partitioning factor between the wafer and the pad representing the fraction of heat going into 
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where γw is the heat partitioning fraction, Кw is the thermal conductivity of the copper wafer, К is the 

thermal conductivity of the pad, V is the relative sliding velocity, rw is the radius of the wafer and D is the 

thermal diffusivity of the pad. 

It can be observed that the heat partitioning fraction is directly related to the conductivity of the 

wafer material, inversely related to the radius of wafer, and the sliding velocity. Fig. 2-3 shows the heat 

partitioning between wafer and pad. The equations in the figure are that of heat partitioning fraction and 

the heat conducted in the wafer and pad. 

 

Fig. 2-3: Heat partitioning between pad and wafer [21] 
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2.3: Factors affecting the temperature rise in wafer 
 

Sliding velocity: Temperature rise increase with velocity because an increase in V would increase the PV 

value and thus the amount of total heat generated. Fig. 2-4 shows the temperature increase from 24°C to 

28°C with increase in the relative velocity from 10 m/min to 85 m/min at a constant pressure of 13.6 KPa. 

At higher pressure values of 30.9 KPa and 40.4 KPa the temperature rises to higher values at the same 

relative velocities. If the product of pressure and velocity is constant or the power input is fixed, 

temperature rise in the wafer is inversely related to the relative sliding velocity between the pad and the 

wafer. The reason is more convective cooling of the wafer at higher sliding velocities and comparatively 

more heat is dissipated away to give a lower temperature rise in the wafer than expected.  The heat 

partition fraction is inversely proportional to the sliding velocity. Thus the fraction of heat going to the 

wafer decreases with increase in relative sliding velocity. Also, the heat transfer coefficient between the 

slurry and the wafer which represents the heat taken away by slurry is directly proportional to the square 

root of the velocity [20], which means at higher velocity more heat is dissipated from the wafer [21].                                              

 

Fig. 2-4: Effect of increase in velocity on temperature rise [20] 
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Load:  In general, increase of load or pressure increases the temperature because of increase in PV or 

power input. Fig. 2-5 shows that temperature increase from 24°C to 27°C when pressure increases from 

12 to 42 KPa at a constant relative velocity of 9.4 m/min. The temperature rise values are higher at higher 

velocities for the same values of pressure. Also, for all the relative velocities the temperature values are 

higher than expected for higher load of 42 KPa compared to 12 and 31 KPa. Higher load increases the pad 

contact area with the wafer by pressing the pad asperities and voids to come in contact with the wafer 

which would have been otherwise not in contact at lesser load. The sliding contact of more asperities 

would generate more heat [19]. The difference between lower and higher load condition can be explained 

from Fig. 2-10. For lesser load, only the abrasive particles are in contact with the wafer, the pad contact 

with wafer is negligible and thus the heat generated is only due to abrasion or material removal. At higher 

load, the pad contact area with the wafer increases and there is considerably larger area of pad which is in 

contact with the wafer without the abrasive particles between them. The heat generated from this area is 

due to rubbing action and not due to abrasion from abrasives. Thus the heat generated in this case is more 

than expected to give higher temperature rise value in the wafer [23]. 

 

Fig. 2-5:  Effect of pressure on temperature rise [19] 
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PV: The temperature rise in the wafer is directly proportional to the product of pressure or load and 

relative velocity. The reason being the input mechanical power i.e. PV is converted into heat. Thus 

increase in PV would imply increase in the heat generated and thus the temperature rise. Fig. 2-6 shows a 

linear relation between temperature and PV. Fig. 2-7 shows a three axis plot between temperature, 

pressure, and platen speed. The figure suggests that both pressure and velocity contribute to the 

temperature rise. Higher temperature values are observed when both pressure and speed values are high 

and the least temperature is observed for least values of pressure and speed. Also, more temperature rise 

is observed when the slurry is used for polishing compared to water at same PV values. 

Coefficient of friction:  The friction conditions between the pad and wafer change with the progress of  

polishing. It can be attributed to various factors such as roughness and hardness of the pad, abrasive 

particles, and wafer surface conditions. The extent of friction determines the total heat generated, heat 

partitioned to the wafer, and thus the temperature rise in it [20]. 

 

Fig. 2-6: Temperature variation with PV showing a linear variation [20] 
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                                           (a)                                                                           (b)  

Fig. 2-7: Three axis plot of Pressure, Speed and Temperature for (a) Slurry (b) Water [22] 
 

Slurry Properties: Slurry heat capacity is the tendency of the slurry to dissipate heat away. More heat 

capacity of the slurry implies more heat taken away from the wafer per unit mass of the slurry and thus 

lesser temperature rise in the wafer. Slurry flow rate is the amount of slurry which is dispensed on the pad 

per unit time. The higher this amount more would be the heat taken away from the wafer. 

Pad properties: Pad properties, such as asperity density and pad material property to embed the abrasives 

directly influence the total heat generated in the process. Many properties, such as mean asperity height 

and asperity hardness, elastic modulus of the pad which further influences the actual contact area of the 

pad with wafer change along with polishing. The thermal properties of the pad, such as thermal 

conductivity and thermal diffusivity of the pad are essential parameters to decide the amount of heat 

going into the wafer and consequent temperature rise for the wafer [19],[27].  

Wafer properties: Apart from the surface roughness properties of the wafer which influence the 

coefficient of friction and the total heat generated, there are other properties of the wafer which can 

influence the temperature rise value. The conductivity of the wafer material is important parameter to 
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decide how much heat is partitioned into the wafer. The size and shape of the wafer is another parameter 

to determine the amount heat going into the wafer. For example, the heat partition for a copper disc and a 

copper wafer of the same size under the same polishing conditions would be different [21].  

2.4: Material removal process in polishing 
 

Material removal occurs when hard abrasive particles present in the slurry are pressed against a 

softer wafer and a relative motion is provided to shear off the material. Pad acts as a medium to rigidly 

hold the abrasives in their asperities and remove the material like a cutting tool.  However, all the abrasive 

particles are not engaged in this process; some of them are inactive as they are located in the voids of the 

pads. Some abrasives may not be held rigid enough to perform a two-body abrasion, rather they roll 

between the surfaces of pad and wafer to give some material removal.   

The basic difference between the material removal in CMP and conventional polishing or lapping 

is shown in Fig. 2-8. The real contact area of the pad and the wafer is quite small compared to the 

apparent contact area because of the waviness and roughness of the pad. In the conventional polishing, 

size of the abrasives is large enough and is in the microscale which is same as the order of pad asperities. 

Thus in this case when the pad comes in contact with the wafer, the abrasive particles which are 

embedded in the voids or lower portions of the pad are large enough to cause two-body abrasion. Most of 

the abrasive particles contribute to the material removal in this case. In CMP, the size of the abrasive 

particles is in the nanoscale which is much smaller than the microscale order of the pad asperities. Most 

of the abrasive particles tend to be in the majority region where the pad and wafer are not in contact. They 

are free to move in the slurry medium and are either inactive or cause three-body abrasion, which 

contributes negligibly to the material removal.  Fewer abrasive particles which are embedded in the pad 

regions in direct contact with wafer are responsible for the two-body abrasion and thus the material 

removal [23]. 



 

 

Fig. 2-8: Material removal mechanism in (a) 
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8: Material removal mechanism in (a) conventional polishing and lapping and

 

and (b)in CMP [23] 
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2.5: Material removal mechanism in CMP 
 

There are typically two contact modes in CMP between the pad, the slurry, and the wafer 

depending on the relative velocity and down pressure, namely, hydro-dynamic contact mode and solid-

solid contact mode. Fig. 2-9 shows the two contact modes. In the hydro-dynamic contact mode, the down 

pressure applied on the wafer surface is quite less and the relative velocity of wafer and pad is quite high 

resulting in a thin fluid (slurry) film formation between the wafer and the pad. The thickness of the film is 

in microscale whereas the abrasive particles are in nanoscale. Most of the abrasives float in the slurry and 

become inactive, the material removal is accomplished by few of the abrasive particles by three-body 

abrasion. In the solid-solid contact mode, the relative velocity between the pad and the wafer is lower and 

the down pressure on the pad is higher resulting in contact of pad asperities with the wafer. The abrasive 

particles in those asperities which are in contact with the wafer get embedded in the pad and remove 

material by two-body abrasion [23].  

Further details of solid-solid contact mode at the asperity level are given in Fig. 2-10. At a 

relatively less down pressure on the wafer, the pad asperity is not in direct contact with the wafer. Rather 

the pad asperity has the embedded abrasive particles in contact with the wafer. At a higher load, the pad 

tends to bend around the abrasive particles to get in contact with the wafer. This increases the actual area 

of contact between the pad and the wafer. There would be a change in the force applied on the abrasive 

particles in the two cases. In the first case, if it is assumed that there are N active abrasive particles, the 

force applied on the asperity is supported by these N particles. The mean force on each particle would be 

F = PB/N where P is the pressure and B is the area of the asperity. In the second case, the force is 

distributed to a part of the asperities in contact with the wafer as well as the abrasives. The mean force on 

each particle would be F = P (π/4) x2 where x is the diameter of the particles.  The average area of the 

asperity per abrasive particle  
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Fig. 2-9: Material removal mechanism in CMP (a) Hydrodynamic contact mode (b) Solid-Solid 
contact mode [23] 

 

i.e. B/N is larger than the cross sectional area of abrasive i.e. (π/4) x2. This implies that there is a 

reduction in the force on each particle with increase in pressure or increase in the area of contact. This 

results in a reduction of MRR compared to the expected values [23].  
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Fig. 2-10: Material removal in solid-solid contact mode in CMP (a) at relatively less down pressure 
(b) at higher down pressure [23] 

 

 The material removal is the product of average material removed by a single abrasive with the 

number of active abrasives per unit time. Similar equation was shown by Luo and Dornfeld [23] is: 

 MRR = ρNVol, where ρ is the density of the wafer, N is the number of active abrasives and Vol is 

the volume of material removed by single abrasive.   

