
PARAMETRIC GEOMETRY CREATION

 METHODOLOGY AND UTILITY FOR

 THE STARS CFD ANALYSIS

 PACKAGE

By

 ROBERT JAMES FISCHER

 Bachelor of Science

 Oklahoma State University

 Stillwater, Oklahoma

 2004

Submitted to the Faculty
 of the Graduate College of
 Oklahoma State University

 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 July, 2007

ii

PARAMETRIC GEOMETRY CREATION

 METHODOLOGY AND UTILITY FOR

 THE STARS CFD ANALYSIS

 PACKAGE

Thesis Approved:

________________Dr. Andrew S. Arena, Jr.____________
 Thesis Advisor

______________Dr. Ronald D. Delahoussaye___________

_________________Dr. Jamey D. Jacob_______________

_________________Dr. A. Gordon Emslie_____________
 Dean of the Graduate College

iii

ACKNOWLEDGEMENTS

 I would like to thank my parents and family for all of their support during my

years of undergraduate and graduate study. They have always encouraged me to pursue

my educational goals and interests and have inspired me to achieve my ambitions. Their

support has been a vital component of my academic progress.

 I am also very appreciative of the support and guidance provided by my advisor,

Dr. Arena. He has been one of the best and most influential professors that I have

encountered and has provided much inspiration and encouragement to many students,

including myself. I am thankful for the opportunity that he has given me to pursue

research in the CASE Lab.

 I would like to thank those who have worked in the CASE Lab, both previously

and presently, for providing me with the knowledge and tools to complete my research

objectives. I would specifically like to thank Charles O’Neill and Nic Moffitt. They

helped to train me in the use of the CASE Lab analysis tools and have provided much

insight and support during my time in the CASE Lab.

 Finally, I would like to thank the NASA Space Grant for providing funding in

support of this research effort.

iv

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ..1

 1.1 Background ..1
 1.2 STARS CFD Solution Procedure Overview..2
 1.3 Objective ..4

2 LITERATURE REVIEW ...7

2.1 Geometry Utility Approach ...7
 2.2 Selection of Graphics Data Exchange Format ...9
 2.2.1 IGES..9
 2.2.2 STEP ...11
 2.2.3 Additional Graphics Data Exchange Formats...15
 2.3 Surface Tessellation ...16
 2.4 Final Selection of Exchange Format..20

3 METHODOLOGY ...22

3.1 Implicit and Piecewise Implicit Surface Creation ...22
 3.2 Parametric Curve and Surface Creation...26
 3.2.1 Monomial Interpolation Method...28
 3.2.2 Bezier Form for Curves and Surfaces...33
 3.2.3 B-Splines (Basis-Splines) ...43
 3.2.4 Rational Curve Specification ..53
 3.2.5 Tensor Product Surfaces (Non-Uniform Rational B-Spline Surfaces)58
 3.2.6 Three and Five-Sided Surface Patches ...63
 3.3 Converter Program Structure ...65
 3.3.1 Geometry Import...66
 3.3.2 Entity Processing and STARS File Creation ..71
 3.3.3 User Input and Graphical User Interface ..73

4 RESULTS AND EXAMPLES ...76

4.1 Verification Results ...76
 4.2 Test Cases ..78
 4.2.1 Test Case 1: YF-22 ..78

v

Chapter Page

 4.2.2 Test Case 2: OSU Design/Build/Fly Aircraft ..80
 4.2.3 Test Case 3: SBC-UAV ...83
 4.2.4 Test Case 4: GHV ..84

5 SUMMARY AND FUTURE DEVELOPMENT ...85

5.1 Summary..85
 5.2 Future Development...86

BIBLIOGRAPHY..87

APPENDIX A: IGES GLOBAL PARAMETERS ...90

APPENDIX B: EXAMPLE IGES ENTITY DEFINITION ...92

vi

LIST OF FIGURES

Figure Page

Figure 1: Surface File (sur file) Structure ...2
Figure 2: Background File (bac file) Structure ...4
Figure 3: Example STEP Application Protocols (APs) (figure from STEP Application
 Handbook [2006])...13
Figure 4: Example STEP file structure (figure from STEP Application Handbook
 [2006])...15
Figure 5: Example faceted surface representations of 3-D objects...................................17
Figure 6. Example triangular elements subdividing a surface patch (figure from
 Hagan [1992]) ...24
Figure 7: Example contour fit through linear interpolation of element vertices...............25
Figure 8: Example parametric surface patch ..28
Figure 9: Example of the effects of slight coefficient perturbations on monomial
 (light gray) and Bezier (black) formats [Farin, 1993].....................................31
Figure 10: Exaggerated example of the effects of round-off error on surface patch
 continuity (figure from Farin [1993]) ...32
Figure 11: Example discontinuity due to terminal/start point adjustment........................33
Figure 12: Example second degree curve and contributing basis functions36
Figure 13: Example third degree curve (with movement of terminal control point
 shown on the right) ...36
Figure 14: Example application of de Casteljau method for a seventh degree
 Bernstein curve ...38
Figure 15: Example triangular array of successive control points for de Casteljau
 method...39
Figure 16: Example knot sequence with piecewise Bezier segments (figure from
 Farin [1993]) ...41
Figure 17: Piecewise Bezier curve with 1C continuity ..42
Figure 18: Effect of increasing knot multiplicity on an individual basis function (left
 plot is with complete degree 1 multiplicity, right plot is with a multiplicity
 of two for t = 4)...47
Figure 19: Example multiplicity effects for second degree basis functions
 [Piegl, 1995]..48
Figure 20: Example B-spline curves and basis functions ...50
Figure 21: Coincident internal de Boor points in B-spline ...51
Figure 22: Effects of B-spline degree elevation ...52
Figure 23: De Boor algorithm for B-splines (figure from Hoschek [1993])53
Figure 24: Projection mapping of a point in E3 ..56

vii

Figure Page

Figure 25: Example weighted representation of conic entity from homogeneous
 projection ..56
Figure 26: Example control point weight modification (at point P2)................................57
Figure 27: Tensor product surface patch ..59
Figure 28: Tensor product surface patch ..61
Figure 29: Effects of surface degree elevation [Piegl, 1995] (biquadratic surface
 p = 3 on left; biquartic surface p = 4 on right) ...62
Figure 30: Example NURBS surfaces ..62
Figure 31: Triangular surface patch [Hoschek, 1993] ..64
Figure 32: Five-sided surface patch..65
Figure 33: General converter structure ...66
Figure 34: IGES file structure...67
Figure 35: Converter User Interface (utilizing GLUI [Rademacher, 1999])74
Figure 36: Line Number Display (left) and Surface Spline Display (right)75
Figure 37: Source Display ..75
Figure 38: Example Surface Used for Verification ..77
Figure 39: Example Surface Error Plot (shaded areas represent error variation across
 the surface)..77
Figure 40: Pro/Engineer IGES YF-22...78
Figure 41: YF-22 Surface Grid ...79
Figure 42: Mach Distribution at M = 0.3..79
Figure 43: 2007 Orange Team surface mesh ..80
Figure 44: Example 2007 Orange Team Mach solution plot..81
Figure 45: Original 2007 Black Team surface mesh ..81
Figure 46: 2007 Black Team surface mesh (low wing placement)82
Figure 47: 2007 Black Team surface mesh (forward wing, reduced canard span)...........82
Figure 48: 2007 Black Team Mach solution plot ...83
Figure 49: SBC-UAV surface mesh ...83
Figure 50: GHV (Model 1) surface mesh ..84
Figure 51: GHV (Model 2) surface mesh ..84

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Computational Fluid Dynamics (CFD) analysis tools offer an important and vital

design component for many aerospace applications. As a result of the implementation of

modern CFD tools and techniques, many important flight characteristics of new and

experimental aircraft may be determined and examined early in the design process. The

use of CFD methodology has resulted in faster, more cost efficient design evaluation and

a safer, more accurate design process. Many flight characteristics that previously

required expensive and time-consuming experimental testing can now be determined

through the use of CFD. The use of CFD software also enables a designer to easily make

and analyze changes to a particular aircraft component or configuration and thus iterate

through many design ranges. Such a procedure may be prohibitive when relying solely

on physical testing.

 Different CFD software applications have been developed and implemented over

the years, with differing design goals and solution methodologies for each. The STARS

analysis package is a design and analysis tool which incorporates aeroelastic, structural,

and CFD applications. It was developed at NASA’s Dryden Flight Research Center.

One unique element of the STARS package is the non-inertial flow solver developed by

Cowan [2003]. This application, Euler3D, can solve compressible, inviscid flow

problems through the use of the unsteady Euler equations.

2

1.2 STARS CFD Solution Procedure Overview

The use of Euler3D for test case simulation is a relatively straightforward process.

Several files must first be generated by the user in order to run a steady or unsteady flow

simulation. Some of these files include a surface geometry file, background file,

boundary conditions file, flow properties file, and a dynamics file (if needed).

The first step in the process is the creation of a surface mesh for all model

geometry entities. This mesh forms the defining basis for the volume grid generated

later. The surface mesh generator requires data from a geometry file (“sur” file) and a

background file (“bac” file). The surface file contains all of the information needed to

describe the test case geometry (i.e. surfaces, boundary curves, and surface normal

directions). An example of the basic content and structure of the sur file is given in

Figure 1.

$ CONVERTED SURFACE ENTITY: AIRCRAFT
265 96
$ Curve Components
1 1
 20
 73.5556 12.8269 13.4734
 73.8236 12.7994 13.4941

… … …
77.8754 12.8609 13.5292
78.1453 12.8752 13.5257

2 1
 20

 78.6921 12.9178 13.5224
 78.4155 12.9223 13.5031

… … …
… … …
… … …

$ Surface Components
1 1
 2 2
 78.7336 13.6622 13.0815
 78.8471 12.7957 13.5838

… … …
… … …
… … …

$ Mesh Generation
265 96

$ Segments in Curves
1 1 1
2 2 1

… … …
$ Regions on Surfaces
1 1 1

5
3 4 -1 5 -14

3 3 1
25
-31 6 149 …

… … …
… … …

Figure 1: Surface File (sur file) Structure

Header Section

Boundary Curve Definitions

Surface Definitions and Orientation

Curve / Surface Parameters

Curve Sub-segments

Surface Region Definitions

3

The background file contains parameters which are used to define the element

distribution throughout the flow domain. With respect to the initial surface meshing, this

file can be thought of as specifying the “tightness” of the mesh in different surface

regions. This is accomplished by allowing the user to create “sources”. The grid spacing

may be influenced locally by defining the spacing for each source (specified by an inner

radius spacing and an outer radius spacing). The sources may be defined as point, line, or

triangle entities. The placement (and size) of these sources is a very important

consideration when beginning the gridding process. The number and distribution of

elements can have a dramatic impact on both solution accuracy and computational time.

It is desirable to include enough elements to completely capture all flow effects, however

a compromise must be reached to ensure that a realistic solution runtime can be achieved.

Therefore, the user must be sure to specify sufficient source definitions in all important

regions on the geometry and in the flow domain. The background file is also used to

specify the background grid spacing. An example of the background file structure is

given in Figure 2.

The remaining two files required to complete a general test case solution are the

boundary conditions file (bco file) and the flow properties file (con file). The boundary

conditions file may be used to specify the surface and curve types used in the sur file.

The surfaces may be defined as a solid wall, symmetry surface, or far field. The bac file

defines singularity conditions for each curve (which could include all curve points or end

points). The con file is used to define all necessary flow and solution properties. Mach

number, alpha, beta, number of solution steps, and dissipation are a few of the possible

parameters that can be specified in this file.

4

$ Bac File created from AIRCRAFT.sur
8 6 2 22 16
1 505.006 -484.653 -491.625
1 0 0 30
0 1 0 30
0 0 1 30
2 505.006 490.222 -491.625
1 0 0 30

… … … …
… … … …
… … … …

1 1 2 4 8
2 1 2 8 6
3 1 6 8 5
4 2 3 4 7
5 2 7 4 8
6 2 7 8 6

$ Point Source Data
$ Point Source 1: Fuselage Nose

-15.9 0.014 0 0.2 1 3
… … … … … …
… … … … … …

$ Line Source Data
$ Line Source 1: Canard, Port, LE

-13.6455 -2.4 2.1 0.25 0.5 1.5
-13.6455 -2.4 9.5 0.25 0.5 1.5

… … … … … …
… … … … … …

$ Triangle Source Data
$ Triangle Source 1: Canard, Port, Outer panel

-13.65 -2.4 2.1 0.5 1 3
-13.65 -2.4 9 0.5 1 3

-5.65354 -3.2 9 0.5 1 3
… … … … … …
… … … … … …

Figure 2: Background File (bac file) Structure

 The surface mesh that is generated from the sur and bac files is used to create a

volume grid of elements (which can contain up to several million elements). The

resulting file is then reordered with an intermediate program (makeg3d) at which time the

boundary conditions are applied. This file is then used with the con file as input for the

Euler3D solver. Several solution files are generated by Euler3D. One of these is a loads

file (lds file) which contains the calculated X, Y, and Z forces and moments at each

solution step.

