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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Computational Fluid Dynamics (CFD) analysis tools offer an important and vital 

design component for many aerospace applications.  As a result of the implementation of 

modern CFD tools and techniques, many important flight characteristics of new and 

experimental aircraft may be determined and examined early in the design process.  The 

use of CFD methodology has resulted in faster, more cost efficient design evaluation and 

a safer, more accurate design process.  Many flight characteristics that previously 

required expensive and time-consuming experimental testing can now be determined 

through the use of CFD.  The use of CFD software also enables a designer to easily make 

and analyze changes to a particular aircraft component or configuration and thus iterate 

through many design ranges.  Such a procedure may be prohibitive when relying solely 

on physical testing.   

 Different CFD software applications have been developed and implemented over 

the years, with differing design goals and solution methodologies for each.  The STARS 

analysis package is a design and analysis tool which incorporates aeroelastic, structural, 

and CFD applications.  It was developed at NASA’s Dryden Flight Research Center.  

One unique element of the STARS package is the non-inertial flow solver developed by 

Cowan [2003].  This application, Euler3D, can solve compressible, inviscid flow 

problems through the use of the unsteady Euler equations.   
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1.2 STARS CFD Solution Procedure Overview  

The use of Euler3D for test case simulation is a relatively straightforward process.  

Several files must first be generated by the user in order to run a steady or unsteady flow 

simulation.  Some of these files include a surface geometry file, background file, 

boundary conditions file, flow properties file, and a dynamics file (if needed).   

The first step in the process is the creation of a surface mesh for all model 

geometry entities.  This mesh forms the defining basis for the volume grid generated 

later.  The surface mesh generator requires data from a geometry file (“sur” file) and a 

background file (“bac” file).  The surface file contains all of the information needed to 

describe the test case geometry (i.e. surfaces, boundary curves, and surface normal 

directions).  An example of the basic content and structure of the sur file is given in 

Figure 1. 

 

$ CONVERTED SURFACE ENTITY:  AIRCRAFT
265    96
$ Curve Components
1 1
 20
 73.5556 12.8269 13.4734
 73.8236 12.7994 13.4941

… … …
77.8754 12.8609 13.5292
78.1453 12.8752 13.5257

2 1
 20

 78.6921       12.9178       13.5224
 78.4155       12.9223       13.5031

… … …
… … …
… … …

$ Surface Components
1 1
 2 2
 78.7336       13.6622       13.0815
 78.8471       12.7957       13.5838

… … …
… … …
… … …

$ Mesh Generation
265 96

$ Segments in Curves
1 1 1
2 2 1

… … …
$ Regions on Surfaces
1 1 1

5
3 4 -1           5          -14

3 3 1
25
-31         6          149 …

… … …
… … …

Figure 1:  Surface File (sur file) Structure 

Header Section

Boundary Curve Definitions

Surface Definitions and Orientation

Curve / Surface Parameters

Curve Sub-segments 

Surface Region Definitions 
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The background file contains parameters which are used to define the element 

distribution throughout the flow domain.  With respect to the initial surface meshing, this 

file can be thought of as specifying the “tightness” of the mesh in different surface 

regions.  This is accomplished by allowing the user to create “sources”.  The grid spacing 

may be influenced locally by defining the spacing for each source (specified by an inner 

radius spacing and an outer radius spacing).  The sources may be defined as point, line, or 

triangle entities.  The placement (and size) of these sources is a very important 

consideration when beginning the gridding process.  The number and distribution of 

elements can have a dramatic impact on both solution accuracy and computational time.  

It is desirable to include enough elements to completely capture all flow effects, however 

a compromise must be reached to ensure that a realistic solution runtime can be achieved.  

Therefore, the user must be sure to specify sufficient source definitions in all important 

regions on the geometry and in the flow domain.  The background file is also used to 

specify the background grid spacing.  An example of the background file structure is 

given in Figure 2. 

The remaining two files required to complete a general test case solution are the 

boundary conditions file (bco file) and the flow properties file (con file).  The boundary 

conditions file may be used to specify the surface and curve types used in the sur file.  

The surfaces may be defined as a solid wall, symmetry surface, or far field.  The bac file 

defines singularity conditions for each curve (which could include all curve points or end 

points).  The con file is used to define all necessary flow and solution properties.  Mach 

number, alpha, beta, number of solution steps, and dissipation are a few of the possible 

parameters that can be specified in this file.   
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$ Bac File created from AIRCRAFT.sur
8 6 2 22 16
1 505.006 -484.653 -491.625
1 0 0 30
0 1 0 30
0 0 1 30
2 505.006 490.222 -491.625
1 0 0 30

… … … …
… … … …
… … … …

1 1 2 4 8
2 1 2 8 6
3 1 6 8 5
4 2 3 4 7
5 2 7 4 8
6 2 7 8 6

$ Point Source Data
$ Point Source 1: Fuselage Nose

-15.9 0.014 0 0.2 1 3
… … … … … …
… … … … … …

$ Line Source Data
$ Line Source 1: Canard, Port, LE

-13.6455 -2.4 2.1 0.25 0.5 1.5
-13.6455 -2.4 9.5 0.25 0.5 1.5

… … … … … …
… … … … … …

$ Triangle Source Data
$ Triangle Source 1: Canard, Port, Outer panel

-13.65 -2.4 2.1 0.5 1 3
-13.65 -2.4 9 0.5 1 3

-5.65354 -3.2 9 0.5 1 3
… … … … … …
… … … … … …

Figure 2:  Background File (bac file) Structure 

 The surface mesh that is generated from the sur and bac files is used to create a 

volume grid of elements (which can contain up to several million elements).  The 

resulting file is then reordered with an intermediate program (makeg3d) at which time the 

boundary conditions are applied.  This file is then used with the con file as input for the 

Euler3D solver.  Several solution files are generated by Euler3D.  One of these is a loads 

file (lds file) which contains the calculated X, Y, and Z forces and moments at each 

solution step.   

 

1.3 Objective 

 The creation of test case geometry files (including surface files, background files, 

and boundary condition files) can be quite tedious for complex geometries.  One of the 

Header/Source Specification 

Background Grid Point 
Definition (and Spacing) 

Tetrahedral Element and 
Vertex Definition 

Point Source Specification 

Line Source Specification 

Triangle Source Specification 
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most time consuming steps in the preparation of a STARS project is the generation of the 

primary geometry file, the “surface” file.  As noted by Babcock [2004], the generation of 

the geometry model may require more time than the CFD analysis.  An aircraft CFD 

model may require several hundred complex surfaces and curves to define.  A model of 

sufficient complexity may even be prohibitive in certain cases if the designer is required 

to input the entire model manually.   As such, the user may be required to resort to 

oversimplified representations of the model geometry which may not accurately capture 

all of the desired flow effects.  A further difficulty lies in the debugging of manually 

created geometry files.  A single complex surface may require many hundred coordinate 

values to define.  If the model contains dozens, or hundreds of surfaces, much time can 

be devoted to locating errors in a model that continually fails in the mesh or grid 

generation process.   

 Also, the geometry files (including the surface file, background file, and boundary 

condition file) can require much time and practice for a new, inexperienced user to 

become proficient with.  This may limit the ability of new users and restrict them to 

relatively simple test case models.  The time that a new user spends creating these files is 

already significant, therefore a complex aircraft model would most likely be a very time 

consuming task for them.   

 In light of these observations, it has become desirable to develop a tool which 

could increase the efficiency of this step in the STARS solution process.  An application 

which could allow the user to easily import or create geometry files from existing 

computer aided design (CAD) software could greatly reduce the amount of project time 

dedicated to this task and allow the user to focus his/her effort on the flow solution and 



6

its evaluation.  Such a tool could also allow the user to rapidly create many different 

geometry models representing different flight configurations or modifications to the 

geometry.  This would make an iterative design study possible for many different design 

parameters even in the case of an extremely complex aircraft geometry.   

 The goal of the current effort is to investigate the implementation of such a tool 

and to develop an application to complete the desired tasks.  The application should be 

user friendly and capable of accurately and efficiently generating all of the necessary 

geometry files to complete a general STARS CFD analysis. The application should be 

capable of generating the sur, bac, and bco files.  It is also desirable to develop a user 

interface which will facilitate the use of the application by a wide range of users.  If 

designed and implemented properly, the application should significantly reduce the time 

required to generate the supporting files for a STARS CFD project.   
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Geometry Utility Approach 

The approach for the geometry file generation utility (conversion program) was 

initially investigated as a choice between two different methods:  the development of a 

completely independent, self-standing 3-D CAD program with an integrated user 

interface and conversion utility, and the development of a program which could convert 

existing CAD geometry generated in a commercial software package with a 

corresponding user interface.  The decision was made early on in the process to utilize the 

latter method, and the justification for this decision follows.   

• First, it was desired to be able to easily create STARS files for geometries 

generated and received from third party sources.  In these cases, the party 

generating the geometry may not have access to a specialized STARS CAD 

program or may not want to recreate their geometry files.   

• The creation of a program which could accept a standard commercial CAD format 

would allow the easy transfer of files between users and would also allow the use 

of the same CAD files for STARS analyses as were used for other analysis/design 

programs.  An example of this could be a simple aircraft geometry created in 

Pro/Engineer.  A user may desire to create a CAD model in Pro/Engineer in order 

to utilize the built-in structural, thermal, or machining applications.  A post-CAD 
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converter would allow the user to utilize this existing model for a complete 

STARS analysis. 

• A new 3-D CAD program would require a user to learn and become familiar with 

a new modeling program.  Many designers already have experience with existing 

CAD software packages and are able to rapidly and easily create their desired 

geometry with that software.  A requirement to utilize a new modeler would slow 

down the design process and would add unnecessary complications.  This may 

result in fewer users utilizing the converter and in users creating representations 

that do not exactly match their existing geometry (due to differences in modeling 

tools).  

• The use of a post-CAD converter program would allow the easy creation of 

STARS files from any existing (legacy) geometries.  This would avoid the 

necessity of recreating several existing geometries which are desired for STARS 

analyses. 

• Finally, the many commercial CAD programs which exist have several complex 

and useful design tools and features which would require extensive programming 

development and refinement in order to usefully employ.  Most of these have 

required years of development and would have greatly extended the development 

requirements of this converter program.  For example, Farin [1993] describes the 

development of basic CAD software as requiring multiple authors and several 

years of development time.  It would not have been efficient to attempt to recreate 

the level of design quality of a commercial package and still remain focused on 

the overall goal of the creation of STARS geometry files in a timely manner. 



9

2.2 Selection of Graphics Data Exchange Format 

Because of the reasons listed above, the decision was made to develop a program 

which could accept geometry files from existing CAD software and convert them into 

files necessary for a STARS analysis.  It was also decided that this approach, when 

combined with a well developed user interface (and other support programs), would 

allow even inexperienced users to use the STARS software with relatively little effort and 

would greatly reduce the time needed to develop a working knowledge of the STARS 

analysis process.   

