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NOMENCLATURE

R : Set of real numbers.

λmin(M) : Minimum eigenvalue of matrix M.

λmax(M) : Maximum eigenvalue of matrix M.

(∆A)max : Maximum possible deviation in A.

MT : Transpose of matrix M.

E : Modulus of elasticity.

A : Cross-sectional area of web.

Ji : Polar moment of inertia of downstream roller ofi-th web span.

ni : Torque ratio from motor shaft to downstream driven roller ofi-th web span.

Li : Length ofi-th web span.

Ri : Radius of roller downstream toi-th web span.

bf i : Bearing friction ini-the roller.

ti : Web tension (force) ini-th web span.
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tri : Reference or steady state operating tension.

Ti : Change in tension from steady state.

τi : Motor torque applied on downstream roller ofi-th span.

Ui : Change in input torque from steady state.

ωi : Angular velocity of thei-th roller.

vi : Web velocity in immediate vicinity of downstream roller ofi-th span.

vri : Reference or steady state operating web velocity.

Vi : Change in web velocity from operating value.

t : Time.
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CHAPTER 1

INTRODUCTION

The last century saw revolutionary progress in technology, which has transformed yes-

terday’s inventions into today’s inseparable needs of human life. For example, invention

of ‘controlled’ flight by Wright Brothers was followed by establishment of huge aerospace

industry and this led to the problem of handling the network of large number of aircrafts

flying in the sky. Similar situation arose in the automobile industry, which has produced

innumerable vehicles. Regulation of a large number of vehicles is becoming a tough chal-

lenge for the transportation industry. An exponential rise in the number of such smaller

systems is clearly visible in many areas such as manufacturing systems, information sys-

tems and telecommunication systems. In such situations, it is possible to define subsys-

tems which interact with each other to form large-scale systems. Such large-scale systems

are emerging with great importance in both physical as well as social sciences. Power

networks, Heating, Ventilation and Air Conditioning (HVAC) systems, multiple aircraft

formation systems, wireless telecommunication systems, Intelligent Vehicle and Highway

Systems (IVHS) are some of the examples of physical systems, whereas, ecological pop-

ulation systems and global economic systems are examples in the social sciences. With

rapid changes in the information systems and computers, internet is becoming one of the

biggest large-scale system. Scientific analysis of large-scale systems is critical to making

progress in many fields because of their wide range of applications. One aspect of such

analysis is connective stability. A large-scale system is said to be connectively stable if it

is stable for all possible interconnections among subsystems [1].

A large-scale system consists of a number of interconnected subsystems and it is typ-
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ically characterized by a large number of state and input variables. Complexities in large-

scale systems can make their analysis tedious and numerically intractable. Hence, the study

of large-scale systems is usually simplified by decomposing them into a number of smaller

interconnected subsystems. Decomposition of a large-scale system is a difficult task and

needs scientific insight into the system behavior. This is because the same large-scale sys-

tem can be decomposed into subsystems in more than one way. A unified decomposition

scheme to yield optimum configuration is not available. One of the criteria behind such

decomposition process is that each subsystem must be easy to analyze and the collective

behavior of all subsystems, through certain interactions, must represent the overall sys-

tem behavior. Some large-scale systems can be decomposed into subsystems which have

a physical meaning attached to them. Such decomposition is known as physical decom-

position. As noted in [1], physical decomposition of some of the large-scale systems may

not always result in subsystems which are simple to analyze. In such cases, mathematical

decomposition can be achieved through transformations of the original physical variables

to obtain new variables of the subsystems that are simple to analyze. However, this new

transformed large-scale system may lose much of the physical meaning.

Interconnections and coordination among constituting subsystems plays an important

role in the study of any large-scale system. For example, consider a flight formation system

as shown in a Fig. 1.1 in which each individual aircraft can be considered as a subsystem.

The overall shape of the formation is decided by the trajectory of each aircraft relative

to the trajectories of the other aircrafts. If any one of the aircrafts fails to achieve a required

position relative to the position of the other aircrafts, formation in the sky will go out of

the desired shape. This example addresses a very important issue of coordination among

subsystems, which affects the total behavior of entire large-scale system. Hence, along

with the analysis of each individual subsystem, it is also important to study the nature of

interactions among subsystems to understand overall behavior of the large-scale system.

Control is an important aspect in the operation of all large-scale systems. Extensive
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Figure 1.1: Flight formation of aircrafts.

and well-directed research is trying to extend existing control theory to develop systematic

analysis and control methodologies to handle complexities in large-scale systems. Towards

design of efficient controllers for large-scale systems, one should consider some key chal-

lenges such as

(i) flexibility in control design approach,

(ii) uncertainty in information exchange,

(iii) reliability and robustness,

(iv) cost of implementation.

The structure of the large-scale system changes due to addition or removal of subsys-

tems. It is desirable that the control algorithm be able to handle such changes without

substantial redesign. Inclusion of such flexibility in control design demands development

of a systematic methodology for control of large-scale systems.

The overall behavior of a large-scale system depends upon the information exchange

among constituent subsystems. This assumes utmost importance in cases where subsys-

tems are located widely apart or remote to controller, thus, giving rise to unwanted signal

delays, attenuation of the signal and lower signal to noise ratio. Such corrupted knowledge
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of exchanged information may not be useful to a controller and may cause instability of the

closed loop system.

Failure of one subsystem may adversely affect the performance of other subsystems;

in extreme situations, overall large-scale system may become unstable. It is a challenging

task to design a controller, which will ensure robust stability and reliable performance of a

large-scale system against failure of individual subsystem(s). This problem is compounded

with the massive nature of large-scale systems and possibility of erroneous information

exchange.

The speed and number of computations involved in a control algorithm are crucial fac-

tors affecting real-time implementation. Revolutionary inventions in computing speeds of

microprocessors and the memory capacity of data storage elements have eased the job of

control of large-scale systems. But use of such sophisticated equipments alone may not

form an efficient solution in all situations mainly because of economic reasons. Moreover,

a control designer has to develop control schemes that lead to minimal cost of computer in-

terfacing and wiring which otherwise may increase exponentially with increase in the com-

plexity of large-scale systems. Thus, the main challenge encountered by a control designer

is to develop efficient controller schemes for large-scale systems that can be implemented

with minimal cost and resources. The need for a systematic mathematical formulation in-

cluding computational and computer interfacing cost with respect to a cost minimization

design, was first addressed in [2].

Motivated by these challenges, many control strategies have been developed in the past

few years. In a broad sense, control methods for large-scale systems can be categorized

into two basic approaches: 1) Centralized control schemes and 2) Decentralized control

schemes.

In centralized control schemes, the large-scale system is considered with its aggregate

model as a Multi-Input Multi-Output (MIMO) system. Centralization of all the feedback in-

formation is the basic assumption in this approach.H∞ Robust controller design, LQG/LTR
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design, Lyapunov design are some of the attractive techniques used to design reliable and

robust controllers for linear and nonlinear large-scale systems. Using centralized design

approach, computational efforts increase tremendously with increase in complexity and

extent of large-scale systems. Even for a small modification in the large-scale system, en-

tire control algorithm may have to be redesigned from scratch. The centralized control

schemes, in their traditional approach, do not provide affirmative answers to the challenges

encountered in the control of large-scale systems.

In decentralized control schemes, decomposition of a large-scale model is achieved

first and then the controller for each individual subsystem is designed in such a way that

it makes use of local available information only. The underlying feature of a decentralized

control scheme is that it does not require any information from other subsystems and thus,

problem of imperfect information exchange does not arise at all. However, this poses an-

other challenge of maintaining connective stability of overall large-scale system without

using information from other subsystems. Essentially, the decentralized scheme makes use

of (1) the decomposed structure of the large-scale system and (2) ideas from the classical

centralized control theory. It may be noted that each subsystem in itself could be a multi-

input multi-output system. Thus, decentralized control schemes provide convenient feature

of extending the classical control theory to find affirmative answers to the challenges in

control of large-scale systems. A brief review on the literature of decentralized controllers

is given below.

1.1 Past Research in Decentralized Controllers

Development of decentralized control theory based on the fundamental knowledge of

the centralized control theory is the chief motive behind vast research done in this field.

In late 1960’s, study on decentralized controllers and decomposition structure started ger-

minating. Early challenges faced in development of decentralized control were addressed

in [2], which also showed early direction of research in decentralized control theory. The

5



basic framework of decentralized controller was systematically laid down in [1] where

application of decentralized controllers for a variety of fields such as power networks,

spacecraft systems was discussed. Most recent applications of decentralized controllers

include wafer temperature for multi-zone rapid thermal processing systems [3], platoons

of underwater vehicles [4], and cooperative robotic system [5]. Research on decentral-

ized controllers is not only concentrated on special applications but the general classes of

large-scale systems were also studied.

Generalized results in decentralized control theory started evolving with classical re-

sults on linear time invariant large-scale systems. Necessary and sufficient conditions for

existence of stabilizing decentralized controllers for linear time invariant systems (LTI)

were proposed in [6] with the introduction of the concept offixed modes. Fixed modes are

defined in association with a decentralized control system in which linear, constant gain,

state feedback controllers are used. Modes of the closed loop large-scale systems, which

cannot be influenced by a decentralized control scheme are known as “fixed modes”. By

definition, these are analogous to centralized fixed modes and further it was shown in [6]

that, like the centralized case, decentralized fixed modes are unmovable. It was shown in [7]

that these fixed modes are unmovable if constant state-feedback gains are used. However,

with time-varying gains, the fixed modes associated with the decentralized control sys-

tem can be eliminated. Elimination of fixed modes using time varying gains was also

achieved independently in [8]. Later, many types of fixed modes were explored during ex-

tensive work on large-scale systems. In these works, existence of stabilizing decentralized

controllers for linear time invariant large-scale systems was investigated extensively. Two

aspects of decentralized control were addressed: 1)Which kind of fixed modes can be elim-

inated? 2) And what kind of controllers should be used? It is shown in [9] that all of the

fixed modes except those associated with unstable zeros of complementary subsystems can

be be stabilized by periodically time varying decentralized state feedback controllers. Later

it was shown in [10] that if fixed modes associated with decentralized large-scale systems
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cannot be eliminated by periodically time varying state feedback law, then no controller

can eliminate them. It is important to note that the classical concept of fixed modes and

relevant literature is developed for linear, time invariant large-scale systems.

Motivated by the success of decentralized control schemes for LTI systems, efforts

were made to develop decentralized control schemes for nonlinear large-scale systems.

The first result, which systematically extends classical centralized adaptive control theory

to decentralized adaptive control, was developed in [11]. But the result in [11] was obtained

for the class of large-scale systems in which isolated subsystems have relative degree less

than or equal to two.

Later, results on decentralized adaptive control were developed for more generalized

class of large-scale systems in which Lyapunov analysis played an important role. Condi-

tion on relative degree of isolated subsystems was relaxed in [12] to obtain a decentralized

adaptive controller. A class of large-scale systems in which matched interconnections and

uncertainties are assumed to be bounded by the higher order polynomial in the norms of

states. The matching condition is said to be satisfied if interconnections and uncertain-

ties enter into the subsystem at the same point where decentralized control input enters

into the subsystem. Decentralized control of large-scale systems with matched condition

was investigated quite rigourously in the past [13–16] subjected to certain class of large-

scale systems. Global decentralized adaptive control was obtained in [13] where a class

of nonlinear systems was considered which can be transformed using a global diffeomor-

phism to the output feedback canonical form, where interconnections are the functions of

a subsystem output only. Decentralized Model Reference Adaptive Control (MRAC) was

considered in [14–16], which developed decentralized adaptive control schemes for a class

of systems in which the matching condition is satisfied. Lower order control law was de-

veloped in [17] to show semi-global stability for the case of large-scale systems with higher

order interconnections. The sliding mode technique was used in [18] to develop a low order

controller.
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1.2 Application: Web Processing Lines

A web is any material which is manufactured and processed in continuous, flexible

strip form. Examples include paper, plastics, textiles, strip metals, and composites. A

typical web material used in packaging industry is shown in Fig. 1.2. Web handling refers

Figure 1.2: Web material.

to the physical mechanics related to the transport and control of web materials through

processing machinery. Web processing pervades almost every industry today. It allows us

to mass produce a rich variety of products from a continuous strip of material. Products

that include web processing somewhere in their manufacturing include aircraft, appliances,

automobiles, bags, books, diapers, boxes, newspapers, and many more. Web tension and

velocity are two key variables that influence the quality of the finished web and hence the

products manufactured from it.

Early development of mathematical models for longitudinal dynamics of a web can

be found in [19–22]. In [19], a mathematical model for longitudinal dynamics of a web

span between two pairs of pinch rolls, which are driven by two motors, was developed.

This model did not predict tension transfer and did not consider tension in the entering

span. A modified model that considers tension in the entering span was developed in [21].

In [22], the moving web was considered as a moving continuum and general methods of

8



continuum mechanics were used in the development of a mathematical model. The study

in [22] included the steady state and transient behavior of tensile force, stress, and strain in

a web as functions of variables such as wrap angle, position and speed of the driven rollers,

density, cross-sectional area, modulus of elasticity and temperature. In [23], equations

describing web tension dynamics are derived based on the fundamentals of web behavior

and the dynamics of the drives used for web transport; an example system was considered

to compare torque control versus velocity control of a roll for regulation of tension in a web.

Non-ideal effects such as temperature and moisture change on web tension were studied

in [24]; based on the models developed, methods for distributed control of tension in multi-

span web transport systems were studied. An overview of lateral and longitudinal dynamic

behavior and control of moving webs was presented in [25]. A review of the problems in

tension control of webs can be found in [26]. A robust centralizedH∞ controller for a web

winding system consisting of an intermediate driven roller and unwind/rewind rolls was

proposed in [27].

1.3 Contributions

Literature review of the developments in decentralized control strategies reveals the fact

that decentralized control problem with unmatched interconnections is not studied compre-

hensively. Lack of concrete results in this area inhibited entry of rigorous control theory

into many large-scale system applications, one of which is web processing lines. The basic

problem is that the web handling dynamics do not satisfy matching conditions, hence most

of the decentralized control theory remains unapplicable. This gives a strong motivation to

obtain reliable strategies for decentralized control of large-scale systems where matching

conditions are not satisfied. In this respect, the contributions of the research work involved

in this thesis are summarized next.

1. An adaptive decentralized state-feedback regulator is developed for a class of large-

scale systems, with unmatched and linear interconnections. Global asymptotic sta-
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bility is shown using Lyapunov analysis.

2. Model reference adaptive controller is developed for a class of large-scale systems,

with unmatched and linear interconnections. A new “modified reference model” is

proposed to solve the exact tracking problem in the presence of unmatched intercon-

nections.

3. An adaptive decentralized state-feedback regulator is developed for a class of large-

scale systems with unmatched and nonlinear interconnections. Depending upon prior

knowledge of interconnecting parameters, four different conditions, under which sys-

tem is semi-globally stable, are obtained.

4. A model for the unwind (rewind) roll is developed by explicitly considering the vari-

ation of radius and inertia resulting from release (accumulation) of material to (from)

the process.

5. Systematic decentralized control algorithms are developed for web processing lines.

A strategy for computing the equilibrium inputs and reference velocities based on the

reference of the master speed roller, which sets the desired web transport velocity for

the line, is given.

6. The proposed decentralized controllers are implemented on an actual web handling

platform (Fig. 1.3), which mimics most of the features of an industrial web process-

ing line.

