
AIRCRAFT STABILITY DERIVATIVE 

ESTIMATION FROM FINITE 
 

ELEMENT ANALYSIS 
 

 
 

By 
 

DERIC AUSTIN BABCOCK 
 

Bachelor of Science 
 

Oklahoma State University 
 

Stillwater, Oklahoma 
 

2002 
 
 
 
 
 
 
 
 
 
 

Submitted to the Faculty 
of the Graduate College of 
Oklahoma State University 

in partial fulfillment of 
the requirements for 

the Degree of 
MASTER OF SCIENCE 

July, 2004 
 



 ii

AIRCRAFT STABILITY DERIVATIVE 

ESTIMATION FROM FINITE 
 

ELEMENT ANALYSIS 
 
 
 
 
 
 
 

Thesis Approved: 

 
____________________Dr. Arena____________________ 

Thesis Advisor 
 

_____________________Dr. Falk_____________________ 
 
 

____________________Dr. Young____________________ 
 
 

___________________Dr. Carlozzi___________________ 
Dean of the Graduate College 



 iii

ACKNOWLEDGEMENTS 

First, I would like to thank my wife, Caitlin, for her love and support throughout 

this entire process.  Her patience, comfort, and encouragement made this work possible.  

I would also like to thank my mother, Sandy, for teaching me the importance of 

education and the rewards of hard work.  I am astonished that you were able to raise 

Shane and me while working three jobs and pursuing higher education. 

I would like to thank Dr. Arena for his guidance and input into my thesis.  He 

encouraged me not to settle for a sub-par performance and helped me focus on the 

research objective.  I also want to thank Dr. Arena, as well as the NASA Oklahoma 

Space Grant, for funding my research.  I am greatly thankful for the F-18 surface model 

provided by NASA Dryden, so I would especially like to thank Tim Doyle, Ed Hahn, and 

Dr. Gupta. 

Finally, I would like to thank all who have worked in the CASE Lab for helping 

lay the foundations upon which my work is based, and especially those who have been 

helpful during the course of this work: Anthony Boeckman, Nic Moffitt, and Charles 

O�Neill.  Thank you all. 

 



 iv

TABLE OF CONTENTS 

Chapter              Page 

1 INTRODUCTION ........................................................................................................... 1 

1.1 Background......................................................................................................... 1 
1.2 Motivation........................................................................................................... 4 
1.3 Objective............................................................................................................. 6 

2 LITERATURE REVIEW ................................................................................................ 8 

2.1 Flow Solvers ....................................................................................................... 8 
2.1.1 General Requirements..................................................................................... 8 
2.1.2 Panel Methods............................................................................................... 10 
2.1.3 STARS .......................................................................................................... 11 
2.1.4 Piston-Perturbation Solver ............................................................................ 12 

2.2 Excitation Signals ............................................................................................. 13 
2.2.1 Signal Requirements ..................................................................................... 13 
2.2.2 Signal Characteristics.................................................................................... 16 
2.2.3 3211 Multistep .............................................................................................. 16 
2.2.4 Chirp ............................................................................................................. 17 
2.2.5 DC-Chirp....................................................................................................... 19 
2.2.6 Other Signals................................................................................................. 20 

2.3 Model Formulations.......................................................................................... 21 
2.3.1 Rigid Body Equations of Motion.................................................................. 22 
2.3.2 Indicial Functions.......................................................................................... 23 
2.3.3 ARMA Model ............................................................................................... 25 
2.3.4 Nonlinear Model:  Stepwise Regression....................................................... 26 

2.4 Parameter Estimation Methods......................................................................... 27 
2.4.1 Maximum Likelihood Estimation................................................................. 28 
2.4.2 Output Error Method..................................................................................... 28 
2.4.3 Equation Error Method ................................................................................. 29 

3 METHODOLOGY ........................................................................................................ 30 

3.1 Forced Oscillation Parameter Identification ..................................................... 30 
3.1.1 CFD Solver ................................................................................................... 31 
3.1.2 Input Excitation............................................................................................. 33 
3.1.3 Parameter Identification................................................................................ 38 
3.1.4 Extracting Stability Derivatives.................................................................... 40 

3.2 Decoupled Boundary Conditions...................................................................... 42 



 v

3.2.1 Deriving Equations ....................................................................................... 44 
3.2.2 Non-Inertial Boundary Condition Equation.................................................. 45 
3.2.3 Theodorsen�s Moment Equation................................................................... 46 

4 RESULTS AND DISCUSSION.................................................................................... 50 

4.1 Forced Oscillation Parameter Identification ..................................................... 50 
4.1.1 Horizontal Tail .............................................................................................. 50 
4.1.2 Dihedral Wing............................................................................................... 62 

4.2 Decoupled Boundary Condition Specification ................................................. 69 
4.2.1 Airfoil............................................................................................................ 70 
4.2.2 Horizontal Tail .............................................................................................. 76 
4.2.3 Dihedral Wing............................................................................................... 82 
4.2.4 Simple Aircraft.............................................................................................. 85 
4.2.5 F-18A ............................................................................................................ 88 

5 CONCLUSIONS AND RECOMMENDATIONS ...................................................... 100 

5.1 Conclusions..................................................................................................... 100 
5.2 Recommendations........................................................................................... 101 

BIBLIOGRAPHY........................................................................................................... 103 

APPENDIX A: THIN AIRFOIL THEORY FOR CONSTANT PITCH RATE ............ 107 

APPENDIX B: DATCOM CALCULATIONS FOR ISOLATED SURFACES ........... 109 

APPENDIX C: DATCOM CALCULATIONS INCLUDING INTERFERENCE ........ 114 

  



 vi

LIST OF FIGURES 

Figure 1.1:  Illustration of Static Stability .......................................................................... 2 
Figure 1.2:  Illustration of Dynamic Stability..................................................................... 3 
Figure 2.1:  3211 Multistep Applied to Velocity.............................................................. 16 
Figure 2.2:  Chirp Excitation Signal ................................................................................. 18 
Figure 2.3:  DC-Chirp Excitation Signal .......................................................................... 19 
Figure 2.4:  Longitudinal and Lateral Rigid Body Equations of Motion ......................... 22 
Figure 2.5:  Wagner�s Unsteady Lift ................................................................................ 24 
Figure 3.1:  The Effects of a Large Time Step on Excitation Signal................................ 37 
Figure 3.2:  Decoupling Position and Velocity Boundary Conditions ............................. 43 
Figure 3.3:  Geometry and Notation for Theodorsen�s Problem ...................................... 47 
Figure 4.1:  Geometry and Axis of Rotation for Horizontal Tail ..................................... 51 
Figure 4.2:  Grid Convergence Based on Moment Coefficient ........................................ 52 
Figure 4.3:  Close-up of Surface Grid for Horizontal Tail ............................................... 53 
Figure 4.4:  Pitch Rate and Angle of Attack (Alpha) for DC-Chirp................................. 55 
Figure 4.5:  Control File Parameters for Horizontal Tail.................................................. 56 
Figure 4.6:  Comparison of Cm for ARMA Model and STARS....................................... 57 
Figure 4.7:  Extraction of Stability Derivatives from the 35-14 ARMA Model............... 58 
Figure 4.8:  Stability Derivatives Extracted from the 29-49 ARMA Model .................... 59 
Figure 4.9:  Average Values of Stability Derivatives from Both Models ........................ 59 
Figure 4.10:  Comparison of Cm for Analytical and Quasi-Steady ARMA...................... 60 
Figure 4.11:  Comparison of Unsteady STARS to Quasi-Steady Analytical Results ...... 61 
Figure 4.12:  Geometry of Dihedral Wing........................................................................ 62 
Figure 4.13:  Longitudinal Grid Convergence.................................................................. 63 
Figure 4.14:  Lateral Grid Convergence ........................................................................... 64 
Figure 4.15:  Control File for Pitch Excitation ................................................................. 65 
Figure 4.16:  Resampled Pitch Moment Coefficient Time History with ARMA Model . 67 
Figure 4.17:  Comparison of Cm for Analytical and Quasi-Steady ARMA...................... 68 
Figure 4.18:  Geometry for Airfoil Test Case................................................................... 70 
Figure 4.19:  Pitch Moment Coefficient Due to Pitch Rate Only..................................... 72 
Figure 4.20:  Comparison of Pitch Damping Results for Airfoil Test Case ..................... 72 
Figure 4.21:  Pitch Damping Coefficient Versus Pitch Location ..................................... 73 
Figure 4.22:  A Closer Look at Pitch Damping Coefficient Versus Pitch Location......... 74 
Figure 4.23:  Pitch Moment Coefficient from Separate Excitation .................................. 77 
Figure 4.24:  Comparison of STARS Data and ARMA Model........................................ 78 
Figure 4.25:  Stability Derivatives Extracted from 23-21 ARMA Model ........................ 78 
Figure 4.26:  Pitch Moment Comparison of Simultaneous and Separate Excitation........ 79 
Figure 4.27:  Pitch Moment Comparison of Separate Excitation and Analytical............. 80 
Figure 4.28:  Rate Dependent Stability Derivative Estimates with Percent Differences.. 81 
Figure 4.29:  Pitch Moment Coefficient Versus Pitch Rate.............................................. 83 



 vii

Figure 4.30:  Rate Dependent Stability Derivative Estimates with Percent Difference ... 84 
Figure 4.31:  Stability Derivative Estimate with Percent Difference ............................... 84 
Figure 4.32:  Geometry for Simplified Aircraft................................................................ 85 
Figure 4.33:  Dimensions of Simplified Aircraft .............................................................. 86 
Figure 4.34:  Stability Derivatives Estimated for Isolated Surfaces ................................. 87 
Figure 4.35:  Stability Derivatives Estimated for Simple Aircraft ................................... 88 
Figure 4.36:  Picture of the F-18sra Used in Flight Testing ............................................. 90 
Figure 4.37:  Picture of the F-18A Model Used in STARS.............................................. 91 
Figure 4.38:  Representative Control File for All F-18 Test Cases .................................. 92 
Figure 4.39:  Conditions Applied for the Estimation of Stability Derivatives ................. 93 
Figure 4.40:  Comparison of Flight Test Data to STARS Estimates for Cmα ................... 94 
Figure 4.41:  Comparison of Flight Test Data to STARS Estimates for Cmq ................... 95 
Figure 4.42:  Comparison of Flight Test Data to STARS Estimates for Clβ..................... 96 
Figure 4.43:  Comparison of Flight Test Data to STARS Estimates for Cnβ .................... 96 
Figure 4.44:  Comparison of Flight Test Data to STARS Estimates for Clp..................... 97 
Figure 4.45:  Comparison of Flight Test Data to STARS Estimates for Cnp .................... 97 
Figure 4.46:  Comparison of Flight Test Data to STARS Estimates for Clr ..................... 98 
Figure 4.47:  Comparison of Flight Test Data to STARS Estimates for Cnr .................... 98 
 



 viii

NOMENCLATURE 

ARMA AutoRegressive Moving Average 

b  Wing Span 

c  Airfoil Chord 

CASE Lab Computational AeroServoElasticity Laboratory 

CFD  Computational Fluid Dynamics 

Cl  Roll Moment Coefficient 

Cm  Pitch Moment Coefficient 

 Cn  Yaw Moment Coefficient 

Datcom United States Air Force Stability and Controls Datcom 

displ  Dimensionless Amplitude of Excitation Signal 

FEA  Finite Element Analysis 

Ma  Mach Number 

MIMO  Multi-Input Multi-Output 

minpt  Minimum Number of Points at Highest Frequency 

NACA  National Advisory Committee for Aeronautics 

NASA  National Aeronautics and Space Administration 

na  Number of Force Terms in Model 

nb  Number of Motion Terms in Model 

np  Number of Points for Identification 

npt  Number of Previous Terms 



 ix

nr  Degrees of Freedom 

over  Overdetermination Factor 

p  Body-Fixed Roll Rate 

psi  Pounds per square inch 

q  Body-Fixed Pitch Rate 

Q∞  Dynamic Pressure 

r  Body-Fixed Yaw Rate 

RMS  Root Mean Square 

STARS STructural Analysis RoutineS 

SVD  Singular Value Decomposition 

t  Time 

U  Free Stream Velocity 

u  x-component of velocity 

v  y-component of velocity 

Vmax  Dimensionless Maximum Velocity of Excitation Signal 

w  z-component of velocity 

α  Angle of Attack 

β  Angle of Sideslip 

θ  Euler Pitch Angle 

φ  Euler Roll Angle 

ρ  Density 

ω  Angular Frequency / Sweep Frequency 

ψ  Euler Yaw Angle



 1

CHAPTER 1 

1INTRODUCTION 

1.1 Background 

Flight is a balancing act.  For steady, level flight, all the forces and moments on 

the aircraft must sum to zero; this is the equilibrium, or trim, condition.  However, an 

imbalance in forces must be created in order to maneuver the vehicle.  If the aircraft 

requires a large force to deviate from the reference position, it will be slow to respond to 

pilot inputs.  If instead, the vehicle requires little force to change course, then the pilot 

must constantly correct for minor atmospheric disturbances.  A balance must be struck 

between resistance to disturbances and maneuverability. 

The initial tendency of the system to return to equilibrium is termed static 

stability.  The classic representation of static stability can be seen in the three images of 

Figure 1.1.  A marble in equilibrium at the bottom of the bowl will initially try to return 

to the bottom if the marble is moved then released, as seen in the top left image.  This is a 

statically stable system.  In the top right image, the bowl is now inverted and the marble 

is balanced at the top, any disturbance will cause the marble to diverge from the 

equilibrium point, creating a statically unstable system.  A statically neutral system is in 

equilibrium at every position, with no preference to a particular position, as in the bottom 

image. 



 2

 
Figure 1.1:  Illustration of Static Stability 

Dynamic stability is another matter.  While the initial response defines the static 

stability, the time history determines the dynamic stability.  A system is dynamically 

stable if the amplitude of the disturbance diminishes over time, as seen in the top image 

of Figure 1.2.  The amplitude of a disturbance in a dynamically unstable system grows 

with time, as illustrated in the bottom left image.  Finally, the bottom right image of 

Figure 1.2 depicts a dynamically neutral system in which the amplitude remains constant.  

It is important to note that a system can be statically stable but dynamically unstable.  In 

this case, the initial response may tend toward the equilibrium condition but overshoot 

and not return.  A dynamically stable system must be statically stable. 
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Figure 1.2:  Illustration of Dynamic Stability 

In order to balance the inherent stability, or instability, of an aircraft with the 

desire to maneuver the craft, the National Committee of Aeronautics (NACA) compared 

pilot evaluations with the dynamic response of the vehicle.  Pilots rated a broad range of 

aircraft on both the amount of effort required for both steady and maneuvering flight and 

how comfortable the vehicle was to fly.  By comparing the desired handling qualities 

expressed by the pilots with the physical dynamics of the aircraft, NACA determined 

what terms were important and established guidelines for balancing the stability and 

maneuverability of the vehicle based on the aircraft�s stability derivatives. 

Stability derivatives relate how the aerodynamic forces and moments vary with 

changes in the vehicle�s orientation or changes in the atmosphere.  G. H. Bryan first 

proposed the idea of expressing the forces and moments on a vehicle about the trim 
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condition as a function of small perturbations from the trim condition [Nelson 1998].  For 

example, the change in pitch moment on an aircraft could be expressed as follows: 

δ
δ

α
α

∆⋅
∂
∂+∆⋅

∂
∂+∆⋅

∂
∂=∆ Mq

q
MMM  

The partial derivatives in the above equation are the stability derivatives.  The problem 

with this method is that the stability derivatives must be known before the model can be 

used.  Hence, stability derivative estimation is important for the evaluation of handling 

quality and for the prediction of aerodynamic forces. 

1.2 Motivation 

The motivation for the current study is to reduce the time, costs, and restrictions 

involved in the prediction of static and rate dependent stability derivatives.  Calculating 

stability derivatives typically means either making estimates from empirical data and 

basic theory or conducting wind tunnel experiments and flight tests.  Many of the 

drawbacks of these methods can be eliminated through computational means, which are 

becoming a more attractive alternative with the growing power and processing speed of 

modern computers. 

Analytical methods, such as those outlined in the USAF Stability and Control 

Datcom [1978], are laden with assumptions and geometric restrictions as well as 

limitations on the flight regime where the equations are applicable.  Many of the methods 

presented are empirical relations based on experiments.  While the methods provided in 

the Datcom yield insight into the dominant terms affecting the stability of an aircraft and 

while this may be sufficient for the preliminary design process, more accurate results for 

a broader range of geometries are desired. 
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Time and cost are the prominent disadvantages of experimental methods.  The 

long delay between a design decision and the results from an experiment prevent wind 

tunnel testing from being an effective design tool in all but the most general cases.  The 

cost of constructing a model and testing facilities also deter the experimental method.  If 

design changes are made or modifications are needed, cost increases yet again.  Wind 

tunnel testing is most beneficial before flight-testing after the design is finalized.  A 

quicker, more cost efficient method is needed to determine the effects of decisions during 

the design process. 

In addition to safety hazards, flight-testing has many of the same drawbacks as 

wind tunnel testing.  If the behavior of the aircraft is not fully known for a given flight 

regime, then a great deal of caution is needed to ensure the safety of the pilot.  Correcting 

stability and control problems is also more costly once the aircraft is built and ready for 

testing than if the issues were discovered and resolved during the design process.  Flight-

testing is a vital step in aircraft production, but with knowledge of how design decisions 

will affect the stability and control of the aircraft, many problems can be avoided.  With a 

better understanding of the aircraft�s response, flight-testing can be safer and more cost 

efficient through the proper design of the experiment. 

