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CHAPTER 1

INTRODUCTION

Problem Statement and Motivation

The disposal of waste materials is a serious concern for humankind. Certain polymeric

materials are specially problematic as they can be hard to decompose. One such example

is rubber. Probably, the most common use of rubber all over the world is as tires in au-

tomobiles and other transport vehicles. While the unique structure and property of both

vulcanized natural rubber and synthetic rubber provides stability for use in tires, it also

makes recycling challenging. As a result, very little raw chemical precursor material (less

than 1%) can be reclaimed for reuse from these waste tires. The chemistry of rubber in

these disposed tires also plays a major role in the associated environmental pollution. Due

to its cross-linked structure, rubber needs a long time for natural degradation. In addition,

the presence of stabilizers and additives in rubber further delays the process [1].

In United States of America, more than 270 million of tires are scrapped every year.

In addition, almost 300 million tires are stockpiled in different landfills [2]. This has a

detrimental effect on the environment as well as reducing the number of available disposal

sites. Tire piling yards, as shown in Fig. 1.1, become the inhabitation of animals and insects

resulting in further environmental damage [3]. It has been found that the two species of

mosquitoes, Aedes aegypti and Aedes albopictus, that are mainly responsible for yellow

fever and dengue, prefer scrap tires as their main habitat [4].

The most convenient way of decomposing waste tires is to burn them. Probably this is

the reason why the Scrap Tire Management Council reports almost 57% of recycled tires

are used as fuel [5]. But this is not a very sophisticated methodology and suspect from an
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environmental viewpoint. In some countries, the stockpiling of tires is strictly prohibited as

this can create a possible fire hazard. Several investigators have pursued methods to recycle

rubber from used tires [1, 2, 5–12]. However, the primary challenge has been the three-

dimensionally cross-linked chemical structure, and consequently, no recycling technology

has been found to be very appropriate or effective [1].

Figure 1.1: Piling yard of waste tires, adapted from [13]

Objective

The basic aim of this current work is to reinforce polyurethane foam using crumb-rubber

to enhance mechanical properties of the foam without affecting the thermal insulation or

acoustic absorption properties. This effort employs direct incorporation of rubber particles

into rigid polyurethane foam. The hope is that this resulting material can be used in place

of traditional application of polyurethane foam, but offer greater mechanical properties in

terms of specific strength, modulus, and toughness, and can definitely be seen as a means

of utilizing post-consumer waste tires. The more resilient rubber particles are supposed

to be effective in resisting impact damage. Initial studies showed that materials can be

easily fabricated using various volume fractions of crumb rubber with promising mechan-

ical properties, which has served as the basis for this current research work. Polyurethane
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foams are selected as they are widely used in the industry. We believe that if small rubber

particles can be successfully incorporated inside polyurethane foam matrix with enhanced

properties of the end products, this approach will yield a good avenue for recycling of

rubber from used tires.

Overview of Waste Tire Recycling

The recycling and reclaiming of rubber particle has been a subject of serious concern for

humankind, as with the decrease of available landfill sites that accept tires, the disposal

of waste rubber is becoming more difficult. The process of rubber compounding always

involves the mixing of various ingredients like stabilizers, plasticizers, flame-retardants,

and colorants. These chemicals leach from the bulk to the surface and ultimately to the

landfill. Consequently, they kill the advantageous bacteria of soil [1]. Fig. 1.2 shows

different uses of scrap tires.

Figure 1.2: Different uses of scrap tires, adapted from [5]

As we can see from the Fig. 1.2, the biggest market for the recycled rubber technology
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is the tire derived fuel industry. This is simply the burning of tires in cement kilns, and a

method suspect from environmental considerations. Almost 4% of scrap tires are used in

the civil and infrastructural applications where novel products are made mixing recycled

rubber particles with concrete [5]. Another major reuse application is the production of

crumb rubber which is mostly related to the present work.

Recycling technologies have either focused on chemical reclamation, or shredding as

use as secondary material. Reclamation technologies have not been found to be highly

effective due to the three-dimensionally cross-linked structure of rubber. Recycling by

reuse of shredded tires has been limited by end-use application.

The most primitive method of polymeric material recovery is reclamation. Reclamation

is the chemical process where conversion of a three dimensionally interlinked and infusible

thermoset polymer takes place into a two dimensional, soft, plastic low modulus product.

In physical recycling, waste tires are processed into two main physical forms. The first type

is shredded or chipped rubber tire that is produced through a two-step shredding–cutting

process. After the first stage of shredding, rubber particles attain a length of 300–430 mm

with a width of 100–230 mm. In the second stage, the shredded particles are cut down to

dimensions of 100–150 mm. Continued shredding produces rubber particles having dimen-

sion of 13–76 mm. These shredded rubber particles are processed through subsequent steps

of magnetic separation to remove the metallic inclusions from tires, grinding and screen-

ing. Ultimately, the particles are processed with a typical size of 0.075–9.5 mm, and this

is called crumb rubber [6]. This study is focused on the use of crumb rubber, because the

interest is in the use of small particles as reinforcing aids that can be easily incorporated

inside a polyurethane foam matrix.

The rubber waste situation in early 90s is shown in Table. 1.1. It is very evident that in

the early 90s, the rubber waste situation in the United States was quite environment-friendly

in comparison to other countries as the percentage of landfill deposition was almost zero.

But, this condition became worse with time. According to the Rubber Manufacturers Asso-
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ciation, recent waste situation witnessed an annual deposition of almost 300 million waste

tires to different landfills in United States [2] which is reducing the number of available

disposal sites.

Treatment France Germany Italy USA

Retreading% 20 17.5 22 None

Recycled% 16 11.5 12 28

Energy% 15 46.5 23 72

Landfill% 45 4 40 None

Export% 4 16 2 None

Table 1.1: Rubber waste situation in early 90s [1]

Recycling of rubber tires necessitates the removal of metal wires from the same. This

is a costly process. In addition, polymeric rubber compound requires some sort of surface

treatment for its own stability and compatibility to other materials. It has been expected and

seen that de-wiring and surface treatment of rubber would enhance its economic recycling

and applicability to produce new generation materials [5].

Surface Treatment of Rubber Particles

The basic aim of surface treatment of rubber particles is to treat ground rubber to make it

more reactive inside vulcanized material without breaking the bond. This is accomplished

in several ways. One approach is to coat the rubber particles with a bonding agent to make it

chemically reactive inside a new compound. The second approach is to activate the surface

of the rubber particles by using some caustic gas. In the early 90s, researchers exposed

ground rubber to oxidative gas mixtures containing small amount of fluorine and other

reactive gases like oxygen or sulfur dioxide [5]. The resulting reactions form hydroxyl

(OH−) or carboxylic (COOH−) reactive groups resulting in an enhancement of the surface

energy of the material. Subsequently, the treated rubber particles formed strong chemical
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bonds with other materials [5]. Smith et al. [10] also discussed the surface treatment of

ground rubber particles by treating them with chlorine gas. This treatment improved the

compatibility of rubber with other polymeric compounds, but is a hazardous procedure.

Some researchers have used surfactants to activate the rubber particles with an intention

to enhance their bonding with different compounds. Our present work is based on the use

of surfactants to avoid the exposure and hazards associated with caustic gases.

Surfactants are short chain fatty acids. They have a unique structure where one part

has an affinity towards the polar media while the other part is attracted by the non polar

media. Surfactant molecules generally form oriented monomers at interfaces and show

surface reactivity. They do so by lowering the surface tension of the dissolving medium.

An example of a commonly used surfactant in daily life is detergent. These are special

kind of surfactants whose solutions provide cleaning properties. In other words, detergents

change the interfacial properties and remove a phase from the solid surfaces [14]. Fig. 1.3

shows the typical structure of a surfactant.

Figure 1.3: Typical structure of surfactants and formation of a micelle, adapted from [14]

The typical structure of a surfactant molecule is a combination of a hydrophilic head
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group and hydrophobic chain group in the molecule. The polar or ionic group interacts

with the aqueous environment through dipole-dipole or ion-dipole interactions. In aqueous

solutions, surfactants work as an electrolyte. But they act differently at a higher concentra-

tion. They form organized aggregates of large number of molecules known as micelles. In

a micelle, the lipophilic parts of the surfactants move towards the interior of the aggregate

making hydrophilic parts to face the aqueous medium. The formation of a micelle can be

seen as a compromise in between the desire for the alkyl chains to avoid the contacts with

water and the tendency of the polar group to keep contact with water [14].

The physico-chemical properties of surfactants vary significantly above and below a

particular surfactant concentration. This is known as the critical micelle concentration

(CMC) of a surfactant. Below the CMC value, the properties of an ionic surfactant resem-

ble the same of as that of an electrolyte. On the other hand, above the CMC value, these

properties change markedly showing a cooperative process. At CMC, micelles are formed.

Since the thermal and electrostatic forces directly oppose micellization, a low CMC value

is always accompanied by increasing the lipophilic part of the molecule, lowering the tem-

perature, and addition of electrolyte. Micellar models always consider micelles as a sep-

arate phase. According to pseudo-phase model, the critical micelle concentration of any

monomer is defined as the concentration of maximum solubility of that monomer in that

particular solvent. This is significant, as in any process the concentration of surfactants

should be just near its CMC value or just a little bit higher. This is because the greatest ef-

fect of surfactant is always seen when it forms considerable micelle in the solution, whether

it is the process of interfacial tension lowering or foam stability. Another significance of the

CMC value is that it represents the solution concentration of surfactant where maximum

adsorption takes place. Plotting the physico-chemical property against the concentration

for a given surfactant-solvent system represents the importance of CMC value for each and

every surfactant. This plot is called the Prestons classic graph, and it shows a considerable

change in slope in a narrow concentration range of surfactant [14].
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Crumb Rubber

Crumb rubber is usually defined as rubber having a particle size of 9.5 mm (3/8 inch) or

less. They can be classified into four groups: coarse, 9.5 to 6.3 mm; mid range, 2 to 1

mm; fine, 0.4 to 0.2 mm; and superfine, 0.15 to 0.075 mm. The size of crumb rubber is

designated by means of a mesh through which it is passed during its production. While only

a small number of tires have been converted to crumb rubber historically, there is increasing

interest in using this form of recycled tire rubber for creating reusable products [9, 12]

because of the ease of material fabrication along with the probability of enhanced toughness

in the end products. Based on available data, about 9 million tires were converted into

crumb rubber in the year of 2001, and this number has been growing at an annual rate of

10–15% [12]. Also, as a point of reference, each tire produces about 10–12 pounds of

crumb rubber [10].

Figure 1.4: Typical crumb rubber particles recycled from waste tires, adapted from [15]

Out of all reuse options, crumb rubber is the most complex but least studied subject in

terms of both production and market. In 1994, 2% of the total generated scrap tire was

utilized into the production of crumb rubber. This had increased up to 12% by the year

of 2001. The main advantage of crumb rubber market is the popularity and utilization of
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all types of crumb rubber product. For example, different crumb rubber producers existing

in the same industry always need different mesh size of rubber particles for their unique

product. Consequently, it is not easy to generalize particle size requirement in crumb rubber

market and to forecast the market demand and production planning of the same [9].

Polyurethane

Polyurethanes are polymers that have a chain of organic units joined by urethane or car-

bamate links. Their formation takes place through step-growth polymerization where a

monomer having at least two isocyanate group forms bond with another monomer having

at least two alcohol groups. The first work on polyurethane (or commonly urethane) poly-

mers took place in Germany by Otto Bayers and his co-workers in the year of 1937 [16].

Polyurethanes are reaction polymers and they lie in the same group as epoxies, un-

saturated polyesters, and phenolics. As mentioned, a urethane linkage is produced by

the reaction of isocyanate group (-N=C=O) with hydroxyl (-OH) group. Similarly, the

polyurethane linkage follows the same path having the urethane linkage (-RNHCOOR) in

the resulting product, as shown in Fig. 1.5.

Commercially, polyurethanes are prepared by the reaction between liquid isocyanate

with liquid blend of polyols. These two components together are termed as a polyurethane

system [16]. But, sometimes, polyurethanes are produced by the reaction of diisocyanate

with a blowing agent directly. This investigation employs the latter approach.