 

2.2.1 IGES 

IGES Background 

Since the development of early CAD software packages in the late 1960s, several 

different standards for the exchange of geometric data have been developed.  In the late 

1970s an effort was made to develop a standard, unified exchange format [Piegl, 1995].  

This would allow designers to more easily create and transfer data among a wide variety 

of CAD and analysis programs.  The resulting format was developed into the first 

national standard for CAD in 1979, which was collectively called the Initial Graphics 

Exchange Specifications, or IGES [The Initial Graphics Exchange Specification (IGES), 

1999].  IGES was initially created to allow designers to transfer two-dimensional 

engineering drawings between non-common (dissimilar) systems.  However, the 

specification was quickly expanded to include all entities needed for three dimensional 

models.  IGES has also been expanded to include the translation and communication of 
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FEA models (to include boundary condition specification and unique entities such as 

loads and connectivity).   

IGES has been created and maintained as an open standard, which is a key 

element to its broad use and success.  Users create and employ new entities which are 

then reviewed and often incorporated into the official IGES ANSI standard.  This has led 

to a continual improvement and modernization of the standard by the end user. 

IGES Format 

IGES was developed as an entity based standard. Fundamental entities necessary 

for CAD were initially developed, and entities of increasing complexity and versatility 

were gradually added to this set [The Initial Graphics Exchange Specification (IGES) 

1999, Piegl 1995].  The entities include both geometric and nongeometric components.  

The geometric entities include all required items to fully define a physical body (such as 

points, arcs, splines, surfaces, etc.).  In some cases there are multiple methods for 

defining a geometric property.  These parallel the development (and implementation) of 

computer aided design methods.  Examples include rational Bezier splines and surfaces 

(as created and defined by Bezier [1972], and outlined by Boehm [1987] and Joe [1989]), 

non-uniform rational Bezier surfaces (NURBS) (using evaluation and specification 

methods as outlined by Piegl [1995]), and power based surface definition [Farin 1993, 

Hoschek 1993].  The range of entities available for specifying a property makes IGES a 

versatile standard and allows users to employ a specification method which will be 

optimal for their particular case but will also be transferable to other systems.   

Nongeometric entities are included for increased detail in shape specification as 

well as items necessary for the generation of engineering drawings and finite element 
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models.  Several of these nongeometric entities allow (and are necessary for) precise 

surface definitions.  An example would be a grouping of boundary splines, a NURBS 

surface, and all related references to other groups of trimming, translation, rotation, and 

scaling entities for the surface.  This method allows for efficient data retrieval in the file 

and results in a decrease in redundant geometry definitions that are present in other 

standards.  Several nongeometric entites have been incorporated to describe specific 

attributes and properties of both the individual and grouped geometric entities and the 

complete physical elements of the model as well.   

The IGES data files are composed of ASCII text which can be easily created and 

translated by sending and receiving systems. 

 

2.2.2 STEP 

 STEP Background 

In 1984 the ISO (International Organization for Standardization) began to develop 

a new data exchange format that was meant to be the successor of the IGES standard.  

This standard became officially titled ISO 10303, but the acronym STEP (STandard for 

the Exchange of Product model data) has become the common title for the standard 

[STEP Application Handbook, 2006].  The goals for the development of STEP differed 

from those of IGES.  While IGES was developed as primarily a geometric data transfer 

tool, STEP was developed as a means to transfer a very broad range of product data 

(encompassing the entire life cycle of the product / part).  This data includes not only 

design elements, but many other elements such as machining, disposal, and maintenance 

data [Piegl, 1995].   
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STEP was developed as a modular standard.  Instead of the creation of one set of 

standard data transfer types which each must be approved, tested, then added to the set 

(an example of this structure is the entity based IGES standard), STEP was created to 

encompass many subsets of standards for data transfer.  These subsets are known as 

Application Protocols (or AP’s) [STEP Application Handbook, 2006].  Therefore, STEP 

may be thought of as an umbrella for many approved and uniformly formatted standards 

instead of one single large standard.  Each Application Protocol in STEP has been 

developed for a specific kind of product data either by the ISO or by third party 

organizations.  The APs are submitted to the appropriate review committees and are 

evaluated and tested for completeness and usefulness (this process follows several stages 

in the ISO Standardization process, see STEP Application Handbook [2006]).  Currently, 

twenty-two APs have been approved and implemented in the STEP file structure.  A 

listing of some example APs is given in Figure 3.  The current APs provide enough 

entities to make STEP a useful tool for engineering data transfer, however many believe 

that the full capabilities of STEP have not yet been realized.  Many more Application 

Protocols are currently under review / development and it is expected that the total 

number of APs will eventually reach into the hundreds.   
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Figure 3: Example STEP Application Protocols (APs) (figure from STEP Application 
Handbook [2006]) 

 
The first version of STEP was implemented in 1994 (approximately ten years 

after the initial development began).  Since that time, a second major release has occurred 

to update the standard (in 2002).  One of the criticisms of STEP is the lengthy process 

required for the development and approval of APs.  This has possibly led to a slower 

acceptance for STEP and has resulted in a slow development and implementation of the 

standard (other methods for exchanging some of the non-geometric product life cycle 

data have been developed at a much faster rate and have thus gained greater acceptance 

and usage). 
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STEP Format 

The specific format and information included in a STEP data file is individually 

defined by each Application Protocol.  Despite some variations, the overall structure for a 

given file follows the same general format.  There are two primary sections: a header 

section and a data section.  The header section contains optional items (which may 

describe the authoring system and other descriptory information) and all necessary items 

to read and translate the file by a receiving system (this includes entities such as the 

context information of the data section entries, the schema for the entries, and population 

groupings of the entries).   

The data section is composed of “instances” which are specific for the AP 

currently employed (the properties of the instances are specified in the header definition 

section).  The instances may represent either complex entity data types or single entity 

data types.  Single entity data types are used when possible and contain a list of all 

necessary attributes for the instance listed in a formal predefined order (all attributes 

needed are listed under the name of that particular instance).  Complex entity data types 

are necessary for some features that require multiple grouped entities (these may be either 

mapped locally (to internal attributes) or externally.  One feature in the data section that 

is different from other standards (such as IGES) is that the attributes in STEP contain 

only non-derivable terms (for instance, derivative terms may not be given in an attribute 

list for an entity).  A short example of a STEP file illustrating the basic format of the two 

sections is shown in Figure 4.   
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Figure 4: Example STEP file structure (figure from STEP Application Handbook [2006]) 

As with the IGES standard, the STEP data files are created with ACII text which 

helps to facilitate their readability as well as translation by receiving systems. 

 

2.2.3 Additional Graphics Data Exchange Formats 

In addition to IGES and STEP, several other data exchange standards were also 

examined for their potential use.  The standards examined were chosen because of their 

current employment in various engineering and CAD fields.  Some of the standards that 

were under consideration are listed below. 

• VDA – QMS (Quality Management System):  Developed primarily as a means for 

transferring surface model data. 

Example header 
section  

Example data 
section with single 
entity data types  
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• ACIS:  3-D model format developed by the Spatial Corporation and released in 

1989 (latest version in 2006).  Openly published until year 2000 release. 

• VRML (Virtual Reality Markup Language):  Developed to transfer data (points 

and edges) for polygon entities (specifically created for transferring models for 

various geometry viewer applications) 

• Wavefront: Solid object file 

• SET 

While the data exchange formats in this list generally represent adequate methods 

to accurately transfer model data, they were not considered further after the initial 

investigation.  In most cases, a primary reason for this rejection was their limited usage in 

current CAD software (compared to other standards).  A standard which most users were 

familiar with and may have previous experience with would be preferable.  Other reasons 

for their rejection at this point include inefficient geometry translation and storage (due to 

lack of optimal entity types) [Hagen, 1992], inability to transfer data between different 

CAD programs, and limited and/or poor documentation.   

 

2.3 Surface Tessellation 

 In addition to utilizing standards which transfer complete geometric definitions of 

the model components, methods for transferring simplified tessellated versions of the 

model were also examined.  Many CAD software packages have methods for creating 

and exporting faceted surface representations of solid objects.  These methods create 

nodes on the various surface entities and use these to define the vertices of planar surface 

patches.  Most commonly, the surface patches are created as triangular facets (see 
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Floriani [1987]), but it is possible to define more complex facets with an increasing 

number of vertices (but generating systems rarely utilize faces with more than three 

vertices).  Examples of faceted models are shown in Figure 5.   

Figure 5:  Example faceted surface representations of 3-D objects. 

Vertex placement is dictated by the curvature of the surface being represented.  

Therefore, it is not uncommon to create very large, skewed facets (described in 

tessellation surfacing methods by Hoschek [1993]) as seen in Figure 5.  The tessellation 

transfer format which was examined was called STL (or the Standard Tessellation 

Language).  This is the most common format for transferring faceted surface information 

in CAD programs.  The file generated is a simple ASCII listing of all facets for a chosen 

solid part.  The basic STL format is given below: 

solid loop identifier 
begin global facet loop 

facet normal vector x y z
first vertex node (x11 y12 z13) 

 second vertex node (x21 y22 z23) 
 third vertex node (x31 y32 z33) 

facet loop  
end solid definition 
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It is not uncommon for the ASCII STL files to become excessively large.  

Therefore, the facet vertex listing is not a very efficient means of describing and storing 

surface definitions.  A binary STL format also has been developed in order to reduce 

memory requirements, however the files still remain very large compared to the entity 

based standards such as IGES and STEP.   

While the generated file is easy to interpret by receiving systems, there are several 

disadvantages to using faceted surface definitions as a primary means to transfer solids 

geometry data.  First, it is no longer possible to increase the surface resolution (or 

definition) of an object from the faceted representation.  The continuous curvatures have 

been replaced by flat surfaces with discontinuities between them.  Therefore, part of the 

surface definitions will always be lost and cannot be regenerated from this representation.  

Global surface definition items (such as boundaries) are also lost when utilizing this 

format; therefore it is not possible to easily group the facet elements into a single surface 

definition.  Defining each facet as an individual surface entity was considered, but this 

would not be practical for the desired usage in STARS (the geometry file would become 

very large and virtually unreadable/editable by the user).  Because the file only consists 

of non-grouped vertex listings, the groupings and placement of individual surfaces would 

be difficult for the user to interpret.   

Testing was carried out to determine if the tessellation nodes (which are created 

on the actual surfaces and surface boundaries of the model) could be easily grouped into 

elements which could be used to create surface definitions.  This was determined to be an 

unsatisfactory approach because of the non-uniformity of the point definitions 

(placements).  Using only the STL generated tessellation nodes to define a ‘U-V’ grid of 
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surface patches can result in a very distorted surface definition with ‘waves’ in the 

resulting future surface representations/interpretations (due to the forced fitting of splines 

to these nodes).  Although the creation of new nodes by means of 

interpolation/extrapolation between the STL nodes could be carried out in order to create 

a uniform grid of surface patches, this was not considered because of the inaccuracies and 

inconsistencies with the actual surface model that would result.  The large spacing and 

very skewed elements that can exist in a faceted representation [Hoschek, 1993] made the 

possibility of errors in interpolated nodes very likely and the effects pronounced.  A 

secondary, less severe problem encountered when attempting to use the STL nodes to 

generate surface grids was the unstructured nature of the vertex listing.  Surface facet 

definitions are not necessarily created in an order corresponding to a single surface.  

