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CHAPTER I 
 

INTRODUCTION 

Respiration studies have assumed increased importance in the field of biomedical 

analytics research. Respiration signal analysis is beginning to be applied to address a 

variety of issues ranging from cardiac diagnostics [18] and sleep studies [17], to sports 

medicine [19]. With the recent thrust towards wearable systems [67-69], and healthcare 

cost reduction, some research investigations have addressed the extraction of respiration 

waveforms from ECG data so that the number of sensors and total examination cycle 

times can be reduced [7, 8].  

The basic principle underlying the derivation of respiration signals from an ECG is that 

respiration induces a modulation of the cardiac signal’s electrical axis [1]. During 

inspiration, as lungs are gradually filled, the   apex of the   heart is    stretched towards   

the abdomen. During expiration, the  diaphragm is  elevated, as it  helps the emptying of 

the lungs. This action compresses  the   apex of the  heart   toward  the breast. ECG 

analysis has therefore been a key tool in   understanding   respiration-induced heart 

displacement [2]. Respiration-induced  changes in  the  ECG  also  make   it possible to 

derive a  surrogate respiratory signal directly from the ECG, potentially  eliminating the 

need for a separate respiratory sensing system [3]. Different   methods like empirical 

mode decomposition (EMD) [2, 8, and 10], heart rate variability [8] and wavelets [30-34] 
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have been used to derive respiration signals. While respiratory rates (i.e., the lengths of 

intervals between successive inspirations) extracted from the derived signals correlate 

well (correlation coefficient  > 80%) with those extracted from the measured respiration 

signals [2], the respiratory waveforms derived from an ECG typically have  <40%. 

 

In addition to ECG data, heart sounds serve as an important parameter to understand 

valuable information about the functional integrity of the heart. Heart sounds are the 

elastic waves emitted by the heart during a cardiac cycle [6]. Assessing heart sounds has 

almost always been a chief part of auscultation-based diagnosis at hospitals.  Apart from 

being a low-cost alternative to the ECG, it is useful for detecting defects such as 

structural abnormalities in the heart and defects characterized by heart murmurs and 

abnormal sounds  that  cannot be detected using the ECG [4]. 

 

The timing and relative intensities of heart sound waveforms can be recorded using a 

digital stethoscope, and its graphic representation is called a phonocardiogram [39]. 

Unlike an ECG, current understanding of the heart sounds is still limited due to the 

nonstationarity (time varying nature) of heart sound dynamics, as well as the complexity 

and sheer diversity of the PCG signal patterns [4]. Since these are acoustic signals, they 

are prone to interference from several ambient noise sources that are difficult to isolate, 

even in well-controlled clinical or hospital environments [5]. These noises can be both 

internal (e.g., coughing and physiological variations) as well external (e.g., environmental 

noise). Pertinently, respiration is a prominent extraneous component that often affects 

proper diagnosis using heart sounds. Recent developments in digital signal analysis 

techniques can be used to better analyze heart sound signals and derive meaningful 

information from these components [4]. 
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This research reports an approach to deriving respiration components from the measured 

heart sound signals. The data required for analysis was collected synchronously using a 

new wireless sensor unit (see Fig.1) built in the Sensor Networks and Complex Systems 

Monitoring laboratory (COMMSENS) at Oklahoma State University and a wearable 

sensor vest (see Fig. 2) from Vivo Metrics.  The synchronous acquisition of heart sound 

and ECG data is a unique feature of our system and lays the foundation for the analysis 

that follows. The respiratory waveform derived from heart sounds (HSR) was compared 

with these two alternative methods, for, deriving respiration data from the ECG. The 

results show that the waveform as well as internal characteristics of the HSR correlate 

well with the measured respiration signal compared to other alternatives. The remainder 

of this document is organized as follows: Chapter 2 presents a brief review of methods 

reported in literature to extract respiration from an ECG and heart sounds, Chapter 3 

presents the problem statement and research objectives, Chapter 4 presents our approach 

to deriving respiration from heart sounds and an ECG, and Chapter 5 describes validation 

studies and presents the results.  

 

Figure 1: Wireless sensor unit setup in the COMMSENS laboratory at Oklahoma State 
University 

ECG Analysis 

Board Heart sound 

breadboard 
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Figure 2: Wearable sensor vest from Vivo Metrics. 
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CHAPTER II 
 

BACKGROUND AND REVIEW OF METHODS TO DERIVE RESPIRATION SIGNALS 

This chapter presents an overview of previous attempts conducted by several research 

groups to derive surrogate respiration. These attempts focus mainly on ECG derived 

respiration (EDR) methods. There has been a mention of deriving respiration from lung 

and body sounds which could provide alternatives in deriving surrogate respiration. 