Polyurethane can be easily fabricated as foam. Different blowing agents can be incor-

porated inside the diisocyanate–polyol combination as an auxiliary system or into the poly

side. Blowing agents react with isocyanate to produce carbon dioxide gas resulting in the

expanding of cells during the mixing process. For example, water molecules react with iso-

cyanate to produce carbamic acid, which is unstable and breaks down into carbon dioxide

and an amine group. The amine group thus produced, reacts with more isocyanate to pro-

duce a substituted area. Water produce significant amount of urea. This is not very soluble
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Figure 1.5: Chemical synthesis of polyurethane, adapted from [16]
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in the reaction mixture, and produces hard segments of polyurea. Halocarbons and hydro-

carbons are preferred over water as they have low boiling points (near room temperature).

As the polymerization reaction is exothermic, blowing agents volatilize into a gas during

the reaction. They expand the cellular polymer matrix and consequently foam is formed.

This mechanism of foaming is explained by the chemical reaction furnished in Fig. 1.6

Figure 1.6: Chemistry behind polyurethane foam formation, adapted from [16]

Surfactants help in polyurethane foam formation. They serve four distinct purposes:

stabilizing the dispersion of immiscible components; helping nucleation of bubbles during

foaming; stabilizing gas bubbles; and preventing the foam from collapsing by the reduction

of stress concentrations till the point when the foam gets sufficient mechanical strength as

a result of polymerization reaction [16–18].

While isocyanate and polyol are the two main chemical components for the formation

of polyurethane, the process can involve a number of ancillary chemicals. In addition to

surfactants, catalysts are used to accelerate the reaction. Polymer structure properties can

be modified by the usage of chain extenders and cross-linkers. Based on the application,

fillers, pigments, and fire retardants can also be added to the same. In addition to all of

these, there are blowing agents for the purpose of foaming. Reactive blowing agents form

carbon dioxide inside the mixture and help in foaming. On the contrary, non-reactive blow-

ing agents act by evaporating in the foaming mix.

Because of the fact that the physical, mechanical, and thermal properties of polyurethane

can be easily tailored by changing the isocyanate-polyol system, polyurethanes are consid-
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ered highly versatile materials. The range of polyurethane type and the end products from

them is high. They are available starting from rigid or flexible lightweight foams up to

stiff and tough elastomers. This makes them widely used products in various industries.

For example, rigid polyurethane foams are used mostly in thermal insulation of building,

refrigerators, pipelines, and storage tanks, buoyancy and flotation device, packaging, fur-

niture, and equipment housing. On the other hand, flexible foams find their applications in

household furniture including bedding, automotive seating, textile laminates, and cushion-

ing. Semi rigid and low-density structural foams are used in making sports goods, such as,

skis and surfboards, steering wheels, and headrests. Elastomers have got wide applications

in making shoe soles, vehicle body panels, rollers and gear wheels, conveyors, and sealants

for automotive industry [19].

Effect of Particle Distribution on Foam Stability

Foams in liquid–liquid macro emulsions, where the droplet size varies between 1–100 mi-

crometers, are thermodynamically unstable since their decay results in a decrease of the

free energy of the system. Therefore, foams are considered as metastable for their appli-

cations because of their possible breakdown in the system. Primary processes of insta-

bility in foams are creaming, sedimentation, coalescence, and flocculation. The first two

are gravity-induced movements caused by the density difference between phases. Since,

gravity-induced movements are highly dependent on density, liquid drainage is significant

in foams. This drainage is the basic force behind the formation of polyhedral structures in

foam. Coalescence involves the binding of two bubbles where interfacial film drains and

ruptures leading to the formation of one single large bubble. Flocculation involves interac-

tion between emulsion droplets where, the interfacial film wall does not drain to rupture,

and droplets are fastened to each other like a cluster. Another major foam instability is dis-

proportionation. This is the process where air molecules diffuse between bubbles. As the

pressure is increased inside smaller bubbles, diffusion flux generally results in shrinkage

12



of smaller bubbles and growth of the larger resulting in further drainage and coalescence.

Therefore, a third component is required to stabilize the foams. This component can be

a foaming or emulsifying agent. Such agents should satisfy the conditions of foaming as

well as stabilizing it throughout required time periods. The most common emulsifiers are

surfactants. They adsorb to the interface and reduce the free energy by producing high

surface area interface resulting in a reduction in interfacial surface tension [20].

It is generally accepted that particles at an interface prefer to stay in any of the liquids,

mainly the disperse phase. It is also known that the adsorption of particles at bubble in-

terfaces is an important mechanism in the dynamic foaming processes. The association

of particles to create a steric barrier to coalescence is the main reason for foam stabiliza-

tion [20]. Smaller particle having high concentration form the most effective barrier. The

effect of particles on the inter film, for example retardation of drainage and enhancement of

maximum capillary pressure, is also important as the effect of drainage increases. Bridging

of particles in between bubbles can also put forward important contribution because of the

high force contact area in foam phases [20].

The wettability of particles also plays an important role. For example, particles do not

contribute much as stabilizers in aqueous foaming system. They destabilize the foam from

bridging drainage. Also, since, foams are deformable and delicate, they can be subjected

to foam destruction by means of particle piercing in case of larger particles [20].

Focus of the Present Work

In this work, an attempt has been made to reinforce rigid polyurethane foam to enhance its

specific strength, modulus, and toughness properties by incorporating particles of rubber

recycled from scrap tires. In addition, the relationships between rubber content, surfactant,

physical foam characteristics, and mechanical properties, are investigated in detail. These

materials can definitely be seen as a means of utilizing post-consumer waste tires. Since,

polyurethane is a widely used material in the industry, it is believed that the materials,
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if developed successfully, will find wide applications and provide a high volume use of

recycled rubber.
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CHAPTER 2

LITERATURE SURVEY

Prior Research in Rubber Recycling

Investigations on the recycling of used rubber fall in to three broad categories: economic

analysis; reclamation; and use of shredded or ground rubber. First, some studies discuss the

engineering economics and feasibility analysis of recycled rubber products [5,9,10]. Amari

et al. [5] analyzed how to maximize value recovery by calculating the life cycle energy bud-

get considering both the energy consumed for tire production and energy recovered from

their use as fuel. Their study put significant importance on the reuse of rubber products

and showed that used tires represent 23 petajoules of embedded energy from raw materi-

als annually, which is equivalent to four million barrels of oil. Sunthopagashit et al. [9]

examined the engineering economics of crumb rubber facilities with a financial model of

a nominal processing operation to aid the analysis of different market, crumb size, and

production scenarios. Their study analyzed the complex interactions between the demand

and production factors, and showed how pricing, quality, mesh size, and end-user markets

could be deciding factors in the crumb rubber business. Smith et al. [10] proposed testing

and evaluation of commercial applications of new surface treated rubber technology utiliz-

ing waste tires and proposed that recycled rubber particles without odor and low moisture

content could be the keys to its successful commercial applications.

The common methods of reclamation have been achieved using various organic (diphenyl

disulfide, dibenzyl disulfide, diamyl disulfide, alkoxy aryl disulfide, butyl mercaptan, thio-

phenols, xylene thiols and phenol sulfide etc), inorganic (toluene, naptha, benzene, cyclo-

hexane, iron oxide phenyl hydrazine based catalyst, copper chloride-tributyl amine catalyst,
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diphenyl guinadine etc) and other chemical compounds (thiocarboxylic acid, thioacetic

acid, 1,3,5-trimethyl benzene, 2-mercaptobenzothiazole etc) [1]. Some significant organic

compounds used in the surface treatment of rubber during the process of reclaiming are

shown Table. 2.1.

Name of the Chemical Attacking Position of Cross-Link Bonds

Triphenylphosphine Polysulfide links into monosulfide and to lesser extent disulfide

Sodium di-n-butyl phosphite Di and polysulfide crosslinks

Propane-thiol/piperidine Polysulfide linkages

Hexane-1-thiol Both polysulfide and disulfide linkages

Dithriothreitol Disulfide bonds into two thiol groups

Lithium Aluminum Hydride Disulfide and polysulfide bonds

Phenol Lithium in Benzene Polysulfide and disulfide bonds

Methyl Iodide Monosulfide linkages

Table 2.1: Properties of different organic compounds for rubber surface treatment [1]

Several researchers have worked on the recycling and reclamation methodologies of

waste rubber products to make them reusable for engineering applications [1, 8, 21]. Ad-

hikari et al. [1] discussed the method to reduce the waste problem, recycling, reuse of used

waste rubber and reclaiming of raw rubber materials. Their study discussed about several

effective reclamation processes like cryo-mechanical, microwave, ultrasonic techniques,

and mechanical means. The microwave methodology was found to be the most effective,

as other methods cause undue degradation of rubber polymer chains. Romine et al. [21]

discussed activation of the surface of ground rubber by using thiophilic microorganisms by

selectively modifying sulfur cross-links to improve compounding properties. Final prod-

ucts showed increased reactivity of the particle surfaces and improved surface chemistry as

a function of biooxidation of sulfur species and concentration of sulfoxide functionalities.

Fukumori et al. [8] discussed devulcanization using high temperature and pressure.
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The third class of studies have focussed on the use of shredded or ground rubber, with-

out devulcanization, in secondary products. Significant amount of work have been done

on the mixing of recycled rubber particles inside concrete, bitumen and asphalt to make

products appropriate for structural applications. The brittle nature of concrete and its low

loading toughness has initiated the use of rubber particles to remedy these drawbacks [7].

Several studies [2, 3, 6, 7, 11, 22–39] discussed the properties and performances of con-

crete mixed with high volume of crumb rubber from scrap tires. All of them demonstrated

promising mechanical properties and enhanced performance by the use of crumb rubber-

ized concrete. Another common trend investigated by all of the researchers was consid-

erable deformation undergone by concrete before failure and its capability to withstand

post-failure loads. All of these studies reveal a dependence of properties on the rubber

particle size along with an increase in failure temperature. The biggest common advantage

depicted by all of these studies had been the ease of fabricating crumb rubberized products

for structural applications.

In spite of all these advantages, some drawbacks were also seen. Fattuhi et al. [40] ana-

lyzed the properties of cement-based materials containing shredded scrap truck tire rubber

and got reduced compressive properties and densities of cement by the use of rubber. Fen-

ner et al. [41] discussed the environmental and structural implications for the reuse of tires

in fluvial and marine construction. They showed that leaching of different chemical com-

pounds like zinc, cadmium and carbon black results in the degradation of rubber tires and

limits their use for marine applications, especially in sea water and proposed one corrective

measure for the same. In addition, researchers found increased water permeability in the

concrete mixtures by the addition of rubber particles.

Rubber Particles in Polymeric Matrix

Rubber particles have been found to be usable in polymeric matrix as well. Elastic rubber

particles are expected to absorb large impact energy through plastic deformation of the
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particles. Rubber particles would also promote crack pinning and crack bridging. These

mechanism should lead to higher toughness in rubber reinforced polymers [42].

Cawse et al. [43] proposed the use of rubber as a toughening agent in polyurethane net-

works and composite materials. They observed that the processing method, rubber particle

size, and size distribution are important parameters in affecting rubber–matrix adhesion and

material properties. Datta et al. [44] used waste rubber for filling cast urethane elastomers.

Manoj et al. [45] studied the miscibility and fracture toughness of polyurethane–rubber

composite blends and obtained enhanced values of fracture toughness by the incorporation

of rubber particles. Pastor-Blas et al. [46] analyzed the failure behavior of surface treated

unvulcanized rubber–polyurethane adhesive joints and found enhanced T-peel strength and

improved surface adhesion. On the other hand, Tan et al. [47] studied abrasion resistance of

thermoplastic polyurethane blended with rubber and found that the tensile strength, elonga-

tion at break, and abrasion resistance got increased with optimum rubber content. Danch et

al. [48] made dynamic mechanical thermal analysis (DMTA) study of the urethane network

in rubber waste–urethane composites and conducted thermal analysis of the end product.