7. Extensive experiments were conducted to validate the decentralized controllers pro-

posed in this thesis. The results show substantial improvements in the tension error

regulation than existing two-loop, industrial PI controllers.
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Figure 1.3: A picture of the experimental web line
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CHAPTER 2

DESIGN OF DECENTRALIZED CONTROLLERS

In this chapter, stable decentralized controllers for a class of large-scale interconnected

systems are developed. Both linear and nonlinear interconnections are considered in the

development of the controllers. In the case of linear interconnections, control designs for

both adaptive state regulation and tracking are developed. For nonlinear interconnections,

a decentralized adaptive scheme that achieves semi-global stability under a set of necessary

and sufficient conditions is developed.

The following class of large-scale systems is considered:

Si : ẋi(t) = Aixi(t)+biui(t)+gi(t,x) (2.1)

wherexi(t)∈Rni andui(t)∈R are the state vector and input vector, respectively, of thei-th

subsystem ,i ∈ I = {0,1, ...,N} andgi(t,x) is theunmatchedinterconnection function. The

constant vectorsbi ∈Rni are assumed to be known. The total state vector of the entire large-

scale system is denoted byx∈ Rn and given in terms of the local states of the subsystems

asxT = [xT
0 ,xT

1 , ...,xT
N]. Thus, the dynamics of each subsystem consists of two parts. The

first part is a linear system of local states,xi . The second part consists of interconnections

betweeni-th subsystem and other subsystems, given bygi(t,x).

Depending upon the type of interconnections, i.e., whethergi(t,x) is linear or nonlinear,

the following decentralized control schemes are developed. A decentralized adaptive con-

troller that achieves state regulation is developed for large-scale systems with unmatched

linear interconnections. A new model reference decentralized adaptive controller (MRAC)

is also developed. The decentralized MRAC scheme is unique in the sense that the ref-

erence model contains information exchange between subsystems, i.e., each subsystem in

12



the reference model exchanges its reference information with other subsystems. A semi-

globally stable adaptive state feedback controller withunmatched nonlinear interconnec-

tions, each interconnection functiongi(t,x) is assumed to be a higher order polynomial in

statex, is developed in section 2.3.

2.1 Preliminaries

The following two lemmas are important in establishing necessary and sufficient con-

ditions that ensure stability of the overall large-scale system for the proposed controllers,

which will be given in subsequent sections.

Lemma 2.1.1 Consider the Algebraic Ricatti Equation

A>P+PA+PRP+Q = 0. (2.2)

If R= R> ≥ 0, Q = Q> > 0, A is Hurwitz, and the associated Hamiltonian matrixH =


A R

−Q −A>


 is hyperbolic, i.e.,H has no eigenvalues on the imaginary axis, then there

exists a uniqueP = P> > 0, which is the solution of the ARE(2.2).

If A = Ami, Q = ξ 2
i I andR= NI, then the following lemma gives a computable condition

under which the Hamiltonian matrixHi =




Ami NI

−ξ 2
i I −A>mi


 is hyperbolic.

Lemma 2.1.2 Hi is hyperbolic if and only if

min
ω∈R

σmin(Ami− jω I) > ξi
√

N > 0 (2.3)

Lemma 2.1.2 is a special case of Theorem 2 in [28] and is obtained by settingC = 0 in that

Theorem.

Remark 2.1.1 An efficient numerical algorithm for computation ofminω∈Rσmin(Ami−
jωI) using the bisection method can be found in [29].
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Lemma 2.1.3 [17] The following inequality is true for anyzi ∈ Rni , zj ∈ Rn j and any

positive integersN andk:

N

∑
i=0
||zi ||

N

∑
j=0
||zj ||k ≤ (N+1)

N

∑
i=1
||zi ||k+1 (2.4)

Claim 2.1.1 The following inequality is true for any positive integersi, j and p, zi ∈ Rni ,

zj ∈ Rn j , andαi ∈ Γ = {x∈ R : x≥ 1}:

αi ||zi ||||zj ||p +α j ||zi ||p||zj || ≤ α2
i ||zi ||p+1 +α2

j ||zj ||p+1 (2.5)

The following steps show that the claim is true:

α2
i ||zi ||p+1 +α2

j ||zj ||p+1−αi ||zi ||||zj ||p−α j ||zi ||p||zj ||

≥ α2
i ||zi ||p+1 +α2

j ||zj ||p+1−αiα j ||zi ||||zj ||p−α jαi ||zi ||p||zj ||

= (αi ||zi ||p−α j ||zj ||p)(αi ||zi ||−α j ||zj ||)≥ 0 (2.6)

Claim 2.1.2 The following inequality is true for anyzi ∈ Rni , zj ∈ Rn j and any positive

integersN andk:
N

∑
i=0

αi||zi ||
N

∑
j=0
||zj ||k ≤ (N+1)

N

∑
i=1

α2
i ||zi ||k+1 (2.7)

Claim 2.1.2 can be shown using induction procedure onN by repeated use of (2.5).

2.2 Decentralized Controllers for Large-Scale Systems with Linear

Interconnections

In this section decentralized adaptive controllers are developed for large-scale systems

represented by equation (2.1), in which each nonlinear interconnection functiongi(t,x) is

assumed to be linear, that is,gi(t,x) = ∑N
j=0, j 6=i Ai j x j(t). Hence, each subsystem of the

large-scale system can be written as

Si : ẋi(t) = Aixi(t)+biui(t)+
N

∑
j=0, j 6=i

Ai j x j(t) (2.8)
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The system matricesAi contain some parameters, which are not known but it is assumed

that the structures of matricesAi are such that pairs(Ai ,bi) are controllable for alli. With

this assumption, a decentralized adaptive controller for state regulation and a model refer-

ence decentralized adaptive controller for state tracking are given in the following sections.

2.2.1 Decentralized adaptive state regulation

In this case, it is assumed thatAi j are unknown but bounds on them are known, that is,

the existence and knowledge of positive numbers,ηi j , are known such that

η2
i j ≥ λmax(AT

i j Ai j ) (2.9)

Controllability of each pair(Ai ,bi) implies that one can assign the eigenvalues ofAi arbi-

trarily using state feedback gainki as

Āi = Ai−bik
T
i (2.10)

whereĀi is an asymptotically stable subsystem matrix. The gain vectorki is not known

exactly becauseAi is uncertain.

Choose the control inputs (2.11) where the adaptation law (2.12) is used to obtain an

estimate,̂ki(t), of ki andPi is a positive definite gain matrix.

ui(t) =−k̂T
i xi(t) (2.11)

˙̂ki(t) =−(xT
i (t)Pibi)xi(t) (2.12)

Using (2.10) and defining the gain estimation error ask̃i(t) = ki− k̂i(t), the state dynamics

for each subsystem upon simplification becomes

ẋi(t) = Āixi +bi k̃
T
i xi +

N

∑
j=0, j 6=i

Ai j x j(t) (2.13)

To prove the stability of the state dynamics (2.13) fori ∈ I , consider the following

Lyapunov function candidate

V(x, k̃) =
N

∑
i=0

xT
i Pixi + k̃T

i k̃i (2.14)
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wherePi is positive definite matrix. The derivative of the Lyapunov function candidate

along the trajectories of (2.13) and adaptation law (2.12) can be obtained as

V̇(x, k̃) =
N

∑
i=0

xT
i (ĀT

i Pi +PiĀi)xi +xT
i Pi

N

∑
j=0, j 6=i

Ai j x j(t)+

(
N

∑
j=0, j 6=i

Ai j x j(t)

)T

Pixi (2.15)

Using following inequality for matricesX andY

XTY +YTX ≤ XTX +YTY (2.16)

one can obtain the following bounds for the last term ofV̇:

N

∑
i=0


xT

i Pi

N

∑
j=0, j 6=i

Ai j x j(t)+

(
N

∑
j=0, j 6=i

Ai j x j(t)

)T

Pixi


≤

N

∑
i=0

xT
i (NPiPi)xi +

N

∑
i=0

N

∑
j=0, j 6=i

xT
j AT

i j Ai j x j

(2.17)

Last term in the above equation can be bounded as

∑
i

∑
j 6=i

xT
j AT

i j Ai j x j ≤∑
i

∑
j 6=i

η2
i j x

T
j x j = ∑

i

(
∑
j 6=i

η2
ji

)
xT

i xi

As a result,V̇ satisfies

V̇(x, k̃)≤
N

∑
i=0

xT
i

(
ĀT

i Pi +PiĀi +NPiPi +ξ 2
i I

)
xi (2.18)

whereξ 2
i = ∑N

j=0, j 6=i η
2
ji .

Therefore, we have the following. If there exist positive definite solutions,Pi , to the

Algebraic Ricatti Equations (AREs)

ĀT
i Pi +PiĀi +NPiPi +(ξ 2

i + εi)I = 0 (2.19)

then

V̇(x, k̃)≤−
N

∑
i=0

εix
T
i xi (2.20)

Hence, if there exist positive definite solutions,Pi , to the AREs (2.19),V(x, k̃) is a Lyapunov

function. As a resultxi(t) ∈L2∩L∞ for all i ∈ I . Further from the closed-loop dynamics

(2.13),ẋi(t) ∈L∞ for all i ∈ I . This implies thatlimt→∞ xi(t) = 0 for all i ∈ I .
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Using lemma 2.1.1 and lemma 2.1.2, it can be seen that there exist positive definite

solution to ARE (2.19) if

min
ω∈R

σmin(Āi− jωI) > ξi
√

N > 0 (2.21)

holds. Finally, the existence ofεi , i ∈ I , in the AREs (2.19) follows from the continuity of

the functionsfi(ξ 2
i ) := minω∈Rσmin(Ami− jωI)−

√
Nξ 2

i , that is, if there exists aξi such

that fi(ξ 2
i ) > 0, then there exists anεi > 0 such thatfi(ξ 2

i + εi) > 0.

Remark 2.2.1 Non-adaptive state regulation is a special case of the adaptive state regula-

tion. If the system matrices,Ai are known perfectly then one can directly compute the gains

ki exactly and no adaptation is required. Hence, control inputs can be chosen as

ui(t) =−kT
i xi(t) (2.22)

Stability proof is similar to that of the adaptive state regulation case, hence omitted. As

expected, the sufficient conditions are given by equation(2.21). Further, in this case one

can relax the condition that inputui is a scalar because the stability proof holds even for

ui(t) ∈ Rmi wheremi is number of inputs.

2.2.2 Model reference adaptive control: Modified reference model

For the development of MRAC scheme, interconnecting parameters,Ai j in equation

(2.8) are assumed to be known exactly. Further, each subsystem matrixAi ∈ Rni×ni are un-

known but it is assumed that constant vectorski ∈ Rni exist such that for a chosen asymp-

totically stable matrixAmi,

(Ai−Ami) = bik
T
i (2.23)

The entire large-scale system can be expressed as

S: ẋ(t) = Ax(t)+BU(t) (2.24)
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wherexT(t) = [xT
0 (t),xT

1 (t), . . . ,xT
N(t)], UT(t) = [u0(t),u1(t), . . . ,uN(t)], A is a matrix com-

posed of block diagonal matrix elementsAi and off-diagonal matrix elementsAi j , andB is

a block diagonal matrix composed ofBi . The pair(A,B) is assumed to be controllable.

Existing research [11, 14, 15] has considered the decentralized MRAC problem for

large-scale systems with a reference model given by

Smi : ẋmi(t) = Amixmi(t)+bir i(t) (2.25)

wherexmi(t) are the reference state vectors andr i(t) are bounded reference inputs. This

reference model is successfully used to show model reference adaptive control scheme for

large-scale systems with matched interconnections. In this thesis, to solve the unmatched

problem, the structure of the reference models is modified by making use of the known

interconnection matrices,Ai j , in the reference model. The modified reference model for

each individual subsystem,Smi, is described by the equations

Smi : ẋmi(t) = Amixmi(t)+bir i(t)−bik
T
mixm+

N

∑
j=0, j 6=i

Ai j xm j(t) (2.26)

wherekmi ∈Rn,n= ∑N
i=0ni andxT

m(t) = [xT
m0(t),x

T
m1(t), . . . ,x

T
mN(t)]. The reason for includ-

ing the termBikT
mixm in the reference model of each individual subsystem is to stabilize

the system matrix of the large-scale reference model. The reference model for the entire

large-scale system is given by

Sm : ẋm(t) = Amxm(t)+Br(t)−BKT
mxm (2.27)

whererT(t) = [r0(t), r1(t), . . . , rN(t)], Km = [km0,km1, . . . ,kmN], and

Am =




Am0 A01 A02 . . . A0N

A10 Am1 A12 . . . A1N

. . .

AN0 AN1 . . . . AmN




.
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Notice that ifAm is not stable for givenAmi, then one can place the eigenvalues ofAm−BKT
m

by choosingKm; the controllability of(A,B) implies that(Am,B) is controllable. IfAm is

asymptotically stable for givenAmi, then one can simply chooseKm to be the null matrix.

Defining subsystem error asei(t) = xi(t)− xmi(t), the error dynamics can be obtained

as

ėi(t) = Aixi(t)+biui(t)−Amixmi(t)−bir i(t)+bik
T
mixm(t)+

N

∑
j=0, j 6=i

Ai j ej(t) (2.28)

The goal is to design bounded decentralized control inputsui(t) such thatxi(t) are bounded

and the errorei(t) converges to zero, that is,limt→∞ ei(t) = 0 for all i ∈ I = {0,1, . . . ,N}.

2.2.3 Adaptation law and proof of convergence

Choose the control inputs (2.29) where the adaptation law (2.30) is used to obtain an

estimate,̂ki(t), of ki andPi is a positive definite gain matrix.

ui(t) = r i(t)−kT
mixm(t)− k̂T

i xi(t) (2.29)

˙̂ki(t) =−(eT
i (t)Pibi)xi(t) (2.30)

Using (2.23) and defining the gain estimation error ask̃i(t) = ki− k̂i(t), the error dynamics

upon simplification becomes

ėi(t) = Amiei +(Ai−Ami)xi−bi k̂
T
i xi +

N

∑
j=0, j 6=i

Ai j ej(t) (2.31)

= Amiei +bi k̃
T
i xi +

N

∑
j=0, j 6=i

Ai j ej(t) (2.32)

To prove stability of the error dynamics (2.32) fori ∈ I together with adaptation laws (2.30),

consider the following Lyapunov function candidate

V(e, k̃) =
N

∑
i=0

(eT
i Piei + k̃T

i k̃i). (2.33)
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wherePi is positive definite matrix. The derivative of the Lyapunov function candidate

along the trajectories of (2.30) and (2.32) is given by

V̇(e, k̃) =
N

∑
i=0

eT
i (AT

miPi +PiAmi)ei

+eT
i Pi

N

∑
j=0, j 6=i

Ai j ej(t)+

(
N

∑
j=0, j 6=i

Ai j ej(t)

)T

Piei (2.34)

Now consider a case with cross terms involving product ofei with ej as

(
N

∑
j 6=i

Ai j ej)TPiei +eT
i Pi(

N

∑
j 6=i

Ai j ej) = (Ai1e1)TPiei +eT
i Pi(Ai1e1)+(Ai2e2)TPiei

+eT
i Pi(Ai2e2)+ ......+(AiNeN)TPiei +eT

i Pi(AiNeN)

(2.35)

To achieve strict decentralized controllers we need to decouple cross terms in state errors,

which can be done using the following inequality for two matricesM andN:

MTN+NTM ≤MTM +NTN (2.36)

One can obtain the following:

(Ai j ej)TPiei +eT
i Pi(Ai j ej)≤ (Ai j ej)T(Ai j ej)+(Piei)T(Piei) = eT

j (A
T
i j Ai j )ej +eT

i (PiPi)ei

(2.37)

Using similar decoupling procedure for all the terms of equation (2.35) we obtain:

(
N

∑
j 6=i

Ai j ej)TPiei +eT
i Pi(

N

∑
j 6=i

Ai j ei)≤ NeT
i (PiPi)ei +

N

∑
j 6=i

eT
j (A

T
i j Ai j )ej (2.38)

Now we can rewrite equation (2.34) as

V̇(e, k̃)≤
N

∑
i=0

eT
i (AT

miPi +PiAmi)ei +NeT
i PiPiei +

N

∑
i=0

N

∑
j=0, j 6=i

eT
j AT

i j Ai j ej (2.39)

=
N

∑
i=0

eT
i (AT

miPi +PiAmi +NPiPi)ei +
N

∑
i=0

eT
i

(
N

∑
j=0, j 6=i

AT
ji A ji

)
ei (2.40)

Definingξ 2
i as the maximum eigenvalue of the matrix∑N

j=0, j 6=i A
T
ji A ji , we obtain

V̇(e, k̃)≤
N

∑
i=0

eT
i (AT

miPi +PiAmi +NPiPi +ξ 2
i I)ei (2.41)
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Therefore, if

AT
miPi +PiAmi +NPiPi +(ξ 2

i + εi)I = 0 (2.42)

then

V̇(e, k̃)≤−
N

∑
i=0

εie
T
i ei (2.43)

Hence, if there exist symmetric, positive definite solutions,Pi , to the AREs (2.42),

V(e, k̃) is a Lyapunov function. As a resultei ∈L2∩L∞ for all i ∈ I . Further, from the

error dynamics (2.32),̇ei is bounded for alli ∈ I . This implies thatlimt→∞ ei(t) = 0 for all

i ∈ I . Using lemma 2.1.1 and lemma 2.1.2, it can be seen that there exist positive definite

solutions to ARE (2.42) if

min
ω∈R

σmin(Ami− jω I) > ξi
√

N > 0 (2.44)

Note that the existence ofεi , i ∈ I , in the AREs (2.42) follows from the continuity of

the functionsfi(ξ 2
i ) := minω∈Rσmin(Ami− jωI)−

√
Nξ 2

i , that is, if there exists aξi such

that fi(ξ 2
i ) > 0, then there exists anεi > 0 such thatfi(ξ 2

i + εi) > 0.

