
NONLINEAR FINITE ELEMENT MODELING OF QUARTZ

CRYSTAL RESONATORS

By

AUSTIN DALE BEERWINKLE

Bachelor of Science in
Aerospace and Mechanical Engineering

Oklahoma State University
Stillwater, OK, USA

2009

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 2011



COPYRIGHT c©

By

AUSTIN DALE BEERWINKLE

July, 2011



NONLINEAR FINITE ELEMENT MODELING OF QUARTZ

CRYSTAL RESONATORS

Thesis Approved:

Dr. Raman P. Singh

Thesis Advisor

Dr. Jay C. Hanan

Dr. Sandip P. Harimkar

Dr. Mark E. Payton

Dean of the Graduate College

iii



ACKNOWLEDGMENTS

I am pleased to thank my advisor, Dr. Raman P. Singh, for allowing me to

be a part of the Mechanics of Advanced Materials Laboratory at Oklahoma State

University and affording me the opportunity to work on such an applied project with

direct correlations to industry. This link has served to make the current work all the

more rewarding. I am indebted to Dr. Goutham R. Kirikera of Geophysical Research

Company, LLC (GRC) for his close collaboration throughout the entire project and

immense assistance in pointing the way to relevant literature and background studies,

without which my understanding of quartz and quartz sensors would not be what it is

today, nor would this work be complete. I am grateful to the other student members

of MAML for showing me the ropes in graduate school, providing good examples

of quality workmanship, and always giving general friendly support through class

work and pastimes. Likewise, I must also express gratitude to all the employees of

GRC that were welcoming of my attempt to provide what small contribution to their

business that I could.

This work was made possible by funding from the Oklahoma Center for Advance-

ment of Science and Technology (OCAST project number AR101-036). My personal

inclusion on the project and in graduate school in general was made possible by an

initial fellowship sponsored by Conoco-Phillips, assistantships for which I am grateful

to the Mechanical and Aerospace Engineering Department, and eventually through

the Critical Skills Master’s Program as an employee of Sandia National Laboratories.

I would like to thank all those at Sandia who made this wonderful opportunity to

participate in such a program possible, especially my managers and mentors there

iv



who have remained supportive and engaged even while I have been away from the

work site.

Finally, I would not have made it through college, let alone graduate school, if

not for the loving encouragement of my parents, Dale and Linda, and the work ethic

they instilled in me. I know that their Christian example will continue to be a source

of wisdom and sustained strength for me in my own walk with the Savior. Most of

all, I appreciate the unwavering support of my new wife to be, Emily, for putting up

with the long hours of homework and working at the lab all though my college career,

for always being there for me whatever endeavors I have chosen to pursue, and for

marrying me even though the time leading up to the wedding has been one of the

busiest. I know that attaining this degree will be, to me personally, just one part of

the beginning of our new life together.

v



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Quartz Crystal Resonators as Temperature and Pressure Sensors . . . 1

1.2 Purpose of Current Work . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Notation Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 QUARTZ MATERIAL MODEL 4

2.1 Crystallography of Quartz . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 From Crystal to Engineering Material . . . . . . . . . . . . . . . . . . 6

2.3 Piezoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Thermoelastic Definition of Quartz . . . . . . . . . . . . . . . . . . . 12

2.5 Constitutive Quartz Material Properties . . . . . . . . . . . . . . . . 16

3 FINITE ELEMENT METHODOLOGY 23

3.1 Overview of the Finite Element Method . . . . . . . . . . . . . . . . 23

3.2 Finite Element Method in the Current Work . . . . . . . . . . . . . . 27

3.3 Stressed Homogeneous Temperature Algorithms . . . . . . . . . . . . 30

3.4 Stress-Free Homogeneous Temperature Algorithm . . . . . . . . . . . 32

3.5 Model Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 FREQUENCY RESPONSE OF THE TEMPERATURE-PRESSURE

SENSOR 44

4.1 Sensor Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 EXAMINING THE NEED FOR TEMPERATURE DERIVATIVES

OF 3RD-ORDER ELASTIC COEFFICIENTS 53

5.1 Overview of the Current State . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Pressure Response as a Function of Temperature . . . . . . . . . . . . 54

5.3 Modified Sensor Model Results . . . . . . . . . . . . . . . . . . . . . 58

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 FUTURE WORK 63

6.1 Deriving the Temperature Derivatives of Third-Order Elastic Stiffness

of Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Applied Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

BIBLIOGRAPHY 66

vii



LIST OF TABLES

Table Page

2.1 References for the constitutive material properties used as inputs . . . 19

3.1 Benchmark data: stress coefficient of frequency . . . . . . . . . . . . 40

viii



LIST OF FIGURES

Figure Page

1.1 Basic round quartz resonator with gold electrodes . . . . . . . . . . . 2

2.1 Natural crystal faces of quartz [3] . . . . . . . . . . . . . . . . . . . . 5

2.2 Silicon-oxygen tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Crystallographic axes of quartz . . . . . . . . . . . . . . . . . . . . . 6

2.4 Comparing conventions for the definition of the AT-Cut . . . . . . . . 8

2.5 Hypothetical piezoelectric effect of an element in shear [2] . . . . . . . 12

2.6 The three states of the initial-incremental thermoelastic model [10] . 15

3.1 Mesh convergence: solved frequency vs. number of mesh layers . . . . 29

3.2 Flowchart for the Nonlinear Stressed Homogeneous Temperature Al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Flowchart for the Linear Stressed Homogeneous Temperature Algorithm 33

3.4 Flowchart for the Stress-Free Homogeneous Temperature Algorithm . 34

3.5 Benchmark data: stress free AT-Cut . . . . . . . . . . . . . . . . . . 36

3.6 Benchmark data: fixed edge stressed AT-Cut . . . . . . . . . . . . . . 38

3.7 Resonator geometry mesh for stress coefficient benchmark . . . . . . 40

3.8 Benchmark data: force frequency coefficient, Kf , for the AT-Cut . . . 42

3.9 Benchmark data: first temperature derivative of Kf for the AT-Cut . 43

4.1 Quartz pressure sensor geometry with end caps [23] . . . . . . . . . . 44

4.2 Isothermal frequency-pressure sensor response . . . . . . . . . . . . . 48

4.3 Isobaric frequency-temperature sensor response . . . . . . . . . . . . 49

ix



5.1 Sensitivity study for 3rd-order elastic scalar temperature constant . . 57

5.2 Modified isothermal frequency-pressure sensor response . . . . . . . . 59

5.3 Modified isobaric frequency-temperature sensor response . . . . . . . 60

x



CHAPTER 1

INTRODUCTION

1.1 Quartz Crystal Resonators as Temperature and Pressure Sensors

In the past century, the quartz crystal resonator has achieved ubiquitous service in day

to day life. From sonar to nanodevices and including most every microchip-enabled

product on the market today, the piezoelectric capability of the quartz crystal com-

bined with desirable physical properties make it an irreplaceable component in many

electric and electro-mechanical systems. For the majority of these uses, the quartz

crystal is employed as a benchmark; a steadfast standard of time-keeping that other

components of a system rely on for regulation, stability, and consistency. There-

fore, by and large, the body of research on the subject of quartz crystal resonators

tends to focus on maintaining this consistency across a range of external factors, such

as changing temperature, excessive acceleration, or the presence of induced stresses.

Such work seeks to minimize the frequency disturbance caused by inherent nonlin-

earities within the quartz material as these external factors vary.

By contrast, other applications of the quartz crystal resonator utilize, and in fact

rely upon, these nonlinearities to function as sensors for various applications. Since

the early 20th century, quartz sensors have been used to measure temperature, pres-

sure, force, acceleration, film thickness, and fluid viscosity among other parameters.

Because of their compact size and rugged characteristics combined with excellent sen-

sitivity, resolution and long-term stability, quartz sensors are well suited to serve as

down-hole temperature and pressure sensors in oil and gas wells. Despite having a

crushing strength of around 2.4GPa [1] and a Curie point of 573 ◦C [2], additional
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complications that involve a combination of high stress and high temperature limit

the performance of quartz in certain sensing applications.

A general picture of what would be described by the term “quartz crystal res-

onator” is given in Figure 1.1, and is usually nothing more than a thin rectangular

or circular quartz plate, although other useful geometries do exist. Visible on each

face are the conductive metal electrodes, often gold or copper, that are used to in-

duce an electric field across the quartz domain. An oscillating electric field produces

vibrations in the crystal due to the converse piezoelectric effect, as further described

in the next chapter. At certain distinct frequencies, these vibrations interact with

the boundaries of the quartz geometry to produce standing waves in the crystal, a

phenomenon known as resonance. This resonance can control the frequency of a ra-

dio transmission, create an acoustic wave in the neighboring fluid, or be measured to

deduce pressure or temperature.

Figure 1.1: Basic round quartz resonator with gold electrodes

1.2 Purpose of Current Work

In spite of the fact that quartz has been used in sensors for more than 100 years, its

complete capability has not been fully realized. The primary reason is because of the

complex anisotropic and nonlinear nature of its electro-mechanical properties. The

goal of the present work is to better understand the interactions of these properties

with varying resonator geometry and surroundings, particularly those corresponding
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to current uses of quartz resonators as temperature and pressure sensors for the oil and

gas industry. To do this first involves developing a multiphysics-based finite element

model of quartz that captures the nonlinearity in frequency response associated with

changes in pressure and temperature. Secondly, this finite element model is compared

to experimental benchmarks in order to propose additions to the currently available

constitutive properties of quartz that, if experimentally derived, would enable more

accurate simulations.

Ultimately, the developed calibrated model can then be extended to efficiently

explore the effect that untested cuts, geometry, and environmental variables have on

the output of the sensor (although doing so is not the primary focus of the current

work). Accurately modeling the nonlinearities arising in the frequency response of

quartz will not only aid in the design of such sensors, but also yield applicable in-

sight into the method of modeling other nonlinear mechanical phenomena involving

multiphysics environments, such as for example, those in bio-engineering.

1.3 Notation Used

In the following work, subscripts imply index notation of Cartesian tensors unless

otherwise noted, where each index takes on an integer value from 1 to 3, repeated

indices imply summation, and indices following commas refer to partial derivatives

in the X1, X2, and X3 directions. Superscript θ as in Cθ
ijkl indicates that a material

constitutive variable or tensor is theoretically a function of temperature. Definitions

of variables and tensors are provided in context wherever used.

3



CHAPTER 2

QUARTZ MATERIAL MODEL

2.1 Crystallography of Quartz

The crystal α-quartz, referred to here as simply ‘quartz’, is one of several distinct

crystalline forms of silicon dioxide, SiO2, or silica, which is one of the most abundant

compounds on earth. Many rocks and most sand consist of an amorphous form of

silica, yet crystals of α-quartz of high enough quality and size to be used in crystal

resonators are much rarer, because defects can severely degrade frequency response

and stability. Most high quality naturally occurring crystals are obtained from Brazil.

While production of cultured (man-made) quartz from seed crystals serves the ma-

jority of industrial uses, quality is critically dependent on growth rate and conditions,

such that natural quartz is still preferred for the most stringent applications [2]. Fig-

ure 2.1 shows the common natural faces for right-hand quartz, as given in Dana’s

Manual of Mineralogy [3].

The basic chemical building block of quartz crystal is the silicon-oxygen tetra-

hedron, SiO4, depicted in Figure 2.2. In quartz, the oxygen atom at each corner of

the tetrahedron also serves as a corner of another tetrahedron, such that a series of

Si-O-Si bonds link any given tetrahedron to four of its neighbors. The fact that each

oxygen atom is used in two separate SiO4 tetrahedral structures yields the overall

chemical formula for quartz, SiO2.

