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NOMENCLATURE 
 

a Half contact width  

A a constant 

C a constant 

E0 Modulus of elasticity of rubber as a function of hardness and strain 
rate  

 
Ec Modulus of elasticity of rubber as a function of hardness, strain rate 

and temperature 
 
Econ Modulus of elasticity of rubber including the confinement effects 

Eweb Modulus of elasticity of the web 

f Load acting on a finite element 

F Load 

I Moment of inertia 

IRHD International Rubber Hardness Degree (equivalent to Shore A) 

k Material parameter for rubber 

K a variable,  ( )ta 2

KKweb a parameter, constant for the given operating conditions in the web 
deflection expression  ( )IET c

KKsweb Specific Stiffness of the web 

L Length of the web prior to the nip 

M Moment



x

p Contact Pressure 

R Nominal roller radius      

S Shape factor for rubber 

t Thickness of the rubber cover 

T Tension in the web 

u Radial deformation of the rubber 

v Nodal deflection of the finite beam element 

V Velocity 

w Width of the roller 

W Width of the web 

Y Lateral deflection of the web 

Z Stiffness of the elastic foundation element 

δ Indentation of the rubber cover due to nip load 

ε Strain 

Φ Angle formed by the area displaced by the nip action (chapter 2) 
oε Strain rate 

σ Stress 

ϖ Poisson’s ratio 

θ Nodal rotation of the finite beam element 

Ψ a variable 



1

CHAPTER 1  
 

INTRODUCTION 
 

A web is defined as a thin, continuous sheet or strip of material.  A web is 

very long with respect to its width and very wide with respect to its thickness. 

Thus the term “web” describes film, foil, paper, woven and non-woven materials 

in a thin continuous strip.  Webs are usually stored in the form of rolls. 

The term “Web handling” refers to the transport of webs through web 

process machines. Handling of transportation & control of webs involve guiding 

and steering the web without defects. Web processes include coating, 

laminating, slitting, splicing, calendaring, printing, cooling, drying and cleaning. 

A roller is a revolving cylinder over which a web or substrate is moved for 

the purpose of transporting, pressing, shaping or smoothing a web. Rollers are 

widely used in web handling. Rollers can be either driving the web or driven by 

the web. The material for the roller depends on the demands of the process in 

which it is used. 

A nip is any two rollers in contact where the contact surface is pinched or 

nipped between the rollers. A nip is illustrated in Figure 1-1. 
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Rubber covered nip rollers are widely used in paper, textile, sheet metal 

and foil processing industries and in business applications like printing, 

photocopying and facsimile equipments. Rubber-covered rollers have a number 

of applications within web-lines. They are often used to nip the web against a 

metal surfaced roller that is driven to achieve a certain web velocity or web 

tension. They are used to wring process liquids from webs. Rubber covered 

rollers are used commonly in other web-line processes, such as laminating two 

or more webs or applications involving moisture and residue removal in order to 

prevent contamination of downstream processes. Rubber covered nip rollers are 

illustrated in Figure 1-2. 

Lateral movement of a web is a very important parameter in web 

transportation and control. Too much lateral movement can cause the formation 

of wrinkles and troughs. Lateral web movement can also cause the web to have 

Figure 1-1: Illustration of a nip  



3

a slack edge which can impede coating or printing processes. Rubber covered 

rollers can induce lateral movement of a web in a process machine and thus it is 

important that these devices be well understood. 

 

Rubber is somewhat incompressible. If the rubber is constricted in the 

radial direction by impinging it with another rubber covered roller, the rubber 

roller will speed up in the tangential direction in the nip contact zone. This 

behavior can be understood with an analogy to that of the flow of an 

incompressible fluid through a channel of varying cross section. The mass flow 

rate of any fluid is the product of its density, area of cross section through which 

it flows and the velocity. The fluid being incompressible, there will not be any 

change in its volume and the density remains constant.  When the liquid flows 

Figure 1-2: Illustration of Rubber-covered nip rollers with the 
web 
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through a constriction in the channel, the area of cross section along its path 

decreases and, hence, the velocity will increase in the constriction.   

When a rubber covered roller is impinged by another roller, the tangential 

velocity of the rubber in the nip contact zone will increase. Although this is similar 

to the problem of the incompressible fluid moving through a constriction, it is 

more complex since the control volume of the rubber outside the nip contact 

zone has an undefined boundary. 

If the nip load varies across the width of the rollers, the speed increase of 

the rubber will vary across the nip as well. If no slippage is assumed, this speed 

variation will induce a variation in the web strain across the web width. This, in 

turn, induces a variation in stress, giving rise to a steering moment and hence 

causes the lateral deformation of the web. 

The objective of this research is to quantify the lateral steering of the web 

due to a non-uniformly loaded nip with rubber covered rollers.  
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CHAPTER 2  
 

REVIEW OF LITERATURE 
 

The behavior of rubber covered rollers has been analyzed by many 

authors. The situation at the nip of a rubber covered roller is illustrated in Figure 

2-1. The rubber covered roller is shown to be in contact with a rigid roller. Most of 

the publications, on the contact between the rollers, focus on the problem 

assuming plane strain conditions and linear elasticity. The pressure distribution 

between the rollers, speed, indentation, rolling resistance, force and deformation 

in the nip are the widely addressed factors. The stress distributions and the 

tangential strains at the contact area in the nip are also addressed in some 

analyses.  

 

Figure 2-1: Rubber covered roller in contact with a rigid roller 

F

t

R

R
2

3
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An investigation of the web behavior through a nip of rubber covered 

rollers requires the study of the:  

(a) Material Properties of  rubber 

(b) Relation between applied nip force and rubber cover indentation 

(c) Relation between tangential strain at the nip and rubber cover 

indentation or nip force 

(d) Relation between the tangential strain in the rubber cover and the 

Lateral deflection of the web 

2.1 Material Properties of Rubber: 
Rubber is a viscoelastic and nearly incompressible material. It is generally 

accepted that incompressible materials such as rubber have Poisson’s ratios 

approaching 0.5. Hence, it calls forth interest in quantifying the elastic 

compression modulus and the Poisson’s ratio of the material.  

Good [5] found that some relationships for force vs. deformation are very 

sensitive to the input value of Poisson’s ratio. He conducted a series of 

experiments and the average result of his experiments showed that the Poisson’s 

ratio of the rubber is 0.46. 

Good [4] performed compression tests on samples of Hypalon, nitrile, 

carboxilated nitrile, neoprene, ethylene propylene and urethane rubbers in 

hardness values ranging from 30 to 90 durometers (International Rubber 

Hardness Degree or Shore A hardness). The results proved that the Young’s 

modulus of the rubber depends on the rubber hardness independent of the 

rubber type. His empirical expression for the modulus of the rubber is: 
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IRHDeE ⋅= 0564.0
0 97.20

Equation 2-1 
These tests were conducted at a fixed strain rate of 0.5 in./min designated 

in the ASTM D575. Experimental measurements conducted at the Web Handling 

Research Center of Oklahoma State University have shown that rubber behaves 

as a viscoelastic material. Schneeburger [4]  proved this by performing a large 

set of compression tests at various strain rates. Good [4] then developed a 

relation to include the effect of strain rate on elastic modulus along with rubber 

hardness based on this data.  Good developed an empirical relation (Equation 

2-2) to relate elastic modulus of rubber as a function of rubber hardness and 

strain rate. 

IRHDeE ⋅⋅


 += 062.0
0 51.19)ln(6711.1

oε
Equation 2-2 

Kattel M. [6] studied the effect of temperature on the modulus of the 

rubber. The results of his experiments show that the rubber hardness decreased 

linearly with temperature. A new expression for the modulus of elasticity of the 

rubber which includes the effect of hardness, strain rate and temperature has 

been developed by Good [6] at the WHRC: 

( )( )[ ]20101651.00536.029927.29)ln(375636.1 −⋅−⋅⋅


 += TempIRHD
c eE

oε
( CTempC 00 10020 ≤≤  ;   IRHDIRHDIRHD 9030 ≤≤ ; sec//2.0sec//002.0

0
inininin ≤≤ ε )

Equation 2-3 

where has the 
oε units in./in./sec and the temperature has the units of C0 .
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2.2 Force – Indentation Relations: 
The analysis of the relation between the applied force and the cover 

indentation in the case of rubber covered rollers with other rollers has been 

addressed in various publications. Most of them are based upon elasticity 

solutions while some are based on empirical relations. 

2.2.1 K.L. Johnson’s theory: 
Johnson [9] developed a relationship for nip load as a function of 

indentation for a rigid cylinder in contact with a cylinder having a layer of an 

elastic covering.  Johnson assumes that the rubber cover is thin compared to the 

width of the roller and, hence, plane strain conditions exist.   

 

He also assumes that the width of the contact zone is narrow compared to 

the diameter of the covered roller. This allowed him to assume that the nip load 

was reacted by a block of rubber whose dimensions would be the contact width 

in the horizontal (‘x’) direction, thickness of the rubber cover in the vertical (‘z’) 

direction and the width of the rubber covered rollers in the third (‘z’) direction  . If 

the nip load has dimensions of force per unit width, then the width of the rubber 

roller dimension would become a unit width. 

Figure 2-2: Assumption of the reacting rubber block in Johnson’s model 
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The strain in the vertical direction (εz) is related to the stress in the vertical 

direction (σz) and the strain in the horizontal direction (σx) as per the expression:  

x
c

z
c

z EE σννσνε )1(1 2 +−−=
Equation 2-4 

The stress in the z direction is assumed to be constant throughout the cover 

thickness and is equal to the contact pressure p(x). Hence,   





−−−−= x

c
z xpE σν

ννε 1)(1 2

Equation 2-5 
The indentation is maximum at the center of the contact zone and is assumed to 

decrease in a parabolic manner to zero at the edge of the contact zone. Hence, 

the deformation at the center of the contact zone is given by 




 −−= R
xuz 2

2
δ

Equation 2-6 
where δ is the maximum indentation and R is the equivalent radius. 