Another way of representing MRR is to show it as a function of the input parameters such as 

pressure and velocity. Preston proposed an equation of the form:  

MRR = K PV, where P is the pressure, V is the relative velocity and K is a constant, called, the 

Preston’s constant.  
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MRR is proportional to the product of P and V which represents the mechanical power input and 

K represent the effect of other parameters. However, Preston’s equation only shows the influence of 

process parameters including pressure and relative velocity. It neglects the effect of consumables, such as 

pad, abrasive particles, and wafer which have been shown experimentally to effect the MRR. Various 

things cannot be explained by Preston’s equation, such as polishing differences between softer and harder 

pad or, in general, different materials of the pad, the effect of abrasive size and shape on MRR, abrasive 

and wafer hardness, abrasive-pad and pad-wafer interactions, decrease in the force applied on the 

abrasives with increase in the contact area which leads to lesser MRR and so on. It has been shown that 

the linear Preston’s equation is ideally applicable for polishing with a pad whose hardness is similar to or 

more than that of abrasives and wafer being polished [24]. But in CMP, polishing pads are typically very 

soft compared to the abrasives and the wafer. The size of the nanoscale abrasives in CMP is much smaller 

than the size of the pad asperities exposing pad to contact the wafer, thus Young’s modulus, hardness, 

roughness, shape, and asperity distribution of the pad play a significant role for MRR.  

2.6: Factors effecting MRR 
 

Load: An increase in the downforce or pressure applied on the wafer by the pad would increase the depth 

of penetration of the abrasive particles and thus giving more material removal. The increase of removal 

rate with pressure is linear and is shown in Fig. 2-11 for various RPM along with repeated tests. For 

polishing at a constant RPM of 50, the increase in pressure from 2 to 6 psi showed an increase in MRR 

from 400 to 700 A/min. For the same range of pressure, higher difference in the MRR is observed at 

higher RPM conditions. At higher load, due to an increase in the pad contact area the force on the 

abrasive particles is decreased which decreases the MRR compared to the expected values [23]. 
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Fig. 2-11: Variation of material removal rate with pressure [24] 
 

Velocity: Sliding velocity between the pad and the wafer determines the shear force applied on the 

abrasive particles. Higher velocity or RPM would imply higher shear force and thereby more material 

sheared off for the same depth of penetration of abrasive particles. For constant pressure, MRR increases 

with increase in the sliding velocity or RPM as shown in Fig. 2-12. Fig. 2-12 shows that MRR increases 

from 400 A/min to 900 A/min with increase in the  RPM from 50 to 250 at a constant pressure of 2 psi. 

The increase in MRR is higher for the same increase in RPM at higher pressures of 4 and 6 PSI. 

 

Fig. 2-12: Variation of material removal rate with RPM [24] 
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Abrasive concentration: Abrasive concentration increases the number of active abrasive particles. 

Material removal is directly related to the no of active abrasive particles as shown by Luo and Dornfeld 

[23].The Material removal rate increase linearly with abrasive concentration as shown in the Fig. 2-13. 

Figure shows that the MRR increases from nearly 0 to 1500 A/min with an increase of abrasive 

concentration from 0 to 30% in the slurry for abrasive sizes of 50 and 140nm. Abrasive size of 80nm was 

giving higher MRR compared to 50 and 140nm sized abrasive particles for the same abrasive 

concentration in the slurry.  

 

Fig. 2-13: Increase in MRR with abrasive concentration [28] 
 

Abrasive size:  The MRR  increases with increase in the size of abrasive to a certain value of abrasive 

size and shows a decrease for further increase in the abrasive size. It is because when the particle size is 

larger than approximately twice of the nano film thickness, the MRR will decrease because it is harder for 

the large particles to be entrained into the interface between wafer and pad asperities. Smaller particle size 

show lower MRR because the abrasives tend to be trapped in the valleys among pad asperities and will 

not contact the wafer to remove material. Thus, there is an optimal size of abrasive particles for a 
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combination of pad and wafer which gives highest MRR. Fig. 2-14 shows the variation of MRR with 

abrasive size. For constant P and V values, the MRR increases with increase of abrasive size until a  

particular value of abrasive size, for higher abrasive size the MRR shows decrease in value. In the 

experiments conducted by Zhou et al. [28], the highest MRR was obtained by 80 nm size abrasives.       

 

Fig. 2-14: Variation of MRR with abrasive size [28] 
 

PV: The product of load or pressure and RPM or sliding velocity represents the power applied in the 

polishing process which is equivalent of the work done to move abrasives and thus shear material on the 

wafer in the presence of load applied by the pad. Thus the material removal would increase with the 

increase in applied load and sliding velocity. MRR shows a linear increase with product of pressure and 

RPM as shown in Fig. 2-15. 
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Fig. 2-15: MRR linear with product of RPM and pressure [29] 
 

Pad properties: Material removal is strongly related to the properties of the pad. Roughness of the pad is 

an important parameter to determine MRR. If the pad is new, it is rough or has asperities hold the 

abrasives and remove material. But eventually with polishing the pad asperities get worn off or flattened 

which decreases its capability to hold abrasive particles and remove material. Thus the surface profile of 

the pad and the ability of the pad asperities to hold the abrasive particles influence the MRR.  Another pad 

property is its hardness. A hard pad is less pliable whereas a soft pad has tendency to bend easily. Softer 

pad has tendency to bend around the abrasive particles and thus expose the pad directly to wafer whereas 

in hard pad only abrasive particles are in contact with wafer [25], [26], [27]. 

Wafer properties: An unpolished wafer yields more MRR for the same conditions compared to a 

polished wafer because of rougher topography and thus higher coefficient of friction to give higher MRR 

[20]. 

 



 

32 
 

2.7: MRR decay 
 

  It has been observed that the MRR goes on decreasing in the polishing process with time if pad 

conditioning is not applied. Fig. 2-16(a) shows the decrease in normalized mean MRR from 0.36 to 0.26  

for a polishing time of 50 minutes. Fig. 2-16(b) shows the decrease in the removal rate for various pads in 

a time span of 50 minutes. 

The decrease in MRR can be attributed to the following reasons:  

Decrease in coefficient of friction: The coefficient of friction (COF) between the pad and the wafer 

which comprises of many factors decrease with polishing time. Fig. 2-17 shows the decrease of COF 

from 0.35 to 0.13 in a polishing time of 500 seconds. The main reason for the decrease in the COF is the 

wear of pad asperities along with time. If the pad is not conditioned then the pad asperities tend to get 

leveled down along with the polishing time. The tendency to anchor the abrasive particles is decreased 

and thus the MRR decreases. If  the  slurry being  circulated  is not  reconditioned, the abrasives get blunt  

 

(a)                                                                              (b) 

Fig. 2-16 (a), (b): Decrease in MRR with time [25], [26] 
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Fig. 2-17: Coefficient of friction decreasing with time during polishing [20] 
 

along with polishing time and their abrasion ability gets lesser. Also, the wafer being polished gets 

smoother along with polishing. Thus there is an overall decrease in the COF along with polishing which 

decreases the MRR.  

Increase in the pad contact area: The elastic modulus of the pad which is made of polymeric material is 

sensitive to heat and the modulus decreases with the rise in temperature in a continuous polishing process. 

The reduction in the modulus of elasticity of the pad implies the reduction in the hardness of the 

asperities. This means that at the same load, the pad is pressed more to increase the area of contact. Fig. 2-

18 shows the increase in the area of contact with temperature. The normalized contact area increases from 

1 to 2.2 with the increase in temperature from 20°C to 60°C. Also, the pad elastic modulus decreases from 

29 to 11 MPa for the same increase in temperature. As already discussed, the increase in the pad contact 

area decreases the force on abrasive particles due to distribution of same load on more area and thus 

decreases the material removed by the abrasives.  
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 Fig. 2-18: Increase in the pad contact area and decrease in elastic modulus with Temperature [19] 

 

2.8: Pad wear 
 

  The pad asperities tend to get flattened along with time during polishing process. The reason is 

wear of the pad asperities by the abrasive particles under the presence of load and shearing force. It 

implies that the pad becomes smoother or ‘glazed’ eventually with polishing. With the asperities of the 

pad getting blunt, their tendency to hold the abrasive particles decreases and thus the material removing 

ability of the pad decreases. Rpk which means ‘reduced peak height’ is an estimate of the peaks of pad 

asperities above the main plateau. It is related to the wear characteristics of the pad and it decreases with 

polishing time as the asperities get flattened. To avoid this situation pad conditioning is performed which 

involves pressing a rotating disc with a rough surface against the pad during the polishing process. The 

rough disc abrades the pad to convert the smooth and blunt asperities into rough, increasing Rpk and 

thereby MRR. Fig. 2-19 shows the reduction of Rpk and MRR with polish time, if pad conditioning is not 
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done, and both of them increase if pad is conditioned. Rpk decreases from 3.5 to 2.2 µm and removal rate 

decreases from 2500 to 1300 A/min in a polishing time of 30 min. Pad conditioning increases the Rpk 

value to 3.3 µm and removal rate to 2400 A/min. 

 

Fig. 2-19: Decrease of (a) Rpk and (b) MRR with polishing time and their increase with conditioning 
[27] 
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Chapter 3: Sensors in Chemical Mechanical Polishing 

 

A sensor is an instrument which measures a physical quantity and converts that quantity into a 

signal which can be assessed by an observer or by an appliance.  

