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CHAPTER I 
 
 

INTRODUCTION 

 

Throughing of Webs: 

 A Web is a continuous thin strip of material, made of paper, plastic films, textiles and 

thin metals sheets. The webs often have to undergo several continuous processes prior to 

forming a final product. The transportation of these webs during web processes is known 

as web handling. Webs are often quite thin and such are subjected to instability. In the 

process machinery webs are supported intermittently by rollers. The unsupported web 

between the rollers is called free span. 

 

During the transportation of webs, small out of plane deformations called troughs may 

appear in the free span of the web. Formation of troughs in free span, hinder the 

processes such as printing and coating etc due to non planar geometry in the web span. 

Also these troughs may results in wrinkles on the rollers, which cause serious degradation 

of material quality. The direction of travel of the web through a process machine is called 

the machine direction (MD). The direction orthogonal to the machine direction, but still 

in the plane of the web is called cross machine direction (CMD).  
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Figure 1.1-MD Trough Formation 

 

Reasons for Troughing of Webs: 

The troughs in the free span occur due to compressive stresses in CMD. A free body 

diagram of a web would show that there are no lateral forces at the edge of the web to 

create compressive stresses. However CMD compressive stresses can arise that result in 

trough formation for various reasons, some of which are:  

a) Roller deflection: The deflection of the roller causes lateral compressive stress, as 

the web seeks to align itself perpendicular to the axis of the deflected roller.  

 
b) Variation of tension: Tensile stress (σx) due to tension in a web causes web strain 

(εx) in the MD and web strain (εy) equal to (–νεx) in CMD. Longitudinal strain 

observed as the plastic films are processed in web form can be of the order of 

0.001, although the strain increases and decreases during the process due to 

changes in tension. Changes in width accompany these changes in longitudinal 

tension due to Poisson’s ratio which is of the order of 0.3 and larger. Therefore, 

an increase in width occurs when a web moves from high tension span to low 
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tension span. Changes in web tensions must occur at rollers where the change in 

tension is balanced by frictional forces between the web and roller. As the web 

tension decreases the web attempts to expand laterally on the roller which can 

produce CMD compressive stress. 

 
c)  Increase in temperature or moisture: Plastic webs have a high coefficient of 

thermal expansion, in some cases higher than 0.0001 per degree F and paper 

usually expands significantly as it absorbs moisture. The processes such as drying 

and corona or flame treatment involve heating of webs. In the process called 

sizing, paper is made to absorb moisture. If lateral expansion of a web occurs near 

a roller, frictional CMD forces can arise between the web and roller which 

produce CMD compressive stresses, similar to the Poisson’s effect discussed in 

case of variation of tension.  

d)  Viscoelastic memory: In draw or velocity controlled processes the web tension 

can decrease in-span due to viscoelasticity. Decrease tension will result in CMD 

expansion which can produce troughs. 

 
e) Roller Imperfections: Both roller misalignment and roller diametrical taper are 

capable of producing roughs in the web. 

 

Given the current understanding of the sources of the CMD forces which create troughs it 

is still difficult to make troughs disappear by attempting to control these sources.  
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The focus of this research is that if it is given that web troughs will occur can their 

amplitudes be predicted?  The goal of this research is to quantify the wavelength and the 

amplitude of these troughs when MD web strain is either in elastic or in the inelastic 

region. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

The web in a web line is subjected to tension in MD, but there is no evidence of CMD 

forces that produce CMD compressive stresses. However for troughs to occur there must 

be compressive stresses acting in a lateral CMD direction. The transverse cross section of 

a troughed free span of thin web is similar to a buckled thin plate. Hence analysis of 

troughed webs can be done similar to the buckling analysis of a rectangular plate which is 

subjected to loads in both X and Y directions. Timoshenko and Gere [1] have analyzed 

the buckling of a rectangular plate, subjected to loads in both the directions.  

The differential equation for the deflection surface (w) in case of an isotropic plate, under 

the action of membrane forces is: 
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Where Nx, Ny, and Nxy are the membrane forces which may serve to increase or decrease 

the out-of-plane deformations.  

In the case of a web in a web line where there are no shear stresses acting the deflection 

equation can be rewritten as      

                                                                                                                                     {2}   
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Good and Biesel[2] has taken this further and derived an expression for the minimum 

CMD compressive stress needed to buckle the web, known as the critical buckling stress. 

For an isotropic web of width ‘b’ that spans the distance ‘a’ between two rollers the 

governing differential that of equation {1}.  

 

      Figure 2.1-Isotropic Span of Web 

A solution is sought for the out-of-plane deformation ‘w’ of the form: 
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where m and n are the half wave numbers in the x and y directions, respectively and Amn is 

the maximum amplitude of out-of-plane deformation for a given buckled shape. By 

choosing the displacement of the form {2}, the out of plane deformation is forced to vanish 

at all four boundaries of the web span when m and n are positive integers. This condition 

appears to be appropriate when web is in contact with rollers but no constraints exist on the 

free web boundaries (y=0, b). During the experimental observation of troughs, the out-of-
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plane deformations near these free edges were minute compared to the out-of-plane 

deformations associated with the troughs. This behavior could be due to the fact that, 

compressive CMD stresses do not exist at the free boundaries. The combination of the 

absence of troughs at edges and that web tension acts to restrict the out-of-plane 

deformation ‘w’ supports the assignment of the simple support boundary condition to these 

boundaries (y=0,b). The tension in the web restricts the half wave number in x direction 

(m) to be unity. Substituting the expression {3} in to expression {2} and solving for σy, a 

relationship for buckling stress is produced of the form: 

                     222

42222 )(

nba

bnab xe
ycr

σσσ ++
−=

                                {4} 

                                                 Where  
ha

D
e 2

2πσ =  

Observing expression {4} it can be determined that critical buckling stress σycr is a function 

of half wave number (n) in y direction and tensile stress σx in the x direction. 