Therefore, in complex models, linking the nodes to a particular desired surface entity can 

become complex and a source of errors.   

Although the use of model representation methods such as surface tessellation 

may seem to be a faster, more efficient approach, the negative factors previously 

discussed make their use impractical for application in the creation of STARS files.  In 

summary, a faceted representation was not chosen due to these factors: 

• Use of discontinuous, flat surface ‘tiles’ would diminish further refinement and 

definition of the geometry when generating surface meshes 

• Continuous, smooth surface curvature would be replaced by flat tiles with  non-

tangent ‘corners’ between them (which could, for example, result in shocks at 

each facet-facet interface) 

• Use of STL nodes alone cannot create satisfactory ‘U-V’ surface grids 
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• Interpolated points for ‘U-V’ surface grids would result in inaccurate node 

placement 

• STL geometry representations tend to be inefficient for complex CAD models 

 

2.4 Final Selection of Exchange Format 

The initial decision was whether to use one of the existing 3-D model exchange 

standards or utilize the data from a faceted representation to create an accurate model.  As 

discussed in the previous section, several factors exist which make the use of a faceted 

model representation impractical for use in the current application for STARS.  After an 

initial investigation, it was also determined that the creation of a new model using the 

data from the faceted representation would be inefficient compared to the utilization of an 

existing graphics standard.  Therefore, the use of a faceted geometry file was not 

considered further. 

Several standards for graphics data exchange were examined.  Of the seven 

transfer methods previously discussed, only two warranted serious consideration.  The 

other five standards/methods (VDA – QMS, ACIS, VRML, Wavefront, and SET) 

exhibited narrow usage/employment and possessed various other shortcomings which 

diminished their viability.   

The two standards which were further considered for geometry transfer were 

IGES (Initial Graphics Exchange Specifications) and STEP (STandard for the Exchange 

of Product model data).  These standards share many positive attributes.  Both are widely 

used in many engineering applications, are efficient and effective means for translating 

and storing geometry data, and have good public documentation.  After a careful 
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investigation of both standards (as discussed in previous sections), IGES was chosen as 

the standard to use for the current STARS application.  The reasons for choosing IGES 

over STEP are outlined below: 

• Although both are commonly used, IGES has been used more frequently and 

many people have more experience with this standard (and have stored many of 

their models with this format) 

• IGES files tend to be more efficient for creating larger, more complex geometry 

files (which decreases the STARS conversion time) 

• The format of the IGES file enables easier readability and interpretation 

• Many of the additional translation features available in STEP (such as 

manufacturing and disposal data) are not needed for the present purposes 

• IGES has been in existence and use much longer than STEP 

One element of IGES which was found to be lacking with respect to STEP was 

the available published documentation.  Documentation and guides for IGES do exist, 

however they were found to lack adequate information on several entities.  In some cases 

multiple references must be consulted in order to obtain the correct user information.  

The documentation for STEP was found to be much more current and complete.  The 

STEP references also contained much more detailed information about all aspects of this 

standard. 
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CHAPTER 3 

METHODOLOGY 

 

The geometry utility under consideration makes use of several key geometric 

entity types.   Although differences in their use and employment exist, there are 

commonalities in the primary elements of each.  Several of these entity types form the 

foundation of basic CAD and 3-D geometry software as well as widely used standards 

such as IGES and STEP.   

While many simple geometry constructs are in existence (such as simple vectors, 

points, etc.), several more complex geometry features exist and therefore require more 

robust and detailed methods for their numerical representation.  The deign features which 

are the most challenging to represent are model curves and surfaces.  Several methods for 

accurately creating a curve or surface model have been developed and are extensively 

employed in geometric design.  Different methods may be used to create these entities 

depending on algorithmic requirements, with the two primary methods being parametric 

and implicit definitions. 

 

3.1 Implicit and Piecewise Implicit Surface Creation 

The implicit method for creating complex curves and surfaces is the most familiar 

and intuitive method for many people.  Surfaces and curves are defined in three 
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dimensions by equations which define implicit dependencies between the three 

coordinate components of the included points: 

 ( ) ( ){ }0,,,, =zyxFzyx

A very simple example of an implicit surface definition is that of a unit sphere (with no 

displacement): 

 01),,( 222 =−++= zyxzyxf

A primary advantage of using an implicit definition is that no control points with 

sometimes complex conditions need to be defined, as is the case with a parametric 

definition.  This is true in the case that ),,( zyxf and its first partial derivatives are 

continuous.   

However, the use of implicit functions for defining complex model geometries 

poses several difficulties when employed in a computational manner.  First, no method to 

define the direction of the surface or curve definition exists in the implicit format.  This 

hinders the ordered creation of patches and grids. Also, the creation of implicit 

definitions for surfaces does not translate easily to a program (computational) algorithm.  

A more significant difficulty to overcome is that it can be problematic to create curve and 

surface divisions (in other words, connected bounded pieces of the curve or surface) 

which make up a grid of tangent surface patches.   

A technique to overcome the difficulty of creating bounded surface components 

(patches) from implicit definitions is denoted as “free-form blending” [Hagan, 4], or 

piecewise implicit blending.  This method involves the creation of an interpolation 

function (continuous to the Ck partial derivative specified by the input data) approximated 

from geometric data.  As discussed by Hagen [1992], a body’s surface geometry is first 
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divided into the desired number of surface regions (or patches) specified by the user.  

This chosen surface region is then subdivided into several polyhedral faces.  An 

interpolating function is then defined for the set of vertices of the polyhedral faces.  This 

can be used to define surface contours and generate a bounded grid definition for the 

surface patch under consideration.  The polyhedral faces used are usually triangular 

elements as seen in Figure 6.  The addition of new elements and vertices as seen in Figure 

6 is analogous to adding new nodes to a purely parametric surface definition. This results 

in gradual modifications of the surface contour and increases the surface resolution.  

Adaptive surface correction algorithms can be created to modify the implicit definition in 

this way and therefore reduce errors between the actual geometric data and the implicit 

representation. 

 

Figure 6.  Example triangular elements subdividing a surface patch (figure from Hagan 
[1992]). 

 
The “free-form” piecewise blending technique results in the creation of 

interpolants for the given set of geometry data.  The interpoltant method generates 
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interpolating implicit functions which represent the set of vertices in the current surface 

patch.   

In the current case we focus on the zero order contour interpolants (C0) which 

represents the actual model surface contours needed for solid model geometry definitions.  

Hagen [1992] suggests using two classes of interpolants in this case: simplical and 

cubical interpolants.  The simplical interpolant utilizes linear interpolation between the 

vertices of the elements (triangular in this case).  In this case, the vertices have the effect 

of acting as control points as would be utilized in a B-spline definition.  An example of 

this is given in Figure 7.   

Figure 7:  Example contour fit through linear interpolation of element vertices. 

In the case of a cubical interpolant, Hagen [1992] suggests defining a ‘hypercube’ 

consisting of a greater number of points per element.  Additional information regarding 

the interpolant technique can be found in Warren [1989].  

Although techniques for resolving the problems associated with using implicit 

curve and surface definitions exist, such as “free-form blending”, the implementation of 
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these techniques can require complex algorithms which may lead to model inaccuracies.  

The methods to resolve the problem of generating a properly bounded surface patch 

illustrate this difficulty.  The “free-form blending” piecewise method basically requires 

the creation of contour control techniques as used in parametric surface definitions 

(which eliminates one of the advantages of using an implicit definition). The added 

difficulty of fitting implicit functions to this data and creating a new set of tangent Ck

continuous patches (as seen in examples from Hagen [1992]) makes the use of techniques 

such as this problematic.   

 

3.2 Parametric Curve and Surface Creation 

The most predominant method for representing geometric models in a 

computational manner is through the use of parametric functions.  The nature of 

parametric functions makes them far better suited for many programming algorithms.  

Unlike implicit geometric functions, parametric methods do not create functions which 

define dependencies between the coordinate components.  Instead, an explicit function is 

defined for each separate coordinate.  An independent parameter (sometimes referred to 

as a ‘local parameter’) is then used to transverse between user specified bounds for each 

coordinate component.  This new parameter is usually normalized to transverse between 

0 (start point) and 1 (terminate point), although the interval used can be arbitrarily 

specified by the user.  Specifying this independent parameter as t, the explicit 

representation of a curve can be written as 

 ))(),(()( tytxtF =
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with 

 bta ≤≤

After defining the interval bounds for the parameter variable, it is a simple task to create 

uniform nodes along the curve from the coordinate functions.   

In order to define a surface region, the same method is extended to the use of a 

second parameter variable.   

)),(),,(),,((),( vuzvuyvuxvuF =

Sweeping through the range of one parameter while holding the second constant 

allows the user to create a uniform grid of nodes for a surface element.  This makes the 

computational creation of a surface representation a relatively straightforward task to 

accomplish.  Returning to the simple example of defining the surface contours of a 

sphere, the surface specification now occurs as a group of three coordinate functions as 

opposed to the single implicit function seen previously. 

 
)cos(),(

)sin()sin(),(
)cos()sin(),(

uvuz
vuvuy
vuvux

=
=
=

where the parameter intervals are defined as 
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Transitioning through the v interval at specific values of u results in the creation of a 

surface grid.  Normal vectors may be evaluated at each node in the grid by simple cross 

products of the local u-v vectors.  A u-v element of a surface patch is shown in Figure 8.   
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Figure 8:  Example parametric surface patch. 

The inherent ease of creating a bounded, ordered curve or surface through 

parametric definitions makes this method preferable and more appropriate for the current 

effort.  Therefore, several methods for representing model entities through parametric 

means will now be discussed.  All of these methods are employed by modern CAD 

packages and geometric data standards.   

 

3.2.1 Monomial Interpolation Method 

This method is often referred to as the ‘least geometric’ method used to define 

curves and surfaces due to its lack of control points, polygons, weights, knots, and other 

shape control elements.  The monomials used can be viewed as replacing the basis 

functions used to define Bezier curves (or can be referred to as a special case of basis 

functions).  The basis functions used to represent the polynomials in this case can be 

expressed as kx , which are linearly independent functions (such as 1, x, x2, …).  Using 
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the monomials to create the shape polynomial, the parameterized function can be 

expressed in non-rational form as 
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In this case, n represents the degree of the curve under evaluation.  The individual 

coordinate components for a three dimensional curve can be explicitly expressed as 
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with the xj, yj, and zj representing the basis coefficients.  

One advantage of using the monomial approach to curve/surface definition is the 

relative ease and efficiency for computing desired points compared to other methods.  