3.1: Reasons for the use of sensors in Chemical Mechanical Planarization 
 

End point detection: This is the most important reason for the use of sensors in CMP. Polishing end 

point may refer to polishing until the exposure of the barrier layer or removal of a required quantity of 

material. The variation in the sensor signal at polishing end point can be assessed by a controller and the 

polishing process can be stopped at that point to give precisely finished wafers. However, if the sensors 

are not used for this purpose, the method would be to stop polishing and check the wafer repeatedly. This 

would be slow and still an imprecise method. Almost all kinds of sensors: optical, temperature, pressure, 

acoustic, vibration, infra red and others can be used for end point detection because of the change in 

corresponding physical properties as soon as the barrier layer is exposed. 

Uniform polishing of wafer: Uniform removal of material from the wafer surface is difficult to achieve 

in an uncontrolled process. As the relative velocities at the periphery of the wafer and at the center of the 

wafer are different, the material removed from these locations should be different. Sensors are attached 

behind the wafer to obtain a surface profile and controllers can change the parameters, such as pressure, 

temperature accordingly to make the contour uniform. 

Defect detection: Defects in the form of scratches and metallurgical damage can arise in wafers due to 

excessive usage of abrasive, pressure, and unevenness in pressure. The unevenness in any parameter, such 
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as temperature, pressure, alignment, flow rate, can be detected by sensors and compared to the 

permissible values by controllers.  

Detection of pad conditions: To ensure that pad profile and roughness are uniform throughout the 

surface, it is important to incorporate sensors in the CMP setup. The mechanical properties of the pad, 

such as elasticity and coefficient of friction are monitored by the sensors, e.g. pressure, vibration, etc. As 

the pad surface gradually gets smoother and blunt, it is important to decide the optimal amount of 

conditioning provided to the pad so that the wafer finish are within the tolerance limits. 

To check the presence and proper positioning of the wafer: In the commercial CMP, it is important to 

detect the presence of wafer in all the wafer carriers. Also, during polishing, misalignment of the wafers, 

jumping of the wafer from the wafer carrier, and breakage of wafer can be detected by sensors, such as 

vibration, pressure, optical and so on. 

To measure stresses in the wafer: Pressure and temperature sensors are used under the wafer to give 

pressure and temperature contours respectively for the wafer. These contours can be used to evaluate the 

stresses in the wafer during the polishing process. 

General measurement purpose: Apart from positioning the sensors around wafer, pad, and slurry, 

sensors can be implemented in other parts of the CMP system. A temperature sensor can be used for 

temperature measurement in a temperature control unit, a pressure sensor can be used for measuring 

pressure in the fluid lines, a displacement sensor can be used for measuring the displacement of various 

moving components. The measurement from the sensors is assessed by a control unit which maintains the 

parameters to be optimal. 
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3.2: Different kind of sensors used in chemical mechanical polishing 
 

Optical sensors: Optical sensors detect the presence of light or electromagnetic radiation. Laser 

interferometer, radiation sensors, light sensors also come in the same category. Their prime use is for end 

point detection in CMP. A light source emits light on the semiconductor wafer which reflects back to the 

optical sensor. As the end point of polishing is reached, a difference in the intensity of light is obtained 

because of different reflectivity of the under layer. Optical sensors can also be used for measuring the 

distance from a point.  

Acoustic emission sensors: An acoustic emission sensor detects the acoustic emissions which are 

mechanical waves generated by the plastic deformation of two rubbing surfaces. As a wafer or a 

conditioner rubs against the pad, acoustic emissions are generated due to plastic deformation which can 

be detected by the sensor. By measuring the intensity of these waves the progress of the polishing process 

can be determined. 

Infrared sensors: Infrared sensors detect the magnitude of the infrared rays. Infrared rays are generated 

during the polishing process because of the frictional heat generation between the wafer and the pad. 

Measurement of the infrared rays can indicate the temperature at the particular point. Infrared sensors can 

be used for detecting  the polishing end point when more heat is generated during the polishing of the 

barrier layer. 

Eddy current sensors: These sensors are used to measure the proximity and the thickness of the wafer. 

The sensors are placed at a fixed distance from the wafer. Sensor is made of a coil in which alternating 

current is passed which generates electromagnetic field around the wafer and thus generates eddy current 

in the wafer. The eddy current generated in the wafer vary the electromagnetic field in the sensor 

depending on the distance. This concept is used to measure the distance and thickness of the wafer. 
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Ultrasonic sensors: Ultrasonic sensors are quite similar to radiation or optical sensors in their 

functioning. They detect the sound waves of ultrasonic frequency. Ultrasonic waves emitted from a 

source and reflected back by a surface can be detected by an ultrasonic sensor. This can be used to 

measure the distance of the surface. 

Displacement sensors: Displacement sensors are used to measure the distances in CMP. Distances can 

refer to the space between the wafer and the pad, thickness of the wafer, uniformity in wafer or pad and so 

on. Hall effect sensors, optical interrupter sensors, eddy current sensors are some of the displacement 

sensors which are also called proximity sensors.  

pH sensors: These sensors are used in CMP for monitoring the pH of the slurry. A dynamic sensor is 

required as the pH of slurry keeps on changing due to mixing of the byproduct of the wafer polishing 

process. The pH can give various indications about polishing process. 

3.3: Temperature sensors 
 

Temperature measurement is an important task in many applications of technology. Temperature 

sensor estimates the value of temperature by using a specific physical property. The physical property 

might be variation of thermal coefficient of expansion, electrical resistance of conductor, voltage vs 

current characteristics of diode or so on with temperature. The term temperature sensor encompasses 

instruments from a thermometer to an advanced infrared sensor. For the context of CMP process, 

temperature sensors can be classified into two groups, non-contact and contact. 

Non contact temperature sensors: Noncontact temperature sensors measure the thermal radiant power 

of the infrared or optical radiation that is received from a known or calculated area on a particular surface. 

Contact temperature sensors: Contact temperature sensors are in physical contact with the body whose 

temperature has to be measured. The sensor actually measures its own temperature, and with an 
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assumption of thermal equilibrium with the body it is assumed that temperature at the contact surface of 

the sensor would be same as that of the body. Types of contact temperature sensors are:  

1. Thermocouples 

2. Resistance Temperature Detectors (RTDs) 

3. Thermistors 

4. Semiconductor/IC Temperature sensor  

3.4: Purpose of using temperature sensors in CMP 
 

3.4.1:  End point detection 
 

Change in the frictional heat:  In the method proposed by Sandhu [30], either single or multiple sensors 

are mounted in the wafer carrier just above the wafer, just beneath the pad and besides the platen where 

slurry byproduct is falling as shown in Fig. 3-1. The purpose is to detect the end point. The substrate 

(wafer) has a cover layer which has to be planarized until the underlying layer is exposed. The underlying 

layer is made up of material having more coefficient of friction. The underlying layer thereby produces 

more heat on polishing. This increase in heat generation can be detected by temperature sensors and 

polishing can be stopped.  

 

Fig. 3-1: CMP Setup proposed by Sandhu [30] 



 

41 
 

The arrangement for end point detection in CMP using temperature sensors as proposed by Koo 

et al. [31] is shown in Fig. 3-2. A temperature sensor is located in a cavity in the polishing pad. The 

sensor can be placed at the extreme top of the cavity to measure pad-wafer interface temperature or the 

sensor can be placed at the center of the cavity to measure temperature of the pad. Another sensor on the 

edge of the wafer carrier measures temperature of the slurry. There is a feedback controller and 

monitoring unit to compare the measured temperature values from the sensors with the predetermined and 

fixed values of temperature/ heat to determine the end point.  

 

Fig. 3-2: CMP setup proposed by Koo et al. [31] 
 

Endpoint on the basis of material thickness to be removed:  In the method proposed by Ono et al. 

[32], the wafer carrier has a heating element just above the wafer as shown in Fig. 3-3. There is a 

temperature sensor in the pad which shows the pad-wafer interface temperature. A fixed amount of heat is 

given by the heating element which is transmitted through the wafer and is detected by the sensor. As the 

polishing progresses, the thickness of the wafer decreases and there is a variation in the heat detected by 
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the temperature sensor. A controller is used for comparing the temperature values from the sensor with 

predetermined values. Polishing is stopped when desired amount of material has been removed from the 

substrate. 

 

Fig. 3-3: Setup proposed by Ono et al. [32] 
 

3.4.2:  Uniform polishing of wafer 
 

Heating and measuring temperature of the slurry: During polishing of the wafer, some slurry is 

trapped in the center where maximum temperature is generated. Since the slurry around the edges of the 

wafer is cooler, the material removal from edges is lesser which leads to non-uniformity. To eliminate this 

problem, the incoming slurry can be heated to a temperature equivalent at the center of the wafer. 

Fig. 3-4 shows the method proposed by Lin [33], the temperature of the slurry just below the 

wafer is measured by a temperature sensor which is fixed in the pad. The slurry temperature at the inlet 

nozzle is also measured by a temperature sensor. A controller measures the difference between the 
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temperature values from the two temperature sensors and operates a heater to raise the temperature of the 

incoming slurry. 

 

Fig. 3-4: Setup proposed by Lin [33] 
 

During the start of the polishing process less heat is liberated and with the advancement of the 

process the total heat generated increases. This non-uniform heat leads to non-uniform wafer polishing 

and defects. Naujok et al. [34] proposed a method in which the slurry is heated initially when it is 

relatively cold and at a later stage of polishing when the slurry is hot, it is cooled to maintain nearly the 

same temperature throughout polishing process. Temperature sensor is used to measure the temperature of 

the slurry. 