With the increase in magnitude of tensile stress and half wave number (n) in y direction, 

stability of the web increases. To determine the correct value of n, for a given tension 

requires consideration of minimum energy. Assuming n as being continuous for the 

moment, the energy can be minimized by taking derivative of {4} with respect to n,  

equating the result to zero, solving for n and substituting the result back into the {4}. The 

resultant expression is  

                                   ( )xeeeycr σσσσσ ++−= 22                                     {5} 

From the expressions {4} and {5} it can be proved that very little (σy) CMD compressive 

stress may induce instability in thin webs. If we select a=30”, E=600,000 psi, ν=0.3, 
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t=.001” , and σx=1000 psi we will find that mere -1.55 psi σy stress will induce troughs in 

the web.  

 

E. Cerda and L. Mahadevan [3] discuss about the wrinkling (they refer to trough as 

wrinkles) in an elastic sheet under tension. The authors developed scaling laws for 

amplitude and wavelength of trough, and assert these scaling laws are applicable to both 

isotropic and anisotropic sheets that have been stretched either in the elastic or into the 

inelastic range. All the authors’ developments consider isotropic materials stretched in 

the elastic range.  Extensions to anisotropic materials or to sheets stretched to the 

inelastic range are not shown. They state that, when a thin elastic isotropic sheet of 

thickness ’t’, width ‘W’ and length ‘L’ (where L>W>>t), composed of a material with 

Poisson’s ratio ‘υ’ and young’s modulus ‘E’ is subjected to longitudinal strain ‘γ’, the 

sheet remains flat until the applied strain do not exceeds the level strain γc called the 

critical stretching strain. Stretching the sheet further (γ > γc) causes the sheet to buckle 

and form troughs.  

 

In Cerda and Mahadevan’s case the troughs occur due to clamped boundaries. They do 

not allow the sheet to contract laterally at the clamps which results in a biaxial stress state 

at the clamps. The CMD stress is tensile near the clamps and compressive slightly further 

from it. When sheet is stretched beyond the strain γc, σy becomes less than σycr, and the 

web buckles.  

The Authors developed the expressions for wavelength and amplitude by minimizing the 

total energy. The total energy of a stretched sheet is U =  UB + US , where UB is the 
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bending energy of the sheet and US is the energy due to stretching of the sheet, subject to 

any geometric constraints. 

The expression for strain energy in bending for the web stretched in-between two clamps 

is obtained by simplifying the total strain energy in bending given by Timeshenko [1] 
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In the above expression the Authors assume the term 
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 to be negligible; however 

they do not give the reason for their assumption. The out-of-plane deformation of a 

buckled web can be assumed to be of the form 
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the amplitude and λ = n/2b is the wavelength of the troughs. Substituting the out of plane 

deformation in the expression {6} and solving gives the expression for bending energy. 
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The expression for stretching energy for a web stretched in-between the two clamps is 

obtained by simplifying the stretching energy given by Timoshenko [1] 
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Authors assume 
2
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N y to be negligible: however they do not provide a reason for 

their assumption, and solving the expression substituting the out of plane deformation of 

the above mentioned form, gives the expression for stretching energy as 
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The Authors use a geometric constraint that they call “Geometric Transverse 

Inextensibility”. Although not stated their constraint is a simplification of the large strain 

expression: 
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The strain εyy is assumed to be –υεxx which is equal to –υγ in the Authors variables. u,v, 

and w are the deformation in x, y, and z dimensions respectively. Inextensibility would 

imply that strain due to in-plane deformation v would be negligible. Also the deformation 

in the x direction (u) would be nearly constant for a given x location thus the 0⇒
∂
∂

y

u
. 

This leaves us with: 
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After substitution of w and elimination of constants in the expression {11} leads us to the 

Authors scaling law:                        

                                                 ( ) νγλ ≈
2A                                                                 {12} 

Substituting expression {7} in expression {7} and {9}, total energy U can be expressed 

as  
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Minimizing U with respect to λ gives a scaling law for the wavelength  
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                                                     ( )
4
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2
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γ
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Substituting the {14} into the transverse inextensibility expression {11} gives a scaling 

law for amplitude  

                                                ( ) 4
1

2
1 γνtLA ≈                                                          {15} 

E.Cerda and L.Mahadevan [4] deduced exact expressions with the pre-factors for 

amplitude and wavelength of troughs formed on thin stretched sheet.  

To determine the criterion for selection of the wavelength and amplitude of wrinkles, 

change in energies of bending and stretching must be accounted. Geometric constraints 

are imposed using Lagrange multipliers (L). Let the out-of- plane displacement of the 

initially flat sheet of area W.L be ζ(x,y). )l,0(x ∈  as the coordinate along the sheet 

measured from one end and ),0( Wy ∈ , (W<<l) as the coordinate perpendicular to it 

measured from its central axis. Then the total energy function can be written as  

 

                                                     {16}        

 

The bending energy UB due to the deformation which is predominantly in the y direction 

is given by expression∫ ∂
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B  and Us is the stretching energy in the presence of a 

tension T(x) along x direction. The sheet satisfies the condition of transverse 

inextensibility as it wrinkles under the action of a small compressive stress.  
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where ∆(x) ~ υγW is the imposed compressive transverse displacement. 