The strain in the z direction is now expressed as 

t
R

x

t
t

z




 −
−=∆= 2

2
δ

ε
Equation 2-7 

where t is the nominal thickness of the rubber cover. 

At the edge of the contact width, x =a and uz = 0. Substitution of these values in 

Equation 2-6 yields Equation 2-8. Johnson uses Equation 2-8 to model the 

contact width.  The radius (R) is calculated as equivalent radius of the form        
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R = (R1·R2) / (R1+R2), allowing it to be useful for two rollers in contact as well as a 

roller in contact with a plane. 

 

R
a
2

2
=δ

Equation 2-8 
Johnson assumes a bond between the elastic cover and the underlying roll and, 

hence, the strain in x direction is zero. 

0)(1
1)1(1

0

2

00

2
=




−+−=+−−= xpEEE xzxx ν
νσνσννσνε

Equation 2-9 
If Equation 2-5 and Equation 2-7 are combined into a single equation and then 

with Equation 2-9, there are two equations and two unknowns. After eliminating 

σx, the pressure distribution p(x) is found as: 





 −−−

−= 2

22

2
0

2
12121

)1()( a
x

Rt
aExp νν

ν

Equation 2-10 

Figure 2-3: Definition of variables for Johnson’s model 



11

Integrating Equation 2-10 over the contact zone, the nip load per unit width (F) is 

expressed as a function of maximum penetration (δ) as: 

23
2

0
2 2

121
)1(

3
4 δνν

ν
t
REF −−

−=
Equation 2-11 

But, Johnson errs by a factor of 2 in his expression which was published as: 

23
2

0
2 2

121
)1(

3
2 δνν

ν
t
REF −−

−=
Equation 2-12 

Note that as ν approaches 0.5, F approaches infinity. While this makes 

sense for incompressible materials, it should be recognized that rubber is not 

truly incompressible. 

2.2.2 Evan’s Theory: 
Evans [2] derived equations for modeling the contact of rubber covered 

rollers with that of a half plane, using Equation 2-8 to model the contact width.  

Evans then uses a different approach to derive his solution. He represents the 

average pressure in the contact zone as: 

δR
Fp 220 =

Equation 2-13 
 Evans assumes that in the narrow zone of contact between the rubber covered 

roller and the plane, the elastic stresses are the same as if the whole surface of 

the roller were acted upon by an external uniform pressure given by Equation 

2-13. This enabled him to obtain a relation between the average pressure and 
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the indentation, by means of Lame’s solution for the elastic stresses in a hollow 

cylinder subjected to external and internal pressures. 

The solution for the stresses at a radius r is: 

CrAr 2)/( 2 +=σ
Equation 2-14 

CrA 2)/( 2 +−=θσ
Equation 2-15 

and 

( )
22

0
22

aR
ppRaA i

−
−=

Equation 2-16 

 22

2
0

2
2 aR

RpapC i
−
−=

Equation 2-17 
In an axisymmetric formulation, the general expression for tangential strain is: 




 


 +−


 +−== Cr
ACr

A
Er

u 221
22

0
νεθ

Equation 2-18 
Hence, the radial deformation u is: 




 


 −++−= aCr
A

Eu )1(2)1(1
0

νν

Equation 2-19 
Evans assumes that the roller shaft restricts the radial deformation of the inside 

radius. Hence, the expression for u is equated to zero and substituting 

appropriate variables, the expression for pressures at the inner radius is derived 

as: 
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( )2222

2
02

aRRa
Rppi −++= ν

Equation 2-20 
Substituting Equation 2-13 into Equation 2-20, and solving in terms of the nip 

load (F), yields: 

[ ] 23
222

22
0

)1)((
)1()1(22 δν

νν
−−

−++= aR
aRE

RF

Equation 2-21 
Note that F does not approach infinity when ν approaches 0.5 in this 

expression.  

2.2.3 P.B.Lindley’s Theory: 
Lindley [10] performed experiments and derived expressions evaluating 

the non-linearity of rubber covered rollers. He developed a solution for a rubber 

covered roller in contact with a plane surface, which is equivalent to two identical 

rubber covered rollers in contact. Lindley assumed that a rubber covered roller 

under a compressive load contacts the surface through a long rectangular 

section with a width of 2a as shown in Figure 2-4. 

 

Figure 2-4: Definition of variables for Lindley’s model 
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The area of contact, as compared to the width of roller, is small. 

Therefore, plane strain conditions are assumed to exist. It is also assumed that 

the incompressibility of the rubber cover does not impact the contact width. The 

contact width which Lindley developed is identical to Johnson’s expression for 

contact width (Equation 2-8).  

Lindley defines an incremental stiffness at any compressive deformation δ as: 

δδ 


 ×= thickness
areamodulus

d
dF  

Equation 2-22 
Under plane strain conditions, Lindley develops the compressive modulus 

including the confinement effect of rubber which is determined from: 

( )
δν 




−
+= 2

2
0
1
1 kSEEcon  

Equation 2-23 
Where S is the shape factor defined as the ratio of the cross sectional area under 

load to the force free area.  This factor accounts for the stiffening of rubber due to 

the confinement. For a rubber covered roller in contact with a half plane, the 

factor S is: 





−= δ

δ
t

RS 2

Equation 2-24 
k is an empirically derived factor based on the measured values of Young’s 

modulus in the confined (Econ) and the unconfined state ( 0E ) and it makes the 

Equation 2-23 true. The values of k over a range of rubber hardness values are 
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tabulated by Lindley. (The value of ‘k’ ranges from 0.89 to 0.52 for the IRHD 

values ranging from 35 to 75 ). An expression for k is obtained by curve fitting 

these values and is used in the evaluations: 

1183.0)(*0652.0)(*0016.0)(*00001.0 23 ++−= IRHDIRHDIRHDk
Equation 2-25 

Based on these expressions and their appropriate substitution in Equation 

2-22 and on integration of the resulting expression, Lindley developed a solution 

(Equation 2-26) for the relation between the force and penetration as:   





 += RRo E

kDDtEF βα
0

Equation 2-26 

where  t
t

t
R

δ
δ

δ
α 3

16
1

1
ln3

8 −














−

+
= and   2

13

4

13
10

1

1
ln




 −
+

−
−















−

+
=

t

t

t

t

t

t
R δ

δ
δ
δ

δ

δ
β

2.2.4 J.K.Good’s Theory: 
Good [4] developed an expression relating nip force to indentation similar 

to that of Johnson, which takes into account the rubber confinement similar to 

Lindley. The expression for pressure in the contact zone is: 





 −−









+= 2

22

22

2
1211)( a

x
Rt

aE
t
akxp c

ν
Equation 2-27 

Integrating Equation 2-27 over the contact area, and substituting the expression 

for contact width by Equation 2-8, he expressed the relation between the load 

and indentation as: 
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[ ] ( )( )23

22
3

13
224

ν
δδ

−
+= Rt

kRtREF c

Equation 2-28 
The variable k used in the above expression is the same as developed by Lindley 

and R is the equivalent radius as expressed by Johnson. Good [4] used the 

expression given by Equation 2-3 (Ec) for Young’s modulus of the rubber cover 

which is based on the hardness, strain rate and temperature, while the other 

authors use E0 which is dependent on the hardness of the rubber given by 

Equation 2-1. 

2.2.5 Parish’s Theory: 
 Parish [12] analyzes the problem of a rubber covered roller in contact 

with a rigid roller based on the expressions developed by Hannah [7]. He has not 

derived a closed form relationship between the force and the indentation but 

such a relation can be derived from the empirical relationships he developed. 

With one rigid and one homogeneous elastic roller in contact, the half nip 
width is given by: 
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E
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ν−⋅= and 
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Equation 2-29 
where R1 and R2 are the radii of the rollers. 

 

Parish, also, expresses an empirical relationship between the two 

quantities 2
2

t
Rδ vs.  ao/t.  This relation is as shown in  

Figure 2-5.
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For a given value of F, the value of a0 can be calculated from Equation 

2-29. Then, from Figure 2-5, the quantity 2
2

t
Rδ can be obtained and the 

indentation can therefore be derived from this expression:  

0252.05111.00152.02 0
2

0
2 −


⋅+


⋅−= t

a
t

a
t
Rδ where 00 ≠t

a

Equation 2-30 

2.2.6 Miller’s Theory: 
Miller’s [11] work on a theoretical relation between the applied force and 

cover indentation is based on Hannah [7] and Parish [14]. It includes the 

modifications related to the plane strain conditions, as opposed to the plane 

stress conditions considered by Hannah. He assumes that the rollers are 

0
0.5

1
1.5

2
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2R
δδ δδ/
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Figure 2-5: Variation of 2
2

t
Rδ vs  ao/t 
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stationary, the frictional forces between them have a negligible effect on the 

indentation and the strains are arbitrary.  

 

Miller assumes that the point at twice the contact width from the contact 

center is undisplaced. He derives an expression for the indentation as: 

( ))4,(12 1

2
KR

a δδ +=
Equation 2-31 

Where K is a variable and is equal to t
a
2 . Miller then derives the values for the 

quantity )4,(1 Kδ with respect to K. (4 denotes the position of the undisplaced 

point on the cover boundary at twice the contact width from the contact center).  