Improvements in the capabilities of computers and the robustness Computational 

Fluid Dynamics (CFD) solvers are making computational methods more useful.  Changes 

in the design can be implemented easier in the computer model as opposed to a physical 

model.  The costs associated with CFD calculations are also much less than those of 

experimental methods; and, reasonably accurate results can be obtained in a timeframe 

suitable for the design process.  Another benefit of a computational experiment is the 
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ability to exactly control the inputs and measure the outputs.  A computer model can be 

forced through oscillations that would be unsafe, or even impossible, for flight and wind 

tunnel tests, but necessary for proper identification of the stability derivatives.  

Furthermore, unlike empirical methods, CFD allows for the determination of stability 

derivatives of an arbitrary geometry with a minimum of assumptions; however, since 

CFD calculates forces through an integration of pressure, one must ensure that the 

pressure is solved and integrated correctly for the given problem, and that the solution is 

both grid and time-step converged.  

1.3 Objective 

The objective of this work is to investigate and implement an efficient procedure 

for the accurate prediction of aircraft stability derivatives using finite element analysis 

(FEA).  This procedure should combine analytical, experimental, and computational 

methods in order to retain the benefits of each while reducing the overall number of 

limitations.  The lessons and techniques learned through wind tunnel and flight tests, such 

as excitation signals, model forms, and fitting procedures, will be applied in a 

computational manner.  The results of the computational experiments will then be used to 

find and fit the best model to the data.  Once the model has been found, analytical small-

disturbance theory will be used to extract the static and rate dependent stability 

derivatives from the model.  Alterations of the above procedure may be necessary in 

order to maximize the benefits of the computational implementation, which is not limited 

by the same constraints as experimental methods. 

In order to achieve this end, the procedure should be able to calculate the stability 

derivatives for an arbitrary geometry without any prior knowledge or estimates of the 
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values of the stability derivatives.  Since most of today�s high performance aircraft are 

either unconventional or carry external stores, the method should not assume any 

symmetry.  Additionally, full advantage should be taken of any benefit that can be gained 

through the computational implementation of this procedure, even at the expense of a 

physically consistent motion as long as accuracy is maintained. 
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CHAPTER 2 

2LITERATURE REVIEW 

Estimating stability derivatives with the forced oscillation technique consists of 

four main steps:  exciting the system with a signal, recording the outputs of the flow 

solver, fitting a model to the data, and finally extracting derivatives from the model.  This 

chapter presents the investigation into each of these steps and discusses the options that 

best utilize the benefits of computational implementation. 

2.1 Flow Solvers 

The accuracy of a stability derivative estimate is dependent on the accuracy of the 

forces calculated by the flow solver.  The model is only as good as the data used to fit it.  

Therefore, great care should be given to the proper selection of a flow solver.  While 

using a complex, all-encompassing CFD routine that can handle any flow regime or 

phenomena would be computationally inefficient; the use of an inadequate solver is 

futile.  Due to the broad range of solvers available, this work is designed to be effective 

with any solver.  The forms of the input and output may be different, but the 

methodology will be similar.  To this end, the best solver is the one best suited for the 

flow regime of interest. 

2.1.1 General Requirements 

For this effort, the desired solver should be accurate over a broad range of Mach 

numbers and able to capture the flow physics relevant to general stability derivative 
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analysis.  Because the emphasis is placed on regions where theory is incomplete or 

unavailable, the solver should be capable of analyzing compressible fluid flow with and 

without shockwaves.  The effects of vortices and wake development are also important in 

stability analysis, and should therefore be included.  If a forced-oscillation technique is to 

be used, the CFD routine must be able to calculate unsteady, time-dependent flows in a 

non-inertial frame.   

The inclusion of viscous effects greatly increases the computational requirements 

and time costs of a numerical solution.  While induced drag will be calculated properly 

with the inviscid assumption, parasitic or form drag will not be.  For stability derivative 

determination, the values of the forces are not as important as the changes in the values of 

the forces.  If the drag calculations are incorrect by a constant, the derivatives will be 

unaffected.  In application, however, the inviscid assumption will affect the results to a 

limited degree.  Berry [1986] found the inclusion of viscosity into the CFD routine had 

minimal impact on airfoil stability below the onset of stall.  Therefore, to achieve the best 

estimates of the stability derivatives, a viscous solver should be used; however, for this 

research the effects of viscosity are neglected due to the time required to run a viscous 

solution and the accuracy of the inviscid assumption.   If the geometry or flow regime is 

viscous dominated, a viscous solver may be appropriate, if not necessary. As such, these 

flows are to be avoided when using an inviscid solver. 

An example of a viscous dominated flow would be flow separation on smooth 

bodies.  Euler solvers can accurately model separation around sharp corners [Kandil 

1990] due to the vortex domination of this type of separation.  Boundary layer separation, 

or stall, around smooth bodies such as wings or other aerodynamically shaped bodies is 
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viscous dominated.  For the accurate estimation of stability derivatives in areas above 

stall, viscosity effects must be included.  However, as White [1991] stated, �As long as 

the angle of attack is below stall, the lift can be predicted by inviscid theory and the 

friction by boundary-layer theory.�  While viscous solvers are limited by computational 

expense, inviscid solvers are limited to flow regimes below the predicted onset of stall. 

Although the current work is focused on rigid-body stability derivative extraction, 

real aircraft are flexible.  This flexibility can greatly alter the vehicle�s response.  A 

general solver should have the potential for incorporating elastic analysis.  The control 

derivatives may also need to be calculated.  The ability to excite the control surfaces 

while maintaining the aircraft at a fixed position would allow for the similar 

identification of control derivatives.  Likewise, the control derivative estimates could be 

performed both with and without elasticity; therefore, a general solver should have 

aeroservoelastic capability. 

2.1.2 Panel Methods 

Panel methods solve potential flows: flows that are incompressible, irrotational, 

and inviscid.  These numerical routines are typically quite computationally efficient 

because they seek to define the boundary conditions on the body instead of solving for 

the whole flow field [Katz 2001].  While corrections can be added to the routine in order 

to account for compressibility and viscosity, they reduce the efficiency of panel methods; 

the compressibility corrections can only correct for low Mach number compressibility 

effects and cannot describe shock waves.  If the reference flight condition were to have 

local shocks, panel methods would be incapable of capturing these effects. 
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Another difficulty for complex geometries is the specifications of wake panels; 

the location, shape, and strength of the wake panels must be specified for a unique 

solution.  As Katz [2001] states, �[the wake�s] geometry clearly affects the solution.�  To 

properly model the wake would require some prior knowledge to the location, shape, and 

strength of the wake.  For low subsonic cases, a panel method may be adequate.  Park 

[1999] and Pesonen [2000] investigated panel methods without and with viscosity 

corrections respectively, and achieved accurate results at and below a Mach number of 

0.6.  Compressibility corrections could not be accurately extended beyond this range.  

Unfortunately, theory is limited to this range as well.  In order to extend prediction 

beyond the current limit on theory, a transonic solver is needed. 

2.1.3 STARS 

Developed at NASA Dryden Flight Research Center, STructural Analysis 

RoutineS (STARS) integrates CFD, heat transfer, aeroservoelasticity, and both static and 

dynamic structural routines for multidisciplinary design and analysis [Gupta 2001].  

Euler3D, developed by Cowan [2003], can solve the unsteady Euler equations in a non-

inertial reference frame with a time-marching, finite element routine.  Through rigorous 

verification and validation with theoretical and experimental test cases, Euler3D has 

demonstrated its ability to accurately capture the relevant flow physics. 

In addition to the non-inertial motion specification, STARS is also capable of 

simulating small amplitude motions through transpiration, which is well documented in 

literature.  Transpiration simulates motion by changing the normal vector to the surface 

elements before applying the no-flow boundary conditions on wall elements.  The surface 

flow is then forced to travel perpendicular to the altered normal vector thereby 
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approximating the flow around a moving surface.  Stephens [1998] discusses 

transpiration further as well as the limits on the small amplitude assumption. 

As an Euler solver, STARS can solve compressible, rotational flows over a broad 

range of Mach numbers, but the flow must be inviscid.  The wake issues of the panel 

methods are minimized in this implementation as well.  General knowledge of where 

wakes will develop is still important for the proper distribution of elements, but shape 

and strength issues are eliminated.  Unlike panel methods, the STARS solution is 

independent of the unnecessary elements that increase computational costs. 

A drawback to this CFD routine is that FEA solves the flow at every node in the 

flow field, not just surface nodes.  The computational costs can become quite high for 

large, complex cases.  As with other inviscid solvers, STARS is limited to pre-stall flight 

conditions.  However, given the capability to achieve accurate results in the transonic 

regime, the computational costs may be worthwhile. 

2.1.4 Piston-Perturbation Solver 

Hunter [1997] used piston theory to predict the aerodynamic forces on a body in a 

supersonic flow.  Piston theory relates the surface normal at a node on the body to the 

surface pressure on that node.  This simple relation bypasses a great deal of 

computational work; however, it is not self-sufficient.  For accurate results, the piston 

theory must be applied about a reference condition, hence a piston perturbation method.  

The perturbation pressure about the reference condition is a function of the steady state 

pressure, and the change in the normal vector as seen in the following equation. 

( )
12

00
0 sin

2
11

−⋅

∞∞




 −′⋅⋅−+⋅=
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A finite-element Euler solver, such as STARS, is first used to compute the steady 

state solution, and then the above equation calculates the pressure changes.  This 

extremely fast solution, as previously mentioned, is limited to the supersonic range, again 

where adequate theory is typically available. 

2.2 Excitation Signals 

In order to determine the stability derivatives, the response of the aircraft to a 

known input must be recorded.  During forced-oscillation experiments, this input alone 

controls the motion of the aircraft; the CFD solver simply calculates the forces and 

moments acting on the body due to the motion.  The signal, not the forces and moments, 

dictate the motion of the aircraft.  Numerous excitation signals are available, but the 

signal must properly excite the correct terms.  O�Neill [2003] investigated various signals 

for system identification of aeroelastic systems, and outlined the benefits of each signal.  

However, these signals must be reevaluated based on the requirements for stability 

derivative calculations instead of aeroelastic identification.  The following section 

outlines the requirements of the excitation signal.  Various signals are then evaluated on 

these criteria to determine the best form for the excitation signal. 

2.2.1 Signal Requirements 

The initial requirements of the excitation signal stem from the definition of 

stability derivatives and the assumptions of small disturbance theory used to extract them 

from the data.  Namely, the vehicle must start at a steady flight condition, which requires 

the signal to have a from-rest initial condition.  Second, the stability derivatives are 

assumed linear within small perturbations of the flight condition.  The reference flight 
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condition may be in the nonlinear range, but the disturbances from this condition must be 

in a local linear range.  This requires that the signal be capable of fully exciting the 

important terms to an acceptable degree while maintaining small displacements from the 

reference condition. In flight-testing, designing an experiment that generates a pitch rate 

large enough to accurately estimate the pitch damping term, Cmq, and keep the angle of 

attack in the linear range is quite difficult [Klein 1998].  However, in a numerical 

experiment, the pitch rate can be excited beyond the normal flight envelope for proper 

identification, and the angle of attack maintained at minimal values.   

A final intrinsic requirement of the excitation signal is that the boundary condition 

specification must be physically consistent for a time accurate representation.  For 

instance, a step change in position would create an infinite velocity, distorting the 

pressure calculations and the resulting forces and moments.  However, a step change can 

be used if only the steady or quasi-steady state response is desired; the solution is no 

longer required to be time accurate. 

Once a signal has met the above requirements, it may be judged further.  In order 

to generate data that can be used to train the model, the excitation of the input variables 

must be seen in the output variables.  If the input motions are excited in a manner that 

produces little change in the output forces, some parameters will be unidentifiable and the 

quality of the estimates of other parameters will be reduced [Klein 1998].  As a general 

rule, if the user can see the effects of an input on the output when the response is plotted, 

the routine which solves for the unknown parameters can as well.  Klein also discovered 

that exciting the system through control surfaces lowered the sensitivity of the outputs to 

the inputs for parameter other than those associated with control derivatives.  In a 
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computational implementation, the motion of the aircraft can be prescribed without using 

control surfaces.  This not only improves the sensitivity of the output but also reduces the 

correlation of input variables; the effects of controls can be separated from the motion 

effects.  Iliff [1997] similarly concluded that the independent excitation of inputs yields 

the best data for parameter identification. 

In order to see the effect of the inputs, the excitation signal should contain 

sufficient power at useful frequencies.  Since steady and quasi-steady stability derivatives 

are inherently low frequency, low-order terms, the power of the signal should be 

concentrated over these lower frequencies.  However, the range of important frequencies 

is not clearly defined, so the power should be relatively constant over a sufficient range 

of low frequencies to ensure that a reduction in power does not occur at important 

frequencies. 

Other implementation concerns include the ease with which the signal can be 

specified.  For instance, the specification of the maximum displacement or maximum 

velocity should be intuitive, and the frequency range easily determined.  Also of 

importance is the robustness of the signal; one must determine whether small changes in 

the description of the signal greatly alter the content of the signal.  Because little may be 

known about the aircraft response initially, the excitation signal should be somewhat 

forgiving.  The amount of work and computational resources required to implement a 

signal must be considered as well.  With these requirements in mind, the next section 

describes the signals investigated for this study, and the results of that research. 
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2.2.2 Signal Characteristics 

The following sections present each signal examined along with its advantages 

and disadvantages.  This discussion forms the knowledge base on which the appropriate 

signal will be selected, and relies heavily on the results of O�Neill�s thesis work [2003].  

However, since the current effort is the identification of stability derivatives and not an 

aeroservoelastic system, care must be taken in extrapolating from O�Neill�s results. 

2.2.3 3211 Multistep 

The multistep, seen in Figure 2.1, is the standard signal for wind tunnel and flight-

testing experiments for numerous reasons.  First, the signal is simple and easy for a pilot 

to input.  For a numerical implementation, a series of if-statements defines the signal.    

Also, the multistep contains sufficient power at lower frequencies.  The specification is 

straightforward as well; the maximum displacement is the amplitude of the square wave. 
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Figure 2.1:  3211 Multistep Applied to Velocity 

While the 3211 has many benefits, the drawbacks are equally numerous.  In 

experiments, the multistep is typically applied to the displacement of control surfaces, 

making the velocity and acceleration terms of little importance.  Thus, the system can be 

most fully excited by a full displacement of the control surface in alternating directions.  
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However, to use this signal in a forced-oscillation method, the multistep must be applied 

to the velocity in order to maintain a physically consistent boundary condition as 

discussed previously, see Figure 2.1.  In this implementation, the velocity and 

acceleration terms are more important, and not fully excited.  The model, which is later 

fitted to the data, will incorrectly account the nonphysical step change in velocity, leading 

to further errors.  Regular gaps in the power spectrum of the multistep also hinder the 

chances of accurately exciting the necessary terms for the identification process.  

2.2.4 Chirp 

The chirp signal, seen in Figure 2.2, is in a class of signals that linearly sweep the 

frequency range.  By sweeping over a specified range of frequencies, the signal avoids 

gaps in the power spectrum.  In addition, the sinusoidal function excites the velocity and 

acceleration terms.  As seen in the following equations, displacement oscillates with the 

same amplitude while the amplitude of velocity increases linearly with time and the 

amplitude of acceleration increase with the square of time.  Since the frequency increases 

linearly with time, the specification of the frequency range is intuitively related to the 

signal length. 

( ) ( )2sin ttD ⋅= ω  

( ) ( )2cos2 tttV ⋅⋅⋅⋅= ωω  

( ) ( ) ( )2222 sin4cos2 ttttA ⋅⋅⋅⋅−⋅⋅⋅= ωωωω  

Referring to the example given in Section 2.2.1, this signal allows for ample excitation of 

pitch rate while maintaining a minimal angle of attack change.  That the continuous 
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function specifies physically consistent boundary conditions with no step change is yet 

another benefit to using a chirp signal. 
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Figure 2.2:  Chirp Excitation Signal 

The major disadvantage of the chirp is its lack of power at the lower frequencies.  

While the amount of power over the lower range of frequencies is relatively constant, it is 

still insufficient.  For the proper identification of the aircraft stability derivatives, more 

power must be applied in the low-frequency range.  This is especially critical for the 

displacement terms that tend to dominate the lower frequencies, as well as the velocity 

terms that tend to dominate the higher frequencies. 
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2.2.5 DC-Chirp 

The dc-chirp, seen in Figure 2.3, is very similar to the original chirp, and has 

many of the same benefits.  However, the dc-chirp differs in the offset, providing more 

power in the displacement at lower frequencies.  The defining equations for the dc-chirp 

are as follows. 