The reaction between rubber (disulfide bonds) and isocyanate free groups was observed us-

ing FTIR. Dhamodharan et al. [49] studied blends of ethylene propylene diene rubber and

thermoplastic polyurethane and observed improved mechanical properties along with bet-

ter solvent resistance and enhanced low temperature flexibility whereas, the glass transition

temperature was found to increase. Ortiz-Morgan et al. [50] published their work on im-

proved adhesion of RF plasma treated rubbers by isocyanate incorporation to polyurethane

adhesive. They observed increase of rubber adhesion towards polyurethane adhesive. How-

ever, they mentioned the use of isocyanate as the cross-linker because of the presence of

anti-adherent compound like zinc stearate. Pachpinyo et al. [51] made a preliminary study

on the preparation of unsaturated polyester resin and rubber latex blends in the presence

of dispersion aids like toluene and liquid ammonia, and obtained increased impact resis-

tance. Sulkowski et al. [52] made thermogravimetric study of rubber waste-polyurethane
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composites and concluded that no relationship can be drawn between material constitution

and thermal or mechanical properties.

Studies on reinforced polymer foams have also been conducted. Li et al. [42, 53]

synthesized and characterized rubberized syntactic foam. They concluded that the rub-

berized foam shows higher capability of absorbing impact energy at micro–length scales.

This foam is also capable of preventing the micro-length scale damage from propagating

into macro-length scale damage. El Lawindy et al. [54] studied the physical properties

of foam–rubber composites with carbon black as the second binding agent. They con-

cluded that a foaming agent promotes the dilution of carbon in the matrix. Mechanical

parameters were found to decrease with an increase of both temperature and foaming agent

content. Lin et al. [55] studied microstructure–mechanical property relationship of short

fiber–rubber–foam composites. They showed that short fibers disperse uniformly in the

composites irrespective of treatment, but treated fibers showed much better adhesion with

the rubber matrix than untreated ones. The experimental results indicated the enhancement

of most mechanical properties such as tensile modulus, hardness, and tear strength by the

incorporation of short fibers in the rubber foam matrix. De Mello et al. [56] studied the

effects of post-consumer PET (polyethylene terephthalate) on the performance of flexible

polyurethane foams. They observed much more enhanced mechanical properties in terms

of tensile resistance, strain at break, and tear resistance. The reinforced foam yielded better

wear and compression resistance than the standard foam without changing the number of

cells. Some more works on reinforced polymer foams have been discussed later in this

chapter.

Surfactants in Polyurethane Foam System

The use of surfactants has become very popular in heterogeneous blend systems. Numer-

ous surfactants have been tested in virgin polyurethane foams as well as crumb rubber-

polyurethane system with specific purposes. Surfactants are expected to coat the rubber
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particles resulting in their effective bonding in polyurethane matrix system. On the other

hand, surfactants also help in stabilizing the foam matrix. Krupers et al. [17] studied the

formation of rigid polyurethane foam with a mixture of commercially available siloxane

L-6900 talc powder and several semi-fluorinated diblock copolymers as surfactants, and

observed a reduction in cell size. Fluorinated surfactants helped in the stability of the foam

system. Hawkins et al. [57] used the DC-193 surfactant in their study of the cell morphol-

ogy and mechanical properties of a rigid polyurethane foam. They concluded that there is a

relationship between the cell morphology and the compressive modulus and collapse stress

in the final product, and also that the size of mold significantly affects the method of foam-

ing. Morimoto et al. [58] used another silicon surfactant SH-193, having chemical formula

R(R2SO)y(CnH2nO)xR, in their work on rigid polyurethane foam. It was seen that the flex-

ural modulus and the flexural strength increased and their temperature dependence reduced

by the use of surfactant and longer fibers as reinforcing agent. Seo et al. [59, 60] used

polysiloxane ether as a surfactant for the formation of water blown free rising polyurethane

foam and saw that that the density and the compressive strength of the foam increased with

an increase in the OH value and the functionality of the polyols along with the use of sur-

factants. Saint-Michael et al. [61] used a PDMS/POE copolymeric silicone surfactant to

characterize the effect of filler particle size on high-density polyurethane foam. They found

that the reinforcement of foam might not be effective if the filler are bigger than the bubble

size. Thermal studies suggested that the fillers increase the crosslink density of the matrix.

Some other studies can be mentioned in this connection. Singh et al. [62] used polysilox-

ane ether as a surfactant in their work on the reactivity of raw materials and studied its

effects on the structure and properties of rigid polyurethane foam. They found increased

cream time and gel time of foaming with larger cell size distribution, though, the effects

of surfactants were found to be minimal. De Mello et al. [56] studied the effects of post-

consumer PET (polyethylene terephthalate) on the performance of flexible polyurethane

foams and used a silicone surfactant, polysiloxane-polyalkylene block copolymer. They
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observed enhanced mechanical properties in terms of tensile resistance, strain at break, and

tear resistance. The reinforced foam yielded better wear and compression resistance than

the standard foam without changing the number of cells. Goods et al. [63] used silicone

glycol copolymer surfactant DC-193 with an average hydroxyl number of 75 in their study

on the mechanical properties of particle-strengthened polyurethane foam. They observed

that the surfactant helped in dispersing the aluminum particles uniformly inside the foam

resulting in higher values of modulus and collapse stresses. Lim et al. [64] studied the

effect of silicone surfactant B 8404 on rigid polyurethane foam. They found the reduc-

tion of average foam density associated with the generation of finer cells and increase in

closed cell porosity of the rigid foam and concluded that surfactants helped in the foaming

process. In addition, the surfactant took part in stabilizing the foam system.

Surfactants in Rubber–Polyurethane Blend System

There is a significant number of studies on the use of surfactants on rubber–polyurethane

blend systems. Datta et al. [44] used diazabicyclo[2.2.2]octane as a surfactant for charac-

terizing cast urethane elastomers containing waste rubber particles. Lin et al. [55] used a

new surfactant known as Accinox Tq (polymerized 1,2 dihydro 2,2,4-trimethyl quinoline)

for studying the microstructure and mechanical property relationship of short fiber–rubber

foam composites. The experimental results showed that the incorporation of short fibers

into rubber foams is responsible for the enhancement of mechanical properties such as

tensile modulus, hardness, and tear strength. The good interfacial adhesion of the short

fibers with the matrix enables further improvement in the mechanical properties. Pastor-

Blas et al. [46] analyzed the failure mode of unvulcanized rubber–polyurethane adhesive

joints by treating the rubber by trichloroisocyanuric acid (TCI) to reactivate the surface

and observed enhanced T-peel strength and improved surface adhesion. Danch et al. [48]

conducted dynamic mechanical thermal analysis (DMTA) study of the urethane network in

rubber waste-urethane composites by using Monothane A50 and Monothane A60 urethane
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unary (one component) prepolymers as surfactant. FTIR analysis showed the reaction be-

tween rubber (disulfide bonds) and isocyanate free groups. Dhamodharan et al. [49] stud-

ied blends of ethylene propylene diene rubber and thermoplastic polyurethane and used

dicumyl peroxide as surfactant. They found improved mechanical properties along with

better solvent resistance and enhanced low temperature flexibility whereas, the glass tran-

sition temperature was found to increase. Ortiz-Morgan et al. [50] published on improved

adhesion of RF plasma treated rubbers by isocyanate incorporation to polyurethane adhe-

sive and enhanced the surface reactivity of rubber particles by the use of 4 weight % tris

(p-isocyanatophenil) thionophosphate surfactant. They observed increased rubber adhe-

sion towards the polyurethane adhesive. However, they mentioned the use of isocyanate as

cross-linker because of the presence of anti-adherent compound like zinc stearate. Pach-

pinyo et al. [51] studied the preparation of unsaturated polyester resin and rubber latex

blends in the presence of dispersion aids like toluene and liquid ammonia and received

enhanced impact properties by the use of dispersion aids. Sulkowski et al. [52] made

thermogravimetric study of rubber waste-polyurethane composites and used one compo-

nent polyurethane prepolymer surfactant Chemolan-M, Chemolan M-50 and Chemolan

B-3 having hardness similar to that of fine rubber. Yang et al. [65] used simple silicon

dioxide having a particle size of 30–50 micrometer as a surfactant. They concluded that the

integrated mechanical properties of hybrid reinforced rigid polyurethane composite foam

would achieve an optimal value by the incorporation of 7–8 % of rubber. Some other stud-

ies [66, 67] discussed the use of surfactants in polyurethane foam system. All of these

works presented significant changes in properties by the use of surfactants.

It is to be noted that the discussion on the working principle of surfactants is mainly

based on the application of surfactant in an aqueous medium. Most of the above mentioned

studies have used water as a blowing agent in the foam system. Hence, corresponding

surfactants were believed to work in the same principle. Though, our study does not directly

involve water in the crumb rubber–polyurethane foam blend system, the working principle
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of surfactants will be governed by the same basic principles.

Literature survey on Non-Reinforced Polyurethane Foam

There have been several studies on the properties of polyurethane foams. Most of the ear-

lier investigations focussed on non-reinforced foams [57, 59, 60, 62, 68–74]. Mumford et

al. [68] studied the component analysis of rigid polyurethane foam, and addressed suit-

able means for the elemental analysis of foams, for example by chemical ionization mass

spectrometry and high pressure liquid chromatography. These methods were found to be

effective. Hawkins et al. [57] studied the cell morphology and mechanical properties of

rigid polyurethane foam. They concluded that cell morphology holds a relationship with

compressive modulus and collapse stress in the foam. It was further concluded that the

shape and orientation of the cells have significant effects on the mechanical properties if

not explained by means of some different failure mechanism. Izakson et al. [69] published

their work on the mechanical and thermo physical properties of polyurethane foam thermal

insulation coatings for controlling the instability of deep quarry banks, where they obtained

increased thermal and mechanical properties. Johlitz et al. [70] investigated experimental

and theoretical properties of non-linear viscoelastic polyurethane systems by considering

them as a material with zero plasticity and obtained proper agreement with the experimen-

tal results. Niyogi et al. [71] discussed the effect of blowing agent (water) on polyurethane

foam. They concluded that with an increase in blowing agent concentration, more bubbles

are formed and their average size decreases. In addition, the time of nucleation decreases,

resulting in a narrower bubble size distribution. Seo et al. [59,60] studied mechanical, mor-

phological, and thermal properties of water blown free rise rigid polyurethane foams. They

concluded that the kinetic rate of polyurethane foam forming increases with an increase

in water content by the reaction between water and foam component PMDI. They further

concluded that that the density and the compressive strength of the polyurethane foam in-

crease with an increase in the OH value and higher functionality group polyol. Singh et
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al. [62] investigated reactivity of raw materials and their effects on structure and properties

of rigid polyurethane foam. They found increased cream time, and gel time of foaming

with larger cell size distribution. Sonneschein et al. [72] derived the relationship between

polyurethane foam microstructure, and foam aging, and observed that foam aging is pre-

dicted by means of hard segments inside foam network. Subramani et al. [73] developed

new polyurethane dispersion from blocked aromatic diisocyanate. These dispersions were

found to be stable for more than six months and observed the possibility of using these

anionically modified blocked-isocyanate adducts as potential crosslinkers. Tu et al. [74]

discussed plastic deformation modes in rigid polyurethane foams under static loading. The

mechanical properties of polyurethane foam were examined via compression in different

directions. Results showed that the response is anisotropic. Further conclusion was the

uniform distribution of foam by the effect of compression in the transverse direction.

Literature survey on reinforced polyurethane foam

Studies on reinforcements in polyurethane foam are more recent [42–47, 53–55, 58, 61,

75–79]. Haibach et al. [75] studied the mechanical properties of silica-particle reinforced

polyurethane foams via emulsion templating and obtained enhanced elastic properties along

with foam stability. Mahfuz et al. [76] studied the fabrication, synthesis, and mechani-

cal properties of nanoparticle infused polyurethane system. They concluded that an op-

timum amount of nanoparticle enhanced the thermal as well as mechanical properties of

polyurethane foams. Morimoto et al. [58] worked on the flexural properties of glass fiber

reinforced rigid polyurethane foam. It was seen that flexural modulus and the flexural

strength increased and their temperature dependences reduced by the use of surfactant and

longer fibers as reinforcing agent. Saint-Michael et al. [61] worked on the mechanical

properties of high-density polyurethane foam and the effect of filler size on their properties.