Less memory is typically required when using this approach and it is somewhat more 

computationally efficient.  The method most commonly used to evaluate a monomial 

curve/surface is Horner’s method [Piegl, 1995].  For example, assuming a curve of 

degree n  
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where the remainder 00 bR = . Example applications of this method for curves of varying 

degree n follow [Piegl, 1995]: 
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Despite the relative ease of computing points on a monomial curve/surface, a 

number of significant disadvantages in their implementation exist.  The first disadvantage 

is the lack of a geometric nature in the polynomial expression.  The expressions tend to 

be of a more algebraic form and lack the elements that are often useful (and have become 
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almost commonplace) in geometric modeling (namely, knots, control points, etc.).  

Second, only the initial endpoint conditions are specified by the user (at u = 0).  This can 

lead to difficulties in endpoint matching.  However, a much more significant problem 

encountered while utilizing this design approach is the inherent instability due to 

numerical inaccuracies (round-off error [Piegl, 1995]).  The monomial form tends to be 

very sensitive (and therefore greatly affected) by numerical inaccuracies and the 

computational precision used.  This degree of sensitivity is illustrated in the figure from 

Farin  [1993] below (Figure 9). 

Figure 9:  Example of the effects of slight coefficient perturbations on monomial (light 
gray) and Bezier (black) formats (figure from Farin [1993]). 

 
The problems incurred by round-off errors are increased further by the fact that 

only the start point (u = 0) is specified with this method.  Therefore, the terminate point 

for a curve (or the u, v terminal edges for a surface) must be calculated and are subject to 

calculation inaccuracies.  This results in curve and surface discontinuities (increasingly so 
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for higher degree cases [Farin, 1993]) and may result in geometry failures in receiving 

systems.  This terminal point/edge error when using monomials is shown in Figure 10.   

 

Figure 10:  Exaggerated example of the effects of round-off error on surface patch 
continuity (figure from Farin [1993]). 

 

Despite these potential design and implementation difficulties, this approach still 

remains a useful method to employ.  It has historically been a much faster method for 

geometry evaluation and is relatively efficient for geometry data storage.  Because of 

these two advantages, many early CAD and design software types relied heavily on 

monomial methods for data storage and transfer.  However, advancements in 

computational speed and the memory available in current computers have rendered these 

advantages less significant.  Therefore, the computational inaccuracies from round-off 

error (and precision) are much more of a design factor when choosing how to represent 

geometric entities.   

The historical usage of monomial methods means that they are still commonly 

encountered in many current geometric standards and CAD software.  So it is still 

necessary to include techniques to evaluate functions of this type in any receiving system 

software.   
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When using monomial functions, some generating systems typically use lower 

degree functions to eliminate the greater sensitivity to coefficient perturbations incurred 

with higher degree polynomials.  Typically, the degree used is fourth order or lower.  

This means that the curves and surfaces must be highly segmented in order to be 

accurately represented.  While this decreases the sensitivity to coefficient perturbations, 

the increased number of piecewise segments leads to greater difficulty in dealing with the 

terminal point round-off errors (see Figure 11).  Therefore, additional algorithms must 

often be employed to adjust or truncate the terminal point coordinates in order to ensure 

proper curve/surface connectivity.  While this may be appropriate in certain cases, this 

can lead to surface discontinuities (cusps) and other complications (Figure 11). 

 

Figure 11:  Example discontinuity due to terminal/start point adjustment. 
 

3.2.2 Bezier Form for Curves and Surfaces 

A much more geometrically informative method for a designer to create curves 

and surfaces is through the use of Bezier and B-Spline functions.  In the monomial 

method, the coefficients that were used provided little information to the user about the 

Surface Cusp 
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properties of the curve/surface.  The Bezier method, however, places much more 

importance on the function coefficients and other related control entities.   

The Bezier form for representing curves and surfaces (which is a more specialized 

form of the B-spline) has become one of the dominant and preferred methods for 

geometric data storage and transfer.  In contrast to the monomial method, which used the 

linearly independent functions kx as basis functions, this method makes use of Bernstein 

polynomials to define the basis functions.  The binomial formula is used to derive the 

Bernstein polynomials [Hoschek, 1993].  The binomial formula can be defined as 
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The greater stability offered by the use Bezier definitions (see Figure 10) as well 

as the ability to fully specify both endpoint conditions makes this method attractive from 

a computational perspective.  The additional geometric control features offered from 

Bezier curves make them attractive from a designer’s perspective.  The foremost feature 

that is geometrically beneficial is the control point matrix, { }iP . A non-rational Bezier 

curve of degree n is specified using this set of control points as 
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This is the general form of a non-rational Bezier curve.  The basis functions niB , are 

Bernstein polynomials given in the form [Piegl, 1995] 
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The control points (or geometric coefficients) are the primary shape dictating 

elements of )(tC . This makes it easier for the designer to interpret and/or modify the 

overall shape.  The placement and movement of control points pulls and stretches the 

curve in a very visual (straightforward) manner.  An example of a second degree Bezier 

curve is given in Figure 12.  As can be observed, there are three control points forming a 

parabola.  The curve is parametrically defined by 

 ( ) ( ) 2
2

10
2

0
, 121)()( PtPttPtPtBtC

n

i
ini +−+−==∑

=

A second example is given in Figure 13, this time for a third degree curve defined 

parametrically as  
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The effects of moving a control point are shown on the right half of Figure 13. 
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Figure 12:  Example second degree curve and contributing basis functions. 
 

Figure 13:  Example third degree curve (with movement of terminal control point shown 
on the right). 

 

One seemingly intuitive design feature that is a result of using control points, but 

one which is very useful for curve and surface approximation, is the control polygon 

(sometimes referred to as a “control net” for surfaces).  The control polygon is formed 

from a linear connection of successive control points.  The “convex hull” property that is 

so often discussed when dealing with Bezier and B-splines is simply the property that 
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surfaces and curves are contained within their defining control polygon (Farin [1993]).  

The control polygon can be used for general approximations and for interference 

checking by the use of “minmax” boxes [Farin, 1993].  This allows for an additional 

method of fast interference checking.  

Another useful quality of the control polygon is that any desired geometric 

transformations for the curve or surface may simply be applied to the control points/net.  

This allows for efficient transformations for any post-processing algorithm in the 

receiving system.  When dealing with surfaces, it can sometimes be possible to use the 

control net as a general representation of the surface (for triangulation or other methods), 

depending on the degree of the surface.  The appropriateness of using the control net to 

represent the surface depends on the bidirectional degree and the number of control 

points used.   

A method commonly employed to compute non-rational Bezier points for given t 

values is the familiar de Casteljau method.  (A more specialized algorithm for de 

Casteljau’s method may be referred to as “blossoming” by some authors, such as Farin 

[Farin, 1993].)  The de Casteljau method makes use of a series of repeated linear 

interpolations to obtain the point at the desired t.  The point P(t) on the curve can be 

evaluated as 
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The result is essentially the creation of new control points/polygons of increasing level 

until the point on the curve is reached.  Each subsequent new control point set consists of 
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one point less than the previous defining set, with the final set consisting of two control 

points which define the desired curve point by interpolation.  This method is nice in its 

simplicity and short algorithmic structure.  It does not require the calculation of basis 

functions and is usually more stable than evaluation through the calculation of the 

Bernstein polynomials (not as susceptible to numerical errors, or round-off).  An example 

of this evaluation method for a seventh degree Bezier curve is graphically shown in 

Figure 14.  Figure 15 shows the triangular array used for this point evaluation. 

Figure 14:  Example application of de Casteljau method for a seventh degree Bernstein 
curve.  
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Figure 15:  Example triangular array of successive control points for de Casteljau 
method. 

 

The technique of blossoming mentioned previously is a more specialized 

extension of the de Casteljau method [Farin, 1993].  This method is analogous to knot 

insertion in the spline and subdivides the spline into smaller segments for evaluation.  

Although blossoming does offer another method for point evaluation, in most cases it 

does not provide a significant advantage.  Unless it is already desirable or necessary to 

insert additional knots or segments, the blossoming technique tends to be less memory 

efficient and a computationally slower approach.   

Despite the relative ease of representing curves and surfaces with a purely non-

rational Bezier scheme, Bezier curves are not always acceptable for all geometries.  If the 

shape is highly complex, then it will be necessary to utilize many control points in order 

to attempt to accurately represent the true shape.  This will thus require a Bezier curve 

with a high degree, and a higher degree can often result in numerical errors and 

inaccurate (or even failed) shape representation.  Commonly a degree of 10 or higher is 
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prohibitive [Farin, 1993].  A second difficulty when relying solely on a Bezier scheme is 

that of global curve distortion when redefining control points.  Occasionally it may be 

necessary to refit a portion of the curve without modifying the entire geometry.  This may 

be a case when the designer is attempting to maintain kC continuity after small 

modifications.  However, because the basis functions are global for the curve, a single 

point change will affect the entire curve.   

One design method that addresses both of these problems is a primitive form of 

the B-spline.  This method uses a group of piecewise Bezier curves to represent the total 

curve (and often uses division and degree reduction methods to subdivide a higher degree 

Bezier curve and reduce the local curve degree).  This results in a preservation of the 

global curve degree and a reduction in degree for each of the “child” Bezier curves.  Such 

curves are often referred to as composite Bezier curves, or, more informally, simply as 

Bezier splines (not to be confused with B-splines, which are “Basis-splines”).   

Piecewise Bezier curves first introduce the concepts of knots (although only 

through a rudimentary usage).  Knots are the coincident control points of adjacent Bezier 

segments and are the degree defining elements of the global curve.  In the case of simple 

composite Bezier curves, knots carry no additional methods for defining and are simply 

defined by current control points.  This method may appear to be a combination of 

power-based and Bezier approaches and facilitates any desired conversion between the 

two.  By the definition of the Bezier basis functions, the local start and terminate basis 

functions have the value of 1: 

 1)1()0( ,, == nnni BB
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This dictates that the local curve segment passes through the beginning and ending 

control points.  As these points are knots, their sequence can be used to redefine 

(reinterpret) the curve as an interpolating spline if desired or required for the receiving 

system or any required transformations of the overall geometry.   

Figure 16:  Example knot sequence with piecewise Bezier segments (figure from Farin 
[1993]). 

 

Although the two major problems of relying completely on a polynomial or single 

segment Bezier scheme are nicely addressed by composite Bezier curves, a new design 

issue is also introduced.  This is the ability to ensure kC continuity at the curve 

intersection points (knots).  The only method to adjust the continuity of the piecewise 

Bezier segments is by modifying the individual control point locations (which in turn 

modifies the curve geometry).  The desired degree of continuity is then achieved by the 

fact that the current basis function definition ensures that the curve start/end vector is 

parallel to the vector 01 PP − . For example, to create a 1C continuous piecewise Bezier 

curve, the tangent vectors to the connecting control polygon segments of the successive 
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curves must be identical.  Expressing this condition from the general form of a Bezier 

curve [Piegl, 1995]: 
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and the constraint for the junction knot becomes [Piegl, 1995] 
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This is illustrated in Figure 17, where the connecting control segments must be carefully 

constrained/positioned in order to make the global curve 1C continuous. 