( ) ( )[ ]2cos1
2
1 ttD ⋅−⋅= ω  

( ) ( )2sin tttV ⋅⋅⋅= ωω  

( ) ( ) ( )2222 cos2sin ttttA ⋅⋅⋅⋅+⋅⋅= ωωωω  
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Figure 2.3:  DC-Chirp Excitation Signal 
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As mentioned above, the offset of the dc-chirp improves the low frequency power 

content for displacement.  However, the velocity�s low frequency power content is 

unaffected.  Since the lower frequencies are dominated by displacement terms, large 

power content in the velocity terms would increase the correlation between the 

displacement and velocity terms.  The velocity terms become more important as the 

frequency increases, and the dc-chirp provides adequate power at these frequencies.  The 

improved low frequency content comes at the expense of range.  Since the offset moves 

the centerline of the dc-chirp, only positive displacements are produced.  To attain the 

same amplitude as the original chirp, the dc-chirp would need twice the maximum value 

of the original chirp, pushing the small perturbation limitations. 

2.2.6 Other Signals 

The Fresnel and Schroeder signals were also examined but dismissed based on 

their failure to meet the minimum requirements.  No closed form expression for the 

Fresnel chirp requires a numerical integration, which can lead to a noisy input signal.  

Any noise in the input can hinder the proper identification of the aircraft stability 

derivatives.  The Schroeder sweep has no inherit from-rest starting condition.  Since the 

stability derivatives are estimated about a reference condition, this signal must be adapted 

to accept a from-rest initial condition.  O�Neill [2003] also found that the Schroeder 

signal was �excessively sensitive to excitation length.� 
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2.3 Model Formulations 

Once an accurate flow solver has generated the forces and moments resulting 

from an appropriate excitation signal, a model can be used to describe the data set.  The 

parameters of this model reflect the trends and effects of the input on the output that are 

not readily apparent in the raw data.  If the model cannot accurately represent the data, 

any stability derivatives extracted from the model will be inaccurate.  Therefore, great 

care must be given to the proper selection of a model form. 

Klein [1998] describes a good model as one that �sufficiently fits the data, 

facilitates the successful estimation of unknown parameters whose existence can be 

substantiated, and has good prediction capabilities.�  The model should therefore be 

capable of fitting a broad range of data, contain parameters that realistically relate to 

stability derivatives, and be accurate beyond the data used to fit the model. 
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2.3.1 Rigid Body Equations of Motion 

The obvious equations for describing a vehicle�s dynamics are the aircraft 

equations of motion presented in Figure 2.4 from Nelson [1998].  These equations are 

derived from small disturbance theory and rigid body dynamics.  Typically, they are 

decoupled into longitudinal and lateral directions by making some general assumptions 

about the moments of inertia.  Because this model does not work explicitly with the 

forced oscillation techniques previously mentioned, control surfaces or initial conditions 

could be used to perturb the aircraft for measurement of the response.  The direct 

correlation of these equations to stability derivatives has made this method the standard 

for flight-testing and wind tunnel experiments. 
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Figure 2.4:  Longitudinal and Lateral Rigid Body Equations of Motion 

The rigid body equations of motion are limited to steady or quasi-steady flows; 

they do not account for the unsteady terms in the aerodynamic forces that will inevitably 

occur due to the motion of the vehicle.  The excitation required to accurately identify the 

rate-dependent stability derivatives also excites higher order terms.  In addition, the 

difficulty of this model is increased when the simplifying assumptions no longer held.  

For example, if the aircraft has an external store beneath one wing but not the other, or if 
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the geometry is unconventional, the equations cannot be decoupled into longitudinal and 

lateral directions. 

2.3.2 Indicial Functions 

The indicial approach represents the forces or moments as a superposition of steps 

with varying amplitude.  With smaller and smaller time steps, the indicial model 

approaches a continuous function.  Klein [1997] demonstrated how the indicial function 

could be used to determine the stability derivatives through the integral term that models 

the unsteady wake effects.  The following equation is the unsteady lift coefficient in 

indicial function form about a reference condition, as given by Klein. 

( ) ( ) ( )∫∫ +⋅⋅−⋅+⋅⋅−=
t

Lq

t

LL dq
d
dtC

V
ld

d
dtCtC

00

...τ
τ

ττα
τ

τα  

The ellipsis was added to this equation in order to convey other terms that might be 

necessary for a different configuration.  In the same paper, Klein also presented the 

following form for the time variant CL term, while assuming pitch-acceleration was 

negligible. 

( ) ( ) ceatC tb
L +−= ⋅1α  
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In the above equation, the change in lift coefficient with respect to angle of attack 

asymptotically approaches the quasi-steady value from some initial value.  This 

formulation correlates with Wagner�s unsteady lift problem, seen in Figure 2.5, with the 

lift initially at one-half the final steady state value. 
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Figure 2.5:  Wagner�s Unsteady Lift 

However, the indicial approach fails to correctly identify the stability derivatives 

when the assumed form is no longer valid.  In some cases, the effects of the wake may 

not diminish exponentially.  For example, the effect of the wake shed from the wing will 

have a decreasing influence on the aircraft forces until the wake begins to interact with 

the tail surfaces.  The vehicle investigated in Klein�s 1997 paper had a trapezoidal wing, 

with no surfaces aft of the wing�s trailing edge.  Another difficulty lies in the integro-

differential form of the equations, leading to further problems identifying model 

parameters [Gupta 1985]. 
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2.3.3 ARMA Model 

Since the goal of this research is to develop a solution method for general 

geometries, the model must adequately represent a wide variety of configurations.  For a 

model based on small disturbance theory, the following equation results for a simplified 

pitch case: 

q
q
MMM ∆⋅

∆
∆+∆⋅

∆
∆=∆ α

α
  

Using finite difference approximations and rearranging the equation leads to the 

following: 
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The above equation is very similar to the AutoRegressive Moving Average 

(ARMA) model.  This model can be expanded to include all the forces and moments 

calculated by the CFD solver as a function of both past outputs and present and past 

inputs.  The general form of the multi-input, multi-output (MIMO) ARMA is as follows, 

where y and x are column vectors and A and B are square matrices. 

( )[ ] [ ] ( )[ ] [ ] ( )[ ]∑ ∑
=

−

=

−⋅+−⋅=
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nb
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mn mtxBntyAty

1

1

0
 

The challenge of the ARMA model now becomes selecting the best values for na 

and nb and determining the coefficients in the A and B matrices.  The values for na and 

nb are found by generating models over a wide range, and comparing each model�s 

output to the data.  The order that most accurately matches the data produces the best 
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model.  Several criteria can be used to determine the best match to the data, including the 

RMS of the error or cross correlation. If the model order does not converge, the range 

must be expanded.  Once the best model has been found, the stability derivatives can be 

extracted from the coefficients in the model. 

The ARMA model has been used successfully with the Euler flow solver in 

STARS to accurately model aeroservoelasticity over a broad range of configurations and 

flow regimes [Cowan 1995, Boeckman 2003, and O�Neill 2003].  The flexibility and 

accuracy of the ARMA model that is evident from the aeroservoelastic research could be 

very beneficial in stability derivative extraction.  For stability derivative analysis, the 

inputs of the model would be rigid body rotations and displacements, instead of structural 

mode displacements as with the aeroelastic case.  

Hollkamp [1991] and Hamel [1996] applied the ARMA model to flight-test data 

with limited success.  Unfortunately, the noise inherent in measurement and signal 

generation for a physical system is a small disturbance, which the ARMA model will try 

to capture.  In a strictly computational implementation, neither of these problems should 

occur, as long as the signal excites the appropriate terms, the model is valid, and the CFD 

solver calculates the forces properly. 

2.3.4 Nonlinear Model:  Stepwise Regression 

Stepwise regression is very similar to the ARMA model of the previous section.  

Like ARMA, this model calculates forces and moments as linear sums of the state 

variables; however, stepwise regression does not incorporate any past inputs or outputs.  

Instead, the unsteady effects are modeled by nonlinear combinations of states, such as α2 

or αβ.  The general identification process proceeds as follows:  First, one must establish a 
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set of terms that might enter the model and fit the best linear model to the data.  Next, the 

significance of each term is evaluated, retaining only the influential terms for the next 

step.  Once a linear model with only the significant terms is achieved, then the nonlinear 

terms are added one at a time.  The significance of each parameter is checked after each 

term is added with only dominant terms remaining. 

While promising, this model has severe limitations, the primary one being that the 

nonlinear terms do not provide insight into the stability derivatives.  Worse still, 

nonlinear terms could de-emphasize real linear terms in favor of unsubstantiated 

nonlinear terms.  Even though only the significant terms are to remain in the model, 

Klein [1998] states, from experience, �the model can still include too many terms and 

have poor prediction capabilities.�  Another problem lies in the specification of which 

terms should enter the model.  While the number of combinations can be reduced through 

engineering judgment, important terms can still be overlooked. 

Nonlinear models may not be necessary.  Klein [1998] found that linear models 

were acceptable at low angles of attack, those less than 40 degrees.  At high angles of 

attack, separation occurs; therefore, an Euler flow solver could not properly calculate the 

forces in this flow regime.  Klein�s conclusion about nonlinear models agrees with 

Dowell�s [1995] assessment that aerodynamic calculations using a linear model about a 

nonlinear condition, such as a shock wave, are sufficiently accurate.  As such, nonlinear 

models, in general, may be ruled out as a possibility for stability derivative extraction. 

2.4 Parameter Estimation Methods 

Once the model form is selected, parameter estimation involves the process of 

determining the unknown parameters in that model from its input and output data.  
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Numerous, well-developed methods are available for fitting a curve to data; selecting the 

most appropriate one depends on the type of data and model.  To this end, the following 

text briefly outlines the most common methods and the types of models for which they 

are best suited.  The appropriate estimation method then results from the type of model 

and data, and is not a completely independent choice. 

2.4.1 Maximum Likelihood Estimation 

The most common parameter estimation method for fitting a model to flight-test 

data is a maximum likelihood estimator.  This approach seeks to maximize the 

probability that the model will equal the measured data given a parameter value, 

requiring a priori estimates. Typically used with the rigid body equations of motion, the 

maximum likelihood method filters noise in both the input and output, including 

measurement noise.  The unsteadiness is thus filtered by assuming the effects to be 

Gaussian white noise; however, unsteady terms are not random and �can be far from 

white� [Klein 1998].  Analysis of maneuvers containing unsteady transonic flow or 

inertial coupling of the longitudinal and lateral directions was more prone to failure [Iliff 

1976]. 

2.4.2 Output Error Method 

If no noise is present in the input, the above method simplifies to an output error 

method, or a Newton-Raphson method.  The output error method is typically used in 

wind tunnel experiments where the inputs can be controlled more accurately than in flight 

tests.  While this simplification eliminates the need for a priori values, output error 

methods still assume that the unsteady effects (the difference between the steady state 
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model and the unsteady data) are Gaussian white, and, as stated above, this is not always 

the case.  If a model includes unsteady terms such that the difference in the model and the 

data is due only to measurement noise, then the output error approach is appropriate.  

However, in computational implementation, further simplifications can be made. 

2.4.3 Equation Error Method 

With the added assumption that the output is measured without noise, the output 

error method becomes the equation error method.  Now that the states are measured 

exactly, the unsteady effects on the output are not filtered or minimized.  The model must 

now account for the unsteady terms for the model�s output to match the data in order to 

minimize the error.   This method is so appealing it has been applied to data even when 

the assumptions are not valid in order to obtain initial values for the Maximum 

Likelihood estimator.  Klein [1998] listed the main benefits of the equation error method 

as follows: It is a simple non-iterative method; it provides starting values for other 

methods; it can use partitioned data; and, it can aide in model structure determination. 

The actual implementation of the equation error method to estimate the best 

parameters in a least squares sense can be done by Singular Value Decomposition (SVD).  

While SVD is more robust than other methods that typically fail due to data collinearity 

[Klein 1998] or very small pivot elements [Cowan 1998], less dominate terms are forced 

to zero in order to preserve stability.  This can cause problems when trying to identify a 

small parameter, such as pitch damping, which has a small overall effect on force but is 

nonetheless an important damping term.  SVD is a tool to be used in the process of 

identifying model parameters, therefore its development has been omitted in order to 

maintain focus on issues more relevant to the current work. 
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CHAPTER 3 

3METHODOLOGY 

The following sections outline two methods for the estimation of stability 

derivatives:  forced oscillation parameter identification and decoupled boundary 

condition specification.  First, each step of the forced oscillation parameter identification 

� exciting the system, recording the response, identifying the model, and extracting the 

stability derivatives � is described in detail.  Next, a discussion about decoupling the 

velocity and position boundary conditions is presented, as well as the derivation of a new 

boundary condition equation.  In a similar manner, Theodorsen�s equation will be 

reexamined in order to produce theoretical values for comparison to initial testing of the 

decoupled boundary condition method. 

3.1 Forced Oscillation Parameter Identification 

The objective for this section is to implement a computational forced oscillation 

technique in order to determine stability derivatives, and refine the process to take full 

advantage of the benefits of the CFD solver.  To this end, the STARS flow solver, 

Euler3d, is used to calculate the forces and moments on the body resulting from the dc-

chirp excitation signal.  The data is then fit to an ARMA model with the stability 

derivatives extracted from coefficients of the model.  The following sections describe the 

implementation of the stability derivative extraction technique. 
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3.1.1 CFD Solver 

As stated previously, the CFD routine implemented in this research is Euler3d, 

which is an Euler flow solver capable of calculating compressible, inviscid flow over a 

broad range of Mach numbers from subsonic to supersonic in a non-inertial frame as well 

as through transpiration for smaller motions.  For a more complete description of the 

implementation of STARS and Euler3d, the reader is referred to Gupta [2001] and 

Cowan [2003], respectively. 

While the flow parameters, such as Mach number, time step, dissipation model, 

and solver order, are governed by the control file, the non-inertial motion of the system is 

controlled through the dynamic file. Since the zero order, steady state solver was 

developed assuming a physically consistent position and velocity relation, this solver 

cannot account for non-inertial motion.  At the very least, a first-order, time-accurate 

solver must be specified in the control file when implementing the non-inertial motion 

specification.  The first order solver requires more computational time at each time step, 

causing the non-inertial formulation to operate more slowly than a method based on a 

steady solver.  When the use of non-inertial motion is specified in the control file, the 

dynamic output file contains the position, velocity, and acceleration of all six degrees of 

freedom at every time step. 

Information relevant to the current work, contained in the dynamic file, includes 

the vector to the origin of rotation, the initial orientation and velocity, if any, and the type 

of excitation.  The origin of rotation is also the location of the force and moment 

calculations in the non-inertial formulation; otherwise, the origin of the grid coordinate 

serves as the force and moment reference.  For standard aircraft coordinates, a ψ angle of 
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180 degrees is specified because STARS assumes the flow travels in the positive x-

direction.  When a non-inertial file is implemented, the flow angles in the control file are 

not used by STARS and must be adjusted in the dynamic file.  If stability derivative 

estimates are desired about an angle of attack or sideslip, then the base angles can be 

entered as an initial condition in the dynamic file and the dc-chirp signal can excite the 

system around that condition for a given excitation type.  For the independent excitation 

type, either velocity or position can be held at the initial value while the other is excited.  

A different excitation type, the decoupled boundary condition specification, holds the 

initial position and velocity constant; even for a non-zero velocity, position is held 

constant.  The decoupled excitation types require a modification to the acceleration 

equation as discussed in Section3.2.2 on page 45. 

As previously discussed, transpiration simulates motion by altering the normal 

vector of a surface.  Flow tangency is then applied to the surface defined by the new 

normal vector accurately modeling the actual flow for small changes in the normal 

vector.  In order to apply transpiration to stability derivative analysis, a vector file 

defining the mode shapes in terms of the rigid body degrees of freedom must be 

generated about the origin of simulated rotation.  The vector file contains the initial 

conditions, the excitation type, and the mode shape definition.  Again, the excitation 

types include:  dc-chirp excitation about the initial conditions, independent excitation of 

position and velocity, and an inconsistent hold of initial conditions.  No modifications to 

the equations of the flow solver were required, because transpiration does not assume a 

physically consistent boundary condition.  In addition, transpiration can be applied with 

the zero-order solver, increasing the speed of the stability derivative estimates.  When the 
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use of transpiration is specified in the control file, the transpiration output file specifies 

the position and velocity of each mode shape at every time step. 

3.1.2 Input Excitation 

The dc-chirp was selected as the excitation signal based on the low frequency 

power content of the signal and the ability to excite high values of velocity and maintain 

small displacements.  If the rate or velocity terms are not sufficiently excited, the 

parameter identification process cannot identify their effects.  Should this be the case, the 

rate dependent derivatives will be pushed toward zero and the position derivatives altered 

to account for the small rate effects. 

Since the dominant terms in the forces and moments are typically the angular 

displacement and not the angular rates, the damping effects of the rate terms can be 

obscured by the displacement terms in the model.  In order to produce data that will 

facilitate the accurate estimation of the model parameters, the rate terms generally require 

greater excitation.  The goal is not to make the rate terms dominant, but instead to 

increase the effect on the output due to the rate terms to such a degree that the rate 

influence is significant when compared to the angular terms.  The displacement and 

velocity are not excited to the same degree; they are each excited to a degree that 

produces comparable output.  For example, if an airfoil is pitching about a point n-chord 

lengths upstream of the leading edge and the maximum angle of attack to be excited is α, 

then pitch rate should be excited to a value that produces an equivalent angle of attack. 