They found that the reinforcement of foam might not be effective if the filler are bigger than

the bubble size. Thermal studies suggested that the fillers increase the crosslink density of
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the matrix. Rozman et al. [77] published on the mechanical and physical properties of

polyurethane component based on rice husk and polyethylene glycol. They concluded that

the introduction of rice husk as an OH groups provider in a polyurethane system enhances

the properties. It was further concluded that properties of the composites also depend on

the amount of homogeneous polyurethane matrix. Yosomiya et al. [78] reinforced rigid

polyurethane foam with glass fibers and characterized the compressive properties. They

concluded that out of different polymers, copolyimides show better resistance to swelling

in solvents than the elastomers, but, they show worse performance in alkalis. It was further

concluded that at low temperature, these copolyimides exhibit low stiffness, high deforma-

tion, and good elastic recovery. Cawse et al. [43] proposed the use of rubber as a toughening

agent in polyurethane network and composite materials and observed that the processing

method, rubber particle size, and size distribution are important parameters in affecting

rubber-matrix adhesion, and material properties.. Datta et al. [44] used rubber wastes for

filling the cast urethane elastomers. Li et al. [42, 53] synthesized and characterized novel

rubberized syntactic foam. They concluded that the rubberized syntactic foam shows a

higher capability of absorbing impact energy in micro–length scales. It is also capable of

preventing the micro-length scale damage from propagating into macro-length scale dam-

age. El Lawindy et al. [54] studied the physical properties of foam-rubber composites

along with carbon black as the second reinforcing agent. They concluded that foaming

agent promotes the dilution of carbon in the matrix. Mechanical parameters were found

to decrease with an increase of both temperature and foaming agent. Lin et al. [55] stud-

ied microstructure–mechanical property relationship of short fiber–rubber-foam compos-

ites and showed that short fibers disperse uniformly in the composites irrespective of treat-

ment, but treated fibers showed much better adhesion with the rubber matrix than untreated

ones. The experimental results indicated the enhancement of most mechanical properties

such as tensile modulus, hardness, and tear strength by the incorporation of short fibers in

rubber foam matrix. Manoj et al. [45] published on the miscibility and fracture toughness
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of polyurethane–rubber composite blends and got enhanced values of fracture toughness

by the incorporation of rubber particles. These studies have helped in understanding the

mechanism of polyurethane foam formation and served as the basis of future work.

Motivation

As of yet, however, no studies are present that provide a detailed discussion of the effects

of the microstructure of rubber-polymer blend products on the mechanical properties. A

few studies discuss the microstructure-property relationship of glass fiber and carbon black

reinforced foam composites [55], no one has studied the same for crumb rubber particle

reinforced polyurethane foam products. This provides a motivation for the current investi-

gation.
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CHAPTER 3

MATERIALS AND EXPERIMENTAL CHARACTERIZATION

This study investigates the fabrication and characterization of crumb rubber–polyurethane

foam composites. Crumb rubber particles, 40–99 mesh size, were purchased from Entech,

Inc. (White Pigeon, MI). Fig. 3.1 shows the particle size distribution of this particular size

of crumb rubber. An optical micrograph of the crumb rubber particles is shown in Fig. 3.2.

Figure 3.1: Sieve analysis data for crumb rubber having 40-99-mesh size, adapted from

[80].

The basic principle of polyurethane form formation is the reaction between an iso-

cyanate with a polyol in presence of a blowing agent. This method is termed as physical
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Figure 3.2: Optical micrograph showing crumb rubber particles inside foam

blowing or foaming. There is another method where blowing agents are directly reacted

with the isocyanate and no polyol is involved. This is called chemical blowing or foaming

and was used in this study. The approach involves the reaction of isocyanate with active

hydrogen and the hydroxyl radicals of blowing agent to produce carbon dioxide gas for

foaming and urea linkages to form polyurea, as shown in Fig. 3.3 [16].

Figure 3.3: Basic concept of polyurethane foam formation by chemical blowing method,

as used in this investigation, adapted from [16]

We selected an expanding, rigid, closed cell, pourable urethane foam to fabricate the

composite, having a density of 0.03 g/cm3 from US Composites (Palm Beach, FL). This

foam has two parts (part A and part B), which are mixed in equal volume. Approximate

ideal temperature for the foaming process varies between 24–27 °C. When mixed, this

system starts foaming in 45 seconds and completes expansion in 5 minutes. The total

expanded volume is approximately 25 to 30 times the starting liquid volume.
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Part A of this two-part foam system is polymethylene polyphenylisocyanate (polymeric

MDI or PMDI), which is the polymeric form of diphenylmethane diisocyanate (MDI).

This is a popular stable aromatic isocyanate and not considered to be carcinogenic. It is

a brown liquid with slight aromatic odor having a boiling and flashing point of 329 °C

and 199 °C respectively. It has a specific gravity of 1.24 and is insoluble in water. Above

204 °C, it can polymerize or decompose causing a pressure build-up in closed containers

resulting in effective rupture of the same. Hence, it should be kept far from the presence

of water, alcohols, glycols or other chemical materials having active hydrogens in their

chemical structure. PMDI is highly incompatible with amines and strong bases. It is highly

flammable in presence of carbon monoxide, carbon dioxide, benzene, toluene and traces of

hydrocyanic acid [81]. Fig. 3.4 shows chemical structure of PMDI.

Figure 3.4: Chemical structure of PMDI (Part A), adapted from [82]

Part B of our two-part foam system acts as the polymerization blowing agent, and

has the chemical name 1,1,1,3,3-pentafluoropropane. Commercially, this blowing agent

is called HFC 245fa. Though, it belongs to polyol resin system, it is not a conventional

polyol. Rather, it is a tertiary amine catalyst. This material is also stable and not carcino-

genic. It has a boiling point and flashing point of 15.5 °C and 93 °C respectively. It is

brown in color and 9% volatile by volume. HFC-245fa is slightly soluble in water with a

specific gravity of 1.155. It should be kept below 29 °C and far from chemicals like car-

bon dioxide, carbon monoxide, halogens, and carbonyl halides [81]. It is essential to know
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that blowing agents like HFC 245fa does not take part to create the cells of foam. Foam

cells are created by the diffusion of blowing gases into bubbles that are nucleated during

the time of mixing. Microcellular foams can rather be created without the use of blowing

agents by the mechanism of frothing or nucleation [16]. Fig. 3.5 shows chemical structure

of 1,1,1,3,3-pentafluoropropane.

Figure 3.5: Chemical structure of HFC-245fa (Part B), adapted from [83]

As mentioned, because of the dissimilar chemical structure between the polyurethane

foam and rubber particles, it was expected that the dispersion of rubber particles in the

polyurethane matrix could be difficult. Surfactants or dispersion aids were therefore used

to coat the rubber particles, to promote the uniform dispersion and enhance rubber–foam

bonding [51]. This study employed two specific surfactants.

The first is soluble sodium lauryl sulfate (SLS) in water (Darvan WAQ, R. T. Van-

derbilt Company Inc. ,Norwalk, CT), an important anionic surfactant. The most common

use of SLS is as an emulsifier for emulsion polymerization of many polymers. It has

both hydrophobic and hydrophilic structures that are supposed to react with rubber and

polyurethane molecules. It is expected that hydrophobic sites would interact with rubber

molecules, while hydrophilic sites would interact with the polyurethane molecule [51].

SLS is synthesized by the reaction between lauryl alcohol and sulfuric acid to produce hy-

drogen lauryl sulfate, which, is further neutralized by adding sodium carbonate. Because

of this synthesis technique, SLS is not considered as a pure dodecyl sulfate, but a mixture

of alkyl sulfate with dodecyl sulfate as its main component. Like other surfactants, SLS

molecule has a tail consisting of twelve carbon atoms attached to a sulfate group. This
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gives SLS molecules amphiphilic properties [84]. Fig. 3.6 shows the chemical structure of

a SLS molecule.

(a) Presence of head and tail in SLS

molecule

(b) Chemical structure of SLS

molecule

Figure 3.6: Chemical structure of Darvan WAQ, adapted from [84]

Darvan is a basic surfactant with a pH value of 7.5. It is a white colored liquid with

high solubility in cold water. The boiling and melting points of Darvan are 100 °C and 10

°C respectively. It is 73% volatile (w/w) and slightly denser than water, having a specific

gravity of 1.04. Darvan is not carcinogenic and a very stable chemical to work with. But, it

is not compatible with strong oxidizing agents like potassium permanganate and hydrogen

peroxide [85].

The second surfactant used in this study was a heat reactive, carboxylated vinylidene

chloride copolymer latex (Vycar 660 ×14 emulsion, Lubrizol Inc.,Cleveland, OH), a pop-

ular synthetic anionic surfactant. Unlike Darvan, it is acidic, having a pH factor of 5.7. It

has a surface tension of 30 Dynes/cm and denser than water with specific gravity 1.19. It

has a glass transition temperature of +7 °C and is not carcinogenic [86].

Figure 3.7: Monomer of Vycar 660 ×14, adapted from [87].

Vycar is an excellent flame-retardant. It is durable to washing and takes part in low

temperature heat curing without the aid of a catalyst. It is well known for its characteristics
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of substrate adhesion, pigment binding, and colloidal stability with a high degree of re-

dispersibility. Vycar has the capability of generating good physical properties at very low

drying temperature. Generally the polymers of vinylidene chloride are prone to damage

to heat and light discoloration. Vycar does not have this drawback. It is compatible with

water-soluble flame retardant salts and has good toughness and abrasion resistance [86].

It is to be noted that the selection of a surfactant in polyurethane foam system needs

careful attention of the compatibility of the system and the purpose. Generally, popular

surfactants for rigid polyurethane foam systems are quite different than that of flexible

polyurethane foam system. This is because the rigid foam surfactants are used to produce

very fine cells and high closed cell contents. On the contrary, surfactants in flexible foams

are used to stabilize the reaction mass. At the same time, they enhance the open cell

content inside the structure so that it does not shrink. In this study, these two surfactants

were chosen on the basis of the qualitative elemental composition analysis of as received

rubber collected by XRF, as discussed later in the next chapter.

Sample Preparation

Different weights of crumb rubber particles were used to reinforce the polyurethane matrix

while the amount of polyurethane was kept constant. Four different quantity of rubber

particles were used as a reinforcing agent (25, 50, 75, and 100 g, which were 9, 18, 24

and 30 weight % of rubber particles, respectively). The effect of surfactants on the rubber-

polyurethane blend was tested using two different approaches. In one set of samples, the

amount of surfactant was kept constant for all the samples (at 10 g). The other set of

samples was prepared using a surfactant weight equal to 0.1% of rubber weight, i.e. the

weight ratio of surfactant to rubber was kept constant (0.025, 0.05, 0.075 and 0.1 g of

surfactant). Samples were prepared in 250 × 250 × 25 mm (10 × 10 × 1 inch) molds, as

shown in Fig. 3.8.

To prepare the composite samples, a measured weight of crumb rubber was placed in a
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Figure 3.8: Mold for preparing rubber-foam composites used in the present study

mixing bowl, mixed properly with the surfactants using a mechanical stirrer at 2 to 4 rpm

for 10 minutes and then dried at room temperature for four hours. After mixing the surfac-

tant, a visible color change was observed throughout the entire mass of the rubber particles,

as illustrated in Fig. 3.9. This confirmed the interaction between anionic surfactants with

the ions present in the rubber. This visible change in color was seen for both the surfactants

Darvan WAQ and Vycar 660 ×14.

Figure 3.9: Visible color change in rubber by the application of surfactant

The surfactant treated rubber particles were then mixed with Part B of the polyurethane

foam using the help of a mechanical stirrer at 2 to 3 rpm for 5 minutes. Finally, Part A was

added and the mixture was hand stirred for a very short duration before being poured into
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a pre-prepared mold. Due to rapid reaction and foam expansion the slurry was put inside

the mold within 45 seconds after mixing Part A. The entire mold was then placed inside a

fume hood for 24 hours with the two aluminum plates placed in a vertical orientation. This

process resulted in polyurethane foam plates with a nominal dimension of 250 × 250 × 25

mm with the incorporation of crumb rubber particles. Fig. 3.10 shows the picture of one

such plate.