Heating and measuring temperature of the pad:  In the case of a belt pad, the position of the pad 

relative to the wafer is fixed. The temperature of the pad can be varied along the width to ensure more 

heat is provided at the edges of the wafer during polishing.  

Controller 
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In a method devised by Wu et al. [35] which is shown in Fig. 3-5, slurry of different temperatures 

are dispensed at different widths of the belt pad. This creates zones of different temperatures on the belt 

pad. Accordingly, the wafer being polished would have different temperatures across it’s width which can 

be monitored via temperature sensors and controllers to uniformly polish wafer. 

 

Fig. 3-5: Setup proposed by Woo et al. [35] 
 

Pham et al. [36] proposed a method of zonal heating of belt pad as shown in Fig. 3-6. There is a 

heating arrangement in the platen which consists of outlets through which a hot fluid is released to heat 

the belt pad. There is a temperature differential in the fluid released through the outlets in the radial 

direction. This temperature difference ensures that the wafer which sits over the platen is heated more on 

the periphery than the center. Temperature sensors are used to measure the temperature of the slurry and 

the pad. The signals from the sensors are used by a controller to heat the fluid accordingly. 
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Fig. 3-6: Setup proposed by Pham et al. [36] 
 

Zonal heating of the wafer:  By a heating arrangement in the wafer carrier just behind the wafer, the 

wafer is heated in zones of different temperatures from higher at the periphery to lower at the center to 

ensure uniform polishing.  

In a method proposed by Robinson et al. [37], which is shown in Fig. 3-7, a heater coil is 

supported at the guide ring of the wafer to heat the periphery of the wafer. A controller uses signal from a 

temperature sensor in the guide ring to operate the heater coil. 
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Fig. 3-7: Arrangement of heating coil in the guide ring proposed by Robinson et al. [37] 
 

In a method devised by Bright et al. [38], which is shown in Fig. 3-8, the wafer carrier has a 

heating arrangement in the form of concentric zones of different temperatures. The heating temperature is 

kept in increasing order from the inner zone to the outer zone. Temperature sensors are arranged radially 

in the wafer carrier to measure temperature in those zones. The heating arrangement consists of either 

resistive heating or a fluid of different temperatures supplied in those zones. Signals from the temperature 

sensors are used by the controller to adjust the temperature of the zones.  

 

Fig. 3-8: Setup proposed by Bright et al. [38] 
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In a method proposed by Ide [39], which is shown in Fig. 3-9, the wafer carrier consists of 

multiple sensors and heating elements arranged radially in concentric circles. Temperature sensors 

measure the temperature in their locality which is heated by the heating elements. The heating process by 

small and numerous heating elements can minutely control the wafer polishing rate. Thus by selecting the 

amount of heat supplied by the heating elements a desired polishing profile of the wafer can be generated 

as shown in Fig. 3-10. A controller assesses the temperature at various locations measured by the sensors 

and controls the heating elements accordingly to get uniform polishing on the wafer. 

 

Fig. 3-9: Setup proposed by Ide [39] 
 

 

Fig. 3-10: Contour of wafer material removal [39] 
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3.4.3:  To detect and relieve thermal stresses in wafer 
 

Yahiel et al. [40] proposed a method of using temperature sensors for predicting thermal stresses. 

Temperature sensors are mounted in the wafer carrier just behind the wafer to obtain the temperature 

values at various locations of the wafer. More the number of sensors, more accurate would be the 

estimation of thermal stresses in the wafer. A computer is connected to these sensors to generate a thermal 

map which can be used to compute the thermal stresses in the wafer. Such a thermal map of a wafer is 

shown in Fig. 3-11. 

 

Fig. 3-11: Wafer showing thermal stress distribution [40] 
 

3.4.4: To maintain temperature in a temperature control unit 
 

  In a setup proposed by Tzeng et al. [41], temperature sensor is used to maintain the temperature 

of the polishing belt pad. A fluid is circulated in pipes around the pad to heat the pad. The heating 

arrangement is connected to a temperature control unit which maintains the temperature of the fluid and 

thus of the pad. The temperature sensor is a part of the temperature control unit which measures and 

maintains the temperature of the fluid. 
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3.5: Layout of temperature sensors in the CMP apparatus 
 

In wafer carrier: Temperature sensors can be used inside the wafer carrier just behind the wafer. The 

sensors can be arranged in a multitude of concentric circles as suggested by Bright et al. [38] and Ide [39] 

so that they can provide a thermal map of the wafer. A single ring thermocouple can be used to give the 

average temperature of the wafer. 

On wafer carrier: As applied by Koo et al. [31], a temperature sensor mounted on the side of the carrier 

can indicate the temperature of the slurry which comes in contact with the wafer carrier.  

In the pad: As applied by Sandhu [30] and Koo et al. [31], a temperature sensor placed in the polishing 

pad can indicate the temperature of the pad, while a sensor placed in the pad very near to the polishing 

surface of the pad can indicate the pad-wafer interface temperature. 

Besides Platen: A temperature sensor can be placed besides the platen where the slurry is collected to 

indicate the temperature of the slurry byproducts formed (as applied by Sandhu [30]). 

 

Inside the wafer: Fig. 3-12 shows the temperature sensors arrangement in the wafer proposed by 

Avanzino et al. [42]. Single or multiple temperature sensor(s) can be embedded in the wafer to indicate 

precise temperature of the wafer substrate. Radial arrangement is preferred which helps to reduce the 

within wafer non uniformity. The multitude of sensors in the wafer gives precise value of temperature 

which is used to monitor the polishing process closely.  
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                                                                     (a) 

  

                            (b)                                                                         (c) 

Fig. 3-12: Temperature sensor layout proposed by Avanzino et al. [42] (a) Temperature sensors inside 
the wafer (b) Continuous ring thermocouple used in wafer (c) Multitude of temperature 
sensors concentrically arranged in wafer 
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Chapter 4: Experimental Setup and Procedure 
 

The objective of this investigation was to polish copper wafers with good planarity and finish and 

to implement sensors in the polishing setup to monitor or predict the process output variables, such as 

MRR and Ra from the sensor data. Two experimental setups were used: Face up CMP setup (fabricated in 

the laboratory) and commercial Buehler Automet 250 polishing machine. Both the setups were integrated 

with temperature sensors. A set of polishing tests were conducted following DOE approach. The 

temperature signals collected from the experiments were used for statistical modeling of the CMP 

process. The details of the polishing setups, sensor instrumentation, and experimental procedure are given 

in the following sections. 

4.1: The face up CMP setup without planetary motion 
 

A polishing setup was built which implemented the face up CMP for polishing copper wafers. 

Unpatterned 4’’ diameter copper wafers of 1.25 mm thickness were used for polishing. Suba IV Pad made 

of polyurethane material was used. Colloidal silica slurry (from Nalco company) which primarily consists 

of SiO2 and NaOH was used for polishing.  The setup (as shown in Fig. 4-1(a)) comprised of a Speedway 

mini milling machine with an R8 spindle in which the R8 collet was used to clutch a polyethylene pad 

holder where the pad was adhered. The pad holder and the pad were of 4 inch diameter in order to cover 

the entire wafer from top. A polyethylene tank of 8’’ side was mounted on a polyethylene base plate 

which was fixed to the worktable of the milling machine. As shown in Fig. 4-1(b), a thick block of PVC 

plastic with a circular cavity on the top was press fitted in the tank to hold the wafer. It was made sure 

using a spirit level that the wafer was ok. The wafer was placed in the tank with a measured quantity of 

slurry (a mixture of colloidal silica and water in a fixed ratio). The pad was lowered to apply some load 



 

52 
 

onto the wafer. An Omega LCM 302 button load cell was used to measure the load applied on the wafer. 

As shown in Fig. 4-1(c), the load cell was placed below the tank with the sensitive button aligned axially 

with the pad and the wafer. After starting the milling machine, the RPM of the pad holder was measured 

by a Tachometer.  

    

Fig. 4-1: (a) The face up CMP setup without planetary motion (b) Tank with wafer holder (c) Load 
cell arrangement below the tank 
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After initial trials of polishing at various combinations of load, RPM and slurry concentration it 

was found that polishing of the wafer was not acceptable. There were circular rings observed in the wafer 

with more polished surface near periphery and lesser near the center. The reason for lesser polish in the 

central region of the wafer was that the relative velocity between the wafer and the pad is nearly zero. 

There, the pad was completely superimposing the wafer with the stationary center of the rotating pad just 

over the center of the wafer. While there were rings observed on the other parts of the wafer. The pad was 

not subjected to a uniform load distribution at every circular ring section of the exposed area. This is 

because of the pliability of the pad, which leads to unequal exposure of the pad and the more 

exposed/pressed ring sections giving more polishing compared to lesser pressed pad sections. 

Consequently, concentric rings of more and less polished parts were observed on the wafer. This lead to 

the  conclusion that planetary motion was required for polishing of copper wafers.  

4.2: The face up CMP setup with planetary motion 
 

A mechanism of planetary motion was applied in the face up CMP setup to obtain overall 

polishing on the copper wafers. Fig. 4-2 shows the difference in the polishing mechanism of the first and 

the second face up CMP polishing setup. Diameter of the pad was reduced by half from 4 inch to 2 inch. 

Central axis of the pad was moved so that there was a distance of 1 inch between the centers of the pad 

and the wafer. Also, the wafer was given a rotary motion. Planetary motion due to the off centered 

position of the pad with respect to the wafer ensured that there was no point between pad and wafer with 

zero relative velocity. The circular rings were avoided because of the rotary motion of the wafer. Thus, 

the new mechanism was able to give uniform polish on the copper wafers. 