1.3 Objective

 The creation of test case geometry files (including surface files, background files,

and boundary condition files) can be quite tedious for complex geometries. One of the

Header/Source Specification

Background Grid Point
Definition (and Spacing)

Tetrahedral Element and
Vertex Definition

Point Source Specification

Line Source Specification

Triangle Source Specification

5

most time consuming steps in the preparation of a STARS project is the generation of the

primary geometry file, the “surface” file. As noted by Babcock [2004], the generation of

the geometry model may require more time than the CFD analysis. An aircraft CFD

model may require several hundred complex surfaces and curves to define. A model of

sufficient complexity may even be prohibitive in certain cases if the designer is required

to input the entire model manually. As such, the user may be required to resort to

oversimplified representations of the model geometry which may not accurately capture

all of the desired flow effects. A further difficulty lies in the debugging of manually

created geometry files. A single complex surface may require many hundred coordinate

values to define. If the model contains dozens, or hundreds of surfaces, much time can

be devoted to locating errors in a model that continually fails in the mesh or grid

generation process.

 Also, the geometry files (including the surface file, background file, and boundary

condition file) can require much time and practice for a new, inexperienced user to

become proficient with. This may limit the ability of new users and restrict them to

relatively simple test case models. The time that a new user spends creating these files is

already significant, therefore a complex aircraft model would most likely be a very time

consuming task for them.

 In light of these observations, it has become desirable to develop a tool which

could increase the efficiency of this step in the STARS solution process. An application

which could allow the user to easily import or create geometry files from existing

computer aided design (CAD) software could greatly reduce the amount of project time

dedicated to this task and allow the user to focus his/her effort on the flow solution and

6

its evaluation. Such a tool could also allow the user to rapidly create many different

geometry models representing different flight configurations or modifications to the

geometry. This would make an iterative design study possible for many different design

parameters even in the case of an extremely complex aircraft geometry.

 The goal of the current effort is to investigate the implementation of such a tool

and to develop an application to complete the desired tasks. The application should be

user friendly and capable of accurately and efficiently generating all of the necessary

geometry files to complete a general STARS CFD analysis. The application should be

capable of generating the sur, bac, and bco files. It is also desirable to develop a user

interface which will facilitate the use of the application by a wide range of users. If

designed and implemented properly, the application should significantly reduce the time

required to generate the supporting files for a STARS CFD project.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Geometry Utility Approach

The approach for the geometry file generation utility (conversion program) was

initially investigated as a choice between two different methods: the development of a

completely independent, self-standing 3-D CAD program with an integrated user

interface and conversion utility, and the development of a program which could convert

existing CAD geometry generated in a commercial software package with a

corresponding user interface. The decision was made early on in the process to utilize the

latter method, and the justification for this decision follows.

• First, it was desired to be able to easily create STARS files for geometries

generated and received from third party sources. In these cases, the party

generating the geometry may not have access to a specialized STARS CAD

program or may not want to recreate their geometry files.

• The creation of a program which could accept a standard commercial CAD format

would allow the easy transfer of files between users and would also allow the use

of the same CAD files for STARS analyses as were used for other analysis/design

programs. An example of this could be a simple aircraft geometry created in

Pro/Engineer. A user may desire to create a CAD model in Pro/Engineer in order

to utilize the built-in structural, thermal, or machining applications. A post-CAD

8

converter would allow the user to utilize this existing model for a complete

STARS analysis.

• A new 3-D CAD program would require a user to learn and become familiar with

a new modeling program. Many designers already have experience with existing

CAD software packages and are able to rapidly and easily create their desired

geometry with that software. A requirement to utilize a new modeler would slow

down the design process and would add unnecessary complications. This may

result in fewer users utilizing the converter and in users creating representations

that do not exactly match their existing geometry (due to differences in modeling

tools).

• The use of a post-CAD converter program would allow the easy creation of

STARS files from any existing (legacy) geometries. This would avoid the

necessity of recreating several existing geometries which are desired for STARS

analyses.

• Finally, the many commercial CAD programs which exist have several complex

and useful design tools and features which would require extensive programming

development and refinement in order to usefully employ. Most of these have

required years of development and would have greatly extended the development

requirements of this converter program. For example, Farin [1993] describes the

development of basic CAD software as requiring multiple authors and several

years of development time. It would not have been efficient to attempt to recreate

the level of design quality of a commercial package and still remain focused on

the overall goal of the creation of STARS geometry files in a timely manner.

9

2.2 Selection of Graphics Data Exchange Format

Because of the reasons listed above, the decision was made to develop a program

which could accept geometry files from existing CAD software and convert them into

files necessary for a STARS analysis. It was also decided that this approach, when

combined with a well developed user interface (and other support programs), would

allow even inexperienced users to use the STARS software with relatively little effort and

would greatly reduce the time needed to develop a working knowledge of the STARS

analysis process.

2.2.1 IGES

IGES Background

Since the development of early CAD software packages in the late 1960s, several

different standards for the exchange of geometric data have been developed. In the late

1970s an effort was made to develop a standard, unified exchange format [Piegl, 1995].

This would allow designers to more easily create and transfer data among a wide variety

of CAD and analysis programs. The resulting format was developed into the first

national standard for CAD in 1979, which was collectively called the Initial Graphics

Exchange Specifications, or IGES [The Initial Graphics Exchange Specification (IGES),

1999]. IGES was initially created to allow designers to transfer two-dimensional

engineering drawings between non-common (dissimilar) systems. However, the

specification was quickly expanded to include all entities needed for three dimensional

models. IGES has also been expanded to include the translation and communication of

10

FEA models (to include boundary condition specification and unique entities such as

loads and connectivity).

IGES has been created and maintained as an open standard, which is a key

element to its broad use and success. Users create and employ new entities which are

then reviewed and often incorporated into the official IGES ANSI standard. This has led

to a continual improvement and modernization of the standard by the end user.

IGES Format

IGES was developed as an entity based standard. Fundamental entities necessary

for CAD were initially developed, and entities of increasing complexity and versatility

were gradually added to this set [The Initial Graphics Exchange Specification (IGES)

1999, Piegl 1995]. The entities include both geometric and nongeometric components.

The geometric entities include all required items to fully define a physical body (such as

points, arcs, splines, surfaces, etc.). In some cases there are multiple methods for

defining a geometric property. These parallel the development (and implementation) of

computer aided design methods. Examples include rational Bezier splines and surfaces

(as created and defined by Bezier [1972], and outlined by Boehm [1987] and Joe [1989]),

non-uniform rational Bezier surfaces (NURBS) (using evaluation and specification

methods as outlined by Piegl [1995]), and power based surface definition [Farin 1993,

Hoschek 1993]. The range of entities available for specifying a property makes IGES a

versatile standard and allows users to employ a specification method which will be

optimal for their particular case but will also be transferable to other systems.

Nongeometric entities are included for increased detail in shape specification as

well as items necessary for the generation of engineering drawings and finite element

11

models. Several of these nongeometric entities allow (and are necessary for) precise

surface definitions. An example would be a grouping of boundary splines, a NURBS

surface, and all related references to other groups of trimming, translation, rotation, and

scaling entities for the surface. This method allows for efficient data retrieval in the file

and results in a decrease in redundant geometry definitions that are present in other

standards. Several nongeometric entites have been incorporated to describe specific

attributes and properties of both the individual and grouped geometric entities and the

complete physical elements of the model as well.

The IGES data files are composed of ASCII text which can be easily created and

translated by sending and receiving systems.

2.2.2 STEP

 STEP Background

In 1984 the ISO (International Organization for Standardization) began to develop

a new data exchange format that was meant to be the successor of the IGES standard.

This standard became officially titled ISO 10303, but the acronym STEP (STandard for

the Exchange of Product model data) has become the common title for the standard

[STEP Application Handbook, 2006]. The goals for the development of STEP differed

from those of IGES. While IGES was developed as primarily a geometric data transfer

tool, STEP was developed as a means to transfer a very broad range of product data

(encompassing the entire life cycle of the product / part). This data includes not only

design elements, but many other elements such as machining, disposal, and maintenance

data [Piegl, 1995].

12

STEP was developed as a modular standard. Instead of the creation of one set of

standard data transfer types which each must be approved, tested, then added to the set

(an example of this structure is the entity based IGES standard), STEP was created to

encompass many subsets of standards for data transfer. These subsets are known as

Application Protocols (or AP’s) [STEP Application Handbook, 2006]. Therefore, STEP

may be thought of as an umbrella for many approved and uniformly formatted standards

instead of one single large standard. Each Application Protocol in STEP has been

developed for a specific kind of product data either by the ISO or by third party

organizations. The APs are submitted to the appropriate review committees and are

evaluated and tested for completeness and usefulness (this process follows several stages

in the ISO Standardization process, see STEP Application Handbook [2006]). Currently,

twenty-two APs have been approved and implemented in the STEP file structure. A

listing of some example APs is given in Figure 3. The current APs provide enough

entities to make STEP a useful tool for engineering data transfer, however many believe

that the full capabilities of STEP have not yet been realized. Many more Application

Protocols are currently under review / development and it is expected that the total

number of APs will eventually reach into the hundreds.

13

Figure 3: Example STEP Application Protocols (APs) (figure from STEP Application
Handbook [2006])

The first version of STEP was implemented in 1994 (approximately ten years

after the initial development began). Since that time, a second major release has occurred

to update the standard (in 2002). One of the criticisms of STEP is the lengthy process

required for the development and approval of APs. This has possibly led to a slower

acceptance for STEP and has resulted in a slow development and implementation of the

standard (other methods for exchanging some of the non-geometric product life cycle

data have been developed at a much faster rate and have thus gained greater acceptance

and usage).

14

STEP Format

The specific format and information included in a STEP data file is individually

defined by each Application Protocol. Despite some variations, the overall structure for a

given file follows the same general format. There are two primary sections: a header

section and a data section. The header section contains optional items (which may

describe the authoring system and other descriptory information) and all necessary items

to read and translate the file by a receiving system (this includes entities such as the

context information of the data section entries, the schema for the entries, and population

groupings of the entries).

The data section is composed of “instances” which are specific for the AP

currently employed (the properties of the instances are specified in the header definition

section). The instances may represent either complex entity data types or single entity

data types. Single entity data types are used when possible and contain a list of all

necessary attributes for the instance listed in a formal predefined order (all attributes

needed are listed under the name of that particular instance). Complex entity data types

are necessary for some features that require multiple grouped entities (these may be either

mapped locally (to internal attributes) or externally. One feature in the data section that

is different from other standards (such as IGES) is that the attributes in STEP contain

only non-derivable terms (for instance, derivative terms may not be given in an attribute

list for an entity). A short example of a STEP file illustrating the basic format of the two

sections is shown in Figure 4.

15

Figure 4: Example STEP file structure (figure from STEP Application Handbook [2006])

As with the IGES standard, the STEP data files are created with ACII text which

helps to facilitate their readability as well as translation by receiving systems.

2.2.3 Additional Graphics Data Exchange Formats

In addition to IGES and STEP, several other data exchange standards were also

examined for their potential use. The standards examined were chosen because of their

current employment in various engineering and CAD fields. Some of the standards that

were under consideration are listed below.

• VDA – QMS (Quality Management System): Developed primarily as a means for

transferring surface model data.

Example header
section

Example data
section with single
entity data types

16

• ACIS: 3-D model format developed by the Spatial Corporation and released in

1989 (latest version in 2006). Openly published until year 2000 release.

• VRML (Virtual Reality Markup Language): Developed to transfer data (points

and edges) for polygon entities (specifically created for transferring models for

various geometry viewer applications)

• Wavefront: Solid object file

• SET

While the data exchange formats in this list generally represent adequate methods

to accurately transfer model data, they were not considered further after the initial

investigation. In most cases, a primary reason for this rejection was their limited usage in

current CAD software (compared to other standards). A standard which most users were

familiar with and may have previous experience with would be preferable. Other reasons

for their rejection at this point include inefficient geometry translation and storage (due to

lack of optimal entity types) [Hagen, 1992], inability to transfer data between different

CAD programs, and limited and/or poor documentation.

2.3 Surface Tessellation

 In addition to utilizing standards which transfer complete geometric definitions of

the model components, methods for transferring simplified tessellated versions of the

model were also examined. Many CAD software packages have methods for creating

and exporting faceted surface representations of solid objects. These methods create

nodes on the various surface entities and use these to define the vertices of planar surface

patches. Most commonly, the surface patches are created as triangular facets (see

17

Floriani [1987]), but it is possible to define more complex facets with an increasing

number of vertices (but generating systems rarely utilize faces with more than three

vertices). Examples of faceted models are shown in Figure 5.

Figure 5: Example faceted surface representations of 3-D objects.

Vertex placement is dictated by the curvature of the surface being represented.

Therefore, it is not uncommon to create very large, skewed facets (described in

tessellation surfacing methods by Hoschek [1993]) as seen in Figure 5. The tessellation

transfer format which was examined was called STL (or the Standard Tessellation

Language). This is the most common format for transferring faceted surface information

in CAD programs. The file generated is a simple ASCII listing of all facets for a chosen

solid part. The basic STL format is given below:

solid loop identifier
begin global facet loop

facet normal vector x y z
first vertex node (x11 y12 z13)

 second vertex node (x21 y22 z23)
 third vertex node (x31 y32 z33)

facet loop
end solid definition

18

It is not uncommon for the ASCII STL files to become excessively large.