In the quartz crystal lattice, these pyramidal building blocks are arranged in the

form of conjoined helices all pointing in a single direction, known as the optical

direction, which has traditionally been drawn pointing vertically in diagrams. Plane
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Figure 2.1: Natural crystal faces of quartz [3]

Figure 2.2: Silicon-oxygen tetrahedra

polarized light passing through the crystal in this direction will change its angle

of orientation as it passes through the spiraling layers of the quartz lattice. Three

tetrahedral layers make up each revolution of the relatively tight ‘spiral’ in the optical,

or c, direction. For this reason, the direction of the optical axis is a direction of three-

fold angular symmetry on the macro-scale. It should be noted, however, that this

axial symmetry is dispersed throughout the crystal for each conjoined helix, and there

is no one single central axis of symmetry on the macro-scale, only rather a direction of

symmetry. Within the plane normal to the c direction, properties and structure repeat

every 120 ◦, and thus there are three equivalent directions in this plane designated as

the a directions as shown in Figure 2.3.
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Figure 2.3: Crystallographic axes of quartz

Predictably as for all helical structures, the helices can be of either right- or left-

handed form, and both occur naturally in quartz, often in the same crystal growth.

This property is called enantiomorphism, and when both the right- and left-hand

forms occur together they are known as optical twins (not to be confused with elec-

trical or Dauphiné twins which occur due to a certain kind of dislocation in the lattice

of a crystal of single-handedness).

2.2 From Crystal to Engineering Material

While quartz, as a crystal, has been recognized since antiquity and studied scientifi-

cally since the origins of crystallography around the 17th century, the understanding

of quartz in its current use as an engineering material has its roots in Jacques and

Pierre Curie’s discovery of piezoelectricity in 1880. Namely, the Curie brothers ob-

served the piezoelectric effect in that applying pressure to quartz produced a voltage.

They then later also observed the converse piezoelectric effect, applying voltage made

the crystal deform. Besides being used in some lab equipment that would later prove

useful for Pierre and his wife Marie during their more famous work with radioactivity,

the brothers’ discovery was shelved until a few years prior to when Walter Guyton

Cady invented the first quartz crystal oscillator in 1921. Originally employed in sonar

and radio frequency standards, by World War II such resonators were in wide-scale
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production, playing a critical role in the developmental explosion in telecommunica-

tions equipment [4]. The pervasion of the microchip into recent times forms another

widespread application area for the quartz crystal resonator, where it is used to quan-

tize the timing of the internal functions of the chip. Obviously with such broad use,

many have contributed to the science behind the quartz resonator. The direct contri-

butions to the current work, in the form of material data that serve as input to the

finite element model, are given in Section 2.5.

Interestingly, given the widespread use of its fruits, the scientific field of piezoelec-

tricity has been surprisingly disjointed at times, a tendency which continues today

in some respects. Even as early as 1946, Cady recognized in his comprehensive book

Piezoelectricity a troubling trend within the archive of experimental quartz articles:

Through the voluminous literature on the properties of quartz crystals

there runs, like a crack in an otherwise clear crystal, an amazing ambigu-

ity concerning the distinction between right- and left-quartz, the positive

sense of the directions of the X- and Y- axes, and the positive sense of the

angles of rotation. [1]

Since this time, the organizations that govern the standards, notably the Institute

of Radio Engineers (IRE) which later merged to become the Institute of Electrical

and Electronics Engineers (IEEE), have found themselves on both sides of the fence

with new revisions that directly contradict older standards. Indeed, a reader today is

not hard-pressed to find publications that mix the conflicting conventions of previous

authors between their figures, material data, and references, even within a single

document. Still, most literature in use today can be traced to one of two conventions:

IEEE Std 176-1949 or IEEE Std 176-1987. The former was adopted from the IRE

standard when the IEEE was formed in 1963 (not to be confused with the 1945 IRE

standard it replaced), while the latter is to date the most recent IEEE ruling on the

subject.
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The fundamental difference between these two conventions from 1987 and 1949

is the definition of the theoretical right-handed X-Y -Z Cartesian coordinate system

relative to the physical structure of the quartz crystal lattice [5]. For right-handed

quartz, the Cartesian coordinate system in IEEE Std 176-1987 is rotated 180 ◦ about

the Z-axis (or, unanimously, the optical axis) from the coordinate system used in IEEE

Std 176-1949. This amounts to an inversion of the “positive sense of the directions of

the X- and Y- axis” to which Cady referred, and has broad implications for defining

signs of material properties and cut angles.

One such consequence is illustrated in Figure 2.4 regarding the differing definition

of cut plates of quartz. Such definitions are of great importance, since the anisotropy

of quartz combined with the high sensitivity of the resonator dictates that any ge-

ometry must be exactingly described relative to the crystal matrix itself (even simple

plates). Note both the conventions mentioned use the same logic to define a type of

cut after a Cartesian coordinate system has been established in the lattice.

(a) IEEE Std 176-1987

(YXl)−35.25 ◦

(b) IEEE Std 176-1949 (YXl)35.25 ◦

(two views from opposite directions)

Figure 2.4: Comparing conventions for the definition of the AT-Cut

Namely the full definition involves, at most, five letters followed by three numbers.

The first two letters call out the cardinal direction (X, Y , or Z) of the thickness and

length (that is the shortest and longest dimensions), respectively, of the theoretical

8



rectangular plate used as a starting point. For instance, YX is a common basis for

denoting the Y-Cut family, which includes the AT-, BT-, CT-, and DT-Cuts. YX

denotes a rectangular plate on the X-Z plane (with its thickness or normal vector

in the Y -direction) of which the X dimension is the longest (thus designated the

‘length’). The next three letters (if needed) denote the axes used for consecutive

rotations of the basis geometry about the length, width and thickness directions

(l, w, and t) in any desired order. The final numbers directly correspond to the

previous l, w, or t letters and display, in order, the magnitude of rotation angle

for each axis denoted, with positive sign according to the right-hand rotation rule.

See either the 1987 convention [5] or the 1949 convention [6] for further examples.

Note that three rotations are the maximum needed to describe any general three-

dimensional orientation of the plate, and less can be used if possible. This method

of three rotations is compatible with the familiar concept of Euler angles. Note that

most finite element programs, however, do not use this logic of defining the geometry

relative to the material coordinate system, and so additional care must be taken when

material orientation is defined in the context of finite element software.

Although the differing coordinate system conventions amount to a simple change

of sign for the AT-Cut definition, the effect on the coordinate transformation of,

for example, the third-order tensor describing piezoelectric coupling or the sixth-

order tensor of nonlinear elastic coefficients, is somewhat more subtle and prone to

error, especially if doubly rotated cuts are considered. For this reason, the current

work will seek to preserve the convention of the majority of the used material data

as referenced, which happens to be in line with the earlier IEEE Std 176-1949, as is

common in current literature. The AT-Cut defined relative to this material data used

is a +35.25 ◦ rotation of the Y-Cut about the +X-axis as shown in Figure 2.4(b). The

reader interested in further details of the convention differences present in early quartz

works and piezoelectric standards is referred to a concise review by T.R. Meeker [7].
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Not surprisingly, the most recent IEEE Standard on Piezoelectricity IEEE Std 176-

1987 was formally withdrawn on March 6, 2000, and the IEEE does not currently

endorse any subsequent piezoelectric standard whatsoever.

2.3 Piezoelectricity

Let us now take a closer look at the physics of piezoelectricity that will be needed

to form the foundation of the finite element model. The prefix piezo- is derived

from the Greek word meaning to press or squeeze, so piezoelectricity could easily be

translated as ‘pressure electricity’. As previously described, the Curie brothers first

observed that applying pressure to quartz (and other crystals such as Rochelle salt)

produced an electric voltage. This phenomenon is known as the piezoelectric effect.

Similarly there exists the converse piezoelectric effect: applying voltage makes the

crystal deform. Both scenarios can be described as a coupling of basic mechanical

and electrical responses, and it is advantageous to first consider only the linear one-

dimensional forms of each.

T = CS (2.1)

D = ǫE (2.2)

Equation (2.1) is easily recognized as Hooke’s Law, where T is stress in pascals, S is

strain in meters per meter, and C is Young’s Modulus or stiffness also in pascals. This

equation governs deformation via strains. Equation (2.2) is an electrostatic equation

defining the electric displacement, D, using electric field E, and total dielectric per-

mittivity ǫ (in respective units of coulombs per square meter, volts per meter, and

farads per meter). This equation governs the voltage via the electric field. This qua-

sistatic, rather than dynamic, electric formulation is a valid assumption because the

phase velocities of acoustic waves are approximately five orders of magnitude less than

the velocities of electromagnetic waves [5]. Electric displacement is not technically a
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pure displacement field as would initially be assumed, as shown in another definition:

D = ǫ0E + P (2.3)

Equation (2.3) showsD as the addition of a displacement field P , and a non-displacement

field ǫ0E. Here ǫ0 is free space permittivity and P is the real displacement of charges

within a material to form dipoles normalized per unit volume (polarization density).

Equations (2.2) and (2.3) are equivalent assuming linear proportional response of

polarization to the electric field.

Equations (2.1) and (2.2) describe two unrelated physical behaviors for most

materials, but for piezoelectric materials such as quartz, the two cannot be separated.

The reactions are coupled, so one should expect that some terms from each will

be mixed together. Again assuming linearity but expanding our definition to three

dimensions, the stress-charge form of the linear piezoelectric equations [5] is:

Tij = CE
ijklSkl − ekijEk (2.4)

Di = eiklSkl + ǫSijEj (2.5)

Note the new piezoelectric constant, or coupling tensor, e that appears in both equa-

tions. The coupling tensor has units of farads per meter, and it is this material prop-

erty that defines the extent of the coupling in piezoelectric materials. The higher

the value, the more voltage induced for a given applied mechanical strain. Also the

new superscripts for cE and ǫS indicate that these material properties are measured at

zero or constant electric field and strain, respectively, because again the two responses

cannot be assumed to be independent of one another.

As qualitative example of the piezoelectric effect [2], consider the hypothetical

differential material element commonly referred to in mechanical engineering courses,

except now the element has an internal distribution of positive and negative charges,

as shown in Figure 2.5. There are some states of strain that will induce an electric

dipole in the element. The direction of the dipole would depend on the direction

11



of the strain, and would be zero at zero strain because the charges are then equally

distributed. Likewise the piezoelectric effect in quartz can be related to the dis-

placement of charged ions in the crystal lattice, except of course with a complex

three-dimensional structure.

+

+

+

–

–

–

+

–

Figure 2.5: Hypothetical piezoelectric effect of an element in shear [2]

2.4 Thermoelastic Definition of Quartz

With a material Cartesian coordinate system previously established together with

the anisotropic symmetry of quartz provided by the crystal structure, one has a

backdrop for a brief review of some general thermoelastic definitions that are employed

throughout the current work. The following is meant to setup only those definitions

used for the current mechanical model including stress, strain, displacement, and

motion. For further investigation into the continuum mechanics of materials, the

reader is directed to one of the many textbooks available on the subject, for instance

Elasticity by Martin H. Sadd [8] or Introduction to the Mechanics of a Continuous

Medium by Lawrence E. Malvern [9].

Before trying to define a jumping off point, first let us logically consider the

possibilities for material models that can be used to describe the state of quartz.

Recalling the exacting uses of quartz sensors together with crystallographic con-

siderations previously covered, one knows that our material model will need to be

12



anisotropic, temperature dependent, and able to accurately describe the vibrations

of the quartz resonator even under changing temperature and pressure. The common

linear isotropic material model that is used in educational exercises and analyses of

some metals fails on all counts. Long term time dependent effects, such as hysteresis,

stress relaxation, and resonator aging, are not of interest in this study, so any elasto-

plastic models can be ruled out. The same goes for frictional losses and dampening,

which are not examined in this study. Knowing the material properties of quartz

are nonlinear coupled with the sensors being exposed to high temperatures and pres-

sures, one can hypothesize that secondary strain effects from large deformations may

be non-negligible.