Remark 2.2.2 Constant gain state tracking is a simple special case of the model reference

adaptive controller. If the system matrices,Ai , are known then one can directly compute

the gains,ki , accurately and no adaptation is required. Hence, control inputs are given by

ui(t) = r i(t)−kT
mixm(t)−kT

i xi(t) (2.45)

Reference model is again given by equation(2.26)and the stability proof is similar to that

of the MRAC case. ChosenAmi has to satisfy the same conditions as that in MRAC case.

The sufficient conditions are given by equation(2.44). Once ARE(2.42) is solved forAmi,

then the constant gain vectors,ki , can be found out using knownAmi and the following

equation

Ai−Ami = bik
T
i (2.46)
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2.3 Decentralized Adaptive Controller for Large Scale Systems with Nonlinear

Interconnections

The development of decentralized controllers in previous section assumed linear inter-

connections among subsystems. In this section,gi(t,x) in (2.1) is assumed to involve terms

with the higher orders of states. More general representation forgi(t,x) is assumed such

that it consists of uncertain parameters in local subsystem as well as interconnections. In

addition to parameter uncertainties, the system also contains model uncertainties. Though

gi(t,x) has parameter as well as structural uncertainties, it is assumed thatgi(t,x) can be

bounded polynomially. Different types of polynomial bounds are considered, which will

result in different conditions on the controller gains as explained below. Choose the control

inputs (2.47) where the adaptation law (2.48) is used to obtain an estimate,k̂i(t), of ki and

Pi is a positive definite gain matrix.

ui(t) = k̂T
i xi(t) (2.47)

˙̂ki(t) =−(xT
i (t)Pibi)xi(t) (2.48)

Defining the gain estimation error ask̃i(t) = ki− k̂i(t), the state dynamics upon simplifica-

tion become

ẋi(t) = Āixi +bi k̃
T
i xi +gi(t,x) (2.49)

whereĀi = Ai−bikT
i is a stable matrix with eigen values in the left half plane.

2.3.1 Stability proof

Consider the Lyapunov function candidate as

V(x, k̃) =
N

∑
i=0

xT
i Pixi + k̃T

i k̃i (2.50)
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wherePi is positive definite symmetric matrix. DifferentiatingV along the trajectories of

(2.49) and using the adaptation law (2.48) we obtain

V̇ =
N

∑
i=0

(Āixi +gi(t,x))TPixi +xT
i Pi(Āixi +gi(t,x)) (2.51)

Two different cases are considered depending upon the bounding structure forgi(t,x).

Case (A)

In this casegi(t,x) is assumed to be bounded as

||gi(t,x)|| ≤
Pi

∑
p=1

N

∑
k=0

βi,pk||xk||p (2.52)

whereβi,pk are known non-negative (that is positive or zero) real constants. The controller

gainski are obtained by solving the algebraic Lyapunov equation

(Ai−bik
T
i )TPi +Pi(Ai−bik

T
i ) =−Qi (2.53)

BecauseAi andbi form a controllable pair, for any positive definiteQi , a positive definite

solution,Pi , to equation (2.53) always exists. With the use of worst case bounds ongi(t,x)

as given by equation (2.52),V̇ can be obtained as

V̇ ≤
N

∑
i=0
−xT

i Qixi +2||Pixi ||
Pi

∑
p=1

N

∑
k=0

βi,pk||xk||p (2.54)

V̇ ≤
N

∑
i=0
−λmin(Qi)||xi ||2 +

N

∑
i=0

2||Pi ||||xi ||
Pi

∑
p=1

N

∑
k=0

βi,pk||xk||p (2.55)

Three different cases are considered depending upon how the second term in the right-side

of inequality (2.55) is simplified.

Method A1:

Define new positive constants as

σip = maxk(βi,pk) (2.56)

αip =





||Pi ||σip if ||Pi||σip ≥ 1;

1 if 0 < ||Pi ||σip < 1.

(2.57)
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The second term in the right-side of inequality (2.55) can be simplified as

N

∑
i=0

2||Pi ||||xi ||
Pi

∑
p=1

N

∑
k=0

βi,pk||xk||p≤ 2
Pi

∑
p=1

N

∑
i=0

αip||xi ||
N

∑
k=0

||xk||p (2.58)

≤ 2
Pi

∑
p=1

N

∑
i=0

αip||xi ||
N

∑
k=0

||xk||p (2.59)

≤ 2(N+1)
Pi

∑
p=1

N

∑
i=0

(αip)2||xi ||p+1 (2.60)

To obtain the last equation, Claim 2.1.2 is used. Now, (2.55) can be simplified as

V̇ ≤
N

∑
i=0
−λmin(Qi)||xi ||2 +2(N+1)

Pi

∑
p=1

N

∑
i=0

(αip)2||xi ||p+1 (2.61)

≤
N

∑
i=0
−||xi ||2

(
λmin(Qi)−2(N+1)

Pi

∑
p=1

(αip)2||xi ||p−1

)
(2.62)

Assume that there exists knownRi ∈ R such that

||xi(t0)|| ≤ Ri (2.63)

Use gainski such that minimum eigenvalue of positive definite matrixQi in (2.53)

satisfies

λmin(Qi) = 2(N+1)
Pi

∑
p=1

(αip)2(Ri)p−1 + γi (2.64)

whereγi is any positive real constant.

Method A2:

Define a new constant as

σp = maxi,k(||Pi ||βi,pk) (2.65)

The second term in the right-side of inequality (2.55) can be simplified as

N

∑
i=0

2||Pi ||||xi ||
Pi

∑
p=1

N

∑
k=0

βi,pk||xk||p≤ 2
Pi

∑
p=1

σp

N

∑
i=0
||xi ||

N

∑
k=0

||xk||p

≤ 2(N+1)
Pi

∑
p=1

σp

N

∑
i=0
||xi ||p+1 (2.66)
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To obtain the last inequality, lemma 2.1.3 is used. Hence, inequality (2.55) can be

simplified as

V̇ ≤
N

∑
i=0
−λmin(Qi)||xi ||2 +2(N+1)

Pi

∑
p=1

σp

N

∑
i=0
||xi ||p+1 (2.67)

≤
N

∑
i=0
−||xi ||2

(
λmin(Qi)−2(N+1)

Pi

∑
p=1

σp||xi ||p−1

)
(2.68)

Assume that there exists knownRi ∈ R such that

||xi(t0)|| ≤ Ri (2.69)

Use gainski such that minimum eigenvalue of positive definite matrixQi in (2.53) satisfies

λmin(Qi) = 2(N+1)
Pi

∑
p=1

σp(Ri)p−1 + γi (2.70)

Method A3:

Define a new constant as

σ = maxi,p,k(||Pi ||βi,pk) (2.71)

N

∑
i=0

2||Pi ||||xi ||
Pi

∑
p=1

N

∑
k=0

βi,pk||xk||p≤ 2σ
N

∑
i=0
||xi ||

Pi

∑
p=1

N

∑
k=0

||xk||p

≤ 2(N+1)σ
N

∑
i=0

Pi

∑
p=1

||xi ||p+1 (2.72)

To obtain the last inequality, lemma 2.1.3 is used. Hence, inequality (2.55) can be

simplified as

V̇ ≤
N

∑
i=0
−λmin(Qi)||xi ||2 +2(N+1)σ

N

∑
i=0

Pi

∑
p=1

||xi ||p+1

≤
N

∑
i=0
−||xi ||2

(
λmin(Qi)−2(N+1)σ

Pi

∑
p=1

||xi ||p−1

)
(2.73)

Again, with positive realγi , condition onQi can be given as

λmin(Qi) = 2(N+1)σ
Pi

∑
p=1

||Ri ||p−1 + γi (2.74)
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Case B: ARE approach

In this case the nonlinear interconnectionsgi(t,x) are assumed to be bounded as

gi(t,x)Tgi(t,x)≤
Pi

∑
p=2

N

∑
k=0

δi,pk||xk||p (2.75)

whereδi,pk are real numbers. Derivative of the Lyapunov function candidate in equation

(2.51) can be written as

V̇ =
N

∑
i=0

xT
i [ĀT

i Pi +PiĀi ]xi +gT
i (t,x)Pixi +xT

i Pigi(t,x) (2.76)

Using the inequality

MTN+NTM ≤MTM +NTN (2.77)

the derivative of the Lyapunov function candidate satsfies

V̇ ≤
N

∑
i=0

xT
i [ĀT

i Pi +PiĀi ]xi +xT
i (PiPi)xi +gT

i (t,x)gi(t,x) (2.78)

Now, using worst case bounds on thegi(t,x) from equation (2.75),

V̇ ≤
N

∑
i=0

xT
i [ĀT

i Pi +PiĀi +PiPi ]xi +
Pi

∑
p=2

N

∑
k=0

δi,pk||xk||p (2.79)

Thus, for positive definitePi andQi , it is required to solve the ARE given as

ĀT
i Pi +PiĀi +PiPi +Qi = 0 (2.80)

If the positive definite solutionPi to the ARE exists, then equation (2.79) can be written as

V̇ ≤
N

∑
i=0
−λmin(Qi)||xi ||2 +

Pi

∑
p=2

N

∑
k=0

δi,pk||xk||p (2.81)

≤
N

∑
i=0
−||xi ||2(λmin(Qi)−

Pi

∑
p=2

N

∑
k=0

δk,pi||xi ||p−2) (2.82)

Let us assume that there exists knownRi ∈ R such that

||xi(t0)|| ≤ Ri (2.83)

Thus, the condition on positive definite matrixQi is

λmin(Qi) =
Pi

∑
p=2

N

∑
k=0

δk,pi(Ri)p−2 + γi (2.84)
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where,γi is any positive real constant.

Using lemma 2.1.1 and lemma 2.1.2, condition for existence of positive definite solu-

tions to the ARE (2.80) can be given as

min
ω∈R

σmin(Āi− jωI) >
√

λmin(Qi) > 0 (2.85)

For case A (each of the methods A1, A2 and A3) and case B, if condition onQi , estab-

lished for each one of them, is achieved, thenV̇ becomes

V̇ ≤−
N

∑
i=0

γi ||xi ||2 (2.86)

Thus, we conclude that any trajectory on or inside the region defined for alli by Ω = {xi(t) :

||xi(t)|| ≤ Ri} can beexponentiallystabilized to zero.

With methods A2 and A3, design of controller for thei-th subsystem requires knowl-

edge of||Pi|| from all other subsystems. Methods A1 and case B do not require the knowl-

edge of||Pi || from other subsystems, but they involve square of the parameterαip. The

choice of method A1, method A2 or method A3 should be done according to the availabil-

ity of information about interconnections. Method A2 results in less conservative bounds

on gi(t,x) than the third method, hence superior in this respect. But, in some applications,

interconnection parameters may involve uncertainties such that the maximum of||Pi ||βi,pk

is known overi, p andk, where method A3 may be useful. Method B involves solving

of an ARE. A control engineer, who has physical insight into the particular problem, can

creatively use one of the above methods in such a way that the resulting control gains are

within physical saturation limits.

Remark 2.3.1 Nonadaptive state regulation is just a special case of the adaptive state reg-

ulation. If the system matrices,Ai are known then one can directly compute the gainski

accurately and no adaptation is required. Moreover, in case of nonadaptive state regula-

tion, one can relax the condition that inputui be a scalar, the stability proof holds even for

ui(t) ∈ Rmi wheremi is number of inputs.
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The above stability analysis reveals that if the initial conditions of all the subsystems are

known, then the first order local state feedback controllers are sufficient to achieve stability

of entire large-scale system whose subsystems are linked with each other through intercon-

nections with any order greater than one. The region of attraction for each subsystem can

be increased by the choice of feedback gain vector for that subsystem alone. The proposed

decentralized controller can guarantee robust stability in the presence of parametric as well

as structural uncertainties and interconnection perturbations by considering worst case of

these uncertainties in the bounds ofgi .
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CHAPTER 3

EXPERIMENTAL PLATFORM AND DYNAMIC MODEL

Figure. 3.1 shows the web handling setup used for the experimentation. Figure. 3.2

shows a sketch of the experimental platform and the web path for conducting experiments

with the proposed controllers. The line mimics most of the features of an industrial web

process line, and is developed with the aim of open-architecture design that allows for

modifying the line to conform to test specific research experimentation. The line contains

a number of different stations and a number of driven rollers, as pictured in Fig. 3.1 and

illustrated schematically in Fig. 3.2. For the experimentation, the web is threaded through

four driven rollers M0 to M3 as shown in Fig. 3.2, and through many other idle rollers

throughout the line to facilitate transport of the web from the unwind to rewind.

Figure 3.1: Experimental Platform
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Figure 3.2: Experimental Platform

The nip rollers (denoted by NR), which are pneumatically driven, are used to main-

tain contact of the web with the driven rollers. Two controlled lateral guides (guides are

denoted by DG and the web edge sensors by E), near unwind and rewind sections, re-

spectively, are used to maintain the lateral position of the web on the rollers during web

transport. Three-phase induction motors, with 30hp capacity, from Rockwell Automation

are used to drive the unwind and rewind rolls, whereas master speed and process section

rollers are driven by 15hp induction motors. The motor drive system, the real-time archi-

tecture which includes micro-processors, I/O cards, and real-time software (AUTOMAX)

is from Rockwell Automation. In the experimental platform, each motor is driven by a

dedicated vector controller. The feedback control loops in the driver or vector controller

are very fast and hence they have little effect on the transient response of entire plant, and

hence dynamics of the vector controller is taken as unity. Reference torque and flux signals

for each of the vector controllers are generated by corresponding microprocessors, which

are part of the AUTOMAX distributed control system. To implement the desired control

algorithms, programs in AUTOMAX can be modified using an off line personal computer,

and then uploaded to the dedicated microprocessors. Similar to a typical industrial web line
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control system, microprocessors used in the experimental platform are located in two racks:

A00 and A01. Rack A00 has microprocessors and vector control drives for the rewind roll

(M3) and process section roller (M2). Rack A01 has microprocessors and vector control

drives for the unwind roll (M0) and master speed roller (M1). Depending upon the number

of process sections, an actual industrial setup may have a large number of such racks. De-

centralized controllers are often preferred, and mostly used, by the web handling industry

due to the ease of tuning individual stations without considering the cumulative effect of

the entire process line and provide reliable operation of the process line in the event of oc-

casional actuator and sensor malfunctions. A general goal is to design control algorithms to

minimize data communication between microprocessors and to reduce network complexity

of the distributed control system.