Therefore, the facet vertex listing is not a very efficient means of describing and storing

surface definitions. A binary STL format also has been developed in order to reduce

memory requirements, however the files still remain very large compared to the entity

based standards such as IGES and STEP.

While the generated file is easy to interpret by receiving systems, there are several

disadvantages to using faceted surface definitions as a primary means to transfer solids

geometry data. First, it is no longer possible to increase the surface resolution (or

definition) of an object from the faceted representation. The continuous curvatures have

been replaced by flat surfaces with discontinuities between them. Therefore, part of the

surface definitions will always be lost and cannot be regenerated from this representation.

Global surface definition items (such as boundaries) are also lost when utilizing this

format; therefore it is not possible to easily group the facet elements into a single surface

definition. Defining each facet as an individual surface entity was considered, but this

would not be practical for the desired usage in STARS (the geometry file would become

very large and virtually unreadable/editable by the user). Because the file only consists

of non-grouped vertex listings, the groupings and placement of individual surfaces would

be difficult for the user to interpret.

Testing was carried out to determine if the tessellation nodes (which are created

on the actual surfaces and surface boundaries of the model) could be easily grouped into

elements which could be used to create surface definitions. This was determined to be an

unsatisfactory approach because of the non-uniformity of the point definitions

(placements). Using only the STL generated tessellation nodes to define a ‘U-V’ grid of

19

surface patches can result in a very distorted surface definition with ‘waves’ in the

resulting future surface representations/interpretations (due to the forced fitting of splines

to these nodes). Although the creation of new nodes by means of

interpolation/extrapolation between the STL nodes could be carried out in order to create

a uniform grid of surface patches, this was not considered because of the inaccuracies and

inconsistencies with the actual surface model that would result. The large spacing and

very skewed elements that can exist in a faceted representation [Hoschek, 1993] made the

possibility of errors in interpolated nodes very likely and the effects pronounced. A

secondary, less severe problem encountered when attempting to use the STL nodes to

generate surface grids was the unstructured nature of the vertex listing. Surface facet

definitions are not necessarily created in an order corresponding to a single surface.

Therefore, in complex models, linking the nodes to a particular desired surface entity can

become complex and a source of errors.

Although the use of model representation methods such as surface tessellation

may seem to be a faster, more efficient approach, the negative factors previously

discussed make their use impractical for application in the creation of STARS files. In

summary, a faceted representation was not chosen due to these factors:

• Use of discontinuous, flat surface ‘tiles’ would diminish further refinement and

definition of the geometry when generating surface meshes

• Continuous, smooth surface curvature would be replaced by flat tiles with non-

tangent ‘corners’ between them (which could, for example, result in shocks at

each facet-facet interface)

• Use of STL nodes alone cannot create satisfactory ‘U-V’ surface grids

20

• Interpolated points for ‘U-V’ surface grids would result in inaccurate node

placement

• STL geometry representations tend to be inefficient for complex CAD models

2.4 Final Selection of Exchange Format

The initial decision was whether to use one of the existing 3-D model exchange

standards or utilize the data from a faceted representation to create an accurate model. As

discussed in the previous section, several factors exist which make the use of a faceted

model representation impractical for use in the current application for STARS. After an

initial investigation, it was also determined that the creation of a new model using the

data from the faceted representation would be inefficient compared to the utilization of an

existing graphics standard. Therefore, the use of a faceted geometry file was not

considered further.

Several standards for graphics data exchange were examined. Of the seven

transfer methods previously discussed, only two warranted serious consideration. The

other five standards/methods (VDA – QMS, ACIS, VRML, Wavefront, and SET)

exhibited narrow usage/employment and possessed various other shortcomings which

diminished their viability.

The two standards which were further considered for geometry transfer were

IGES (Initial Graphics Exchange Specifications) and STEP (STandard for the Exchange

of Product model data). These standards share many positive attributes. Both are widely

used in many engineering applications, are efficient and effective means for translating

and storing geometry data, and have good public documentation. After a careful

21

investigation of both standards (as discussed in previous sections), IGES was chosen as

the standard to use for the current STARS application. The reasons for choosing IGES

over STEP are outlined below:

• Although both are commonly used, IGES has been used more frequently and

many people have more experience with this standard (and have stored many of

their models with this format)

• IGES files tend to be more efficient for creating larger, more complex geometry

files (which decreases the STARS conversion time)

• The format of the IGES file enables easier readability and interpretation

• Many of the additional translation features available in STEP (such as

manufacturing and disposal data) are not needed for the present purposes

• IGES has been in existence and use much longer than STEP

One element of IGES which was found to be lacking with respect to STEP was

the available published documentation. Documentation and guides for IGES do exist,

however they were found to lack adequate information on several entities. In some cases

multiple references must be consulted in order to obtain the correct user information.

The documentation for STEP was found to be much more current and complete. The

STEP references also contained much more detailed information about all aspects of this

standard.

22

CHAPTER 3

METHODOLOGY

The geometry utility under consideration makes use of several key geometric

entity types. Although differences in their use and employment exist, there are

commonalities in the primary elements of each. Several of these entity types form the

foundation of basic CAD and 3-D geometry software as well as widely used standards

such as IGES and STEP.

While many simple geometry constructs are in existence (such as simple vectors,

points, etc.), several more complex geometry features exist and therefore require more

robust and detailed methods for their numerical representation. The deign features which

are the most challenging to represent are model curves and surfaces. Several methods for

accurately creating a curve or surface model have been developed and are extensively

employed in geometric design. Different methods may be used to create these entities

depending on algorithmic requirements, with the two primary methods being parametric

and implicit definitions.

3.1 Implicit and Piecewise Implicit Surface Creation

The implicit method for creating complex curves and surfaces is the most familiar

and intuitive method for many people. Surfaces and curves are defined in three

23

dimensions by equations which define implicit dependencies between the three

coordinate components of the included points:

 () (){ }0,,,, =zyxFzyx

A very simple example of an implicit surface definition is that of a unit sphere (with no

displacement):

 01),,(222 =−++= zyxzyxf

A primary advantage of using an implicit definition is that no control points with

sometimes complex conditions need to be defined, as is the case with a parametric

definition. This is true in the case that),,(zyxf and its first partial derivatives are

continuous.

However, the use of implicit functions for defining complex model geometries

poses several difficulties when employed in a computational manner. First, no method to

define the direction of the surface or curve definition exists in the implicit format. This

hinders the ordered creation of patches and grids. Also, the creation of implicit

definitions for surfaces does not translate easily to a program (computational) algorithm.

A more significant difficulty to overcome is that it can be problematic to create curve and

surface divisions (in other words, connected bounded pieces of the curve or surface)

which make up a grid of tangent surface patches.

A technique to overcome the difficulty of creating bounded surface components

(patches) from implicit definitions is denoted as “free-form blending” [Hagan, 4], or

piecewise implicit blending. This method involves the creation of an interpolation

function (continuous to the Ck partial derivative specified by the input data) approximated

from geometric data. As discussed by Hagen [1992], a body’s surface geometry is first

24

divided into the desired number of surface regions (or patches) specified by the user.

This chosen surface region is then subdivided into several polyhedral faces. An

interpolating function is then defined for the set of vertices of the polyhedral faces. This

can be used to define surface contours and generate a bounded grid definition for the

surface patch under consideration. The polyhedral faces used are usually triangular

elements as seen in Figure 6. The addition of new elements and vertices as seen in Figure

6 is analogous to adding new nodes to a purely parametric surface definition. This results

in gradual modifications of the surface contour and increases the surface resolution.

Adaptive surface correction algorithms can be created to modify the implicit definition in

this way and therefore reduce errors between the actual geometric data and the implicit

representation.

Figure 6. Example triangular elements subdividing a surface patch (figure from Hagan
[1992]).

The “free-form” piecewise blending technique results in the creation of

interpolants for the given set of geometry data. The interpoltant method generates

25

interpolating implicit functions which represent the set of vertices in the current surface

patch.

In the current case we focus on the zero order contour interpolants (C0) which

represents the actual model surface contours needed for solid model geometry definitions.

Hagen [1992] suggests using two classes of interpolants in this case: simplical and

cubical interpolants. The simplical interpolant utilizes linear interpolation between the

vertices of the elements (triangular in this case). In this case, the vertices have the effect

of acting as control points as would be utilized in a B-spline definition. An example of

this is given in Figure 7.

Figure 7: Example contour fit through linear interpolation of element vertices.

In the case of a cubical interpolant, Hagen [1992] suggests defining a ‘hypercube’

consisting of a greater number of points per element. Additional information regarding

the interpolant technique can be found in Warren [1989].

Although techniques for resolving the problems associated with using implicit

curve and surface definitions exist, such as “free-form blending”, the implementation of

0
0C

0
1C

0
2C

1
0

0
3 CC =

1
1C

1
2C

1
3C

26

these techniques can require complex algorithms which may lead to model inaccuracies.

The methods to resolve the problem of generating a properly bounded surface patch

illustrate this difficulty. The “free-form blending” piecewise method basically requires

the creation of contour control techniques as used in parametric surface definitions

(which eliminates one of the advantages of using an implicit definition). The added

difficulty of fitting implicit functions to this data and creating a new set of tangent Ck

continuous patches (as seen in examples from Hagen [1992]) makes the use of techniques

such as this problematic.

3.2 Parametric Curve and Surface Creation

The most predominant method for representing geometric models in a

computational manner is through the use of parametric functions. The nature of

parametric functions makes them far better suited for many programming algorithms.

Unlike implicit geometric functions, parametric methods do not create functions which

define dependencies between the coordinate components. Instead, an explicit function is

defined for each separate coordinate. An independent parameter (sometimes referred to

as a ‘local parameter’) is then used to transverse between user specified bounds for each

coordinate component. This new parameter is usually normalized to transverse between

0 (start point) and 1 (terminate point), although the interval used can be arbitrarily

specified by the user. Specifying this independent parameter as t, the explicit

representation of a curve can be written as

))(),(()(tytxtF =

27

with

 bta ≤≤

After defining the interval bounds for the parameter variable, it is a simple task to create

uniform nodes along the curve from the coordinate functions.

In order to define a surface region, the same method is extended to the use of a

second parameter variable.

)),(),,(),,((),(vuzvuyvuxvuF =

Sweeping through the range of one parameter while holding the second constant

allows the user to create a uniform grid of nodes for a surface element. This makes the

computational creation of a surface representation a relatively straightforward task to

accomplish. Returning to the simple example of defining the surface contours of a

sphere, the surface specification now occurs as a group of three coordinate functions as

opposed to the single implicit function seen previously.

)cos(),(

)sin()sin(),(
)cos()sin(),(

uvuz
vuvuy
vuvux

=
=
=

where the parameter intervals are defined as

π
π
20

0
≤≤
≤≤

v
u

Transitioning through the v interval at specific values of u results in the creation of a

surface grid. Normal vectors may be evaluated at each node in the grid by simple cross

products of the local u-v vectors. A u-v element of a surface patch is shown in Figure 8.

28

Figure 8: Example parametric surface patch.

The inherent ease of creating a bounded, ordered curve or surface through

parametric definitions makes this method preferable and more appropriate for the current

effort. Therefore, several methods for representing model entities through parametric

means will now be discussed. All of these methods are employed by modern CAD

packages and geometric data standards.

3.2.1 Monomial Interpolation Method

This method is often referred to as the ‘least geometric’ method used to define

curves and surfaces due to its lack of control points, polygons, weights, knots, and other

shape control elements. The monomials used can be viewed as replacing the basis

functions used to define Bezier curves (or can be referred to as a special case of basis

functions). The basis functions used to represent the polynomials in this case can be

expressed as kx , which are linearly independent functions (such as 1, x, x2, …). Using

29

the monomials to create the shape polynomial, the parameterized function can be

expressed in non-rational form as

 ∑
=

=
n

j

j
j tAtp

0

)(

where

 bta ≤≤

or in matrix format
















=
































nn

o

n
nn

n
oo

P

P

A

A

tt

tt
MM

L

MM

L 0

1

1
[Hoschek, 1993]

In this case, n represents the degree of the curve under evaluation. The individual

coordinate components for a three dimensional curve can be explicitly expressed as

∑

∑

∑

=

=

=

=

=

=

n

j

j
j

n

j

j
j

n

j

j
j

tztz

tyty

txtx

0

0

0

)(

)(

)(

with the xj, yj, and zj representing the basis coefficients.

One advantage of using the monomial approach to curve/surface definition is the

relative ease and efficiency for computing desired points compared to other methods.