( )cnUq ⋅⋅=α  

In order to determine the stability derivatives, the signal must excite the terms in 

the derivative; namely, angle of attack (α), angle of sideslip (β), roll rate (p), pitch rate 



 34

(q), and yaw rate (r).  However, since the angle of attack is excited with pitch rate, and 

sideslip with roll and yaw rates, forcing these terms would be redundant and separating 

their effects would difficult at best.  If, instead of exciting α and β directly, the plunging 

velocity (w) and the side velocity (v) are excited, then α and β are excited through the 

plunge and side velocity respectively by the following equations. 







= −

u
w1sinα   






= −

U
v1sinβ  

This also allows the effects of q and α&  to be separated from each other, as well as β&  

from p and r. 

As suggested by Iliff [1976] and Klein [1998], each of the five states, v, w, p, q, 

and r, can be excited independently.  Independently exciting each of the states assists in 

the proper identification of the model parameters by allowing the influence of each term 

to be determined without the interfering effects of other states.  Thus, the identified 

model coefficients reflect solely the intended terms and the stability derivatives extracted 

from the model parameters do not represent the effects of more than one state.   If the 

states were excited simultaneously, then the correlations between the states would reduce 

the possibility of creating an accurate model and degrade the quality of the stability 

derivatives. 

Parallel processing is employed in order to reduce the time required to 

independently generate the data for the parameter identification of each state.  Instead of 

sequentially exciting each state, a cluster of computers is used in such a way that each 

computer simultaneously runs the flow solver with a different state excited.  This 

completes the excitation of all the states in the time needed for the excitation of one state.  

Additionally, parallel processing eliminates the bias error that can occur in sequential 
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processing.  This error can occur when the effects of the previous state�s excitation have 

not dissipated before the next state begins its excitation.  The reader is referred to 

Boeckman�s [2003] work for further information on the use of either clusters or parallel 

processing. 

With parallel processing, each state receives its own dc-chirp signal, and as such, 

each signal must be tailored to the state.  In Euler3d, the chirp signal is defined by a non-

dimensional maximum displacement (displ) and sweep frequency (ω).  Since the chirp 

sweeps frequency, the maximum velocity is then determined by the length of time the 

signal is allowed to run.  The displacement and velocity equations for the dc-chirp are 

repeated below. 

( ) ( )[ ]2cos1
2

tdispltD ⋅−⋅= ω  

( ) ( )2sin ttdispltV ⋅⋅⋅⋅= ωω  

Selecting the appropriate values for displ and ω is relatively straightforward, but 

nonetheless dependent on the time step, the length of signal and the number of points 

required for generating the model.  The first step is to decide the magnitude of the 

displacement, displ, which will provide ample excitation yet remain within the small 

disturbance assumptions of the stability derivatives.  At higher angles of attack, a smaller 

displacement may be required to keep to a locally linear region.  In turn, omega is found 

by specifying the maximum non-dimensional velocity the system is to achieve in the 

above velocity equation, resulting in the following equation for ω, where time is the 

number of points (np) multiplied by the non-dimensional time step (∆t). 

tnpdispl
V

∆⋅⋅
= maxω  
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The maximum value of the time step is the function of displ, Vmax, and the 

minimum number of points needed at the highest frequency (minpt), as seen below.  A 

smaller time step might be necessary for the flow solver and should be used in such 

cases.  If one ARMA model is to be used to describe all five states simultaneously, the 

time step for each excitation signal must be the same; different time steps would result in 

a difference in the influence of previous terms.   For example, with a very small time step 

a newly shed vortex will be very close to the trailing edge and have a high influence; 

whereas, with a larger time step, the vortex would be farther from the trailing edge and, 

therefore, have a smaller influence on the forces. 

ptV
dispt

minmax ⋅
=∆  

Typically, the value of minpt is selected based on the number of points required 

for a smooth plot of the data points; however, a large value for minpt with the same total 

number of points will reduce the frequency content of the excitation signal.  The 

minimum number of points at the highest frequency must be well above the Nyquist 

frequency for the ARMA model to accurately include the effects of previous forces and 

motions at that frequency.  Figure 3.1, below, demonstrates this with a coarse time step 

that is above the Nyquist frequency but is insufficient to represent a continuous function.  

The discrete change between two points is too large for the model to accurately represent 

the effects of the motion at each point.  The model would incorrectly attempt to capture a 

non-physical step change in the flow instead of capturing the effects of the wake 

produced by the previous point. 
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Figure 3.1:  The Effects of a Large Time Step on Excitation Signal 

 

The only remaining unknown in the calculation for ω is the number of points to 

be generated, np.  The number of points required is solely a function of the model size 

and the degree of overdetermination (over).  Because the best model size is initially 

unknown, np is set such that a large range of models can be examined in order to 

determine the best model order.  The ARMA model is described by na past outputs, nb 

past inputs, and nr states as seen in the equation repeated below. 

( )[ ] [ ] ( )[ ] [ ] ( )[ ]∑ ∑
=

−

=

−⋅+−⋅=
na

n

nb

m
mn mtxBntyAty

1

1

0
 

Since the previous inputs and outputs generated the current wake, the coefficients of 

these terms represent the influence of the wake on the current forces.  Therefore, as a 

general guideline, the number of previous terms included in the model order 
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determination should extend to include the wake.  For example, if the wake is assumed 

negligible n-chord lengths aft of the vehicle, then the number of previous terms (npt) can 

be found by the following equation, where distance is the free stream velocity multiplied 

by time. 

tU
cnnpt
∆⋅

⋅=  

 With a general knowledge of the size of the model, the number of data points 

needed for each state can be found by the following equation. 

( ) overnanbnrnp ⋅+⋅=  

Since the model coefficients are determined in a least squared sense, better results are 

obtained with more data.  However, the computational run time increases with an 

increase in the number of points to be generated.  Typically, a value of 5 to 10 for the 

overdetermination factor is sufficient.  If, in the process of determining the best model 

order, more data is needed to make larger models, SVD allows for the partitioning of data 

from different computational runs.  Another signal, with only as many extra points as 

needed, can be generated and combined with the previous data in order to generate larger 

models. 

3.1.3 Parameter Identification  

Once the excitation data has been generated by the solver, the loads and motion 

terms are combined and formatted for the SVD routine for parameter identification.  

Cowan [1998] discusses the SVD routine and de-trending of the data to remove any 

offset, which cannot be represented in the ARMA model.  The parameter identification 

process consists of gathering the generated data and formatting it for the SVD routine of 
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choice.  Therefore, the remaining discussion will focus on determination of the number of 

modes to include in the model and selecting the best model size. 

While the ARMA model can expand to as many degrees of freedom as are 

excited, the time scale of a lateral derivative may not be the same as the longitudinal 

term, resulting in a different optimal na-nb model for each direction.  Forcing all modes 

to fit into a single model can result in a poor model for one mode and a better model for a 

more dominant mode.  Instead, each degree of freedom should determine its own model 

size.  This will, of course, increase the workload and complexity by tracking the model 

size for each mode, but the independent examination of each mode should provide better 

estimates and understanding, which could then be applied to an investigation into 

subsequent modes. 

In order to conduct a model size sweep, each model in the range of na-nb is 

generated and then compared to the data.  The best model can be determined based on the 

RMS of the error between the model and the data or the RMS of the correlation error; 

however, both measures can be misleading.  Graphically plotting the data and the ARMA 

model predictions is the most reliable way to determine the best model.  To plot and 

compare each model would be a laborious process, instead, the RMS of both means can 

narrow the field of candidate models and provide insight into model convergence.  Some 

models may oscillate about the data giving a misleadingly small RMS value when in fact 

the model does a poor job of predicting the data.  Optimally, a new data set would be 

generated for the RMS comparison, so that the data used to generate the models is not 

also used to determine the quality of the fit.  However, the time involved in generating a 

new data set limits the application of this principle. 
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3.1.4 Extracting Stability Derivatives 

Once the best ARMA model has been identified, extracting the steady and quasi-

steady stability derivatives from the ARMA model consists of applying steady and quasi-

steady conditions for the position and velocity terms and small perturbation theory for the 

previous force�s terms.  This process is best described through a demonstration on a small 

ARMA model with na equal to 2, nb equal to 3, and nr equal to 1.  The ARMA model 

then has the following form: 

( ) ( ) ( ) ( ) ( ) ( )2121 21021 −⋅+−⋅+⋅+−⋅+−⋅= tXBtXBtXBtYAtYAtY  

For the steady state terms, all the Y and X terms are constant and can be 

rearranged to form the following equation, where the derivative of Y with respect to X is 

the constant formed by the combination of model coefficients: 

( ) ( )tX
AA
BBB

tY ⋅
−−
++

=
21

210

1
 

This equation can be generalized for any na-nb model size where nr is equal to one.  

Therefore, the steady state stability derivative for any model size can be determined by 

the equation below: 








 −= ∑∑
=

−

=

na

i
i

nb

i
i AB

dX
dY

1

1

0
1  

If the sum of A term equals unity, the resulting division by zero prevents this method 

from working.  This condition implies a Markov sequence in which the present terms are 

independent of previous terms; however, in a causal relationship, present forces are 

dependent on previous states. 
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 Quasi-steady stability derivates require further examination as the force and 

position terms are no longer constant.  Position terms can be determined through a 

constant rate equation as follows: 

( ) ( ) XtitXitX &⋅∆⋅−=−  

Using the above equation, the previous position terms can be found from the current 

position and the constant rate, essentially generating the time history of states required to 

achieve the current position at a constant rate. 

Previous force terms in the ARMA model can be estimated through small 

disturbance theory, as demonstrated in the equation below: 

( ) ( ) ( ) ( )[ ]itXtX
dX
dYtYitY −−⋅−=−  

Combining the previous position equation and the previous force equation yields the 

following equation for the previous forces, where dY/dX is as given above: 

( ) ( )
dX
dYXtitYitY ⋅⋅∆⋅−=− &  

By substituting the above expression and the position relation into the general ARMA 

model with nr equal to one and simplifying, the following equation is then produced: 

( ) ( )
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Therefore, the quasi-steady stability derivative for any na-nb model, where nr is equal to 

one, is expressed by the following: 
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This equation may then be generalized for any order derivative of X as follows, where 

X(0) is X, and X(j) is the jth time derivative of X: 
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After identifying the parameters of the best-size ARMA model, stability derivative 

extraction becomes merely a process of summing coefficients, a process easily performed 

in a simple spreadsheet calculation. 

3.2 Decoupled Boundary Conditions 

The previous sections outlined the current experimental techniques implemented 

in a computational framework in which the ARMA model captures the unsteady effects 

as well as the effects of position, velocity, and higher order terms.  The sole purpose of 

the ARMA model is to capture these effects so that each may be accurately separated 

from the others.  Therefore, if position, velocity, and other terms were excited separately, 

the ARMA model would not be required, drastically simplifying the stability derivative 

estimation process.  The goal, then, becomes to determine a process for decoupling the 

position and velocity boundary conditions.  This can be accomplished by specifying a 

velocity boundary condition and enforcing a constant position or orientation boundary 

condition. 
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Figure 3.2, below, demonstrates the separation of the velocity and position 

boundary conditions for independent investigation of rate and position.  In this case, the 

top image represents an airfoil pitching at an angle of attack.  The bottom images are the 

decoupled components, the left one representing the angle of attack effects, while the 

right image represents the velocity profile on the airfoil due to the rotation.  The top 

figure is equivalent to the sum of the two lower figures.  

 
Figure 3.2:  Decoupling Position and Velocity Boundary Conditions 

Since the effects of position and velocity may now be calculated separately, the 

excitation is also simplified.  The rate effects no longer need to be comparable to the 

position effects for accurate parameter identification.  Furthermore, the frequency content 

of the excitation signal is only to ensure the same frequency content in the ARMA model.  

If the model is not needed, then neither is the frequency content of the signal.  With 

displacement held constant for a given rate, the quasi-steady rate effects can be 

determined without the displacements reaching the nonlinear range, thereby eliminating 

this consideration from the excitation signal.  An additional benefit to removing the need 

for a model is that the solver does not need to be time accurate.  Thus, a faster steady-

state solver can be implemented to determine the quasi-steady forces. 
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Understandably, Euler3d was not designed to implement a steady-state solver in a 

non-inertial reference frame; as such, the velocity boundary conditions are instead 

applied through transpiration for use with the steady-state solver.  In order to remove the 

assumptions associated with transpiration to gain a more general solution, the first order 

time accurate solver of Euler3d can be used with the non-inertial velocity boundary 

condition specification.  While slower than the steady-state solver, this is faster than the 

second order solver, and since the solution does not need to be time accurate, fewer 

iterations are required per time step.  The number of time steps is then determined by the 

level of convergence of the solution, not the size of the ARMA model.  By separating the 

excitation of position and velocity, the process of estimating stability derivatives is 

dramatically simplified. 

3.2.1 Deriving Equations 

Because the independent specification of velocity and position is not physically 

consistent, the derivation of the boundary condition equations must be revisited.  

Consistent boundary conditions are an inherit assumption in the derivation of both the 

non-inertial formulation of the boundary conditions in Euler3d and in Theodorsen�s 

results for a pitching and plunging airfoil used later in a validation test case.  Neither thin 

airfoil theory, which is also use in the validation test case, nor the transpiration boundary 

condition equation in Euler3d make the consistency assumption.  Understanding the 

development of these equations is as important as knowing how to use them. 

Since thin airfoil theory does not make the consistent boundary condition 

assumption, the development and presentation of the lift and moment equations are left to 

Appendix A.  Likewise, the transpiration boundary condition equations do not require 
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any modification for a decoupled boundary condition specification, and as such, the 

equations are not redeveloped here.  Instead, the focus is place on examining the effects 

the consistent boundary condition assumption has on both the non-inertial boundary 

condition equation in Euler3d and Theodorsen�s equation. 

3.2.2 Non-Inertial Boundary Condition Equation 

The development of the non-inertial compressible Euler equations implemented in 

STARS is nicely presented in Cowan�s dissertation [2003]; here the focus is place on the 

alterations of these equations to account for the decoupled boundary conditions.  The 

decoupled boundary condition affects only one equation in Cowan�s derivation; the 

acceleration expressed in the non-inertial frame.  Neither the position equation nor the 

velocity equation relies on a physically consistent specification of position and velocity; 

the user specifies the non-inertial velocities.  However, the acceleration equation does 

require that the time rate of change of position always equals the velocity.  The non-

inertial formulation of the velocity as presented by Cowan is expressed below, where B is 

the transformation matrix, Ω is the angular velocity matrix, and r is the radius vector: 

xyzt rBVV Ω+= 0  

In order to determine the non-inertial acceleration, the derivative of the above 

equation proceeds as follows: 

xyzxyzxyzt rBrBrBaa && Ω+Ω+Ω+= 2
0  

Normally, the r& term is set equal to the relative velocity Vr; however, with the decoupled 

specification, the r&  term is zero.  Therefore, by changing the transformed acceleration 

equation in Euler3d to reflect the non-physical conditions, the non-inertial capabilities of 
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STARS will now properly calculate the forces and moments due to a decoupled rate 

specification.  

3.2.3 Theodorsen�s Moment Equation 

The following derivation is only used in comparing Theodorsen�s quasi-steady 

results to the stability derivative estimates predicted by Euler3d for the airfoil test case.  

Theodorsen�s moment equation is broken into two components: non-circulatory and 

circulatory, the first referring to the body�s motion and the latter to the wake effects.  

Each component of the moment equation is examined separately and the results are 

combined in the final steps to produce Theodorsen�s results for an decoupled boundary 

condition.  The primary reason for the redevelopment of Theodorsen�s function without 

the consistent boundary condition assumption is that the time rate of change of angle of 

attack, for instance, is no longer equal to the pitch rate, because α is held constant but the 

rate, α& , is specified as non-zero.  A review of the geometry of Theodorsen�s pitching and 

plunging thin airfoil is presented in Figure 3.3 below, including the notation used in this 

work, which follows Falk�s derivation [2003].  In this section, b represents the semi-

chord length, a represents the faction of b to the center of rotation, and h is the vertical 

displacement with the free stream velocity in the positive X direction.  The flow is 

assumed inviscid, irrotational, and incompressible. 
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Figure 3.3:  Geometry and Notation for Theodorsen�s Problem  

Following the derivation presented in Falk�s notes, the potential field is given by 

the following equation, where w is the downwash on the thin airfoil and θ stems from the 

standard coordinate transformation: 

( ) ∫ ∫ −
−

π

θ

π

θβ
θββ

π
θφ

0

2

coscos
sin, ddwbt  

The following equation then calculates the pressure difference across the airfoil: 







∂
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⋅
−
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∂⋅−=∆
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Using these two equations, results in the following non-circulatory moment equation. 

( )∫ ∫ −
∂
∂−=

π π

θθθφρθθφρ
0 0

2 sincos2sin2 da
t

bdUbM ync  

The equation for the potential function then follows when the downwash is described by 

the following equations. 

( ) ( )abUhtw −−−−= βααβ cos, &&  

( ) ( ) 





 −++= abUhbt θθαθαθφ cos

2
1sinsin, 2 &&  
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 All of the above are the standard equations in the development of Theodorsen�s 

equations; however, with a decoupled boundary condition specification, the final 

potential equation is no longer a function of time.  Since both position and rate terms are 

held constant in time, the derivative of the potential with respect to time is now equal to 

zero in the pressure and moment equations.  This produces the following equation for the 

non-circulator moment: 

( )[ ]baUhUbM ync ααρπ && −+= 2
 

With a consistent boundary condition specification, the derivative of potential with 

respect to time yields acceleration terms and the α term becomes anα& term in the second 

integral of the moment equation.  The α& term in the first integral cancels with the α&  

generated by the derivative of potential in the second integral, hence Theodorsen�s 

original equation for the non-circulator moment did not contain the α&  term. 