 

Figure 17:  Piecewise Bezier curve with 1C continuity. 
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This requires additional calculations and shape constraints that may require iterative 

shape checking in order to accurately model the geometry.  In order to ensure the desired 

continuity, but not cause undesired modifications to the curve shape, it also may be 

necessary to use an increased number of control points (higher order).  In some cases this 

may lead back to the previously discussed instability problems and can impose 

restrictions on the ability to accurately control the shape without additional composite 

segments.   

 

3.2.3 B-Splines (Basis-Splines) 

Another design method to overcome the difficulties incurred when using a high 

degree single Bezier or power curve to represent a complex shape (or increasing the order 

to ensure desired continuity) is to use B-splines, of which Bezier curves were a special 

case.  Like composite Bezier curves, the B-spline method for shape design allows the 

designer to model relatively complex geometries without resorting to high degree 

polynomial curves.  Instead, several lower order curves with fewer control points are 

used in a piecewise fashion (which also allows for localized shape control).  The method 

of their definition also ensures that the global curves are kC continuous.   

At initial inspection, the B-spline method may seem to parallel that of composite 

Bezier splines.  The global curve definition has been redefined to incorporate several 

lower degree curve segments, just as the case was with composite Bezier curves.  

However, Bezier splines, unlike B-splines, are defined by multiple independent entities 

which must be carefully constrained to produce the desired results.  B-splines exist as 

single entities for the global curve definition.  This results in a reduction of required 
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memory to store the spline data (because of redundant endpoint and continuity 

information required for Bezier splines).  Depending on the size of the geometry file, the 

savings can be significant.  The method of definition is also more convenient for the 

receiving system and can result in fewer errors. 

Two fundamental differences exist to distinguish B-spline curves from Bezier 

splines.  The first is a new set of basis functions (the application of the basis functions to 

the overall curve is also modified).  The second difference is the inclusion of a knot 

vector.  This vector is not only used to reduce the local degree of the spline, but also is 

used to control continuity within the spline and at the spline endpoints.  The basis 

functions of 0 degree and p-degree are defined as follows [Hoscheck, 1993] 
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In the literature, basis functions such as those above may occasionally be defined in terms 

of the curve order (k = p+1) instead of degree.  A number of important properties exist 

for the basis functions.  These include [Hoscheck 1993, Farin 1993] 

• 0)(, =tN pi for [ )1, ++∉ pii ttt

• 2−kC continuity for )(, tN pi at all internal knots (assuming a ‘simple’ knot vector) 

• a quotient with zero divisor is set equal to zero 

• within the defining knot interval, 0)(, >tN pi
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• )(, tN pi is a linear combination of two lower degree basis functions (p-1 degree) 

[Piegl, 1995] 

• In the case that the number of knots in the knot vector is 2*(p+1), the basis 

functions )(, tN pi become the Bernstein polynomials of degree p-1, )(1 tB p
i
− (note 

that this is only true when p+1 knots are located at t = 0 and p+1 knots are located 

at t = 1) [Hoschek, 1993] 

• )(, tN pi are piecewise polynomials 

• For any knot span, partition of unity holds for∑ )(, tN pi . Therefore, for the span 

[ )1, +ii tt [Piegl, 1993]: 
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• For the global curve span, )(, tN pi attains only one maximum 

Although the general form of non-uniform B-spline basis functions was defined 

above, in certain instances uniform basis functions (equal knot spacing) may be used.  

This results in a simplified expression for )(, tN pi as 
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In this case (uniform basis functions), the basis functions become translational 

equivalents and are simply shifted copies of each other along the knot vector [Piegl, 

1993]. 

As noted in the basis function properties listed above, the basis function definitions 

follow a local support property.  This allows them to exhibit influence over a local spline 

knot segment and therefore enables localized shape modification that was not possible in 
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a single Bezier spline scheme.  This is very useful for interactive or optimization shape 

modification methods, as the global shape may be maintained without having to resort to 

a drastic increase in the spline degree.   

The knot vector is a very useful element of B-spline curve design, allowing for 

efficient algorithms for internal as well as boundary continuity definitions.  The relative 

spacing of the knot vector determines the overall shape of the basis functions.  In some 

cases this spacing may be uniform, but in the more general case the spacing is non-

uniform (e.g. NURBS).  The knot vector for m knots is simply defined as 

 { }mm ttttT ,,,, 110 −= K

where ti are knots with 

 1+≤ ii tt

It should be noted that knots may be of zero length (repeating).  Generally, the 

resulting knot spans (individual polynomial pieces of the curve) of degree p are joined 

with 2−pC continuity at the knots.   

The spline continuity can be specified with careful selection of the knot 

components. This is accomplished in terms of knot multiplicity.  The knot multiplicity is 

generally specified in two ways: through global multiplicity and local basis function 

multiplicity.  When multiplicity is discussed in the literature, it more commonly refers to 

the former definition.  For example, a knot vector for second degree basis functions (with 

p = 2, n = 5) may be specified as  

 { }5,5,5,4,3,3,2,1,0,0,0=T
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In this specific case, the knots t = 0 and t = 5 have a global multiplicity of 3 and varying 

basis function multiplicity.  For example the basis function multiplicity of the knot t = 0 

for the first three basis functions is three, two, and one 
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The continuity of each basis function is affected by the multiplicity.  If the 

multiplicity of the knot is L, then the previous basis function continuity of 2−kC is 

reduced to LkC −−1 . Therefore, for each multiple knot component, the basis function loses 

a degree of continuity.  Another effect of basis function knot multiplicity L > 1 is a 

reduction of the influence of the current basis function.  The local support interval of the 

basis function containing the knot of basis function multiplicity L is reduced in nonzero 

interval influence from k to Lk −−1 intervals.  In other words, the basis function 

interval length is reduced.  An example of a quadratic basis function (B-spline order of 

three) with a knot of multiplicity 2 is shown in Figure 18.   

 

Figure 18:  Effect of increasing knot multiplicity on an individual basis function (left plot 
is with complete degree 1 multiplicity, right plot is with a multiplicity of two for t = 4).  
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Another example of multiplicity effects is shown in Figure 19 [Piegl, 1995] for 

second degree basis functions with a knot vector of { }5,5,5,4,4,3,2,1,0,0,0=T . In 

this figure, the decrease in the local support interval can be observed for 2,6N as a result 

of the knots at t = 4 and t = 5, where 

 { }5,5,4,42,6 →N

Figure 19:  Example multiplicity effects for second degree basis functions [Piegl, 1995]. 
 

It should also be noted that spline end point continuity (boundary conditions) can 

be controlled with proper knot vector specification.  In the above cases it has been 

assumed that the design goal of the generated splines is to have tangent, or clamped,

ends.  This is the case in most design circumstances.  In order to ensure clamped 

boundary conditions, the knot vector must be of the form 
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where 00 =t and 1=mt . Therefore the initial and final knots must have a multiplicity 

equal to the order of the B-spline.  The choice of this multiplicity may be adjusted in 

order to modify the desired behavior at the spline boundaries.   
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For a given knot vector and set of p-degree basis functions piN , , the B-spline (of p 

degree) can be evaluated at any parameter value t by 
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The set of points iP (analogous to control points in the purely Bezier case) are termed de 

Boor points.  Each set of de Boor points with its start and terminate knots forms a control 

polygon called the de Boor polygon.  As with Bezier splines, each segment follows the 

convex hull property for its corresponding de Boor polygon.  Another key property 

carried over from the Bezier scheme is that affine transformations can be applied to the 

set of de Boor points in order to effect desired geometric modifications.   

For the present purposes, B-spline curves are in general desired to be closed and 

maintain at least 1C boundary continuity.  Therefore, the start and terminate knots are 

defined as 0 and 1 respectively and have a multiplicity of 1+p . It can be noted that the 

corresponding basis functions reduce to Bernstein polynomials )(tB p
i due to the 

multiplicity of the start and terminate knots. 

Examples of B-splines and their corresponding basis functions (uniform and non-

uniform) are illustrated in Figure 20.   
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Figure 20:  Example B-spline curves and basis functions. 
 

In addition to the utilization of knot multiplicity to control internal spline 

continuity, the inclusion of repeating de Boor points may be used.  In this case, certain de 

Boor points are identical (coincident) in their definition.  The combination of knot and 

apparent de Boor point multiplicities can be used to induce certain geometric effects, 

such as tangency at desired angles internal to the spline or “rounded corner” effects.  An 

example of a B-spline utilizing coincident de Boor points is given in Figure 21.   
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Figure 21:  Coincident internal de Boor points in B-spline . 
 

Another design element that is of significance is the choice of local spline 

segment degree.  The choice of degree affects the “closeness” that the curve has for its de 

Boor polygon.  Lower degree curves tend follow the de Boor polygon in a close manner, 

with this effect diminishing with increasing degree.  This is due to the fact that fewer de 

Boor points contribute to the local spline segment )(tC for lower degrees [Piegl, 1995].  

This affects the “controllability” of the spline and may require the use of rational curves 

to better shape high degree splines.  It also affects the degree to which the curve may be 

estimated through use of its de Boor polygon.  For some design purposes (and for better 

user visualization) it may be desirable to create a curve which follows the defining 

control polygon in a semi-visual manner.  In this case, the designer must resort to the use 

of rational functions, degree reduction, or knot insertion.  Knot insertion and rational 

functions are the preferred methods for design in this case.  A figure illustrating the 

effects of degree elevation is shown below (Figure 22). 
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Figure 22:  Effects of B-spline degree elevation. 
 

Although basis function evaluation is preferred in most computational algorithms, 

it is possible to determine points on a B-spline without explicit calculation or transfer of 

the basis functions.  The algorithm by de Boor is one such method, and this algorithm is 

analogous to the de Casteljau algorithm for Bezier curves.  One advantage of this 

algorithm is that it is a very numerically stable method of curve/surface evaluation.  

However, it tends to be less time efficient than basis function algorithms.  The de Boor 

evaluation method evaluates points on curves/surfaces by linear subdivision.  This can be 

thought of as converging on a point through repeated knot insertions.  As knots are 

inserted in the control polygon, the number of basis functions contributing to the knot 

will decrease (by 1+− kp ), where k is the knot multiplicity and p is the degree.     

Therefore, repeated knot insertion at the desired parameter value will eventually 

result in convergence at the desired point.  This process is illustrated in Figure 23. 
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Figure 23:  De Boor algorithm for B-splines (figure from Hoschek [1993]). 