Hence the term L in the expression {16} which accounts for the geometric constraints 

can be expressed as  

                                                ( ) dA
W

x
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A

y∫ 




 ∆−∂ )(
)( 2ζ                                                {18} 

where b(x) is the Lagrange multiplier and ∆(x) is the imposed compressive transverse 

displacement.  The Euler-Lagrange equation obtained from the condition of a vanishing 

first variation of {16}, 0=
δζ
δU

 yields 

                                0)()( 224 =∂+∂−∂ ζζζ yxy xbxTB                                             {19} 

For a stretched sheet T(x) is constant, and ∆(x) ~ υγW is constant far from the boundaries 

so that b(x) is constant. Away from the free edges in y direction the wrinkling pattern is 

periodic so that ζ(x,y) = ζ(x,y+2π/kn), where kn =2πn/W, and n is the number of wrinkles. 

At the clamped boundaries ζ(0,y) = ζ(l,y) = 0. Substituting a periodic solution of the form 

)(xXe n
n

yikn∑=ζ  into the expression {19} yields a Sturm-Liouville-like problem  
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Where TBkbk nnn /)( 422 −=ω . b is the compressive stress and can be determined from the 

nonlinear geometric constraint {18}. The solution to equation {20} when b is constant is  
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For bending energy to be minimum there should be only on half sine wave along the 

length, therefore m=1 hence ωn= π/L so that 2
n2

n
2

2

nn Bk
kl

T
)k(b +π=  and the displacement 

function ζ is  

                                                   l
xSin)yk(CosA nnn

πφ+=ζ                                                                       {21} 

 

Plugging the obtained displacement function ζ into the geometric constraint expression 

{18} yields  
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8

22 WkA nn
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After substituting ζ in the expressions for bending energy UB and stretching energy Us, 

the total energy can be written as  
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Minimizing the total energy {23} and using the geometric constraint {18} wavelength 

λ=2π/k and amplitude A are obtained and are given as  
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Substituting the value of flexural rigidity B and tension T for a stretched sheet yields 

Wavelength to be 
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and Amplitude  

 

                                                                                                                                        {25} 

                                

 
 

To verify these expressions of wavelength E. Cerda and Mahadevan [4] had stretched 

different lengths of polyethylene of thickness ~ 0.01cm and width of 12cm at the strain 

levels of γ∈[0.01, 0.2]. The polyethylene sheet was clamped between the two aluminum 

plates to enforce the boundary conditions. The sheet was first taped to one of the 

aluminum plate using an adhesive tape so that slippage would not occur. A plot showing  

4
1

1
γ

 on x axis and 
2

1
)tL(

λ  on y axes is plotted with experimental values and 

theoretical values, a quantitative agreement is obtained.   

                                                                                                          

 

                                   Figure 2.2- Photograph of the sheet depicting the troughs  
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Figure 2.3-Dimensionless wavelength Vs Strain 

The expression obtained for amplitude and wavelength by using a double Sine function for 

the out-of-plane displacement which Timoshenko and Gere yielded the same expressions 

for amplitude and wavelength. Considering the expression {3} for the CMD compressive 

stress, and minimizing it with respect to n and solving for n gives an expression for n  
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The wavelength can be expressed in terms of λ and width b. Consider there are n number 

of half sine waves distributed uniformly throughout the width of the web. The distance 

between the two same points on alternate half sine waves is the wavelength. Hence it can 

be expressed as
b

n

2
=λ . 

Substituting the expression for σe, expressing σx in terms of strain γ and Young’s modulus 

E and n=2bλ in expression {26} yields  
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Similarly expression for amplitude can be obtained by considering the displacement 

function for out of plane displacement to be                           
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Substituting the expression {27} into the condition of transverse inextensibility {18} and 

integrating it over x (0, L) and y (0, b) and using the expression for wavelength yields 

                                    4
1

22 )1(3

16 γ
νπ

ν
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= LtA                  

 

Research Objective:  

 Cerda and Mahadevan have developed a condition of “Transverse Inextensibility” 

to define the amplitude of troughs and the wavelength of troughs. The expression for 

wavelength is equivalent to that which can be derived from Timoshenko expressions. The 

expression for amplitude is novel. Cerda et al claim these expressions applicable to 

isotropic and anisotropic materials in the elastic and inelastic domains of strain. The 

Authors lend some proof in this context by wavelength measurements of troughs in 

polyethylene web over a large range of strain. They provide no proof of their scaling laws 

for amplitude and how they are impacted by inelastic strain. 

 

The objective of this research is to determine if Cerda and Mahadevan’s claims are 

credible or if not under what conditions they are credible.                               
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CHAPTER III 

 
 

EXPERIMENTAL SETUP AND MATERIAL CHARECTERIZATION 

 

The equipment required for the Research was provided by the Web Handling Research 

Center at Oklahoma State University. To conduct the experiments we needed a universal 

testing machine, a sensor capable of capturing the troughs profile and load cell to 

determine the load, and user interface to note the readings. 

 

Experimental Setup for Profile of Trough: 
 

The experimental setup consisted of equipment capable of holding, stretching the web 

and measuring the wavelength and amplitude of troughs. An Instron Universal Testing 

Machine was used to stretch the web; the maximum stroke of the machine was around 4 

inches. The web was supported between the hydraulic ram and the load frame of the 

Instron using two aluminum clamps. To have a good adherence, rough rubber strips were 

used in-between aluminum clamps and web, the rubber strips were adhered to the 

aluminum clamps using a strong adhesive. As the web was stretched, in-between the 

clamps, a tensile load developed. An external S-type load cell was calibrated to measure 

the low load levels applied to the web, as it was stretched at different strain levels. At low 

strain levels, these troughs appear whose average amplitude is of the order of 10-2 inches. 