Figure 3.10: Rubber–polyurethane foam composites generated in this present study

X-Ray Fluorescence Analyses and Selection of Surfactants

As already discussed, the non-uniform dispersion of rubber particles inside polyurethane

foam is a problem. Hence, proper dispersing aids were required in accordance with the

chemistry of the rubber particles. To select appropriate surfactants, XRF was performed on

the crumb rubber particles to determine elemental composition using the Tracer TurboSD

XRF analyzer (Bruker Inc. ,Madison, WI).

During processing, crumb rubber is treated with different chemicals. For example,

chlorine is used to remove the pungent odor (characteristic of the sulfur presence), and

specific solutions are used to increase fire retardancy. In addition, metal wires that were
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incorporated during the manufacturing of tires may also be present in the crumb rubber

if not completely removed by magnetic separation. As a result, traces of these treatment

chemicals or residual metals are found in crumb rubber particles, and can affect the surface

treatment. A knowledge of the elemental composition aids the selection of surfactant as

one can plan for a possible bonding between the ions present in the specimen with the

polar or non-polar groups present in the respective surfactant.

FTIR Analysis

Fourier Transform Infrared Spectroscopy (FTIR) was used to examine the effect of sur-

factants on virgin rubber particles. This helped identify the nature of chemical interac-

tion between the two types of surfactants and crumb rubber. Spectra were collected using

AVATAR 60 (Waltham, MA) and the spectra without any manipulations or corrections were

processed using Omnic 5.1 and overlayed with the reference sample.

Determination of Physical Properties

The fabricated foam materials were characterized to determine the density, porosity, and

void volume fractions in accordance with European standard EN 993-1 [89]. Polyurethane

foam is a porous material, so porosity is a very important element defining the microstruc-

ture. The shape, density, orientation, quantity, type, size, and size distributions of pores

significantly affects the properties of foams. There are a significant number of terms affect-

ing the physical properties of rubber–polyurethane foam composites, namely bulk density,

skeleton density, solid density, apparent or total porosity (which is the void volume fraction

of air), open porosity and closed porosity [89]. In this study, the porosity of the com-

posites was quantified in terms of both open and closed porosity. Fig. 3.11 represents a

typical optical micrograph of rubber–polyurethane blend composites showing pores inside

the samples.

Measurements were carried out to quantify the spatial distribution of properties. For
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Figure 3.11: Microscope picture of rubber-polyurethane foam composite showing pores

inside structure

density and porosity measurement, small cylindrical samples were cut along the height of

the composite samples, as shown in Fig. 3.12.

Open porosity is defined as the ratio of the volume of the open pores to the total volume

of the porous body. Similarly, closed porosity is the ratio of the volume of closed pores to

the total volume of the porous body. Apparent or total porosity is the ratio of the volume of

all pores to the total volume of the porous body. This is also the total void volume fraction

of the material and the sum of open and closed porosity. Bulk density is the quotient of

the mass and total volume of the body. This can be considered as an average of the density

of solid and gas present in the pores taking care of the presence of both open and closed

pores. The skeleton density is obtained dividing the mass of the samples by the skeleton

volume of the sample. In other words, skeleton density accounts the effects of only open

pores present in the sample. Solid density is determined dividing the mass of the sample

by its solid volume [89]. To determine the solid density, samples were crushed to make

powders so that there is no presence of voids inside it anymore and the solid volume was
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Figure 3.12: Cylindrical samples along the height of rubber–foam composites for charac-

terization

obtained.

The principle of buoyancy was used for the measurement of densities and porosities

with the help of a density measurement kit (Sartorius Inc., Bohemia, NY). First, the dry

samples were weighed in air and this was recorded asm1. Then the samples were immersed

in water for twenty-four hours in a vacuum infiltration chamber. This process evacuates all

the air from open pores and fills them with the saturation liquid (water). The saturated

samples were then weighed while immersed to determine the apparent mass m2 using the

density measurement set up. Finally, saturated samples were wiped to remove surface

water and weighed in air to determine the saturation mass, m3. This was done quickly to

minimize any loss of mass due to evaporation of the saturation liquid (water). The density

of the saturation liquid, ρfl, was recorded at the particular temperature. Figures 3.13 and

3.14 show the density determination kit and the vacuum infiltration chamber used in this

present study. After all these measurements, the bulk density ρb, the skeleton density, ρsk,
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(a) Determination of sample mass in water (b) Determination of wet sample mass

Figure 3.13: Determination of physical properties by density determination set up

and the open porosity, πa, were determined using the following equations, respectively [89],

ρb =
m1

m3 −m2

× ρfl (3.1)

ρsk =
m1

m1 −m2

× ρfl (3.2)

πa =
m3 −m1

m3 −m2

× 100 (3.3)

where, ρb is the bulk density (g/cm3), ρsk is the skeleton density (g/cm3), ρfl is the density

of fluid (g/cm3), and πa is the open Porosity (in %).

The solid density and corresponding closed cell porosity of all the specimens were

determined using a helium pycnometer (Ultrapycnometer 1000, Quantachrome Inc, Boyn-

ton Beach, FL), shown in Fig. 3.15. Samples were crushed using liquid nitrogen inside a

grinder to make powders. This would ensure the removal of all pores from the samples.

38



Figure 3.14: Vacuum infiltration chamber set up used in the present study

The powders were then placed inside helium gas chamber of the pycnometer with an input

of dry weight of the samples. Five runs were taken for each individual samples using the

pulse mode of gas flow. The pycnometer provided the solid volume and solid density of

the samples as outputs. From the solid density, closed cell contents of the samples were

determined as,

πt =
ρt − ρb
ρt

× 100 (3.4)

πf = πt − πa (3.5)

where, ρt is the solid density (g/cm3), πt is the apparent or total porosity (in %), and πf is

the closed porosity (in %).

Compressive Properties

Compressive properties of the foam-rubber composites were determined using cylindrical

samples as per ASTM C-365/C-365M [90]. Uniaxial compression tests were performed

using a 30 KN cell in a screw-driven test frame (Instron Model no. 5567, Norwood, MA)

at a cross-head displacement rate of 0.5 mm/min, as shown in Fig. 3.16. The ultimate
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Figure 3.15: Helium ultrapycnometer 1000 used in the present study

flatwise compressive strength was determined using,

F fcu
z = Pmax/A (3.6)

where, F fcu
z is the ultimate flatwise compressive strength, Pmax is the ultimate force prior

to failure, and A is the cross sectional area [90].

Flatwise compressive chord modulus was also determined following the same ASTM

standard as,

Efc
z =

P0.003 − P0.001

δ0.003 − δ0.001
× t

A
(3.7)

where, Efc
z is the flatwise compressive modulus, P0.003 is the applied force corresponding

to δ0.003, P0.001 is the applied force corresponding to δ0.001, δ0.003 is the recorded deflection

value such that δ/t is closest to 0.003, and δ0.001 is the recorded deflection value such that

δ/t is closest to 0.001 [90]. This formula for determining the compressive modulus is set up

such that it accounts for the compliance correction part of the experiment. This is because
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Figure 3.16: Foam–rubber specimens subjected to compression test following ASTM

C365/C365M

all typical force versus displacement curves consist of a toe region, which is not a property

of the material but is caused by a take-up of slack and alignment of seating of the specimen.

Hence, a proper positioning of zero point on the displacement axis is always difficult. To

get correct compressive modulus values, this artifact has to be compensated so that it gives

the corrected zero point on the displacement axis [90].

Fig. 3.17 shows typical force versus displacement curve of a material having Hookean

(linear) region (region CD), for example as for polyurethane foam. For actual measurement

of modulus values, this linear region should be extended through the zero-force axis. The

intersection point thus obtained (B), is the actual or corrected zero displacement point (δ =

0.000) from which the displacements should be measured. For a valid test, it is required

that point B fall below δ0.001 [90].

Flexural Properties

Flexural properties were determined according to ASTM D790 [91] with a load rate of 6

mm/min using three point bending. When composites are tested in flexure, as a simply

supported beam loaded in middle point, the maximum stress at the outer surface of the test
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Figure 3.17: Force versus displacement curve of a material with Hookean region, adapted

from ASTM standard C365 [90]

specimen acts at the mid point. This stress is calculated for any point on the load deflection

curve using

σ =
3PL

2wt2
(3.8)

where, σ is the stress in the outer fibers at mid-point and considered as the flexural strength,

P is the load at a given point on the load-deflection curve, L is the Support span, w is the

width of specimen tested, and t is the depth of specimen tested [91, 92].

The tangent modulus of elasticity, or the modulus of elasticity, is the ratio of stress

to corresponding strain within elastic limit. It was measured by drawing a tangent to the

steepest initial straight-line portion of the load-deflection curve [91], and calculated as,

τ =
L3m

4wt3
(3.9)

where, m is the stiffness of the load deflection curve in the linear elastic region calcu-

lated by diving the maximum load achieved to the corresponding deflection. All rubber-

polyurethane foam composite specimens had a specimen length, l of 200 mm, width, w of

42



Figure 3.18: The notations for specimen dimensions and 3-point bending test configuration

[92].

62.5 mm, span length, L of 150 mm, and average sample thickness, t of 25 mm.

Figure 3.19: Failure of composite specimens subjected to 3 point bending test

Like the load-deflection curve, a typical stress–strain curve consists of a toe region,

which is not a property of the material. This was corrected as before [91].

Scanning electron microscopy (SEM)

Scanning electron microscopy studies were performed on selected samples to characterize

the cell size, failure of rubber particles, fractured surface topology, and interfacial char-

acteristics between rubber particles and polyurethane matrix. Fractured surfaces of the
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bending specimens were managed using a Hitachi Scanning Electron microscope (Hitachi,

Model No: S-4800, Dallas, Texas). Before the observation, all the surfaces were gold

coated having a depth of 70 nanometer.
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CHAPTER 4

RESULTS AND DISCUSSION

X-Ray Fluorescence Data

Fig. 4.1 shows the X-ray fluorescence data collected on crumb rubber. From the radiation

spectra, a rich content of Zn2+ and Br- ions was seen in the virgin crumb rubber sample, as

shown in Fig. 4.1. This was utilized in selecting the two surfactants. The presence of strong

electropositive sodium ions in Darvan has initiated the use of this particular surfactant as

sodium ions can form strong bonds with highly electronegative bromin ions present in the

as-received rubber particles. Similarly, the presence of highly electronegative chlorine ions

has initiated the use of surfactant Vycar as these ions are supposed to form strong bonds

with strong electropositive zinc ions present in the rubber particles.

Density and Porosity as Functions of Crumb Rubber and Surfactant Content

The first step was to determine the role of surfactant on the foaming process. Fig. 4.2

shows the variation of bulk density of polyurethane foam as a function of Darvan and Vycar

content. These samples were prepared without the incorporation of crumb rubber. The total

amount of polyurethane was kept constant at 200 ml (100 ml of Part A and 100 ml of Part

B). Four different amounts of both kinds of surfactants, namely 0.025 g, 0.05 g, 0.075 g

and 0.1 g (0.1% by weight of rubber particles utilized in other samples) were used. The

variation of bulk density was measured as a function of surfactant volume fraction, which

was obtained dividing the volume of these surfactants by the solid volume of polyurethane

and surfactant.

With an increase in surfactant content, a reduction in bulk density was observed for
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Figure 4.1: XRF analysis for the virgin crumb rubber samples

Figure 4.2: Effect of surfactants on the bulk density of polyurethane matrix system without

rubber
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both Darvan and Vycar, as expected. The addition of surfactant enhances foaming process

by reducing the surface tension between individual cells. Surfactants promote improved

blowing efficiency by helping the foam ability to create nuclei and also participate in stabi-

lizing the foam. Similar results have been published by Krupers et al. [17] who reported an

increase of average foam height by the addition of a fluorosurfactant. Lim et al. [64] also

reported similar results where foam density decreased asymptotically with the addition of

silicon surfactant B8404 in rigid polyurethane foam system.

Figure 4.3 shows the variation of open porosity of polyurethane foam as a function of

Darvan and Vycar content. With an increase in surfactant content, a reduction in open

porosity was observed for both the surfactants. The addition of surfactant reduced the sur-

face tension between individual cell, promoted enhanced foaming of the system, and helped

in stabilizing the foam matrix system to prevent possible collapsing and surface defects.

The increased stability resulted in a reduced amount of open pores in the polyurethane

foam system.