 

3.2.4 Rational Curve Specification 

Although the previously defined geometric methods are of key importance to the 

designer and provide much latitude in accomplishing design objectives, certain 

geometries may be difficult to accurately represent through their use and may require a 

great deal of subdivision and control points to attempt to do so.  This can result in a large 

increase in the storage space required for many designs and can result in a geometry 

representation that is computationally expensive for a receiving system to evaluate and 

modify.  Therefore, another geometric modeling tool has been introduced to aid in the 

design of such entities.  This includes the concept of rational parametric curve and 

surface modeling.   

The concept of rationality stems from the fact that certain geometric entities 

cannot be accurately and/or efficiently represented through the defined basis functions 

(examples include conic curves).  To account for this design issue in geometric modeling, 
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ratios of the basis function matrices are used.  When a ratio is employed to define the 

entity, it is termed a rational entity (curve or surface): 

 
)(
)()(

tW
tXtx =

)(
)()(
tW
tYty =

)(
)()(
tW
tZtz =

As stated previously, each non-rational B-spline segment is defined as the 

weighted sum of its control points, with the partition of unity property applying to the 

basis functions 
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Therefore, in this general non-rational case, the basis functions can be thought of 

as acting as weights affecting the influence of the control point.  It can be desirable (and 

necessary) in certain instances to increase or decrease the relative effect of the basis 

functions (and therefore control points) on the spline.  This is accomplished by 

employing an additional weight matrix.  The new rational curve may be defined as 
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where iw are the basis weight modifiers (all non-negative to avoid singularities).  The iw

are defined in a manner to satisfy the requirement that  
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For computational applications, the rational definition method can be thought of 

as an application of homogeneous coordinates to form a projection of a four dimensional 

curve, E4, into three dimensional Euclidean space.  This method results in efficient 

geometry data storage and receiving system interpretation.  The weighted control points 

are now defined in four dimensional space as P′

),,,( wwzwywxP =′

from which the three dimensional Euclidean curve can be mapped.  This mapping can be 

best described with a two dimensional form.  P′ is now defined with homogeneous 

coordinates ),,( wwywx in E3. This n+1 dimensional curve can be mapped into n-

dimensional space to obtain the desired weighted 2-D curve.  This is accomplished 

through projection onto a hyperplane of unit weight ( 1=w ).  The origin of projection is 

considered to be the origin of the 3-D Cartesian coordinate system.  Therefore, the point 

),( yxP = is determined by projecting the point ),,( wwywxP =′ onto the hyperplane 

1=w by following a connecting vector to the defined origin.  This is illustrated in Figure 

24.   



56

Figure 24:  Projection mapping of a point in E3.

It is in this way that conic geometric entities may be accurately created with B-

spline methodology.  An example of one method for the representation of a circular arc 

projected from E3 homogeneous coordinates is shown in Figure 25.   

Figure 25:  Example weighted representation of conic entity from homogeneous 
projection. 
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The resulting effects of weight variance can be a power design tool.  It is with this 

design element that B-splines gained much more modeling power and near universal 

usage in CAD systems and design tools.  Rational B-splines require comparably little 

data to represent complex entities and are efficiently processed by receiving systems.  

They also offer great control over the modeling of complex curvatures.  An example of a 

rational B-spline with varying weights at control point 2P is shown in Figure 26. 

 

Figure 26:  Example control point weight modification (at point P2). 

The added geometric features of B-splines combine to make them a powerful 

design tool and the preferred curve and surface modeling tool in CAD software.  The use 

of non-uniform knot sequences allows for easy tangency control as well as efficient 

specification of internal continuity.  The introduction of rational representations gives the 

designer further leverage to accomplish complicated design tasks.  Together, these 

features represent the familiar NURBS entity (Non-Uniform Rational B-Spline).  

NURBS have gained wide acceptance and usage due to their efficient implementation, 

processing and storage.   
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3.2.5 Tensor Product Surfaces (Non-Uniform Rational B-Spline Surfaces) 

The primary methods for surface representation in geometric modeling utilize the 

techniques developed for Bezier and NURBS curve design. The many advantages offered 

by NURBS derived design methods make them attractive to the designer and are 

desirable in surface design algorithms.  The resulting NURBS surfaces have become one 

of the most prevalent design elements in CAD and geometric modeling software.  The 

characteristics of Bezier and B-splines which made them particularly advantageous to the 

designer are carried over to three dimensional surfaces and make their resulting storage 

and processing efficient.   

All parametric surface representation methods require the subdivision of the 

model geometry into a set of bivariate, rectangular surface patches.  Each patch is created 

from a planar grid of isoparametric curves which are stretched and deformed (mapped to 

Euclidean 3-D space) due to the influence of two sets of univariate basis functions.  The 

bivariate grid is typically defined with the parameters u and v. Although differing 

methods for creating parametric surfaces exist, the most common is the tensor product 

method [Hoschek, 1993].  The most general form of a tensor product surface is  

 ∑∑
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where ),,( ,,, kikikiik zyxA = represent the grid of control elements (points or de Boor 

points) and )(uFi and )(vGk are the univariate basis functions.  An example tensor 

product surface patch is shown in Figure 27.   

Figure 27:  Tensor product surface patch 

As with curve specification, the basis functions may be specified in monomial 

form to yield a power basis surface.  In this case, the tensor product becomes [Piegl 1995, 

Hoschek 1993] 
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As was the case with power basis curve representations, the above monomial 

tensor surface representation may be evaluated with Horner’s method.  The use of 
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monomial basis functions in parametric surface design is relatively limited compared to 

Bezier and B-spline schemes (due to the previously discussed reasons for curve 

specifications).  However, it is not uncommon to encounter this technique in various 

CAD and geometry modeling software and this method remains a viable technique. 

The most prevalent forms of tensor product parametric surfaces utilize Bezier and 

B-spline basis function definitions.  The general Bezier form is expressed as  

 ∑∑
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with niB , and mjB , representing the univariate Bernstein polynomials.  Similarly, the basic 

B-spline form utilizes basis the functions piN , and qjN ,
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with knot vectors [Piegl, 1995] 
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Examples of B-spline tensor surfaces are shown in Figure 28.  Two of the 

contributing basis functions are also shown.  The second surface illustrates the effect of a 

multiple internal knot sequence.   
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Figure 28:  Tensor product surface patch 

The set of control points ijA are often termed the control net (or grid).  This grid 

may be used as an approximation for the surface in the case that the surface is of 

sufficiently low degree in each direction (recall that a lower order has the effect of 

‘tightening’ the surface toward the control net).  Typically, tensor surfaces may be 

accurately created with cubic or quadratic splines (with cubic curves more often 

encountered in design applications).  Figure 29 shows an example cubic surface patch 

with its control net.  The effect of degree elevation is also illustrated in the figure. 

A further variation of the B-spline formulation incorporates rational definitions.  

As with NURBS curves, rational B-spline surfaces include weight vectors to further 

enhance (or decrease) the effective influence of each basis function.  The rational tensor 

surface is defined as 
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In the case that the included knot vectors are nonuniform (for example, to 

maintain boundary line inclusion) the surfaces are called NURBS surfaces.  Additional 

examples of NURBS surfaces are given in Figure 30. 

 

Figure 29:  Effects of surface degree elevation [Piegl, 1995] (biquadratic surface, p = 3, 
on left;  biquartic surface, p = 4, on right) 

 

Figure 30:  Example NURBS surfaces 

In general, it is desirable to have at least 1C continuity between adjacent surface 

patches.  This boundary condition is slightly more complex than for the case of Bezier or 
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B-spline curves.  In the simplest case, the tangent boundary curves of two adjacent 

surface grids are coincident; i.e. of the same length, terminate and start points, and having 

identical knot and control point sequences.  If the connecting spline is located at 1+p ,

the condition of 1C continuity can be expressed as [Hoschek, 1993] 
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where ppp uuu −=∆ +1 , which can be used as a reference method to check for the proper 

evaluation (and precision) of imported models.  The degree of “twist” may also be 

utilized in highly blended models (with large gradient areas) to evaluate the proper 

intersection and blending of tangent surfaces.  The more difficult situations arise when 

the connecting surface grids are not of the same degree and vary significantly in size.  

Various algorithms may be employed to ensure the desired degree of continuity 

(including curvature continuity, 2C , and kC in general).   

 

3.2.6 Three and Five-Sided Surface Patches 

Although parametric patches have been discussed thus far as being defined 

strictly by a rectangular format, it should be noted that other formats may also be 

encountered in standard geometry representations.  The two other patch types 

encountered most frequently are triangular and five sided patches.  The most common 

method of expressing a triangular patch is a simple modification of the rectangular 

scheme.  In this case, two adjacent corner control points are made coincident, resulting in 
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one boundary curve of zero length (this method is commonly employed for spherical 

entities).  Due to this simplified triangular representation, no modifications are needed in 

preexisting surface algorithms.  A second method for triangular patches involves the use 

of Barycentric coordinates.  In this case, a central weighted node is placed at the center of 

the triangular patch and a control net (with a triangular grid) is created.  The specification 

of a control point coordinate now requires three parameter variables (typically u, v, and 

w).   

 

Figure 31:  Triangular surface patch [Hoschek, 287] 

This method requires extensive modifications to existing surface algorithms.  The 

three parameter surface type is not commonly encountered in CAD or geometry 

standards.  The five-sided patch type utilizes two parameters and requires little 

modification to rectangular algorithms.  In most cases, an internal knot value (or in some 

cases only an internal parameter value) is specified as a special breakpoint in one of the 

surface boundaries.  By use of a repeating knot sequence, a boundary cusp may be 

created which gives the appearance of a divide in the boundary.  A corresponding 

dividing knot location is created in the opposing boundary curve.  The curve with the 

cusp is considered as two distinct spline elements (and is defined as such), while the 
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opposing curve remains a single entity.  The surface algorithm therefore requires little 

modification (still maintaining a rectangular grid).  An example five-sided patch is shown 

in Figure 32. 

Figure 32:  Five-sided surface patch 

An alternative method for a five (or greater) sided patch resembles that of the 

triangular patch representation.  In this method, a new centralized control point is created.  

New boundary splines are defined radially from this point, dividing the patch into several 

subdomains.  The subdomains created are of rectangular form and can therefore be 

interpreted with existing surface algorithms.   

 

3.3 Converter Program Structure 

The conversion utility was created to import, error check (and correct if possible), 

and ultimately create STARS files from a user’s CAD geometry.  It also includes 

additional features to assist the user in the creation of the supporting STARS files.   

As discussed previously, the chosen geometry transfer file type was the IGES 

standard.  Many supporting reasons justifying this selection were described in Section 
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2.4.  Virtually every modern CAD software package incorporates this standard as a 

primary file storage type.  Of the major CAD programs available, Pro-Engineer was 

selected as the CAD program to use for the generation of all the geometry test cases.   

A diagram of the basic block structure of the converter application is shown 

below (Figure 33). 