Less memory is typically required when using this approach and it is somewhat more

computationally efficient. The method most commonly used to evaluate a monomial

curve/surface is Horner’s method [Piegl, 1995]. For example, assuming a curve of

degree n

30

01
2

2
1

1)(axaxaxaxaxaxp k
k

n
n

n
n +++++++= −

− LL

and evaluating it at the point 0x , let

 nn ab =

and

 10 ++= jjj bxab for 0,1,2,3,,3,2,1 K−−−= nnnj

therefore

 00)(bxp =

Another way to express the point evaluation is with a quotient)(0 xQ , where

 12
2

1
1

0)(bxbxbxbxQ n
n

n
n ++++= −

−
− L

and

 000)()()(RxQxxxp +−=

where the remainder 00 bR = . Example applications of this method for curves of varying

degree n follow [Piegl, 1995]:

 n = 1: 0010)(xxaxp +=

n = 2: () 2
22010001020)(xaxaaaxaxaxp ++=++=

n = 3: 3
03

2
020100)(xaxaxaaxp +++=

n = …: ()()() 0020100)(axaxaxaxp nnn ++++= −− LL

Despite the relative ease of computing points on a monomial curve/surface, a

number of significant disadvantages in their implementation exist. The first disadvantage

is the lack of a geometric nature in the polynomial expression. The expressions tend to

be of a more algebraic form and lack the elements that are often useful (and have become

31

almost commonplace) in geometric modeling (namely, knots, control points, etc.).

Second, only the initial endpoint conditions are specified by the user (at u = 0). This can

lead to difficulties in endpoint matching. However, a much more significant problem

encountered while utilizing this design approach is the inherent instability due to

numerical inaccuracies (round-off error [Piegl, 1995]). The monomial form tends to be

very sensitive (and therefore greatly affected) by numerical inaccuracies and the

computational precision used. This degree of sensitivity is illustrated in the figure from

Farin [1993] below (Figure 9).

Figure 9: Example of the effects of slight coefficient perturbations on monomial (light
gray) and Bezier (black) formats (figure from Farin [1993]).

The problems incurred by round-off errors are increased further by the fact that

only the start point (u = 0) is specified with this method. Therefore, the terminate point

for a curve (or the u, v terminal edges for a surface) must be calculated and are subject to

calculation inaccuracies. This results in curve and surface discontinuities (increasingly so

32

for higher degree cases [Farin, 1993]) and may result in geometry failures in receiving

systems. This terminal point/edge error when using monomials is shown in Figure 10.

Figure 10: Exaggerated example of the effects of round-off error on surface patch
continuity (figure from Farin [1993]).

Despite these potential design and implementation difficulties, this approach still

remains a useful method to employ. It has historically been a much faster method for

geometry evaluation and is relatively efficient for geometry data storage. Because of

these two advantages, many early CAD and design software types relied heavily on

monomial methods for data storage and transfer. However, advancements in

computational speed and the memory available in current computers have rendered these

advantages less significant. Therefore, the computational inaccuracies from round-off

error (and precision) are much more of a design factor when choosing how to represent

geometric entities.

The historical usage of monomial methods means that they are still commonly

encountered in many current geometric standards and CAD software. So it is still

necessary to include techniques to evaluate functions of this type in any receiving system

software.

33

When using monomial functions, some generating systems typically use lower

degree functions to eliminate the greater sensitivity to coefficient perturbations incurred

with higher degree polynomials. Typically, the degree used is fourth order or lower.

This means that the curves and surfaces must be highly segmented in order to be

accurately represented. While this decreases the sensitivity to coefficient perturbations,

the increased number of piecewise segments leads to greater difficulty in dealing with the

terminal point round-off errors (see Figure 11). Therefore, additional algorithms must

often be employed to adjust or truncate the terminal point coordinates in order to ensure

proper curve/surface connectivity. While this may be appropriate in certain cases, this

can lead to surface discontinuities (cusps) and other complications (Figure 11).

Figure 11: Example discontinuity due to terminal/start point adjustment.

3.2.2 Bezier Form for Curves and Surfaces

A much more geometrically informative method for a designer to create curves

and surfaces is through the use of Bezier and B-Spline functions. In the monomial

method, the coefficients that were used provided little information to the user about the

Surface Cusp

34

properties of the curve/surface. The Bezier method, however, places much more

importance on the function coefficients and other related control entities.

The Bezier form for representing curves and surfaces (which is a more specialized

form of the B-spline) has become one of the dominant and preferred methods for

geometric data storage and transfer. In contrast to the monomial method, which used the

linearly independent functions kx as basis functions, this method makes use of Bernstein

polynomials to define the basis functions. The binomial formula is used to derive the

Bernstein polynomials [Hoschek, 1993]. The binomial formula can be defined as

 ()[] ()∑
=

−−







=+−=

n

r

rrnn tt
r
n

tt
0

111

with the Bernstein polynomials of degree n then given as

 () trnn
r tt

r
n

tB −−







= 1:)(

The greater stability offered by the use Bezier definitions (see Figure 10) as well

as the ability to fully specify both endpoint conditions makes this method attractive from

a computational perspective. The additional geometric control features offered from

Bezier curves make them attractive from a designer’s perspective. The foremost feature

that is geometrically beneficial is the control point matrix, { }iP . A non-rational Bezier

curve of degree n is specified using this set of control points as

 ∑
=

=
n

i
ini PtBtC

0
,)()(

where

 10 ≤≤ t

35

This is the general form of a non-rational Bezier curve. The basis functions niB , are

Bernstein polynomials given in the form [Piegl, 1995]

 () () ini
ni tt

ini
ntB −−
−

= 1
!!

!)(,

or recursively as

 ())()(1)(1,11,, ttBtBttB ninini −−− +−=

Therefore,)(tC of degree n can be written as

 () ()∑
=

−








−

−
=

n

i
i

ini Ptt
ini

ntC
0

1
!!

!)(

The control points (or geometric coefficients) are the primary shape dictating

elements of)(tC . This makes it easier for the designer to interpret and/or modify the

overall shape. The placement and movement of control points pulls and stretches the

curve in a very visual (straightforward) manner. An example of a second degree Bezier

curve is given in Figure 12. As can be observed, there are three control points forming a

parabola. The curve is parametrically defined by

 () () 2
2

10
2

0
, 121)()(PtPttPtPtBtC

n

i
ini +−+−==∑

=

A second example is given in Figure 13, this time for a third degree curve defined

parametrically as

 () () () 3
3

2
2

1
2

0
3

0
, 13131)()(PtPttPttPtPtBtC

n

i
ini +−+−+−==∑

=

The effects of moving a control point are shown on the right half of Figure 13.

36

Figure 12: Example second degree curve and contributing basis functions.

Figure 13: Example third degree curve (with movement of terminal control point shown
on the right).

One seemingly intuitive design feature that is a result of using control points, but

one which is very useful for curve and surface approximation, is the control polygon

(sometimes referred to as a “control net” for surfaces). The control polygon is formed

from a linear connection of successive control points. The “convex hull” property that is

so often discussed when dealing with Bezier and B-splines is simply the property that

P0

P1

P2

B0,2

B1,2

B2,2

P0

P1

P2

P3
P0

P1

P2

P3

37

surfaces and curves are contained within their defining control polygon (Farin [1993]).

The control polygon can be used for general approximations and for interference

checking by the use of “minmax” boxes [Farin, 1993]. This allows for an additional

method of fast interference checking.

Another useful quality of the control polygon is that any desired geometric

transformations for the curve or surface may simply be applied to the control points/net.

This allows for efficient transformations for any post-processing algorithm in the

receiving system. When dealing with surfaces, it can sometimes be possible to use the

control net as a general representation of the surface (for triangulation or other methods),

depending on the degree of the surface. The appropriateness of using the control net to

represent the surface depends on the bidirectional degree and the number of control

points used.

A method commonly employed to compute non-rational Bezier points for given t

values is the familiar de Casteljau method. (A more specialized algorithm for de

Casteljau’s method may be referred to as “blossoming” by some authors, such as Farin

[Farin, 1993].) The de Casteljau method makes use of a series of repeated linear

interpolations to obtain the point at the desired t. The point P(t) on the curve can be

evaluated as

 ())()(1)(1
1

1 ttPtPttP j
i

j
i

j
i

−
+

− +−=

where

nj

jni
,,1
,,0

K

K

=
−=

The result is essentially the creation of new control points/polygons of increasing level

until the point on the curve is reached. Each subsequent new control point set consists of

38

one point less than the previous defining set, with the final set consisting of two control

points which define the desired curve point by interpolation. This method is nice in its

simplicity and short algorithmic structure. It does not require the calculation of basis

functions and is usually more stable than evaluation through the calculation of the

Bernstein polynomials (not as susceptible to numerical errors, or round-off). An example

of this evaluation method for a seventh degree Bezier curve is graphically shown in

Figure 14. Figure 15 shows the triangular array used for this point evaluation.

Figure 14: Example application of de Casteljau method for a seventh degree Bernstein
curve.

Evaluation of
point C(u=0.4)

P0

P1

P2

P4

P5

P6

P7

39

00
10

01 20
11 30

02 21 40
12 31 50

03 22 41 60
13 32 51 70

04 23 42 61
14 33 52

05 24 43
15 34

06 25
16

07

Figure 15: Example triangular array of successive control points for de Casteljau
method.

The technique of blossoming mentioned previously is a more specialized

extension of the de Casteljau method [Farin, 1993]. This method is analogous to knot

insertion in the spline and subdivides the spline into smaller segments for evaluation.

Although blossoming does offer another method for point evaluation, in most cases it

does not provide a significant advantage. Unless it is already desirable or necessary to

insert additional knots or segments, the blossoming technique tends to be less memory

efficient and a computationally slower approach.

Despite the relative ease of representing curves and surfaces with a purely non-

rational Bezier scheme, Bezier curves are not always acceptable for all geometries. If the

shape is highly complex, then it will be necessary to utilize many control points in order

to attempt to accurately represent the true shape. This will thus require a Bezier curve

with a high degree, and a higher degree can often result in numerical errors and

inaccurate (or even failed) shape representation. Commonly a degree of 10 or higher is

40

prohibitive [Farin, 1993]. A second difficulty when relying solely on a Bezier scheme is

that of global curve distortion when redefining control points. Occasionally it may be

necessary to refit a portion of the curve without modifying the entire geometry. This may

be a case when the designer is attempting to maintain kC continuity after small

modifications. However, because the basis functions are global for the curve, a single

point change will affect the entire curve.

One design method that addresses both of these problems is a primitive form of

the B-spline. This method uses a group of piecewise Bezier curves to represent the total

curve (and often uses division and degree reduction methods to subdivide a higher degree

Bezier curve and reduce the local curve degree). This results in a preservation of the

global curve degree and a reduction in degree for each of the “child” Bezier curves. Such

curves are often referred to as composite Bezier curves, or, more informally, simply as

Bezier splines (not to be confused with B-splines, which are “Basis-splines”).

Piecewise Bezier curves first introduce the concepts of knots (although only

through a rudimentary usage). Knots are the coincident control points of adjacent Bezier

segments and are the degree defining elements of the global curve. In the case of simple

composite Bezier curves, knots carry no additional methods for defining and are simply

defined by current control points. This method may appear to be a combination of

power-based and Bezier approaches and facilitates any desired conversion between the

two. By the definition of the Bezier basis functions, the local start and terminate basis

functions have the value of 1:

 1)1()0(,, == nnni BB

41

This dictates that the local curve segment passes through the beginning and ending

control points. As these points are knots, their sequence can be used to redefine

(reinterpret) the curve as an interpolating spline if desired or required for the receiving

system or any required transformations of the overall geometry.

Figure 16: Example knot sequence with piecewise Bezier segments (figure from Farin
[1993]).

Although the two major problems of relying completely on a polynomial or single

segment Bezier scheme are nicely addressed by composite Bezier curves, a new design

issue is also introduced. This is the ability to ensure kC continuity at the curve

intersection points (knots). The only method to adjust the continuity of the piecewise

Bezier segments is by modifying the individual control point locations (which in turn

modifies the curve geometry). The desired degree of continuity is then achieved by the

fact that the current basis function definition ensures that the curve start/end vector is

parallel to the vector 01 PP − . For example, to create a 1C continuous piecewise Bezier

curve, the tangent vectors to the connecting control polygon segments of the successive

42

curves must be identical. Expressing this condition from the general form of a Bezier

curve [Piegl, 1995]:

 ()

()∑

∑

∑

−

=
+−

=
−−−

=

−=

−=

′=′

1

0
11,

0
1,1,1

0
,

)(

)()(

)()(

n

i
iini

n

i
inini

n

i
ini

PPtBn

PtBtBn

PtBtC

which means that for curves 1C and 2C of degree n = 3 with connecting knot of t1,

() ()2
0

2
1

12

1
2

1
3

01

1211)()(

PP
tt

nPP
tt

n
tCtC

−
−

=−
−

′=′

and the constraint for the junction knot becomes [Piegl, 1995]

() ()

02

2
101

1
2121

3 tt
PttPttP

−
−+−

=

This is illustrated in Figure 17, where the connecting control segments must be carefully

constrained/positioned in order to make the global curve 1C continuous.