A Laser sensor was used to capture the out-of-plane deformation associated with these 

troughs. A Keyence model LC-2100 laser sensor was used. The sensor is capable of 
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resolving a change in distance of 1/1000th of an inch, thus the out-of-plane deformation of 

the troughs can be captured using this sensor. The sensor ejects a laser beam of light, this 

beam after reaching the object gets reflected and return to the sensor. The distance 

between the object and sensor is measured using the time taken by reflected beam to 

reach the sensor.  Using this sensor we can measure the out-of-plane deformation of a 

point on the web. To get the profile of the trough across the width of the web, the 

Keyence sensor is forced to move in the cross machine direction on a linear bearing. The 

position of the Keyence sensor is measured using a Yo-Yo pot. A Yo-Yo pot transduces 

linear motion to a change in resistance. The variable resistance becomes a part of a ballast 

DC circuit where the voltage drop across the variable resistance is calibrated with respect 

to the linear motion that requires measurement. A data acquisition system consisting of a 

National Instruments SCB-68 A/O board, a computer, and a Lab-View software program 

were used to simultaneously record the output from the Keyence 2100 laser sensor and 

the Yo-Yo pot. In this way the trough amplitudes as a function of CMD location was 

recorded. 
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Figure3.1-Experiment Setup 
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Figure 3.2-Schematic Circuit Diagram 
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Material Characterization: 

The expression for wavelength and amplitude given by Cerda[] involve material 

properties such as Young’s Modulus and Poisson’s ratio. Therefore to get correct values 

of amplitude and wavelength it is required to have good knowledge of material 

properties. To prove or disprove Cerda’s claim we must know how these web properties 

change as the strain level enter the inelastic range. 

There were two tests conducted to determine the Young’s Modulus, the Tangent Modulus 

and Poisson’s ratio of a low density polyethylene web material, similar to that used by 

Cerda.  

 

Modulus Testing: 

The stretch test was performed on a 50’ long and 10’’ wide test specimen of LDPE. A 

load transducer was attached to the test specimen, and was elongated to a length of 

approximately 65’. For every one unit change in the load applied recorded from the 

transducer, the associated change in length or elongation of the specimen was noted. 

Strain and stress can be calculated using the elongation and load respectively. Stress and 

strain plotted on Y and X axes respectively gives stress-strain curve. The slope of stress 

and strain curve in proportional range of stress and strain is the Young’s Modulus.  

The tangent modulus at inelastic strain levels can be determined using the same test data.  
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Figure 3.3- 60’’ web stretched on the floor to run the stretch test 
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Figure 3.4-Stress-Strain Curve for a Polyethylene web material 
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Figure 3.5-Elastic Strain Vs Stress Showing Young’s Modulus (E) =21511 
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Figure 3.6-Tangent Modulus along the strain  

 

Measurement of Poisson’s Ratio: 

The Poisson’s ratio varies from 0.3 to 0.5 for the polyethylene material. According to the 

literature it seems that the Poisson’s ratio abruptly changes from 0.3 to 0.5 as soon as the 

material reaches it plasticity. We were interested in determining the Poisson’s ratio at 

each strain levels over the domain in strain where Young’s modulus and the Tangent 

modulus were measured. Poisson’s ratio is defined as the minus ratio of lateral strain and 

longitudinal strain. The measuring of longitudinal strain in the web was achieved by 

tracking the movement of ram on the Instron machine. The change in the ram position is 

the measure of change in the length of the web. Since the width of the web was only 6’’ 

inches it was hard to determine the change in width. Apart from this, the occurring of 

troughs would hinder the measurement process.  
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A photographic method was used to determine Poisons ratio. The web was marked with 

two pair of dots each apart by 1’’, one along MD and one along CMD, between the two 

web clamps on the Instron machine and a photograph was captured using a high 

resolution manual lens camera at various strain levels. A flat field macro lens was 

selected as its focus remains constant through the field of view, as for a typical lens focus 

varies, which would induce error in the Poisson’s ratio measurement. The distance 

between the dots was measured using drawing tools within Microsoft Paint.  

 

Since the distance between two pair of dots was known in terms of the number of pixels, 

the scaling factors for determining the actual distance from the number of pixels between 

the two points in the photographs could be defined as the ratio of the actual distance 

between the points and the number of pixels. Photographs at each strain level were 

captured and the change in distance between the two pair of dots in CMD and MD was 

measured. The ratio of change in the distances and original length and width would give 

the respective strains. Minus the ratio of the lateral strain and longitudinal strain would 

give us Poisson’s ratio. 

 

After the experiments were performed the Poisson’s ratio determined was greater than 

0.5 even when the material was in elastic range, which indicated that there was an error in 

the experiment.  The reason for getting such values for Poisson’s ratio was due to 

formation of troughs, even though the dots were marked at a place where the troughs 

formation just started or the point where the CMD tensile stresses vanished. The trough 

formation had a prominent effect on measurement of Poisson’s ratio.  
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Figure 3.7-Photograph of the two pair of dots at a strain of 0.0398 

 

In order to avoid this, a roller was placed such that it will touch the web right at the points 

where the dots are marked to prevent out-of-plane trough deformations. As the stroke of 

the Instron machine is 4’’ inches the roller cannot be in contact with the web at all the 

strains. Therefore the roller was mounted such a way that it could be moved by hand in 

the MD. Care was taken that the friction between the roller and the web will not hinder 

the lateral movement of the dots. The Poisson’s ratio was measured over large range of 

strain.  

 

The test was conducted twice to check the repeatability and accuracy of the experiment.  