Initialization and Memory Allocation

GUI Parameter Input (and GUI Input)

IGES

Evaluate Current Entity

Export Current Entity

SUR BAC BCO

Import and Parse Geometry File

Reorder Surface File and Add
Additional Format Parameters

Create Additional Support Files Using
 the Imported IGES and User Data

Locate Next Required
Entity Element (or 
Support Entities)

Figure 33:  General converter structure 

3.3.1 Geometry Import 

The first design objective is to import, parse, and interpret the geometry data from 

the user IGES file.  Many entities are available in the IGES standard, with the most 

significant discussed in Section 3.2.  Different generating systems may create an IGES 
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file with variations in the specific content and file structure, but the general format is 

standard among all IGES geometry files.  This format is outlined in Figure 34 and 

consists of a System Generation and Specification section (“Global” section), Directory 

Entry (DE) section, Parameter Data (PD) section, and Terminate section.  Additional data 

sections may be present in some geometry files (up to six data sections, including a Flag 

and Start section).  Each section is presented in ASCII format.   

 

Flag Specification Section

Start Section

Terminate Section

System Generation and Specification 
 section (“Global” section)

Directory Entry (DE) section

Parameter Data (PD) section

Primary
Geometry
 Data

Initialization
 Data

 

Figure 34:  IGES file structure 

Although the “Flag” data section may be listed as the initial component of the file, 

this section is not commonly encountered.  Its use is limited to the binary and compressed 

ASCII file versions.  This section contains data parameters used to specify attributes and 

the file type for the receiving system.  However, the standard IGES files produced by the 

major CAD packages are in ASCII form and rarely utilize this optional data section.   
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The most common initial data section is the System Generation and Specification 

section (“Global” section).  This section contains a variety of data which helps the 

receiving system interpret the file.  Some of the parameters in this section are optional 

and are not needed for geometry evaluation.   Commonly, at least twenty-five parameters 

(or “records”) can be specified.  The records include information about the preprocessing 

system and other information that can be used to identify and process the file.  The other 

record types are of more use to any receiving systems and include such information as the 

precision used for different data types in the current representation, model space scale 

(and unit specification), user intended resolution, special system-specific delimiter 

characters for the various data sections, and other various information to assist in the 

processing of the file.  Depending on the generating system, any number of these may be 

omitted and are then specified by the receiving program.  A listing of all possible Global 

parameters (with corresponding descriptions) is given in Appendix A. 

The next standard data section is the Directory Entry section (DE), which contains 

a parameter and attribute listing for every entity in the model.  Each parameter entry 

contains up to twenty fields which are specific for each entity type.  The field entries may 

be descriptive of the current entity or may be a pointer to another directory entry.  The 

pointers may provide dependency relationships (child/parent), grouping, transformation, 

or other information types.  One feature of key importance contained in the Directory 

Entry section is a description of entity relationships that enable the definition of higher 

level, grouped features.  An example could be a surface element which is defined by 

subordinate features such as boundary curves, NURBS surfaces, a local coordinate 

system, trimmed elements, transformation entities, and any other necessary geometric 
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data.  In addition to the information provided in the field sections, the Directory Entry 

section may also be used by the receiving system to quickly locate and reference needed 

entities in the Parameter Data section.  The conversion program parses the DE section 

using the default and special-type delimiters specified in the Global section.  This 

information is them evaluated to establish a record of grouped high-level features and 

also linking pointers between entities.  This enables proper feature evaluation from the 

Parameter Data section.  The directory listing also enables the program to quickly search 

through the file for all necessary entities to define a model feature.  The directory section 

is much more compact than the Parameter Data section, so the time spent searching for 

targeted entities is significantly reduced by first searching the directory section. (to 

establish data locations) 

The majority of the IGES file contains data in the Parameter Data (PD) section.  

This section contains the specific geometric data for all model entities as well as specific 

descriptory information for non-geometric entities.  Each entity listing in this section has 

two parameter fields which precede any geometric data for the entity. The purpose of the 

first parameter field is to describe the associative relationships of the current entity to 

previously defined entities.  The second set of parameter fields contains pointers for 

specific properties of the current entity type [IGES, 1999].  The remaining data in the 

entity listing provides any additional information needed to process the entity.  The 

number of fields in this listing can vary significantly based on the type of geometric 

element being described.  In general, the Parameter Data section comprises 

approximately 75% of an IGES file.  The conversion utility processes this information in 

a feature based manner.  Therefore, the grouping entities are used to evaluate all 
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necessary attributes for a given feature sequentially (such as the previously described 

surface feature), and then this information is evaluated and exported to the STARS 

geometry file.  Due to the size of certain complex geometry files, storage of all entity 

parameters for later processing is memory and time inefficient.  As noted previously, the 

data from the Directory Entry section is useful in locating all necessary components of a 

model feature.  Some of the geometric entity types that may be represented in the 

Parameter Data section include [IGES, 1999]: 

• Circular Arc -----Type Number: 100 

• Composite Curve -----Type Number: 102 

• Conic Arc -----Type Number: 104 

• Copious Data -----Type Number: 106 

o Linear Path 

o Simple Closed Planar Curve 

• Plane -----Type Number: 108 

• Line -----Type Number: 110 

• Parametric Spline Curve -----Type Number: 112 

• Parametric Spline Surface -----Type Number: 114 

• Point -----Type Number: 116 

• Ruled Surface -----Type Number: 118 

• Surface of Revolution -----Type Number: 120 

• Tabulated Cylinder -----Type Number: 122 

• Transformation Matrix -----Type Number: 124 

• Flash -----Type Number: 125 
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• Rational B-Spline Curve -----Type Number: 126 

• Rational B-Spline Surface -----Type Number: 128 

• Offset Curve -----Type Number: 130 

• Offset Surface -----Type Number: 140 

• Boundary -----Type Number: 141 

• Curve on a Parametric Surface -----Type Number: 142 

• Bounded Surface -----Type Number: 143 

• Trimmed Parametric Surface -----Type Number: 144 

An example of a parametric field definition is given in Appendix B. 

The final section in the IGES file is the Terminate section. The Terminate section 

includes up to ten data fields.  These fields contain information which varies depending 

on the generating system.  They usually contain data on the number of entries in each 

major section of the IGES file and the number of entities included.  This provides a 

further measure to error check the interpretation of the file by the receiving system and 

determine if the STARS conversion was successful. 

 

3.3.2 Entity Processing and STARS File Creation 

The STARS geometry file (surface file) consists of two primary geometry 

sections (with other support sections included).  The first contains all model curve 

features, and the second contains all surface features (including boundary curve 

specifications and curve directions to define surface normal vectors).   

The conversion utility processes and exports the needed entities for each of these 

sections independently.  So, the entities for the curve feature section are evaluated and 
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exported prior to evaluation of the surface feature section.  The method of evaluation for 

each entity varies based on the entity type.  For example, the parameters for surface 

feature components, such as Bezier and NURBS surfaces, are evaluated utilizing the 

methods discussed in Section 3.2.5.  Other entity types require specialized evaluation 

methods specified in the IGES standard.  An example entity definition is given in 

Appendix B (including the directory and parameter definitions).  The processed features 

are exported to the STARS surface file in the required format. 

Two additional support files are also created to enable STARS analyses.  The first 

file is the boundary condition file (or BCO file).  This file contains boundary definitions 

for all defining model curves and surfaces.  By default, these are created (specified) as 

non-singular, solid entities.  The converter GUI includes a curve and surface number 

viewer which enables the user to easily locate any desired curves/surfaces in order to 

modify its boundary definition.  In the case that the flow is specified as external to the 

model domain, an outer boundary domain box (with user specified dimensions) is 

created.  The boundary conditions for this domain box are appropriately specified for free 

flow (no symmetry planes).  The second support file is the background mesh file.  This 

file can be used to specify the mesh spacing size throughout the flow domain.  The 

background mesh domain is created based on the user geometry, and the spacing for this 

(the maximum spacing in the domain) is taken as an input from the user.  In order to 

refine the surface mesh in desired regions (and the resulting volume grid), the user may 

add source definitions to this file (as described in the STARS reference documents).   
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3.3.3 User Input and Graphical User Interface 

The conversion utility was created as a module to be run with input from a GUI 

program.  The utility was also written to allow the option of using command prompt input 

following the current implementation of many STARS applications.   

The GUI serves two primary purposes.  The first (and principal) is the 

specification of all parameters for the geometry converter program and supporting 

STARS files.  The user must specify the direction of the model surface normals in order 

to define the domain of the flow.  If the model represents a chamber or channel flow, then 

inward normals can be selected and the solution domain will be confined to the model 

body.  If outward normals are selected, then the body is treated as a solid model and an 

outer “boundary box” will be added to the geometry file.  In this case, the user may 

specify the boundary spacing from the edges of the model geometry.  The number of 

divisions per surface patch may be specified for each parametric direction.  This allows 

the user to increase the number of nodes generated for each surface representation.  This 

may aid in adjusting the resolution of a surface and addressing any problems that occur 

during the meshing/gridding process.   The final input for the geometry file (“surface” 

file) includes tolerances and precision for the geometry data.  This allows the user to 

specify the precision for all curve and surface nodes and may help in addressing any 

continuity difficulties.  An additional input section enables quick creation of a flow 

property (CON) file.  All solution properties may be specified in this section.  After 

utilizing both of these input sections, all files necessary to complete a steady state 

solution are complete.  An example of the interface is shown in Figure 35.   
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Figure 35:  Converter User Interface (utilizing GLUI [Rademacher, 1999]) 
 

The second purpose of the GUI is to display the newly created model and provide 

features to assist in any modifications.  The features include a curve and surface number 

display to aid in the specification of boundary conditions.  Another feature is a source 

viewer which allows the user to selectively view point, line, or triangle sources (or all 

simultaneously) that have been defined in the background (BAC) file.  This feature can 

be very helpful for test cases that require many source placements (to verify the current 

source definitions and to ensure that the model contains proper grid spacing at critical 
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locations).  Another option is to display the defining surface splines for all model 

surfaces.  This can be useful for determining the resolution of the surfaces and for 

locating potential errors in the geometry specification.  The following figures illustrate 

examples of the viewing features just described.  

Figure 36:  Line Number Display (left) and Surface Spline Display (right) 
 

Figure 37:  Source Display 
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CHAPTER 4 

RESULTS AND EXAMPLES 

 

4.1 Verification Results 

 Verification of the geometry models produced by the conversion utility was 

conducted in two phases.  The initial phase examined the accuracy of the representation 

of individual surfaces and surface boundaries produced by the utility.  The second phase 

examined the accuracy of multi-surface entities.  This was conducted in order to examine 

surface-surface intersections as well as the ability to accurately model a complete body. 