He tabulates the variation of )4,(1 Kδ with respect to K, which is shown in 

graphical form in Figure 2-7. 

 

Figure 2-6: Definition of variables for Miller’s derivation. 
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The value of )4,(1 Kδ is calculated based on the following expression obtained by 

curve fitting the above graph: 

6224.16255.69853.72765.3)4,( 23
1 +⋅−⋅+⋅−= KKKKδ

Equation 2-32 
From the results of Hannah, the relation between the load and nip width is given 

by Equation 2-29. The rubber cover indentations are calculated as follows. 

1. For a given value of F, the value of ‘a0’ is obtained using Equation 2-29.  

2. The nip contact width ‘a’ is obtained using Equation 2-37 and Equation 

2-38 as explained later in this chapter in section 2.3.1. 

3. Using the contact width ‘a’, the value of K is determined. ( taK 2= ).  

 4. From Figure 2-7,  )4,(1 Kδ can be computed for various values of K. 

 5. Using these values in Equation 2-31 indentations can be calculated for 

the given loads. 
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Figure 2-7: Variation of ( )4,(1 Kδ ) vs. K 
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2.3 Tangential strain-Force/indentation relations: 
The effect of the tangential strains, in the case of a rigid roller on a flexible 

plane, was observed and demonstrated by Osborne Reynolds in 1875 (as quoted 

in the publication “Slip in the rolling contact of two dissimilar elastic rollers”, by 

R.H. Bentall and K.L.Johnson in the International Journal of Mechanical Sciences 

in 1967). He deduced that the circumferential strains were tensile and explained 

his observations by the influence of Poisson’s ratio on the radial compressive 

strain, produced by the normal load. But, the Hertz contact theory states that the 

tangential strain, in general, is compressive and is zero for an incompressible 

material, like rubber. This anomaly is due to the fact that Reynolds used a thin 

rubber cover on a rigid hub. In these circumstances, the tangential strains are 

tensile. The velocity of the material element is also influenced by the state of 

strain in the deformed region. 

The earliest work on the analysis of contact stresses was carried out by 

Hertz and his results have been quoted in by several authors in their studies. The 

contact stresses in the case of two rollers, one of which is assumed to be 

perfectly hard, with their axes parallel has been investigated by Thomas and 

Hoersch (as quoted in [7] ). This work has also been widely quoted in many 

publications. An important work on the problem when the soft roller consists of a 

thin elastic cover on a hard supporting core has been published by Hannah [7]. 

Hannah’s work is for a plane stress case. The pressure distribution over 

the contact length is derived by Hannah as follows: 
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Equation 2-33 
where F is the isolated force on the free face and 2a0 is the contact length.  

The nip width in the contact zone is given by 
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ν−⋅= and 

21
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where R1 and R2 are the radii of the rollers in contact. These expressions have 

also been quoted and used in many publications. 

The displacement due to the isolated force and the pressure distribution is 

determined. The stress function from the work of Coker and Filon (quoted by 

Hannah [7] ) has been used with appropriate boundary conditions and the 

solution is obtained for a straight layer on a horizontal plane. Hannah’s work 

states that the layer thickness is the most important factor determining the 

relation between loading and deformation of this type of roller. 

2.3.1 Parish’s Theory: 
Parish G.J., [13] has derived the distribution of tangential strain due to 

contact pressure, at the surfaces in contact. His work has proved that in a system 

of metal and rubber covered rollers, the metal roller always has the higher 

apparent peripheral speed, whether it is driving or is driven by the rubber roller. 

This behavior is attributed to the extension of the rubber surface in the region of 

the nip, the extension is due in part to the contact pressure and in part to the 

presence of shear strains, consequent on the transmission of torque through the 

nip. 

Parish has derived the tangential strains based on the work of Hannah [7], 

as mentioned above. His work gives the solution of the surface strain due only to 
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the contact pressure distribution and with the assumption that the rollers are 

stationary. A plane strain condition has been assumed and the appropriate 

modifications are made in the elastic constants. The notations used are the same 

as that of Hannah’s. 

For the case of a perfectly hard roller in contact with a homogenous elastic 

roller, the surface strains in the elastic roller, the roller axes being parallel is 

given by, 

−−+−=∂
∂= == 1)(21)(1(2)(

0
00

ννπε aE
F

x
u

yxy
5.0

2

2
)a

x for axa ≤≤−

Equation 2-34 
The negative sign in the above equation indicates a compressive strain.  

For the case of rollers with thin elastic cover, it is assumed that the cover 

is firmly bonded to its underlying shell and there is no normal or tangential 

displacement at the boundary. Based on the stress function given by Hannah, 

the surface strain is derived at the center of the contact zone and expressed in 

simple terms as:  

( )( )XKaE
F

x
u ,)1(2)(

0
0 ψπ

ν−=∂
∂

Equation 2-35 
Parish then evaluates the term ( )( )XK ,ψ and expresses its variation with 

respect to K for the maximum tangential strain. This relationship is expressed in 

graphical form as shown in Figure 2-8 . The polynomial derived by curve fitting 

this graph is expressed as: 

0019.08224.09506.03404.0)0,( 23 −⋅+⋅−⋅= KKKKψ
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Equation 2-36 

 

The first step in the calculation of the tangential strain is the calculation of 

the nip contact width. This is done as explained hereunder. 

Based on his experiments for a rubber covered roller in contact with a rigid 

roller, Parish expresses the relationship between the measured nip width (2a) 

and the nip width in case of a homogeneous elastic roller in contact with a rigid 

roller(2ao). This empirical relation is expressed in graphical form of variation of 

a/ao vs. ao/t. 
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For a given value of F, the value of a0 can be calculated from Equation 

2-29. The value of ‘a’ (the half contact width), can now be derived from the above 

graph. By applying numerical curve fitting techniques to this empirical graph, a 

polynomial expression can be derived. The value of ao/t is less than two for the 

experimental data analyzed in this study. Hence, this part of the graph is curve 

fitted for better approximation.  
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And,  
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Figure 2-9: Variation of  a / ao vs. ao / t. 
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After determining the factor K from nip width (K= t
a
2 ), the factor ( )( )XK ,ψ

can be determined from the graph shown above. Then, using the Equation 2-35, 

the maximum tangential strain at the center of the contact width can be 

determined. The experimental results of Parish show that the distribution of the 

strain in the nip is dependent upon the parameter K. This parameter is the same 

as used in Miller’s force vs. indentation relations, described earlier in this chapter. 

2.3.2 Shelton’s Theory: 
Shelton [1] has derived an empirical equation that relates the percentage 

velocity change to the roller radius, radial deflection of the roller and the rubber 

thickness. The definition of variables for Shelton’s equation is illustrated in Figure 

2-10. 

 

Figure 2-10: Definition of variables for Shelton’s theory. 
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The angle Φ shown in the Figure 2-10 is determined from the triangle 

area displaced by the action of the nip: 

23
4

t
aδ=Φ

Equation 2-39 
Assuming that the velocity ratio is proportional to the angle Φ and adding 

a proportional constant, the following equation for change in velocity per unit 

velocity is derived. 

2
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Equation 2-40 
Substituting for small deflections, the equation for the velocity change is 

expressed as: 

2
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Equation 2-41 
This equation gives the increment in strain in the web due to the speed 

increase of the rubber cover in the contact zone. 

2.3.4 Good’s Theory: 
Good [3] derived a simple approximation for the tangential strains in the 

rubber cover as a result of the rubber compression. His assumptions are based 

on the studies conducted by Johnson and Lindley. Their models assume that the 

nip load is reacted by a block of rubber with a width equal to that of the contact 

zone. From this assumption, the circumferential strains can be related to the 

radial strains by the following expression: 
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rνεεθ −=
Equation 2-42 

The radial strains are maximum at the center of the contact zone and 

decreases to zero at the ends of the zone. Hence, the simple average is : 

tr 2
δε −=

Equation 2-43 
Now, as Poisson’s ratio approaches 0.5 for rubber, Equation 2-43 yields 

the following expression for the average tangential strain: 

t4
δεθ ≈

Equation 2-44 

2.4 Lateral deformation-tangential strain relation: 
Shelton [15] formulated an expression which relates the tangential strain 

to lateral deformation of the web. The term ‘entering web span’ is the length of 

the web from the center of the nip to the center of the roller prior to the nip. 

Shelton developed a second order differential equation for an entering span: 

32
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Equation 2-45 

The boundary conditions are illustrated in Figure 2-11. 
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The moments calculated at any point along the web span is given by: 

TyxL
TyMMM LL

L −++−= 2

Equation 2-46 
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Equation 2-47 
Using Equation 2-46 and Equation 2-47 in Equation 2-45, and applying the 

boundary conditions and upon integration, the following solution is obtained: 

( ) ( )


 −−−−= xKKxKKLKK
LKKxKKT

MY webweb
web

web
web

L sinh1cosh
sinh1cosh  

Equation 2-48 
 

Since it is easier to use the differential strain as the input rather than the 

moment, the moments are related to the differential tension in the web as follows: 

Figure 2-11: Boundary conditions of the web deflected in 
the nip 
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TWM L ∆= 12
Equation 2-49 

 
And the specific stiffness is: 

ε∆

∆
= W

T
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Equation 2-50 
Rearranging Equation 2-49 and Equation 2-50, and using Equation 2-47 in 

the resulting expression, an equation that relates the moment to the change in 

strain is obtained: 
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Equation 2-51 
 

Substituting this equation into Equation 2-48, the equation for lateral 

deflection, which relates to the differential strain, is derived: 
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Equation 2-52 
 

The study of the lateral steering of a web in a differentially loaded nip of 

rubber covered rollers requires the determination of the lateral web deflection. As 

an input to the determination of the deflection, the differential strains in the nip 

have to be computed. Hence, algorithms which relate force vs. indentation and 

strains to force / indentations become indispensable. 
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 The present investigation will attempt to verify all the force–indentation 

relationships described earlier, quantify the degree of closeness to the 

experimental data and analyze which of these close formed relations best predict 

the nip behavior. The force-indentation algorithm chosen will be used as an input 

for the tangential strain and force / indentation relationships. A similar analysis 

will be carried out for the best force or indentation-tangential strain algorithm. The 

algorithm chosen will be used to compute the strains and hence compute the 

lateral deflection. The variation of this theoretical prediction of the web deflection 

with respect to the experimental data, if any, will be explored.  
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CHAPTER 3  
 

Force vs. Indentation Algorithms 
 

Good [5] conducted experiments to measure the deformations in the 

rubber cover with respect to the nip load for different sets of roller pairs. A test 

program was set up such that the deformations of the nip roller pairs could be 

monitored in a web line as the nip load was varied. The deformations were 

monitored using linear variable differential transformers. Nip loads were applied 

using pneumatic cylinders that were controlled with regulators. A simple 

schematic of the set up is as shown in the Figure 3-1.  