It is common in the web handling industry to divide the process line into several ten-

sion zones by calling the span between two successive driven rollers as a tension zone,

thus ignoring the effect of the free rollers that lie between two driven rollers. Since the

free roller dynamics have an effect on the web tension during the transients due to ac-

celeration/deceleration of the web line and negligible effect during steady state operation,

the assumption that the free rollers do not contribute to web dynamics during steady state

operation is reasonable, which is explained next.

From Fig. 3.2, notice that the web is threaded through driven as well as idle rollers.

Idle rollers act as energy consuming elements in the transport of web from an unwind

roll to a rewind roll through various web spans. Idle rollers consume energy during an

acceleration/deceleration phase due to the inertia of each idle roller. Bearing friction in the

rollers is another constant source of energy dissipation. The power required to rotate each

idle roller is the torque acting on it multiplied by its angular velocity, which is provided

by the web. Assume that an angular velocity (RPM) of an idle roller is such that the linear

velocity on its surface is same as that of a web moving over it, which is possible if there is

no slip. Now the necessary torque will be given by the rise in tension when the web passes
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over that idle roller. This is explained in Fig. 3.3. The upstream and downstream tensions

Figure 3.3: Rise in Tension over idle roller

are represented bytx and ty respectively, respectively,bi is the coefficient of friction,υi

is the linear velocity on the surface of the idle roller. Assuming the idle roller shown in

Fig. 3.3 is accelerating, its velocity dynamics is given as

Ji

Ri
υ̇i =−biυi +(ty− tx)Ri (3.1)

Equation (3.1) clearly shows that the increase in tension fromtx to ty is because of inertia

as well as bearing friction of the roller. If it is assumed that bearing friction and inertia

are too small then the force required to drive the roller (tx− ty) will also be very small.

This means thattx is approximately equal toty. This assumption is valid in steady state

operation and leads to considerable simplification by neglecting idle rollers and keeping

only driven rollers. This assumption will be used in developing the dynamic model in this

section. Further, following assumptions are also made

• The cross-sectional area of the web is uniform through out the individual process

section.

• The web is perfectly elastic, i.e., stress is linearly proportional to strain.

• The web is homogeneous in un-stretched condition so that all physical properties like

density, modulus of elasticity remain constant.
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• The web does not slip on the driver rollers. In actual web processing machines nip

rollers are used on the driven rollers to avoid web-slipping.

• The rollers do not show whirling effect. That is the center of mass of each rotating

element lies exactly on axis of rotation.

Because of all these un-modeled processes, developed model does not reflect exact web

handling dynamics but has structural uncertainties involved in it. Additionally, parameters

like elasticity constant (E), coefficient of friction (bf ), web cross-sectional area (A) are

not known accurately but only nominal values are known. Hence it is required to design

a controller that is not only strictly decentralized but also robust against structural as well

as parametric uncertainties. Figure 3.4 shows a web line with three tension zones; the
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Figure 3.4: Simplified high speed web line with decentralized control scheme

line consists of the unwind/rewind rolls and two intermediate driven rollers. In the figure,

LC denotes the load cell roller, which is mounted on a pair of load-cells on either side

for measuring web tension. The driving motors are represented byMi for i = 0,1,2,3,

τi represents input torque from thei-th motor,vi represents the transport velocity of the

web on thei-th roller, andti represents web tension in the span between(i−1)-th andi-th

driven rollers. There are four sections in the web line shown in Fig. 3.4, which are the

unwind section, master speed roller, process section, and rewind section. The name master

speed roller is given to a driven roller which sets the reference web transport speed for

the entire web line, and is generally the first driven roller upstream of the unwind roll in
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almost all web process lines; the purpose of the master speed roller is to regulate web line

speed and is not used to regulate tension in the spans adjacent to it. The unwind/rewind

rolls release/accumulate material to/from the processing section of the web line. Thus, their

radii and inertia are time-varying. The dynamics of each of the four sections is presented

in the following.

3.1 Dynamic Model

Unwind section:A cross-sectional view of the unwind roll is shown in Fig. 3.5. The

associated local state variables for the unwind section are web velocityv0 and tensiont1.

At any instant of timet, the effective inertiaJ0(t) of the unwind section is given by

t1

Rco
Ro

0

οn  

v

Unwind Roller

ο τ

Figure 3.5: Cross-sectional view of the unwind roll

J0(t) = n2
0Jm0 +Jc0 +Jw0(t) (3.2)

wheren0 is the gearing ratio between the motor shaft and unwind roll shaft,Jm0 is the inertia

of all the rotating elements on the motor side, which includes inertia of motor armature,

driving pulley (or gear), driving shaft, etc.,Jc0 is the inertia of the driven shaft and the

core mounted on it, andJwo(t) is the inertia of the cylindrically wound web material on

the core. BothJm0 andJc0 are constants, but the inertia due to cylindrically wound web

material,Jw0(t), is not constant because the web is continuously released into the process.

The inertia,Jw0(t), is given by

Jw0(t) =
π
2

bwρw(R4
0(t)−R4

c0) (3.3)
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wherebw is the web width,ρw is the density of the web material,Rc0 is the radius of the

empty core mounted on the unwind roll-shaft, andR0(t) is the radius of the material roll.

From Fig. 3.5, the velocity dynamics of the unwind roll can be written as

d
dt

(J0ω0) = t1R0−n0τ0−bf 0ω0

J̇0ω0 + ω̇0J0 = t1R0−n0τ0−bf 0ω0 (3.4)

whereω0 is the angular velocity of the unwind roll andbf 0 is the coefficient of friction in

the unwind roll shaft. The rate of change inJ0(t) is only because of the change inJw0(t),

and from equation (3.3), the rate of change ofJ0(t) is given by

J̇0(t) = J̇w0(t) = 2πbwρwR3
0Ṙ0 (3.5)

The transport velocity of the web coming off the unwind roll is related to the angular

velocity of the unwind roll byv0 = R0ω0, and hence one can obtaiṅω0 in terms ofv0 as

ω̇0 =
v̇0

R0
− Ṙ0v0

R2
0

(3.6)

Substitution of (3.5) and (3.6) into the velocity dynamics given by equation (3.4) and sim-

plifying results in

J0

R0
v̇0 = t1R0−n0τ0−

bf 0

R0
v0 +

Ṙ0v0

R2
0

J0−2πρwbwR2
0Ṙ0v0 (3.7)

But the rate of change of radius,Ṙ0, is a function of the transport velocityv0 and the web

thickness,tw, and is approximately given by

Ṙ0≈− tw
2π

v0(t)
R0(t)

(3.8)

Notice that (3.8) is approximate because the thickness affects the rate of change of radius

of the roll after each revolution of the roll; the continuous approximation is valid since the

thickness is generally very small. Also, notice that the last term in the velocity dynamics

(3.7) is often ignored in the literature under the assumption that the roll radius is slowly

time-varying. But in practice, since the web transport velocity is kept constant, the last two
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terms in (3.7) are significant as the roll radius becomes smaller. Hence, equation (3.7) can

be simplified to

J0

R0
v̇0 = t1R0−n0τ0−

bf 0

R0
v0− tw

2πR0

(
J0

R2
0

−2πρwbwR2
0

)
v2

0 (3.9)

Dynamic behavior of the web tension,t1, in the span immediately downstream of the

unwind roll is given by

L1ṫ1 = AE[v1−v0]+ t0v0− t1v1 (3.10)

whereL1 is the length of the web span between unwind roller (M0) and master speed roller

(M1), A is the area of cross-section of the web,E is the modulus of elasticity of the web

material, andt0 represents the wound-in tension of the web in the unwind roll.

Master speed roller:The dynamics of the master speed roller is given by

J1

R1
v̇1 = (t2− t1)R1 +n1τ1−

bf 1

R1
v1 (3.11)

Process section:The web tension and web velocity dynamics in the process section are

given by

L2ṫ2 = AE[v2−v1]+ t1v1− t2v2 (3.12)

J2

R2
v̇2 = (t3− t2)R2 +n2τ2−

bf 2

R2
v2 (3.13)

Rewind section:The web velocity dynamics entering the rewind roll can be determined

along similar lines as those presented for the unwind roll. The web tension and velocity

dynamics in the rewind section are

L3ṫ3 = AE[v3−v2]+ t2v2− t3v3 (3.14)

J3

R3
v̇3 =−t3R3 +n3τ3−

bf 3

R3
v3 +

tw
2πR3

(
J3

R2
3

−2πρwbwR2
3

)
v2

3 (3.15)

Equations (3.9) through (3.15) represent the dynamics of the web and rollers for the

web line configuration shown in Fig. 3.4. Extension to other web lines can be easily made

based on this model. For web process lines that have a series of process sections between
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the master speed roller and the rewind roll, then equations (3.12) and (3.13) can be written

down for each process section.

The dynamic model given by equations (3.9) through (3.15) is nonlinear and time-

varying. For many web process lines, the goal is to transport the web at a specific speed

while maintaining a specified tension in each zone.To achieve this goal one has to system-

atically design the control inputs such that the non-zero set point problem is converted to a

regulation problem.

3.2 Equilibrium Inputs and Linearized Dynamics

The control goal is to regulate web tension in each of the tension zones while main-

taining the prescribed web transport velocity. To achieve this, first, one systematically has

to calculate the constant (or equilibrium) control input required to keep the web line at the

forced equilibrium of the reference web tension and web velocity in each of the zones.

Then, some additional compensation must be included to provide error convergence in the

presence of time varying radius and inertia of the roll. A simple procedure for the calcula-

tion of equilibrium control inputs is given, which is easy to understand and implement by

practising engineers.

Define the following variables:Ti = ti− tri andVi = vi−vri , wheretri andvri are tension

and velocity references, respectively,Ti andVi are the variations in tension and velocity, re-

spectively, around their reference values,τieq as the control input that maintains the forced

equilibrium at the reference values, andUi = τi − τieq is the variation of the control input.

Define the state vector for the unwind section asxT
0 = [T1,V0] and the state for the master

speed roller asx1 = V1. After master speed section, define the state vector for thej-th

subsystem asxT
j = [Tj ,Vj ] for j = 2,3. In the following, equilibrium control inputs and ref-

erence velocities are determined for each driven roll/roller based on the reference velocity

of the master speed roller and reference tension in each tension zone.

37



3.2.1 Unwind section: Subsystem 0

Figure 3.6: Unwind section

The velocity dynamics in the unwind section can be written as

J0

R0
(V̇0 + v̇r0) = (T1 + tr1)R0−n0(U0 + τ0eq)−

bf 0

R0
(V0 +vr0)

− tw
2πR0

(
J0

R2
0

−2πρwbwR2
0

)
(V0 +vr0)2 (3.16)

At the forced equilibrium, assuming the variations,T1 andV0, and their derivatives as zero,

the input that maintains this equilibrium is given by

τ0eq =− bf 0

n0R0
vr0 +

R0

n0
tr1− tw

2πn0R0

(
J0

R2
0

−2πρwbwR2
0

)
v2

r0−
J0

n0R0
v̇r0 (3.17)

The web tension dynamics in the unwind section can be written as

L1(Ṫ1 + ṫr1) = AE[(V1 +vr1)− (V0 +vr0)]+ t0(V0 +vr0)− (T1 + tr1)(V1 +vr1) (3.18)

From (3.18), assuminġT1, T1 andVi as zero at the forced equilibrium, the relationship

between the reference velocitiesvr0 andvr1 is given by

vr0 =
AE− tr1
AE− t0

vr1− L1

AE− t0
ṫr1 (3.19)
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Note thatt0 is the tension in the web, which is already wound on the unwind roller. Tension

t0 is not a controlled variable and may vary in different layers of the unwind roll. By

choosing the reference velocity of the unwind roll as a function of the master speed roller

as given by (3.19), the variational dynamics of the unwind section can be written as

L1Ṫ1 = AE[(V1−V0)]+ t0V0−T1vr1−V1tr1−T1V1 (3.20)

J0

R0
V̇0 = T1R0−n0U0−

bf 0

R0
V0− tw

2πR0

(
J0

R2
0

−2πρwbwR2
0

)
(V2

0 +2vr0V0) (3.21)

which can be arranged in the desired form as

ẋ0 =




Ṫ1

V̇0


 = A0x0−B0U0−B0 f0(V0)+g0(x) (3.22)

where

f0(V0) =
tw

2πn0R0

(
J0

R2
0

−2πρwbwR2
0

)
(V2

0 +2vr0V0)

A0 =



−vr1/L1 (t0−AE)/L1

R2
0/J0 −bf 0/J0


 ,B0 =




0

n0R0
J0


 ,g0(x) =




(AE−tr1)V1−T1V1
L1

0


+∆A0x0

whereg0(x) is given as:

g0(x) =




AE−tr1
L1

V1− T1V1
L1

0


+∆A0x0 (3.23)

And the interconnection functiong0(x) can be bounded as:

||g0(x)|| ≤
(

AEmax− tr
L1min

)
|V1|+ T1V1

L1min
+ ||(∆A0)maxx0||

≤ ||(∆A0)maxx0||+
(

AEmax− tr
L1min

)
|V1|+ T2

1

2L1min
+

V2
1

2L1min

= β0,10||x0||+β0,20||x0||2 +β0,11||x1||+β0,21||x1||2 (3.24)
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where

β0,10 = ||(∆A0)||

β0,20 =
1

2L1min

β0,11 =
(

AEmax− tr
L1min

)

β0,21 =
1

2L1min

Note that the matrixA0 is a function of time, becauseR0 andJ0 are functions of time.

Moreover, considering the physical nature, wound in tensiont0 cannot be equal toAE

and R0 6= 0, hence for all time(A0,B0) is controllable. It may be noted that the term

g0(x) involving interconnecting and nonlinear terms does not satisfy matching condition.

Assuming that the product of variationsT1V1 is negligible ing0(x), the linearized dynamics

can be written as

ẋ0 =




Ṫ1

V̇0


 = A0x0−B0U0−B0 f0(V0)+

N

∑
j 6=0, j=1

A0 jx j (3.25)

where

A01 =
[

AE− tr1
L1

, 0

]T

A02 andA03 are null matrices.