Another setup was built (as shown in Fig. 4-3) which followed the planetary motion mechanism. 

Diameter of the pad holder was reduced from 4 inch to 2 inch. The bottom part of the polishing setup 

comprising of the tank with the wafer rest was given rotational motion through a chain drive. On one side, 

the chain drive was connected to a pinion on the drive shaft of a Baldor 0.5 hp DC motor, and on the other 
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side to a bigger diameter sprocket which was attached below the tank. There was a thrust bearing attached 

at the bottom of the sprocket. The thrust bearing was press fitted into a Teflon rest plate which was 

attached on the worktable of the milling machine. There was a button load cell under the Teflon rest plate 

which was aligned with the center of the pad. 

Two small boxes each having a Tmote platform were attached with the help of strap clamps to an 

end mill holder which was clutching the pad holder shaft. Sensors were connected with thin wires to the 

Tmotes. Temperature sensor was placed behind the pad to take its temperature. The sensor was not 

attached to the pad directly; instead there was a copper foil between the pad and the sensor to protect the 

sensor from the slurry. The pad holder was modified to incorporate a temperature sensor. As shown in 

Fig. 4-4, through holes slightly bigger than the sensor were made at the base of the pad holder. A cup 

made of copper foil which was of the same size as that of the pad holder was adhered at the bottom of the 

pad holder. The sensor was placed into one of the holes and was attached on the copper foil. Pad was 

adhered on the other side of the copper foil.  

 At the start of a polishing experiment, rotation of the wafer and the pad was started 

simultaneously. RPM of the wafer was selected by a controller of the motor. Polishing was done at 

different combinations of load, RPM, and slurry concentration. The polishing was found to be uniform on 

the entire wafer but the surface roughness values had a scope of improvement. Multistage polishing 

process was applied to improve the surface roughness values. 



 

55 
 

 

 Fig. 4-2: Difference in the polishing mechanism of the setups without and with planetary motion 
 

 

Fig. 4-3: Face up CMP setup with planetary motion 
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Fig. 4-4: Arrangement for attaching temperature sensor behind the pad 
 

4.3: Multi stage polishing process 
 

The polishing results obtained from continuous polishing of the wafer with a single pad were not 

satisfactory. Hence, the polishing process was changed from a continuous process to a process comprising 

of smaller duration stages. The pad, RPM and load conditions were changed in each stage. The change in 

polishing conditions of the stages was intended to give coarse polish initially and fine polish in the later 

stages. The multistage polishing process had 3-4 stages in it. The initial stages of polishing were 

accomplished with hard pad and at higher load with lesser relative velocity to remove more material. The 

later stages of polishing were done with softer pad at lower load and higher relative velocity to give a soft 

polishing or buffing action. Various combinations of hard pads, soft pads, load, velocity and polishing 

time for each stage were investigated. The conditions for the multi stage polishing experiment which gave 

best polishing results are given in Table 4-1 and the images of the wafer are shown in Fig. 4-5.   
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Table 4-1: Polishing conditions for multistage polishing experiments with best polishing results 
 

Stage Pad  Type Load (lb) Wafer RPM Pad RPM Polishing Time (min) 

1 Suba IV 35 40 500 30 

2 FBP 25 50 700 30 

3 
Beuhler MicroCloth 

15 75 700 15 

 

 

Fig. 4-5: Optical microscope and SEM images of wafer in a multistage polishing experiment  
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4.4: Buehler Automet 250 Polishing machine 
 

Buehler Automet 250 polishing machine is shown in Fig.4-6a. A specimen holder is used to hold 

the samples to be polished. The specimen holder consisted of three holes of 1inch diameter and three 

holes of 1.6 inch diameter arranged symmetrically. The copper wafer samples used for polishing 

experiments had 1.6 inch outer diameter and cup like shape as shown in Fig. 4-6b. The sample was 1 inch 

high and thickness of the base was 0.1 inch. A temperature sensor was attached on the base of the sample 

to measure the pad-wafer interfacial temperature. The sensor was connected through wires to a Tmote 

platform placed in a box attached to the rotary part of the polishing machine. There were six fingers on 

the machine head which were pushed down pneumatically at the start of polishing to apply the selected 

amount of downforce on the samples in the specimen holder. The specimen holder was inserted into a lift 

lock chuck which was connected to the motor drive shaft. The specimen holder was not clutched in the 

chuck very firmly, rather the specimen holder was allowed to have a floating motion. Also, the copper 

wafer samples were minutely smaller than the holes in the specimen holder. The clearance between the 

samples and the holes in the specimen holder and the floating motion of the specimen holder gave the 

samples ability to comply with the variations in the pad profile during polishing process. Polishing pad 

was adhered on a bimetallic plate which was attached magnetically to a platen. Microcloth which is a soft 

felt pad and Masterprep which is an alumina based slurry (both from Buehler company) were used for 

polishing experiments. Slurry falling off the pad during the polishing tests was collected in a drain besides 

the platen. The slurry flowed through a drain hose into a small tank.  A peristaltic pump was used to 

circulate the slurry. Thin rubber pipes connected to the pump circulated slurry from the small tank to the 

pad during the polishing tests. There was a control panel on the machine. The RPM of the specimen 

holder and the platen, the down force applied by each finger could be controlled from the control panel.   
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Fig. 4-6: (a) Buehler Automet 250 polishing machine (b) Copper wafer sample with a temperature 
sensor  

4.5:  Wireless sensor network, Tmote, temperature sensor and data acquisition 
procedure 

 

A wireless sensor network comprises of two basic nodes. One or more sensor nodes, and a single 

display node that is connected to the computer as a base station to collect and format data from other 

nodes. The sensor nodes communicate with the base node via radio network. The computer provides the 

graphical user interface, display, and control. 

 Tmote is a mote platform for extremely low power, high data-rate sensor network applications. It 

has an integrated radio, antenna, microcontroller, and programming capabilities. TinyOS was used as the 

development environment for Tmote, which is an event-driven operating system intended for sensor 
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networks. The TinyOS applications are written in nesC language, a version of C language that was 

designed for programming embedded systems. A Java application Serial Forwarder is used for 

communication between computer and Tmote. Java tools Oscilloscope and Trawler can be used to display 

the readings on the computer. Cygwin which is similar to Unix environment and command-line interface 

for Microsoft Windows is used to activate Serial Forwarder, Oscilloscope, and program Tmote to function 

as transmitter or receiver, as well as for selecting ADC ports, sampling rate and the number of sensor 

channels. 

 

Fig. 4-7: Moteiv Tmote sky mote platform 
 

A temperature sensor AD 22103 from Analog devices was used for sensing temperature. As 

shown in Fig. 4-8, the flat part is the temperature sensitive component of the sensor. The three leads 

correspond to ground, supply voltage, and output voltage, respectively. These were connected to the 
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Tmote through lead wires. The sensor has temperature sensitivity of 28mV/°C, the supply voltage range 

of 2.7 V to 3.3 V, and temperature measurement span of 0°C to 100°C. 

 

Fig. 4-8: Analog Devices AD 22103 temperature sensor 
 

Two temperature sensors were connected to a Tmote platform which was programmed as a 

transmitter. The Tmote platform was programmed to display two channels of the sensor data 

corresponding to the two temperature sensors. The sampling rate was set as 4 Hz for each sensor. Another 

Tmote platform programmed as a receiver was connected to a computer. On initiating the Trawler 

application the signal from the two temperature sensors were displayed as two time series of different 

colors representing two channels. The temperature signal was displayed in mV. The signal was converted 

to temperature units (°C) by using a relation obtained from the datasheet of the temperature sensor.  At 

the start of a polishing experiment, previous signal was deleted to clear the screen by selecting clear data 

screen option in Trawler. At the end of the experiment, save option was used to save the data until that 

point of time. The data was stored in the form of text file which was used for further analysis. 

4.6: Experimental procedure 

Copper polishing tests were conducted on Buehler Automet 250 polishing machine with the 

objective of correlating material removal with the temperature rise and polishing conditions. The 
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experiments were based on L-8 Taguchi design as shown in Table 4-2. Each polishing run had some fixed 

values of relative velocity, load and, slurry concentration.  

Table 4-2: Taguchi L-8 design of experiments 
 

Run Relative 
velocity 
(m/sec) 

Down Force 
(lbs) 

Slurry 
Concentration 
(alumina: 
water) 

R1 5.7 10 1:3 

R2 5.7 10 1:5 

R3 5.7 5 1:3 

R4 5.7 5 1:5 

R5 3.7 10 1:3 

R6 3.7 10 1:5 

R7 3.7 5 1:3 

R8 3.7 5 1:5 

 

Table 4-3: Each run had 4 experiments and were carried away as shown 
 

Scratched  wafer , new pad, new slurry        30 sec           polish, polished wafer rescratched  

Scratched  wafer , new pad, new slurry        60 sec           polish, polished wafer rescratched 

Scratched  wafer , new pad, new slurry        90 sec           polish, polished wafer rescratched 

Scratched  wafer , new pad, new slurry       120 sec          polish       
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 Each polishing run consisted of four polishing experiments. As shown in Table 4-3, the polishing 

experiments were conducted under the same polishing conditions for different amounts of time. Two 

copper wafer samples, each with a temperature sensor were used for the polishing experiments. The 

second copper wafer sample was used for the repetition of polishing experiment conducted using the first 

sample. Both of the samples were polished together, thus the repetition of the experiments were 

accomplished along with the original experiments at the same conditions. Copper wafer samples were 

initially polished/scratched with a 600 grit SiC paper on their polishing surface before polishing 

experiment. The surface roughness of the copper samples was measured by MicroXAM shown in Fig. 4-

9, which is a laser interference microscope from ADE Phase Shift Technologies. 