Figure 17: Piecewise Bezier curve with 1C continuity.

i
nP 1−

1
0
+= ii

n PP 1
1
+iP

Adjoining
control point

43

This requires additional calculations and shape constraints that may require iterative

shape checking in order to accurately model the geometry. In order to ensure the desired

continuity, but not cause undesired modifications to the curve shape, it also may be

necessary to use an increased number of control points (higher order). In some cases this

may lead back to the previously discussed instability problems and can impose

restrictions on the ability to accurately control the shape without additional composite

segments.

3.2.3 B-Splines (Basis-Splines)

Another design method to overcome the difficulties incurred when using a high

degree single Bezier or power curve to represent a complex shape (or increasing the order

to ensure desired continuity) is to use B-splines, of which Bezier curves were a special

case. Like composite Bezier curves, the B-spline method for shape design allows the

designer to model relatively complex geometries without resorting to high degree

polynomial curves. Instead, several lower order curves with fewer control points are

used in a piecewise fashion (which also allows for localized shape control). The method

of their definition also ensures that the global curves are kC continuous.

At initial inspection, the B-spline method may seem to parallel that of composite

Bezier splines. The global curve definition has been redefined to incorporate several

lower degree curve segments, just as the case was with composite Bezier curves.

However, Bezier splines, unlike B-splines, are defined by multiple independent entities

which must be carefully constrained to produce the desired results. B-splines exist as

single entities for the global curve definition. This results in a reduction of required

44

memory to store the spline data (because of redundant endpoint and continuity

information required for Bezier splines). Depending on the size of the geometry file, the

savings can be significant. The method of definition is also more convenient for the

receiving system and can result in fewer errors.

Two fundamental differences exist to distinguish B-spline curves from Bezier

splines. The first is a new set of basis functions (the application of the basis functions to

the overall curve is also modified). The second difference is the inclusion of a knot

vector. This vector is not only used to reduce the local degree of the spline, but also is

used to control continuity within the spline and at the spline endpoints. The basis

functions of 0 degree and p-degree are defined as follows [Hoscheck, 1993]



 ≤≤

= +

otherwise
tttif

tN ii
i ,0

,1
)(1

0,

and

()
()

()
())()()(1,1

11

1
1,, tN

tt
tt

tN
tt

tttN pi
ipi

pi
pi

ipi

i
pi −+

+++

++
−

+ −

−
+

−
−

=

In the literature, basis functions such as those above may occasionally be defined in terms

of the curve order (k = p+1) instead of degree. A number of important properties exist

for the basis functions. These include [Hoscheck 1993, Farin 1993]

• 0)(, =tN pi for [)1, ++∉ pii ttt

• 2−kC continuity for)(, tN pi at all internal knots (assuming a ‘simple’ knot vector)

• a quotient with zero divisor is set equal to zero

• within the defining knot interval, 0)(, >tN pi

45

•)(, tN pi is a linear combination of two lower degree basis functions (p-1 degree)

[Piegl, 1995]

• In the case that the number of knots in the knot vector is 2*(p+1), the basis

functions)(, tN pi become the Bernstein polynomials of degree p-1,)(1 tB p
i
− (note

that this is only true when p+1 knots are located at t = 0 and p+1 knots are located

at t = 1) [Hoschek, 1993]

•)(, tN pi are piecewise polynomials

• For any knot span, partition of unity holds for∑)(, tN pi . Therefore, for the span

[)1, +ii tt [Piegl, 1993]:

 1)()()(1,1
11

1
1,, =

−

−
+

−

−
=∑ ∑∑

−= −=
−+

+++

++

−=
−

+

i

pij

i

pij
pj

jpj

pj
i

pij
pj

jpj

j
pj tN

tt
tt

tN
tt

tt
tN

• For the global curve span,)(, tN pi attains only one maximum

Although the general form of non-uniform B-spline basis functions was defined

above, in certain instances uniform basis functions (equal knot spacing) may be used.

This results in a simplified expression for)(, tN pi as

 ()
()

()
())(

1
)(

1
)(1,11,, tN

p
tpitN

p
ittN pipipi −+− −

−+
+

−
−

=

In this case (uniform basis functions), the basis functions become translational

equivalents and are simply shifted copies of each other along the knot vector [Piegl,

1993].

As noted in the basis function properties listed above, the basis function definitions

follow a local support property. This allows them to exhibit influence over a local spline

knot segment and therefore enables localized shape modification that was not possible in

46

a single Bezier spline scheme. This is very useful for interactive or optimization shape

modification methods, as the global shape may be maintained without having to resort to

a drastic increase in the spline degree.

The knot vector is a very useful element of B-spline curve design, allowing for

efficient algorithms for internal as well as boundary continuity definitions. The relative

spacing of the knot vector determines the overall shape of the basis functions. In some

cases this spacing may be uniform, but in the more general case the spacing is non-

uniform (e.g. NURBS). The knot vector for m knots is simply defined as

 { }mm ttttT ,,,, 110 −= K

where ti are knots with

 1+≤ ii tt

It should be noted that knots may be of zero length (repeating). Generally, the

resulting knot spans (individual polynomial pieces of the curve) of degree p are joined

with 2−pC continuity at the knots.

The spline continuity can be specified with careful selection of the knot

components. This is accomplished in terms of knot multiplicity. The knot multiplicity is

generally specified in two ways: through global multiplicity and local basis function

multiplicity. When multiplicity is discussed in the literature, it more commonly refers to

the former definition. For example, a knot vector for second degree basis functions (with

p = 2, n = 5) may be specified as

 { }5,5,5,4,3,3,2,1,0,0,0=T

47

In this specific case, the knots t = 0 and t = 5 have a global multiplicity of 3 and varying

basis function multiplicity. For example the basis function multiplicity of the knot t = 0

for the first three basis functions is three, two, and one

{ }
{ }
{ }3,2,1,0

2,1,0,0
1,0,0,0

2,2

2,1

2,0

→

→

→

N
N
N

The continuity of each basis function is affected by the multiplicity. If the

multiplicity of the knot is L, then the previous basis function continuity of 2−kC is

reduced to LkC −−1 . Therefore, for each multiple knot component, the basis function loses

a degree of continuity. Another effect of basis function knot multiplicity L > 1 is a

reduction of the influence of the current basis function. The local support interval of the

basis function containing the knot of basis function multiplicity L is reduced in nonzero

interval influence from k to Lk −−1 intervals. In other words, the basis function

interval length is reduced. An example of a quadratic basis function (B-spline order of

three) with a knot of multiplicity 2 is shown in Figure 18.

Figure 18: Effect of increasing knot multiplicity on an individual basis function (left plot
is with complete degree 1 multiplicity, right plot is with a multiplicity of two for t = 4).

1 1

1 14 48 7

L = 2

48

Another example of multiplicity effects is shown in Figure 19 [Piegl, 1995] for

second degree basis functions with a knot vector of { }5,5,5,4,4,3,2,1,0,0,0=T . In

this figure, the decrease in the local support interval can be observed for 2,6N as a result

of the knots at t = 4 and t = 5, where

 { }5,5,4,42,6 →N

Figure 19: Example multiplicity effects for second degree basis functions [Piegl, 1995].

It should also be noted that spline end point continuity (boundary conditions) can

be controlled with proper knot vector specification. In the above cases it has been

assumed that the design goal of the generated splines is to have tangent, or clamped,

ends. This is the case in most design circumstances. In order to ensure clamped

boundary conditions, the knot vector must be of the form













=
=+

−−

=+
43421

KK
43421

K

kp

mmpm

kp

ttttttT
1

11

1

00 ,,,,,,,,

where 00 =t and 1=mt . Therefore the initial and final knots must have a multiplicity

equal to the order of the B-spline. The choice of this multiplicity may be adjusted in

order to modify the desired behavior at the spline boundaries.

49

For a given knot vector and set of p-degree basis functions piN , , the B-spline (of p

degree) can be evaluated at any parameter value t by

 ∑
=

=
n

i
ipi PtNtC

0
,)()(

The set of points iP (analogous to control points in the purely Bezier case) are termed de

Boor points. Each set of de Boor points with its start and terminate knots forms a control

polygon called the de Boor polygon. As with Bezier splines, each segment follows the

convex hull property for its corresponding de Boor polygon. Another key property

carried over from the Bezier scheme is that affine transformations can be applied to the

set of de Boor points in order to effect desired geometric modifications.

For the present purposes, B-spline curves are in general desired to be closed and

maintain at least 1C boundary continuity. Therefore, the start and terminate knots are

defined as 0 and 1 respectively and have a multiplicity of 1+p . It can be noted that the

corresponding basis functions reduce to Bernstein polynomials)(tB p
i due to the

multiplicity of the start and terminate knots.

Examples of B-splines and their corresponding basis functions (uniform and non-

uniform) are illustrated in Figure 20.

50

Figure 20: Example B-spline curves and basis functions.

In addition to the utilization of knot multiplicity to control internal spline

continuity, the inclusion of repeating de Boor points may be used. In this case, certain de

Boor points are identical (coincident) in their definition. The combination of knot and

apparent de Boor point multiplicities can be used to induce certain geometric effects,

such as tangency at desired angles internal to the spline or “rounded corner” effects. An

example of a B-spline utilizing coincident de Boor points is given in Figure 21.

P0

P1

P2
P3

P4

P5

P6

P7

P0

P1

P2

P3

P4 P5

P6

P7

51

Figure 21: Coincident internal de Boor points in B-spline .

Another design element that is of significance is the choice of local spline

segment degree. The choice of degree affects the “closeness” that the curve has for its de

Boor polygon. Lower degree curves tend follow the de Boor polygon in a close manner,

with this effect diminishing with increasing degree. This is due to the fact that fewer de

Boor points contribute to the local spline segment)(tC for lower degrees [Piegl, 1995].

This affects the “controllability” of the spline and may require the use of rational curves

to better shape high degree splines. It also affects the degree to which the curve may be

estimated through use of its de Boor polygon. For some design purposes (and for better

user visualization) it may be desirable to create a curve which follows the defining

control polygon in a semi-visual manner. In this case, the designer must resort to the use

of rational functions, degree reduction, or knot insertion. Knot insertion and rational

functions are the preferred methods for design in this case. A figure illustrating the

effects of degree elevation is shown below (Figure 22).

P0
P1

P2

P3 = P4

P6
P7

P5

52

Figure 22: Effects of B-spline degree elevation.

Although basis function evaluation is preferred in most computational algorithms,

it is possible to determine points on a B-spline without explicit calculation or transfer of

the basis functions. The algorithm by de Boor is one such method, and this algorithm is

analogous to the de Casteljau algorithm for Bezier curves. One advantage of this

algorithm is that it is a very numerically stable method of curve/surface evaluation.

However, it tends to be less time efficient than basis function algorithms. The de Boor

evaluation method evaluates points on curves/surfaces by linear subdivision. This can be

thought of as converging on a point through repeated knot insertions. As knots are

inserted in the control polygon, the number of basis functions contributing to the knot

will decrease (by 1+− kp), where k is the knot multiplicity and p is the degree.

Therefore, repeated knot insertion at the desired parameter value will eventually

result in convergence at the desired point. This process is illustrated in Figure 23.

P0

P1

P2

P3 P4

P5

P6

P7

p = 3

p = 5

53

Figure 23: De Boor algorithm for B-splines (figure from Hoschek [1993]).

3.2.4 Rational Curve Specification

Although the previously defined geometric methods are of key importance to the

designer and provide much latitude in accomplishing design objectives, certain

geometries may be difficult to accurately represent through their use and may require a

great deal of subdivision and control points to attempt to do so. This can result in a large

increase in the storage space required for many designs and can result in a geometry

representation that is computationally expensive for a receiving system to evaluate and

modify. Therefore, another geometric modeling tool has been introduced to aid in the

design of such entities. This includes the concept of rational parametric curve and

surface modeling.

The concept of rationality stems from the fact that certain geometric entities

cannot be accurately and/or efficiently represented through the defined basis functions

(examples include conic curves). To account for this design issue in geometric modeling,

54

ratios of the basis function matrices are used. When a ratio is employed to define the

entity, it is termed a rational entity (curve or surface):

)(
)()(

tW
tXtx =

)(
)()(
tW
tYty =

)(
)()(
tW
tZtz =

As stated previously, each non-rational B-spline segment is defined as the

weighted sum of its control points, with the partition of unity property applying to the

basis functions

 ∑
=

=
n

i
iki PtNtC

0
,)()(

where

 ∑
=

=
n

i
ki tN

0
, 1)(

Therefore, in this general non-rational case, the basis functions can be thought of

as acting as weights affecting the influence of the control point. It can be desirable (and

necessary) in certain instances to increase or decrease the relative effect of the basis

functions (and therefore control points) on the spline. This is accomplished by

employing an additional weight matrix. The new rational curve may be defined as

∑

∑

=

== n

i
ini

n

i
iini

wtN

PwtN
tC

0
,

0
,

)(

)(
)(

where iw are the basis weight modifiers (all non-negative to avoid singularities). The iw

are defined in a manner to satisfy the requirement that

55

∑
∑=

=

=

















n

i
n

i
nii

nii

tNw

tNw

0

0
,

, 1
)(

)(

For computational applications, the rational definition method can be thought of

as an application of homogeneous coordinates to form a projection of a four dimensional

curve, E4, into three dimensional Euclidean space. This method results in efficient

geometry data storage and receiving system interpretation. The weighted control points

are now defined in four dimensional space as P′

),,,(wwzwywxP =′

from which the three dimensional Euclidean curve can be mapped. This mapping can be

best described with a two dimensional form. P′ is now defined with homogeneous

coordinates),,(wwywx in E3. This n+1 dimensional curve can be mapped into n-

dimensional space to obtain the desired weighted 2-D curve. This is accomplished

through projection onto a hyperplane of unit weight (1=w). The origin of projection is

considered to be the origin of the 3-D Cartesian coordinate system. Therefore, the point

),(yxP = is determined by projecting the point),,(wwywxP =′ onto the hyperplane

1=w by following a connecting vector to the defined origin. This is illustrated in Figure

24.