3.2.2 Master speed roller: Subsystem 1

This subsystem has one statex1 = V1 and the velocity error dynamics can be obtained

as

J1v̇1 = (t2− t1)R1
2 +n1τ1R1−bf 1v1 (3.26)

J1(V̇1 + v̇r1) =−(T1 + tr1)R1
2 +n1(U1 + τ1eq)R1−bf 1(V1 +vr1) (3.27)
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Figure 3.7: Master speed section

Equilibrium input,u1eq, can be found out using stationary equilibrium condition as:

0 =−tr1R1
2 +n1τ1eqR1−bf 1vr1−J1v̇r1 (3.28)

τ1eq =
bf 1

n1R1
vr1 +

R1

n1
tr1 +

J1

n1R1
v̇r1 (3.29)

Using equilibrium solution in equation (3.27), we get the velocity error dynamics as

J1V̇1 =−T1R2
1 +n1U1R1−bf 1V1 (3.30)

which can be arranged in desired form as

ẋ1 = V̇1 = A1x1 +B1U1 +g1(x) (3.31)

where

A1 =−bf 1

J1
, B1 =

n1R1

J1
, g1(x) = (T2−T1)

R2
1

J1
+∆A1V1 (3.32)
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The interconnection functiong1(x) is bounded as

||g1(x)|| ≤ β1,10||x0||+β1,11||x1|| (3.33)

where

β1,10 =
(
R2

1/J1
)

max, β1,11 = ||∆A1||max= ∆max(bf 1/J1)

Note that the velocity dynamics for master speed roller does not involve any nonlin-

ear interconnection terms. Hence, in terms of the linear interconnection matrix, the same

velocity dynamics for master speed roller can be arranged as

ẋ1 = v̇1 = A1x1 +B1U1 +
3

∑
j=0, j 6=1

A1 jx j (3.34)

where

A10 =
[−R2

1

J1
,0

]
, A12 =

[
R2

1

J1
,0

]
, A13 = [0,0]

3.2.3 Process section: Subsystem 2

The state associated with this system is

x2 =




T2

V2


 =




t2− tr2

v2−vr2


 (3.35)

wherevr2 is reference velocity. Let control input beτ2 =U2+τ2eq and at equilibrium point:

vr2 =
(

AE− tr1
AE− tr2

)
vr1− L2

AE− tr2
ṫr2 (3.36)

τ2eq =
bf 2

n2R2
vr2− R2

n2
(tr3− tr2)+

J2

n2R2
v̇r2 (3.37)

With this equilibrium inputτ2eq and reference velocityvr2 , error dynamics for third sub-

system can be obtained as:

ẋ2 =




Ṫ2

V̇1


 = A2x1 +B2U1 +g2(x) (3.38)
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where

A2 =



−vr2/L2 (AE− tr2)/L2

−R2
2/J2 −bf 2/J2


B2 =




0

n2R2
J2


 (3.39)

g2(x) =




tr1−AE
L2

V1 + vr1
L2

T1 + T1V1
L2
− T2V2

L2

R2
2

J2
T3


 (3.40)

Hence, interconnection functiong2(x) can be bounded as:

||g2(x)|| ≤
2

∑
p=1

N

∑
k=1

β2,pk||xk||p (3.41)

where

β2,10 = (vr1/L2)max, β2,20 = 0.5/L2min

β2,11 = (AE/L2)max, β2,21 = 0.5/L2min

β2,12 = ||∆A2||max, β2,22 = 0.5/L2min

β2,13 =
(
R2

2/J2
)

max (3.42)

Assuming that the product of variationsTiVi is negligible ing2(x), the linearized dy-

namics can be written as

ẋ2 =




Ṫ2

V̇2


 = A2x2 +B2U2 +

N

∑
j 6=2, j=0

A2 jx j (3.43)

where

A20 =




vr1
L2

0

0 0


 , A21 =

[
tr1−AE

L2
,0

]T

, A23 =




0 0

R2
2

J2
0




3.2.4 Rewind section: Subsystem 3

The state associated with the rewind section is

x3 =




T3

V3


 =




t3− tr3

v3−vr3


 (3.44)
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Figure 3.8: Rewind section

wherevr3 is reference velocity. Let control input beτ3 = U3 + τ3eq where

vr3 =
(

AE− tr1
AE− tr3

)
vr1− L3

AE− tr3
ṫr3 (3.45)

τ3eq =
bf 3

n3R3
vr3 +

R3

n3
tr3− tw

2πn3R3

(
J3

R2
3

−2πρwbwR2
3

)
v2

r3 +
J3

n3R3
v̇r3 (3.46)

With this equilibrium inputτ3eq and reference velocityvr3 , error dynamics for fourth sub-

system can be obtained as

ẋ3 =




Ṫ3

V̇3


 = A3x3 +B3U3 +B3 f3(V3)+g3(x) (3.47)

where

A3 =



−vr3/L3 (AE− tr3)/L3

−R2
3/J3 −bf 3/J3


B3 =




0

n3R3
J3


 (3.48)

f3(V3) =
tw

2πn3R3

(
J3

R2
3

−2πρwbwR2
3

)
(V2

3 +2vr3V3)

g3(x) =




tr2−AE
L3

V2 + T2V2
L3
− T3V3

L3
+ vr2

L3
T2

0


 (3.49)
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Now, g3(x) can be bounded as

||g3(x)|| ≤
2

∑
p=1

N

∑
k=1

β3,pk||xk||p (3.50)

where

β3,12 = ||c3,12|| where, c3,12 = [(vr2/L3)max,(AE/L3)max]

β3,13 = ||∆A3||max, β3,22 = 0.5/L3min β3,23 = 0.5/L3min (3.51)

Assuming that the product of variationsTiVi is negligible ing3(x), the linearized dy-

namics can be written as

ẋ3 =




Ṫ3

V̇3


 = A3x3 +B3U3 +B3 f3(V3)+

N

∑
j 6=3, j=0

A3 jx j (3.52)

where

A32 =




vr2
L3

tr2−AE
L3

0 0




andA30,A31 are null matrices with proper dimensions.

The dynamic model for each section of the web line is obtained via a systematic de-

velopment of equilibrium conditions. This procedure indicates that velocity references and

tension references cannot be chosen arbitrarily. One can choose reference tensionstri and

reference speed for the master speed roller independently. Based on these reference values,

velocity references in other subsystems are computed using equations (3.19), (3.36) and

(3.45). Now the control objective is to obtainUi = Ui(xi) such that the variations,Ti andVi ,

converge to zero, which will imply thatti → tri andvi → vri .

Remark 3.2.1 The motor shaft and unwind/rewind are connected through a belt-pulley

and gear transmission system. Transmission dynamics, which reflects the compliance effect

of belt as well as backlash in meshing gears, is ignored in this study. Effective inertia of

rotating elements in a motor at load shaft is combined with the roll/roller inertia to obtain

Ji in the mathematical model and thus transmission dynamics is taken as unity.
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CHAPTER 4

COMPARATIVE EXPERIMENTAL RESULTS

This chapter presents the application of the decentralized controllers, proposed in Chap-

ter 2, to web processing lines. Linearized dynamic models developed in Chapter 3 are used

for the design. Three decentralized controllers are compared through extensive experimen-

tation:

1. Industrial PI controller.

2. Decentralized non-adaptive state feedback controller with inertia compensation.

3. Decentralized adaptive controller with inertia compensation.

Experimental platform, shown in Fig. 1.3, is used for comparative experimentation and

validation. For inertia compensation and equilibrium control of unwind and rewind rolls,

values of their radii must be calculated at each instant of time. Angular velocity of each

driven roller is calculated by differentiating encoder signal from corresponding motor. The

angular velocity of unwind (rewind) roll is then used to calculate radius of unwind roll by

integrating the following equation

Ṙ0≈− tw
2π

ω0 (4.1)

For the rewind roll, radius is calculated using

Ṙ3≈ tw
2π

ω3 (4.2)

The trapezoidal rule is used in the program to carry out numerical integration. At the start

of the controller execution, initial value of the roll-radius is read by an ultrasonic sensor
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Parameter FPS units SI units

EA 2090lb f 9300N

t 7 mils 0.178mm

J1 2 lb− f t2 0.0257 Kg−m2

J2 2 lb− f t2 0.0257Kg−m2

R1 0.339 f t 0.09144m

R2 0.339 f t 0.09144m

bf i 1 lb f − f t−sec/rad 1.3558N−m−sec/rad

L1 20 f t 6.096m

L2 33 f t 10.06m

L3 67 f t 20.4 m

Web width 1.708 f t 0.52m

Table 4.1: Nominal values of the parameters

mounted under unwind (rewind) roll. Using the radius of each roller/roll,Ri , and calculated

angular velocityωi , linear velocity is computed usingvi = Riωi .

Nominal values of all constant parameters involved in the dynamic model are given in

the Table 4.1. Web material used is Tyvek, which is a product made by Dupont. Tensile

test was done on the web material to determine the value ofEA, which is given in the table.

4.1 Industrial PI Controller

In most industrial web process lines, two decentralized PI control loops, as shown in

Fig. 4.1, are used. Notice that the output of the tension loop becomes reference velocity

error correction for the velocity loop. With PI speed and tension controllers, it was observed

that tension did not converge to the desired reference valuetri =24.5 lbf. A sample of real-

time tension response for the unwind section is shown in Fig. 4.2.
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Figure 4.1: Present control block diagram.
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Figure 4.2: Tension response using industrial controller.

In the currently used industrial control strategy, the reference velocities,vri , for each

driven roller are set equal to the master speed roller, which sets the web transport speed

in the process line. Setting the reference velocities of all the driven rolls/rollers to the
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same value will cause unacceptable steady state tension response as shown in Fig. 4.2.

To explain this, assume that the controller is able to bring tension error to zero, i.e.,t1

= tr1. Consequently, output of the tension PI controller also converges to zero. Thus,

there is no correction term added to the reference velocityvr0 and velocity reference to

inner PI controller is nowvr0. Let us assume that the inner velocity controller is also

working perfectly, hence, velocityv0 is also brought tovr0. But note that the second motor,

M1, corresponding to master speed roller, is also controlled to run at the reference speed

vr1 = vr0. This means both motorsM0 andM1 are forced to run at the same speed when

tension error,T1 = t1− tr1, is zero. So there is no further strain in the web. But unwind roll

is continuously passing web material into the zone betweenM0 andM1 (see Fig. 3.4). The

released material may not have tension,t0, same astr1. This will cause a change in the web

tension,t1. Thus, wound-in web material from unwind roll, when released, continuously

disturbs the tension in the unwind section. Consequently, in response to errorT1 = t1− tr1,

tension controller will give the necessary speed correction signal. Velocity controller will

track this new velocity which is equal to the correction signal plusvr0. This new velocity

will again bring the tension error back to zero and again the newly released material will

cause a tension disturbance. This sequence is repeated continuously. Ultimately, there will

be a continuous oscillations in the tension response. Because of interconnections between

tension zones, this disturbance is propagated forward to all subsequent sections causing

oscillatory tension response in each section.

Note that the above discussion given using an intuitive physical explanation can also be

confirmed from the tension dynamic equation:

L1ṫ1 = EA(v1−v0)+ t0v0− t1v1 (4.3)

When both tension and velocity are in steady state,v0 = v1 = vr0 andt1 = tr1, thenL1ṫ1 =

−tr1vr0 6= 0 which means tension,t1, is not held constant attr1.

Using the control structure shown in Fig. 4.1 and setting the same reference velocity
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for all sections, simulations1 are conducted. The web dynamic model derived in Chapter

3 is used for simulations. Simulated tension response is shown in Fig. 4.3, which shows

oscillations in steady state tension response. A number of experiments were conducted
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Simulated tension response during steady state

Figure 4.3: Simulated tension (steady state) with present structure and PI controllers.

at different speeds with the industrial PI controller. Corresponding results are shown in

the subsequent section and compared with the experimental results obtained with proposed

decentralized controllers.

4.2 Decentralized Nonadaptive State Feedback Controller

This section explains the design of the decentralized controller proposed in Chapter 2

for large-scale systems involving linear interconnections. In Chapter 2, the class of large-

scale systems is considered whose each subsystem can be written as

Si : ẋi(t) = Aixi(t)+biui(t)+
N

∑
j=0, j 6=i

Ai j x j(t) (4.4)

1Simulink block diagram for running the industrial PI controller is documented in the appendix
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Note from equations (3.34) and (3.43) that the dynamic models of the process section and

master speed section are arranged in the desired form as given by equation (4.4). But

unwind and rewind dynamic models (see equations (3.25),(3.52)) are not exactly in the

desired form. Hence, choose the decentralized control input for each motor as follows:

U0 =− f0(V0)+KT
0 x0 (4.5)

U1 =−KT
1 x1 (4.6)

U2 =−KT
2 x2 (4.7)

U3 =− f3(V3)−KT
3 x3 (4.8)

whereKi , i = 0,1,2,3 are feedback gain vectors. The dynamics of each subsystem under

these decentralized control inputs can be simplified to

ẋi = Āixi +
N

∑
j=0, j 6=i

Ai j x j (4.9)

whereĀi := Ai −BiKT
i . The error convergence rate can be adjusted with a suitable choice

of εi in the design, which results in a new condition onĀi as stated next.

The equilibrium,xi = 0, of the dynamics given by (4.9) is globally exponentially stable,

if the feedback gainsKi are chosen such that

min
ω∈R

σmin(Āi− jωI) >
√

N(ξ 2
i + εi) > 0 (4.10)

where

ξ 2
i =

N

∑
j=0, j 6=i

η2
ji , ηi j = σmax(Ai j ).

Thus, the implementation strategy for the proposed decentralized controller can be sum-

marized as shown in Fig. 4.4.

The control design involves the process in whichKi needs to be chosen iteratively so

that resultingĀi satisfies the sufficient conditions given by (4.10). The selection of gainsKi

can be done using the pole placement technique or the Linear Quadratic Regulator (LQR)

algorithm.
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Figure 4.4: Decentralized control strategy with proposed controller.

Note that the stability analysis in chapter 2 is done with reference to the time invariant

matricesAi andbi . But web velocity dynamics for unwind and rewind section involve time

varying parameters such as inertia and radius of the roll. Even then proposed state feedback

controller can be used for unwind and rewind sections with careful design and modification.

One design approach is to find constant gainsKi using pole placement or LQR algorithm

and, then, computēAi = Ai −BiKT
i . With this Āi , check whether the conditions given by

(4.10) are satisfied or not for all the possible values of the radius of the roll, from full

(empty) roll to empty (full) roll in case of the unwind (rewind) roll. This approach may

result in high gain values and, hence, may lead to a conservative design. A better approach

is to obtainKi explicitly in terms of the radius of the roll. This design approach is explained

next in two systematic steps.

Step 1: Instead of selecting gainsKi and checking condition for correspondinḡAi , directly

choose matrix̄Ai for the i-th subsystem such that

1. it is hurwitz,

2. it satisfies the condition given by equation (4.10).

Because(Ai ,Bi) pair is controllable, it is possible to adjust eigenvalues ofĀi arbitrarily.

Note that just placing the eigenvalues is not sufficient to satisfy the condition in (4.10), but
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the elements chosen within̄Ai need to be manipulated to achieve that condition. Not all the

elements ofĀi can be manipulated because of the fact thatĀi must satisfyĀi = Ai−BiKT
i .

Thus, the input matrixBi decides which elements can be adjusted freely. Except for master

speed dynamics, all other subsystems haveBi = [0, niRi/Ji ]T . Because of zero entry in the

first row of Bi , one cannot adjust elements in the first row ofAi . Hence,Āi must be chosen

to have first row same asAi and elements in the second row ofAi can be manipulated

arbitrarily. In conclusion, second row of̄Ai needs to be chosen such thatĀi satisfies both

the conditions in Step 1. For the unwind section,Ā0 is chosen as

Ā0 =



−vr0/L1 (AE− t0)/L1

C01 −C02


 (4.11)

For the master speed section,Ā1 is chosen as

Ā1 =−C12 (4.12)

In case of process and rewind sections,Āi is chosen as

Āi =



−vri/Li (AE− tri )/Li

−Ci1 −Ci2


 (4.13)

whereCi1 andCi2 are positive constants, which are chosen such that the conditions in Step

1 are satisfied. The MATLAB program to calculateminω∈Rσmin(Āi − jωI) is provided in

the appendix. For each subsystem, the convergence rate is chosen asεi = 10.

Remark 4.2.1 Note thatĀi is not time-varying because it is not a function of time-varying

parametersRi and Ji . Hence, the choice of̄Ai is fixed and need not be changed with the

change in the radius and inertia of the unwind or rewind rolls.