For the circulatory portion of the moment equation, the derivation never assumes 

that the derivative of α is equal toα& ; instead, the potential function is related to the 

vorticity distribution in the wake, which is a function of the downwash on the airfoil.  

Therefore, the decoupled boundary condition does not affect the circulatory component 

of the moment equation.  Setting the reduced frequency, k, equal to zero in the 

Theodorsen function is the only requirement to determining the circulatory component of 

the quasi-steady moment.  With a reduced frequency of zero, Theodorsen�s function 

becomes unity, yielding the following equation for the circulatory quasi-steady moment: 















 −⋅++⋅= abUhaUbM yc 2

12 2 ααπρ &&
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Combining the circulatory and non-circulatory components of the pitch moment 

equations yields the following equation, after some algebraic simplification: 

( ) ( )[ ]ααρπ && baaUhUbM y
22 221 −+⋅+⋅=  

Note that the moment about the quarter-chord, a = -0.5, does not change with α, in other 

words, the aerodynamic center is at the quarter-chord.  Also, note that the moment is zero 

about the mid-chord, a = 0, if only a pitch rate is applied.  This corresponds to data 

presented in Theory of Wing Sections for a symmetrically cambered airfoil, which is 

equivalent to an airfoil pitched about its mid-chord.  For the current work, the stability 

derivative, Cmq, is more relevant than the total moment, so the above equation is 

reformulated into the following equation, using l/c as the non-dimensional pitch location, 

positive aft of the leading edge and negative fore of the leading edge: 

2

2
14 





 −⋅−=

c
lCmq π  

 The above expression from Theodorsen�s equation, with velocity and position 

decoupled, can now be correctly compared to the results obtained by the modified 

Euler3d flow solver for a simple airfoil test case.  After this, the modified CFD routine 

will be used to calculate the stability derivatives of more complex geometries that 

Theodorsen�s cannot predict. 
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CHAPTER 4 

4RESULTS AND DISCUSSION 

4.1 Forced Oscillation Parameter Identification 

The following sections apply the forced oscillation technique in the computational 

framework of STARS to two cases and present the results in comparison to theoretical 

values.  The first test case is presented in conjunction with discussions of grid refinement, 

excitation signal parameter selection, model order determination, and interpretation of 

results.  The following cases will present less on the process and focus instead on the 

results of the process.  Once the results of the forcing method have been presented, the 

decoupled boundary condition specification method will be initially validated with 

Theodorsen�s results.  Upon validation of the decoupled method, the first two cases will 

be re-evaluated with this new method in order to investigate the relative accuracies of 

both processes.  Finally, stability derivative estimates for more complex test cases 

obtained by the decoupled boundary condition analysis will be presented to demonstrate 

the effectiveness of this method. 

4.1.1 Horizontal Tail 

This single degree of freedom test case is based on an example from Nelson�s text 

[1998], with some modifications.  Instead of a flat plate pivoting 10.998 inches fore of 

the leading edge, a NACA 0012 cross-section with a span of 12in and a chord of 2.004in 

is used.  The airfoil shape removes some of the sharp corners and allows for a smoother 
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airflow around the surface.  In addition, the free stream velocity is increased to Ma .5 at 

sea level conditions.  The results from STARS will be compared with the theoretical 

results from Nelson�s method, corrected for compressibility.  Figure 4.1 shows the 

geometry for this case with the axis located at the pivot point.  The far-field boundary has 

been omitted, but is a sphere centered at the leading edge of the wing with a radius of 

25in. 

 
Figure 4.1:  Geometry and Axis of Rotation for Horizontal Tail 

The grid for this case was refined in two iterations using a routine called 

Remesh3d.  This program calculates the second derivative of a flow property, such as Ma 

or pressure, at each node, then scales the spacing at every node according to the ratio of 

the second derivative to the maximum second derivative and the minimum desired grid 

spacing.  Refining the grid in this manner is preferable to a general grid refinement at 

every location.  By adding elements only where they are needed, such as in areas of high 

gradients, the grid is improved without increasing the computational cost with 

superfluous nodes.  Since theoretical results for Cmα was available, the grid was deemed 

converged when the pitch moment coefficient determined by STARS aligned with theory.  

Similarly, if theoretical values were unavailable, another iteration would indicate a 
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sufficient level of convergence.  The final steady state grid iteration, 2-STARS, matches 

the analytical results within 1.60% for Cmα.  This convergence can be seen in Figure 4.2, 

below. 
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Figure 4.2:  Grid Convergence Based on Moment Coefficient 

Unfortunately, this grid provides no information on the wake element spacing.  

Since the moment is at steady state, the Remesh3d routine increases the spacing in the 

wake region to the detriment of a time-accurate solution.  To correct this situation, wake 

elements were added from the trailing edged to the far field after running Remesh3d.  

Additional elements were also added in the wing tip and the leading edge regions.  The 

final grid contained 455,000 elements in the computational domain, but only the surface 

elements can be seen in Figure 4.3.  With the surface and grid generated, the process of 

estimating stability derivatives begins. 
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Figure 4.3:  Close-up of Surface Grid for Horizontal Tail 

Following the procedure outlined in the Methodology Section, the first step in 

estimating stability derivatives is to determine the parameters of the excitation signal.  

For this test case, the motion is constrained to pitch only about the y-axis in Figure 4.1; as 

such, the excitation signal excites pitch angle and pitch rate.  In order to stay within the 

linear lift region and avoid stall, the maximum angle of attack is set to 4deg.  The pitch 

rate required to yield a comparable effect in the pitch moment is given by the following 

equation for small angles and large l, the distance from quarter-chord to center of 

rotation. 

U
lq ⋅=α  

 Given the geometry and free stream velocity for this case, the maximum pitch rate 

should be 2232deg/sec.  After plotting the dc-chirp signal with these parameters and the 
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time step as a function of the minimum number of points at the highest frequency, the 

best value of minpt was determined to be 35.  Higher numbers reduced the frequency 

content without adding significant definition to the signal, while lower numbers produced 

a sampling rate that was too small at the highest frequency. 

The maximum time step can now be calculated as 5.12e-5sec, which is rounded 

down to 5.0e-5sec.  With the time step now determined, the number of data points 

required for parameter identification can be found.  If the wake�s effect becomes 

negligible 8-chords aft of the trailing edge, then 50 time steps are required to reach this 

point.  The overdetermination of the mathematical model depends on the size of the 

model; however, if over is specified to be 8, then the largest model has an 

overdetermination factor of 8 and the smaller models will have a larger 

overdetermination factor.  This yields a requirement of 800 points for the parameter 

identification.  With this, all the terms of the excitation signal can be calculated in their 

dimensionless form.  The displ term is the maximum angle of attack in radians, while 

Vmax in the ω equation is given by the following equation, where q is the maximum pitch 

rate in rad/sec and refdim is specified in the control file, typically as 1: 

U
refqV dim

max
⋅=  

This combination of parameters results in the excitation of the angle of attack and 

the pitch rate seen in Figure 4.4, below.  While the pitch rate, q, may seem too large, this 

value is necessary in order for the parameter identification routine to properly identify the 

effects of both position and velocity.  Smaller values of q will corrupt the estimation of 

its effects on the moment, essentially drowning the effect of pitch rate in the effect of 

pitch angle.  However, an extremely large pitch rate could excite terms that would not 
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appear under normal operating conditions, and could produce effects that could not be 

correctly eliminated through the ARMA model, such a shock waves due to motion not 

flight condition. 
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Figure 4.4:  Pitch Rate and Angle of Attack (Alpha) for DC-Chirp 

Figure 4.5 presents the control file implemented with the horizontal tail test case.  

STARS ran for 24.56 hours to generate the 800 data points, with 50 iterations per time 

step to insure convergence at each time step.  By combining the load and dynamics files, 

as discussed in the Methodology Section, the data can be compiled into the proper form 

for the SVD routine. 
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&control
      dt        = 0.3348d0,       mach      = 0.50d0,
      gamma     = 1.40d0,      alpha     = 0.0d0,
      diss      = 1.00d0,       beta      = 0.0d0,
      cfl       = 0.5d0,       refdim    = 1.0d0,

      nstp      = 800,       istrt     = .true.,
      nout      = 800,      iaero     = .true.,
      ncyc      = 50,       idynm     = .true.,
      isol      = 2,       ielast    = .false.,
      idiss     = 1,       ifree     = .true.,
      ipnt      = 1,      iforce    = .false.,

      omega     = 3.5057d-4,       nr        = 1,
      ratio     = 700      ainf      = 1.3392d4,
      displ     = 6.981317d-2,       rhoinf    = 1.146d-7,  

Figure 4.5:  Control File Parameters for Horizontal Tail 

After generating a range of models for na, 1 to 50, and nb, 3 to 50, each model 

was given inputs from the excitation signal; and, the error between the model and the 

STARS data was tabulated.  The best na-nb model according to the RMS error between 

the signal and data was a 29-49, whereas the 35-14 model had the lowest RMS of the 

cross correlation.  Since the ARMA model can oscillate about the actual STARS output 

and produce a small RMS, the only true way to determine the quality of the model is to 

plot the model�s output with the STARS data.  The pitch moment coefficient time 

histories of the two ARMA models are extremely similar; both models match the STARS 

output quite well, as seen in Figure 4.6.  Although the ARMA line is based on the 35-14 

model, the graph can represent both the 29-49 model and the 35-14 model, since the 

differences are essentially imperceptible. 
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Figure 4.6:  Comparison of Cm for ARMA Model and STARS 

Through the process outlined in the Methodology Section, the stability derivative 

can be extracted from the ARMA model coefficients.  Figure 4.7 below contains the 

spreadsheet data used to extract the stability derivatives for the 35-14 ARMA model.  

The A�s are the previous force coefficients, the B�s are the current and previous position 

coefficients, and the inputs are the dimensionless time step and the theoretical values for 

percent difference calculations.  
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dt* 0.3348 Cmalpha Cmq
Cmalpha -2.9100E+01 -2.852E+01 -3.484E+02

Cmq -3.4850E+02 -1.9780% -0.0162%

Sum(B's) Sum(A*j) Sum(B*(j-1)) 1-Sum(A's) (1-Sum(A's))^2
-3.92085E-01 5.32995E-03 2.16612E+01 2.85229E-04 8.13555E-08

OutputInput

 
A's B's j A*j B*(j-1)

3.9158582E+00 2.1270306E+04 1 3.9158582E+00 0.0000000E+00
-6.0783746E+00 -4.3510418E+04 2 -1.2156749E+01 -4.3510418E+04
4.5180339E+00 1.4716748E+04 3 1.3554102E+01 2.9433496E+04

-1.2235178E+00 -1.2182433E+03 4 -4.8940712E+00 -3.6547300E+03
-4.4795634E-01 -8.2015002E+03 5 -2.2397817E+00 -3.2806001E+04
2.5505407E-01 3.9455524E+04 6 1.5303244E+00 1.9727762E+05
3.1928360E-01 -5.0838306E+03 7 2.2349852E+00 -3.0502984E+04

-3.5412394E-01 2.1656047E+04 8 -2.8329915E+00 1.5159233E+05
-1.0718900E-01 -5.0834416E+04 9 -9.6470102E-01 -4.0667533E+05
4.3597790E-01 -1.7815644E+04 10 4.3597790E+00 -1.6034079E+05

-1.2707976E-01 1.9454999E+04 11 -1.3978774E+00 1.9454999E+05
-5.5909591E-01 -1.3731269E+04 12 -6.7091509E+00 -1.5104396E+05
8.9276947E-01 5.4234526E+04 13 1.1606003E+01 6.5081431E+05

-6.2806095E-01 -3.0393220E+04 14 -8.7928534E+00 -3.9511186E+05
2.7803843E-01 15 4.1705765E+00 0.0000000E+00

-1.9799604E-01 16 -3.1679367E+00 0.0000000E+00
1.2045208E-01 17 2.0476853E+00 0.0000000E+00

-3.1384154E-02 18 -5.6491478E-01 0.0000000E+00
1.8937286E-01 19 3.5980844E+00 0.0000000E+00

-2.2424657E-01 20 -4.4849314E+00 0.0000000E+00
-3.0910703E-01 21 -6.4912476E+00 0.0000000E+00
8.0676274E-01 22 1.7748780E+01 0.0000000E+00

-5.3162020E-01 23 -1.2227265E+01 0.0000000E+00
1.1126588E-01 24 2.6703811E+00 0.0000000E+00

-2.2569922E-01 25 -5.6424805E+00 0.0000000E+00
4.1113520E-01 26 1.0689515E+01 0.0000000E+00

-4.2391787E-01 27 -1.1445782E+01 0.0000000E+00
2.0448730E-01 28 5.7256443E+00 0.0000000E+00
4.0537209E-01 29 1.1755791E+01 0.0000000E+00

-7.0657333E-01 30 -2.1197200E+01 0.0000000E+00
3.8411769E-01 31 1.1907648E+01 0.0000000E+00
1.3207324E-02 32 4.2263436E-01 0.0000000E+00

-3.1828114E-01 33 -1.0503278E+01 0.0000000E+00
3.6549423E-01 34 1.2426804E+01 0.0000000E+00

-1.3274440E-01 35 -4.6460542E+00 0.0000000E+00
 

Figure 4.7:  Extraction of Stability Derivatives from the 35-14 ARMA Model 

The extracted stability derivatives are very close to the theoretical values for the 

35-14 ARMA model.  The stability derivative extracted from the 29-49 model should be 
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accurate as well, due to the similarities in the output of the two models.  The percent 

difference and the extracted stability derivatives are listed in Figure 4.8, below. 

Cmalpha Cmq
-2.869E+01 -3.174E+02

-1.4076% -8.9222%

Output

 
Figure 4.8:  Stability Derivatives Extracted from the 29-49 ARMA Model 

While the percent difference in Cmα stayed relatively the same, the pitch damping 

percent difference increase noticeably, but remained below 10%.  If, when no theoretical 

value is available, two different ARMA models match the STARS data equally well and 

the estimated coefficients are similar, an averaged value of the coefficients from each 

model may better approximate the real value of the stability derivative, as seen in Figure 

4.9.  The different values can also provide an estimation of the uncertainty in the 

extracted values.  Alternatively, as previously discussed, the models can be generated 

with one excitation signal and the best model is then determined by its ability to predict 

the response due to a different signal with the same time step.  Although this can be a 

time consuming step, in the absence of theoretical results, generating data with a new 

signal is the best way to confirm the prediction capabilities of the ARMA model and 

increase confidence in the estimated derivatives. 

Cmalpha Cmq
-2.861E+01 -3.329E+02

-1.6928% -4.4692%

Output

 
Figure 4.9:  Average Values of Stability Derivatives from Both Models 
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Given that the theoretical values are available, the analytical quasi-steady pitch 

moment time history can be created and compared with the quasi-steady values predicted 

by the ARMA model.  Figure 4.10 reveals how accurately the 35-14 ARMA model 

matches the analytical response.  This may initially appear to be a redundant figure in that 

the ARMA model agrees with the STARS data; however, the data used to generate the 

model is much different than the quasi-steady response predicted by the analytical results. 
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Figure 4.10:  Comparison of Cm for Analytical and Quasi-Steady ARMA 

 Since large excitations violate the assumptions of stability derivative analysis, the 

ARMA model is used to transition from the unsteady data to the quasi-steady stability 

derivatives.  After the ARMA model is fit to the fully unsteady data produced by STARS, 

the ARMA model is given quasi-steady conditions to remove the unsteady terms and 

extract the quasi-steady stability derivatives.  The purpose of the ARMA model is to 

correctly account for the unsteadiness produced during excitation in order to properly 

eliminate it from the stability derivative calculations.  Figure 4.11 demonstrates the 
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unsteady �filtering� that the ARMA model provides.  The difference, both in phase and 

amplitude, between the analytical and the STARS data results from unsteady and higher 

order terms not included in the analytical model; however, the ARMA model can be used 

to translate the unsteady STARS data into the quasi-steady analytical results.  The 

unsteady terms are neither Gaussian nor white as is assumed during the filtering of 

experimental data.  Also, the large magnitude of the unsteady effects is due to the 

extremely large rate excitation required for the proper identification of the rate effects.  

Essentially, in order to accurately estimate the quasi-steady rate term, the unsteady terms 

must also be excited.  The �Analytical� line is covered by the �ss ARMA� points; 

similarly, the �STARS� points obscure the �ARMA� line.  
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Figure 4.11:  Comparison of Unsteady STARS to Quasi-Steady Analytical Results 
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4.1.2 Dihedral Wing 

The next case to be examined is a dihedral wing, allowing for both longitudinal 

and lateral stability derivative analysis.  Figure 4.12 presents the geometry of this test 

case with a chord of 2 inches, a span of 8 inches, a NACA 0009 cross-section, and 5 

degrees of dihedral.  The axis is on the origin of rotation, which is located at the 

centerline leading edge, 0.5 inches above the plane of the root chord.  Flight conditions 

are specified as standard sea level at Mach 0.4.  Wake elements are included in the 

ellipsoidal computational domain in order to capture the transients in the flow field that 

result from the excitation of the wing. 