 

Fig. 4-9: MicroXAM from ADE Phase Shift technologies 
 

 Values of the surface roughness were measured at 4 random points on the polishing surface of the 

samples. New pad and fresh slurry (alumina and distilled water mixed in a specific ratio) were used for 
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each polishing experiment.  The copper wafer samples were polished/scratched to obtain the average 

roughness of the polishing surface between 350 and 400 nm. This was to ensure the same initial polishing 

condition regarding pad, slurry and, polishing surface of wafer sample at the start of every polishing 

experiment. For weighing the sample, a digital weighing machine from Sartorius shown in Fig. 4-10 with 

a precision of 0.1mg was used.         

 

Fig. 4-10: Sartorious digital weighing machine 
 

 At the start of a typical experiment, a new pad was adhered on the bimetallic plate and the 

bimetallic plate was attached on the platen. Nearly 120 ml of the slurry was placed in the small tank 

behind the drain hose. Two copper wafer samples were mounted in the specimen holder. The sensors 

were attached on the base of the samples. The values of load and RPM were selected from the control 

panel. The slurry circulation from the tank to the pad was initiated. Thereafter, the machine was started. 

The data acquisition was started at this point. The polishing process stopped after a predetermined time 
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which was selected on the control panel. The data acquisition was stopped and the sensors were removed 

from the samples. The samples were then rinsed with distilled water and placed in an ultrasonic cleaner 

which is shown in Fig. 4-11.  

 

Fig: 4-11: Ultrasonic cleaner 
 

 The ultrasonic cleaner consisted of a bath which was filled with water. A plastic tank partially 

filled with distilled water was immersed in the bath. The samples were placed in the plastic tank. 

Ultrasonic vibrations generated in the cleaner assisted in removing the slurry particles adhered on the 

samples. The samples were dried with air and cleaned with acetone. Weight of the samples was measured 

by the weighing machine. The MRR was calculated using the relation:  

MRR = (weight of sample before polishing – weight of sample after polishing) / time of polishing 

 Fig. 4-12(a) shows an optical microscope image of the polishing surface of the copper wafer 

sample at the beginning of 2 min of polishing experiment following R1 run. Fig. 4-12(b) shows the 3d 
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profile of the polishing surface. Ra of this surface was 340 nm. Fig. 4-13(a) shows optical microscope 

image of the polishing surface of the copper wafer sample after 2 min polishing experiment following R1 

run. Fig. 4-13(b) shows the 3d profile of the polishing surface. Ra of this surface was 3.5 nm. 

 

(a)                                                                             (b) 

Fig. 4-12: (a) optical microscope image and (b) 3d profile for starting condition with Ra of 340 nm 
 

 

(a)                                                                                     (b) 

Fig. 4-13: (a) optical microscope image and (b) 3d profile after 2min of polishing with Ra of 3.5 nm 
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Chapter 5: Qualitative analysis of temperature sensor signal 
 

Copper wafer polishing experiments were performed on the face up CMP setup. A temperature 

sensor was attached behind the pad to measure the pad-wafer interface temperature. Temperature profiles 

(temperature signal time series) were obtained for various polishing conditions. Temperature profiles, 

variation in the temperature profiles with load, RPM, and slurry conditions, temperature profiles for 

multistage polishing and relation of temperature with PV and MRR are presented in the following 

sections. 

 5.1: Temperature profiles 
 

A typical temperature profile observed in the copper wafer polishing experiments is shown in Fig. 

5-1. The profile resembles with the temperature profiles observed by Sampurno et al. [43] shown in Fig. 

5-2. It can be observed from the temperature profile in Fig. 5-1 that the rate of increase of temperature 

decreases with polishing time. After some time of polishing either the temperature value or the rate of 

increase of temperature becomes constant.   According to White et al. [44], the heat generated during 

polishing process is transferred into the pad where it resides before being transferred to the slurry. The 

pad accumulates more thermal energy than it loses during the initial phase of polishing. As the 

temperature of the pad increases, the temperature difference between the slurry and the pad increases 

which increases the rate of heat flow by the slurry. The pad temperature reaches a steady state when the 

flow rate of energy input in the pad due to polishing action is equal to the flow rate of energy dissipated 

by the slurry. 
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Fig. 5-1: A typical temperature profile observed during the polishing experiment 
 

 

Fig. 5-2: Temperature profiles observed by Sampurno et al. [43] 
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Fig. 5-3: Temperature profiles for polishing experiments with different amounts of slurry 
 

The amount of slurry over the wafer influences the net temperature rise and the time in which the 

temperature profile stabilizes in a polishing experiment. Fig. 5-3 shows the temperature profiles for 

polishing experiments with the same polishing conditions apart from the slurry present in the tank. For the 

experiment in which lesser slurry (20 ml) was used shows a higher temperature rise and more time is 

taken for temperature stabilization. For the experiment in which more slurry (700ml) is used, temperature 

stabilizes to nearly a constant value in lesser time and the net rise in temperature is also lesser. Higher 

amount of slurry dissipates more heat and achieves a thermal equilibrium early.  

 

Increase in the load applied on the wafer by the pad and the relative velocity or RPM of the pad 

and the wafer show increase in the value of temperature rise during polishing. Fig. 5-4 shows two 

temperature profiles for polishing experiments under the same polishing conditions except the pad RPM. 

For higher pad RPM of 200, the temperature of the pad raised from 20°C to around 25.5°C in 6 minutes 

of polishing compared to 23°C for 30 RPM of pad. Fig. 5-5 shows two temperature profiles for a 

polishing experiment under same polishing conditions except the load applied on the wafer by the pad. 
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For higher load of 45lbs the temperature of the pad raised to 37°C in 6 minutes of polishing compared to 

26.5°C for 10lbs of load. 

 

Fig. 5-4: Variation of temperature with time for two pad RPM 
 

 

Fig. 5-5: Higher temperature rise observed for higher load 
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5.2: Relation of temperature rise with product of pressure and velocity (PV) 
 

Fig. 5-6 shows the temperature profiles for a set of experiments following a 3x3 Design of 

Experiments (DOE) in which three values of pad RPM and three values of load were taken as variable 

experimental conditions.  The experimental conditions for the profiles are given in Table 5-1. It can be 

observed in Fig. 5-6, the temperature profiles for the polishing conditions with lower PV (product of load 

and RPM here) values have lower temperature rise values and vice-versa. The temperature raised to 

around 30°C for polishing condition I (highest load and RPM) compared to 22.5°C for polishing 

condition A (lowest load and RPM). The temperature rise values in the profiles are in accordance with the 

product of pad RPM and load. The product of pad RPM and load represent the mechanical power input 

which is converted into frictional heat. Higher value of PV implies more frictional heat and thus more 

temperature rise.  

Table 5-1: Polishing conditions for the 3x3 DOE 
 

Profile RPM Load (lb) 

(A) 200 15 

(B) 200 22.5 

(C) 200 30 

(D) 300 15 

(E) 300 22.5 

(F) 300 30 

(G) 400 15 

(H) 400 22.5 

(I) 400 30 
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Fig. 5-6: Temperature profiles for the polishing experiments following the 3x3 DOE. 
 

 

Fig. 5-7: 3D plot of the temperature rise, RPM, and load. 
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Fig. 5-7 is a 3D plot of temperature rise, load and RPM for the same experimental conditions 

given in Table 5-1.The plot has resemblance with Fig. 2-7 which shows the 3D plot of temperature, 

pressure and platen speed for the experiments conducted by Li et al. [21]. Both of the figures show that 

temperature values increase with the increase in load/pressure and velocity/RPM. Highest temperature 

rise is corresponding to the condition where both load and RPM are the highest and lowest temperature 

rise is for the condition having least values of both load and RPM. 

Fig. 5-8 shows the plot of temperature rise vs. the product of load and pad RPM for the 

experimental conditions given in Table 5-1. It can be observed that the temperature rise values are linear 

with the product of load and pad RPM. The plot resembles with Fig. 2-6 which is discussed in the 

Literature review chapter.  

 

Fig. 5-8: Variations of temperature rise with the product of load and RPM 
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5.3: Multi stage polishing temperature profiles 
 

Figs. 5-9 (a), (b), and (c) show the temperature profiles and average MRR values for a three stage 

polishing experiments.  The polishing condition was changed from coarse removal of material (by 

selecting harder pad, higher load, and lesser relative velocity) to finer material removal (by selecting 

softer pad, lesser load, and higher velocity). The mildness of the polishing action in the subsequent stages 

is evident from the decrease in the value of temperature rise and MRR for the stages. The average MRR 

decreases from 0.53 mg/min to 0.5 mg/min and further to 0.48 mg/min in the three stages. The 

temperature rise during 12 min of polishing decreased from 32.5°C to 30.5°C and further to 29°C in the 

three stages. 
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Fig. 5-9: Temperature profiles and MRR values
a multistage polishing experiment
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9: Temperature profiles and MRR values corresponding to (a) stage 1 (b) stage 2 (c) stage 3 in 
a multistage polishing experiment 
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5.4: Decrease in MRR and temperature rise along with polishing time 
 

Fig. 5-10 shows the temperature profile and material removal values in 2 minute durations for a 

polishing experiment. It can be observed that both material removed and temperature rise have higher 

values in the first two minutes of polishing (3.2 mg and 4.5°C,  respectively) compared to the next 2 

minutes of polishing (1.3 mg and 1.5°C,  respectively ) and so on. This indicates a relationship between 

the material removal and temperature rise in the polishing process. This relationship is investigated in 

depth in the next chapter. 