After applying these considerations, one should expect to aim for an anisotropic,

nonlinear, temperature dependent material model that does not assume small defor-

mations. The remaining question is to the degree of nonlinearity considered, since

any arbitrarily high degree can be used for a nonlinear stress-strain relation. As it

turns out, the nonlinearity of our model is limited in this regard by the known ma-

terial properties of quartz, which are only the lowest two degrees possible. These

known properties, the second- and third-order elastic coefficients (so named for their

compressed-form tensor order), are later found to be mostly sufficient. Thus the

nonlinear governing equations of thermoelasticity in Lagrangian formulation are used

as the base material model, where Ui is displacement, Sij is the Lagrangian strain

tensor, Tij is the second Piola-Kirchhoff stress tensor, Pi is the surface traction, “in

V” marks the differential equation of motion for the domain volume, and “on S”

marks the boundary condition on the surfaces with normal vector ni. Other variables

contain material parameters, such as Cθ
ijkl and Cθ

ijklmn for second- and third-order

stiffness coefficients and λθij for the stress coefficients of temperature, and are defined

in the next section (§2.5). These relations are similar to those given by Lee and

13



Yong [10] except that the degree of nonlinearity was limited as previously described.

Sij =
1
2
(Uj,i + Ui,j + Uk,iUk,j) (2.6)

Tij = Cθ
ijklSkl +

1
2
Cθ

ijklmnSklSmn − λθij (2.7)

ρ0Üi = (Tij + TjkUi,k),j in V (2.8)

Pi = nj(Tij + TjkUi,k) on S (2.9)

Theoretically, modifying the Hooke’s Law portion of the simplistic linear piezoelec-

tric model in Section 2.3 with the nonlinear Equation (2.7) (used along with the other

definitions for the model in Equations (2.6) through (2.9)), together with Gauss’s Law

for an insulator as the electrical governing differential equation, Equation (2.10), gives

a complete picture of what is to be solved in order to fully model both the response

of quartz to external temperature and pressure as well as the frequency response, all

simultaneously in a single step.

Di,i = 0 in V (2.10)

Such a model would relate the so-called natural state of the quartz (stress free at ref-

erence temperature) directly to the final state, these two states being as illustrated

in Figure 2.6. Fortunately, a further simplification is suggested by Lee and Yong [10].

Based on the valid assumption that the frequency response involves only small de-

formation, Lee and Yong suggest the problem can be divided into two steps known

as the initial and incremental parts. These two steps link between three distinct se-

quential states of the quartz resonator: the natural state, the initial state (also called

the intermediate state in other publications [11]), and the final state. By using the

Lagrangian formulation, the displacements of all three states are referred to a single

reference frame corresponding to the unstressed natural state. This is illustrated in

Figure 2.6 which is derived from similar figures by Lee and Yong [10][12] and Yong

and Wei [11].

14



X

Y

Z

Natural State, T
0

Initial State, T

Final State, T

U
i

u
i

Figure 2.6: The three states of the initial-incremental thermoelastic model [10]

The initial response is modeled using nonlinear equations of the form previously

given in Equations (2.6) through (2.9). The initial model solves for the displace-

ment, strain, and stress due to external factors like pressure loading and temperature

changes. It does not, however, contain the frequency response due to piezoelectri-

cally driven vibrations, so no piezoelectric factors are included in the initial model.

It is, in that respect, a somewhat more traditional solid mechanics formulation. The

incremental response, on the other hand, includes only the displacement, strain, and

stress of these piezoelectric vibrations, and no external loads. It uses linear (but still

temperature dependent) strain and stress definitions, because incremental deforma-

tions are assumed to be small. The final state is then defined as the superposition of

the initial response and the incremental response.

Knowing the form of the governing equations for the initial model, which must

be the same nonlinear form as the governing equations for the direct model previ-

ously defined (Equations (2.6) through (2.9)), the incremental governing equations

can be derived from subtracting the initial equations from the direct equations and

then applying the small deformation assumptions to eliminate any nonlinearity. This

derivation is performed by Lee and Yong [10], the results of which are Equations (2.11)

through (2.14). (The degree of nonlinear terms was limited here to only the highest
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degree used in this study, which corresponds to the limit of currently available quartz

material data.)

sij =
1
2
(uj,i + ui,j + Uk,juk,i + Uk,iuk,j) (2.11)

tij = (Cθ
ijkl + Cθ

ijklmnSmn)skl (2.12)

ρ0üi = (tij + tjkUi,k + Tjkui,k),j in V (2.13)

pi = nj(tij + tjkUi,k + Tjkui,k) on S (2.14)

With this mechanical definition, and the addition of temperature dependence to the

permittivity and coupling tensors, the overall stress-strain piezoelectric formulation

becomes (where the newly derived Equation (2.12) is substituted in Equation (2.4)

for Hooke’s Law):

tij = (Cθ
ijkl + Cθ

ijklmnSmn)skl − eθkijEk (2.15)

Di = eθiklskl + ǫθijEk (2.16)

Here the capitalized variables Ui, Sij, and Tij are initial model values as previously

defined, while lower case variables ui, sij, and tij are the linear incremental displace-

ment, strain, and stress, respectively to be solved for with these equations. It can be

seen that the three initial fields Ui,j , Sij , and Tij will affect the incremental response,

and thus also affect the frequency response of the quartz model. This is a very impor-

tant observation, because it directly defines the logical sequence of the finite element

model. Namely the initial model must be solved first in order to find Ui,j , Sij, and Tij ,

which are then plugged in to the incremental model as field constants. Finally, the

linear incremental model can be solved to find the desired frequency response along

with the associated ui, sij, and tij.

2.5 Constitutive Quartz Material Properties

With the equations for the two-step material model in hand, the final piece of the

puzzle before these equations can be used in a finite element model is the numerical
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definition of those quartz material properties which are present in the governing

equations. Due to the wide range of temperatures that the finite element model will

seek to describe, it is advantageous to define the constitutive attributes as functions

of temperature, so that the model will always be provided with the most realistic

input possible. This is achieved using the concepts of Taylor series and power series

approximations of various degrees along with temperature derivatives as follows, first

for the second-order elastic coefficient, Cθ
ijkl [12][13].

Cθ
ijkl = Cijkl + C

(1)
ijkl · θ +

1
2
C

(2)
ijkl · θ

2 + 1
6
C

(3)
ijkl · θ

3 (2.17)

Where θ is the temperature difference defined by θ = T − Tref (Tref is usually 25 ◦C)

and the temperature derivatives are defined by:

C
(n)
ijkl =

∂(n)Cijkl

∂T n
n = 1, 2, 3

Similarly, for the temperature dependence of the third-order elastic coefficient:

Cθ
ijklmn = Cijklmn + C

(1)
ijklmn · θ +

1
2
C

(2)
ijklmn · θ

2 (2.18)

Where:

C
(n)
ijklmn =

∂(n)Cijklmn

∂T n
n = 1, 2

Generally, the linear thermal expansion coefficients are measured and available instead

of the stress coefficients of temperature, λθij, where an approximate relationship exists

between the two using thermal strains, αθ
ij , that can be assumed of the form:

λθij ≈ Cθ
ijklα

θ
kl +

1
2
Cθ

ijklmnα
θ
klα

θ
mn (2.19)

So then the thermal strains, αθ
ij , are defined by:

αθ
ij = α

(1)
ij · θ + α

(2)
ij · θ2 + α

(3)
ij · θ3 (2.20)

Where α
(1)
ij , α

(2)
ij , and α

(3)
ij are the first-, second-, and third-order thermal expansion

coefficients, respectively.
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As far as the electrical properties are concerned, the temperature dependence

of the piezoelectric coupling tesnsor eθijk and the dielectric permittivity εθijk can be

defined as power series:

eθijk = eijk + e
(1)
ijk · θ + e

(2)
ijk · θ

2 + e
(3)
ijk · θ

3 (2.21)

εθij = εij + ε
(1)
ij · θ + ε

(2)
ij · θ2 + ε

(3)
ij · θ3 (2.22)

Here, e
(1)
ijk represents the first-order thermo-piezoelectric constants, e

(2)
ijk represents

the second-order thermo-piezoelectric constants, et cetera. Then also ε
(1)
ij stands

for the first-order thermo-dielectric constants, ε
(2)
ij the second-order thermo-dielectric

constants, et cetera.

Many scientists and engineers over the years (like for instance Yong and Wei [11])

have contributed to the vast task of defining all of these separate constitutive proper-

ties as a function of temperature, even after the initial work to define the properties

at a single temperature. Due to the nonlinear nature of the temperature dependence

and the nonlinearity of the governing equations themselves, often studies for new

material constants must necessarily take into account the previous more basic values,

such that the entire body of work for quartz properties is truly foundational to our

current understanding. With this in mind, the following Table 2.1 defines the im-

mediate sources of material data for this study, used exactly as they appear in the

relations described above (except for total thermoelastic stiffnesses discussed at the

end of this section). Most of these data were also previously compiled in the doctoral

dissertation of Mihir Patel [14], which greatly aided in the current compilation. Note

that Patel’s appendix uses the abbreviated engineering notation, or Voigt notation,

to report the numerical values of tensors for brevity, which does not change any nu-

merical values themselves. A comparison between this notation and the formal tensor

notation used previously to express calculations was given by Brugger [15].

Note that the temperature derivatives of the third-order elastic stiffness coefficients
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Symbol Property Reference

Cijkl 2nd-Order Elastic Stiffness Bechmann, et al. (1962) [16]

C
(1)
ijkl 1st Temperature Derivative of 2nd-Order Elastic Stiffness Lee, Yong (1986) [12]

C̃
(2)
ijkl Effective 2nd Temp. Deriv. of 2nd-Order Elastic Stiffness Lee, Yong (1986) [12]

C̃
(3)
ijkl Effective 3rd Temp. Deriv. of 2nd-Order Elastic Stiffness Lee, Yong (1986) [12]

Cijklmn 3rd-Order Elastic Stiffness Thurston, et al. (1966) [17]

C
(1)
ijklmn 1st Temperature Derivative of 3rd-Order Elastic Stiffness [Not Available]

C
(2)
ijklmn 2nd Temperature Derivative of 3rd-Order Elastic Stiffness [Not Available]

α
(1)
ij 1st-Order Thermal Expansion Coefficient Bechmann, et al. (1962) [16]

α
(2)
ij 2nd-Order Thermal Expansion Coefficient Bechmann, et al. (1962) [16]

α
(3)
ij 3rd-Order Thermal Expansion Coefficient Bechmann, et al. (1962) [16]

eijk Piezoelectric Constants Bechmann (1958) [18]

e
(1)
ijk 1st-Order Thermo-Piezoelectric Constants Yong, Wei (2000) [11]

e
(2)
ijk 2nd-Order Thermo-Piezoelectric Constants Yong, Wei (2000) [11]

e
(3)
ijk 3rd-Order Thermo-Piezoelectric Constants Yong, Wei (2000) [11]

εij Dielectric Constants Bechmann (1958) [18]

ε
(1)
ij 1st-Order Thermo-Dielectric Constants Yong, Wei (2000) [11]

ε
(2)
ij 2nd-Order Thermo-Dielectric Constants Yong, Wei (2000) [11]

ε
(3)
ij 3rd-Order Thermo-Dielectric Constants Yong, Wei (2000) [11]

D
(1)
ijkl 1st-Order Total Thermoelastic Stiffness † Yong, Wei (2000) [11]

D
(2)
ijkl 2nd-Order Total Thermoelastic Stiffness † Yong, Wei (2000) [11]

D
(3)
ijkl 3rd-Order Total Thermoelastic Stiffness † Yong, Wei (2000) [11]

† intended use for stress-free models only

Table 2.1: References for the constitutive material properties used as inputs

19



are not available in current literature. Therefore, the nonlinear stiffness of the model

in its present state is independent of temperature, and Equation (2.18) in the standard

material definition is effectively reduced to simply:

Cθ
ijklmn = Cijklmn (2.23)

Part of the purpose of the present work is to better define the role of these unknown

temperature derivatives in accurately predicting the frequency response of tempera-

ture and pressure sensors.