 
Figure 4.12:  Geometry of Dihedral Wing 
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A grid resolution study was conducted, as before, implementing the Remesh3d 

procedure; however, with this case, the effects of sideslip angle, β, had to be examined as 

well.  For angle of attack, the steady state solution was determined at -5, 0, and 5 degrees 

α for each grid refinement iteration.  The results of this grid convergence can be seen in 

Figure 4.13, below.  From this figure, the initial grid would have been sufficient to 

capture longitudinal effects, but grid refinement for the lateral direction can affect the 

longitudinal results, although it does not in this case.  Therefore, the pitch moment plot 

was created to ensure that the lateral refinement did not adversely affect the longitudinal 

results.  Roll angle was not investigated since, at zero α, all roll angles are equivalent. 
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Figure 4.13:  Longitudinal Grid Convergence 
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As stated above, grid convergence based on lateral effects was also investigated.  

At zero degrees angle of attack, the system was given -5, 0, and 5 degrees β in order to 

determine the capability of the grid to accurately capture sideslip.  Using the Remesh3d 

program to again generate more elements in areas of high gradients, the grid was 

converged as seen in Figure 4.14 below according to the roll moment induced by the 

sideslip angle.  While the values do not lie directly on the analytical line obtained from 

the Datcom equations, the grid was refined until the results were independent.  The 

Datcom method is somewhat empirical, and the effect of roll moment due to sideslip is 

small.  For this geometry, both of these factors contribute to the less than perfect 

alignment between the converged grid and the analytical line.  In the absence of 

analytical results, Figure 4.14 indicates a converged grid, which should be sufficient for a 

method independent of previous estimates.  
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Figure 4.14:  Lateral Grid Convergence 
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By following the same procedure as before, the control parameters for pitch 

excitation seen in Figure 4.15 are produced.  The excitation parameters translate to a 

maximum angle of attack of 6 degrees and a maximum pitch rate of 32,250 degrees per 

second.  This is an extremely large value of q; however, it is the amount of q needed for 

the proper identification of pitch damping.  This value for q generates an equivalent angle 

of attack of 3 degrees at the quarter-chord and 6 degrees at the half-chord.  With a 

comparable angle, the large rate has a comparable effect, which can be identified by the 

ARMA model.  Such a large value also indicates that the effect of Cmq will be small; 

however, it is still the dominant pitch damping term [Datcom 1978] and, therefore, 

requires accurate estimation. 

&control
dt = 8.0352d-2, mach = 0.40d,
gamma = 1.40d0, alpha = 0.0d0,
diss = 1.00d0, beta = 0.0d0,
cfl = 0.5d0, refdim = 1.0d0,

nstp = 4000, istrt = .true.,
nout = 4000, iaero = .false.,
ncyc = 75, idynm = .true.,
isol = 2, ielast = .false.,
idiss = 1, ifree = .true.,
ipnt = 1, iforce = .false.,

ratio = 800d0 nr = 1,
omega = 3.2019d-3 ainf = 1.3392d4,
displ = 1.0472d-1 rhoinf = 1.146d-7,  

Figure 4.15:  Control File for Pitch Excitation 

 With such a small time step, the ARMA model would need about 250 terms in 

order to account for wake effects 10 chord lengths downstream.  Determining the model 

parameters for a model of this size would be a rather large and time consuming 

undertaking; instead, the data was re-sampled.  By taking every fifth point, the time step 

for the ARMA model, not the flow solver, increases by a factor of five and the number of 
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terms in the ARMA model reduces by a factor of five.  An ARMA model of 50 terms is 

much easier to identify.  While the flow solver requires a smaller time step in order to 

ensure convergence at each step, the ARMA model time step can be larger, so long as it 

stays sufficiently above the Nyquist frequency. 

The same process was repeated for sideslip and for roll rate effects, but not for 

roll angle.  Likewise, a plunging velocity and a side velocity were also excited in order to 

separate the effects of α&  from pitch rate and β&  effects from yaw rate as discussed in the 

Methodology Section.  However, the failure of this method to accurately predict the 

longitudinal effects precludes any discussion of the lateral direction and velocity 

excitations. 

Exciting the pitching motion according to the parameters listed in Figure 4.15 and 

re-sampling the data, as discussed above, produces the pitch moment coefficient time 

history response seen in Figure 4.16.  This figure is very different from the plot presented 

for the horizontal tail because the unsteady effects are magnified tenfold for this case.  

Since the excitation is a factor of ten larger, the unsteady effects are equivalent in 

magnitude as the steady and quasi-steady stability derivatives, causing a great deal of 

both constructive and destructive effects.  Also included in the figure is a line 

representing the ARMA model which best fit the data according to the RMS of the 

correlation error.  While this model does an extremely poor job of matching the STARS 

data, the 7-5 model did better than any of the other models examined in the na 1 to 40, nb 

2-50 sweep.  Due to the poor performance of the 7-5 ARMA model to predict the data 

used to train the model, there is little hope of achieving accurate stability derivatives. 
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Figure 4.16:  Resampled Pitch Moment Coefficient Time History with ARMA Model 

As expected, the error in the stability derivatives is high.  For Cmα, the percent 

difference between the thin airfoil theory estimate, corrected for compressibility and 

aspect ratio, and the STARS prediction is almost 40%; the percent difference of Cmq is a 

staggering 140%.  Figure 4.17 attempts to compare the analytical response predicted by 

thin airfoil theory and small disturbance theory to the response obtained through the 

ARMA model coefficients.  The large error in Cmq can be seen by the large difference on 

the right side of the figure where q is largest and the response predicted by the stability 

derivatives extracted from the ARMA model extend off the chart. 
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Figure 4.17:  Comparison of Cm for Analytical and Quasi-Steady ARMA 

Although the forced oscillation parameter identification method failed for this 

case, it was highly accurate in predicting the stability derivatives for the horizontal tail.  

This method cannot identify small magnitude terms well without extreme excitation, 

which leads to a very small time step and increased unsteadiness.  For the identification 

of dominant terms, this parameter identification routine works quite well.  Another 

drawback to this method is the large amount of time required to generate a time accurate 

solution over enough time steps to generate identification data.  The process of selecting 

the best model is also an issue of concern.  Without theoretical values or estimates, the 

surest way to determine the best model is to run yet another time accurate solution so that 

the models can predict data not used in the training process.  This method could be 



 69

helpful in analyzing existing data or in determining the dominant terms affecting the 

forces on a system.  In this implementation, less dominate terms would not be 

intentionally over excited in order to produce forces comparable to the dominate terms.  

To achieve the objectives of this work, a more robust and accurate technique was sought 

to estimate stability derivatives in a timelier manner. 

4.2 Decoupled Boundary Condition Specification 

The following sections present the estimates of stability derivatives by applying 

the velocity boundary condition separately from the position boundary condition in 

STARS.  This is accomplished through both modified non-inertial rate specification and 

transpiration.  While transpiration adds some limiting assumptions, the time saved for the 

more complicated test cases is worth the slight loss of accuracy and amplitude 

limitations.  Unlike the previous method, no extreme excitation signal is required to 

identify the individual effects; they are excited independently.  Since the decoupled 

boundary condition method is based on quasi-steady forces and moments, no model is 

required to make the results fit the stability derivative assumptions.  As this method 

greatly simplifies the process of estimating stability derivatives, the results of the 

following sections focus on comparison with the previous method, as well as with 

analytical, empirical, and flight-test data for a variety of geometries over a broad range of 

Mach numbers. 
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4.2.1 Airfoil 

In order to investigate the accuracy of estimating stability derivatives by the 

separate excitation of velocity and position, a simple, well-developed test case was 

examined.  For this initial case, an NACA 0012 airfoil with a unit chord is first pitched 

about the leading edge, then about various points fore and aft of the leading edge to 

estimate Cmq.  Grid convergence for this test case is not investigated, as this grid has 

shown itself to be sufficient and well converged in previous works [O�Neill 2003].  The 

infinite span airfoil is simulated by a symmetry plane on one side of the 0.2inch wide 

computational domain and a wall boundary on the other side.  Inviscid, Euler solvers treat 

a wall boundary the same as a symmetry plane, since there is not a no-slip condition on 

the wall boundary.  Figure 4.18 presents the geometry for this airfoil test case. 

 
Figure 4.18:  Geometry for Airfoil Test Case 
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The flight condition for this case is standard sea-level conditions at Ma 0.3.  The 

Mach number is intentionally set to a low value for a better comparison of pitch moment 

results with incompressible theory.  If the non-inertial formulation is used with the 

modifications discussed in the Methodology Section, then the dynamic file is given the 

origin of the non-inertial frame and the constant pitch rate while holding α constant at 

zero.  If transpiration is used to simulate the motion, then the vector file is generated to 

model the rigid body pitch motion about the center of rotation.  Again, a constant pitch 

rate is specified in the vector file while holding α at zero.  In order to estimate the 

derivative with respect to pitch rate through finite difference approximation, at least two 

data points are required, each one at a different value of q; more points are necessary to 

demonstrate that the stability derivative lies in the linear range. 

Initially, Cmq about the leading edge is estimated by both the non-inertial and 

transpiration methods and compared to the analytical results predicted by thin airfoil 

theory, corrected for compressibility by the Prandtl-Glauert correction.  A broad range of 

instantaneous pitch rates is applied to the airfoil through both means in order to determine 

the quasi-steady moment due to each rate.  Stability derivatives are then estimated by 

finite difference equations between points.  The results are presented in Figure 4.19, 

below, with both the theoretical line of Cm versus q and the non-inertial data points, as 

well as the transpiration data points.  Although the STARS predictions are slightly higher 

than the theoretical values, the linear trend throughout the range of pitch rates is 

demonstrated for both the non-inertial and transpiration data points.  The non-inertial data 

set is closer to the thin airfoil theory in both value and slope than the transpiration data 

set. 
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Figure 4.19:  Pitch Moment Coefficient Due to Pitch Rate Only 

From the above figure, the analytical and STARS predicted values for Cmq can be 

determined.  The values for Cmq for all cases along with their percent difference from the 

analytical value obtained from thin airfoil theory are presented in Figure 4.20.  From the 

figure, the percent difference more than doubles when using transpiration as opposed to 

the non-inertial rate specification; however, the percent difference is still sufficient for 

preliminary estimates. 

Analytical Non-Inertial Transpiration
Cmq -3.293 -3.174 -3.005

% Diff - -3.635% -8.759%  
Figure 4.20:  Comparison of Pitch Damping Results for Airfoil Test Case 

To further explore this test case, Cmq was estimated for varying pitch locations.  

At each location, Cmq is determined through the finite difference approximation between 

a pitch rate of 0 and 20 deg/sec.  These computational experiments were conducted using 

both the non-inertial and transpiration formulations.  Because the forces do not change 

with pitch location for the zero pitch rate case, the same data can be use at each location 
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if the forces are properly shifted in order to determine the pitch moment for each pitching 

location at zero q.  At each location, the dynamic file is given the appropriate non-inertial 

origin or a new vector file is generated with the origin of rotation properly indicated.  

Figure 4.21 presents the results of this examination for various l/c locations, where l is 

the distance from the center of rotation to the leading edge, positive for rotating aft of the 

leading edge.  The values predicted by Theodorsen lie directly on top of those predicted 

by thin airfoil theory.  The Datcom method and the method presented in Nelson�s text are 

very similar, differing only slightly as the origin of rotation is moved further from the 

airfoil.  The STARS non-inertial and transpiration data also seem very similar to each 

other and accurate to the analytical values. 
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Figure 4.21:  Pitch Damping Coefficient Versus Pitch Location 
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Figure 4.22, below is the same graph as in Figure 4.21, but focused on a smaller 

range with the addition of 10% error bars to examine the results more closely.  The non-

inertial and transpiration data still match the thin airfoil theory and Theodorsen lines, but 

the differences between these and the Datcom and Nelson�s method are highlighted.  

Both the Datcom method and Nelson�s method are based on the assumption that the lift 

produced acts at the quarter chord, which is correct when pitching about a point away 

from the airfoil.  However, when pitching about a point near or on the airfoil the center of 

pressure is no longer at the quarter chord, making the assumptions of the two methods 

invalid.  STARS transpiration and non-inertial rate specifications are accurate even in this 

region, with the non-inertial data more closely approximating the theoretical values. 
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Figure 4.22:  A Closer Look at Pitch Damping Coefficient Versus Pitch Location 
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This simple test case demonstrates the viability of separating the effects of 

velocity from position.  Due to this separation, the conning or oscillatory motion 

implemented in other methods [Park 1999] is not required to ensure that the angles 

remain in the linear range.  In addition, the method is completely general, in that a model 

is not needed and a model form does not have to be assumed; no geometry or flow 

restrictions are required due to model form or assumptions.  Even coupling between the 

longitudinal and lateral directions is permissible, which would severely hinder the 

accurate estimate of stability derivatives by any method employing the decoupled 

equations of motion, such as the maximum likelihood estimator.  Iliff [1976] states that 

flight experiments that failed to be properly identified by the maximum likelihood 

estimator contained coupling of the longitudinal and lateral directions or locally transonic 

flows, neither of which should cause failure of the decoupled boundary condition method. 

In the following sections, the first two cases presented will be reexamined with 

this new method and compared to both previous results and analytical predictions.  

Following that presentation, a slightly more complicated three-dimensional case will be 

examined and compared to the Datcom methods.  Then finally, a full aircraft, the F-18A, 

will be evaluated with this new method and compared to flight test data in the transonic 

regime. 
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4.2.2 Horizontal Tail 

Since the separation of velocity from position has shown itself to be a viable 

method for determining stability derivatives, this process will be applied to the forced 

oscillation test cases.  Although not required, this case will use an excitation signal and 

the ARMA model as before, but only in order to better compare with the results of the 

previous method.  The first case examined was the horizontal tail pitching about a point 

10.998 inches fore of the leading edge.  Figure 4.1 depicted the geometry of this test case, 

and is repeated below.  For this test case, the stability derivatives will be estimated by the 

same process as before with the exception that the pitch rate will be excited 

independently of the pitch angle.  This is accomplished through the modified boundary 

condition equation discussed in the Methodology Section. 

 
Figure 4.1:  Geometry and Axis of Rotation for Horizontal Tail 

For an accurate comparison with the previous results of this test case, the exact 

same excitation signal is used; the velocity excitation signal is applied during one 

computational run and the position excitation during a separate run.  The moments 

produced by the separate excitations are then summed to generate the total moment due 

to position and velocity at any given instant of the excitation signal.  Figure 4.23 below 
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shows the angle and rate components of the pitch moment coefficient as well as the 

summed coefficient.  The phase and amplitude effects of each component are reflected in 

the line representing the combination of the two component signals.   
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Figure 4.23:  Pitch Moment Coefficient from Separate Excitation 

Using the summed pitch moment coefficient time history for the parameter 

identification as before, the ARMA model that best represents the data is the 23-21 

model.  This ARMA model had the minimum RMS of the cross-correlation.  Model order 

was determined by the same model sweep as before, na 1 to 50 and nb 3 to 50. A 

comparison of the ARMA model and the STARS data can be seen in Figure 4.24.  The 

23-21 model does an excellent job of fitting the data over the entire range, indicating that 

the stability derivative extracted from the ARMA model will be accurate as well. 
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Figure 4.24:  Comparison of STARS Data and ARMA Model 

From the model coefficients and the previously discussed spreadsheet, Figure 4.7, 

values for the stability derivatives were determined and presented in Figure 4.25.  The 3-

10 model had the minimum RMS of the error, but was noticeably different from the 23-

21 model and did not match the data as well in regions of large pitch rate; however, the 

error in the stability derivative�s estimate from that model was only slightly higher than 

the 23-21 model.  The percent difference of the stability derivative obtained through the 

separate excitation of angle and rate is comparable to the averaged values obtained by the 

simultaneous excitation. 

Cmalpha Cmq
-28.70179 -334.478
-1.3669% -4.0228%  

Figure 4.25:  Stability Derivatives Extracted from 23-21 ARMA Model 
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While the best model for the simultaneous excitation was a 35-14 model, the 23-

21 model was best for the independent excitation; yet, both models produced comparable 

results.  Figure 4.26 demonstrates the reason for the difference in the models.  This figure 

contains the forced oscillation data as well as the summed data from the separate 

excitation.  The required models are different because the data sets contain differing 

amounts of unsteadiness.  For the simultaneous case, more unsteady terms are excited 

resulting in a higher order model to remove the unsteady effects in order to determine the 

quasi-steady stability derivatives.  By exciting the terms independently, the summed data 

contains less unsteadiness; however, the ARMA model still properly models the terms 

that are present, demonstrating the flexibility of the ARMA model in capturing the 

relevant flow physics. 
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Figure 4.26:  Pitch Moment Comparison of Simultaneous and Separate Excitation 
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Another interesting comparison is found in Figure 4.27, below, this figure plots 

the total pitch moment coefficient from the separate excitation to the analytical response 

for the same excitation.  The small percent difference in the rate stability derivative 

becomes perceptible only at the largest values for pitch rate.  For all reasonable values of 

pitch rate, the difference is unnoticeable.  Since the separate excitation can accurately 

match the analytical response with out extracting the stability derivatives from the 

ARMA model, the excitation signal and ARMA model may not even be needed. 
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Figure 4.27:  Pitch Moment Comparison of Separate Excitation and Analytical 

 As with the airfoil test case, the pitch-damping coefficient for the horizontal tail 

can be estimated by the finite difference approximation between the moments produced 

by two different quasi-steady rates.  For the horizontal tail, a zero pitch rate case was run, 

as well as a 50 deg/sec case, and applied in three different methods: non-inertial, large 

scale transpiration, and small scale transpiration.  The first mode shape file generated for 
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the transpiration case used a large scaling factor of 180/π in order to input rates as radian 

per second.  However, scaling this large can distort the results in a way similar to the 

large displacements at which the accuracy of transpiration begins to falter.  Generating a 

new mode shape file with a scaling of 1 produces better results, thereby eliminating the 

errors produced in violating the small angle limitations of transpiration. 