 

Figure 3-1: Illustration of the experimental set up. 
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These experiments were conducted for the cases where two identical 

rubber covered rollers were in contact and for the cases where a rubber covered 

roller was in contact with a metal roller, for different set of roller pairs. Each of 

these cases will be referred to as a ‘roller test case’. The experiments for load vs. 

indentation comprised 10 different roller test case situations which are listed in 

Table 3-1. The experiment was conducted at a web velocity of 100 fpm. The 

material used was a polyester web with a width of 12 inches and a thickness of 

0.00092 inches. 

 
Case Roller A Roller B 

OD 
(in.) 

CT 
(in.) 

HARDNESS 
(Shore A) 

OD 
(in.) 

CT   
(in.) 

HARDNESS 
(Shore A) 

1 3.5 0.75 40 2.9 --- RIGID 
2 3.5 0.75 40 3.5 0.75 40 
3 2.5 0.25 80 2.9 --- RIGID 
4 2.5 0.25 80 2.5 0.25 80 
5 5.0 0.50 60 2.9 --- RIGID 
6 5.0 0.50 60 5.0 0.50 60 
7 7.5 0.75 80 2.9 --- RIGID 
8 7.5 0.75 80 7.5 0.75 80 
9 6.5 0.25 60 2.9 --- RIGID 
10 6.5 0.25 60 6.5 0.25 60 

OD  ----  Outer Diameter of the Roller 
CT ---- Rubber Cover Thickness  

Table 3-1: Roller Test Cases 

The deformations in the rubber cover were measured at 10 different load 

levels for each set of rollers, starting at 0.5 pli and proceeding to 10 pli in 0.5 pli 

increments.  

Force-indentation relationships developed by Johnson, Evans, Lindley, 

Good, Parish and Miller were described in CHAPTER 2. The objective, now, is to 
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determine which closed form relationship is the best for this load range and the 

rollers presented in Table 3-1, by comparing them with the experimental 

deformation data available.  

The theoretical results of all the algorithms are obtained by applying them 

to the different load levels and roller cases. The Poisson’s ratio used in all these 

calculations is 0.46. 

3.1 Application of Johnson’s theory: 
Hergenrether [8] compared Johnson’s Equation 2-11and Equation 2-12 in 

his thesis. He showed that Johnson’s Equation 2-12, which is in error, as shown 

in CHAPTER 2, yields results closer to the experimental data than Equation 2-11. 

Based on Hergenrether’s results, Johnson’s Equation 2-12 is chosen in this study 

for further analysis. 

Johnson’s expression includes the Young’s modulus of the rubber as a 

constant value Eo, depending only on the hardness of the rubber. This value is 

given by Equation 2-1.  

This expression is modified by the compression modulus developed by 

Good, given by Equation 2-3. Johnson’s modified expression is now stated as: 
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Equation 3-1 
Johnson’s unmodified expression given by Equation 2-12 and the modified 

expression given by Equation 3-1 will be compared with the experimental data. 

They will be denoted as ‘KLJ’ and ‘KLJMod’ respectively. 
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3.2 Application of Lindley’s theory: 
Lindley’s expression for the load vs. deformation relationship is given by 

Equation 2-26. The Young’s modulus in this equation is replaced by the Equation 

2-3. The resulting equation is expressed as: 


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Lindley’s unmodified expression given by Equation 2-26 and the modified 

expression given by Equation 3-2, will be compared with the experimental data. 

They will be denoted as ‘Lindley’ and ‘Lindleymod’ respectively. 

3.3 Application of Evan’s theory: 
Evan’s expression for the load vs. deformation relationship is given by 

Equation 2-21. A similar modification is done to this expression by replacing the 

Young’s modulus by Equation 2-3. The resulting equation is expressed as: 
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Equation 3-3 
 Evan’s unmodified expression given by Equation 2-21 is denoted as 

‘Evans’ and the modified expression given by Equation 3-3 is denoted as 

‘Evansmod’.  
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3.4 Application of Good, Parish and Miller’s theories: 
Modifications are done for the Young’s modulus by Equation 2-3 in 

Parish’s empirical algorithm and also in Miller’s algorithm. They are referred to as 

‘Parishmod’ and ‘Millermod’ respectively in the analysis.  

Good’s expression for force-indentation relationship used his modified 

expression for Young’s modulus. Hence there is no modification done in his 

equation. His algorithm will be referred to as ‘Good’ in the analysis. 

3.5 Comparison of Models: 
The comparison of the load-indentation relationship predicted by all these 

algorithms, with the experimental data is shown for a roller test case 6 in Figure 

3-2, as a sample. 
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Figure 3-2: Comparison of the theoretical and the experimental values for roller case 6. 
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Comparisons of the theoretical results with the experimental data for all 

the individual roller cases are listed in Appendix A.  

After the theoretical calculations are done, the analysis is done for each 

roller case individually. The experimental values and the corresponding 

theoretical values calculated using each algorithm for all the load levels are 

analyzed. The variation of the theoretical prediction to that of the experimental 

data for each load level is quantified by computing the ratio of the theoretical 

value to that of the experimental value. Then, for each theory, an average of 

these ratios for all the load levels is obtained. This average ratio helps in 

determining how well a theory predicts the experimental data for a particular 

roller case. The prediction of the theory is better when its average ratio is closer 

to 1. Hence, an algorithm whose average ratio shows a minimum variation to 1 is 

the best for the roller case analyzed.  

The analysis for roller case 6 is shown as sample in Table 3-2. The ratios 

for each load level and the average ratio for all the load levels is listed for each 

theory. 

For this particular roller case, the modified algorithm of Johnson proves to 

be the best with an average ratio of 1.025. Miller’s modified algorithm is the 

second best.  
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The analysis explained so far helps in predicting the best algorithm for a 

particular roller test case. As mentioned earlier, the experiments were conducted 

for 10 different roller test cases. It follows that the data for all the roller test cases 

should be analyzed, to determine the algorithm which gives the overall best 

results.  

The average ratios for each algorithm are calculated earlier for individual 

roller cases. An average of all these average ratios for different roller cases is 

then calculated for every theory. This is called the Overall Average Ratio.  The 

Overall Average Ratio (OAR) hence indicates how closer the theoretical results 

are to the experimental data. Similar to earlier explanations, it can now be stated 

that the results of an algorithm is better as its Overall Average Ratio is closer to 

1. The overall analysis is shown in Table 3-3. 

Force vs. Indentation  

Load 
Miller 
mod 

Parish 
mod KLJ KLJmod Evans 

Evans 
mod Lindley 

Lindley 
mod Good

0.5 0.646 0.713 0.990 1.1501 0.198 0.23 0.577 0.67 0.64 
1 0.835 0.907 0.885 1.0379 0.177 0.208 0.518 0.608 0.581 

1.5 0.943 0.965 0.851 1.0041 0.17 0.201 0.5 0.59 0.565 
2 1.008 0.979 0.843 0.9982 0.169 0.2 0.497 0.589 0.565 
3 1.096 0.985 0.830 0.9886 0.166 0.198 0.493 0.587 0.564 
4 1.144 0.973 0.828 0.9912 0.166 0.199 0.495 0.593 0.57 
6 1.180 0.938 0.838 1.0102 0.169 0.203 0.507 0.611 0.59 
8 1.183 0.907 0.849 1.0281 0.171 0.207 0.519 0.628 0.608 
10 1.194 0.896 0.836 1.0149 0.169 0.205 0.515 0.626 0.607 

Avg. 
ratio 1.0255 0.918 0.861 1.0248 0.173 0.206 0.513 0.611 0.588 
Var. 0.0255 0.082 0.139 0.0248 0.827 0.794 0.487 0.389 0.412 

Minimum variation : 0.0248 KLJMOD 
Table 3-2: Comparison of the ratios of the theoretical to experimental values for roller case 6. 
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3.6 Summary: 
When the whole data range of all the load levels and the roller cases were 

analyzed, Johnson’s modified Algorithm showed minimum variation of 0.009 from 

the experimental data. Hence, Johnson’s modified algorithm will be used as an 

input for the analysis of the tangential strain vs. force / indentation relationships 

discussed in CHAPTER 4. Parish’s algorithm is based on empirical data. In 

Miller’s algorithm, calculation of the nip contact width is based on empirical data. 