The Poisson’s ratio at different strain levels from both the experiments were plotted on 

the graph shown below and a curve was fit so that a specific value could be determined 
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for Poisson’s ratio at all strain levels, using the expression from the curve fit. The curve 

fit equation was ‘ ( ) 2994.0008.481.3162.80 23 +γ+γ−γ=γν ’.                                   {28} 
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Figure 3.8-Graph of Poisson’s ratio VS strain  

 
 
 
Strain  Tangent Modulus ET Poisson’s ratio  

0.045 13745 psi .422 

0.054 9482 psi .436 

0.064 7500 psi .447 

0.079 5674 psi .457 

0.097 4705 psi .462 

0.135 2204 psi .463 

Table 3.1- Tangent Modulus and Poisson’s Ratio of LDPE Web 



 

 27 

 
CHAPTER IV 

 
EXPERIMENTS AND MODELLING 

 

 

Experiment to Determine the Trough Profile: 

A 6’’ wide 100 gauge polyethylene web was used in the study. The experiments were 

conducted on specimens with different aspect ratios (length/width) ranging from 4 to 5 in 

their undeformed state.  A web of fixed length was installed in aluminum clamps. The 

clamps were setup with high friction surfaces to prevent slippage of the web in the clamp 

in the MD and CMD directions. Care was exercised such that the two aluminum clamp 

surfaces lie in the same plane. This was done to prevent bending and torsional loads from 

influencing the result.  Also the web was fixed such that it was perfectly orthogonal to 

both the clamps. A servo hydraulic material testing system (Instron Model 8502) was 

used to precisely stretch the web. Two black lines were drawn on the web, where it enters 

the clamps at beginning of the experiment. If the lines remain straight after the 

experiment it was an indication that slippage did not occur during the experiment. 

 

The Finite Element Method was used to analyze the internal stresses in the web, fixed at 

both the ends, but subject to MD tension.  CMD tension resulted in at the near vicinity of 

clamps, and then CMD compressive stresses developed away from the clamps before the 

stresses died out. These regions of pockets of compressive CMD stresses were located 

about 10’’ away from the clamps irrespective of the test span length or aspect ratio of test 

specimen. The results of these analyses were that all test specimens were chosen with 
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lengths exceeding 20” such that CMD compressive stresses and hence instability would 

occur. 

 

Three sets of experiments were conducted and each set had different specimen length and 

an aspect ratio. To test the repeatability each specimen length was tested thrice. In the 

first set of experiments the specimen was chosen to be 24’’ long. This specimen was 

stretched to a strain level of 0.132. The troughs started appearing at a very low strain 

level of 0.005. The out-of-plane deformation of the trough was captured using a Keyence 

(Model 2100) laser sensor.  The second and third set of experiments, were conducted on 

test span lengths of 27’’ and 30’’. The troughs were formed at almost same strain level as 

formed on 24’’ test specimen. 

In order to confirm that these troughs were not formed due to the pocket of compressive 

stress, a 12’’ test specimen was tested, stretching it to a strain level of 0.254. There were 

no prominent troughs formed on the web even at highest strain level achieved. 

 

Modeling of Troughs Formation Using ABAQUS: 

Finite Element Modeling was used to model the trough formation witnessed in the 

laboratory. The FEA package ABAQUS Explicit was used to model the laboratory 

procedure. The web was modeled in a 3D modeling space as single section with shell 

elements. A structured mesh with quad dominated element shape was used. A ‘S4R’ 

element which is a 4 node shell element with reduced integration. The clamping of the 

web at the ends was modeled using the boundary condition. At one end, the web 

movement was constrained in 6 DOF (Ux, Uy, Uz, Rxy, Ryz and Rzx) and on the other end 
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the movement was constrained in 5 DOF(Uy, Uz, Rxy, Ryz and Rzx) leaving the web free to 

move in the direction of the applied displacement Ux. To model the stretching of the web 

displacements were enforced to the Ux DOF. For every strain level an enforced 

displacement was given as a boundary condition. The displacement was applied in steps 

using an amplitude-time curve.  

Figure 4.1- Depicting the modeling of the web and positions of ghost force 

 

The global seed of the mesh was chosen to be 0.05”; that is each element has an edge of 

length 0.05”.  The accuracy of the trough wavelength depended on this mesh size. The 

finer the mesh more provided greater the accuracy of the wavelength, but also increased 

the run time of the simulation. Thus this mesh size was chosen to optimize the run time of 

the simulation without jeopardizing the accuracy of the wavelength. 

 

Mathematically instability will not occur when the structure is subjected to tension. 

Commercial finite elements codes which are in use as of today cannot automatically 

simulate the behavior of the thin structures buckling in tension. To simulate the buckling 

behavior of the web in ABAQUS an out-of-plane load must be applied, called ghost 

force, in order to induce some instability in the structure.  In order to minimize the 

influence of the ghost load on amplitude and wavelength on troughs formed, it was 

applied in such a way that it vanishes after instability was induced in the structure. In 
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order to accomplish this, a second amplitude-time curve was used to vary the amplitude 

of the ghost force. Pairs of equally spaced positive and negative concentrated ghost forces 

were applied to web. The stresses induced due to these forces were negligible when 

compared to tensile stresses that resulted from stretching of the web. The nonlinear 

analysis occurred over 10 time solution steps. The enforced displacements which induced 

the strain desired in the simulation became maximum in time step 2. The ghost load 

became maximum in the time step 5 and vanishes in the time step 7. The out-of-plane 

deformations were examined in the time step 8 through 10 to determine if instability had 

occurred. 

                      

Figure 4.2- Showing the two Amplitude-time curves 

 

The simulations were run at several strain levels for the three different lengths web 

specimens tested (23”, 27” and 30”).  After completion of the simulation, the out-of-plane 

deformation (Uz) were examined and used to calculate the amplitude and wavelength of 

the troughs formed.  
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The simulation was run initially using ABAQUS Standard, but the amplitude of the 

troughs appeared to be dependent on the magnitude of ghost force. Then ABAQUS 

Explicit was used to run the simulation. The dependency of the amplitude of out-of-plane 

deformations due to the magnitude of ghost forces in case of ABAQUS Explicit is shown 

in the figure. Since there is no dependency it is assumed that the amplitudes of the out-of-

plane deformations computed are realistic.  