Figure 4.3: Effect of surfactants on the open porosity of polyurethane matrix system with-

out rubber
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Figure 4.4 shows the variation of closed porosity of polyurethane foam as a function

of surfactant content. An increasing trend of closed porosity was seen with an increasing

content of surfactant. As discussed earlier, surfactants reduce the surface tension among the

particles and promote foaming process. In other words, they increase the blowing efficiency

of the foam. In addition, they increase foam stability. Both these factors contributed to

increased closed porosity.

Figure 4.4: Effect of surfactants on the closed porosity of polyurethane matrix system

without rubber

Figure 4.5 shows the effect of two surfactants, Darvan and Vycar, on the skeleton den-

sity of polyurethane foam. Skeleton density accounts for the presence of open pores, but

not the closed pores. With an increase in surfactant content, a reduction in skeleton density

values occurred for both kinds of surfactants. The decrease of open porosity along with

a simultaneous increase in closed porosity with an increasing surfactant content led to a

lower skeleton density.

The presence of particles is also known to affect the foaming process. Figure 4.6 shows

the effect of crumb rubber particles on the bulk density of polyurethane foam system with-
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Figure 4.5: Effect of surfactants on the skeleton density of the polyurethane matrix system

without rubber

out the presence of surfactants. The most general observation was the increase in bulk

density with an increasing rubber content. This was due to the increase of the overall mass

of the composite samples along with high content of rubber. The bulk density was not

very uniform, as a function of normalized elevation, at the bottom portion of the samples.

Nonetheless a uniform trend of bulk density was seen for all the samples, irrespective of

the quantity of rubber, at a y/h value more than 0.5, i.e. the bulk density is much more

uniform at the top portion of the samples.

In general, for all specimens, the bulk density got increased with height. This means

that foam pushed the rubber particles up and there was not much gravitational effect present

due to the weight of rubber particles.

Figure 4.7 shows the effect of crumb rubber on the skeleton density of polyurethane

foam system without the presence of surfactants. In general, an increasing trend in skeleton

density was seen with higher content of rubber. Again, a more uniform and increasing trend

of skeleton density could be seen for all the samples, irrespective of the quantity of rubber,

49



Figure 4.6: Effect of crumb rubber particles on bulk density of polyurethane foam system

at a y/h value more than 0.5. This indicated the presence of significant and uniform amount

of open pores towards the foaming direction (i.e. towards the top of the sample). This is

understandable as open pores increases with decreasing depth [93]. The equation relating

the open porosity and depth was formulated by Athy in 1930 and given as, φ(z) = φoe−kz,

where, φo is the surface open porosity, k is the compaction coefficient and z is depth.

Figure 4.8 shows the variation of closed porosity inside the rubber-polyurethane foam

composite system, without the presence of surfactant, as a function of normalized elevation.

An increasing trend of closed porosity was observed for samples having rubber particles

starting from 9 weight % up to 24 weight %. But closed porosity got reduced for samples

having 100 g rubber. Probably, the addition of 30 weight % of rubber particles was exces-

sive for this particular polyurethane matrix blend system. Consequently, the polyurethane

could not wet the entire amount of rubber particles and some parts remained in agglomer-

ated form. Thus, these particles did not participate in reinforcing the system. Rather, they

promoted cell rupture, and decreased closed porosity.

Figure 4.9 shows the effect of rubber particles on the open porosity distribution of
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Figure 4.7: Effect of crumb rubber particles on skeleton density of polyurethane foam

system

Figure 4.8: Effect of rubber particles on the closed porosity of polyurethane foam system
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polyurethane foam matrix without using surfactant. Open porosity appeared to decrease

with increasing rubber content, except for the case of 30 weight %. This indicated that

rubber helped in stabilizing the foam system. Again, the 100g addition of rubber did not

follow the trend, due to possible lack of wetting and agglomeration of rubber particles.

Figure 4.9: Effect of rubber particles on the open porosity of polyurethane foam system

So far, we have investigated the individual effects of surfactants and rubber particles

on the physical properties of polyurethane foam matrix. Surfactants tend to increase the

closed porosity over open porosity bringing stability to the foam system. Meanwhile, rub-

ber particles also do the same.

Figure 4.10 shows the effect of surfactant Darvan on the bulk density of rubber–polyurethane

foam composites. The effects of surfactant were observed in two different manners. One

set of samples was prepared by incorporating fixed amount of surfactant (10 g). For another

set of samples, a fixed weight ratio of surfactant and rubber was used (0.1%), i.e. for this

second set of samples, four different quantities of surfactants, which is 0.1% of weight of

the rubber quantities (25 g, 50 g, 75 g, 100 g) were used.

The addition of Darvan, led to very uniform properties as a function of normalized
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(a) Samples having fixed quantity (10 g) of

surfactant Darvan

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.10: Effect of Darvan on the bulk density of rubber and polyurethane foam com-

posites

height, y/h. This implies that the surfactant dispersed the rubber particles uniformly along

the foaming direction. Hence, a much more uniform distribution of bulk density was

achieved. Another observation was the reduction in overall bulk density by the incorpo-

ration of surfactant in comparison to samples prepared without any surfactant. This result

is very much expected, as the addition of surfactants helps in enhancing the blowing ef-

ficiency and increased overall foaming. Introduction of different quantities of surfactant

Darvan reduced the bulk density. The samples with fixed quantity of Darvan showed lesser

bulk density than that of samples with fixed weight ratio of surfactant to rubber. This is

also in accordance to the same observation. Samples with fixed quantity of Darvan have

more weight of surfactant (10 g) in comparison to the other set of samples (Darvan quantity

varies from 0.025 to 0.1 g). Hence, they showed lesser values of bulk density.

Rubber and surfactant contents have completely opposite effects on the bulk density of

polyurethane foam. Rubber particles tend to increase the bulk density, meanwhile, surfac-

tants try to reduce it. But, when they are working together in a system, surfactants had a

greater effect on reducing the bulk density of the foam matrix system in spite of the pres-
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ence of rubber. Also, it can be concluded that Darvan served the basic purpose of surfactant

as it had uniformly dispersed the rubber particles inside polyurethane network. In addition,

it helped in overall foaming process of polyurethane system in spite of the presence of rub-

ber. So, the selection of Darvan was appropriate for our rubber-polyurethane foam blend

composite system.

Figure 4.11 shows the effect of Darvan on the skeleton density of rubber–polyurethane

foam composites. Again, the use of surfactant Darvan led uniform distribution of skeleton

density as a function of normalized height, y/h. Once we increase the quantity of Darvan,

the skeleton density values got reduced, which was in agreement with the results showing

that more surfactant leads to greater closed porosity.

(a) Samples having fixed quantity (10 g) of

surfactant Darvan

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.11: Effect of Darvan on the skeleton density of rubber and polyurethane foam

composites

Figure 4.12 shows the effect of Darvan on the closed porosity of rubber-foam compos-

ites. Both kinds of samples with fixed quantity of Darvan as well as fixed ratio of Rubber to

Darvan showed an increase in closed porosity values starting from samples having 9 weight

% rubber up to 24 weight % of rubber. However, a reduction in closed porosity was seen

in samples having 30 weight % of rubber particles, probably due to agglomeration issues.
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It was found that both rubber particles and surfactants promote closed porosity. These

plots show that rubber particles alone promoted the closed porosity to a greater extent when

used with Darvan, as larger number of closed pores were seen in samples with no surfactant.

The reasons for this are not clear.

(a) Samples having fixed quantity (10 g) of

surfactant Darvan

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.12: Effect of Darvan on the closed porosity of rubber and polyurethane foam

composites

The effect of the surfactant Darvan on the open porosity of rubber-polyurethane foam

blend composite was also investigated. It was seen that for the surfactant Darvan, open

porosity increased in comparison to samples without surfactant, irrespective of the surfac-

tant quantity, as seen in Fig. 4.13.

Note that neither rubber particles nor surfactants promoted the number of open pores

while working individually inside the polyurethane foam system. On the other hand, their

combined effect promoted open porosity. Again, the reasons for this are not clear.

Similar plots were drawn to investigate the effect of rubber particles and surfactant

Vycar on the physical properties of polyurethane foam matrix system. The results were

followed the same trend as for Darvan, and could be explained by the same reasoning. As

they showed minimal variation as a function of normalized elevation, individual plots as
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(a) Samples having fixed quantity (10 g) of

surfactant Darvan

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.13: Effect of Darvan on the open porosity of rubber and polyurethane foam com-

posites

function of y/h are not shown here. Rather, the effects of rubber quantity on the physical

properties of polyurethane foam matrix are explained as follows.

(a) Samples having fixed quantity (10 g) of

surfactant Darvan

(b) Samples having fixed weight Ratio

(0.1%) of surfactant to rubber

Figure 4.14: Effect of rubber on the physical properties of polyurethane foam composites

Figure 4.14 shows the effect of different quantities of rubber particles on the various

physical properties of polyurethane foam matrix in the presence of surfactant Darvan. The

effects of rubber particles were observed on two different set of samples varied by surfac-

tant concentrations. It was seen that rubber particles affected the physical properties of
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foam samples in the same manner, irrespective of surfactant concentrations. Both bulk and

skeleton densities increased with an increasing content of rubber. This was because of the

increase in sample masses by the incorporation of rubber particles as seen earlier. Closed

porosity values increased up to sample with 24 weight % of crumb rubber, but, decreased

for samples with 30 weight % of rubber. Similar anomaly in open porosity values were also

seen for 100 g rubber samples. This is due to possible lack of wetting of rubber particles

and agglomeration. Open porosity values decreased with increasing rubber content up to

24 weight % of rubber samples, and then increased for 30 wt % of rubber.

These observations lead to several conclusions. First, the rubber particles promote the

stability of the polyurethane foam matrix as their presence always enhance the number of

closed pores which is essential for the stability of rigid cell foams. The presence of rubber

particles had diminishing effect on the open porosity of the foam system, which further

supports foam stability. But, these trends were not seen for samples with 30 weight % of

rubber content. This is possibly due to insufficient wetting and possible agglomeration,

where high quantity rubber particles disrupted the foam in stead of acting as reinforcing

agent. Fig. 4.15 shows an optical micrograph picture showing the agglomeration of rubber

particles.

Figure 4.15: Agglomeration of rubber particles inside polyurethane foam
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The effect of different rubber quantities on the physical properties of polyurethane foam

matrix were found to follow the same trend in the presence of surfactant Vycar. It was seen

that rubber particles helped in stabilizing the foam system and their behavior is independent

of the surfactant concentrations. The same anomaly was found in the porosity data for 30

weight % of rubber. Figure 4.16 shows the effect of rubber particles on polyurethane foam

system in the presence of the Vycar surfactant.

(a) Samples having fixed quantity (10 g) of

surfactant Vycar

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.16: Effect of rubber on the physical properties of polyurethane foam composites

The incorporation of both the surfactants Darvan and Vycar significantly affected the

microstructure of rubber-polyurethane foam composites, especially the porosity. Both

closed and open porosity were significantly changed by the introduction of surfactants into

the system. Fig. 4.17 shows the variation of the ratio of closed to open porosity as a func-

tion of normalized elevation for the rubber-foam composites made without the presence of

surfactant.

For samples having low rubber content (9 and 18 weight % of rubber), the variation

of open porosity was overall uniform. For samples having 30 weight % of rubber content,

both closed and porosity were varied in the same extent at the top portion of samples, i.e.

at an y/h value greater than 0.5. Out of all, samples having 24 weight % of rubber particles

showed an increasing trend of porosity ratio starting from the bottom up to the top. This

indicates that samples having 24 weight % rubber content have promoted the closed pores
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Figure 4.17: Effect of rubber particles on the porosity ratio of polyurethane foam system

than open pores to a greater extent. It could be possible that 30 weight % of rubber would

have promoted this even further if agglomeration did not take place.

Figure 4.18 shows the effect of rubber particle content and surfactants on the porosity

ratio of crumb rubber-polyurethane foam composites. Here the porosity data is average

across the normalized height, y/h, because there was no variation along this direction.

Samples with fixed quantity of Darvan, i.e. higher quantity of surfactant, showed lower

porosity ratio than that with fixed ratio of surfactant. This also concluded that Darvan

promoted open porosity more than that of closed porosity. The relative variation of pores

had been most significant in samples with 24 weight % of rubber particles as reinforcing

agent. In other samples, the porosity ratio was affected by the rubber and surfactant content.