Evans assumes uniform external pressure acting on the surface of an 

incompressible roller. Yet he uses Lame’s solution for the elastic stresses in the 

development of his algorithm. Some confusion exists in his assumptions. It 

should be noted that Johnson’s algorithm which was selected to be the “best” is 

“best “only for the rollers and load ranges used in these experiments. At higher 

load levels, the confinement of the rubber which is addressed by Lindley’s and 

Good’s models becomes important. Thus the “best” algorithm would have not 

been Johnson’s, had a larger range of load been allowed in the experiments.     

 
Overall Comparison of Average ratios  

Roller 
cases 

Miller 
mod 

Parish 
mod KLJ KLJmod Evans

Evans 
mod Lindley 

Lindley 
mod Good

1 1.613 1.557 0.347 0.449 0.345 0.448 0.206 0.268 0.255 
2 1.608 1.488 0.426 0.541 0.186 0.236 0.257 0.327 0.315 
3 0.714 0.691 1.011 1.187 0.415 0.49 0.658 0.777 0.73 
4 0.803 0.752 1.132 1.312 0.227 0.263 0.665 0.77 0.734 
5 0.764 0.737 1.021 0.744 0.569 0.701 0.604 0.744 0.708 
6 1.025 0.918 0.861 1.025 0.173 0.206 0.513 0.611 0.588 
7 0.410 0.678 1.061 1.195 0.815 0.918 0.752 0.847 0.794 
8 0.570 0.553 1.208 1.310 0.251 0.273 0.735 0.797 0.757 
9 0.906 0.795 1.111 1.397 0.281 0.354 0.686 0.863 0.833 
10 1.200 0.009 0.619 0.750 0.05 0.060 0.414 0.502 0.499 

OAR 0.9616 0.818 0.88 0.991 0.331 0.395 0.549 0.651 0.621 
Var. 0.038 0.182 0.12 0.009 0.669 0.605 0.451 0.349 0.379 

Min. variation (overall) : 0.009 KLJMOD 
Table 3-3: Overall Comparison of the ratios of the theoretical to experimental values. 
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CHAPTER 4  
 

Tangential strain vs. Force/Indentation Algorithms 
 

After determining the best closed form algorithm available for the force vs. 

indentation relationships, an algorithm that relates the tangential strains in the 

rubber cover to the nip force or indentation has to be determined.  

Parish [13] derived an expression (Equation 2-35) that relates the 

maximum tangential surface strain to the force applied. His derivation followed 

the work of Hannah [7]. Shelton [1] derived an expression which gives the 

increment in strain in the web due to the speed increase of the rubber cover in 

the contact zone. His expression (Equation 2-41) is an empirical relation that 

determines the change in velocity per unit velocity which can be related to the 

tangential strain. Good [3] derived a simple expression which determines the 

average tangential strain in the rubber cover in the contact zone. These three 

algorithms were explained in detail in CHAPTER 2. This chapter includes the 

details about the experiments conducted and the procedures involved in 

determining the algorithm whose results best fit in the experimental data. 

Good [3] conducted experiments to measure the variations in the length of 

the web traversed ( L
L∆ ) and compared the experimental data with the expression 
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he developed for the average tangential strains. His experimental set up is 

explained in Figure 4-1. 

 

When the target passed the fiber optic probe at the upstream roller, the 

output signal from the probe triggered and rolled the Laser Doppler Velocimeter 

(LDV). The web drove the rubber covered rollers and the output of the LDV was 

a measure of the distance the undeformed rubber cover surface had moved 

tangentially. After three revolutions of the upstream roller, the output of the fiber 

optic probe was used to stop and hold the integrated output of the LDV. The 

amount of web which transited the upstream roller was 3πD during this period. 

Since the back (undeformed) side of the rubber covered roller was traveling at a 

lower velocity than the web, the length of the undeformed surface of the rubber 

cover which passed during the same time period was less than that of  the length 

of the web which passed the upstream roller.  

Figure 4-1: Experimental set up for strain measurement. 
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This experiment was conducted for the same sets of roller cases and the 

same sets of load levels for which the force vs. indentation experiments were 

carried out. The details of these roller cases and the load levels have already 

been described in CHAPTER 3. 

The length of the web traversed on the rubber covered roller for 3 

revolutions of the steel roller on Input drive was measured. Ten data points were 

collected at every load level and the average and standard deviation of these 

data were calculated. The average value of these 10 data points was then used 

for further calculations for that particular load level. Measurements were taken for 

10 load levels for each roller case.  

The experiment is repeated for all the 10 roller cases. The ratio of the 

change in the length of the web traversed to that of the original length is 

calculated as follows: 

V
V

D

LD
L
L ∆=

−
=∆

1

1 3
π

π

Equation 4-1 
where D1 denotes the calculated diameter of the steel roller and L is the length of 

the web traversed on the rubber covered roller for 3 revolutions of the steel roller 

in inches.  

 The same value is also determined by using the measured value of the 

steel roller diameter. This is expressed by Equation 4-2 in which D2 denotes the 

measured diameter of the steel roller. 
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V
V

D

LD
L
L ∆=

−
=∆

2

2 3
π

π

Equation 4-2 
There was variation between the data obtained using Equation 4-1 and 

Equation 4-2. Hence, a confidence interval at 90%, which statistically states the 

estimated range in which these experimental data would fall, was calculated for 

the measured data points. The variation between the data obtained by Equation 

4-1and Equation 4-2 along with the confidence level calculated for the measured 

data is plotted in Figure 4-2 for roller case 1. 

 

The fluctuation in the data at very low load levels is clearly visible for certain 

roller cases.  To illustrate this, a graph similar to Figure 4-2 is plotted in Figure 

4-3 for roller case 8. The resolution of the experimental method might be the 
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Figure 4-2: Comparison of the measured and calculated length variations vs. load for 
roller case 1 
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probable cause for this anomaly. To extract meaningful information from the data 

obtained, Good statistically adjusted the data by making corrections for the zero 

level. The experimental data obtained for the lowest load level of 0.5pli was set 

as the standard zero and all the other data points were adjusted accordingly. A 

constant value of 0.001 was added to all the data points obtained since the 

minimum resolution of the method was assessed at 0.001.  

 

This statistically adjusted data was used for comparison with all the theories. 

4.1 Application of Parish’s theory: 
Parish derived an expression which relates the maximum tangential 

surface strain in the rubber cover to the applied nip load (Equation 2-35). The 
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Figure 4-3: Comparison of the measured and calculated length variations vs. load for 
roller case 8 
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Young’s modulus used in Parish’s expression is replaced by the empirical 

relation for compression modulus developed by Good (Equation 2-3). This new 

expression is used to compute the maximum tangential strains and is compared 

with the adjusted experimental data. 

4.2 Application of Shelton’s and Good’s theories: 
Shelton’s empirical expression relates the percentage velocity change to 

the roller radius, cover thickness and the radial indentation. Good’s expression 

also relates the average tangential strain to the rubber cover thickness and the 

indentation. The indentation measured earlier for the same load levels and roller 

cases, as explained in CHAPTER 3 are used as an input to these theories. 

A comparison of the theoretical calculations using the three algorithms to 

that of the experimental data is shown in Figure 4-4  for roller test case 6.  Similar 

comparisons for all the other roller test cases are listed in APPENDIX B. 

Tgt. surface strain & Tgt. surface strain & Tgt. surface strain & Tgt. surface strain & ∆∆∆∆L/L   vs loadL/L   vs loadL/L   vs loadL/L   vs load
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Figure 4-4: Comparison of the theoretical and experimental strains vs. Nip load for 
roller case 6 
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The theoretical values for the tangential surface strain of the rubber cover in the 

contact zone are computed for all the load levels and roller cases. 

4.3 Analysis: 
 

After computing all the theoretical values using the three closed form 

algorithms available, an analysis similar to the one done for the force vs. 

indentations is carried out. 

As explained earlier, the analysis is first carried out for the Individual roller 

cases for various load levels. A ratio of the theoretical value to that of the 

experimental data is computed for each load level. A sample calculation for roller 

case 6 is shown in Table 4-1. A theory is closer to the experimental data if its 

average ratio is closer to 1 for the particular roller case.  

 

Strains vs. Force/Indentation 
Load Parish Shelton Good 
0.5 0.775 0.189 0.744 
1 1.322 0.331 1.040 

1.5 1.569 0.402 1.106 
2 1.608 0.4212 1.054 
3 1.502 0.408 0.894 
4 1.593 0.447 0.891 
6 1.610 0.475 0.829 
8 1.669 0.513 0.815 
10 1.687 0.537 0.793 

Average 
ratio 1.482 0.414 0.907 
Variation 0.482 0.586 0.093 

Min.Variation (Best Fit): 0.093 GOOD 
Table 4-1: Comparison of the ratios of the theoretical to experimental strains 

for roller case 6. 
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For roller case 6, the average ratio for Good’s theory was very close to 1 

compared to the other theories. Hence, Good’s theory is the best for this case. 

The average ratios thus computed for each roller case are then used to 

calculate the Overall Average Ratio (OAR) for all the load levels and roller cases. 

The overall Average ratio is also computed in the same procedure as explained 

in CHAPTER 3.  The OAR calculation for roller case 6 is shown in Table 4-2.  

 

The Overall average ratio for Good’s theory is 1.041 and it is the closest to 

the experimental data when compared with Parish’s and Shelton’s theories. 

Hence, Good’s theory best predicts the relationship between the tangential strain 

and the indentation of the rubber cover. Parish’s theory is second best.  Good’s 

theory will be used for further calculations in determining the lateral deflections, 

explained in CHAPTER 5. 