Also of note is the ‘effective’ modification for the second and third temperature

derivatives of second-order elastic stiffness, as given by Lee and Yong [12] in 1986.

This is because (in the method of derivation they used) the actual derivatives’ values

are intimately tied to the unknown temperature derivatives of nonlinear elastic stiff-

nesses (third-order elastic stiffness and above) such that one must assume a stress-free

thermal expansion for the initial strain in order to accurately use the values given.

This can be seen in their theoretical definition where, again for simplicity, the max-

imum order of nonlinearity is restricted to the third-order elastic constants rather

than the fourth- and fifth-order which are included in the referred source:

C̃
(2)
ijkl = C

(2)
ijkl + 2C

(1)
ijklmnα

(1)
mn (2.24)

C̃
(3)
ijkl = C

(3)
ijkl + 6C

(1)
ijklmnα

(2)
mn + 3C

(2)
ijklmnα

(1)
mn (2.25)

Equations (2.24) and (2.25) show the inherent dependence of C̃
(2)
ijkl and C̃

(3)
ijkl on

the unknown temperature derivatives of the third-order elastic stiffness, C
(1)
ijklmn and

C
(2)
ijklmn, where pure thermal strains must be assumed as the acting initial strains in

the nonlinear terms. This discrepancy does not change their use in Equation (2.17)

where C̃
(2)
ijkl and C̃

(3)
ijkl are to be used in place of C

(2)
ijkl and C

(3)
ijkl, but does however affect

their accuracy when stresses are applied at temperature. Still they represent the best

scenario available, and are essential to what reasonable amount of accuracy is seen in

the current model.
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In fact, the effective second and third temperature derivatives of second-order elas-

tic stiffness were revisited by Yong and Wei [11] in 2000. The derivation was updated

to include piezoelectric effects which had previously been neglected, which yielded

only minor (generally less than 1%) changes from the Lee and Yong values [13] [12].

Their final results were not, however, fully reduced to the more basic effective sec-

ond and third temperature derivatives of second-order elastic stiffness, but used to

derive what the authors called the “temperature derivatives of elastic stiffnesses,” or

in the current work referred to as “total thermoelastic stiffness” for disambiguation.

These total thermoelastic stiffnesses actually inherently include the temperature de-

pendency of each second-, third-, and higher-order stiffness term (thus eliminating

the need to denote them as ‘effective’). This formulation is only useful for describing

the incremental stiffness in stress-free thermal expansion.

Applying it involves a different incremental stress-strain relation than previously

provided, but in the end gives a more direct calculation for the incremental stiffness

as a third-order polynomial function of temperature assuming a stress-free state.

Namely, the incremental stress-strain Equation (2.12) and all subsequent definitions

for Cθ
ijkl and C

θ
ijklmn are replaced by the following single equation:

tij = (Cijkl +D
(1)
ijkl · θ +D

(2)
ijkl · θ

2 +D
(3)
ijkl · θ

3)skl (2.26)

Likewise, the overall incremental piezoelectric governing Equation (2.15) that is de-

rived from Equation (2.12) must be similarly modified, as in:

tij = (Cijkl +D
(1)
ijkl · θ +D

(2)
ijkl · θ

2 +D
(3)
ijkl · θ

3)skl − eθkijEk (2.27)

Where Cijkl is the same basic second-order elastic stiffness as previously defined,

and D
(1)
ijkl, D

(2)
ijkl, and D

(3)
ijkl are the first-, second-, and third-order total thermoelastic

stiffnesses. Although their values are given directly, D
(1)
ijkl, D

(2)
ijkl, and D

(3)
ijkl have the

following theoretical definition, where C̃
(2)
ijkl and C̃

(3)
ijkl are the same ‘effective’ temper-
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ature derivatives previously described:

D
(1)
ijkl = C

(1)
ijkl + Cijklmnα

(1)
mn (2.28)

D
(2)
ijkl =

1
2
C̃

(2)
ijkl + Cijklmnα

(2)
mn (2.29)

D
(3)
ijkl =

1
6
C̃

(3)
ijkl + Cijklmnα

(3)
mn (2.30)

In the current work, the total thermoelastic stiffness method put forward by Yong

and Wei was used sparingly overall. It was necessary for benchmarking the stress-free

temperature-frequency response of known cuts and for very small pressures where

convergence issues were encountered. But because the primary focus of this work was

to achieve accurate frequency response versus changes in temperature and pressure,

Lee and Yong’s effective temperature derivative method was used elsewhere through-

out. The Lee-Yong relations are fully capable of accurately modeling the stress-free

temperature response of frequency, in addition to the combined stress-temperature

or pressure-temperature response.

The correlation between the two methods will depend on the ratio of elastic strain

to thermal strain; if it is small, then the ‘thermal strain only’ assumption of the total

thermoelastic stiffnesses is accurate, and the small portion of third-order stiffness

effects caused by stress-induced elastic strain can be neglected. Generally, this is the

case, and examples of the close correlation between the two methods can be seen in the

benchmark tests that involve both the Nonlinear and Linear Stressed Homogeneous

Temperature Algorithms in the same study, the latter of which uses Yong and Wei’s

total stiffness terms, while the former uses the Lee and Yong method and values.

These benchmarks can be found in Section 3.5.
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CHAPTER 3

FINITE ELEMENT METHODOLOGY

3.1 Overview of the Finite Element Method

The finite element method, or FEM, is a diverse numerical computation tool whereby

a complex physical problem is broken down into simpler more basic parts, or finite

elements. For each element, an arbitrary function (usually a polynomial function

of space) is assumed to describe the dependent variables to be solved, such as dis-

placement or voltage. This function is called the basis function or trial function.

Unknown coefficients that appear in the basis function, called degrees of freedom,

are mapped to actual values of the dependent variables at specific points, or nodes,

on each element. Theses mappings are known as shape functions. Shape functions

allow the degrees of freedom to be coupled with information about how each element

is physically connected to its neighbors, or in other words, how the original problem

was broken down. This is the finite element skeleton; the bookkeeping that allows a

reactive continuum to be described as a finite number of interconnected nodes, known

as a mesh.

The ‘complex physical problem’ that is desired to be solved is usually in the

form of a partial differential equation, or PDE. Such differential equations include

thermoelastic equations of motion (or equilibrium), fluid dynamics laws like Navier-

Stokes equations, or Maxwell’s electromagnetic equations, among many others. In

reality, the solution to the problem will be a spatial functional arrangement or field of

the dependent variable that obeys the governing PDE at every point in the continuum.

But within the finite element method, there is no continuum, per se, except that which

23



is interpolated from the nodal solutions after the fact. As previously described, the

continuum is replaced with a network of points. Indeed the points represent the

continuum in their vicinity, but their control over that continuum is limited by a

combination of the degree of the assumed polynomial basis function together with

the finite size of the elements themselves. In other words, the vector space of the

solution is limited, when compared to that of the realistic continuum.

Therefore, applying the governing PDE to the finite element formulation must

necessarily yield an approximate solution: the limited nodal function does not have

to solve the PDE at every point if, on the whole, it is the best representation possible

of the real function that does. The next logical question is, how does one know if

the nodal solution is the best possible? After all, it will not likely be a solution

to the actual differential equation. How can one tell if a wrong solution is “close

enough?” The two most common answers to this question are by a) minimization of

potential energy (or the Rayleigh-Ritz method) and b) Galerkin’s method of weighted

residuals. While the former is the simplest (one needs only to derive potential energy

as a function of the degrees of freedom and then find the minimum using elementary

calculus) the latter is the most general and also easier to apply when tens of thousands

of degrees of freedom are involved. Galerkin’s method converts the original PDE to an

appropriate weak formulation that allows integration of the weighted residual, or error

of the approximate function, over the entire domain. Knowing this quantitative value

for the “overall error” of the approximate function, the best solution for the unknown

degrees of freedom is defined as the one that that minimizes the total residual.

In the case of Galerkin’s method, the error is “weighted” by a function that repre-

sents every kinematically feasible possibility for the solution (that is, every possibility

that obeys the known displacement boundary conditions) with the same form as the

basis or trial function (and thus in the same limited vector space). For Galerkin’s

method in solid mechanics problems, these weights are analogous to concept of virtual
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displacements. Because the error in the approximate solution is weighted by virtual

displacements that have the same limitations as the basis functions themselves, the

weighted error of the correct solution integrated over the domain will be zero. This is

paramount, because knowing the solution will yield an integrated weighted residual

that is actually zero (rather than an arbitrary ‘smallest number possible’) transforms

an elementary calculus problem of minimization into a linear algebra problem of solv-

ing an equality.

To better illustrate the operations involved in applying Galerkin’s method, con-

sider the following one dimensional example [19]. If the governing differential equation

is of the form of a partial differential operator, L, operating on some function of space,

u(x), to yield some constant P :

L · u(x) = P (3.1)

Then the residual, ε(x), is defined as the error of using an approximate trial function,

ũ(x), for the actual solution u(x):

ε(x) = L · ũ(x)− P (3.2)

Thus, according to Galerkin’s method, the integral of the weighted residual over the

entire volume must equal zero:

∫

V

φ(x) · ε(x) dx =

∫

V

φ(x) · (L · ũ(x)− P ) dx = 0 (3.3)

Here, the weighting function is supplied as φ(x), where φ(x) and ũ(x) are derived

from the same basis functions. One simplistic example of the form of these functions

would be:

ũ(x) = u1 + u2x+ u3x
2 (3.4)

φ(x) = φ1 + φ2x+ φ3x
2 (3.5)
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Here u1, u2, and u3 can be thought of as the degrees of freedom (although the shape

functions as well as the positions and orientations of elements complicate this oth-

erwise direct relationship) and the values of φ1, φ2, and φ3 are arbitrary in that

Equation (3.3) must hold for any and all values of these coefficients. Usually, in-

tegration by parts (or divergence theorem in multiple dimensions) is then applied

to Equation (3.3) to reduce the order of the derivative operator and specify natu-

ral boundary conditions to the problem. The result is sometimes referred to as the

weak form or variational form, which for static linear elastic problems happens to be

equivalent to the principle of virtual work viewed in context of the the entire domain.

Within the finite element program, the integration over the domain can be per-

formed programmatically, using Gaussian quadrature for example. Then knowing

that the equality to zero in Equation (3.3) must hold for any value of virtual displace-

ment (φ1, φ2, φ3, . . . ,φn) each additive term containing φn must also independently

be equal to zero. It so happens that all additive terms do contain exactly one φn,

where the highest n is also the total number of degrees of freedom. So grouping the

equality by like terms of φn yields exactly as many equations as there are unknown

degrees of freedom, and in this way, the entire process is reduced to the solution of a

system of linear equations in matrix form.

The above example of applying Galerkin’s method is just one of the many methods

of weighted residuals, and is a good simplified representation of finite element method

involved in the current work. By contrast, some modern finite element codes are

found to employ a completely different fundamental arrangement, such as mesh-free

methods. For more information about the details of the finite element method, many

textbooks are available including Introduction to Finite Elements in Engineering by

Chandrupatla and Belegundu [19].
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3.2 Finite Element Method in the Current Work

When the finite element method is applied in engineering analyses, it usually involves

commercial software designed for that purpose. As such, the governing equation is

selected by default by the type of model ran, and the user needs only provide the

inputs such as the meshed geometry and boundary conditions. However, looking at

the governing equations for the current work derived in Equations (2.13) and (2.10)

(that is the modified elastic equation of motion and Gauss’s Law for an insulator)

together with the definitions in Equations (2.15) and (2.16) and beyond, one can

see that the governing equations for the incremental model, which mix in the results

from the initial model, are not likely to be the default of any commercially available

program. Indeed, the software used in this project, COMSOL Multiphysics, was

chosen specifically because the default definitions for variables and the governing

weak form equation are visible to the user and also easily revised. Furthermore, those

default definitions already include many simulations that involve multiple physical

laws, such as the coupled mechanical and electrical response present in a piezoelectric

material. COMSOL Multiphysics versions 3.5a and 4.1 contributed to separate parts

of the results attained in this study, although 4.1 was primarily used.