 

Figure 4.3-Depicting the influence of ghost force on Out-of-plane Deformation with time. 

 



 

 32 

CHAPTER V 
 

RESULTS and COMPARISIONS 

 

Experimental Results: 

The out-of-plane deformations for the three test span lengths at different strain levels 

were obtained.  The out-of-plane deformations for a particular strain level of 0.0165 on a 

24” long web is shown below. The results for other strain levels and web lengths are 

shown in the appendix.  
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Figure 5.1-Out-of-plane deformation of 24” test specimen at a strain of 0.016 
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Figure 5.2-Out-of-plane deformation of 24” test specimen at a strain of 0.132 
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Figure 5.3-Out-of-plane deformation of 27” test specimen at a strain of 0.1296 
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Figure 5.4-Out-of-plane deformation of 30” test specimen at a strain of 0.033 

 

To verify the repeatability of the experiment all the test specimens were tested for three 

times and the results where compared. 
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Figure 5.5-Out-of-plane deformations of three 24” test specimens at strain of 0.049 
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Observing the above out-of-plane deformation graphs, there is a general left to right 

decrease in the deformation, this could be due to the fact that the line of travel of the 

keyance sensor may not be perfectly parallel to the web when mounted on to the Instron 

machine. This may not affect the accuracy of the amplitude as the width of a typical 

trough is less than one half of an inch and the method of measuring the amplitude of a 

trough is independent of the positions of other trough. The actual deformation can be 

obtained by deducing the angle between the web plane and line of travel of the sensor 

using the linear regions on the either side of the buckled web. 

 

The amplitude and wavelengths from all the three test spans were obtained and the error 

was calculated.  
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Figure 5.6- Depicting measurement of Amplitude and Wavelength
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The table depicts the error in the amplitude and wavelength from three different test 

specimens of same length. 

Amplitudes of 24" Test span at different strain levels (P-P Values)  
        

Strain   I II III  Avg (in) Error(in) 
0.0165  0.0222 0.02075 0.02167  0.02154 0.000734 
0.033  0.0294 0.028 0.0278  0.0284 0.000872 

0.0495  0.0325 0.0331 0.0368  0.034133 0.002329 
0.066  0.0376 0.031 0.0391  0.0359 0.004309 

0.0825  0.0368 0.0281 0.0347  0.0332 0.00454 
0.099  0.04025 0.0268 0.0337  0.033583 0.006726 

0.1155  0.03712 0.031 0.0347  0.034273 0.003082 
0.132  0.0323 0.031 0.0304  0.031233 0.000971 

0.1485  0.0328 0.0295 0.0225  0.028267 0.00526 
Table 5.1-Average Amplitude and Error of three different test specimens of 24” long 

 
 
 

Amplitudes of 30" Test span at different strain levels (P-P Values) 
        
Strain  I II III  Avg (in) Error(in) 

0.0165  0.0164 0.0158 0.018  0.0167 0.0011 
0.033  0.0192 0.02 0.021  0.02 0.00090 

0.0495  0.0228 0.0208 0.0213  0.0216 0.0010 
0.066  0.0234 0.02 0.0236  0.022 0.002 

0.0826  0.021 0.017   0.019 0.0028 
0.099  0.0213 0.0148   0.0180 0.004 

0.1157  0.02 0.0126   0.0163 0.005 
0.132  0.019 0.012   0.0155 0.004 

Table 5.2-Average Amplitude and Error of three different test specimens of 30” long 
 
 
 

24 in Test Specimen 
         

Strain  I II III  Average(in)  Error(in) 
0.0165  0.744 0.776 0.759  0.759  0.016 
0.033  0.67 0.7003 0.7  0.69  0.017 

0.0495  0.618 0.639 0.574  0.61  0.033 
0.066  0.6005 0.5946 0.543  0.579  0.031 

0.0825  0.556 0.581 0.5257  0.554  0.027 
0.099  0.56525 0.5685 0.484  0.539  0.047 

0.1155  0.55825 0.519 0.517  0.531  0.023 
0.132  0.519 0.511 0.489  0.506  0.015 

0.1485  0.5485 0.4866 0.4447  0.493  0.052 
Table 5.3-Average Wavelength and Error of three different 24 in long test specimen 
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30 in Test Specimen 
         

Strain  I II III  Average(in)  Error(in) 
0.0165  0.892 0.964 0.999  0.951  0.0545 
0.033  0.822 0.8035 0.8145  0.8133  0.0093 

0.0495  0.7265 0.701 0.759  0.728  0.029 
0.066  0.6795 0.64625 0.6966  0.674  0.0256 

0.0826  0.669 0.673 0.6035  0.648  0.039 
0.099  0.623 0.6645 0.553  0.613  0.056 

0.1157  0.6105 0.6265 0.559  0.598  0.035 
0.132  0.61 0.624 0.5536  0.595  0.037 

Table 5.4-Average Wavelength and Error of three different 30 in long test specimens 

 

Simulation Results: 

The Simulation was run for all the three test specimens at different strain levels and the 

amplitude and wavelength were measured from the out-of-plane deformations obtained in 

the simulation.  

 

 

Figure 5.7-The contour plot of out-of-plane deformation of a 24” web at a strain of .0495 
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The out-of-plane deformation of each node was obtained using a probe value function 

available in Abaqus, these vales when plotted against the width gives us the trough 

profile.  
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Figure 5.8-Out-of-plane deformation of a 27” web from simulation at strain of .0555 

 

Comparisons:  

The values of amplitude and wavelength from experiments and ABAQUS simulation 

were compared against the closed form solution {24, 25} given by Cerda.  