 
Average Ratios 

Roller 
cases Parish Shelton Good 

1 1.697 0.426 1.503 
2 1.311 0.320 1.452 
3 0.887 0.219 0.873 
4 1.060 0.269 0.872 
5 0.985 0.239 1.183 
6 0.924 0.232 0.802 
7 1.406 0.356 1.177 
8 1.482 0.414 0.907 
9 0.632 0.153 0.793 
10 0.455 0.112 0.845 

OAR 1.084 0.274 1.041 
Variation 0.084 0.726 0.041 

Minimum Variation: 0.041 GOOD
Table 4-2: Computation of the Overall average Ratio  
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CHAPTER 5  
 

LATERAL WEB STEERING 

When the nip is loaded differentially, the load varies across width of the 

web transiting the nip in the Cross Machine Direction (CMD). The indentations 

caused in the rubber cover vary along the width too. This variation, in turn, 

causes the tangential strains to vary across the CMD. As described in CHAPTER 

4, the expression developed by Good [3] to describe the relationship between the 

indentations and the tangential strains is the best among the available closed 

form relationships. The varying tangential strains in a differentially loaded nip can 

be predicted by Good’s algorithm and can be used to calculate the lateral 

deformation of the web as it passes through the nip of rubber covered rollers. 

The tangential strains predicted by Good for the varying indentations in 

the rubber cover along the roller length will be used as an input for computing the 

lateral deflection of the web. Good [5]  developed a finite element code to predict 

the force/deformation expressions in the nip contact width of a metal roller with a 

rubber covered roller (MRNIP) as well as in the nip contact width of two identical 

rubber covered rollers in contact (RRNIP). These codes use finite beam 

elements to model the core of the rollers and the Winkler foundation models for 

the rubber cover. They help to estimate the effective load acting at various
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points across the roller length. Good’s algorithm for the tangential strains will be 

incorporated in the RRNIP. Thus the strains will be calculated at various points 

across the roller length and the average tangential strain can be calculated. This 

average strain will be used in Shelton’s [15] closed form expression (Equation 

2-52) to compute the lateral deflection of the web. The lateral deflection can be 

computed at various points along the web length. Ahmad [1] conducted 

experiments to measure the maximum lateral deflection of a web in a 

differentially loaded nip. The theoretical results computed using Shelton’s [15] 

equation will be compared with Ahmad’s experimental data.  

This chapter gives a brief description of Shelton’s expression for 

computing the lateral web deflection, the experimental set up used by Ahmad 

and the NIPCODES MRNIP and RRNIP developed by Good. This chapter also 

describes how the NIPCODES are used to calculate the lateral web deflection 

and compares the theoretical results with that of the experimental web deflection 

data. 

5.1 Lateral deflection Algorithm: 
Shelton [15] developed an expression (Equation 2-52) for the lateral 

deformation of the web as it transits, as a function of the differential strain across 

the web width. This was done because in a practical situation, the determination 

of the differential strain would be easier than the determination of moments. The 

variables used in Shelton’s [15] expression have been described in CHAPTER 2. 

His expression enables the computation of the lateral deflection of the web at 

various positions along its length.   
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The differential strain across the web width, a dimensionless expression 

KKweb (Equation 2-47)which is computed using the total tension in the web and 

the web stiffness, and the position along the length of the web at which the 

deflection needs to be computed are required as inputs to Shelton’s [15] 

expression. The computation of these terms will be explained later in this 

chapter. 

5. 2 Experiment for Lateral deflection: 
Ahmad [1] conducted experiments to monitor the web deflections as it 

transits the nip. A nip set up that could be used for uneven load application was 

used in his experiments. The nip set up was installed on a web line that allowed 

continuous transport of the web.  Uneven load application was made possible by 

applying loads on both sides of the nip independently. The web was guided at 

the entry side using an edge guiding mechanism. A schematic of his 

experimental set up is as shown in Figure 5-1. 

 

Figure 5-1: Ahmad’s experimental nip set up for uneven 
loading. 

Pneumatic 
cylinders 

Rubber Covered Rollers
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The maximum lateral deflection of the web occurs at the nip and the web 

remains in the maximum deflected state until it reaches the edge guiding 

mechanism. The guiding mechanism helps to position the web to its non-

deflected state at its entry to the nip. 

Ahmad used identical rubber covered rollers in his experiments. The 

rollers were made with a metal core and a rubber cover. The outer diameter of 

each of these rollers was three inches. The rubber covers were half inch in 

thickness. Nitrile rubber was used for the covers. Three sets of such rollers were 

used which had rubber covers with different hardness values. A polyester web 

was used in these experiments. The web was 6 inches wide and 0.002 inches 

thick. The elastic modulus of the web material is 600,000 psi. 

The dimensional details and of the rubber rollers and the web are 

described in Table 5-1. The material properties of the rubber cover and the web 

are also given. 

Case Rollers Web 
Case OD  

(in.) 
CT 
(in.) 

HARDNESS 
(SHORE  A ) 

ENTRY SPAN 
LENGTH (in.) 

1 3.0 0.50 78 71.25 
2 3.0 0.50 52 35.675 
3 3.0 0.50 60 35.675 

Web  
Width                 6                    inches 

Thickness                 0.002             inches 
Modulus                 600000          psi 
Material                 Polyester 

Table 5-1: Details of the Rollers and the Web in Ahmad’s experiments. 
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Ahmad’s experimental set up installed in a continuous loop web transport 

machine is illustrated in Figure 5-2. 

 

Load was applied on either side of the nip pneumatically by the cylinders 

shown in the picture. An uneven loading gave rise to the deflection of the 

polyester web as it passed through the nip of identical rubber covered rollers. 

An edge sensor was used to measure the deflection of the web. This 

sensor used laser to detect the edge of the web. The resolution of the 

measurement technique used was 0.001 inches. The initial web tension was 5.4 

pounds.  

The web was centered in the nip and the nip was evenly loaded. Then the 

uneven loading condition was introduced by incrementing the load on one side.  

A simple schematic of the load application and the web deflection is shown in the 

Figure 5-3.              

Figure 5-2:  Ahmad’s experimental set up in a continuous loop . 
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The deflection of the web was measured for each load increment. Three 

sets of data were taken for each set of rollers with the starting nip loads were 

24.9, 49.86 and 74.79 lb on both sides of the nip. The experimental data thus 

obtained for the web deflections for varying nip loads is shown in Figure 5-4. 

 The variables used in the experiments of Ahmad will be used in Shelton ’s  

[15] expression to compute the theoretical deflection of the web. The theoretical 

deflections will be compared with that of the experimental deflections measured. 

 

Figure 5-3: Uneven Load application and web deflection. 

Y
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5. 3 NIPCODES: 

Good [5] developed software codes for the force vs. deformation relations 

of the nip roller pairs. He addressed the contact problem in the nip between a 

metal roller and a rubber covered roller in his code called MRNIP. The contact 

problem in the nip between two identical rubber cover roller pairs is dealt with in 

his code called RRNIP. As this chapter deals with the lateral deflection of the 

web between two identical rubber-covered rollers, RRNIP will be discussed 

further.  

RRNIP is an user interactive software program. The code requires inputs 

such as the dimensional details of the rollers and the web, material properties of 

the rollers and the web, and the input load on both the sides of the nip. All the 
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inputs given to the code are either readily available or measurable in a practical 

scenario. A typical set of identical rubber covered rollers with the metal core and 

the stub shafts for load application is shown in Figure 5-5. 

 

A beam finite element model is used in combination with the Winkler 

foundation element to solve the problem. The rubber covered roller is divided into 

10 finite beam elements. The stub shafts at either end of the roller where the load 

is applied are modeled as beam elements too. Thus the code divides the roller 

set up as 12 finite beam elements. The finite element formulation of the nip roller 

is represented in Figure 5-6. 

 

Figure 5-5: Details of the Identical Nip Roller pairs 

Figure 5-6:  Finite Element Model of two identical 
Rubber covered rollers in contact. 
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A beam finite element is represented in Figure 5-7 with the nodes (i, j) and 

the degrees of freedom (v1, θ1, v2, θ2). This beam element is used to model the 

stub shaft and the metal core of the roller.  

 

The stiffness matrix expression for a beam element loaded with 

concentrated moments at forces at its nodes is given by: 
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Equation 5-1 
A Winkler foundation element is represented in Figure 5-8. Good used this 

element is used in modeling the rubber cover of the roller. 

 

The expression for the Winkler foundation element which is normally used 

to model the elastic foundation beneath a beam is given by: 

Figure 5-7: A finite beam element. 

Figure 5-8: A Winkler foundation element. 
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Equation 5-2 
The stiffness of the elastic foundation ‘Z’ in Equation 5-2, which has the 

units of stiffness per unit length, is expressed by the theoretical force-deformation 

algorithm by K.L.Johnson. 
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Equation 5-3 
The stiffness of the beam and the Winkler elements are assembled into a 

global stiffness matrix G and a set of equations in the form {F} = [G] {v} is solved. 

Since Equation 5-3 for the stiffness requires deformation for computation, the 

whole set of equations is solved in iterative method. And the model solves the 

unknown deformations on the rubber cover. 

RRNIP also gives the effective nip load acting at various points on the 

roller in the CMD, computed in the form of nodal loads. It also gives the variation 

of the rubber deformations, maximum pressure, Average Pressure and contact 

width in the CMD. 

5. 4 Lateral deflection algorithm in RRNIP: 
As discussed earlier, Shelton’s [15] algorithm for lateral deflection of the 

web requires the change in web machine direction strain along the web width 

due to the velocity variation over the width. Hence, to incorporate the lateral 

deflection algorithm in RRNIP, the computation of the tangential strains becomes 

essential.  
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The deformations on the rubber cover due to the force applied are 

computed using finite element method in RRNIP, as explained earlier. The 

deformations thus computed are used as inputs for the tangential strain 

algorithms. It has been stated earlier that Good’s [3] algorithm for the average 

tangential strain stands the best among the available closed form relationships. 