The initial model and the incremental model, previously described in Section 2.4,

were assembled in the COMSOL environment to run sequentially. Deriving the weak

form expression from the partial differential equation in Equation (2.13) for input

into COMSOL was completed and verified against a similar derivation for COMSOL’s

default weak form. In fact, this default governing equation was found to be a special

case of the incremental governing equation (2.13) where initial model response is zero

for initial displacement, initial strain, and initial stress (Ui = 0, Sij = 0, and Tij = 0

from the previous chapter). Both the initial and incremental models incorporated

the material definition given in Section 2.5 by means of a custom material library

within COMSOL. This material library held functions that took the needed inputs for
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temperature and strain directly from the model in order to output accurate material

properties throughout the domain of the resonator (the strain input yielding the

nonlinear third-order elastic effects).

The other fundamental modification to the default COMSOL Multiphysics inter-

face was the addition of global variables to link the results of the initial model to

the inputs of the incremental model at every point in the domain. This provides a

one-way bridge of information to solve the initial and incremental models in sequence.

Looking through the incremental equations previously provided in Equations (2.11)

through (2.16), one can see the references to the initial model include three basic sets

of data: the initial displacement derivatives Ui,j , the initial strain Sij, and the initial

stress Tij . The global linking variables were derived directly from these three sets.

Besides these modifications, there were other general considerations that are nec-

essary for any finite element model. Because all of the resonator cuts studied in the

current work operate on the thickness-shear mode of vibration, the mesh density in

the thickness direction was a primary consideration for convergence of the solved fre-

quency response. A swept mesh format allowed precise control the number of mesh

layers in the thickness direction. A simple convergence study of a round AT-Cut

quartz resonator with a nominal fundamental mode frequency just under 10 MHz,

shown in Figure 3.1, found that the solved frequency value changed very little above

a mesh density of ten mesh layers per half wavelength. That is, at the fundamental

thickness shear mode, ten mesh layers were sufficient to model the entire thickness of

the resonator. At the third overtone, the domain contains one-and-a-half lengths of

the resonant standing wave at any given time, so 30 mesh layers are recommended.

Another general consideration for most finite element models is the application of

symmetry. It is important to note in the current work that while the boundary con-

ditions and geometry often allowed two-fold, four-fold, or even eight-fold symmetry,

the anisotropic material properties of quartz do not generally comply with the same
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Figure 3.1: Mesh convergence: solved frequency vs. number of mesh layers

symmetry planes, and therefore disallow these simplifications. Likewise, most quartz

simulations should require modeling the entire resonator geometry for an accurate

frequency response because of quartz’s anisotropy.

Finally, while the governing equations of motion previously discussed would allow

the model to be based on the transient time-dependent behavior of the crystal, a more

computationally-efficient solution for the resonate frequency is based on solving for the

eigenvalues, or eigenfrequencies, of the model. Such a solution is independent of the

time domain, because it solves the model for specific sets of displacement fields (the

eigenfunctions or eigenmodes) which are assumed to be of harmonic form. The result

is a list of eigenfrequencies of the model near a provided target frequency, together

with their corresponding eigenmodes. By investigating the eigenmodes individually,

one can identify which has the displacements corresponding to thickness-shear reso-

nance, and thereby identify the resonant frequency. Because the piezoelectric effects

are confined to the incremental model, the eigenvalue solution method is only relevant

to solving this model and not the initial model.
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3.3 Stressed Homogeneous Temperature Algorithms

The schematic flow for implementation of the finite element method as developed

for the current work follows directly from the material considerations in Sections 2.4

and 2.5 and the methodology described in the previous Sections 3.1 and 3.2. For the

most general algorithm used in this study, the entire domain of the resonator was

assumed to be at a single homogeneous temperature. Any external pressure load-

ing, geometric and elastic nonlinearity, and steady uniform change in temperature

from the reference temperature was taken into account for the initial model. The

nonlinear aspects of the initial model dictated that an iterative method be used un-

til convergence was achieved. This iteration was performed by default within the

software. Then the results of the initial model in terms of initial displacement gra-

dient, initial strain, and initial stress (Ui,j , Sij, and Tij as previously described) were

fed into the incremental model, which used the incremental piezoelectric governing

equations together with the eigenfrequency solver to output the resonant frequency

of the quartz oscillator. This process for the Nonlinear Stressed Homogeneous Tem-

perature (NSHT) Algorithm is laid out in Figure 3.2. It should be noted that this

algorithm is general enough so as to handle both the stressed and stress-free cases

equally well, whereas the Stress-Free Homogeneous Temperature Algorithm described

in the next section makes the literal assumption that initial stresses are zero, and thus

is restricted to that scenario.

With additional governing equations (such as Fourier’s Law of conduction) and

appropriate material definitions (such as thermal capacity and anisotropic thermal

conductivity) which were not previously discussed, the Nonlinear Stressed Homoge-

neous Temperature Algorithm could easily be adapted to model complex heteroge-

neous temperature fields and even transient thermal frequency response. Such models

are not of interest in the current study, however, but can be referenced in work by

Patel [14].
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Figure 3.2: Flowchart for the Nonlinear Stressed Homogeneous Temperature Algo-

rithm
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Based on this algorithm, a similar algorithm was developed with the additional

assumption that the initial response could be modeled linearly in a finite element

sense. This assumption became necessary due to convergence issues within the non-

linear initial model when zero or otherwise relatively small external pressure loads

were applied. As a side effect, the Linear Stressed Homogeneous Algorithm had the

additional advantage of being much faster to run, because iteration was not necessary

on the initial model. The initial model was linear in a finite element sense because

the inputs (material properties) did not depend on the outputs, or the dependent

variables (displacement and strain) of the model. The material properties were still

modeled as analytic nonlinear functions of temperature, however, with homogeneous

thermal strains implicitly assumed as inputs for the nonlinear third-order elastic re-

sponse, using the ‘total thermoelastic stiffness’ data discussed in Section 2.5. This

made the linear model a good approximation for the low-pressure scenarios it was

designed to cover, because in these cases most of the strains are in fact due to ther-

mal expansion and not the elastic response to external forces. Still, the nonlinear

algorithm was used in favor of the linear algorithm in the current study wherever

permissible by convergence, with the expectation it would be more accurate, espe-

cially at higher pressures. The Linear Stressed Homogeneous Temperature (LSHT)

Algorithm is demonstrated in Figure 3.3.

3.4 Stress-Free Homogeneous Temperature Algorithm

As the ultimate simplification of the previously described algorithms, the initial fi-

nite element model can be completely eliminated and replaced by nonlinear analytic

expressions to provide the incremental model inputs of initial displacement gradient,

initial strain, and initial stress (Ui,j , Sij , and Tij , respectively). Because of the stress-

free assumption, all initial strains and displacements must come from homogeneous

thermal expansion, αθ
ij , alone. In equation form, the stress-free assumption can be
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Figure 3.3: Flowchart for the Linear Stressed Homogeneous Temperature Algorithm

written as:

αθ
ij = α

(1)
ij · θ + α

(2)
ij · θ2 + α

(3)
ij · θ3 ((2.20))

Uj,i = Ui,j = Sij = αθ
ij (3.6)

Tij = 0 (3.7)

Note that the quadratic finite strain terms for the initial strain Sij (that is,
1
2
αθ
kiα

θ
kj)

were dropped because they are on the order of 10−3 smaller than the linear term αθ
ij

and therefore negligible [12]. The stress-free assumption was exactly the condition

for which the ‘total thermoelastic stiffness’ material data was derived by Yong and

Wei [11] as discussed in Section 2.5, so this data was used to calculate the linear

stiffness for the incremental model as given in Equation (2.26). Thus, the Stress-Free

Homogeneous Temperature (SFHT) Algorithm is illustrated in Figure 3.4. Note that

this stress-free algorithm is also linear in a finite element sense.
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Figure 3.4: Flowchart for the Stress-Free Homogeneous Temperature Algorithm

3.5 Model Benchmarks

After the previously-described algorithms were developed, they were compared against

experimental data from literature for benchmarking purposes, beginning with the

simplest Stress-Free Homogeneous Temperature Algorithm. The incremental model

in this algorithm was used on a rectangular AT-Cut ((YXl)35.25 ◦) plate geometry

with dimensions the same as that studied in Chapter 7 of Mihir S. Patel’s disserta-

tion [14], henceforth referred to a simply Patel’s dissertation. Following his geometry,

the resonator is composed of a 1.7 millimeter by 1.2 millimeter by (approximately) 30

micron thick rectangular quartz domain, and also includes the modeling of two thin

(0.1 micron thickness) gold electrodes as an isotropic linear elastic material in the

finite element model. The primary contribution of this layer to the frequency results

of the model was found to be the added mass contribution that lead to a decrease in

the resonate frequency, as would be expected. Also some spurious modes of vibration

in the resonator seemed to be dampened out somewhat by modeling the gold, but this

could have been an indirect consequence of the downward shift of the frequency of the

resonate mode away from the ailing spurious modes. After the stress-free algorithm,

the Linear Stressed Homogeneous Temperature Algorithm was then also applied to
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Patel’s geometry. The details of the geometric dimensions can be found in Chapter 7

of Patel’s dissertation. The meshed geometry, an example solution from the current

study, and the results for both algorithms as compared to Patel’s data are given in

Figure 3.5, recalling that LSHT and SFHT stand for ‘Linear Stressed Homogeneous

Temperature’ and ‘Stress-Free Homogeneous Temperature’ Algorithms, respectively.

To highlight the change in frequency as a function of temperature and to further

normalize for geometric dissimilarity, it is customary to report frequency data as a

change in parts per million from the frequency at a reference temperature, usually

25 ◦C (with no pressure or force load applied, if applicable). The same approach

was taken here, with the frequency change being calculated as (f − f0)/f0 where

f is the measured frequency and f0 is the frequency at the reference temperature.

Thus the trends themselves become all the more relevant compared to small offsets in

frequency that vary from resonator to resonator (or simulation to simulation) that get

eliminated from the study. This analysis technique finds advantage in the remarkable

sensitivity of quartz resonators, and in reporting of the properties of the numerous

cut angles. In fact, the removal of a single layer of silicon atoms from a 1MHz X-

Cut quartz plate 3mm thick would increase the frequency by about 0.1 Hz [1]. So

absolute repeatability of frequency magnitude is not easily achieved, but the frequency

response trends visible in a given cut are much more duplicable.

In Patel’s work, a near-identical model and algorithm is developed for a much

different ultimate goal of examining glass-packaged quartz resonators. Such an as-

sessment was of great value because it not only allowed comparison to experimental

data compiled by Patel from previous studies, but also comparison to the data from

Patel’s finite element models themselves. As seen in Figure 3.5, the algorithms of

the current study agree quite well with Patel’s data, often falling between Patel’s

own “FEM Static f-T Model” and the actual experimental data. The small deviation
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(a) Meshed geometry (b) Example eigenmode displacement

(c) Frequency shift vs. temperature

Figure 3.5: Benchmark data: stress free AT-Cut (reference data from Patel [14])
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from experimental values could be accounted for by uncertainty in the experimental

resonator’s cut angle, which for the AT-Cut directly affects the amount of turnover

(or difference between the characteristic relative minimum and relative maximum)

which is present in the response. The even smaller difference between the Stress-Free

Homogeneous Temperature Algorithm and the Linear Stressed Homogeneous Tem-

perature Algorithm themselves is likely due to the fact that the thermal strains are

analytically fed into the incremental model during the stress-free algorithm, while

they are approximated by the solution of the initial model in the stressed algorithm.