But, Āi involves reference valuesvri and tri . Hence, in the design, choice of̄Ai is

made such that for allvri ∈ [100,2000] f t/min andtri ∈ [3,30] lb f both the conditions are

satisfied. Since the quantityAE is much larger thantri for most web handling applica-

tions, the sufficient condition as a function ofvri is of value. Master speed referencevr1
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is changed online and accordingly reference speedvri for other rollers is calculated, hence

sufficient conditions need to be checked for variousvr1. Figure 4.5 gives the quantities

αi =
√

N(ξ 2
i + εi) andβi = minω∈Rσmin(Āi − jωI) as a function of reference web trans-

port speedvr1 with a reference tensiontri = 14.35 lb f andεi = 10 for all i. The following

Ci1 andCi2 values are used to obtain these plots:C01 = 120, C02 = 200, C12 = 4000, C21 =

1500, C22 = 400, C31 = 15, C32 = 15.
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Figure 4.5: Sufficient condition check for different reference velocities (αi =
√

N(ξ 2
i + εi)

andβi = minω∈Rσmin(Āi− jωI).

Step 2: Once the design of closed loop system matrixĀi is done, controller gains can be

computed for all sections, except master speed section, using the following equation:

KT
i = (

Ji

niRi
)
[
(
R2

i

Ji
−Ci1), (−bf i

Ji
+Ci2)

]
(4.14)

54



For the master speed roller, gain can be computed as

K1 = (
J1

n1R1
)(−bf 1

J1
+C12) (4.15)

The above expressions for the gains are obtained using the relationAi −BiKT
i = Āi

whereAi andBi are obtained in Chapter 3 and̄Ai is known from Step 1.

4.3 Decentralized Adaptive Controller

In the development of nonadaptive state feedback controller, it was inherently assumed

that the coefficient of friction is constant and exactly known. But depending upon running

conditions, level of bearing lubrication, and operating motor speed, coefficient of friction,

bf i may change. In such a case calculated gains may not result in good performance.

This naturally motivates investigation and implementation of a suitable adaptive control

algorithm. In Chapter 2 decentralized MRAC controller is proposed, which requires overall

large-scale system to be controllable. Forming overall system matrixA and input matrix

B from linearized web handling dynamics, it is observed that the large-scale web handling

system is controllable. MRAC design is for web handling application is explained next,

with systematic design steps.

Step 1: Select matrixAmi for each subsystem such that

1. it ensures the existence of somekT
i such that the relationAi−Ami = BikT

i is satisfied.

2. it is hurwitz, and

3. it ensures the existence of positive definite solution to the ARE (2.42).

The above conditions are similar to those addressed in Step 1 of the non-adaptive state

feedback controller design. Hence, the design ofAmi is similar to theĀi as explained in

previous section. In fact, the matrixAmi is chosen to be equal tōAi as given by equations

(4.11) to (4.13).
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Step 2:The next step is to stabilize the large-scale reference model to get desired reference

state trajectories. For this purpose, a suitable feedback gainkm is designed to achieve the

stability of the overall reference model system matrixAm. The pair (A, B) is controllable,

which implies that(Am, B) is controllable becauseAmi = Ai−BiKT
i . This ensures existence

of a stabilizing gainkm.

The LQR algorithm is used to obtain the feedback gainkm, which ensures that the

reference states go to their desired values in an optimal sense. The optimal feedback gain

km is obtained as

km =




km0

km1

km2

km3




=




−433.2 792.2 −232.5 −19.8 −0.3 −36.8 −3.1

70.0 −63.0 37.3 −4.3 0.1 −3.2 −0.3

3.6 −1.8 1.2 −20.4 187.9 −100.8 −1.6

12.3 −12.5 −3.7 630.5 −1.2 1236.9 2984.9




(4.16)

Step 3: Now, choose the decentralized control input for each motor as follows:

U0 =− f0(V0)+ K̂T
0 x0 (4.17)

U1 =−K̂T
1 x1 (4.18)

U2 =−K̂T
2 x2 (4.19)

U3 =− f3(V3)− K̂T
3 x3 (4.20)

Solve the ARE (2.42) to get positive definite matricesPi . The gain matrix at initial time,

K̂i(0) can be computed using equation similar to (4.14) and (4.15), and these gains can be

adapted using adaptation laŵ̇Ki = (eT
i PiBi)x0, whereei = [Ti −Tmi, Vi −Vmi]T . Actual

numerical values ofPi , K̂i(0) and ˙̂Ki for each section are given below. The followingCi1

andCi2 values are used:C01 = 120, C02 = 200, C12 = 4000, C21 = 1500, C22 = 400, C31 =

15, C32 = 15.
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Unwind section:

P0 =




0.5582 −0.5549

−0.5549 5.8131




K̂T
0 (0) = (

J0

n0R0
)
[
(
R2

0

J0
−C01), (−bf 0

J0
+C02)

]

˙̂K0(t) =
n0R0

J0
eT

0 [−0.5549, 5.8131]Tx0 (4.21)

Master speed section:

P1 = 833.4940

K̂T
1 (0) = (

J1

n1R1
)
(
−bf 1

J1
+C12

)
= 23596

˙̂K1(t) =
n1R1

J1
e1(833.4940)x1 = e1(141.2772)x1

Process section:

P2 =




55.8264 3.4204

3.4204 1.8708




K̂T
2 (0) = (

J2

n2R2
)[(

R2
2

J2
+C21), (−bf 0

J0
+C22)] = [8849.2, 2356.9]

˙̂K2(t) =
n2R2

J2
eT

2 [3.4204, 1.8708]Tx2 = eT
2 [0.5798, 0.3171]Tx2

Rewind section:

P3 =




0.7274 0.3712

0.3712 1.2989




K̂T
3 (0) = (

J3

n3R3
)[(

R2
3

J3
+1C31), (−bf 3

J3
+C32)]

˙̂K3(t) =
n3R3

J3
eT

3 [0.3712, 1.2989]Tx3

The proposed adaptation method uses a gradient algorithm for which the estimated

gains may increase and saturate the control signal. To avoid this, the gradient projection
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algorithm is used, which maintains estimates within prescribed bounds. The minimum and

maximum limits onK̂T
i are obtained using nominal values of all the parameters and their

maximum possible deviations.

4.4 Experimental Results

Extensive experiments at different web process line velocities were conducted with the

currently used industrial decentralized PI controller and the proposed adaptive and non-

adaptive decentralized controllers. Controllers were implemented using AUTOMAX dis-

tributed control system, which uses “Basic programming language” to implement discrete

algorithms. Programs that implement the control algorithms were scanned by dedicated

microprocessors with a sampling rate of 5 ms. Real-time tension and velocity signals were

collected through the data acquisition system also at a sampling rate of 5 ms. Appendix

B gives the implementation procedure in AUTOMAX. A complete step-by-step algorithm

for implementation of the proposed decentralized controllers is given in Appendix C.

Experimental results for three cases and three controllers are shown. In each case,

variation of the web line speed at the master speed roller and tension variations in each

tension zone are shown. Control input signals,τi , for all the four sections are also presented.

Case 1)Reference velocityvr1 = 1000 f t/min; tr1 = 24.6 lb f , tr2 = 20.5 lb f , andtr3 =

16.4 lb f ; the roll diameter varies from18 to 13 inches. See Figures 4.6 through 4.8

Case 2)Reference velocityvr1 = 1500 f t/min; the reference tension is the same in all the

three zones and is chosen astri = 14.35 lb f ; the roll diameter varies from14 to 5 inches.

See Figures 4.12 through 4.14.

Case 3)Reference velocityvr1 = 750 f t/min; the reference tension is the same in all the

three zones and is chosen astri = 14.35 lb f . See Figures 4.15 through 4.17.

As compared to the existing decentralized PI controller, results using the proposed de-

centralized controllers show much improved web tension regulation in each of the zones.

For Case 1 control inputs are also presented in Figures 4.9 through 4.11, which show that

58



- PI Non-adaptive Adaptive

||V1|| 179.72 168.51 160.36

||T1|| 27.39 11.19 19.20

||T2|| 26.01 12.33 18.47

||T3|| 47.79 21.11 21.11

Table 4.2: Comparison of controllers: Velocity reference 1000 ft/min

- PI Non-adaptive Adaptive

||V1|| 217.41 156.66 184.75

||T1|| 74.76 18.3889 19.17

||T2|| 49.16 16.3152 20.30

||T3|| 97.95 27.29 20.77

Table 4.3: Comparison of controllers: Velocity reference 1500 ft/min

the adaptive and nonadaptive control inputs show very small oscillations compared to PI

control inputs. It means control energy injected into the system is much less for new pro-

posed controllers.

Tables 4.2 through 4.4 show the two-norm of the tension and velocity signals for three

controllers for three cases. One can observe that the proposed decentralized controllers,

both non-adaptive and adaptive, outperform the decentralized PI controller.

- PI Non-adaptive Adaptive

||V1|| 552.25 132.48 155.53

||T1|| 33.23 11.27 14.41

||T2|| 27.65 11.55 14.16

||T3|| 43.99 15.35 19.66

Table 4.4: Comparison of controllers: Velocity reference 750 ft/min
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Figure 4.6: Decentralized PI controller: Reference velocity 1000 ft/min

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

V
1 (

fp
m

)

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

T
1 (

lb
f)

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

T
2 (

lb
f)

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

T
3 (

lb
f)

time (sec)

Figure 4.7: Decentralized nonadaptive controller: Reference velocity 1000 ft/min
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Figure 4.8: Decentralized adaptive controller: Reference velocity 1000 ft/min
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Figure 4.9: Control inputs (PI): Reference velocity 1000 ft/min
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Figure 4.10: Control inputs (non-adaptive): Reference velocity 1000 ft/min
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Figure 4.11: Control inputs (adaptive): Reference velocity 1000 ft/min
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Figure 4.12: Decentralized PI controller: Reference velocity 1500 ft/min
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Figure 4.13: Decentralized nonadaptive controller: Reference velocity 1500 ft/min
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Figure 4.14: Decentralized adaptive controller: Reference velocity 1500 ft/min

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

V
1 (

fp
m

)

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

T
1 (

lb
f)

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

T
2 (

lb
f)

0 2 4 6 8 10 12 14 16 18 20
−10

0

10

T
3 (

lb
f)

time (sec)

Figure 4.15: Decentralized PI controller: Reference velocity 750 ft/min
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Figure 4.16: Decentralized nonadaptive controller: Reference velocity 750 ft/min
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Figure 4.17: Decentralized adaptive controller: Reference velocity 750 ft/min
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Note that the performance of the nonadaptive decentralized controller is better than

the adaptive decentralized controller. This is because of the use of projection gradient

algorithm in the implementation of the adaptive controller, which keeps the gain estimates

within prescribed bounds. This causes oscillations in the controller gains thus adding more

oscillations in the tension and velocity response as compared to the response due to a

decentralized controller with nonadaptive gains. Figure 4.18 shows the estimated gains for

Case 2.
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Figure 4.18: Estimated gains: Reference velocity 1500 ft/min
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4.4.1 Robustness of the decentralized controller: An experimental evaluation

The nonadaptive decentralized controller is checked for robustness against online change

in the reference speedvr1 in real-time. Figures 4.19 and 4.20 show the tension responset1

in unwind section when master speed reference is changed from 500 to 800 fpm and 1000

to 1500 fpm, respectively. Compared to the decentralized PI controller, the nonadaptive de-

centralized controller does not show much change in the tension when the speed reference

is changed.
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Figure 4.19: Comparison of tension signals in response to change in the reference web

speed from 500 to 800 fpm.

67



5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

time (sec)

te
ns

io
n 

(lb
f)

Web speed changing from 1000 fpm to 1500 fpm

PI controller
Proposed controller

Instant when change in 
web speed occured 

Figure 4.20: Comparison of tension signals in response to change in the reference web

speed from 1000 to 1500 fpm.

Industrial application also demands high level of safety and hence the proposed non-

adaptive controller was also checked when the feedback signal from the sensor does not

reflect exact physical values. To check such robustness of the controller, velocity feedback

from the motor encoders is divided by 2 and used as feedback to compare with reference

vri . With the use of same gains as earlier, nonadaptive controller was not able to maintain

steady state values of web velocity in different sections to desired reference values. But

velocities were maintained at scaled values of desiredvri . It means that the system stability

was maintained even with the faulty feedback of velocityvi . The corresponding tension

signals are shown in the Fig. 4.22. Tension references were kept attri = 20 lb f for all i.

Note that with nonadaptive controller unwind tension is almost kept at desired reference

value but there is a steady state error in process tensiont2. Note that with the PI decen-

tralized controller (see Fig. 4.21), system not only looses the steady state but tends to go
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unstable and after some time web would have broken.
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Figure 4.21: Decentralized PI controller with halved velocity feedback.
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Figure 4.22: Decentralized nonadaptive controller with halved velocity feedback.
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During extensive experimentation, resonance was observed at line reference speed of

2000 fpm when the nonadaptive decentralized controller was implemented. The results at

resonance are shown in the Fig. 4.23. Figure 4.24 shows errors in the velocity of different

driven rollers other than master speed roller. To avoid such resonating conditions, it is nec-

essary to analyze the closed loop system with proposed nonadaptive controller in frequency

domain.
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Figure 4.23: With decentralized nonadaptive controller at resonating condition.

70



0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

V
2 (

fp
m

)

0 2 4 6 8 10 12 14 16 18 20
−200

−100

0

100

200

300

V
3 (

lb
f)

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

V
0 (

lb
f)

time (sec)

Figure 4.24: Velocity errors for different rollers at resonating condition.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

Large-scale systems are emerging with great importance in many fields. Analysis and

control of large-scale systems is a challenging task due to the complex nature of inter-

connections among constituent subsystems. This thesis involved development and imple-

mentation of decentralized control schemes for certain class of large-scale systems. The

application of the proposed controllers is shown on control of web processing lines. Fol-

lowing paragraphs give a chapter-by-chapter summary of this report.

In Chapter 2, the class of large-scale systems with unmatched linear interconnections

is considered to develop decentralized adaptive controllers. Both, adaptive state regulation

and Model Reference Adaptive Controllers (MRAC) are developed. Adaptive state regula-

tion case does not assume exact knowledge of interconnecting parameters. Whereas in the

MRAC scheme, a modified reference model, which makes use of known interconnecting

parameters, is developed to achieve exact tracking.

The conditions, under which these controllers result in global asymptotic stability, are

obtained in terms of solution to the Algebraic Riccati Equation (ARE). Sufficient conditions

are given for the existence of positive definite solutions to the ARE.

Although applicable to web handling systems, assumption that interconnections are

linear is restrictive . Hence, a decentralized adaptive controller for the class of large-scale

systems involving unmatched nonlinear interconnections is obtained. The design of the

controller requires knowledge of initial conditions or upper bound on the initial conditions

of the states. Four different approaches are considered depending upon the prior knowledge
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of interconnecting parameters. Correspondingly four different conditions are obtained to

ensure asymptotic stability of the large-scale system.

In Chapter 3, a model for the unwind (rewind) roll is developed by explicitly consider-

ing the variation of radius and inertia resulting from release (accumulation) of material to

(from) the process. Based on the new model developed, a decentralized control scheme is

designed, which involves equilibrium control inputs and feedback control inputs. A strat-

egy for computing the equilibrium control inputs and reference velocities for each driven

roll/roller is given. This strategy is based on dividing the web processing line into tension

zones. Each tension zone uses reference web tension and the reference velocity of the mas-

ter speed roller. With the use of equilibrium control inputs and reference velocities, the

state dynamic model is transformed into a model in terms of state errors.

In Chapter 4, as an application, a web handling system is considered for implementa-

tion. Web handling systems inherently form a class of large-scale systems with unmatched

interconnections. Based on the dynamic model in terms of state errors, feedback control

laws are obtained using decentralized controllers proposed in Chapter 2. Two types of

controllers are designed:

• Decentralized nonadaptive state regulator.