 The verification for the utility required the examination of each surface export 

type and the included surface boundary splines.  The method for completing this task 

involved the comparison of nodes on the original CAD surface geometry and calculated 

nodes on the converted STARS surface.  After generating a STARS surface file from an 

IGES representation, the x,y,z coordinates of nodes on the surface were used to create 

independent datum points in the model space of the original Pro/Engineer model.  The 

error for each STARS node could then be determined by using Pro/Engineer analysis 

features to determine the distance (normal to the surface) from the datum point to the 

original CAD geometry surface.  An example of a surface used for NURBS surface 

verification is given in Figure 38. 
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Figure 38:  Example Surface Used for Verification 
 

The datum points were then projected onto the surface to determine the coordinates of the 

corresponding Pro/E surface node.  Using this datum point method for all points in the 

STARS surface model (including boundary and intersection points), a set of error values 

could then be generated across the original surface.  A graphical representation of error 

values across the surface can then be created to aid in analysis, such as the Excel plot 

shown in Figure 39. 

1 2 3 4 5 6 7 8 9 10 11
S1

S2

S3

S4

S5

S6

S7

Figure 39:  Example Surface Error Plot (shaded areas represent error variation across the 
surface) 

 

After analyzing multiple test cases for differing surface types, average error values were 

determined.  It should be noted that these are averages of the largest errors for each 



78

individual test case (not over a complete surface).  The boundary splines and/or 

intersection lines were included as part of each surface for evaluation purposes.  These 

are reported as percent errors between the coordinates of the two surfaces.  Using this 

method, the surface type with the least average variation error was the NURBS surface 

(average percent error of 0.06%) and the power based surface had the largest average 

error (average percent error of 0.1%).   

 

4.2 Test Cases 

The conversion utility has been used to produce files for a number of STARS test 

cases.  Some of the test cases are briefly summarized below with various examples of 

intermediate meshes and solution plots.   

 

4.2.1 Test Case 1:  YF-22 

The initial geometry that was received is shown below in Pro/Engineer prior to 

conversion.   

Figure 40:  Pro/Engineer IGES YF-22 
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This was utilized to create STARS files (SUR, BAC, BCO) to be used to compute 

a number of steady-state solutions.  The resulting STARS geometry file contained 290 

curves and 104 surfaces.  One example of a surface grid is shown in Figure 41, while an 

example Mach plot is shown in Figure 42. 

Figure 41:  YF-22 Surface Grid 
 

Figure 42:  Mach Distribution at M = 0.3 
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4.2.2 Test Case 2:  OSU Design/Build/Fly Aircraft 

The Pro/Engineer models for the 2006/2007 Design/Build/Fly competition were 

converted to STARS files in order to complete a steady state alpha sweep.  This analysis 

was carried out for both the Orange Team and the Black Team aircraft.  Because of the 

relative speed at which the test case files could be prepared, it was possible to carry out 

multiple design evaluations in a short period of time.  For example, the placement of the 

Black Team main wing and connecting plate shapes (as well as the span of the wing, 

canard, and horizontal tail) could be easily and quickly modified in Pro/Engineer and 

then exported to the conversion utility.  This allowed for a fairly quick iterative analysis 

process that would have required much more effort and time to complete manually (by 

direct modification of the geometry files).  These test cases provide an example of the 

potential usefulness of the converter application to rapidly iterate through many different 

design configurations.  Examples of the surface grids and solution plots are shown in the 

following figures.   

Figure 43:  2007 Orange Team surface mesh 
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Figure 44:  Example 2007 Orange Team Mach solution plot 
 

Figure 45:  Original 2007 Black Team surface mesh 
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Figure 46:  2007 Black Team surface mesh (low wing placement) 
 

Figure 47:  2007 Black Team surface mesh (forward wing, reduced canard span) 
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Figure 48:  2007 Black Team Mach solution plot 
 

4.2.3 Test Case 3:  SBC-UAV 

The SBC UAV is a fuel cell aircraft which has been designed by California State 

University.  A STARS model was created from an IGES file to aid in their analysis.  

Figure 49 illustrates an example mesh generated for this aircraft. 

Figure 49:  SBC-UAV surface mesh 
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4.2.4 Test Case 4:  GHV 

The GHV is an airbreathing hypersonic flight vehicle.  Two different geometries 

were analyzed (as shown in Figure 50 and 51).  The first model created (Model 1) 

possessed a simple flat inlet B.C. (far-field).  The model was then modified to include a 

new engine inlet geometry (Model 2) which was based on 2-D compressible flow theory 

(ref.: California State University).   

Figure 50: GHV (Model 1) surface mesh 

Figure 51: GHV (Model 2) surface mesh 
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CHAPTER 5 

SUMMARY AND FUTURE DEVELOPMENT 

 

5.1 Summary 

The development of a STARS geometry creation utility proved to provide an 

efficient and effective means for completing an important step in the STARS analysis 

process.  Project efficiency can be greatly increased with the use of this conversion 

utility.  For example, a simple aircraft surface file can take approximately 2 1/2 days to 

complete and debug manually.  Using the converter approach, the same SUR file could 

take less than an hour to generate, with most of this time spent creating the CAD model 

(the actual conversion process takes less than 1 min. on average).  For much more 

complex geometries, such as the YF-22, the time saved by SUR file generation is much 

more substantial.  The simple aircraft contained 88 lines and 17 surfaces, while the YF-22 

contained 290 lines and 104 surfaces (which had much more complex shape and 

curvature definitions than the simple aircraft).  It is also not uncommon to have to spend 

quite some time searching for errors in a complex SUR definition created manually.  The 

converter almost eliminates this difficulty.  Another advantage is that IGES files (or other 

CAD file types) may be obtained from any source and then converted to the proper IGES 

format in Pro/E, making it possible to use existing project geometries or receive 

geometries from third parties.   
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5.2 Future Development 

Two primary areas are recommended for future development.  The first is the 

integration of this utility with a gridding utility.  A number of papers exist which propose 

methods for creating grids from common CAD entity types (NURBS surfaces, etc.).  One 

such method involves “channeled” gridding, in which surface patches are used to define 

channels through the flow domain (which may intersect with each other in the case of a 

concave body).  Techniques such as this may help to streamline the process as the initial 

grid front may be directly created from the parametric entity definitions (possibly 

resulting in a more effective initial front).   

The second recommendation is for the implementation of optimization algorithms 

in this utility.  This would be useful for basic design iterations and could be highly 

effective if coupled with a p-type solution convergence scheme.  The method of 

definition/evaluation of the standard entities (Bezier curves, etc.) makes local shape 

modification and morphing a relatively easy process.  Therefore, morphing end plates or 

other complex shapes as model components are transversed through a design range 

should be a straightforward task.   
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APPENDIX A: 

IGES GLOBAL PAREMETERS 

 The following parameters are used in the Global section of the standard IGES file.  

This data includes all information for the initial preprocessing of the file by the receiving 

system.  The following information is from The Initial Graphics Exchange Specification 

manual produced by the IGES / PDES Organization [1999]. 

Parameter Item 
Identifier Description

1 Parameter delimeter character

2 Record delimiter character 

3 Product identification from generating system

4 File Title

5 Generating System ID

6 Preprocessor version

7 Number of binary bits for integer representation

8 Maximum power of ten representable in a single precision floating point number
on the sending system

9 Number of significant digits in a single precision floating point number on the
sending system

10 Maximum power of ten representable in a double precision floating point number
on the sending system

11 Number of significant digits in a double precision floating point number on the
sending system

12 Product identification for the receiving system

13 Model space scale

14 Unit flag

15 Units
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16 Maximum number of line weight gradations (1-32768).  Refer to the Directory
Entry Parameter 12

17 Width of maximum line weight in units. Refer to the Directory Entry Parameter

18 Date & time of exchange file generation  13HYYMMDD.HHNNSS

19 Minimum user-intended resolution or granularity of the model expressed in units
defined by Parameter 15

20 Approximate maximum coordinate value occurring in the model expressed in
units defined by Parameter 15

21 Name of author

22 Author's organization

23 Integer value corresponding to the version of the Specification used to create
the file

24 Drafting standard in compliance to which the data encoded in this file was
generated

25 Date and time the model was created or last modified, whichever occurred last
HYYMMDD.HHNNSS
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APPENDIX B: 

EXAMPLE IGES ENTITY DEFINITION 

 The following is an example of the general format for an IGES entity.  The 

specific entity defined below is the power-basis parametric spline curve entity (defined as 

type 112). The first section is the Directory Entry definition section and the second 

section is the Parameter Data definition section.  While this is a general representation of 

the format for an IGES entity, the data and specific definition may vary significantly 

based on the entity type under consideration. This information is from The Initial 

Graphics Exchange Specification manual produced by the IGES / PDES Organization 

[1999].  Please refer to this reference for more detailed and additional explanations. 

Directory Entry Section:

PARAMETRIC SPLINE CURVE ENTITY (TYPE 112)

Directory Entry Section

1 2 3 4 5 6 7 8 9 10
Entity Type Parameter Structure Line Level View Formation Label Status Sequence

Number Data Pattern Matrix Display Number Number
112 () <n:a:> #; ) #; ) 0; ) 0; ) 0; ) ** D #
11 12 13 14 15 16 17 18 19 20

Entity Type Line Color Parameter Form Reserved Reserved Entity Entity Sequence
Number Weight Number Line Count Number Label Subscript Number

112 # #; ) # 0 # D # + 1

Parameter Data Section:

Index__      Name____     Type___   Description___ 
1 CTYPE       Integer   Spline Type: 
 1=Linear 
 2=Quadratic 
 3=Cubic 
 4=Wilson-Fowler 
 5=Modified Wilson-Fowler 
 6=B Spline 
2 H Integer   Degree of continuity with respect to arc length 
3 NDIM        Integer   Number of dimensions: 
 2=planar 
 3=nonplanar 
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4 N Integer   Number of segments 
5 T(1)        Real      First break point of piecewise polynomial 
..           .            . 
. ..           .. 
5+N         T(N+1)      Real      Last break point of piecewise polynomial 
6+N         AX(1)       Real      X coordinate polynomial 
7+N         BX(1)       Real 
8+N         CX(1)       Real 
9+N         DX(1)       Real 
10+N        AY(1)       Real      Y coordinate polynomial 
11+N        BY(1)       Real 
12+N        CY(1)       Real 
13+N        DY(1)       Real 
14+N        AZ(1)       Real      Z coordinate polynomial 
15+N        BZ(1)       Real 
16+N        CZ(1)       Real 
17+N        DZ(1)       Real 
..           .            . 
. ..           ..        Subsequent X, Y, Z polynomials concluding with the twelve 
 coefficients of the Nth polynomial segment. 
6+13*N      TPX0        Real      X value 
7+13*N      TPX1        Real      X first derivative 
8+13*N      TPX2        Real      X second derivative/2! 
9+13*N      TPX3        Real      X third derivative/3! 
10+13*N    TPY0        Real      Y value 
11+13*N    TPY1        Real      Y first derivative 
12+13*N    TPY2        Real      Y second derivative/2! 
13+13*N    TPY3        Real      Y third derivative/3! 
14+13*N    TPZ0        Real      Z value 
15+13*N    TPZ1        Real      Z first derivative 
16+13*N    TPZ2        Real      Z second derivative/2! 
17+13*N    TPZ3        Real      Z third derivative/3! 
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