Patel shows a similar discrepancy between his “dynamic” and “static” models [14].

Using the same geometry, Patel also demonstrates his model’s prediction for the

stressed frequency response of the crystal by using fixed boundary conditions all

along the edge of the rectangular resonator. The resultant plot, although not entirely

exciting, does provide an additional point of reference for the stressed algorithms.

Note that the stress-free algorithm would fail conclusively, since its assumption of free-

expanding thermal strains would be entirely wrong. In fact, the stress-free algorithm

would show little to no reaction to this change in boundary conditions on the far

edges of the plate (this is confirmed explicitly by Patel [14]). Besides the fixed edges,

all other aspects of the target geometry remained the same. Patel’s results are given

with comparison to the Linear Stressed Homogeneous Temperature Algorithm in

Figure 3.6.

Except for the small dip in the Patel model’s response at 35 ◦C, both plots are

linear and match up very well. The dip could be the result of the interference from

a spurious mode, which has the effect of knocking the resonate frequency off of its

indented value. The causes of spurious or inharmonic modes are discussed at length

by Bottom [2]. Basically they are caused when the primary mode of vibration (i.e.

thickness-shear) is tainted by the resonance of an otherwise irrelevant mode (for

instance, an extensional mode overtone) at a nearby frequency. Often the spurious
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Figure 3.6: Benchmark data: fixed edge stressed AT-Cut (reference data from Pa-

tel [14])
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modes have totally different responses to external factors, such as temperature change,

and so the spurious response of the primary mode is intermittent, whenever such an

irrelevant mode happens to the in primary mode’s vicinity of the frequency spectrum.

The effects in reality include increased resistance (and decreased response, known as

an ‘activity dip’) of the resonator and a lower quality factor, among others. The

effect in the incremental model is a slight pull of the resonant frequency away from

its otherwise predicted value. The reason that the spurious mode is not present in

both models could be that, in the FEM environment, the exact frequency location of

a spurious mode can be highly dependent on the mesh shape and density, since it is

not often a well-defined mode of vibration according to the dominate physics of the

problem. In any case, the dip at 35 ◦C is definitely no trend and this benchmark is

satisfactorily passed by any account.

To continue benchmarking the algorithms developed for this study, focus was

turned to work done by Errol P. EerNisse. First his article from 1975 [20], involving

what he referred to as the “stress coefficient” of frequency, denoted byK. In this work,

EerNisse performs calculations that show the frequency shift with respect to in-plane

biaxial stresses to be linear and proportional to the stress, or pressure, applied (much

like the result to the previous benchmark). Therefore, unlike the complex temperature

response, the pressure response of frequency can be quantified by a single number

representing the slope of the linear plot. This slope determines the value of EerNisse’s

stress coefficient, and is different for different cuts of quartz. EerNisse’s calculated

values for the AT-, BT-, and SC-Cuts are compared to the output from the Nonlinear

Stressed Homogeneous Temperature Algorithm. The cut angles used in the algorithm

are denoted by (YXl)35.25 ◦, (YXl)−49.00 ◦, and (YXwl)22.4 ◦/33.88 ◦ according to the

IEEE Std 176-1949 convention for the AT-, BT-, and SC-Cuts, respectively. EerNisse

does not describe in detail the geometry assumed in his calculations. The geometry

was assumed to be a common form: round, plano-plano (meaning flat on both sides
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rather than curved like a lens) resonator with central round electrodes (not modeled

with a gold layer, but only as the electrical boundary condition). The temperature

was assumed to be 25 ◦C. The biaxial stress was applied using a compressive pressure

traction applied evenly across the entire outer edge of the fattened cylindrical shape.

This would correspond to EerNisse’s “stress anisotropy” ratio of one. Figure 3.5

shows the meshed resonator geometry, and Table 3.5 shows the excellent numerical

agreement between the Nonlinear Stressed Homogeneous Temperature Algorithm and

EerNisse’s calculations. Note the near-zero value of K for the ‘stress compensated’

or SC-Cut, which EerNisse himself developed specifically for this attribute.

Figure 3.7: Resonator geometry mesh for stress coefficient benchmark

Quartz Cut Stress Coefficient, K (10−12 cm2 dyne−1)

Current Work EerNisse (1975) [20]

AT 2.773 2.75

BT −2.626 −2.6

SC 0.004 0.0

Table 3.1: Benchmark data: stress coefficient of frequency

A later experimental analysis by EerNisse [21] from 1980, which also included data

from C.R. Dauwalter [22], served as a final benchmark for the stressed algorithms.

This study examined the temperature dependence of the “force frequency coefficient”
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with symbol Kf , which has a similar definition as the stress coefficient previously

discussed, except rather than a biaxial stress state, the force coefficient describes the

linear frequency response to diametrically-opposed point-load compression forces on

a circular resonator. The equation defining the use of the force coefficient is given

by [21]:

f − f0
f0

= Kf

F ·N0

d · τ
(3.8)

The left side of Equation (3.8) is easily identified as the fractional frequency shift

discussed previously, F is the magnitude of the applied diametric force in newtons,

and N0, d, and τ are all constant for a given resonator (and are the frequency constant

in meters per second, resonator diameter in meters, and resonator thickness in meters,

respectively). This allows Kf to define the slope of the linear frequency response as

F is increased (with units of m ·s ·N−1). Another parameter which is of importance in

this study is the azimuthal angle ψ that defines the location on the perimeter where

F is applied, measured in degrees counterclockwise around the rotated +y-axis (y′′),

which is normal to the plate, from the rotated +x-axis (x′′). Since the loading is

applied on opposite sides of the resonator, ψ needs only range from zero degrees to

180 degrees in order to demonstrate every value of Kf for a given cut. While EerNisse

gives experimental data for the AT-, FC-, SC-, and X-Cuts, the current benchmark

was limited in scope to the AT-Cut, which Dauwalter had previously explored in

1972 [22]. Thus, the experimental value of Kf as a function of the diametric angle

of the applied load, ψ, for the AT-Cut was compared to the same prediction by both

the Nonlinear Stressed Homogeneous Temperature Algorithm and the Linear Stressed

Homogeneous Temperature Algorithm of the current study. First looking at only the

response at the reference temperature of 25 ◦C, the results are plotted in Figure 3.8.

In this figure, one can see that both the linear and nonlinear algorithms match the

experimental values very closely. Incidentally in the algorithms’ predictions, Kf is

assumed to be symmetric about ψ = 90◦, just as in the experimental data [22], so that
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more data points could be taken in the time and memory allotted for the simulation.

Figure 3.8: Benchmark data: force frequency coefficient, Kf , for the AT-Cut (refer-

ence data from Dauwalter [22] and EerNisse [21])

Both EerNisse and Dauwalter also provide the change in force frequency coef-

ficient, Kf , with respect to change in temperature, T , as a first order derivative,

dKf/dT (with units m · s ·N−1 ·◦ C−1), and it is here that the algorithms for the cur-

rent study, which had performed very well in benchmarks up to this point, begin to

show their weakness. As seen in Figure 3.9, the Dauwalter data (which EerNisse data

confirms, although it is not repeated here) shows a definite trend in this temperature

derivative dKf/dT as a function of diametric angle, ψ. Such desired response from

the linear algorithm tested effectively flatlines, with negligible temperature-induced

change in Kf for all angles ψ. Because Kf itself is directly proportional to the deriva-

tive of frequency with respect to change in pressure (it determines the slope of the

frequency-pressure curve), then dKf/dT is proportional to the second-order mixed
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Figure 3.9: Benchmark data: first temperature derivative of Kf for the AT-Cut

(reference data from Dauwalter [22] and EerNisse [21])

partial derivative of frequency, ∂2f/∂T∂P . That is:

Kf ∝
∂f

∂P
(3.9)

dKf

dT
∝

∂2f

∂T∂P
(3.10)

A hypothesis of the current work is that the inaccuracy of the current algorithms

in predicting the second-order mixed temperature and pressure response character-

ized in Equation (3.10) (and also Figure 3.9) is due to the unavailability of certain

constitutive material properties, being the temperature derivatives of the 3rd-order

elastic stiffness as initially categorized in Table 2.1. Another vantage point for this

issue is provided as a side-effect of modeling the frequency response of the quartz

temperature and pressure sensor, which is the subject of the next chapter.
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CHAPTER 4

FREQUENCY RESPONSE OF THE TEMPERATURE-PRESSURE

SENSOR

4.1 Sensor Geometry

As mentioned in the first chapter, quartz resonators are well suited to serve as tem-

perature and pressure sensors due to the unique physical properties of quartz. This

is especially true for downhole applications in the oil and gas industry, which take

full advantage of the compactness and long-term stability of the quartz resonator and

also benefit from its fine resolution and accuracy.

The sensor geometry investigated in the current study is one in which a flat-sided

cylindrical casing surrounds a circular resonator, as shown in Figure 4.1. This casing,

formed by two sealed end caps, mechanically serves to actuate the state of hydrostatic

pressure on the exterior as a non-uniform biaxial compressive stress across the interior

resonator plate.

Figure 4.1: Quartz pressure sensor geometry with end caps [23]
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Although nominally referred to as a “pressure” sensor, such a device does have

a considerable temperature response and is thus technically a temperature-pressure

sensor. Therefore to measure both, an independent temperature measurement must

also be made. This is most simply accomplished with a standard clip-mounted res-

onator, which can be isolated from external pressure, and possibly cut at special

angles that are well known to produce desirable temperature response for use as

thermometers [24]. It is therefore significant that the simulation be able to output

both the pressure and temperature response of the “pressure” sensor, as this allows

the simulation to predict how easily the two responses can be separated for a given

pressure sensor design.

4.2 Simulation Overview

Thus, the Nonlinear Stressed Homogeneous Temperature Algorithm laid out in Sec-

tion 3.3 was employed on the previously described pressure sensor geometry. Exper-

imental data was collected from two such sensors. While the initial model in the

algorithm was necessarily used on the entire sensor geometry to model the effect of

the end caps, the incremental model was limited to the resonator plate itself to save

computational time and memory. Thus the incremental model pulls only those input

values of initial displacement, initial strain, and initial stress that are spatially needed

for its solution, although such values are available for the entire geometry.

Because of the size and complexity of the complete meshed geometry, limitations

on available memory dictated that certain simplifications be made beyond what may

have been considered ideal. The gold electrodes were not modeled in bulk, but simply

the electrical boundary conditions they impose. While this has the effect of raising

the predicted frequency by a few percent versus a model with the extra gold mass,

it should have minimal effect on the pressure and temperature dependent trends in

response. Similarly, the number of swept layers through the thickness of the resonator
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was reduced to about seven per half-wavelength (see Section 3.2 for description).

Again, while a slight reduction in the absolute accuracy of the frequency can be

expected, the trends are much more dependent on the inputted boundary conditions

and material properties. In this way, the quantity of degrees of freedom for the

initial model was brought to 125709, with 160366 for the incremental model, the

latter still more since it has the additional piezoelectric physical parameter of voltage

to solve for at each node, in addition to the X-, Y -, and Z-direction displacement.

Since the nominal size of the finite element stiffness matrix involved in calculation

is proportional to the square of the degrees of freedom, these values were near the

memory limits for the computer used in the analysis. The entire nonlinear simulation

had a runtime of about 30 hours.