 

Fig. 5-10: Material removal and temperature rise decreasing with time in a polishing experiment 
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Chapter 6: Process modeling using response surface analysis 

 

Four types of regression models are analyzed which are based on the experimental conditions and 

the temperature sensor data. 

Model 1: Response variable is MRR and the predictor variables are the process parameters only which 

comprise of load, relative velocity, and slurry concentration. This model shows the predictability of MRR 

from the process parameters only. 

Model 2: Response variable is MRR and the predictor variables are the process parameters and 

temperature rise rate. This model shows the importance of temperature rise rate to enhance the 

predictability of MRR. 

Model 3: Response variable is the ratio of MRR and temperature rise and predictor variables are the 

process parameters, pad wear factor, and their two way interactions. This model shows the contribution of 

pad wear factor and two way interaction terms to increase the predictability of MRR. 

Model 4: Response variable is the ratio of temperature rise and MRR and predictor variables are the 

process parameters and pad wear factor. Apart from predicting the MRR for new and worn pad with more 

accuracy, the model has physical interpretation to explain factors influencing the temperature rise and 

MRR. 

Polishing experiments using copper wafer samples were conducted on a Buehler Automet 250 

polishing machine following an L8 Taguchi design. The design of experiments constituted 8 runs. Each 

run had fixed values of the variables, namely, load, relative velocity, and slurry concentration. Every run 

constituted 4 polishing experiments in which the samples were polished under the same conditions for 
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different amounts of time. Each experiment was repeated. Temperature rise and material removal values 

were obtained for all the experiments. The conditions and procedure for the set of experiments are given 

in section 4.7. It was found from the experimental results that the temperature rise observed in the wafer 

during polishing had correlation with the material removed. For each run, the temperature rise in the 

wafer and the material removal values were found to be linear with respect to each other. Fig. 6-1 shows a 

scatter plot of temperature rise and material removed values for the polishing experiments.  

 

Fig. 6-1: Plot of material removed and corresponding temperature rise under various polishing 
conditions 

 

Response surface analysis models which correlate MRR with temperature rise and process 
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6.1: Model 1: Regression model for the prediction of MRR from the process 
parameters only 

 

MRR is fitted against the process parameters which are slurry concentration, load, and relative 

velocity. The model shows the predictability of MRR solely from the process parameters. Table 6-1 

shows the predictor variables in the model and their p values.  

Table 6-1:  Regression model of MRR as the response variable and process parameters as the predictor 
variables (R2 = 51.7%, R2 adjusted = 49.8%) 

Predictors P value 

Slurry concentration (C) 0.0008 

Load (L) 0.0041 

Relative velocity (V) 0 

 

 

 

 The low value of R2 in the model suggests that MRR has a poor predictability only using process 

parameters as the predictor variables. 

6.2: Model 2: Regression model for prediction of MRR from process parameters 
and temperature rise rate  

 

 MRR is fitted against temperature rise rate and process parameters, namely, load, relative 

velocity, and slurry concentration. 80% of the total experimental observation points were used to make 

this regression model and the rest 20% points were used for the verification of the model. Table 6-2 

shows the results of the response surface analysis along with p values for the predictor variables. 

MRR = 1.71*C + 0.14*L + 0.91*V – 1.49 
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Table 6-2: Regression model of MRR with temperature rise rate and process parameters  
(R2 = 73.5%, R2 adjusted = 72.1%) 

 

Predictors P value 

Slurry concentration (C) 0.0599 

Load (L) 0.0146 

Relative velocity (V) 0.0001 

Temperature rise rate (Tr) 0 

 

 

This model has higher R2 and thus higher accuracy for prediction of MRR as compared to model 

1. This model shows the importance of temperature rise rate values to enhance the predictability of MRR 

in polishing process. Here ε is the white noise sequence. 

6.3: Model 3: Regression model for prediction of MRR/Temperature rise from 
process parameters, pad wear factor and their two way interactions 

 

 MRR/∆T is fitted against load, relative velocity, slurry concentration, pad wear factor, and their 

two way interactions. 80% of the total experimental observation points (66 data points) were used to 

make this regression model and the rest 20% points (16 data points) were used for the verification of the 

model. Table 6-3 shows the results of the response surface analysis along with p values for the predictor 

variables. 

 

   MRR = 0.21*Tr + 0.73*C - 0.12*L + 0.43*V + 1.10 + ε 
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Table 6-3: Regression model of ratio of MRR and temperature rise with process parameters, pad wear 
factor, and their two way interactions  

(R2 = 82.1%, R2 adjusted = 79.3%) 

 

Predictors P value 

Slurry Concentration (C) 0.040 

Load (L) 0.029 

Velocity (V) 0.017 

Pad wear factor ( Pw) 0.000 

Pw*Pw 0.000 

C*L 0.037 

C*V 0.251 

C*Pw 0.013 

L*V 0.416 

L*Pw 0.003 

V*Pw 0.035 

 

MRR/∆T = 0.04*C  + 0.04*V - 0.04*L - 0.36* Pw +  0.37Pw*Pw - 0.03C*L - 0.02 C*V - 0.1 C*Pw - 
0.01 L*V + 0.12 L*Pw - 0.08 V*Pw + 1.61+ ε 
 

 

This model shows higher R2 and thus higher predictability of MRR as compared to previous two 

models. This model shows the importance of pad wear factor and the two way interaction terms between 

pad wear factor and process parameters to enhance the predictability of MRR in polishing process. 

However, there are too many interaction terms in the model. There is a need for more physically 

motivated model which could enhance predictability of MRR. 
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6.4: Model 4: Regression model for prediction of Temperature rise/MRR from 
process parameters and pad wear factor 

 

Ratio of temperature rise and material removal rate (∆T/MRR) was fitted against process 

parameters, namely, load, relative velocity, and slurry concentration and pad wear factor. Table 6-4 shows 

the results of the regression fit and the p values of the predictor variables. 

 

Table 6-4: Regression model of ratio of temperature rise and MRR with slurry concentration, load,  
relative velocity and pad wear factor (R2 = 87.7%, R2

adjusted = 86.9%) 

 

Predictors P value 

Concentration (C) 0.0003 

Load (L) 0.0001 

Velocity (V) 0 

Pad wear factor ( Pw) 0 

 

 
This can be also written as: 

MRR = ∆T (3.86*Pw - 0.23*V + 0.08*L - 0.81* C + 1.96 + ε) -1 

 

6.4.1: Physical significance of the model 
 

Apart from being a regression fit with good R2 value and thus good predictability, the model also 

has physical significance and provides experimental verification to a physical term related to MRR and 

temperature which is deduced from previous research work. This is explained below: 

∆T/MRR = 3.86*Pw - 0.23*V + 0.08*L - 0.81* C + 1.96 + ε 
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This equation given by Li et al. [21] explains the heat entering the wafer during polishing. Here κw is the  

conductivity of the wafer, µk is the coefficient of friction, γw is the heat partitioning fraction, p is the load, 

V is the relative velocity, Tw is temperature of  the wafer, hws is the heat transfer coefficient between 

slurry and wafer and Ts is the temperature of slurry. 

Under steady state condition this equation simplifies to: 

∆Tw = γw µk/ κw (PV) 

Also, Preston’s equation is MRR = KPV where K is Preston’s constant. 

Using these two equations we obtain ∆T/MRR = γw µk/ K κw = φ 

The factor φ is a function of heat partitioning fraction, coefficient of friction, and Preston’s constant 

which themselves depend on various factors. Heat partitioning fraction primarily depends upon the 

velocity, coefficient of friction is related to pad surface condition and normal load, and Preston’s constant 

is a combination of various factors including pad surface properties and abrasive properties. Other factors, 

such as slurry flow rate, material of the wafer and the pad, thermal and dimensional properties of the 

wafer and pad were not changed during experimentation and were not accounted. The model gives an 

expression for φ as a function of velocity, load, pad condition and abrasive concentration which is 

obtained experimentally. This further explains that ∆T/MRR is not a linear term. Rather the value of 

∆T/MRR depends upon some variables. The roles of these variables are given in the following section. 

 

Velocity: As shown in the equation for the model in Table 6-4, velocity is inversely related to the 

temperature rise. This may be explained by the concept of heat partitioning in the polishing process. Heat 

partitioning is described in the literature review chapter. Heat partitioning factor refers to the fraction of 

heat flowing into the wafer from the total heat generated during polishing. The mathematical term of heat 

partitioning factor comprises of sliding velocity along with pad and wafer properties.  Thus, if the 

material properties are fixed, heat partitioning is solely dependent on the sliding velocity. Heat 
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partitioning fraction is inversely related to the square root of the sliding velocity. Increase in velocity 

would decrease the heat transferred to the wafer and thus the temperature rise in it. Also, higher sliding 

velocity would result in more convective cooling of the wafer and thus lowers the temperature rise 

compared to expected values [21].  

 

Load: As shown in the equation for the model in Table 6-4, the ∆T/MRR value increase with increase in 

load. The reason for this is the increase in the pad contact area with the increase in the load. When the 

normal load at the pad wafer interface increases, more pad asperities are pressed to come in contact with 

wafer. As shown in the Literature Review Section 2.5, the increase in the load on the pad increases the 

contact area and the pad bends around the abrasive particles to press the wafer. This region of the pad 

rubs against the wafer and generates heat which is not due to material removal. There is a decrease in the 

force on the abrasive particles due to increase in the area of contact which decreases the MRR compared 

to the expected values [22].  This overall implies an increase in the ∆T/MRR term.   