56

Figure 24: Projection mapping of a point in E3.

It is in this way that conic geometric entities may be accurately created with B-

spline methodology. An example of one method for the representation of a circular arc

projected from E3 homogeneous coordinates is shown in Figure 25.

Figure 25: Example weighted representation of conic entity from homogeneous
projection.

(X,Y,W) 3-D coordinate

Y

X

W

(x,y) mapped point
y

x
W = 1

X

Y

W

W = 1

2-D mapped entity

3-D homogeneous entity

57

The resulting effects of weight variance can be a power design tool. It is with this

design element that B-splines gained much more modeling power and near universal

usage in CAD systems and design tools. Rational B-splines require comparably little

data to represent complex entities and are efficiently processed by receiving systems.

They also offer great control over the modeling of complex curvatures. An example of a

rational B-spline with varying weights at control point 2P is shown in Figure 26.

Figure 26: Example control point weight modification (at point P2).

The added geometric features of B-splines combine to make them a powerful

design tool and the preferred curve and surface modeling tool in CAD software. The use

of non-uniform knot sequences allows for easy tangency control as well as efficient

specification of internal continuity. The introduction of rational representations gives the

designer further leverage to accomplish complicated design tasks. Together, these

features represent the familiar NURBS entity (Non-Uniform Rational B-Spline).

NURBS have gained wide acceptance and usage due to their efficient implementation,

processing and storage.

w = 4

w = 1

w = 0.5

w = 0.15

P0

P1

P2

P3

P4

58

3.2.5 Tensor Product Surfaces (Non-Uniform Rational B-Spline Surfaces)

The primary methods for surface representation in geometric modeling utilize the

techniques developed for Bezier and NURBS curve design. The many advantages offered

by NURBS derived design methods make them attractive to the designer and are

desirable in surface design algorithms. The resulting NURBS surfaces have become one

of the most prevalent design elements in CAD and geometric modeling software. The

characteristics of Bezier and B-splines which made them particularly advantageous to the

designer are carried over to three dimensional surfaces and make their resulting storage

and processing efficient.

All parametric surface representation methods require the subdivision of the

model geometry into a set of bivariate, rectangular surface patches. Each patch is created

from a planar grid of isoparametric curves which are stretched and deformed (mapped to

Euclidean 3-D space) due to the influence of two sets of univariate basis functions. The

bivariate grid is typically defined with the parameters u and v. Although differing

methods for creating parametric surfaces exist, the most common is the tensor product

method [Hoschek, 1993]. The most general form of a tensor product surface is

 ∑∑
= =

=
n

i

m

k
kiik vGuFAvuX

0 0
)()(),(

or, in tensor matrix form, [Hoschek, 1993]

 ()































=

)(

)(
)(,),(),(

0

0

000

0

vG

vG

AA

AA
uFuFvuX

mnmn

m

n M

L

M

L

K

59

where),,(,,, kikikiik zyxA = represent the grid of control elements (points or de Boor

points) and)(uFi and)(vGk are the univariate basis functions. An example tensor

product surface patch is shown in Figure 27.

Figure 27: Tensor product surface patch

As with curve specification, the basis functions may be specified in monomial

form to yield a power basis surface. In this case, the tensor product becomes [Piegl 1995,

Hoschek 1993]

[] [][]
{ } { }

{ } { }

n
n

b

m
mnnnn

n

b

m
m

b

m
m

b

m
m

k
ik

Ti
n

i

m

k

ki
ik

ubububb

vAvAvAAuvAvAvAAu

vAvAvAAuvAvAvAA

vAuvuAvuX

n

++++=

+++++++++++

+++++++++=

==∑∑
= =

K

444444 3444444 21
KK

444444 3444444 21
K

444444 3444444 21
K

444444 3444444 21
K

2
210

,
2

2,1,0,,2
2

2,21,20,2
2

,1
2

2,11,10,1,0
2

2,01,00,0

0 0

2

10

),(

As was the case with power basis curve representations, the above monomial

tensor surface representation may be evaluated with Horner’s method. The use of

X0,1

X0,0

X1,0

X1,1

Xu,v

X u = constant, v

X u, v = constant

60

monomial basis functions in parametric surface design is relatively limited compared to

Bezier and B-spline schemes (due to the previously discussed reasons for curve

specifications). However, it is not uncommon to encounter this technique in various

CAD and geometry modeling software and this method remains a viable technique.

The most prevalent forms of tensor product parametric surfaces utilize Bezier and

B-spline basis function definitions. The general Bezier form is expressed as

 ∑∑
= =

=
n

i

m

j
mjniij vBuBAvuX

0 0
,,)()(),(

with niB , and mjB , representing the univariate Bernstein polynomials. Similarly, the basic

B-spline form utilizes basis the functions piN , and qjN ,

∑∑
= =

=
n

i

m

j
qjpiij vNuNAvuX

0 0
,,)()(),(

with knot vectors [Piegl, 1995]













=
+

+

+
321KK321K
1

1

1

1,,1,,,,0,,0
p

np
p

uuU













=
+

+

+
321KK321K
1

1

1

1,,1,,,,0,,0
q

mq
q

vvV

Examples of B-spline tensor surfaces are shown in Figure 28. Two of the

contributing basis functions are also shown. The second surface illustrates the effect of a

multiple internal knot sequence.

61

Figure 28: Tensor product surface patch

The set of control points ijA are often termed the control net (or grid). This grid

may be used as an approximation for the surface in the case that the surface is of

sufficiently low degree in each direction (recall that a lower order has the effect of

‘tightening’ the surface toward the control net). Typically, tensor surfaces may be

accurately created with cubic or quadratic splines (with cubic curves more often

encountered in design applications). Figure 29 shows an example cubic surface patch

with its control net. The effect of degree elevation is also illustrated in the figure.

A further variation of the B-spline formulation incorporates rational definitions.

As with NURBS curves, rational B-spline surfaces include weight vectors to further

enhance (or decrease) the effective influence of each basis function. The rational tensor

surface is defined as

∑∑

∑∑

= =

= == n

i

m

j
qjpiji

n

i

m

j
qjpiijji

NNw

NNAw
vuX

0 0
,,,

0 0
,,,

),(

Ni,p(u)

Nj,q(v)

62

In the case that the included knot vectors are nonuniform (for example, to

maintain boundary line inclusion) the surfaces are called NURBS surfaces. Additional

examples of NURBS surfaces are given in Figure 30.

Figure 29: Effects of surface degree elevation [Piegl, 1995] (biquadratic surface, p = 3,
on left; biquartic surface, p = 4, on right)

Figure 30: Example NURBS surfaces

In general, it is desirable to have at least 1C continuity between adjacent surface

patches. This boundary condition is slightly more complex than for the case of Bezier or

63

B-spline curves. In the simplest case, the tangent boundary curves of two adjacent

surface grids are coincident; i.e. of the same length, terminate and start points, and having

identical knot and control point sequences. If the connecting spline is located at 1+p ,

the condition of 1C continuity can be expressed as [Hoschek, 1993]

 () ()vu
u

X
vu

u
X

p
qp

p
pq ,, 1

,1
1 +

+
+ ∂

∂
=

∂

∂

or

 () () qpkk
p

pqknnk
p

AA
u
nAA

u
n

,101
1

,1 +
+

− −
∆

=−
∆

where ppp uuu −=∆ +1 , which can be used as a reference method to check for the proper

evaluation (and precision) of imported models. The degree of “twist” may also be

utilized in highly blended models (with large gradient areas) to evaluate the proper

intersection and blending of tangent surfaces. The more difficult situations arise when

the connecting surface grids are not of the same degree and vary significantly in size.

Various algorithms may be employed to ensure the desired degree of continuity

(including curvature continuity, 2C , and kC in general).

3.2.6 Three and Five-Sided Surface Patches

Although parametric patches have been discussed thus far as being defined

strictly by a rectangular format, it should be noted that other formats may also be

encountered in standard geometry representations. The two other patch types

encountered most frequently are triangular and five sided patches. The most common

method of expressing a triangular patch is a simple modification of the rectangular

scheme. In this case, two adjacent corner control points are made coincident, resulting in

64

one boundary curve of zero length (this method is commonly employed for spherical

entities). Due to this simplified triangular representation, no modifications are needed in

preexisting surface algorithms. A second method for triangular patches involves the use

of Barycentric coordinates. In this case, a central weighted node is placed at the center of

the triangular patch and a control net (with a triangular grid) is created. The specification

of a control point coordinate now requires three parameter variables (typically u, v, and

w).

Figure 31: Triangular surface patch [Hoschek, 287]

This method requires extensive modifications to existing surface algorithms. The

three parameter surface type is not commonly encountered in CAD or geometry

standards. The five-sided patch type utilizes two parameters and requires little

modification to rectangular algorithms. In most cases, an internal knot value (or in some

cases only an internal parameter value) is specified as a special breakpoint in one of the

surface boundaries. By use of a repeating knot sequence, a boundary cusp may be

created which gives the appearance of a divide in the boundary. A corresponding

dividing knot location is created in the opposing boundary curve. The curve with the

cusp is considered as two distinct spline elements (and is defined as such), while the

U V W

V

U

W

V

W

U

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

X (Evaluated surface point)

Parameters: (U,V,W)

65

opposing curve remains a single entity. The surface algorithm therefore requires little

modification (still maintaining a rectangular grid). An example five-sided patch is shown

in Figure 32.

Figure 32: Five-sided surface patch

An alternative method for a five (or greater) sided patch resembles that of the

triangular patch representation. In this method, a new centralized control point is created.

New boundary splines are defined radially from this point, dividing the patch into several

subdomains. The subdomains created are of rectangular form and can therefore be

interpreted with existing surface algorithms.

3.3 Converter Program Structure

The conversion utility was created to import, error check (and correct if possible),

and ultimately create STARS files from a user’s CAD geometry. It also includes

additional features to assist the user in the creation of the supporting STARS files.

As discussed previously, the chosen geometry transfer file type was the IGES

standard. Many supporting reasons justifying this selection were described in Section

66

2.4. Virtually every modern CAD software package incorporates this standard as a

primary file storage type. Of the major CAD programs available, Pro-Engineer was

selected as the CAD program to use for the generation of all the geometry test cases.

A diagram of the basic block structure of the converter application is shown

below (Figure 33).

Initialization and Memory Allocation

GUI Parameter Input (and GUI Input)

IGES

Evaluate Current Entity

Export Current Entity

SUR BAC BCO

Import and Parse Geometry File

Reorder Surface File and Add
Additional Format Parameters

Create Additional Support Files Using
 the Imported IGES and User Data

Locate Next Required
Entity Element (or
Support Entities)

Figure 33: General converter structure

3.3.1 Geometry Import

The first design objective is to import, parse, and interpret the geometry data from

the user IGES file. Many entities are available in the IGES standard, with the most

significant discussed in Section 3.2. Different generating systems may create an IGES

67

file with variations in the specific content and file structure, but the general format is

standard among all IGES geometry files. This format is outlined in Figure 34 and

consists of a System Generation and Specification section (“Global” section), Directory

Entry (DE) section, Parameter Data (PD) section, and Terminate section. Additional data

sections may be present in some geometry files (up to six data sections, including a Flag

and Start section). Each section is presented in ASCII format.

Flag Specification Section

Start Section

Terminate Section

System Generation and Specification
 section (“Global” section)

Directory Entry (DE) section

Parameter Data (PD) section

Primary
Geometry
 Data

Initialization
 Data

Figure 34: IGES file structure

Although the “Flag” data section may be listed as the initial component of the file,

this section is not commonly encountered. Its use is limited to the binary and compressed

ASCII file versions. This section contains data parameters used to specify attributes and

the file type for the receiving system. However, the standard IGES files produced by the

major CAD packages are in ASCII form and rarely utilize this optional data section.

68

The most common initial data section is the System Generation and Specification

section (“Global” section). This section contains a variety of data which helps the

receiving system interpret the file. Some of the parameters in this section are optional

and are not needed for geometry evaluation. Commonly, at least twenty-five parameters

(or “records”) can be specified. The records include information about the preprocessing

system and other information that can be used to identify and process the file. The other

record types are of more use to any receiving systems and include such information as the

precision used for different data types in the current representation, model space scale

(and unit specification), user intended resolution, special system-specific delimiter

characters for the various data sections, and other various information to assist in the

processing of the file. Depending on the generating system, any number of these may be

omitted and are then specified by the receiving program. A listing of all possible Global

parameters (with corresponding descriptions) is given in Appendix A.