4.3 Results

The result of the simulation is frequency response as a function of two independent

variables: applied temperature and external pressure. This data can be represented

on the whole as a three-dimensional surface plot. Alternatively for closer inspec-

tion, slices of the response at constant pressures (isobaric) or constant temperatures

(isothermal) can be viewed as a normal scatter plot. This will be the method used

in the current work. Because the experimental data did not contain a data point at

25 ◦C and 0 psi for a standard reference, both the experimental and simulation values

where normalized to the frequency at 50 ◦C and 14 psi (external pressure) for the

calculation of frequency shift in parts per million. Also it should be noted that the

experimental batches A and B contain a slightly different input set of temperature

and pressure points, most notably that A contains data up to 20,000 psi and 200 ◦C

while B only goes up to pressures of 16,000 psi and temperatures of 175 ◦C.

Taking the approach of using isothermal and isobaric slices of the surface plot as

previously described, the output of the Nonlinear Stressed Homogeneous Temperature
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Algorithm (abbreviated ‘NSHT Algm.’ in the plots) yields Figure 4.3 for the isobaric

case and Figure 4.2 for the isothermal case. Correlation between the experimental

data and the simulation is fairly good overall, which each major experimental trend

being mirrored in the output of the algorithm. For the isothermal plots, the pressure

response is linear, and the slope of the line in the simulation is near the experimental

slope, especially at low temperatures. At higher temperatures however, the experi-

mental slope of the pressure response decreases while the simulation’s slope increases

very slightly. This results in the simulation’s small error compared to experimental

values of 7.52% at 50 ◦C and 20,000 psi growing to 25.65% at 200 ◦C and 20,000 psi.

The same progressive path of the endpoints of the isothermal lines growing apart (be-

cause of opposite changes in the slope of those lines) as temperature increases can be

more easily seen in a single instance in the isobaric plot for 20,000 psi, Figure 4.3(f).

For the isobaric plots, temperature response at low pressures shows the concave-

up half of the characteristic 3rd-order polynomial-like curve of the AT-Cut (above

the inflection point which occurs around 20 ◦C to 30 ◦C). Note that the slope of the

temperature response of frequency is approximately zero near room temperature, as is

the cut’s design intent. The exact angle of the AT-Cut’sX-axis rotation near 35.25◦ is

known to influence the degree of this concavity, so the slightly-shallower dip present in

the experimental values could be a result of the experimental cut angle tolerance. In

any case, however, it can be seen that the experimental temperature response flattens

out quicker with increasing pressure, and even becomes slightly inverted, whereas the

simulation does not flatten out as much and never becomes inverted.

4.4 Conclusions

It is these experimental trends of trends, like the flattening and inversion of the tem-

perature response with increasing pressure or the decreasing slope of the pressure
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(a) T = 50 ◦C (b) T = 75 ◦C

(c) T = 100 ◦C (d) T = 150 ◦C

(e) T = 175 ◦C (f) T = 200 ◦C

Figure 4.2: Isothermal frequency-pressure sensor response
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(a) P = 14 psi (b) P = 4,000 psi

(c) P = 8,000 psi (d) P = 10,000 psi

(e) P = 14,000 psi (f) P = 20,000 psi

Figure 4.3: Isobaric frequency-temperature sensor response
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response with increasing temperature, that represent the effect of second-order mixed

derivatives of frequency response with respect to temperature and pressure (as pre-

viously discussed at the end of Section 3.5). These mixed second-order effects can be

attributed to the temperature derivatives of the 3rd-order elastic stiffness coefficients,

for which numerical values are not currently available in literature, and thus also not

present in the finite element simulation. The short answer behind why this link ex-

ists is given indirectly by EerNisse and Wiggins [24] who attribute the third-order

elastic stiffness coefficients as the gateway to the frequency shifts due to a stress bias.

In other words, they acknowledge that the nonlinear elastic terms control the pres-

sure response of frequency. Therefore, in order for the pressure response to change

accurately with temperature, the 3rd-order elastic coefficients also need to change

accurately with temperature in the material definition. The accurate change of the

3rd-order elastic coefficients with temperature is, of course, given by their tempera-

ture derivatives as described in Equation (2.18).

For additional logical evidence to pin the blame on the temperature derivatives of

the 3rd-order elastic stiffness, first consider the simplified one-dimensional equation

for the nominal speed of a wave though a solid medium without dispersion, given

in Equation (4.1). Note that, for quartz, such a velocity would directly affect the

frequency of resonance.

v =

√

c

ρ
(4.1)

Here, v is the nominal velocity in, for instance, meters per second. Then c is the

stiffness of the medium in newtons per square meter or pascals, and ρ is the density

of the medium in kilograms per cubic meter. If this velocity is experimentally shown

to be a function of the applied pressure to the medium, P , then one knows that either

c is a function of pressure, ρ is a function of pressure, or both, supposing the model

is inherently accurate. Assuming for the moment that stiffness c is a function of

pressure and density ρ is not, then perhaps one could accurately model this pressure
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response of c with a linear regression, such that:

c(P ) = c0 + c1P (4.2)

Then for our model, it would be obvious that the coefficient c1 is solely responsible

for controlling the pressure response of stiffness, c(P ), and thus also the pressure

response of wave velocity, v(P ), rather than c0 which provides whatever value of

stiffness is present at zero applied pressure. Continuing the illustration, let us assume

that now in later experiments, the pressure response for velocity, v(P ), is found to be

different when measured at a constant temperature of 25 ◦C then when measured at

a constant temperature 75 ◦C. Since it was already concluded that the coefficient c1

solely determines v(P ), then if v(P ) is found to be a function of temperature, c1 itself

must also be a function of temperature. In other words, if the shape of the velocity

versus pressure curve experimentally changes with temperature, then the simplest

way to edit the velocity model and make it agree with experiments is to make c1 also

a function of temperature that will describe the way the shape changes.

This hypothetical example can be applied to the incremental model used in the

finite element analysis and laid out in Section 2.4, when the illustrative definition of

stiffness in Equation (4.2) is compared to the linear stress-strain relationship for the

incremental model, Equation (2.12), and specifically the incremental stiffness term

(which will be referred to in this section under a single new symbol dijkl):

tij = (dijkl)skl ((2.12) recast)

dijkl = Cθ
ijkl + Cθ

ijklmnSmn (4.3)

Just like c1 in the illustration, so the third-order elastic coefficient, Cθ
ijklmn, solely

controls the pressure response of the incremental stiffness through the initial strains,

Smn, which are direct functions of the applied pressure (as well as initial thermal

strains). The incremental stiffness directly contributes to the velocity of the piezoelec-

trically induced thickness-shear wave, which in turn determines the overall resonant
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frequency. Likewise, because Cθ
ijklmn is not in fact a function of temperature in finite

element representation the incremental model (because its temperature derivatives

are not known), one would expect that the pressure response of the model would be

independent of temperature.

This expectation is verified in the benchmark studies regarding dKf/dT shown in

Figure 3.9, where the change in force frequency coefficient, Kf , with respect to chang-

ing temperature is approximately zero compared to experimental values. Adding real-

istic temperature dependence to the 3rd-order elastic coefficients should bring about

in that benchmark realistic values for dKf/dT . Similarly in the pressure sensor model,

having the temperature derivatives of 3rd-order elastic coefficients should bring the

simulation’s “trends of trends” into better agreement with those seen experimentally,

and thereby improve the overall accuracy of the predicted frequency values when

high temperatures and pressures are applied simultaneously. A proof-of-concept of

this hypothesis is the subject of the next chapter.

52



CHAPTER 5

EXAMINING THE NEED FOR TEMPERATURE DERIVATIVES OF

3RD-ORDER ELASTIC COEFFICIENTS

5.1 Overview of the Current State

The evidence presented in the benchmark study at the end of Section 3.5 and in

the pressure sensor simulation of the previous chapter highlights the need for new

definitions for the constitutive properties for quartz: the temperature derivatives of

the third-order elastic coefficients. The complete third-order coefficients themselves

were given by Thurston, McSkimin, and Andreatch more than 45 years ago [17]. A

probable reason that their temperature derivatives have not been realized after all of

this time is likely a relative lack of need; while the base third-order elastic coefficients

are essential to predict the frequency-stress response of a resonator, such as the fre-

quency shift due to mounting stresses, their temperature derivatives are not generally

needed (at least not for most temperatures encountered). Some current models, like

Yong and Wei’s total thermoelastic stiffness parameters, indirectly take into account

the temperature derivatives of the nonlinear elastic terms and do adequately meet

the needs of many areas of quartz research. Of course, models such as this end up

making assumptions as to what states of stress and strain they can describe, and that

is why they will not work for the general case where both high temperatures and high

pressures may be encountered simultaneously.

That is not to say that no one has examined the independent information con-

tained in the temperature derivatives of the third-order elastic coefficients. An in-

teresting alternative to using the literal values in calculations is using an empirical
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method involving superposition of experimental results [25]. In the referenced arti-

cle, EerNisse utilizes his own experimental results for a resonator in diametric point

loading in conjunction with experiments involving resonators under uniform biaxial

stress to model the frequency response of a pressure sensor, which is not unlike the

focus of the current work. Because the stress distribution in his pressure sensor hap-

pens to be approximated by the superposition of the point load and uniform load

stress states, EerNisse was able to sum the experimental frequency shifts from each

case (at a given temperature) to yield a good approximation for the overall frequency

shift as a function of pressure and temperature. It is lucky for this method that the

frequency-pressure response is linear, as previously demonstrated. Otherwise such

superposition of frequency would not be accurate.

In the same paper, EerNisse himself acknowledges the lack of data for the tem-

perature dependence of the third-order elastic constants. Of course, such empirical

methods are inherently limited to the available cut angles, temperatures, geometries,

and stress states of the primary experimental works. In any case, the empirical fre-

quency data in and of itself is not of much use as an input in the finite element analysis.

Not only, then, would experiments to obtain the needed temperature derivatives allow

quartz researchers to take full advantage of the ever-progressing availability of com-

puting power, the values would also represent the freedom to simulate completely new

and untested designs with efficiency and accuracy. Furthermore, finite element algo-

rithms like the one developed for the current work would allow the unique advantage

of quick independent validation of derived values.

5.2 Pressure Response as a Function of Temperature

As a sixth-rank tensor Cijklmn, the root 3rd-order elastic constants contain 36 or

729 numeric values used in calculations, although symmetry in the stress and strain

tensors as well as energy conservation considerations dictate that many of these are
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equal to each other. For this reason, it is common to represent the tensor in ab-

breviated engineering notation as six separate six-by-six matrices, all of which are

symmetric. It is this six-by-six-by-six notation that leads to the term “third-order”

in the name for Cijklmn. The triclinic crystal system (the least symmetric of the seven

crystal systems) has 56 independent values, while quartz exhibits such symmetry as

to bring this number down to fourteen independent values [26]. (This can be com-

pared to just six independent values of the second-order elastic coefficient of quartz,

Cijkl.) It follows that there are fourteen independent first temperature derivatives of

Cijklmn, deemed C
(1)
ijklmn as previously noted in Section 2.5, and the same number of

independent second temperature derivatives C
(2)
ijklmn.

However, because resonators typically only operate on a single mode of vibration,

such as the slow thickness-shear mode for the AT-Cut pressure sensor in the current

study, only one incremental stiffness term (dependent on cut angle) has primary

control of the speed of the standing wave though the crystal medium, and thus controls

the frequency. For the AT-Cut, this is the rotated C66 term as transformed to the

geometric coordinate system. Therefore, for any given cut, one would expect that the

entire linear temperature dependence given by the fourteen values of C
(1)
ijklmn could

be equivalently modeled by a single temperature-dependent scalar applied to the

known 3rd-order elastic coefficients, Cijklmn, because ultimately all fourteen values

only effectively contribute to a single useful term, C66. The actual function that

maps these fourteen individual values to one scalar will not only depend on the cut

angle, but also the state of initial strain. Technically, even this assumption is an

approximation, because the vibration of the AT-Cut is not a pure thickness-shear

mode, but a so-called “quasi-shear” mode. Thus other incremental stiffness terms

besides simply C66 play a role in the frequency of vibration and we are not guaranteed

to be able to match more than one stiffness term with single scalar.