Recall that both of these tended to increase closed porosity while decreasing open porosity.

The porosity ratio increase all the way upto a rubber content of 24 weight %. It might have

increased further for 30 weight % rubber if not for agglomerated issues.

However, the effects of Vycar on the porosity ratio of crumb rubber-polyurethane foam
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samples were not the same as for Darvan. The similarity lies in the fact that samples made

with Vycar showed reduced porosity ratio in comparison to samples without surfactant.

This again indicates that, Vycar promoted open porosity more than closed porosity irre-

spective of its amount in the blend system. It was further observed that samples made with

fixed quantity (10 g) of Vycar showed lower value of porosity ratio in comparison to sam-

ples having fixed ratio of surfactant to rubber quantity (0.025 to 0.1 g) except 30 weight %

rubber samples. In other words, an increasing content of Vycar promoted open porosity to

a greater extent than closed porosity.

Figure 4.18: Effect of rubber particles and surfactants on the porosity ratio of polyurethane

foam System

After carefully analyzing all the physical properties, a few things can be concluded.

First of all, both the surfactants worked well for the dispersion of rubber particles. Also,

both of the surfactants promoted closed porosity over open porosity. Nonetheless, Vycar

was more effective than Darvan in promoting the closed porosity, which implies that the

former is a better surfactant.
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Compressive Properties

Figure 4.19 shows the generalized compressive stress-strain curve of virgin foam samples

without the presence of rubber and composite samples with and without the presence of

surfactants. The stress–strain diagram of crumb rubber–foam composites indicated that the

stress-strain behavior was affected, but the qualitative nature remained the same, which

implies that the macroscopic deformation mechanism was unchanged. The foams showed

linear elasticity at low strains, followed by a long collapse plateau, and finally a regime

of densification where the stress rose steeply. The linear elastic region is controlled by

cell wall bending and face stretching of the individual cells; the plateau is governed by the

collapse of cells. When all the cells have collapsed, the opposing cell walls touch each

other and the solid is further compressed by the strains thus generated resulting in final

region of rapidly increasing stress. This enhances the stresses very quickly with a crushing

of the next adjacent layer [94, 95].

(a) Linear elasticity showed by composite

samples at low strain

(b) General stress-strain curve of composite

samples showing all the regions

Figure 4.19: Compressive stress-strain curve of rubber-polyurethane composites at differ-

ent strain level

Figure 4.20 shows the effect of crumb rubber quantity and surfactants on the compres-

sive modulus of polyurethane foam. Like compressive strength, an enhancement in com-
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pressive modulus was seen with increasing content of crumb rubber. This was expected

because of the introduction of the stiffer rubber content into much softer polyurethane ma-

trix. The presence of higher closed porosity was another reason behind the increase of

compressive modulus. Closed pores entrap gases in polyurethane foams. Samples with

more closed pores have greater quantity of entrapped gases, which produce higher resis-

tance towards cell wall buckling. This contributes to increased compressive modulus.

(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.20: Compressive modulus of rubber-foam composites

In general compressive modulus was higher with the addition of only rubber without

surfactants. This cannot be explained in a simple manner, as it was shown earlier that sur-

factants stabilize the foam and should lead to greater compressive modulus. The highest

compressive modulus was found for a fixed surfactant quantity of Vycar. This fixed quan-

tity of surfactant is more close to its CMC values. On the other hand, for samples with

fixed surfactant ratio (0.1%), Darvan acted in a better way as 0.1% is the CMC value for

Darvan.

Figure 4.21 shows the variation of solid compressive strength of rubber-foam compos-

ites as a function of rubber and surfactant content.

The addition of rubber increased the compressive strength for all values except for
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(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.21: Compressive strength of rubber-foam composites

samples having 30 weight % of rubber. The latter had agglomeration and poor wetting of

rubber particles. The increase in strength, for 9–24 weight % case was probably due to an

increase in closed porosity and due to rubber acting as a reinforcing agent. In this case, both

surfactants, especially fixed quantity of Vycar lead to further increase in strength, perhaps

by promoting closed porosity over open porosity.

Flexure Properties

This section discusses the effects of rubber quantity and different concentrations of surfac-

tants on the flexural properties of polyurethane foam.

Figure 4.22 shows the load-deflection curve of rubber-foam specimens subjected to

three point bending. The stress-strain response was qualitatively same for all the cases.

Figure 4.23 shows the flexural modulus of different crumb rubber–polyurethane foam

blend composites, where an increasing trend in flexural modulus was seen with increasing

rubber content. For the samples made with fixed surfactant ratio with rubber, an increasing

trend was observed from samples up to 24 weight % of rubber and not for 30 weight %

of rubber. This is probably because of the variation of closed porosity. We observed an
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Figure 4.22: Load-deflection curve of rubber-foam composites

increasing trend in closed porosity from 9 up to 24 weight % of rubber and then a reduction

for samples having 30 weight % of rubber because of agglomeration issues. Darvan acted

better in this case as it is working in its CMC. For samples having fixed surfactant quantity,

flexural modulus increased with increasing rubber content.

Figure 4.24 shows the effect of different quantity of rubber particles and surfactants

on the flexural strength of polyurethane foam matrix system. Neither the presence of rub-

ber nor the surfactants seemed to have played an important role in enhancing the flexural

strength of the foam-rubber composites samples as virgin foam samples showed pretty high

flexural strength in comparison to other samples having rubber crumb. Flexural strength

depends mostly on the proper bonding between reinforcing agent and the matrix in a het-

erogeneous composite system. It is very evident that, though surfactants helped in uniform

dispersion of rubber particles all over the polyurethane matrix, it did not promote the strong

bonding between rubber particles and polyurethane matrix. Or, strong bonding did occur

and the stiffer rubber particles acted as stress concentration points. Because, rubber parti-

cles are much stiffer than polyurethane.

64



(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.23: Flexural modulus of rubber-foam composites

(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.24: Flexural strength of rubber-foam composites
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The failure modes of rubber particles inside polyurethane matrix is an important factor

in analyzing the bending strength and moduli of rubber-polyurethane composites. Failures

initiated on the tension side of all the specimens and rubber particles were found to be torn

out from the polyurethane network. This cohesion would lead to a decrease in flexural

strength (but not compressive strength). Scanning electron microscopy images will be

furnished to show the tearing of particles.

Specific Properties

Specific strength and modulus values were calculated in order to assess the net effect of

adding crumb rubber to polyurethane foam.

(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.25: Specific compressive strength of rubber-foam composites as a function of

rubber content

Figure 4.25 and 4.26 shows the effect of rubber particles and surfactant concentrations

on the specific compressive strength and modulus of the blend composite system, respec-

tively. In the absence of surfactants, increasing rubber content led to decreased compressive

strength. However, by the use of fixed surfactant quantity, this was offset, except for the 30

weight % case resulting in a decrease in specific strength. The use of surfactants at fixed
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weight ratio did not result similar.

In samples having maximum rubber content, the variation in bulk density has been

much more promoted than that of compressive strength, which makes sense as we have

investigated the reduction in strength along with highest bulk density for samples with 100

g rubber content as a reinforcing agent. It is quite obvious that, an increasing surfactant

quantity would promote the compressive strength much more than the bulk density so as

to get higher values of specific compressive strength. This also makes sense as we know

that with an increasing content of surfactant, two things occur simultaneously. Firstly, sur-

face tension between individual cells reduces significantly which promotes more foaming

and a reduction in bulk density. At the same time, surfactant promotes closed porosity in

the cell structure. As discussed earlier, materials having more closed pores contain larger

amount of entrapped air, which offers an opposite force towards cell wall buckling and

an enhancement of compressive strength, i.e. increasing surfactant increases the numera-

tor factor and makes the denominator factor lesser in the parameter specific compressive

strength. Consequently, specific compressive strength increases.

(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.26: Specific compressive modulus of rubber-foam composites as a function of

rubber content
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The specific compressive moduli values of blend composites were found to follow an in-

creasing trend. Again Vycar, when used in fixed quantity, improved modulus even further.

Darvan was effective in only specific cases, and only for fixed weight ratio of surfactants.

This results indicate that surfactant effectiveness was controlled by concentration being

closer to the CMC value. Both the surfactants performed better at a concentration closer to

their respective CMC. Sample with fixed surfactant quantity showed this increasing trend

up to 30 weight % of rubber content, while the other set of samples showed a rising trend up

to samples having 18 weight % of rubber, which might be due to improper wetting of rubber

in polyurethane as well as non uniform dispersion of rubber particles inside polyurethane

foam by the application of respective surfactants concentration for higher rubber contents.

Hence, we can conclude that though, surfactants have helped in overall dispersion of rub-

ber particles, it did not promote strong bonding in between rubber and polyurethane. It

could be seen that introduction of rubber particles had promoted the increase in moduli to a

greater extent than that of bulk density. Increasing the content of rubber signifies the intro-

duction of more and more stiffness inside the composite system and accordingly modulus

increases significantly. To say a few words about the effect of surfactants, we can conclude

that both the surfactants worked better in comparison to other at a concentration closer to

their respective critical micelle concentration as expected. A higher quantity of surfactants

always had promoted the increase in compressive moduli to a greater extent than the bulk

density as seen from the samples with fixed quantity of surfactants as, they showed an in-

creasing trend with an increasing content of rubber, irrespective of the type of surfactants.

Same inference could not be drawn for samples made with a fixed ratio of rubber to sur-

factant as they showed optimum performance for samples with 50 g rubber content. This

again signifies that an optimum performance can be achieved by the proper combination of

rubber quantity and surfactant concentration as both have different effects on physical and

mechanical property in a system where more that one parameter changes simultaneously.

For both surfactant concentrations, we can see that up to 50 g of rubber, surfactants worked
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in a better way in comparison to samples with no surfactant, but the trend got changed for

higher quantity of rubber. This might be because of the fact that at low volume fraction of

rubber, the amount of surfactant used in the system had been able to orient the reinforcing

rubber particles in a plane vertical to stress direction so that rubbers could exert their re-

inforcing ability. This orientation introduced strong interfacial strength and consequently

samples with surfactants showed better results. The overall effect of surfactants had been

good on the compressive moduli of composite system as it dispersed the rubber particles

uniformly and increased the effective surface area in between reinforcing agent and matrix.

This would enable improved adhesion between the two components of this heterogeneous

system and increasing moduli values could be seen.

(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.27: Specific flexural strength of rubber-foam composites as a function of rubber

content

Figure 4.27 and 4.28 shows the effect of rubber particles and surfactant concentrations

on the specific flexural strength and modulus of blend composites, respectively. Both spe-

cific modulus and strength values were found to follow a diminishing trend in comparison

to virgin foam samples. While, a moderate decrease in specific modulus occurred, signif-

icant decrease in specific strength was observed. This happened possibly due to rubber
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particle decohesion. It is very evident that, though surfactants helped in uniform dispersion

of rubber particles all over the polyurethane matrix, they did not promote strong bonding

between rubber particles and polyurethane matrix. Or, strong bonding might have occurred

and the stiffer rubber particles acted as stress concentration points resulting in a reduction

of specific flexural properties.

Because, rubber particles are much stiffer than polyurethane. We could see much more

reduced values of flexural strength in comparison to virgin foam samples without the pres-

ence of rubber as well as surfactants. Any specimen in flexure is subjected to two directly

opposite kind of loading phenomenon simultaneously. One part of it is subjected to ten-

sion, while the other part is subjected to compression. Flexural strength depends mostly on

the proper bonding between reinforcing agent and the matrix in a heterogeneous compos-

ite system. From the figure, it could be concluded that, even though surfactants helped in

uniform dispersion of rubber particles all over the polyurethane matrix, it did not promote

the bonding between rubber particles and polyurethane matrix. At the same time, rubber

particles are much stiffer that polyurethane. Effectively, we got a system where higher

stiffness particles were loosely bonded in a softer matrix material, especially in that part of

the specimen subjected to tension. This had adverse effects on the micromechanics of the

blend composites as, rubber particles had acted as a mean of creating defective sites inside

the composite materials because of decohesion in between rubber and polyurethane system

in stead of acting as a reinforcing agent. This is the reason behind a decreasing trend in

specific flexural strength irrespective of the concentrations of surfactants as bulk density

had been promoted to a much greater extent that that of flexural strength. Both the sur-

factants worked better closer to their critical micelle concentration while comparing their

performances relative to each other. The similar trend was obtained for the specific flexural

moduli values, which can be explained in the same way like strength. One important obser-

vation was the relative difference in specific flexural moduli value for samples with rubber

and surfactants in comparison to virgin foam samples. In comparison to specific flexural
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strength properties, the difference in flexural moduli had been much less for these different

set of samples. This is because of the fact the effects of decohesion and debonding are

much more prominent on flexural strength rather than that of flexural modulus. That is the

reason why the difference had not been so much for the case of moduli values.