Once the loads converge for all cases, Cmq can be estimated for each case.  The 

estimates of the stability derivatives including the percent difference from analytical are 

presented in Figure 4.28.  Here, the effects of a large scaling factor in the vector file can 

be seen as the predicted value is further from the analytical.  While the non-inertial 

formulated generated the best estimate, the time required was also larger.  Although the 

solution does not need to be time accurate, the non-inertial rate specification requires at 

least a first-order time accurate solver; however, at each time step only a few local 

iterations are required, thereby reducing the time compared to a converged solution at 

every time step.  The transpiration method generated acceptable predictions in a time 

efficient manner, and was, therefore utilized for the more complex test cases.  If greater 

accuracy is needed for rate based stability derivatives, the converged transpiration results 

can be used as initial conditions for the higher order solver in order to reduce the time 

required for convergence. 

Analytical Non-Inertial Small Scale Large Scale
Cmq -348.5 -356.3 -371.0 -312.2

% Diff - 2.241% 6.450% -10.42%  
Figure 4.28:  Rate Dependent Stability Derivative Estimates with Percent Differences 

 For the angle-based stability derivates, a steady state solver can be implemented 

and specify flow conditions that simulate the steady state angles for the derivative 

estimation.  The grid convergence study for the horizontal tail provides all the 
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information required to estimate Cmα.  Using the slope of the pitch moment coefficient 

versus angle of attack plot, the results are within 2% of the analytical results without any 

further effort. 

4.2.3 Dihedral Wing 

  Although the forced oscillation technique failed to produce accurate estimates of 

the stability derivatives due to the unsteady interaction of the position and velocity 

effects, the derivatives can be easily estimated by the same procedure as above: a 

decoupled boundary condition for the quasi-steady rate derivatives and the results of the 

grid convergence study for the angular derivatives.  The geometry for this test case is 

presented in Figure 4.12, which is repeated below for clarification of discussion.  The 

flight conditions are standard sea level at Mach 0.4 with a chord of 2 inches and a span of 

8 inches with an NACA 0009 cross-section. 

 
Figure 4.12:  Geometry of Dihedral Wing 
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The stability derivatives for the dihedral wing are estimated by both the non-

inertial formulation and the small-scale transpiration rate specification.  Pitch rates of 0, 

50, 100, and 500 deg/sec are specified in separate cases while holding angle of attack, α, 

constant at zero.  All pitch rates for both cases fall in the linear range, as evidenced in 

Figure 4.29 by the accurate representation of each data set by a linear regression that fits 

each data set in a least squared sense.   This line serves a dual purpose: not only does it 

demonstrate the linearity of the data sets, but the slope of the line also yields the stability 

derivative, Cmq. 
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Figure 4.29:  Pitch Moment Coefficient Versus Pitch Rate 

Using the slopes of the lines in Figure 4.29, the stability derivative estimates of 

Figure 4.30 are produced.  The analytical results stem from thin airfoil theory corrected 

for aspect ratio as described in the Datcom.  Again the results show that the non-inertial 

specification generates the most accurate estimates but with greater computational and 

time costs.  The transpiration method produces less accurate but still viable estimates for 
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the stability derivative when considering the previous method�s failure to reasonably 

estimate the derivatives with a great deal more effort. 

Analytical Non-Inertial Transpiration
Cmq -2.285 -2.228 -2.534

% Diff - -2.506% 10.90%  
Figure 4.30:  Rate Dependent Stability Derivative Estimates with Percent Difference 

Likewise, the Cmα stability derivative can be estimated from the slope of the pitch 

moment versus angle of attack curve in Figure 4.13 used in the longitudinal grid 

convergence study.  Here the analytical results stems from the method presented in 

Nelson�s text.  This method works for the Cmα term because the moment is independent 

of the pitch location unlike the Cmq term, which is highly dependent on the origin of 

rotation.  Again as seen in Figure 4.31, STARS is capable of accurately predicting the 

stability derivatives without an excitation signal or ARMA model, greatly simplifying the 

process and reducing the workload. 

Analytical STARS
Cmalpha -1.138 -1.165

% Diff - 2.400%  
Figure 4.31:  Stability Derivative Estimate with Percent Difference 

Instead of investigating the lateral stability derivatives of the dihedral wing, a 

more complex test case involving the dihedral wing will be examined.  This test case is a 

simplified aircraft with a main wing, a horizontal tail, and a vertical tail.  The main wing 

for the next case will be the dihedral wing of this case.  In this way, the lateral motion of 

the dihedral wing will be investigated while simultaneously increasing the complexity to 

an even more complex test case, the full F-18A. 
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4.2.4 Simple Aircraft 

As mentioned above, the geometry of this simple aircraft test case consists of a 

main wing from the dihedral test case, a horizontal tail, and a vertical tail.  Figure 4.32 

displays the geometry for this case pictorially, while Figure 4.33 contains the numerical 

sizing of each of the surfaces.  The lengths, lw, lv, and lh, are the distances in the x-

direction from the leading edge of that surface to the origin of rotation.  Unlike the main 

wing that is set below the origin, the root chord of both the horizontal and vertical tails 

lies in the x-y plane of the origin.  The flight conditions are as before, Mach 0.4 and 

standard sea level. 

 
Figure 4.32:  Geometry for Simplified Aircraft 
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S b c lw dihedral
16.00 8.00 2.00 0.00 5.00

S b cbar lh c/4 sweep
6.00 4.00 1.50 8.00 20.56

S b cbar lv c/4 sweep
6.00 3.00 2.00 8.00 26.57

vertical tail

horizontal tail

wing

 
Figure 4.33:  Dimensions of Simplified Aircraft 

The grid for the dihedral wing remains the same as the results had sufficiently 

converged.  Similarly, the grids for the horizontal and vertical tails were both converged 

independently in the same manner as the dihedral wing.  As the surfaces were generated 

and the grid refined separately, the sizing of the vertical tail is proportionally larger than 

intended; however, this will be helpful in demonstrating interference effects often not 

included in analysis.  In order to more accurately compare with the predictions of the 

Datcom, initially the aircraft will be treated as isolated surfaces.   This is achieved by 

applying the steady angle or quasi-steady rate about the origin of rotation with only one 

surface present in the computational domain.  The effects of each will be combined and 

compared with the Datcom results for isolated surfaces.  Then, the system as a whole is 

examined with a slightly modified wake grid, and the results compared to the Datcom 

methods including the available interference approximations. 

Transpiration is used to simulate all the rates while holding angles at zero and the 

angles are applied on separate runs through transpiration with zero rates.  For angle 

derivatives, α was set to 0 and 5 degrees while β went from 0 to -5 degrees.  The rate 

derivatives were evaluated between 0, 10, and 20 deg/sec; the latter only to ensure the 

linear range is maintained in the derivative estimation.  The wing and vertical tail were 

given sideslip angles and yaw rates, while the wing and horizontal tail received the angle 
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of attack and pitch rates.  Appendix B contains the calculations of the Datcom methods 

for the isolated surfaces, and Appendix C demonstrates the calculations involving 

interference effects.  The results of the isolated stability derivative estimates are 

displayed in Figure 4.34.  With the exception of Clβ, most of the stability derivatives are 

in good agreement with the Datcom prediction, and the main source of error is the wing.  

STARS predicts a more stable contribution from the wing than Datcom, but the 

contribution from the vertical tail is quite accurate.  The remaining derivatives are 

sufficiently comparable to the Datcom approximations. 

Vtail wing total vtail wing total
STARS -1.420E-01 -2.929E-05 -1.421E-01 STARS 3.750E-01 1.961E-02 3.946E-01
Datcom -1.480E-01 -4.900E-02 -1.970E-01 Datcom 3.510E-01 0.000E+00 3.510E-01

% Diff 4.035% 99.94% 27.89% % Diff -6.83% - -12.42%

htail Wing Total htail wing total
STARS -4.842E+00 -9.318E-01 -5.774E+00 STARS -4.657E+01 -1.958E+00 -4.853E+01
Datcom -5.375E+00 -1.014E+00 -6.389E+00 Datcom -4.770E+01 -1.391E+00 -4.909E+01

% Diff 9.92% 8.10% 9.63% % Diff -2.38% -40.73% 1.15%

Vtail wing total vtail wing total
STARS 9.403E-01 -3.088E-06 9.403E-01 STARS -2.506E+00 2.067E-03 -2.504E+00
Datcom 9.360E-01 0.000E+00 9.360E-01 Datcom -2.223E+00 0.000E+00 -2.223E+00

% Diff -0.46% - -0.46% % Diff -12.74% - -12.64%

Cnbeta Cnr

Clbeta Clr

Cmalpha Cmq

 
Figure 4.34:  Stability Derivatives Estimated for Isolated Surfaces 

The Datcom values are recalculated in Appendix C to account for the interference 

effects in order to compare with the STARS predictions for the whole system.  As before, 

transpiration is used to separately excite the angles and rates to the same extent.  Now, 

the whole system is given sideslip, angle of attack, pitch rate, and yaw rate separately and 

allowed to converge on the steady or quasi-steady loads.  Figure 4.35 that follows 

contains the results of the stability derivative estimates with the new Datcom predictions 
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including the available interference estimates as well.  Again, the results are in general 

comparable to the Datcom predictions; however, Cmα and Cnr have unexpectedly high 

percent differences.  The difference in Cmα could stem from an under-prediction of the 

downwash effects on the horizontal tail in the Datcom leading to more pitch stability.  Cnr 

is dominated by the vertical tail which is a motion similar to Cmq for a horizontal tail, 

therefore the error stems either from the wake of the wing or the presence of the 

horizontal tail.  As the wing is producing little lift at zero angle of attack, the wake 

influence should also be minimal.  The presence of the horizontal tail is accounted for in 

the Datcom method by altering the aspect ratio of the vertical tail.  These calculations are 

highly empirical and could therefore be the cause of the large difference.  Some of the 

error is undoubtedly due to the transpiration assumptions and the CFD routine itself, but 

these errors have shown themselves to be minimal in previous cases. 

Clbeta Clr Cmalpha Cmq Cnbeta Cnr
STARS -1.905E-01 4.399E-01 -3.710E+00 -5.252E+01 1.240E+00 -3.571E+00
datcom -2.310E-01 4.330E-01 -4.304E+00 -4.909E+01 1.156E+00 -2.745E+00

% diff 17.52% -1.594% 13.79% 6.969% -7.271% -30.10%  
Figure 4.35:  Stability Derivatives Estimated for Simple Aircraft 

4.2.5 F-18A 

NASA�s Dryden Flight Research Center has used the F-18 platform to test a 

variety of technologies from thrust vectoring with the High Alpha Research Vehicle 

(HARV), to aeroelastic control with the Active Aeroelastic Wing (AAW) program, and 

numerous other experiments with the Systems Research Aircraft (SRA).  As a result of 

this testing, a great deal of literature and experimental data is available for the F-18. 

The computational model obtained from NASA Dryden is an F-18A single seat 

configuration; however, the available transonic flight-estimated stability derivatives were 
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generated with F-18B two-seat configuration.  While the canopy is distinctly different, 

Moes, Noffz, and Iliff consider the F-18B an acceptable aircraft to estimate the stability 

derivatives for the baseline F-18 configuration in their work [Moes 2000].  They state this 

because their work is focused on generating improved estimates of the stability 

derivatives in their aerodynamic model.  As such, the increment between the flight-test 

values and the aerodynamic model for the F-18B can be applied to the aerodynamic 

models for the other variations of the F-18.  The effects of the different configurations are 

accounted for in the baseline aerodynamic model, so the increments in the stability 

derivatives are assumed applicable to all variants of the F-18.  However, the baseline 

aerodynamic model for the F-18A was not available for comparison, so the stability 

derivatives estimated by STARS for the F-18A are cautiously compared with the F-18B 

stability derivatives presented in their paper.  Figure 4.36 below is a picture of the F-

18sra from the NASA Dryden website. 
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Figure 4.36:  Picture of the F-18sra Used in Flight Testing 

Considering the above discussion, the following seeks to outline some of the 

differences between the computer surface model of the F-18A and the actual F-18B as 

well as the expected consequences of these differences.  The main difference, as 

previously mentioned, is the canopy.  With a smaller canopy, the F-18A is expected to be 

more weathercock stable, which means Cnβ should be more positive.  The computer 

model is also simplified by removing the wingtip pods, the effect of which is unknown 

but for this analysis assumed small.  Other simplifications with negligible effects include 

the removal of small fins, instrument probes, tail hook, and similar surfaces. 

A far field boundary condition is applied to the engine inlet and exhaust nozzle to 

simulate the flow in these regions.  The effects of this specification were examined by 
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comparing the results with those of walled inlets and exhaust nozzles.  For such a drastic 

change in the surface definition of these surfaces, the maximum percent difference in the 

rotary stability derivatives was 7.8% for Cnp while the remaining differences were less 

than 3%.  Therefore, applying a far field boundary on the engine inlet and exhaust nozzle 

is sufficient for this analysis.  The computer model of the F-18A can be seen in Figure 

4.37 and compared to Figure 4.36 of the actual test aircraft. 

 
Figure 4.37:  Picture of the F-18A Model Used in STARS 

Another consideration is the size and complexity of this test case; as such, the grid 

refinement process was very limited and only examined the effects of the addition of 

wake elements for the subsonic case.  Further grid refinement is necessary before the grid 

can be deemed fully converged; however, for this case, experimental data was available 

for comparison and adequate results were obtained with the initial grid.  In light of the 

size of the computational domain, approximately 2.2 million elements, transpiration was 
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implemented to simulate all angles and rates for this investigation so that the faster steady 

solver could be used. 

For comparison with the available data, the flight conditions were specified as 

standard day at an altitude of 15,000 feet with Mach numbers of 0.9, 1.1, and 1.3.  Except 

for Mach number, the flow parameters in the control file were identical for every case.  A 

representative control file is presented in Figure 4.38.  Three modes are used so that one 

vector file can simulate each of the three rotary modes, instead of three single mode 

vector files. 

&control
dt = 1.0d-1 mach = 0.9d,
gamma = 1.40d0, alpha = 0.0d0,
diss = 1.00d0, beta = 0.0d0,
cfl = 0.5d0, refdim = 1.0d0,

ncyc = 5, istrt = .true.,
isol = 0, iaero = .true.,
idiss = 0, idynm = .false.,
ipnt = 1, ielast = .true.,

ifree = .true.,
nr = 3, iforce = .false.,
ainf = 1.268814d4,
rhoinf = 7.21852d-8,  

Figure 4.38:  Representative Control File for All F-18 Test Cases 

 The amplitudes of the angles and rates were likewise similar to the values 

achieved during the flight tests.  Figure 4.39 contains the conditions for the eleven cases: 

one zero case, which is all states equal to zero, and two other cases for each of the five 

state.  At each condition specified in the vector file, all the other values were zero; for 

example when a yaw rate of 8deg/sec was applied α, β, p, and q were all held at zero.  

Three data points were generated for each state in order to ensure the derivative estimates 

remained in the linear range. 
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Alpha (deg) Beta (deg) p (deg/sec) q (deg/sec) r (deg/sec)
0 0 0 0 0
3 -3 20 6 4
5 -5 40 12 8  

Figure 4.39:  Conditions Applied for the Estimation of Stability Derivatives 

The solution for each case was allowed to converge until the loads no longer 

changed.  Once converged, the forces and moment were converted into coefficients and 

the stability derivatives were estimated through finite difference approximation.  The 

estimated rotary stability derivatives were added to the following figures taken from 

Moes [2000].  He includes qualitative error bars based on the Cramer-Rao confidence 

levels from a maximum likelihood output-error estimator program.  The confidence index 

is multiplied by a factor of five to visually improve the plot.  While no quantitative 

correlation was made to actual uncertainty, large Cramer-Rao values indicate a poor 

prediction and small values indicate a good prediction.  The solid lines are preflight 

predicted values based on the linearization of a nonlinear aerodynamic simulator model 

for the F-18B.  No discussion was given as to the origin of the simulator model.  

Estimates of the stability derivatives with STARS at 15,000 feet altitude are represented 

by an x inside of a circle. 

The first graph presented is Cmα for the three Mach numbers seen in Figure 4.40.  

In the subsonic range, STARS more closely approximates the predicted values while at 

higher Mach numbers is equally close to the flight determined values.  The increased 

stability predicted at Mach 0.9 would seem to indicate that the grid does not properly 

capture the downwash effects of the wing on the tail, which is a destabilizing effect.  