• Decentralized adaptive controller.

A number of experiments were conducted to check the robustness of the proposed con-

trollers. The performance of the proposed controllers is compared with that of an often

used industrial PI controllers. Substantial improvement in web tension error regulation is

observed with the proposed controllers.

5.2 Future Work

In the case of large-scale systems with linear interconnections global asymptotic sta-

bility is achieved. But with nonlinear interconnections semi-globally stable decentralized
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controllers are developed, which require knowledge of initial conditions of the states or

upper bounds on them. To make the discussion complete, globally stable decentralized

controllers, which do not require initial conditions of the states, need to be considered.

In the case of linear interconnections, global asymptotic stability is achieved with relative

ease because part of the control input energy is appropriately used to overpower maximum

interconnection energy to achieve stability. But in the case of nonlinear interconnections

a situation may arise in which energy of a control input may become zero but still energy

associated with the unknown interconnections does not become zero. This condition par-

ticularly arises because of unmatched condition, that is, because the control input does not

enter the subsystem at the same point where interconnections enter. Switched/ Hybrid con-

trol scheme involving analysis with multiple Lyapunov functions may find application in

this problem.

Proposed decentralized scheme relies on an iterative process to arrive at numerical val-

ues of controller parameters. For large systems this iterative process may prove to be

tedious. Future research should focus on obtaining closed form solutions for the controller

gains.

In Chapter 3, development of decentralized controllers for the web handling system

assumes that the product of elasticity constant and area of cross-section,EA, and thickness,

t, are perfectly known. In some applications these may not be known and hence new

adaptive controller is required to adapt for parametersEA and t. Design of controllers

also assume full knowledge of state vector[Ti , Vi ]T . However, tension signal may not

be available for some subsystems in web processing lines. For example it may not be

possible to place load cell sensor in a hot chamber. In such cases, it is desirable to design

decentralized observer based control scheme, which will use velocity signal and estimate

tension signal to generate stabilizing control signal.
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APPENDIX A

MATLAB/SIMULINK Programs

A.1 M-files for computations in Chapter 4

MATLAB programs used in the design of̄Ai andAmi for the state feedback controller

and MRAC, respectively, are provided. To findminω∈Rσmin(Āi− jωI), the functiondistsing(A,C, prec)

is also provided.

1. To designĀi :

clc

close all

clear all

%

%System parameters and reference values%

N=3 % Total number of subsystems-1

L=[20,33,67];%Span lengths in inches

Ea=2090;%Product E*A in lbf

bf=1;%Coefficient of friction

J=[8 2 2 4];%Roller inertias in lbf/inˆ2

R=[0.75 0.339 0.339 0.5];%Roller radii in ft

tr=[0 20 20 20];%Reference tensions in different spans in lbf

vr(2)=20;%Master-speed reference in ft/sec

vr(1)=(tr(2)-Ea)*vr(2)/(tr(1)-Ea);

vr(3)=(Ea-tr(2))*vr(2)/(Ea-tr(3));
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vr(4)=(Ea-tr(3))*vr(3)/(Ea-tr(4));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%System Matrices:Open loop and desired closed loop%

%Actual open loop system matrix (Unwind)

A0=[-vr(2)/L(1) (tr(1)-Ea)/L(1);R(1)ˆ2/J(1) -bf/J(1)];

B0=[0;R(1)/J(1)];%Input vector (Unwind)

%desired closed loop system matrix (Unwind)

Abar0=[-vr(2)/L(1) (tr(1)-Ea)/L(1);12 -20];

%

A1=-bf/J(2);

Abar1=-4000;%desired closed loop system matrix (Master-speed)

B1=R(2)/J(2);%Input vector (Master-speed)

%

%Actual open loop system matrix (Process)

A2=[-vr(3)/L(2) (Ea-tr(3))/L(2);-R(3)ˆ2/J(3) -bf/J(3)];

B2=[0;R(3)/J(3)];%Input vector (Process)

%Desired closed loop system matrix (Process)

Abar2=[-vr(3)/L(2) (Ea-tr(3))/L(2);-1500 -400];

%

%Actual open loop system matrix (Rewind)

A3=[-vr(4)/L(3) (Ea-tr(4))/L(3);-R(4)ˆ2/J(4) -bf/J(4)];

B3=[0;R(4)/J(4)];%Input vector (Rewind)

%Desired closed loop system matrix (Rewind)

Abar3=[-vr(4)/L(3) (Ea-tr(4))/L(3);-15 -15];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Interconnecting matrices%

A01=[Ea-tr(1)/L(1);0];
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A02=[0 0;0 0];

A03=[0 0;0 0];

A10=[-R(2)*R(2)/J(2) 0];

A12=[R(2)*R(2)/J(2) 0];

A13=[0 0];

A20=[vr(2)/L(2) 0;0 0];

A21=[(tr(1)-Ea)/L(2);0];

A23=[0 0;R(3)*R(3)/J(3) 0];

A30=[0 0;0 0]; A31=[0;0];

A32=[vr(3)/L(3) (tr(2)-Ea)/L(3);0 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculations for the condition checks%

%Unwind Section

epsilon0=10;

eta10=max(svd(A10));

eta20=max(svd(A20));

xi0_square=eta10ˆ2+eta20ˆ2;

check0=sqrt(N*(xi0_square+epsilon0))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_unwind=dist_sing(Abar0’,0,1e-8)

%Master-speed section

epsilon1=10;

eta01=max(svd(A01));

eta21=max(svd(A21));

xi1_square=eta01ˆ2+eta21ˆ2;
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check1=sqrt(N*(xi1_square+epsilon1))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_master=dist_sing(Abar1’,0,1e-8)

%Process section

epsilon2=10;

eta12=max(svd(A12));

eta32=max(svd(A32));

xi2_square=(eta12)ˆ2+(eta32)ˆ2;

check2=sqrt(N*(xi2_square+epsilon2))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_process=dist_sing(Abar2’,0,1e-8)

%Process section

epsilon3=10; eta23=max(svd(A23)); xi3_square=(eta23)ˆ2;

check3=sqrt(N*(xi3_square+epsilon3))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_rewind=dist_sing(Abar3’,0,1e-8)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2. To computeminω∈Rσmin(Āi− jω I):
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% prec: precision (e.g. 1e-10)

% This algorithm makes use of bisection algorithm first given in

% R. Byers, A bisection method for measuring the distance of a

% stable matrix to the unstable matrices,

% SIAM Journal of Scientific and Statistical

% Computing, vol. 9, no. 3, pp. 875881, 1988.

%%%%%% %%%%%%%%%%%%%%%%%%%%

% Following MATLAB program is provided in

% Observers for Lipschitz non-linear systems

% C. Aboky, G. Sallet and J.C. Vivalda

% Int. J. Control, 2002, vol75, no.3, 204--212

%

function out=dist_sing(A,C, prec) a=0; b=norm(A,2);

N=ceil(log2(b/prec))*2; n=length(A); In=eye(n);

for j=1:N,

gamma=(a+b)/2;

H_gamma=[A In;C’*C-gammaˆ2*In -A’];

if min(abs(real(eig(H_gamma))))<=prec %˜=0

b=gamma;

else

a=gamma;

end

end

out=(a+b)/2;
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3. To designAmi in MRAC scheme:

clc

close all

clear all

%

%System parameters and reference values%

N=3 % Total number of subsystems-1

L=[20,33,67];%Span lengths in inches

Ea=2090;%Product E*A in lbf

bf=1;%Coefficient of friction

J=[8 2 2 4];%Roller inertias in lbf/inˆ2

R=[0.75 0.339 0.339 0.5];%Roller radii in ft

%Reference tensions in different spans in lbf

tr=[0 20 20 20];

vr(2)=40;%Master-speed reference in ft/sec

vr(1)=(tr(2)-Ea)*vr(2)/(tr(1)-Ea);

vr(3)=(Ea-tr(2))*vr(2)/(Ea-tr(3));

vr(4)=(Ea-tr(3))*vr(3)/(Ea-tr(4));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%System Matrices:Open loop and desired closed loop%

%Actual open loop system matrix (Unwind)

A0=[-vr(2)/L(1) (tr(1)-Ea)/L(1);R(1)ˆ2/J(1) -bf/J(1)];

B0=[0;R(1)/J(1)];%Input vector (Unwind)

%desired closed loop system matrix (Unwind)

Am0=[-vr(2)/L(1) (tr(1)-Ea)/L(1);10 -20];

%
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A1=-bf/J(2);

Am1=-4000;%desired closed loop system matrix (Master-speed)

B1=R(2)/J(2);%Input vector (Master-speed)

%

%Actual open loop system matrix (Process)

A2=[-vr(3)/L(2) (Ea-tr(3))/L(2);-R(3)ˆ2/J(3) -bf/J(3)];

B2=[0;R(3)/J(3)];%Input vector (Process)

%Desired closed loop system matrix (Process)

Am2=[-vr(3)/L(2) (Ea-tr(3))/L(2);-1500 -400];

%

%Actual open loop system matrix (Rewind)

A3=[-vr(4)/L(3) (Ea-tr(4))/L(3);-R(4)ˆ2/J(4) -bf/J(4)];

B3=[0;R(4)/J(4)];%Input vector (Rewind)

%Desired closed loop system matrix (Rewind)

Am3=[-vr(4)/L(3) (Ea-tr(4))/L(3);-15 -15];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Interconnecting matrices%

A01=[Ea-tr(1)/L(1);0];

A02=[0 0;0 0];

A03=[0 0;0 0];

A10=[-R(2)*R(2)/J(2) 0];

A12=[R(2)*R(2)/J(2) 0];

A13=[0 0];

A20=[vr(2)/L(2) 0;0 0];

A21=[(tr(1)-Ea)/L(2);0];

A23=[0 0;R(3)*R(3)/J(3) 0];

A30=[0 0;0 0];
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A31=[0;0];

A32=[vr(3)/L(3) (tr(2)-Ea)/L(3);0 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Reference trajectory generation and

%the design of overall gain matrix km

Am=[Am0 A01 A02 A03;

A10 Am1 A12 A13;

A20 A21 Am2 A23;

A30 A31 A32 Am3];

B=[B0 [0 0 0;0 0 0];

0 B1 0 0;

[0 0;0 0] B2 [0;0];

[0 0 0;0 0 0] B3];

Q=[1000 0 0 0 0 0 0;0 10 0 0 0 0 0;

0 0 1 0 0 0 0;0 0 0 100 0 0 0;

0 0 0 0 900 0 0;0 0 0 0 0 4000

0;0 0 0 0 0 0 9000];

R=[0.003 0 0 0;0 0.02 0 0;0 0 0.001 0;0 0 0 0.001];

[km,P,E]=lqr(Am,B,Q,R); Eg=-10*[2;1;1;5;5;1;2]; C=eye(7);

D=zeros(7,4); sys=ss((Am-B*km),B,C,D);

G=expm((Am-B*km)*5e-3);%System matrix after discritization

x(:,1)=[5;2;2;5;2;5;2];
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t(1)=0;

for k=1:50

x(:,k+1)=G*x(:,k);

t(k+1)=k*5e-3;

end

subplot(7,1,1) plot(t,x(1,:),’b-’); grid; ylabel(’T_{r1}’)

subplot(7,1,2) plot(t,x(2,:),’b-’); grid; ylabel(’V_{r0}’)

subplot(7,1,3) plot(t,x(3,:),’b-’); grid; ylabel(’V_{r1}’)

subplot(7,1,4) plot(t,x(4,:),’b-’); grid; ylabel(’T_{r2}’)

subplot(7,1,5) plot(t,x(5,:),’b-’); grid; ylabel(’V_{r2}’)

subplot(7,1,6) plot(t,x(6,:),’b-’); grid; ylabel(’T_{r3}’)

subplot(7,1,7) plot(t,x(7,:),’b-’); grid; ylabel(’V_{r3}’)

xlabel(’time (sec)’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculations for the condition checks%

%Unwind Section

epsilon0=10; eta10=max(svd(A10));

eta20=max(svd(A20));

xi0_square=eta10ˆ2+eta20ˆ2;

check0=sqrt(N*(xi0_square+epsilon0))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_unwind=dist_sing(Am0’,0,1e-8)

%Master-speed section
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epsilon1=10; eta01=max(svd(A01));

eta21=max(svd(A21));

xi1_square=eta01ˆ2+eta21ˆ2;

check1=sqrt(N*(xi1_square+epsilon1))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_master=dist_sing(Am1’,0,1e-8)

%Process section

epsilon2=10; eta12=max(svd(A12)); eta32=max(svd(A32));

xi2_square=(eta12)ˆ2+(eta32)ˆ2;

check2=sqrt(N*(xi2_square+epsilon2))

%Call for the function, which calculates

%minimum of singular value.

sigma_min_process=dist_sing(Am2’,0,1e-8)

%Rewind section

epsilon3=10; eta23=max(svd(A23)); xi3_square=(eta23)ˆ2;

check3=sqrt(N*(xi3_square+epsilon3))

%Call for the function, which calculates minimum

%of singular value.

sigma_min_rewind=dist_sing(Am3’,0,1e-8)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Before computing the gains, note the output

%in Matlab window to

%check whether the conditions are satisfied or not.

%If conditions are not satisfied for i-th subsystem

88



%then change the second row of ‘‘Ami’’.

%After iterative process if the conditions are

%satisfied then solve ARE as below.

P0=are(Am0,-N*eye(2),(xi0_square+epsilon0)*eye(2))

Q0=Am0’*P0+P0*Am0+N*P0*P0+(xi0_square+epsilon0)*eye(2);

E0=eig(Q0)

P1=are(Am1,-N,(xi1_square+epsilon1))

Q1=Am1’*P1+P1*Am1+N*P1*P1+(xi1_square+epsilon1);

E1=eig(Q1)

P2=are(Am2,-N*eye(2),(xi2_square+epsilon2)*eye(2))

Q2=Am2’*P2+P2*Am2+N*P2*P2+(xi2_square+epsilon2)*eye(2);

E2=eig(Q2)

P3=are(Am3,-N*eye(2),(xi3_square+epsilon3)*eye(2))

Q3=Am3’*P3+P3*Am3+N*P3*P3+(xi3_square+epsilon3)*eye(2);

E3=eig(Q3)
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A.2 Simulink block diagram
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APPENDIX B

Dynamic Model Parameters and Calibration

B.1 Model Parameters

Tensile testing experiments were carried out to find the modulus of elasticity of the web

material. The web material used is Tyvec, which is made by Dupont. In tensile testing,

predetermined load was applied on a web with the un-stretched length equal to 36.4744

m and resulting change in length,δL, was recorded. Table B.1 shows the experimental

observations from the tensile test.

The graph of Force (N) against strain is obtained as shown in Fig. B.1. The linear curve

fit shows the approximate value ofEA to be 9300 N or 2090 lbf

OBS No. Force (N) δL (mm) Strain (× 10−4) EA (N)

0 0 0 0 -

1 4.4 17 4.66 9442.06

2 7.4 27 7.4 10000

3 11.5 43 11.789 9754.856

4 16.0 63.5 17.409 9190.649

5 20.5 79 21.659 9464.888

Table B.1: Tensile test on web material
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Note that the mathematical model requires the product of elasticityE and area of cross-

sectionA. Taking advantage of this,EA is obtained directly, which eliminates the possible

error in the evaluation ofA from web thicknesst.

B.2 Calibration

Actual physical variables have different values than corresponding variables used in

the AUTOMAX program. Hence, the same gains and equilibrium controllers as obtained

above cannot be used directly but need to be scaled properly. This scaling depends upon

the relation between actual physical variables and corresponding program variables. The

relation between actual physical variables and their corresponding program variables in

AUTOMAX are given below.