So, this algorithm will be incorporated in RRNIP.  

To compare the performances of the Parish’s and Shelton’s tangential 

strain algorithms with Good’s algorithm in the prediction of lateral deflection of 

the web, these algorithms are also used in RRNIP. 

5.4.1 Parish’s Algorithm: 
Parish’s algorithm for tangential strains vs. force applied is given by the 

Equation 2-35. It requires force applied, Poisson’s ratio, Young’s modulus of the 

rubber cover and half contact width as inputs.  

RRNIP computes the effective force applied at each node of the finite 

beam element. Thus, the forces acting at various points along the CMD are 

known. Young’s modulus for the rubber cover is given by Equation 2-3. This 

compression modulus depends on the rubber cover hardness, temperature and 

the strain rate. The rubber hardness and the process temperature remain 

constant in this expression. But, the strain rate varies as the load and, hence, the 

deformation varies. This leads to the variation in the values of Young’s modulus 

at different points on the rubber cover along the CMD.  

The strain rate required for the modified Young’s modulus (given by 

Equation 2-3) is calculated as explained hereunder. 
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Strain rate has the units of (in./in)/sec. The web enters with a certain web 

velocity V fpm. The nip has a contact width 2a. The rubber cover has a thickness 

t. The deformation due to the applied load is δ. It can be noted that the 

deformation starts at zero at the beginning of the contact, attains a maximum 

value at the center of the contact and declines back to zero at the end. The value 

of the maximum deformation at the center of the contact zone is denoted by δmax 

here for clarity. These quantities are explained in Figure 5-9. 

 

The deformation δmax required for this calculation is generated from 

RRNIP. The contact width is calculated using this deformation in Equation 2-8.  

Strain rate can be expressed as: 

=ε o
Strain / Time      which has the units   inch / inch / second. 

Strain is expressed as   t
maxδ

Figure 5-9: Illustration of the Variables in Strain rate 
calculation. 



59

The time required for the strain to vary from zero at the edge of the contact zone 

to t
maxδ is approximately the half width of contact (a) divided by the web velocity 

(V). This is expressed as  Time =   V
a

Hence strain rate is computed by: 

V
a
t
maxδ

ε =o

Equation 5-4 
RRNIP now gives the effective forces acting at various points along the CMD and 

also the half contact width and modified Young’s modulus at these points. With 

these quantities as inputs, the tangential strain can be calculated as explained in 

CHAPTER 4. A typical result of the tangential strains on the rubber cover at the 

contact width using Parish’s algorithm is shown in Table 5-2. 

 
CMD 

Location  Load 
Youngs 
modulus Factor 1 Factor 2 strain 

-4 18.993 684.461 0.098 0.154 0.015 
-3.2 21.109 685.648 0.105 0.158 0.017 
-2.4 23.303 686.760 0.113 0.161 0.018 
-1.6 25.573 687.805 0.120 0.165 0.020 
-0.8 27.920 688.792 0.127 0.168 0.021 

0 30.342 689.728 0.134 0.170 0.023 
0.8 32.836 690.616 0.141 0.173 0.024 
1.6 35.403 691.462 0.148 0.176 0.026 
2.4 38.041 692.270 0.155 0.178 0.028 
3.2 40.748 693.043 0.162 0.180 0.029 
4 43.522 693.784 0.169 0.182 0.031 

Factor 1 Ea
F
π

ν )1(2 −
Factor 2 ( )( )XK ,ψ

Table 5-2: Parish’s algorithm for Tangential strains. 
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5.4.2 Shelton’s Algorithm: 
Shelton’s algorithm relates the tangential strains on the rubber cover to 

the deformations [1]. RRNIP computes the deformations due to the applied load 

at various locations along the CMD. These deformations are used as inputs in 

Shelton’s expression (Equation 2-52). The velocity variations along the web width 

in the cross machine directions can be now computed.  

5.4.3 Good’s Algorithm: 
Good’s [3] algorithm also relates the tangential strains on the rubber cover 

to deformations. The average tangential strains are computed using Good’s 

algorithm in the same way as it is done for Shelton’s algorithm. The deformations 

computed by RRNIP are used as inputs. 

A sample of the tangential strains computed by all the three algorithms, 

varying along the web width in the CMD are plotted for roller test case 3 with a 

starting load of 74.9 lb,  in Figure 5-10. 

 
Roller Set 3 (starting load 74.9 lb)
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61

5. 5 Computation of Lateral Deflection of the web : 
Shelton’s [15] expression for lateral deflection (Equation 2-52) requires the 

value of the term ∆ε, which is calculated for all the three algorithms. Applying this 

term to Shelton’s equation, lateral deflections along the web at various positions 

in the machine direction (MD) are computed. 

5.5.1 Computation of the change in strain over the web width (∆ε∆ε∆ε∆ε)::::
The term ∆ε is defined as the change in web MD strain over the web width 

due to the velocity variations over the CMD. It is computed from the tangential 

strains calculated at various locations along the CMD. The tangential strains vary 

along the web width because of the uneven loading and the velocity variations. 

The slope of this variation is multiplied with the web width to give the change in 

MD strain over the web width. This value is based on the maximum tangential 

strain that occurs in the center of the contact width. The effect of strains on the 

web will be maximum only at the center of the contact width. Hence, an 

approximate average value of ∆ε is computed by dividing the value by two. In 

simple terms, the computation of the term ∆ε can be stated as follows: 

2
W

dw
V
Vd

•



 ∆
=∆ε

Equation 5-5 
Where w is the roller width. 

This term is calculated for all the three algorithms for each set of inputs in 

RRNIP. A sample calculation of the term ∆ε is as explained hereunder. 

The tangential strains at various locations along the CMD of the rollers are 

calculated using the three different algorithms. A sample result of the calculation 
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using Parish’s algorithm is listed in Table 5-2. These strains are obtained as the 

results for a certain set of input, which will be shown in Table 5-3 later in this 

chapter. The tangential strains for the same set of input, calculated using 

different algorithms are plotted in Figure 5-10. The variation of these strains is 

linear and the slopes of these lines are calculated. The slope calculated for each 

algorithm is multiplied by the web width and then divided by two, to get an 

average change in strain along the web width for this particular set of input. The 

change in strain calculated is used in further calculations of the lateral deflection 

of the web. 

5.5.2 Computation of the term ΚΚΚΚΚΚΚΚweb:
The constant KKweb in Shelton’s expression for the lateral deflection of the 

web is defined as: 

webweb
web IE

TKK =2

Equation 5-6 
The web tension “T” is the sum of the input tension and the average tension in 

the web due to the applied forces. 

averageinput TTT +=  
Equation 5-7 

and webwebwebaverageaverage tWET •••= ε

Equation 5-8 
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5.5.3 Computation of the lateral web deflection: 
The term ‘x’ in Shelton’s [15] algorithm for lateral deflection refers to the 

location in the web, in the MD. It starts at zero at the upstream roller and ends 

with the maximum value, the span length L, at the rubber covered rollers.  

The span length of the web is divided by 10 and the lateral deflections at 

each of these locations are calculated. The starting load levels used in Ahmad’s 

experiments are 24.9, 49.87 and 74.79 respectively. The same load levels are 

given as inputs for the load at the left end of the stub shaft. The loads at the right 

end are later increased in increments. A typical set of inputs given to RRNIP 

specifically for the lateral deflection computation is shown in Table 5-3. 

 

The tangential strains and the term ∆ε are calculated for each set of 

inputs. Then, the lateral deflections in the web span at ten locations along the 

Roller Set 3 (starting load 74.9 lb)
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Figure 5-11: Lateral deflection of the web vs. MD location 
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MD are calculated.  The variation of the lateral deflections along the web span is 

shown in Figure 5-11. This Figure shows the comparison of the results computed 

by all the three algorithms. This plot is generated for the sample inputs shown in 

Table 5-3. 

 

The maximum Lateral deflection of the web occurs at the nip. Hence the 

value of lateral deflection calculated for the tenth location at the end of the span 

length gives the maximum lateral deflection. The maximum lateral deflection 

calculated for each set of load inputs is computed for each set of rollers used by 

Ahmad. This is repeated for all the three algorithms. The maximum lateral 

deflections varying with the incremental load are plotted for each algorithm. 

Figure 5-12 shows the comparison of the maximum lateral deflections computed 

by all the three algorithms with the experimental data of Ahmad for roller set 1. 

Similar comparisons for all the other roller sets are shown in APPENDIX C. 

 
Outer Roller Diameter, in. 3
Rubber Cover Thickness, in 0.5
Rubber Hardness, Shore A or IRHD 60
Nip Load Left, lb 74.9
Nip Load Right, lb 89.9
Web Velocity, fpm 10
Nip Roller Temperature (Celsius) 20
Width of Web, in 6
Length of Web Span, in 35.675
Web Thickness, in. 0.002
Modulus of Web, in 600000
Web Tension, lb 6

Table 5-3: Sample Set of inputs for the Lateral deflection calculation  
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5. 6 Analysis: 
The maximum lateral deflection of the web is computed using Shelton’s 

[15] algorithm by using the inputs for tangential strains from the algorithms of 

Parish, Shelton and Good. It has already been found out that Good’s algorithm 

for tangential strain agreed the best. Yet, to further substantiate the finding, all 

the three algorithms are used in computing the maximum tangential strains.  