However, this effect does not appear in the sonic cases, implying that the error may not 

stem from the flow of information downstream but the upstream flow of information.  In 

order to investigate this discrepancy, the number of wake elements was increased 
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dramatically from the trailing edge of the wing to 50 feet, approximately four mean 

aerodynamic chord lengths, aft of the tail�s trailing edge, bringing the total number of 

element to almost 3 million.  Although this decreased the difference between the flight 

test data and the prediction by STARS, the change was less than 2% of the refined wake 

estimate.  Another possible explanation is that the grid may not be suitable for the 

subsonic case where information can travel upstream.   If the grid is insufficient, this 

explanation does not then account for the accuracy of STARS to predict the other 

subsonic stability derivatives.  Also, the estimated values are very close to the predicted 

values and follow a similar but less dramatic trend. 

 

 
Figure 4.40:  Comparison of Flight Test Data to STARS Estimates for Cmα 

  



 95

The rate dependent longitudinal stability derivative, Cmq, is presented in Figure 

4.41.  The estimates from STARS follow the general trend of the preflight predictions 

with the high and low Mach numbers corresponding well to the flight estimated values.  

However, at Mach 1.1, the flight data departs from the trend of the other methods and 

predicts a smaller magnitude pitch-damping coefficient.  The discrepancies in the 

subsonic case have vanished as flight, STARS, and predicted values correspond nicely as 

do the values at Mach 1.3. 

 

 
Figure 4.41:  Comparison of Flight Test Data to STARS Estimates for Cmq 

Little discussion is needed for Figure 4.42, as the predictions by STARS of Clβ 

match the flight-determined values very well, and nicely follow the same trend as the 

predicted values.  The altitude effects predicted but not seen in the flight-data could be 

investigated with STARS by simply changing the acoustic speed and density of the free 

stream; however, the current focus is on the prediction of stability derivatives at 15,000ft. 
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Figure 4.42:  Comparison of Flight Test Data to STARS Estimates for Clβ 

In the comparison of Cnβ found in Figure 4.43, the canopy effects must be 

considered.  As less canopy area exists for the STARS model, STARS should and does 

predict a more stable, more positive, derivative at all Mach numbers.  The trend in all the 

data is again quite similar, but the magnitude of the difference changes from the 0.9 and 

1.3 case to the 1.1 case indicating that some other effect is taking place. 

 

 
Figure 4.43:  Comparison of Flight Test Data to STARS Estimates for Cnβ 
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Figure 4.44 and Figure 4.45 contain the roll rate stability derivatives for roll 

moment and yaw moment, respectively.  For all but two data points, Clp at Mach 0.9 and 

Cnp at Mach 1.3, the STARS estimations satisfactorily match the flight determined 

stability derivatives and the predicted trends.  While the cause is unknown, these 

discrepancies can again be attributed to grid refinement or differences in geometry.   

 

 
Figure 4.44:  Comparison of Flight Test Data to STARS Estimates for Clp 

 

 
Figure 4.45:  Comparison of Flight Test Data to STARS Estimates for Cnp 
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The yaw rate stability derivatives for roll moment and yaw moment can be seen in 

Figure 4.46 and Figure 4.47, respectively.  In all cases, the stability derivatives estimated 

by STARS match the flight estimated values and the predicted trends.  The only data 

point of concern is the Cnr estimate at Mach 1.3 which lies within 7% of the predicted 

values but is further from the cluster of flight generated data. 

 

 
Figure 4.46:  Comparison of Flight Test Data to STARS Estimates for Clr 

 
Figure 4.47:  Comparison of Flight Test Data to STARS Estimates for Cnr 

Except for the few points discussed, the decoupled boundary condition 

specification method accurately predicted the small rate effects.  These important 

damping terms are sometime neglected in analysis simply due to the difficulty in 

predicting them.  With further grid refinements and the non-inertial rate specification, 

even more accurate results can be expected at a moderate increase in the time investment.  



 99

Since the transpiration steady and quasi-steady values are available, the time required to 

converge the non-inertial solver will be reduced significantly. 

The real power of this method is the ability to estimate the rate dependent stability 

derivatives without any prior values, excitation signals, or models.  While some methods 

require initial values for the stability derivatives in order to produce an estimate, this 

method generates accurate estimates without prior knowledge.  Crafting an excitation 

signal to properly excite the system is no longer required.  And, the model type, level of 

convergence, and parameter identification are not potential sources of error.  The level of 

accuracy demonstrated in the above figures and the capability to estimate, in a simple 

process, the stability derivatives of a full aircraft in the transonic regime in a timely and 

cost efficient manner is quite excellent.  Theoretical methods, such as Theodorsen�s are 

limited to simple geometries and flow regimes.  Datcom methods cannot predict the 

stability derivatives is the transonic range for a comparison with the STARS data, as such 

experimental data, with its inherent uncertainty, is the only viable means of comparison.  

While flight-testing cannot be eliminated, given better initial estimates, the experiments 

can be conducted more safely and efficiently. 
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CHAPTER 5 

5CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In this thesis, two computational methods for estimating the quasi-steady aircraft 

stability derivatives from finite element analysis were developed and examined.  The first 

method relied heavily on experimental techniques and consisted of the following steps 

using the non-inertial Euler3d flow solver: excite each degree of freedom of the system 

with the dc-chirp, fit an ARMA model to the data, and extract the stability derivatives 

from the ARMA model coefficients.  While this method can accurately estimate the 

dominate stability derivatives, the excitation required to properly identify smaller, yet 

still important, damping terms leads to extremely small time steps, tremendous amounts 

of unsteadiness, and under extreme excitation failure of the ARMA model to fit the data.  

This method can still be used if the unsteady model desired instead of the quasi-steady 

stability derivatives.  As the objectives of this research were to develop a robust and 

efficient means for estimating stability derivatives over a broad range of Mach numbers 

without prior estimates, another method was sought to better capitalize on the benefits of 

the computational implementation. 

The second method eliminated the problems of the first method by decoupling the 

velocity and position boundary conditions.  Although it cannot be done physically, 

computationally, velocity and position can be excited separately.  Now, the rate effects do 
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not have to compete with the position effect in order to be captured.  The method was 

further refined and simplified by removing the dc-chirp and ARMA model.  Instead, the 

steady or quasi-steady loads were determined due to a constant input angle or rate while 

holding the other terms constant.  The derivatives are then estimated by the finite 

difference approximation between two converged runs at different conditions.  

Decoupling the boundary conditions removes the higher order terms not contained in the 

stability derivative analysis, and allows the effects of position and rate to be determined 

independently.  This method accurately predicted the stability derivatives of geometries 

with varying levels of complexity over a broad range of Mach numbers including the 

transonic regime.  By agreeing with fundamental theory, Datcom methods, simple 

predictions, and flight test data, the method of decoupled boundary condition 

specification has shown itself to be an accurate an efficient means of predicting stability 

derivatives, especially rate dependent stability derivative, which are difficult to predict. 

5.2 Recommendations 

For complex geometries such as the F-18, generating the computer model can 

require more time than the actual stability derivative analysis.  In order to reduce the 

time, costs, and repetitiveness of this portion of the process, it is recommended that a 

program be written that can convert the geometry of an aircraft from a CAD program, 

such as CATIA or ProE, to the files necessary for generating the STARS model.  Also, 

the time to converge a solution for a complex aircraft with a refined grid could prevent 

any useful investigation.  As such, the benefits of domain decomposition should be 

investigated.  If multiple computers are working the same problem simultaneously, 

results could be obtained in a more timely fashion. 
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The next logical step beyond decreasing the time required for a stability derivative 

analysis is the inclusion of control derivatives.  This process could be very similar to the 

stability derivative estimation process in that the position and rate effects of the control 

surface could be excited independently of each other and separate from the vehicle�s 

position and velocity.  Control surface motion could be simulated through transpiration 

while the vehicle�s motion described by the non-inertial formulation.  Better estimates of 

the stability and control derivative will help in the design of better control laws for 

various configurations at various flight conditions, and discovering stability and control 

issues early in the design phase can save a great deal of time and resources. 
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APPENDIX A: 

THIN AIRFOIL THEORY FOR CONSTANT PITCH RATE 

The notation for thin airfoil theory equations is represented in the following figure 

of a thin flat plate with the origin at the leading edge.  The origin of rotation is shown 

with the positive orientation for pitch rate q.  The distance from the leading edge to the 

origin of rotation is positive l for rotation aft of the leading edge and negative fore of the 

leading edge.  The chord length is represented by c. 

X 

Z

-l c

q 

U

 
 

Following the standard process for thin airfoil theory, the equivalent camber can 

be described by the equation below assuming small angle approximation for angle of 

attack, alpha. 

( )xlq
U
v

U
v

dx
dz −⋅=≈= tan  

Using the standard coordinate transformation x = c / 2 * (1 - cos(θ)), the above 

expression becomes the following. 
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( ) ( )θcos1
2

−⋅−⋅=
U

qc
U

lq
dx
dz  

This equation is evaluated in the standard thin airfoil theory equations for A0, A1, and A2, 

the results of which are used in the CmLE and Cl equations, all of which are repeated 

below with a general Cm equation for the moment about the rotation point. 

∫ ⋅−=
π

θ
π

α
0

0
1 d

dx
dzA ,    ∫ ⋅⋅=

π

θθ
π 0

1 cos2 d
dx
dzA ,    and    ∫ ⋅⋅=

π

θθ
π 0

2 2cos2 d
dx
dzA  





 −+−=

22
2

10
AAACmLE

π ,     



 +=

2
2 1

0
AACl π ,     and     

c
lCCC lmLEm ⋅+=  

With the equivalent camber definition at zero angle of attack, the above equation evaluate 

to the following. 

U
ql

U
qcA −=
20 ,       

U
qcA
21 = ,       and       021 =A  

2

2
12







 −





−=

c
l

U
cCm

π  

Finally, the stability derivative Cmq is as follows. 

2

2
142







 −





−=⋅=

c
l

c
U

dq
dCC m

mq π  
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APPENDIX B: 

DATCOM CALCULATIONS FOR ISOLATED SURFACES 

 

The following is the MathCAD workspace used to calculate the Datcom estimates 

for the stability derivatives of the isolated surfaces.  The page numbers for the equations 

obtained from the Datcom are presented next to the equation.  The subscript w refers to 

the wing, v refers to the vertical tail, and h refers to the horizontal tail.   
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Input parameters and initial calculations: 

halfsweepv atan
1
3






:=halfsweeph atan
1
8






:=halfsweepw 0:=qsweep w 0:=

4.1.3.2-3k
Clalpha.Ma B⋅

2 π⋅
:=

4.1.1.2-1Clalpha.Ma
Clalpha

B
:=Clalpha .109

180
π

⋅:=

zw .5
bw
2

sin gama( )
2

⋅−:=gama 5
π

180
⋅:=ARv

bv
2

Sv
:=ARh

bh
2

Sh
:=ARw

bw
2

Sw
:=

lw .5:=lh 8.875:=lv 9.5:=zv
3
2

:=bv 3:=bh 4:=bw 8:=

B 1 Ma2−( ).5
:=cbarw 2:=Sh 6:=Sv 6:=Sw 16:= Q .5 roe⋅ U0

2⋅:=

roe 1.146 10 7−×:=U0 13392Ma⋅:=Ma .4:=

 
 

CLalpha.w
ARw 2⋅ π⋅

2 ARw
B
k

⋅





2
1

tan halfsweepw( )( )2

B2
+











⋅ 4++

:= 4.1.3.2-49

CLalpha.w 4.056=

CLalpha.v
ARv 2⋅ π⋅

2 ARv
B
k

⋅





2
1

tan halfsweepv( )( )2

B2
+











⋅ 4++

:=

CLalpha.v 2.102=

CLalpha.h
ARh 2⋅ π⋅

2 ARh
B
k

⋅





2
1

tan halfsweeph( )( )2

B2
+











⋅ 4++

:=

CLalpha.h 3.23=
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Longitudinal Stability Derivative Calculations: 

Cmalpha.w
lw− CLalpha.w⋅

cbarw
:= 4.1.4.2-1

Cmalpha.w 1.014−=

Cmalpha.h
lh− CLalpha.h⋅

cbarw

Sh
Sw

⋅:= 4.5.2.1-2

Cmalpha.h 5.375−=

Cmalpha Cmalpha.w Cmalpha.h+:=

Cmalpha 6.389−=

Cmq.w .7− Clalpha⋅ cos qsweep w( )⋅ ARw

.5
lw

cbarw
⋅ 2

lw
cbarw









2

⋅+










ARw 2 cos qsweep w( )⋅+
⋅ 0+

1
8

+













⋅
1
B

⋅:= 7.1.1.2-2

Cmq.w 1.391−=

Cmq.h 2−
lh

cbarw









2

⋅
Sh
Sw

⋅ CLalpha.h⋅:= 7.4.1.2-1

Cmq.h 47.703−=

Cmq Cmq.w Cmq.h+:=

Cmq 49.095−=  
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Yaw Moment Stability Derivative Calculations: 

Cnbeta.w 0:=
at zero lift   5.1.3.1-1

Cybeta.v CLalpha.v−
Sv
Sw

⋅:= 5.3.1.1-3

Cnbeta.v Cybeta.v−
lv
bw

⋅:= 5.6.3.1-1

Cnbeta.v 0.936=

Cnbeta Cnbeta.w Cnbeta.v+:=

Cnbeta 0.936=

Cnr.w 0:=
at zero lift   7.1.3.3-2

Cnr.v 2
lv
bw









2

⋅ Cybeta.v⋅:= 7.4.3.3-1

Cnr.v 2.223−=

Cnr Cnr.w Cnr.v+:=

Cnr 2.223−=  
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Roll Moment Stability Derivative Calculations: 

Clr 0.351=

Clr Clr.w Clr.v+:=

Clr.v 0.351=

7.4.3.2 1−Clr.v 2− lv⋅ zv⋅
Cybeta.v

bw
2

⋅:=

7.1.3.2 1−negligible at zero aoaClr.w 0:=

Clbeta 0.197−=

Clbeta Clbeta.w Clbeta.v+:=

Clbeta.v 0.148−=

at zero aoa 5.3.2.1 2−Clbeta.v Cybeta.v
zv
bw

⋅:=

Clbeta.w 0.049−=

5.1.2.1 2−at zero aoaClbeta.w gama dihedeff⋅
1802

π
2

⋅ compcor⋅:=

5.1.2.1 30a−compcor 1
.1
4

+:=

5.1.2.1 29−dihedeff .00015−
.00005

3
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APPENDIX C: 

DATCOM CALCULATIONS INCLUDING INTERFERENCE 

 

The following is the MathCAD workspace used to calculate the Datcom estimates 

for the stability derivatives including the available interference approximations.  The 

page numbers for the equations obtained from the Datcom are presented next to the 

equation.  The subscript w refers to the wing, v refers to the vertical tail, and h refers to 

the horizontal tail. 
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Input parameters and initial calculations: 
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
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Longitudinal Stability Derivative Calculations: 

Cmq 49.095−=

Cmq Cmq.w Cmq.h+:=Cmq.h 47.703−=
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cbarw
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



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Cmalpha 4.304−=

Cmalpha Cmalpha.w Cmalpha.h+:=

Cmalpha.h 3.29−=

Cmalpha.h
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cbarw

Sh 1 down_wash−( )⋅

Sw
⋅:=

4.5.2.1-2

4.4.1 7−down_wash .38785:=

Cmalpha.w 1.014−=
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Yaw Moment Stability Derivative Calculations: 

Cnr 2.745−=

Cnr Cnr.w Cnr.v+:=

Cnr.v 2.745−=

7.4.3.3-1Cnr.v 2
lv
bw









2

⋅ Cybeta.v⋅:=

at zero lift   7.1.3.3-2Cnr.w 0:=

Cnbeta 1.156=

Cnbeta Cnbeta.w Cnbeta.v+:=

Cnbeta.v 1.156=

5.6.3.1-1Cnbeta.v Cybeta.v−
lv
bw

⋅:=

5.3.1.1-3Cybeta.v CLalpha.v−
Sv side_wash( )⋅

Sw
⋅:=

5.4.1-1side_wash .724 3.06

Sv
Sw








1 cos qsweep w( )+

⋅+ 0+ .009 ARw⋅+:=

CLalpha.v
ARv.eff 2⋅ π⋅

2 ARv.eff
B
k

⋅





2
1

tan halfsweepv( )( )2

B2
+











⋅ 4++

:=

ARv.eff 1.365=

5.3.1.1-2ARv.eff body intfer ARv⋅ 1 KH htailintfer 1−( )⋅+ ⋅:=

5.3.1.1-22KH .9:=htailintfer .9:=body intfer 1:=

at zero lift   5.1.3.1-1Cnbeta.w 0:=
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Roll Moment Stability Derivative Calculations: 

Clr 0.433=

Clr Clr.w Clr.v+:=

Clr.v 0.433=

7.4.3.2 1−Clr.v 2− lv⋅ zv⋅
Cybeta.v

bw
2

⋅:=

7.1.3.2 1−negligible at zero aoaClr.w 0:=

Clbeta 0.231−=

Clbeta Clbeta.w Clbeta.v+:=

Clbeta.v 0.183−=

at zero aoa 5.3.2.1 2−Clbeta.v Cybeta.v
zv
bw

⋅:=

Clbeta.w 0.049−=

5.1.2.1 2−at zero aoaClbeta.w gama dihedeff⋅
1802

π
2

⋅ compcor⋅:=

5.1.2.1 30a−compcor 1
.1
4

+:=

5.1.2.1 29−dihedeff .00015−
.00005

3
−:=
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