 

The Poisson’s ratio needed to determine the amplitude and wavelengths of troughs from 

the closed form solution is obtained from the expression for Poisson’s ratio in-terms of 

strain ( ) 2994.0008.481.3162.80 23 ++−= γγγγν . The web was 6” wide with a thickness 

of 0.0012”.  
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Figure5.9-Wavelengths of the out-of-plane deformation in a 24 in test specimen 
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Figure 5.10-Wavelengths of the out-of-plane deformation in a 27 in test specimen 
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Figure 5.11-Wavelengths of the out-of-plane deformation in a 30 in test specimen 

 

 

Finally from the figure 4.9, 4.10, 4.11 the results for the wavelengths from experiments, 

simulations and closed form solution are agreeing. The closed form expression {24} for 

wavelength developed using energy theory, involves the material properties in CMD. The 

web under tension in MD has very small stresses in CMD, with no change in CMD 

material properties, thereby making the wavelength expression valid even in the inelastic 

region.  
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The graphs below are representing amplitudes for the three test spans from experiments, 

simulation and closed form expression. 
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Figure 5.12-Amplitudes of the out-of-plane deformation in a 24 in test specimen 
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Figure 5.13-Amplitude of Out-of-plane Deformation in 27” Test Specimen 
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Figure 5.14-Amplitudes of the out-of-plane deformation in a 30 in test specimen 

 

Since the expression for amplitude given by Cerda was agreeing neither with the 

Simulation results nor with the experiments, validation of Cerda’s expression can be 

questioned. It appeared that his expression for amplitude was an developed by integrating 

the transverse inextensibility constraint along both length and width. The results from 

experiments as well as simulations can only be obtained and compared at a particular 

position along the length. Therefore in order to obtain an expression for average 

amplitude along the width I developed an expression by integrating inextensibility 

condition along the width at X=L/2, where X is the variable representing along the length 

and L is the total length of the test specimen.   
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Substituting  
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and integrating the equation {29} will yields 
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The graphs below represents the amplitudes from experiments, simulation and from the 

new expression {31} developed  for the three different test spans. 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.05 0.1 0.15 0.2

Strain

A
m

p
lit

u
de

 (
in

) 
 x

Experiments

Simulation

Gotimukul {31}

 

Figure 5.15-Amplitudes of 24” Test Specimen 
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Figure 5.16-Amplitudes of 27” Test Specimen  
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Figure 5.17-Amplitudes of 30” Test Specimen  

 

From the above graphs we can concur that the new expression developed by averaging 

the out-of-plane deformation along the width alone is not in good agreement with the 
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results from experiments and simulation but it can be proclaimed that it’s better than that 

of Cerda’s expression.  

In order to see the effect of the inelastic material properties on the closed form expression 

for average amplitude along the width, it was expressed in stress and tangent modulus.  

The expression {31} for amplitude was modified by expressing strain in terms of 

Modulus and stress.  
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The tangent modulus (ET) used in developing the results was obtained from the Table 3.1 

Stress (σ) from the load obtained from load cell and Poisson’s ratio from the expression 

{28}. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2

Strain

A
m

pl
itu

de
 (

in
) 

  x

Experiments

Simulation

Gotimukul {31}

Cerda {25}

Gotimukul TM {32}

 

Figure 5.18-Amplitudes of 24” test specimen with inelastic material properties 
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It can be inferred from the graph that using the expression in terms of inelastic material 

properties would still predict the amplitudes to be of the same order which is 

contradicting the experimental and simulation results.
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CHAPTER V 

CONCLUSIONS 

 

Experiments were conducted on a polyethylene web to study the behavior of the troughs, 

at different strains both in linear and non linear range. The conclusions drawn from this 

research includes 

 

1. From the figures 5.8, 5.9, 5.10 it can be concluded that the closed form expression 

{24} for wavelength of the troughs claimed by Cerda is capable of predicting the 

wavelength for strain range of 0.0165 to 0.166. These strains proceed well into the 

plastic range. However the CMD modulus enters expression {24} and the stresses 

in this direction are small. 

 

2. From the figures 5.12 - 5.17 it appears that the two closed form expressions {24} 

and {31} for average amplitude of troughs developed by Cerda and Gotimukul 

are not in agreement with the experiment and simulation results. They do however 

help over estimate the amplitude of the troughs. Gotimukul overestimates by a 

factor of ~ 2.5 and Cerda overestimates by a factor of ~ 3.6. This conclusion is 

applicable only in the linear elastic range. 
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3. Neither of the two closed form solutions is accurate in predicting the amplitudes 

of the troughs in both linear as well as non linear region. 

 

 

Future Work: 

It has been shown in this research that wavelength of the troughs on a web can be 

predicted, but prediction of amplitudes in both elastic and inelastic region is still in the 

ambiguity. Further research can be done in developing a closed form solutions, not based 

on linear energy theory, which can predict the amplitudes of the trough.
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APPENDICES 

 