(a) Samples with fixed surfactant quantity

(10 g)

(b) Samples having fixed weight ratio

(0.1%) of surfactant to rubber

Figure 4.28: Specific flexural modulus of rubber-foam composites as a function of rubber

content

Comparison of Experimental Results With Other Models

The experimental observation of mechanical properties were compared to current existing

models for foams. Figure 4.29 shows the cubic cell model of a closed cell foam. When

foams are constructed from a liquid, surface tension draws the material into the cell edges

keeping across the faces of the cell and ruptures easily. The dimensions of the unit cell and

the thickness of the cell walls have significance impacts on the mechanical properties of

polymeric foams [94]. Though, the foam cells are initially closed, stiffness is calculated

from that of edges and moduli are similar to those of open cell foams. In some of the

polymeric closed cell foams, a fraction of solid is always in the cell faces, which contributes

to the cell faces. Some cellulosic materials have closed cells with thick cell faces. In that

case, moduli depend on density in slightly different manner [94].
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Figure 4.29: Cubic cell model of a closed cell foam [94]

Mechanical properties of closed cell foams (basically any type of polyurethane foams)

depend heavily on the density of the materials. Therefore, several researchers have modeled

the relative elastic (compressive) modulus of closed cell foams as a function of relative

density. Relative elastic modulus is the ratio of elastic modulus of final foam or foam-

particles composites to the elastic modulus of virgin foam. Similarly, relative density is

the ratio of the density of the final foam or foam–particles composites to the density of the

virgin foam material. This kind of study has been very helpful as it always helps in design

foam composites with controllable mechanical properties. One very popular model is the

Square Relationship Model, where the relative elastic modulus is considered as the square

of the relative density [55].

E∗

Es
= (

ρ∗

ρs
)2 (4.1)

Another popular model has been the Simple Bend Model. This model considers gas

cells as fillers of zero modulus and predicts that relative elastic modulus follows a linear
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relationship with relative density having slope of 1.

E∗

Es
=
ρ∗

ρs
(4.2)

Ashby et al [94] predicted the relative elastic modulus of closed cell foams using a

generalized method considering stretching of the cells, cell membrane tension, and pressure

of the gases inside closed pores. According to them, the relationship between the relative

elastic modulus and relative density is as follows,

E∗

Es
= (φ)2(

ρ∗

ρs
)2 + (1− φ)(

ρ∗

ρs
) +

p(1− 2ν)

Es(1− ρ∗

ρs
)

(4.3)

where, φ is a variable fraction having a value 0.8 for rigid polyurethane closed cell foams,

ν is the Poisson ratio of closed cell foams having a value of 0.33, Es is the Compressive

Modulus of virgin polyurethane foam obtained from US Composites manual, and p is the

atmospheric pressure of 0.1 MPa.

Figure 4.30 compares the experimental value of relative elastic modulus versus relative

density of all the samples made with different compositions of crumb rubber content and

surfactant ratio along with these three above mentioned model. It is very much evident that

irrespective of the composition of foam, amount of rubber and type of surfactant, exper-

imental results match closely with the general Ashby-Gibson model. This clearly shows

that composition did not change the basic foaming process and the basic nature of closed

cell foam.

The reason why experimental values did not match with either the Simple Bend Model

or Square Model is because of the non-homogeneous reinforcement of rubber reinforce-

ment in our present study. The non homogeneous distribution of rubber provides might

enforce the foam-rubber composites to follow different mechanism based on density and

deformation ratio altogether.
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Figure 4.30: Comparison of experimental relative elastic modulus with different models

SEM Images

Possible tearing of rubber particles inside the rubber-polyurethane foam composite samples

could be a deciding factor in determining the flexural strength and moduli. Figures 4.31

and 4.32 show the SEM images of the fractured surfaces from flexural experiments. They

showed the presence of rubber particles tearing inside the samples.

Figure 4.33 shows the SEM images of fractured surfaces of composite samples used

for flexural testing. Though, high quantity of rubber particles had created a possibility of

the presence of great amount of rubber particles used in any fracture plane for the purpose

of crack bridging, as seen in the figure, materials were not free from defects as particle

decohesion was observed in microscopy images.

These defects might have come into the specimens because of two possible mechanisms

acting differently or simultaneously. Firstly, the presence of excess rubber particles inside

the foam samples might have allowed them to come closer to each other. The particles in-

74



(a) Teared rubber particles inside blend

composites

(b) Debonding of rubber particles by tearing

failure

Figure 4.31: SEM images showing tearing of rubber particles in the tension side of test

specimens

(a) Rubber particles creating defects inside

composite specimens

(b) Microcracks generated inside composite

samples by the poor bonding between rubber

and foam

Figure 4.32: SEM images showing defects inside blend composites with highest rubber

content
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(a) Crack in surfaces made with Vycar (b) Other defects in samples made with Vy-

car

(c) Crack in surfaces made with Darvan

Figure 4.33: SEM images of fractured surfaces of composite samples with 30 weight % of

rubber

teracted and got ruptured introducing flaws inside the specimens. Another reasoning might

be the poor bonding between high stiffness rubber particles and soft polyurethane foam

matrix. The loosely bonded rubber particles, especially in the tensile side of the specimens

than compressive side had made the specimens defective in terms of crack propagation

rather than acting as a reinforcing agent because of decohesion in between two heteroge-

neous component system. The SEM pictures showing the teared rubber particles inside

polyurethane foam supported this fact further.
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FTIR Spectra

Preliminary FTIR was conducted to investigate chemical reactions due to the introduction

of surfactants in the rubber-polyurethane foam system. Figure 4.34 shows the FTIR spec-

tra of the surfactant Darvan along with the blend composites made with Darvan. The large

peak at a wave number in between 3000 cm−1 and 4000 cm−1, for the surfactant is due

to the presence of hydroxyl groups in form of water in Darvan. Urethane linkages consist

of bonding of N-H or C=O groups. These groups are neither isolated nor free in the con-

densed state but stay in a large combination of polar and non polar groups. A rule of thumb

indicates the position of intermolecular chains of hydrogen bonds to be normal to the poly-

mer chains. At a shoulder near wave number of 1725 cm−1, some carbonyl stretching was

seen. This might be the result of strong hydrogen bond formation in between the carbonyl

group present in Part A of the polyurethane foam system along with the hydrogen atom of

surfactant Darvan. Similar peaks were identified by Coleman et al. [96] to be a result of

carbonyl group stretching due to hydrogen bond formation in between polyurethane and

ether interaction. This hydrogen bonding indicates that the surfactants had a good inter-

action with the polyurethane system. The formation of intermolecular hydrogen bonding

can make a material stronger. FTIR spectra of Vycar treated samples also showed similar

possibility.

77



Figure 4.34: FTIR spectra of only Darvan and blend composites made with Darvan

Figure 4.35: FTIR spectra of only Vycar and blend composites made with Vycar
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

On the basis of experimental results obtained, a few conclusions can be drawn. It is very

clear that addition of rubber particles significantly affected the microstructure as well as the

mechanical properties of the blend composite system. The addition of rubber particles did

not affect the basic foaming process of polyurethane matrix system though, it led to greater

bulk density than that for virgin foam. Compressive properties were greatly enhanced by

the incorporation of rubber particles, as seen from the experimental results. At the same

time, reduction in flexural properties occured. This was due to lack of bonding between

high stiffness rubber particles and soft polyurethane matrix.

Application of surfactants was another major aspect of this present work. Consequently,

the effect of surfactants on the microstructure and mechanical properties of the blend com-

posites was also investigated. On the basis of experimental results, it can be concluded

that both the surfactants used in this study were effective. They helped in dispersing the

rubber particles uniformly inside the polyurethane matrix system in a much better way as

compared to samples made without surfactants. In addition, both the surfactants helped re-

ducing the total porosity of the system and promoted the generation of closed pores. Both

surfactants showed better performance at concentrations closer to their critical micelle con-

centration. In spite of all these advantages, the surfactant did not help much in the bonding

between rubber particles and polyurethane matrix. Though, the compressive properties

were not affected much, as they were dependent on some other parameters, the flexure

properties were significantly affected by this lack of bonding. Surface treated rubber–foam
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samples showed better compressive strength in comparison to untreated rubber-foam sam-

ple. Surfactants seemed to have reacted well with polymeric rubber particles and strengthen

the cells, which, eventually delayed the collapse of the cells and raised the densification

strain resulting in an enhancement in the compressive strength. Last but not the list, was

the reduction of average cell size distribution by the application of surfactants which re-

sulted in the promotion of more open pores inside the system and not favorable for an ideal

closed cell foam. This made us believe that, though the blend composite system has been

benefited by the use of surfactants, both Darvan and Vycar can not be depicted as perfect

surfactant for our combination of crumb rubber and polyurethane foam, as they might tend

to change the nature of our foam matrix. This also concludes that knowledge of an optimum

combination of rubber and polyurethane foam quantity is very important for the maximum

performance of the particulate composite in this present study.

It has been clearly understood that microstructure of the present blend composite system

had a considerable impact on the mechanical properties. The basic nature of the particle

reinforced foam was carefully investigated in terms of mechanical properties and it was

seen to be the same as that for virgin closed cell foam irrespective of material composi-

tion. In general, both strength and modulus were seen to follow a linear relationship with

closed porosity content of composite samples except for very high percentage of rubber.

Materials having more closed pores possessed more gas pressure inside the pores, which

offered resistance to cell wall buckling, resulting an increase in both strength and modulus

values. Excess rubber particles inside the system introduced defects inside the composite

structure due to combined effect of stress concentration due to rigid rubber particles and

agglomeration.

There are a few things which can be addressed to further understand the micromechan-

ics of this rubber particle reinforced polyurethane foam system.
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• The presence of both rubber particles and surfactant had a significant effect on the

properties of blend composite system, and there was a relationship between the

microstructure and property. While the incorporation of rubber particles directly

changed the physical as well as mechanical properties, the effects of surfactants were

more prominent on the interaction of particles in the heterogeneous material system

and change of morphology. Hence, the introduction of both rubber and surfactant

changed several parameters simultaneously inside the present material system and it

became complex to analyze any particular property as a function of single change in

parameter. For that, a detailed study is needed to understand the deformation mech-

anism of closed cell polyurethane foam. The multi scale nature of foam deformation

could be examined from individual struts to foam deformation to resolve this issue.

This needs a detailed understanding between the localization of individual struts and

deformation bands at the macro-scale. Digital Image Correlation (DIC) technique

can be very helpful in this connection, as it would provide continuous mapping of

strain fields along any cross section of foam sample.

• In this study, crumb rubber particles were of one particular size. The effect of dif-

ferent rubber particle sizes on the microstructure and mechanical properties of blend

composites could be a good study. It will also be interesting work to check the

effect of hydroxyl concentrations of polyol on the mechanical properties of rubber

polyurethane blend system.

• Since, this two part foam system consists of a blowing agent, it was not possible to

wash the surface of the rubber particles with a high volatile organic solvent in order

to coat the same to make an effective component. There were always the creation of

negative pressure gradient along the surfaces as carbon dioxide gas diffused through

the cell walls creating a much more brittle end product. A possible approach could

be to use some strong dispersing agent like xanthum gum.
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• It would be good to focus on the thermal properties of composite system as well.

• FTIR is always an effective tool to characterize fiber-matrix surface chemistry to

study the changes. Although, significant changes were found in the FTIR spectra

between composite samples with surfactant and only surfactant, further analysis is

needed to understand the chemical interactions.
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