 

Concentration: There is an inverse relation between ∆T/MRR and slurry concentration (C) shown in the 

equation for the model in Table 6-4. As explained by Luo and Dornfeld [23], MRR is directly related to 

the number of active abrasive particles or the slurry concentration. 

MRR = ρ N V   Where ρ is the density of copper, N is the number of active abrasive particles and V is the 

volume removed by each abrasive particle.  

This implies that increase in the slurry concentration would increase the MRR and thus decrease ∆T/MRR 

term.  

 

Pad wear factor: This is a factor incorporated in the model which signifies the observed pad wear 

condition for each polishing experiment. The value of the pad wear factor is based on fuzzy logic. Fuzzy 

logic is a type of multi valued logic which deals with reasoning which is approximate rather than precise. 

It has truth values lying between 0 and 1, just like binary logic but the values are more than two. The 
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values of pad wear factor were taken as 0, 0.2, 0.4, 0.6, 0.8, and 1 representing the pad condition as new, 

fresh, good condition, intermediate, nearly bad and bad, respectively. Table 6-5 tabulates the pad 

conditions along with values of corresponding pad wear factor values. Fig. 6-2 shows the pad images 

corresponding to the pad condition and pad wear factor values. 

Increase in the pad wear factor corresponds to the increase in the pad wear. This would result in a 

decrease in the MRR as explained in section 2.8. This in turn would increase the ∆T/MRR term. It can be 

noted from Fig. 6-1 that the data points corresponding to polishing run of 5.7 m/sec, 10lb, and slurry 

concentration of 1:3 at higher temperature values are more scattered. This can be attributed to high wear 

in the pad which was observed after the polishing. The pad was more worn than expected and thus the 

value of the pad wear factor was taken higher accordingly.  

Table 6-5: Pad conditions and corresponding pad wear factor values 
 

Pad condition Pad wear factor (Pw) 

New 0 

Fresh 0.2 

Good condition 0.4 

Intermediate 0.6 

Nearly bad 0.8 

Bad 1 
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New pad, Pw = 0, Fibers equally arranged 

 

 

 

Fresh pad, Pw = 0.2, Fibers equally arranged, nap can be observed 
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Good condition pad, Pw = 0.4, Fibers squashed, nap can be observed 

 

 

 

Intermediate pad, Pw = 0.6, Fibers getting directional, nap decreased 
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Nearly bad pad, Pw = 0.8, Fibers highly directional, nap almost gone 

 

 

 

Bad pad, Pw = 1, Fibers severely pulled directionally, nap gone 

Fig. 6-2: Pad images corresponding to the pad wear factor and pad conditions 
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6.4.2:  Using the model 
 

The model can be used to predict the average MRR during the polishing with a new pad and also 

when the initial condition of the pad is worn.  

 

For a new pad: The model can be used to predict the MRR for any polishing experiment which was 

included in the set of experiments conducted. From the total 82 experimental observation points, 66 

points were used to build the model and 16 points were used for verification. Fig. 6-3 shows the observed 

and predicted values of the MRR for verification experimental points.  

 

 

Fig. 6-3: Plot of MRR observed and MRR predicted by model for the verification points 
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For old/worn pad: The model can be used to calculate the MRR when the initial condition of pad is 

worn.  As discussed in the Literature Review chapter, MRR decreases with the pad wear. Thus, the 

average MRR for a same polishing experiment would be lower when a worn pad is used instead of new 

pad for polishing. The starting pad condition is assigned a pad wear factor on the basis of observation. 

After polishing with the pad, the pad is assigned a pad wear factor corresponding to the pad condition. 

The average of the two pad wear factors is then used in the same equation (model 4) to calculate the 

MRR.  
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Chapter 7: Conclusions and Future Work 
 

Process monitoring and control is important for obtaining desirable process output. The output or 

performance parameters (MRR here) are dependent on the input parameters (machine settings, properties 

of consumables, etc). A relationship between the performance parameter as a function of input parameters 

can facilitate in predicting and thereby controlling the performance parameters. To find such a 

relationship, copper polishing experiments, based on L8 Taguchi design, were conducted on a Buehler 

Automet 250 polishing machine. MRR was the output parameter while load, relative velocity, and slurry 

concentration were taken as the input parameters. A regression model was developed for the prediction of 

MRR from the input parameters. The relationship had a low predictability (R2 = 51.7%, R2 adjusted = 

49.8%) indicating that the input parameters were not sufficient to predict the MRR. 

A temperature sensor was attached behind the copper wafer sample to monitor the pad-wafer 

interface temperature during the set of experiments. Temperature rise in the wafer is related to the heat 

generated during polishing which is directly related to the material removal. The temperature sensor 

measured one of the process output parameter (temperature rise in the wafer) which was closely related to 

the desired performance parameter (MRR) and thus helped to predict the MRR by incorporating 

temperature in the relationship of MRR and input parameters. A regression model was made for 

prediction of MRR from the input parameters and temperature rise rate values. Increase in the accuracy of 

regression fit (R2 = 73.5%, R2
adjusted = 72.1%) shows the contribution of temperature rise rate values in 

enhancing the predictability of MRR as compared to the input parameters only. 

A regression model was made having ratio of MRR and temperature rise, namely, MRR/∆T as 

the response variable and load, relative velocity, slurry concentration, pad wear factor, and their two way 
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interactions as the predictor variables. Increase in the accuracy of regression fit (R2 = 82.1%, R2
adjusted = 

79.3%) shows the contribution of pad wear factor and the interaction terms in enhancing the predictability 

of MRR. 

A regression model was made taking the ratio of temperature rise in wafer and MRR, namely, 

∆T/MRR as the response variable and load, relative velocity, slurry concentration and pad wear factor as 

predictor variables. The model can predict MRR with high predictability (R2 = 87.7%, R2
adjusted = 86.9%) 

for new as well as for worn pad used at the start of polishing. The term of ∆T/MRR was deduced as a 

function of velocity, load, pad condition and abrasive concentration from well established mathematical 

relations. This model represents the deduced function/relationship between ∆T/MRR and velocity, load, 

pad wear factor, and abrasive concentration for the applied set of experimental conditions. The model 

explains the effect of load, relative velocity, slurry concentration and pad wear on the slope of relation 

between ∆T and MRR. Increase in the load increases the area of contact between pad and wafer. This 

decreases the force on the abrasives and a lower than expected MRR is observed, hence, increasing 

∆T/MRR term. Increase in the relative velocity increases the convective cooling of wafer. This decreases 

the ∆T value, thereby, decreasing the ∆T/MRR term. Increase in concentration of abrasive slurry 

increases MRR, hence, decreases the ∆T/MRR term. As MRR decreases with pad wear, increase in the 

pad wear factor decreases MRR, hence, increasing the ∆T/MRR term. 

Similar to the models proposed here, models incorporating more input parameters, such as the 

slurry flow rate, abrasive size, pad and, abrasive types along with a bigger set of experimentation can 

provide a relationship of MRR with a wider scope.  

The model proposed here can be extended for more sophisticated planarizing machines where the 

radial variation of temperature in the pad and wafer can be measured through multiple temperature 

sensors and thus can account the variation of MRR in the wafer radially.  
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Surface roughness of the wafer can be modeled on a more sophisticated planarizing machine. 

WIWNU and WTWNU can also be accounted.  
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Appendix 
 

The figures show the temperature profiles and the tables enumerate the temperature rise and 

material removed values corresponding to the polishing experiments discussed in section 4.6. 

 

Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 11.6 4.5 
2 0.5 11.5 4.2 
3 1 20.7 8.2 
4 1 20.5 7.4 
5 1.5 25.7 9.4 
6 1.5 25.3 9.4 
7 2 27.8 14.7 
8 2 34.7 14.7 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 10.9 4.1 
2 0.5 9.9 3.6 
3 1 13.2 5.6 
4 1 12 5.5 
5 1.5 17.4 7.5 
6 1.5 16.4 7.1 
7 2 18.7 8.9 
8 2 18.2 8.9 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 6 3.4 
2 0.5 6.1 3.2 
3 1 10.1 4.9 
4 1 9.9 5.5 
5 1.5 15.3 9.3 
6 1.5 14.2 9.2 
7 2 15.7 9.4 
8 2 15.4 10.1 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 6.5 3 
2 0.5 6.6 3.6 
3 1 9.5 4.6 
4 1 9.5 4.6 
5 1.5 10.5 7.9 
6 1.5 10.1 7.8 
7 2 12.6 8.8 
8 2 12.6 10.4 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 8.8 2 
2 0.5 8.5 2.5 
3 1 14.8 5.7 
4 1 13.7 6.2 
5 1.5 14.3 6.8 
6 1.5 13.5 7 
7 2 16.1 6.6 
8 2 16.2 6.8 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 7.5 1.8 
2 0.5 7.7 2.5 
3 1 9.9 4.1 
4 1 9.6 4 
5 1.5 13.3 6.6 
6 1.5 12.7 5.8 
7 2 14.6 8.1 
8 2 13.7 7.3 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 4 3.4 
2 0.5 4.2 2.7 
3 1 7.8 5.4 
4 1 6.8 4.9 
5 1.5 7.5 5.9 
6 1.5 7.3 5.1 
7 2 11.3 7 
8 2 11.1 6.6 
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Profile Polishing time (min) Temperature rise (C) Material removed (mg) 
1 0.5 4.3 2.9 
2 0.5 4.4 1.7 
3 1 8.1 4.7 
4 1 7.9 3.1 
5 1.5 8.8 5.4 
6 1.5 8.8 5.3 
7 2 7.8 6.2 
8 2 7.2 6.1 
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