Roller Set 1
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Figure 5-12: Comparison of Lateral Deflection Algorithms for roller Set 1. 
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An analysis, similar to the one explained in CHAPTER 3 and CHAPTER 4 

is carried out in this case too, to find out the algorithm that best predicts the 

experimental data for maximum lateral deflection of the web. 

The maximum lateral deflection of the web was computed for three levels 

of starting load for each roller set.  A ratio of the theoretical result to that of the 

experimental data was computed for each level of the load increment. An 

average of these ratios is then computed for all the three sets of theoretical 

predictions using Shelton’s expression, which use the inputs from the three 

tangential strain algorithms. This is repeated for all the nine sets of computations. 

A sample calculation is shown for roller set 1 with the starting load level of 74.79 

lb in Figure 5-13. 

 

This average ratio shows which tangential strain algorithm gives better 

results with Shelton’s lateral web deflection expression. For the case illustrated in 

Figure 5-13, Good’s algorithm performs better with an average ratio of 0.7813. 

As stated in CHAPTER 3 and CHAPTER 4, the theory performs better if its 

average ratio is closer to 1.  

 
Roller case 1 Starting Load 74.9 expt Ratios 

Load 
Increment (lb) Expt. Parish Shelton Good Parish/Expt Shelton/Expt Good/Expt 

5 0.082 0.140 0.043 0.065 1.709 0.528 0.786 
10 0.171 0.278 0.086 0.128 1.625 0.504 0.745 
15 0.233 0.415 0.129 0.190 1.779 0.554 0.813 

average 
ratio  1.704 0.529 0.781 
Variation  0.704 0.471 0.219 

Minimum variation 0.219 Good  
Figure 5-13: Lateral web deflection---Computation of the Average Ratio 
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To analyze the performance of all the theories, an Overall Average Ratio 

(OAR) is computed for all the nine different cases. The theory which has the 

OAR closer to 1 performs better in combination with the Shelton’s Lateral web 

deflection expression. The result of the computation of the OAR is listed in Table 

5-4. 

 

Good’s model for the tangential strain in the rubber cover agrees best with 

the experimental model. It shows the Overall Average Ratio of 0.196. Hence, 

Good’s theory for tangential strain performs better in predicting the lateral web 

deflection using Shelton’s expression. The Tangential strain algorithm and the 

web deflection algorithm are included in RRNIP. 

 

Overall Average Ratio  

Roller 
Cases 

Starting 
Load 

Levels Parish Shelton Good
1 24.9 2.545 0.706 1.463 

49.9 2.067 0.613 1.023 
74.9 1.704 0.529 0.781 

2 24.9 1.965 0.635 0.859 
49.9 1.400 0.500 0.553 
74.9 1.073 0.408 0.406 

3 24.9 2.155 0.662 1.012 
49.9 1.601 0.537 0.669 
74.9 1.193 0.424 0.472 

OAR  1.745 0.557 0.804 
Variation 0.745 0.443 0.196 

Minimum variation : 0.196 Good  
Table 5-4: Lateral web deflection--Computation of the 

overall  Average Ratio 
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CHAPTER 6  
 

CONCLUSIONS AND FUTURE WORK 

6. 1 Summary: 
The objective of this study was to quantify the lateral steering of a web 

due to a non-uniformly loaded nip of rubber covered rollers. The “best” available 

closed form relationships for the force vs. indentation and also for the force or 

indentation vs. tangential strain in the rubber cover were to be determined. The 

new expression for the compressive modulus of rubber developed by Good [6] at 

the Web Handling Research Center was to be incorporated in the force vs. 

indentation algorithms and the modified versions were to be studied. The lateral 

deflection of the web was to be computed using the inputs from these 

relationships. The algorithms for the computation of the tangential strain and the 

lateral web deflection were to be incorporated in the application software code 

RRNIP developed by Good [5]. 

The theoretical results of the available closed form relationships for the 

force vs. indentation algorithms were compared with Good’s experimental 

deformation data. K.L. Johnson’s algorithm modified with the new compression 

modulus yielded best results.  



69

It could be noted that Johnson [9] and Lindley [10] made similar 

assumptions in their derivations for the force vs. deformation algorithms. They 

assumed that the load acting is being reacted by a rubber block whose width was 

equal to the width of the nip contact zone. Lindley [10] and Good [4] used a factor 

‘k’ in their expressions, which takes the confinement of rubber into account. 

Evans [2] made an assumption of uniform external pressure acting on a rubber 

covered cylinder. The algorithm developed by Parish [12] and [14] was empirical. 

Miller ’s [11] algorithm was based on Hannah’s [7] and Parish’s [14] work.  

6. 2 Conclusions: 
1. For the test cases studied, the best relationship for force versus 

indentation is Johnson’s algorithm (Equation 2-12). At higher load levels, the 

confinement of the rubber becomes more prominent. Thus, as shown by Lindley 

[10], at these conditions, Johnson’s algorithm might not prove the best. 

2. The application of the new expression for compression modulus of the 

rubber, which is based on the strain rate, temperature and hardness of the 

rubber, yielded better results in all the test cases. 

3. The closed form algorithms of Parish [13], Shelton [1] and Good [4] for 

the tangential strain in the rubber cover, were compared with Good’s [4] 

experimental data. Parish’s [12] algorithm included an empirical method for 

determining the nip contact width to determine the tangential strain. Shelton’s [1] 

expression was also empirical. Good’s [3] algorithm (Equation 2-44) was found to 

be the “best”. 
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4. In order to determine the lateral deflection of the web, the results from 

Johnson’s modified algorithm were used for the force vs. indentation relation. 

Good’s [3] algorithm for the tangential strain vs. indentation could be used as an 

input to the lateral deflection algorithm. But, in order to substantiate the finding, 

all the three algorithms for the tangential strains were tried. The lateral 

deflections thus computed were compared with Ahmad’s [1] experimental data. 

Shelton’s expression for the lateral deflection yielded best results with Johnson’s 

[9] modified algorithm for force vs. indentation and Good’s [3] algorithm for the 

tangential strain as inputs. This model can be used for the prediction of the 

lateral steering in an unevenly loaded nip. 

6. 3 Future Work: 
The closed form relationships for the force vs. indentation relationships 

should be verified for higher load levels. As mentioned earlier, the rubber 

confinement effect would become important at higher loads and Johnson’s 

algorithm might not be the best in those conditions.  

The velocity of the rubber cover in the nip contact zone is greater than the 

velocity of the cover outside the contact zone. A theory which could predict this 

would yield a better relationship between the tangential strain and the force or 

indentation. A model which would include the web in predicting the tangential 

strain relationships would also be beneficial.  

It was noted that with increasing load levels, Ahmad’s [1] experimental 

data showed an increase in the trends of lateral deflection for all the roller test 

cases, while the theoretical models predicted a decreasing trend. The tangential 
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strain that occur on the rubber covers in the nip contact zone is not equal to the 

tangential strain experienced by the web that transits between the rollers. This is 

due to the difference in the stiffness of the rubber and the web material. The 

study on the effect of friction between the rollers and the web would provide 

better results in predicting the velocity variation and the lateral web deflection.  

This work should also be extended for the nip between a rubber covered 

roller and a metal roller with webs made of different materials.  
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APPENDIX A 
COMPARISON OF THE FORCE vs. INDENTATION ALGORITHMS 
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Figure A-1: Force vs. indentation for roller case 1. 
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FORCE vs INDENTATION
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Figure A-2: Force vs. indentation for roller case 2. 
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Figure A-3: Force vs. indentation for roller case 3. 
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FORCE vs INDENTATION
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Figure A-4: Force vs. indentation for roller case 4. 
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Figure A-5: Force vs. indentation for roller case 5. 
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FORCE vs INDENTATION
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Figure A-6: Force vs. indentation for roller case 7. 
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Figure A-7: Force vs. indentation for roller case 8. 
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FORCE vs INDENTATION
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Figure A-8: Force vs. indentation for roller case 9. 
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Figure A-9: Force vs. indentation for roller case 10. 
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APPENDIX B 
COMPARISON OF THE TANGENTIAL STRAIN vs. LOAD / 

INDENTATION ALGORITHMS 
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Figure B-1: Tangential Strain vs. Load / indentation for roller case 1. 
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Figure B-2: Tangential Strain vs. Load / indentation for roller case 2. 
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Figure B-3: Tangential Strain vs. Load / indentation for roller case 3. 
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Figure B-4: Tangential Strain vs. Load / indentation for roller case 4. 
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Figure B-5: Tangential Strain vs. Load / indentation for roller case 5. 
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Figure B-6: Tangential Strain vs. Load / indentation for roller case 7. 
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Figure B-7: Tangential Strain vs. Load / indentation for roller case 8. 
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Figure B-8: Tangential Strain vs. Load / indentation for roller case 9. 
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Figure B-9: Tangential Strain vs. Load / indentation for roller case 10. 
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APPENDIX C 
COMPARISON OF LATERAL DEFLECTION ALGORITHMS 

 

Roller Set 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20
∆∆∆∆ F (pli)

LA
TE

RA
LD

EF
LE

CT
IO

N
(in

)

Starting Load 24.9 Expt.

Starting Load 49.9 Expt.

Starting Load  74.9 Expt.

Starting Load 24.9 Parish

Starting Load 49.9 Parish

Starting Load  74.9 Parish

Starting Load 24.9 Shelton

Starting Load 49.9 Shelton

Starting Load  74.9 Shelton

Starting Load 24.9 Good

Starting Load 49.9 Good

Starting Load  74.9 Good

Figure C-1: Lateral deflection of the web vs. Incremental Load for roller set 2. 
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Roller Set 3
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Figure C-2: Lateral deflection of the web vs. Incremental Load for roller set 3. 
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