Tension: UN LOAD CELL%, NP2 LOAD CELL%, WN LOAD CELL% are the variables

used in the AUTOMAX program to represent tension in the unwind, process and rewind

sections, respectively. To get the actual tension,ti in lb f , from the program variables,

a scaling factor of0.022 is used. For example, tension in the unwind zone is given by

t1 = 0.022∗UN LOAD CELL%.

Velocity: UN SPDFDBK%, NP1 SPDFDBK%, NP2 SPDFDBK%, and

WN SPDFDBK% represent the program variables for web velocity inf t/min. It may be
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noted that the velocity in the controller design is used inf t/secand hence each program

variable needs to be multiplied by1/60.

Diameter: The diameter of the unwind and rewind roll are sensed by the ultrasonic sen-

sors and they are represented byUN DIA SC% andWN DIA SC% respectively. These

program variables need to be multiplied by 0.01 to get the actual diameter in inches.

Torque: The input torques to the motors are represented by the program variables

UN REFERENCE3%, NP1 REFERENCE3%, NP2 REFERENCE3%,

andWNC REFERENCE3%for unwind, master speed, process and rewind rollers respec-

tively. But the actual torques are found out to be 20 times more than the values represented

by these variables. Hence, the control inputs calculated in terms of the program variables

are reduced by the factor1/20.
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APPENDIX C

Step-by-Step Algorithm for Decentralized Controller Development

(1) Decompose the given web handling plant into subsystems such as unwind section, mas-

ter speed section, process section(s) and rewind section. The decomposition procedure

is explained in Chapter 3. A typical web processing line is shown in Fig. C.1, which

has many process sections in between the master speed section and the rewind section.

Total (N+1) rollers are shown in which the0-th roll is assigned to unwind roll and the

N-th roll is the rewind roll.

(2) Obtain the dynamic model for each section in matrix form as demonstrated in Chapter

3.

(a) The dynamic model for the unwind section can be written as

ẋ0 =




Ṫ1

V̇0


 = A0x0−B0U0−B0 f0(V0)+

N

∑
j 6=0, j=1

A0 jx j (C.1)

where

A0 =



−vr1/L1 (t0−AE)/L1

R2
0/J0 −bf 0/J0


 , B0 =




0
n0R0

J0


 (C.2)

A01 =
[

AE− tr1
L1

, 0

]T

, f0(V0) =
tw

2πn0R0

(
J0

R2
0

−2πρwbwR2
0

)
(V2

0 +2vr0V0)

RemainingAi j matrices are null matrices with proper dimensions.

(b) The dynamic model of the master speed section can be written as

ẋ1 = v̇1 = A1x1 +B1U1 +
3

∑
j=0, j 6=1

A1 jx j (C.3)
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Figure C.1: A typical web processing line

where

A1 =−bf 1

J1
, B1 =

n1R1

J1
,

A10 =
[−R2

1

J1
,0

]
, A12 =

[
R2

1

J1
,0

]

RemainingAi j matrices are null matrices with proper dimensions.

(c) The dynamic model for each process section can be written as

ẋi =




Ṫi

V̇i


 = Aixi +BiUi +

N

∑
j 6=i, j=0

Ai j x j (C.4)

wherei = 2,3, . . . ,N−1,

Ai =



−vri/Li (AE− tri )/Li

−R2
i /Ji −bf i/Ji


Bi =




0

niRi
Ji


 (C.5)

Aii−2 =




vri−1
Li

0

0 0


 , Aii−1 =

[
tri−1−AE

Li
,0

]T

, Aii+1 =




0 0

R2
i

Ji
0




The remainingAi j matrices are null matrices with proper dimensions.

(d) The dynamic model for the rewind section is given by

ẋN =




ṪN

V̇N


 = ANxN +BNUN +BN fN(VN)+

N

∑
j 6=N, j=0

AN jx j (C.6)
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where

ANN−1 =




vrN−1
LN

trN−1−AE
LN

0 0




fN(VN) =
tw

2πnNRN

(
JN

R2
N

−2πρwbwR2
N

)
(V2

N +2vrNVN)

The remainingAi j matrices are null matrices with proper dimensions.

(3) Once the dynamic model is obtained for each subsystem, designĀi and gain vectorsKi ,

following the two step procedure, which is described in section 4.2. Note that for the

rewind and unwind rolls these gains need to be computed on-line using instantaneous

values of their radii.

(4) Compute the angular velocity of each driven roller on-line, by differentiating encoder

signal from corresponding motor.

(5) Using computed angular velocity of unwind (rewind) roll calculate the radius of un-

wind roll by integrating the following equation

Ṙ0≈− tw
2π

ω0 (C.7)

For the rewind roll, radius is calculated using

ṘN ≈ tw
2π

ωN (C.8)

The trapezoidal rule may be used in the program to carry out numerical integration. At

the start of the controller execution initial value of the roll-radius must be provided to

initiate numerical integration. This can be done with the help of the ultrasonic sensor

mounted on the unwind (rewind) stands.

(6) Using the radius of each roller/roll,Ri , and calculated angular velocityωi , compute

linear velocity usingvi = Riωi .
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(7) Errors in tension,Ti , and velocity,Vi , are required to be calculated on-line usingTi =

ti− tri andVi = vi−vri . Calculate velocity references for each section depending upon

master speed reference velocity and tension references. The tension reference in each

zone and velocity reference of master speed roller is set by the operator. For the unwind

roll, the reference velocity is given by

vr0 =
AE− tr1
AE− t0

vr1 (C.9)

For the process section driven rollers and the rewind roll, calculate reference velocity

using the following equation:

vri =
(

AE− tr1
AE− tri

)
vr1 (C.10)

(8) Then use the decentralized control input for each section asτi = τieq+Ui whereτieq

are equilibrium inputs.

(a) For the unwind subsystem,

τ0eq =− bf 0

n0R0
vr0 +

R0

n0
tr1− tw

2πn0R0

(
J0

R2
0

−2πρwbwR2
0

)
v2

r0−
J0

n0R0
v̇r0 (C.11)

U0 =− f0(V0)+K0[T0, V0]T (C.12)

(b) For the master speed roller,

τ1eq =
bf 1

n1R1
vr1 +

R1

n1
tr1 (C.13)

U1 =−K1V1 (C.14)

(c) For all other driven rollers in the process section,

τieq =
bf i

niRi
vri − Ri

ni
(tri+1− tri ) (C.15)

Ui =−Ki[Ti , Vi ]T (C.16)
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(d) For the rewind subsystem,

τNeq=
bf N

nNRN
vrN +

RN

nN
trN− tw

2πnNRN

(
JN

R2
N

−2πρwbwR2
N

)
v2

rN +
JN

nNRN
v̇rN

(C.17)

UN =− fN(VN)−KNxN (C.18)

(9) The design of model reference decentralized adaptive controllers:

Follow same steps as explained above with exception that in Step 3, instead ofĀi ,

reference system matricesAmi need to be chosen and in Step 8, estimated gainsK̂i are

required to be used in the feedback control lawUi . Follow the three steps given in

section 4.3 to designAmi, choose initial valuêKi(0) and adaptation laẇ̂Ki .

(10) Computations of control inputs,τi , must be done keeping appropriate scaling between

programmed variables and actual physical variables. This aspect is discussed in Ap-

pendix B.2
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APPENDIX D

CONTROLLER HARDWARE IN AUTOMAX SYSTEM

The objective of web speed and tension control boils down to a control of speed of all

motors based on the the tension and velocity feedback. For different motors different strate-

gies are used. For motorsM0 andM3 the control block diagram is as shown in Fig. 4.1. As

seen there are two loops namely inner loop for velocity control and outer loop for tension

control. For an outer loop, there are two options for tension feedback viz. feedback depend-

ing upon the dancer position or feedback from load-cell. Outer loop controller generates

correction term, which is then added to the reference speed. This new required velocity is

compared with feedback velocity. If there is no change in the tension from reference value

then there will be zero correction term and hence speed will also be maintained at reference

value by inner loop. Inner and outer loop controllers are implemented using Automax con-

trol system. In nip station number 1, motorM1 is master speed motor as it is not controlled

with the tension feedback but only with inner velocity loop.

D.0.1 Adjustable Speed Drives

All motors are three phase induction motors. Velocity Control of induction motors is

much more complex than DC motors. But still they are popular as industrial drives because

of rugged construction and low cost for applications demanding any power range. Vector

control method is implemented for each motor. Details about vector control as well as

dynamic model of the induction motor are discussed in [30] and [31]. Invertron (VCI) is

used as driver for each motor as a controller except motors M2 and M3 for which HR2000

is used. The vector controller provides signal (current) for corresponding motor depending
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upon the control signal from Automax. Rack A01 has the following drive units in it: Regen

Unit, Nip station]1 lead drive, Unwind drive, Unwind carriage drive, Nip station]1 drive

]2, Nip station]1 drive]3. And rack A00 has the following drive units in it: Winder carriage

drive, Winder surface drive, Winder center drive, Nip station]2 drive. The feedback control

loops in the driver or vector controller are very fast and hence have negligible effect on the

transient response of entire plant.

D.0.2 Role of Auotomax in Control System

Variety of tasks are performed in Automax, which is a programmable, micro-processor

based control system capable of performing real time control with millie-second response

time. Automax system is modular so one can customize the system to meet specific re-

quirements of the application. The design of a system allows maximum of 43 racks, each

containing at least one processor module, to be connected together as a part of control net-

work using Network Communication modules. In the HSWL application two racks, A00

and A01, are used with four and two processor modules respectively.

Feedback options as well as different constant values of various parameters like refer-

ence velocity, tension reference, material and geometrical specifications of web are entered

in to a control panel. All this information is transformed to a processor in a rack A01.

Each of these values as well as other common variables used in the control algorithm are

accessible to all processors simply by referencing the appropriate variable name in a task.

The information will be shared with all two processors in rack A01 as well as all the four

processors in rack A00. Application programs or tasks are created off-line in MS-DOS or

MS-windows environment using an 80386 compatible personal computer. These tasks are

compiled and then transferred to rack A01 via direct link. Different tasks are performed

in different processor modules. The tasks to be performed by processors in rack A00 are

transferred via network communication link from rack A01. To write the task algorithms

Automax supports three different programming languages:Ladder logic language, control
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block language or Enhanced BASIC language. Each of these languages is suited to differ-

ent type of tasks commonly found in industrial and process control environment.

Sequential tasks like checking On/Off switch position, emergency stop after fault de-

tection, etc. are written in ladder logic language.

The controller algorithms are written in Control Block language (.blk format). Depend-

ing upon the references entered in control panel, AUTO-Max algorithm generates suitable

reference values for compatible comparison with feedback signal from the sensor. The

filtering and proper scaling (if required) of feedback signal is also done using algorithm

written in .blk format. The error signal after comparison is used by controller algorithm

written for each motor. Special function calls like integrators, function generators, PID

controller, etc. are used to develop these control algorithms.

The enhanced BASIC language is used for keyboard and CRT (Cathode Ray Tube)-

based operator interfaces and numeric processing.

For a better clarification of control strategy, control of motor M0 is discussed in detail

in next section.

D.1 Control of motor M0

Detailed control block diagram for motor M0 is shown in figure D.1. As mentioned

earlier Invertron is used as drive for this motor. Ladder of circuits is implemented in this

drive which is responsible for all sequential operations in it. As an example, thermal pro-

tection ladder uses thermostat of the motor which stops the current to motor if motor is

overheated. Also there are different circuit ladders to flash indicator light indicating the

correct functioning of various tasks.

As shown in the figure, drive also has to perform very important task of vector control

of motor M0 which has current loop and torque loop in it. The vector control method is

discussed in next subsection. The reference torque value for torque loop in vector control is

generated by control algorithm in Automax. Algorithm uses same structure of inner veloc-
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Figure D.1: Feedback Control Block diagram

ity loop and outer tension loop as shown in figure 4.1. There are two separate algorithms for

tension control corresponding to two choices of tension feedback methods namely dancer

position feedback and direct feedback from load cell. This option is required to be selected

on a control panel. Control panel sends the binary variable (i.e. 1 or 0) showing which

option is chosen by the user. Control algorithm makes use of this variable so that at a time

one tension loop is active while other is inactive.

Depending upon reference tension, Tref, entered in control panel, Automax has to set

force acting on dancer roller to a correct value. The algorithm written in Automax uses

the equilibrium condition for generating loading signal. For S-wrap dancer loading has

to balance torque due to tensions on both rollers. Similarly, there are separate Automax
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algorithms for giving nip loading, brake loading signals.

As web unwinds from the unwind roller to rewind roller, a time may arrive when there

will be no web on unwind roller. In this situation web will be broken. To avoid this, ratio

detector tracks radii of both unwind and rewind rolls. Automax algorithm for ratio detector

is written which calculates diameter of unwind and rewind coils. Ratio detector makes use

of actual speed of the web, initial diameter of the roller with coil on it and thickness of the

web.

Also ultrasonic sensors are provided under each web coil roller. This is an extra op-

tion for checking actual radii of each roller with web coil. Sensor transmits ultrasonic

wave which is made incident on coil and then repelled ultrasonic wave is collected. The

time lapsed in between transmission and reception of wave decides the distance between

coil diametrical surface and fixed sensor. Diameter of the coil and distance detected are

proportionally related and thus coil diameter can be tracked.

‘Section-logic’ implements ladder programs, which perform all the sequential tasks

(different than those performed by Invertron). These are basically on/off type of tasks.

D.1.1 Vector Control

General block diagram of a vector control is shown in figure D.2. Vector control or

Adjustable speed drive (ASD) needs variable frequency source corresponding to different

speeds of the motor. For this ‘invertor’ is used which is a dc to ac convertor and dc power

for invertor is supplied by rectifier which is fed from the ac line through a capacitor filter.

Pulse Width Modulation technique is used to control the output voltages of the invertor.

Three phase induction motor has a three components of a current. This three phase

quantity (denoted as ‘abc’ format) is expressed in a space vector form (denoted as ‘dq’

format). The vectorial representation uses direct(d)-quadrature(q) frame of reference. The

three phase quantity is expressed in these d and q components. Vector controller has current

loop which compares ‘required’ current components (in d-q form) with ‘actual’ current
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Figure D.2: Vector Control Block diagram

components (also in d-q form). Current sensors are used to get actual current values in ‘abc’

format which are then converted into required ‘dq’ vector format. The current feedback

circuit also ensures that circuit current is not exceeding the specified maximum value.

The required or reference current components are provided by field oriented controller [30].

Torque produced by the motor is given [31] as,

TM =
2
3

Pp
Lm

Lr
Im{isλ ∗r } (D.1)

Where,TM is developed torque,Pp is the number of pole pairs,is is a stator current vector,

λ ∗r is the rotor flux space vector,Lm andLr are magnetizing inductances of stator and roller

respectively. Also

Im{isλ ∗r }= isλrsin[∠(is,λr)]

Thus dynamics of torque developed is dependent on the dynamics of rotor (or stator)flux
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vector as well as stator current vector. In case of induction motor, field is revolving and

not stationary like dc motor. That is why only magnitude control is not enough but field

orientation i.e. angle also need to be controlled and that is why the control is known as

vector control. The main idea of the field oriented control is to align direct(d) axis of the

revolving reference frame with rotor flux vector i.e.λr so that induction motor emulates

the DC motor. Given a reference torque (from Automax algorithm) and a reference flux-

vector to be developed, field oriented control will generate required current components to

be used by current loop. Here rotor speed is used to obtain the reference flux value. Refer-

ence flux is generated such that it ensures that the stator voltage under the field weakening

conditions will not exceed the rated value. The torque reference is produced by Automax

control algorithm. Feedback from the encoder is the angular position of the rotor shaft

which is then differentiated to get angular speed. The speed is also needed to the controller

algorithm written in Auto-Max. Invertron not only drives motor but also gives necessary

speed feedback to Automax controller.
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