Even so neglecting this distinction, the assumed temperature dependence of incre-
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mental stiffness takes the form of the following Equation (5.1), which is used in place

of Equation (2.12) in the incremental model. For this analysis, the newly-inferred

temperature dependence of the third-order elastic stiffness will be assumed to not

substantially change the initial response, so Equation (2.7) for the initial model will

remain unchanged. (This assumption was verified for a single data point at 16,000 psi

and 175 ◦C where the difference in the frequency response was less than 2 ppm.)

tij = (Cθ
ijkl + CijklmnSmn + C

(1)
ijklmn(Smn − αθ

mn))skl (5.1)

C
(1)
ijklmn = γ · θ · Cijklmn (5.2)

Where γ (gamma) is an assumed scalar constant with units of ◦C−1 and θ is the change

in temperature from reference, T −Tref in ◦C. The expression “(Smn−α
θ
mn)” which is

the difference between the total strain and the thermal strain, is used to approximate

the elastic portion of total strain (as opposed to the thermal expansion portion, αθ
mn).

This distinction is necessary in order to leave the previous definition of C̃
(2)
ijkl and C̃

(3)
ijkl

within Cθ
ijkl intact in their current theoretical form with given numerical values. As

previously explained in Section 2.5 with Equations (2.24) and (2.25), this definition

dictates that the derived values of these ‘effective’ temperature derivatives already

include the thermal strain contribution of the temperature derivatives of the third-

order elastic stiffness, and so the current expression with γ needs only apply to the

elastic strains, or those caused by the reaction to stresses. The idea that the elastic

strain and thermal strain parts can be simply pulled out of the total strains involves

the assumption that nonlinear (large deformation) strain terms are negligible for this

case.

In order to calibrate a realistic value of the constant γ (gamma) for the AT-Cut

sensor of the current work, a sensitivity study was performed with the goal of using

γ to improve a single aspect of the otherwise standard pressure sensor simulation,

which was explained in the previous chapter. This aspect was the isobaric tempera-
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ture versus frequency response at 16,000 psi. In order to accelerate this fact-finding

mission, only three temperature points where taken at 25 ◦C, 50 ◦C, and 175 ◦C. The

logic behind this unbalanced distribution was to take 25 ◦C to prove that the reference

temperature response would remain unchanged, then to take a high temperature and

a low temperature other than 25 ◦C. The results are given alongside experimental

values in Figure 5.1.

Figure 5.1: Sensitivity study for 3rd-order elastic scalar temperature constant

As seen in Figure 5.1, it appears that a value for the scalar temperature constant,

γ, that most nearly creates the same trend in the simulation as seen experimentally

would be about γ ≈ −7.75× 10−4. This assessment neglects the small vertical offset

of the simulation’s values and concentrates on the overall shape and slope of the plot.

With this predicted value for γ in hand, it can now be used to rerun the frequency

response of the entire temperature and pressure input range. The expectation being

that applying the γ value which was tuned to benefit only one part of the model

would actually increase the accuracy of the frequency response throughout for this

certain case; namely for AT-Cut quartz and relative strain distribution unique to the

particular pressure sensor studied. The results of this trial are presented in the follow-

57



ing section. All factors are the same as the sensor simulation in the previous chapter

except the new definition for third-order elastic coefficients given in Equation (5.2).

5.3 Modified Sensor Model Results

Similar to the presentation of the results of the simulation in the previous chapter,

the isobaric and isothermal slices of this surface are given in Figure 5.3 and Fig-

ure 5.2, respectively. The referenced experimental data is the same as the previous

chapter. The error of the simulation compared to experimental values, as previously

described at certain high-pressure points, was for this modified model 4.83% at 50 ◦C

and 20,000 psi and then actually was slightly reduced with temperature to 3.97% at

200 ◦C and 20,000 psi.

5.4 Conclusions

Overall, one can easily see the improvement from the results of the previous chapter

at high temperatures and pressures. For example, the percent error of the modified

model relative to the experimental values at the two 20,000 psi points previously

reported (4.83% at 50 ◦C and 3.97% at 200 ◦C) was much less than the unmodified

model of the previous chapter, which yielded error values at the same points of 7.52%

and 25.65%, respectively. Comparing the low-pressure isobaric plots between the

modified model and the previous chapter (Figures 4.3(a) and 5.3(a)), one can see

that there is not much change in the temperature response at, for instance, 14 psi.

Similarly, the low-temperature isothermal plots agree well with experimental values

in both cases, and so do not show much change between the modified and unmodified

models.

Looking at the form of the assumed temperature dependence of modified third-

order elastic constants in Equation (5.1), this lack of change in the frequency response

at low temperature or pressure is predicted. The modified term contains the expres-
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(a) T = 50 ◦C (b) T = 75 ◦C

(c) T = 100 ◦C (d) T = 150 ◦C

(e) T = 175 ◦C (f) T = 200 ◦C

Figure 5.2: Modified isothermal frequency-pressure sensor response
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(a) P = 14 psi (b) P = 4,000 psi

(c) P = 8,000 psi (d) P = 10,000 psi

(e) P = 14,000 psi (f) P = 20,000 psi

Figure 5.3: Modified isobaric frequency-temperature sensor response
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sion “Smn − αθ
mn” which was used to approximate the elastic portion of the total

strains as previously described. Because at low pressure, the elastic strains are neg-

ligible compared to the thermal strains, then this term is approximately zero, and

the modification has no effect. Similarly, at low temperatures near the reference at

25 ◦C, the relative temperature term θ will be small as applied in Equation (5.2),

again demoting the impact of the modification. The result is that the modification

really only applies to high temperatures and high pressures, which happened to be

where the unmodified model was weakest.

This is an important distinction: the form of the modification was not at all

based on any experimental trends, except in assigning a numeric value to γ. In other

words, the modification to the incremental constitutive equation itself was not an

attempt to ‘curve fit’ the overall results. Rather, it was derived using the equations

of thermoelasticity from an assumed linear temperature response of the third-order

elastic constants, which was the simplest augmentation to their previous temperature

independent state, while also taking into account that the ‘effective’ second-order

temperature derivatives already contained part of this information. Therefore, the

fact that this analytically-derived modification (with a single empirically-derived pa-

rameter) can improve the response of the entire model indicates that the temperature

response of the third-order elastic constants is important to the accuracy of the pre-

dicted frequency for high temperatures and pressures.

The value of γ itself is not meant to be important, as its use for predicting the re-

sponse has essentially the same limitations as EerNisse’s empirical analysis previously

described. What is important is its validation of the hypothesis that incorporating

thermally-induced changes in the third-order elastic coefficients will visibly increase

the accuracy of some quartz simulations, such as in this case, the high-temperature

pressure sensor. The fact that a single value of γ performs well in this role is a tes-

tament to the order and consistency of the underlying temperature derivatives of the
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third-order elastic stiffness. Indeed, a complete set of such derivatives would allow

an increase in accuracy, similar to the one attained in this chapter, for any cut angle,

geometry, or state of strain. Of course, the need for this accuracy is dependent on

the application of the simulation, where studies involving high temperatures and high

pressures simultaneously will tend to see the most benefit.
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CHAPTER 6

FUTURE WORK

6.1 Deriving the Temperature Derivatives of Third-Order Elastic

Stiffness of Quartz

Having laid out the need for and potential benefits of the yet unpublished temperature

derivatives of third-order elastic stiffness of α-quartz, an obvious avenue for future

work would be to experimentally derive these fourteen independent values for each of

the first and second temperature derivative tensors. The work of Thurston, McSkimin,

and Andeatch [17] on the third-order elastic constants at reference temperature seems

to have held up well in the studies of the past 45 years, so one option would be to

repeat their work at varied temperatures. Their method utilizes the measured transit

time of small-amplitude ultrasonic waves as a function of applied hydrostatic and

uniaxial stress. From this raw data, the third-order values can be calculated using

relations given by Brugger [27] and a least squares fit.

As an alternative to this direct approach, or perhaps as a preliminary estimation,

one could instead opt to reanalyze data from appropriate previously published work.

One such work that seems to be rich in information from the temperature response

of third-order elastic coefficients is that used in the current benchmark studies by

EerNisse [21], which also included original data from Dauwalter [22]. This study de-

fined the linear temperature dependence of the “force frequency coefficient” Kf for

various cuts of quartz, although Kf is not strictly a material property itself in a ther-

moelastic sense, but more of an empirical curve fit parameter for the frequency versus

diametric load response. The classic elasticity solution for the ‘disk in diametric com-
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pression’ geometry associated with Kf could be used to estimate the state of strain,

although such a study would be better served by the equivalent anisotropic analytical

solution given by Janiaud, Nissim, and Gagnepain [28], which of course would be more

directly applicable for quartz. From this analytic initial response, the experimental

frequency change could be related to the unknown temperature derivatives via the

incremental piezoelectric equations using a perturbation analysis technique [29][30],

which was previously used for other quartz properties by Lee and Yong [12] and Yong

and Wei [11]. It may be that there are not enough independent orientations of the

crystal relative to the applied stress to glean all fourteen independent values from

EerNisse’s data, so it is possible that one would still have to do more experiments to

get the full set, or otherwise look elsewhere for extra constraining data.

A third option for deriving the temperature derivatives of third-order elastic con-

stants would be numeric curve fitting by repetitively using assumed values of the

fourteen derivatives within a simulation such as the finite element algorithms devel-

oped in the current work. Such an undertaking could be very similar to the method

used to find the assumed temperature scalar γ in the previous chapter, but on a

much larger scale. This approach has an advantage over the perturbation method in

that the state of strain need not be analytically solved, since it can be numerically

derived within the simulation. Thus, experimental data like EerNisse’s could be cou-

pled with completely unrelated data, such as the experimental frequency response of

the pressure sensor, in order to develop a more complete picture of the temperature

derivatives as seen from every angle. Of course, a major determining factor in the

feasibility of this approach would be the accessibility of the vast computing power

needed to perform the repetitive analysis in a somewhat timely manner. With some

two independent variable sweeps taking on the order of 35 hours, one would likely

want substantially more clout than the dual-chip 2.8GHz Intel Quad-Core Xeon desk-

top system, which was used in (and adequate for) the current study.
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6.2 Applied Simulations

Even without the desired temperature derivatives, the model without temperature

dependence of the third-order elastic coefficients will be useful for future work, based

on the results of Chapter 4. Testing of new sensor design parameters such as cut angle

and geometry would definitely be assisted by a simulation like the one developed. The

model’s response of frequency versus temperature and pressure, even without the

temperature derivatives of third-order elasticity, is definitely accurate enough to get

a sense of sensitivity trends as functions of design changes. Investigating the modeled

response of the various harmonic overtone modes of the quartz resonator could also

lend insight to sensor improvements. Of course, if the temperature derivatives of the

third-order elastic coefficients were known, these applied simulations would be all the

more acute.

A major asset of the finite element method used in this study is its versatility.

Although the algorithms here developed concentrate on the use of quartz as tem-

perature and pressure sensors for the oil and gas industry, quartz can be utilized

in many other extreme conditions, such as aerospace sensory and frequency control

applications. The method described owes its flexibility to the fact that the inputs are

elementary and tied to the material composition itself, so that wherever the mate-

rial is used, an accurate finite element model should find use as well. Modeling the

coupled electrical and mechanical phenomena of piezoelectric materials can also serve

as a foundation to investigate the framework of other couplings present in nature,

such as mechanical-chemical couplings in biosystems, or thermo-electrical coupling in

power transmission. That is, the idea of putting the proven separate models together

with some known coupling term that is present in each system, like the piezoelectric

tensor in this case, can help tie together the underpinning theories of applied research

in ways that reflect the true complex reactions of reality.
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