The experiments were conducted on different test spans at different strain levels, in the 

results chapter, the out of plane deformation at two strain levels were shown. The out of 

plane deformation of the test specimens at other strain levels are shown below.  
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Out-of-plane deformation of three different 24” test specimen at a strain of 0.066 
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Out-of-plane deformation of three different 24” test specimen at a strain of 0.0825 
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Out-of-plane deformation of three different 24” test specimen at a strain of 0.099 
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Out-of-plane deformation of three different 24” test specimen at a strain of 0.1155 
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Out-of-plane deformation of three different 24” test specimen at a strain of 0.132 
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Out-of-plane deformation of 27” test specimen at a strain of 0.0185 
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Out-of-plane deformation of 27” test specimen at a strain of 0.037 
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Out-of-plane deformation of 27” test specimen at a strain of 0.0555 
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Out-of-plane deformation of 27” test specimen at a strain of 0.074 
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Out-of-plane deformation of 27” test specimen at a strain of 0.0925 
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Out-of-plane deformation of 27” test specimen at a strain of 0.111 
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Out-of-plane deformation of 27” test specimen at a strain of 0.1296 
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Out-of-plane deformation of three 30” test specimen at a strain of 0.0165 
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Out-of-plane deformation of three 30” test specimen at a strain of 0.033 
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Out-of-plane deformation of three 30” test specimen at a strain of 0.0495 
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Out-of-plane deformation of two 30” test specimen at a strain of 0.066 
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Out-of-plane deformation of two 30” test specimen at a strain of 0.0826 
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Out-of-plane deformation of two 30” test specimen at a strain of 0.099 
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Out-of-plane deformation of two 30” test specimen at a strain of 0.1157 

 
 

 

The Out-of-plane deformations of the test specimen of different lengths from ABAQUS 

simulations at different strains are shown below. 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.00467 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.00834 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.0165 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.033 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.0495 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.066 
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Out-plane-deformation of a 24” test specimen from simulation at a strain of 0.0825 
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Out-plane-deformation of a 27” test specimen from simulation at a strain of 0.0185 
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Out-plane-deformation of a 27” test specimen from simulation at a strain of 0.037 
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Out-plane-deformation of a 27” test specimen from simulation at a strain of 0.055 
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Out-plane-deformation of a 27” test specimen from simulation at a strain of 0.0747 

 



 

 67 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 1 2 3 4 5 6

CMD Location (in)

O
ut

-o
f-

P
la

ne
 D

ef
or

m
at

io
n(

in
)

 
Out-plane-deformation of a 27” test specimen from simulation at a strain of 0.0925 
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Out-plane-deformation of a 30” test specimen from simulation at a strain of 0.033 
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Out-plane-deformation of a 30” test specimen from simulation at a strain of 0.0495 
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Out-plane-deformation of a 30” test specimen from simulation at a strain of 0.066 
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Out-plane-deformation of a 30” test specimen from simulation at a strain of 0.0825 
 
 
 
 

Stretch Test Data: 

Thickness(in) Width(in) Area(sqin)  Length(in)  
Tangent 

Modulus (psi) 
0.0012 10 0.012  600   

Load(pound) Delta L L Strain Area Stress  
1 2.375 600 0.00395833 0.012 83.33333  
2 4.5 600 0.0075 0.012 166.6667  
3 6.5625 600 0.0109375 0.012 250  
4 8.875 600 0.01479167 0.012 333.3333  
5 11.25 600 0.01875 0.012 416.6667  
6 13.9375 600 0.02322917 0.012 500  
7 16.9375 600 0.02822917 0.012 583.3333  

8.3 18.31 600 0.03051667 0.012 691.6667  
9 23.4375 600 0.0390625 0.012 750  
10 27.075 600 0.045125 0.012 833.3333 9482.7586 

11.1 32.875 600 0.05479167 0.012 925 7500 
12 38.875 600 0.06479167 0.012 1000 5673.7589 
13 47.6875 600 0.07947917 0.012 1083.333 4705.8824 
14 58.3125 600 0.0971875 0.012 1166.667 2203.8567 
15 81 600 0.135 0.012 1250 1967.2131 

16.2 111.5 600 0.18583333 0.012 1350 1259.8425 
17 143.25 600 0.23875 0.012 1416.667 2040.8163 
18 167.75 600 0.27958333 0.012 1500 4297.5207 

19.3 182.875 600 0.30479167 0.012 1608.333 5276.8284 
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Poisson’s Ratio Data: 

Strain Poisson's Ratio Strain 
Poisson's 

Ratio 
4.35E-03 0.33  6.52E-02 0.483 
4.39E-03 0.329  6.90E-02 0.4734 
8.69E-03 0.33  7.41E-02 0.457 
8.75E-03 0.329  7.40E-02 0.4638 
1.30E-02 0.346  8.26E-02 0.445 
1.30E-02 0.33  9.00E-02 0.479 
1.74E-02 0.395  9.89E-02 0.472 
2.17E-02 0.39  1.02E-01 0.451 
2.61E-02 0.385  1.10E-01 0.449 
2.70E-02 0.329  1.12E-01 0.454 
3.04E-02 0.378  1.20E-01 0.452 
3.48E-02 0.38  1.21E-01 0.441 
3.98E-02 0.395  1.33E-01 0.448 
4.38E-02 0.39  1.34E-01 0.452 
4.82E-02 0.4372  1.47E-01 0.467 
5.20E-02 0.467  1.47E-01 0.466 
5.22E-02 0.443  1.59E-01 0.4779 
5.72E-02 0.424  1.60E-01 0.46 
6.09E-02 0.4574  1.76E-01 0.4683 
6.51E-02 0.4521  1.77E-01 0.44 
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Simulation of troughs formation was done using ABAQUS Explicit. The out-of-
plane deformations from both experiments and simulations were obtained at 
different strain levels for different specimen lengths. Amplitude and wavelength 
were inferred from the out-of-plane deformations. These amplitudes and 
wavelengths were compared with the closed form expressions. From the 
comparisons it was concluded that the wavelength expression was accurate in 
predicting the wavelengths of the troughs in the elastic and in the inelastic range 
of the material. The amplitude expressions given by Cerda or developed by 
Gotimukul are not accurate in predicting the amplitude of the troughs. However 
these expressions are aids for overestimating the amplitudes of the troughs. 

 
 
 
 