The next standard data section is the Directory Entry section (DE), which contains

a parameter and attribute listing for every entity in the model. Each parameter entry

contains up to twenty fields which are specific for each entity type. The field entries may

be descriptive of the current entity or may be a pointer to another directory entry. The

pointers may provide dependency relationships (child/parent), grouping, transformation,

or other information types. One feature of key importance contained in the Directory

Entry section is a description of entity relationships that enable the definition of higher

level, grouped features. An example could be a surface element which is defined by

subordinate features such as boundary curves, NURBS surfaces, a local coordinate

system, trimmed elements, transformation entities, and any other necessary geometric

69

data. In addition to the information provided in the field sections, the Directory Entry

section may also be used by the receiving system to quickly locate and reference needed

entities in the Parameter Data section. The conversion program parses the DE section

using the default and special-type delimiters specified in the Global section. This

information is them evaluated to establish a record of grouped high-level features and

also linking pointers between entities. This enables proper feature evaluation from the

Parameter Data section. The directory listing also enables the program to quickly search

through the file for all necessary entities to define a model feature. The directory section

is much more compact than the Parameter Data section, so the time spent searching for

targeted entities is significantly reduced by first searching the directory section. (to

establish data locations)

The majority of the IGES file contains data in the Parameter Data (PD) section.

This section contains the specific geometric data for all model entities as well as specific

descriptory information for non-geometric entities. Each entity listing in this section has

two parameter fields which precede any geometric data for the entity. The purpose of the

first parameter field is to describe the associative relationships of the current entity to

previously defined entities. The second set of parameter fields contains pointers for

specific properties of the current entity type [IGES, 1999]. The remaining data in the

entity listing provides any additional information needed to process the entity. The

number of fields in this listing can vary significantly based on the type of geometric

element being described. In general, the Parameter Data section comprises

approximately 75% of an IGES file. The conversion utility processes this information in

a feature based manner. Therefore, the grouping entities are used to evaluate all

70

necessary attributes for a given feature sequentially (such as the previously described

surface feature), and then this information is evaluated and exported to the STARS

geometry file. Due to the size of certain complex geometry files, storage of all entity

parameters for later processing is memory and time inefficient. As noted previously, the

data from the Directory Entry section is useful in locating all necessary components of a

model feature. Some of the geometric entity types that may be represented in the

Parameter Data section include [IGES, 1999]:

• Circular Arc -----Type Number: 100

• Composite Curve -----Type Number: 102

• Conic Arc -----Type Number: 104

• Copious Data -----Type Number: 106

o Linear Path

o Simple Closed Planar Curve

• Plane -----Type Number: 108

• Line -----Type Number: 110

• Parametric Spline Curve -----Type Number: 112

• Parametric Spline Surface -----Type Number: 114

• Point -----Type Number: 116

• Ruled Surface -----Type Number: 118

• Surface of Revolution -----Type Number: 120

• Tabulated Cylinder -----Type Number: 122

• Transformation Matrix -----Type Number: 124

• Flash -----Type Number: 125

71

• Rational B-Spline Curve -----Type Number: 126

• Rational B-Spline Surface -----Type Number: 128

• Offset Curve -----Type Number: 130

• Offset Surface -----Type Number: 140

• Boundary -----Type Number: 141

• Curve on a Parametric Surface -----Type Number: 142

• Bounded Surface -----Type Number: 143

• Trimmed Parametric Surface -----Type Number: 144

An example of a parametric field definition is given in Appendix B.

The final section in the IGES file is the Terminate section. The Terminate section

includes up to ten data fields. These fields contain information which varies depending

on the generating system. They usually contain data on the number of entries in each

major section of the IGES file and the number of entities included. This provides a

further measure to error check the interpretation of the file by the receiving system and

determine if the STARS conversion was successful.

3.3.2 Entity Processing and STARS File Creation

The STARS geometry file (surface file) consists of two primary geometry

sections (with other support sections included). The first contains all model curve

features, and the second contains all surface features (including boundary curve

specifications and curve directions to define surface normal vectors).

The conversion utility processes and exports the needed entities for each of these

sections independently. So, the entities for the curve feature section are evaluated and

72

exported prior to evaluation of the surface feature section. The method of evaluation for

each entity varies based on the entity type. For example, the parameters for surface

feature components, such as Bezier and NURBS surfaces, are evaluated utilizing the

methods discussed in Section 3.2.5. Other entity types require specialized evaluation

methods specified in the IGES standard. An example entity definition is given in

Appendix B (including the directory and parameter definitions). The processed features

are exported to the STARS surface file in the required format.

Two additional support files are also created to enable STARS analyses. The first

file is the boundary condition file (or BCO file). This file contains boundary definitions

for all defining model curves and surfaces. By default, these are created (specified) as

non-singular, solid entities. The converter GUI includes a curve and surface number

viewer which enables the user to easily locate any desired curves/surfaces in order to

modify its boundary definition. In the case that the flow is specified as external to the

model domain, an outer boundary domain box (with user specified dimensions) is

created. The boundary conditions for this domain box are appropriately specified for free

flow (no symmetry planes). The second support file is the background mesh file. This

file can be used to specify the mesh spacing size throughout the flow domain. The

background mesh domain is created based on the user geometry, and the spacing for this

(the maximum spacing in the domain) is taken as an input from the user. In order to

refine the surface mesh in desired regions (and the resulting volume grid), the user may

add source definitions to this file (as described in the STARS reference documents).

73

3.3.3 User Input and Graphical User Interface

The conversion utility was created as a module to be run with input from a GUI

program. The utility was also written to allow the option of using command prompt input

following the current implementation of many STARS applications.

The GUI serves two primary purposes. The first (and principal) is the

specification of all parameters for the geometry converter program and supporting

STARS files. The user must specify the direction of the model surface normals in order

to define the domain of the flow. If the model represents a chamber or channel flow, then

inward normals can be selected and the solution domain will be confined to the model

body. If outward normals are selected, then the body is treated as a solid model and an

outer “boundary box” will be added to the geometry file. In this case, the user may

specify the boundary spacing from the edges of the model geometry. The number of

divisions per surface patch may be specified for each parametric direction. This allows

the user to increase the number of nodes generated for each surface representation. This

may aid in adjusting the resolution of a surface and addressing any problems that occur

during the meshing/gridding process. The final input for the geometry file (“surface”

file) includes tolerances and precision for the geometry data. This allows the user to

specify the precision for all curve and surface nodes and may help in addressing any

continuity difficulties. An additional input section enables quick creation of a flow

property (CON) file. All solution properties may be specified in this section. After

utilizing both of these input sections, all files necessary to complete a steady state

solution are complete. An example of the interface is shown in Figure 35.

74

Figure 35: Converter User Interface (utilizing GLUI [Rademacher, 1999])

The second purpose of the GUI is to display the newly created model and provide

features to assist in any modifications. The features include a curve and surface number

display to aid in the specification of boundary conditions. Another feature is a source

viewer which allows the user to selectively view point, line, or triangle sources (or all

simultaneously) that have been defined in the background (BAC) file. This feature can

be very helpful for test cases that require many source placements (to verify the current

source definitions and to ensure that the model contains proper grid spacing at critical

75

locations). Another option is to display the defining surface splines for all model

surfaces. This can be useful for determining the resolution of the surfaces and for

locating potential errors in the geometry specification. The following figures illustrate

examples of the viewing features just described.

Figure 36: Line Number Display (left) and Surface Spline Display (right)

Figure 37: Source Display

76

CHAPTER 4

RESULTS AND EXAMPLES

4.1 Verification Results

 Verification of the geometry models produced by the conversion utility was

conducted in two phases. The initial phase examined the accuracy of the representation

of individual surfaces and surface boundaries produced by the utility. The second phase

examined the accuracy of multi-surface entities. This was conducted in order to examine

surface-surface intersections as well as the ability to accurately model a complete body.

 The verification for the utility required the examination of each surface export

type and the included surface boundary splines. The method for completing this task

involved the comparison of nodes on the original CAD surface geometry and calculated

nodes on the converted STARS surface. After generating a STARS surface file from an

IGES representation, the x,y,z coordinates of nodes on the surface were used to create

independent datum points in the model space of the original Pro/Engineer model. The

error for each STARS node could then be determined by using Pro/Engineer analysis

features to determine the distance (normal to the surface) from the datum point to the

original CAD geometry surface. An example of a surface used for NURBS surface

verification is given in Figure 38.

77

Figure 38: Example Surface Used for Verification

The datum points were then projected onto the surface to determine the coordinates of the

corresponding Pro/E surface node. Using this datum point method for all points in the

STARS surface model (including boundary and intersection points), a set of error values

could then be generated across the original surface. A graphical representation of error

values across the surface can then be created to aid in analysis, such as the Excel plot

shown in Figure 39.

1 2 3 4 5 6 7 8 9 10 11
S1

S2

S3

S4

S5

S6

S7

Figure 39: Example Surface Error Plot (shaded areas represent error variation across the
surface)

After analyzing multiple test cases for differing surface types, average error values were

determined. It should be noted that these are averages of the largest errors for each

78

individual test case (not over a complete surface). The boundary splines and/or

intersection lines were included as part of each surface for evaluation purposes. These

are reported as percent errors between the coordinates of the two surfaces. Using this

method, the surface type with the least average variation error was the NURBS surface

(average percent error of 0.06%) and the power based surface had the largest average

error (average percent error of 0.1%).

4.2 Test Cases

The conversion utility has been used to produce files for a number of STARS test

cases. Some of the test cases are briefly summarized below with various examples of

intermediate meshes and solution plots.

4.2.1 Test Case 1: YF-22

The initial geometry that was received is shown below in Pro/Engineer prior to

conversion.

Figure 40: Pro/Engineer IGES YF-22

79

This was utilized to create STARS files (SUR, BAC, BCO) to be used to compute

a number of steady-state solutions. The resulting STARS geometry file contained 290

curves and 104 surfaces. One example of a surface grid is shown in Figure 41, while an

example Mach plot is shown in Figure 42.

Figure 41: YF-22 Surface Grid

Figure 42: Mach Distribution at M = 0.3

80

4.2.2 Test Case 2: OSU Design/Build/Fly Aircraft

The Pro/Engineer models for the 2006/2007 Design/Build/Fly competition were

converted to STARS files in order to complete a steady state alpha sweep. This analysis

was carried out for both the Orange Team and the Black Team aircraft. Because of the

relative speed at which the test case files could be prepared, it was possible to carry out

multiple design evaluations in a short period of time. For example, the placement of the

Black Team main wing and connecting plate shapes (as well as the span of the wing,

canard, and horizontal tail) could be easily and quickly modified in Pro/Engineer and

then exported to the conversion utility. This allowed for a fairly quick iterative analysis

process that would have required much more effort and time to complete manually (by

direct modification of the geometry files). These test cases provide an example of the

potential usefulness of the converter application to rapidly iterate through many different

design configurations. Examples of the surface grids and solution plots are shown in the

following figures.

Figure 43: 2007 Orange Team surface mesh

81

Figure 44: Example 2007 Orange Team Mach solution plot

Figure 45: Original 2007 Black Team surface mesh

82

Figure 46: 2007 Black Team surface mesh (low wing placement)

Figure 47: 2007 Black Team surface mesh (forward wing, reduced canard span)

83

Figure 48: 2007 Black Team Mach solution plot

4.2.3 Test Case 3: SBC-UAV

The SBC UAV is a fuel cell aircraft which has been designed by California State

University. A STARS model was created from an IGES file to aid in their analysis.

Figure 49 illustrates an example mesh generated for this aircraft.

Figure 49: SBC-UAV surface mesh

84

4.2.4 Test Case 4: GHV

The GHV is an airbreathing hypersonic flight vehicle. Two different geometries

were analyzed (as shown in Figure 50 and 51). The first model created (Model 1)

possessed a simple flat inlet B.C. (far-field). The model was then modified to include a

new engine inlet geometry (Model 2) which was based on 2-D compressible flow theory

(ref.: California State University).

Figure 50: GHV (Model 1) surface mesh

Figure 51: GHV (Model 2) surface mesh

85

CHAPTER 5

SUMMARY AND FUTURE DEVELOPMENT

5.1 Summary

The development of a STARS geometry creation utility proved to provide an

efficient and effective means for completing an important step in the STARS analysis

process. Project efficiency can be greatly increased with the use of this conversion

utility. For example, a simple aircraft surface file can take approximately 2 1/2 days to

complete and debug manually. Using the converter approach, the same SUR file could

take less than an hour to generate, with most of this time spent creating the CAD model

(the actual conversion process takes less than 1 min. on average). For much more

complex geometries, such as the YF-22, the time saved by SUR file generation is much

more substantial. The simple aircraft contained 88 lines and 17 surfaces, while the YF-22

contained 290 lines and 104 surfaces (which had much more complex shape and

curvature definitions than the simple aircraft). It is also not uncommon to have to spend

quite some time searching for errors in a complex SUR definition created manually. The

converter almost eliminates this difficulty. Another advantage is that IGES files (or other

CAD file types) may be obtained from any source and then converted to the proper IGES

format in Pro/E, making it possible to use existing project geometries or receive

geometries from third parties.

86

5.2 Future Development

Two primary areas are recommended for future development. The first is the

integration of this utility with a gridding utility. A number of papers exist which propose

methods for creating grids from common CAD entity types (NURBS surfaces, etc.). One

such method involves “channeled” gridding, in which surface patches are used to define

channels through the flow domain (which may intersect with each other in the case of a

concave body). Techniques such as this may help to streamline the process as the initial

grid front may be directly created from the parametric entity definitions (possibly

resulting in a more effective initial front).

The second recommendation is for the implementation of optimization algorithms

in this utility. This would be useful for basic design iterations and could be highly

effective if coupled with a p-type solution convergence scheme. The method of

definition/evaluation of the standard entities (Bezier curves, etc.) makes local shape

modification and morphing a relatively easy process. Therefore, morphing end plates or

other complex shapes as model components are transversed through a design range

should be a straightforward task.

87

BIBLIOGRAPHY

Babcock, D. A., “Aircraft Stability Derivative Estimation from Finite Element Analysis,”

Master’s Thesis, Department of Mechanical and Aerospace Engineering,

Oklahoma State University, 2004.

Bezier, P. E., Numerical Control: Mathematics and Applications, John Wiley, New York,

1972.

Boehm, W., “Rational Geometric Splines,” Computer Aided Geometric Design, Vol. 4,

1987, pp. 67-78.

Brown, J. L., Worsey, A. J., “Problems with Defining Barycentric Coordinates for the

Sphere,” Mathematical Modeling and Numerical Analysis, Vol. 26, 1992, pp. 37-

49.

Casale, M.S., “Free-Form Solid Modeling with Trimmed Surface Patches,” IEEE

Computer Graphics and Applications, Vol. 7, 1987, pp. 30-43.

Cowan, T. J., “Finite Element CFD Analysis of Super-Maneuvering and Spinning

Structures,” PhD Dissertation, Department of Mechanical and Aerospace

Engineering, Oklahoma State University, 2003.

De Boor, C., A Practical Guide to Splines, Springer, New York, 1978.

Farin, G., Curves and Surfaces for Computer Aided Geometric Design, 3rd Ed. Academic

Press, Inc., San Diego, 1993.

Floriani, L., “Surface Representations Based on Triangular Grids,” The Visual Computer,

Vol. 3, 1987, pp. 27-50.

88

Foley, J., Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA,

1990.

Gordon, W., “Blending Function Methods of Bivariate and Multivariate Interpolation and

Approximation,” Society for Industrial and Applied Mathematics Journal of

Numerical Analysis, Vol. 8, 1971, pp. 155-176.

Gupta, K. K., “STARS – An Integrated, Multidisciplinary, Finite-Element, Structural,

Fluids, Aeroelastic, Aeroservoelastic Analysis Computer Program,” NASA TM-

4795, April 2001.

Hagen, H., Topics in Surface Modeling, Society for Industrial and Applied Mathematics,

Philadelphia, 1992.

Hoschek, J., Lasser, D., Computer Aided Geometric Design, A K Peters, Wellesley, 1993.

Jie, T., “A Geometric Condition for Smoothness Between Adjacent Rational Bezier

Surfaces,” Computers in Industry, 1990, p. 355-360.

Joe, B., “Multiple Knot and Rational Cubic β -Splines,” ACM Transactions on Graphics,

Vol. 8, 1989, pp. 100-120.

Kilgard, M., “The OpenGL Utility Toolkit (GLUT) Programming Interface,” API

Version 3, Silicon Graphics, Inc., November, 1996.

Kjellander, J. A., “Smoothing of Bicubic Parametric Surfaces,” Computer Aided Design,

Vol. 15, 1983, pp. 288-293.

Koparkar, P. A., Mudur, S. P., “A New Class of Algorithms for the Processing of

Parametric Curves,” Computer Aided Design, Vol. 15, 1983, pp. 41-45.

89

Lane, J. M., Riesenfeld, R. F., “A Theoretical Development for the Computer Generation

of Piecewise Polynomial Surfaces,” IEEE Transaction on Pattern Analysis and

Machine Intelligence (PAMI), Vol. 2, 1980, pp. 35-45.

Manning, J. R., “Continuity Conditions for Spline Curves,” Computer Journal, Vol. 17,

1974, pp. 181-186.

Mastin, C. W., Parameterization in Grid Generation,” Computer Aided Design, Vol. 18,

1986, pp. 22-25.

Mullenheim, G., “On Determining Start Points for a Surface / Surface Intersection

Algorithm,” Computer Aided Geometric Design, Vol. 8, 1991, pp. 401-407.

“The Initial Graphics Exchange Specification (IGES),” IGES / PDES Organization,

Gaithersburg, MD, 1999.

Nasri, A. H., “Polyhedral Subdivision Methods for Free-Form Surfaces,” ACM

Transactions on Graphics, Vol. 6, 1987, pp. 29-73.

Piegl, L., Tiller, W., The NURBS Book, Springer, 1995.

Rademacher, P., “GLUI: A GLUT-Based User Interface Library,” Version 2.0, The

University of North Carolina at Chapel Hill, June, 1999.

Riesenfeld, R.F., “Applications of B-Spline Approximation to Geometric Problems of

Computer-Aided Design,” PhD Dissertation, Syracuse University, 1973.

“STEP Application Handbook,” ISO 10303, Version 3, SCRA-Institute for Solutions

Generation, North Charleston, June, 2006.

Warren, J., “Free-Form Blending: A Technique for Creating Piecewise Implicit

Surfaces,” Society for Industrial and Applied Mathematics, SIAM Conference on

Geometric Design, November, 1989 Tempe, Arizona.

90

APPENDIX A:

IGES GLOBAL PAREMETERS

 The following parameters are used in the Global section of the standard IGES file.

This data includes all information for the initial preprocessing of the file by the receiving

system. The following information is from The Initial Graphics Exchange Specification

manual produced by the IGES / PDES Organization [1999].

Parameter Item
Identifier Description

1 Parameter delimeter character

2 Record delimiter character

3 Product identification from generating system

4 File Title

5 Generating System ID

6 Preprocessor version

7 Number of binary bits for integer representation

8 Maximum power of ten representable in a single precision floating point number
on the sending system

9 Number of significant digits in a single precision floating point number on the
sending system

10 Maximum power of ten representable in a double precision floating point number
on the sending system

11 Number of significant digits in a double precision floating point number on the
sending system

12 Product identification for the receiving system

13 Model space scale

14 Unit flag

15 Units

91

16 Maximum number of line weight gradations (1-32768). Refer to the Directory
Entry Parameter 12

17 Width of maximum line weight in units. Refer to the Directory Entry Parameter

18 Date & time of exchange file generation 13HYYMMDD.HHNNSS

19 Minimum user-intended resolution or granularity of the model expressed in units
defined by Parameter 15

20 Approximate maximum coordinate value occurring in the model expressed in
units defined by Parameter 15

21 Name of author

22 Author's organization

23 Integer value corresponding to the version of the Specification used to create
the file

24 Drafting standard in compliance to which the data encoded in this file was
generated

25 Date and time the model was created or last modified, whichever occurred last
HYYMMDD.HHNNSS

92

APPENDIX B:

EXAMPLE IGES ENTITY DEFINITION

 The following is an example of the general format for an IGES entity. The

specific entity defined below is the power-basis parametric spline curve entity (defined as

type 112). The first section is the Directory Entry definition section and the second

section is the Parameter Data definition section. While this is a general representation of

the format for an IGES entity, the data and specific definition may vary significantly

based on the entity type under consideration. This information is from The Initial

Graphics Exchange Specification manual produced by the IGES / PDES Organization

[1999]. Please refer to this reference for more detailed and additional explanations.

Directory Entry Section:

PARAMETRIC SPLINE CURVE ENTITY (TYPE 112)

Directory Entry Section

1 2 3 4 5 6 7 8 9 10
Entity Type Parameter Structure Line Level View Formation Label Status Sequence

Number Data Pattern Matrix Display Number Number
112 () <n:a:> #;) #;) 0;) 0;) 0;) ** D #
11 12 13 14 15 16 17 18 19 20

Entity Type Line Color Parameter Form Reserved Reserved Entity Entity Sequence
Number Weight Number Line Count Number Label Subscript Number

112 # #;) # 0 # D # + 1

Parameter Data Section:

Index__ Name____ Type___ Description___
1 CTYPE Integer Spline Type:
 1=Linear
 2=Quadratic
 3=Cubic
 4=Wilson-Fowler
 5=Modified Wilson-Fowler
 6=B Spline
2 H Integer Degree of continuity with respect to arc length
3 NDIM Integer Number of dimensions:
 2=planar
 3=nonplanar

93

4 N Integer Number of segments
5 T(1) Real First break point of piecewise polynomial
.. . .
.
5+N T(N+1) Real Last break point of piecewise polynomial
6+N AX(1) Real X coordinate polynomial
7+N BX(1) Real
8+N CX(1) Real
9+N DX(1) Real
10+N AY(1) Real Y coordinate polynomial
11+N BY(1) Real
12+N CY(1) Real
13+N DY(1) Real
14+N AZ(1) Real Z coordinate polynomial
15+N BZ(1) Real
16+N CZ(1) Real
17+N DZ(1) Real
.. . .
. Subsequent X, Y, Z polynomials concluding with the twelve
 coefficients of the Nth polynomial segment.
6+13*N TPX0 Real X value
7+13*N TPX1 Real X first derivative
8+13*N TPX2 Real X second derivative/2!
9+13*N TPX3 Real X third derivative/3!
10+13*N TPY0 Real Y value
11+13*N TPY1 Real Y first derivative
12+13*N TPY2 Real Y second derivative/2!
13+13*N TPY3 Real Y third derivative/3!
14+13*N TPZ0 Real Z value
15+13*N TPZ1 Real Z first derivative
16+13*N TPZ2 Real Z second derivative/2!
17+13*N TPZ3 Real Z third derivative/3!

VITA

Robert James Fischer

Candidate for the Degree of

Master of Science

Thesis: PARAMETRIC GEOMETRY CREATION METHODOLOGY AND UTILITY
 FOR THE STARS CFD ANALYSIS PACKAGE

Major Field: Aerospace Engineering

Biographical:

 Personal Data: Born on October 7, 1980 in Midwest City, Oklahoma. Son of
James L. Fischer and Vickie J. Fischer.

Education: Graduated from Booker T. Washington High School in May of 1999.

Received Bachelor of Science Degrees in Mechanical Engineering and
Aerospace Engineering from Oklahoma State University, Stillwater,
Oklahoma, in December 2004. Completed the Requirements for the
Master of Science degree in Mechanical Engineering at Oklahoma State
University in July 2007.

Experience: NASA Undergraduate Student Research Program (USRP), 2004;

Teaching Assistant, OSU Mechanical and Aerospace Engineering
Department, 2004-2006; Research Assistant, OSU Mechanical and
Aerospace Engineering Department, 2004-2007.

Professional Memberships: American Society of Mechanical Engineers,

American Institute of Aeronautics and Astronautics, Pi Tau Sigma, Sigma
Gamma Tau.

Name: Robert James Fischer Date of Degree: July, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: PARAMETRIC GEOMETRY CREATION METHODOLOGY AND

UTILITY FOR THE STARS CFD ANALYSIS PACKAGE

Pages in Study: 93 Candidate for the Degree of Master of Science

Scope and Method of Study: Differing methodologies and approaches for the creation of

STARS CFD test case geometry models and support files were examined. The
current methods for model geometry creation have been identified by past
researchers as an area needing improvement. The current methods limit the
complexity of the model used, can require a significant amount of project time (in
some cases, more time than the CFD analysis), and require an experienced user in
order to successfully employ.

Methods of geometric data transfer, storage, and processing were examined for
their applicability and usefulness in the STARS solution procedure. An approach
which would utilize existing CAD geometry created with commercial software
was selected in order to allow the importation of existing and third party models
and to facilitate the quick creation of models from a known CAD application.
The IGES (Initial Graphics Exchange Specifications) standard was chosen as the
data transfer type due to its wide spread usage and efficient processing
techniques. Various methods for geometric entity processing and evaluation were
examined.

A CFD model creation utility was then developed for STARS. The utility
converts existing IGES files into the set of files needed for a general CFD
analysis. A graphical user interface was also created in order to aid the user in the
specification of geometric, meshing, and solution parameters.

Findings and Conclusions: The development of a STARS geometry creation utility

proved to provide an efficient and effective means for completing an important
step in the STARS analysis process. Project efficiency can be greatly increased,
and even inexperienced users may now quickly create the files needed for the
analysis of a complex model geometry.

Several test cases were utilized in order to examine the effectiveness of the utility.
Among these were the F-22, two OSU competition aircraft, and a hypersonic
flight vehicle. The utility allowed for the rapid creation of STARS files for these
models in what would have taken several days at a minimum to create with
previous methods.

ADVISOR’S APPROVAL: _______Dr. Andrew S. Arena, Jr._____________________