2.1    ECG DERIVED RESPIRATION (EDR) SIGNALS       

Womack [20] was one of the early pioneers in deriving surrogate respiratory rate from 

ECG signals.  Subsequently, several other techniques for deriving respiration from an 

ECG were developed. The early EDR techniques could be classified into four categories 

[21]. The first category is based on estimating ECG-derived respiratory (EDR) signals 

using heart beat interval fluctuations, also referred to as respiratory sinus arrhythmia 

(RSA) [20]. The second category, the “amplitude method” is based on the fact that the 

impedance across the thoracic cavity changes during inspiration and expiration so that the 

amplitude of the ECG’s QRS complex changes [22-24]. Specifically, the EDR could be 

determined from the change in R-wave amplitude from the suitable lead ECG. The third 

category called the “area method” derives the EDR from the ratio of the area under the 

QRS complex in multiple lead ECG [25, 26]. The fourth, the angle of mean electrical axis 

(AMEA) method [27], estimates the EDR by finding the area of the QRS complex from 

any two lead ECGs, and then obtaining the AMEA from the arctangent of the ratio of 
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these areas. Leanderson [31] proposed a method based on the alignment of an observed 

vectorcardiogram (VCG) loop to a reference loop with respect to the transformations of 

rotation and time synchronization. Mazzanti et al. [32] proposed the method to 

automatically select the optimal leads to calculate the EDR from QRS-area validations. 

Bailon et al. [33] claimed that the conventional methods fail during stress testing since 

the ECGs contain highly nonstationary noise and rapid changes in the QRS complex. 

Also, they presented an area-based method that exploits the oscillatory pattern of the 

rotation angles of the heart’s electrical axis induced by the respiration to derive the EDR. 

Based on the R-wave amplitude method, Ding et al. [24] calculated the kurtosis of 

intervals between each pair of neighboring R peaks  instead of using the amplitude of the 

R-wave directly for deriving the EDR. Arunachalam et al. [34] presented a real-time 

algorithm for estimation and removal of baseline wander (BW) noise and then obtained 

the EDR by the amplitude method.  

To address the limitations of conventional EDR methods in the presence of noise, 

Langley [29] proposed an algorithm based on principal component analysis (PCA) to 

derive the EDR from multiple lead ECGs. However, the PCA based EDR assumes that 

the respiration signals emerge from a linear process. Widjaja et al. [30] proposed a 

method that uses kernel PCA for nonlinear decomposition of ECG signals to derive 

respiration. Multiple groups have investigated empirical mode decomposition (EMD) for 

EDR [2, 8]. These studies indicate that EDR obtained from EMD has the highest 

correlation with the real respiratory signal compared to results obtained from other 

methods [8].  
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2.2 HEART SOUND DERIVED RESPIRATION (HSR) 

Apart from the ECG, heart sound signals are widely collected during medical 

examinations, especially as a part of auscultation. Extraction of respiration from these 

signals, although plausible, has not received much attention.  In this study we develop a 

new method to use heart sound signals gathered contemporaneously with an ECG to 

extract respiration and compare the resulting signals from EDR obtained using an ECG. 

A heart sound waveform within a cardiac cycle is marked by multiple events (also 

referred to as waves), such as S1, S2, S3, S4 and heart murmurs (see Fig. 3). The heart 

sound waves occur over frequencies in the range of 10 Hz-2 KHz. The S1 sounds 

typically occur near in the 15-30 Hz frequency, while S2 sounds lie at or around 30-45 

Hz as shown in Figure 4. Most heart sounds are generated by the closing and opening of 

semilunar and AV valves and associated flow phenomena [6]. Four classes of sound 

components, viz., S1, S2, S3 and S4 may be audible in a typical heart auscultation as 

shown in Figure 3. The prominent waves, S1 and S2 are always audible in a normal 

patient. The others, including S3, S4, clicks, snaps, and organic murmurs (as opposed to 

‘‘innocent’’ murmurs), are present only under abnormal circumstances and in disorders 

[4]. Component S1 relates to the closing of the mitral and tricuspid valves while S2 is 

generated by the halting of the aortic and pulmonary valve leaflets [52]. Therefore, S1 

happens almost contemporaneously with the QRS complex in an ECG 

(electrocardiogram) and S2 follows the systolic pause, which happens towards the end of 

the T wave in the ECG in a normal cardiac cycle. Therefore, heart sound events can be 

identified by correlating them with the corresponding ECG/cardiac events. 
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Figure 3: Schematic plot showing the timing of various EKG and heart sound events in 
two consecutive cardiac cycles [52]. The morphology of the prominent heart sounds 
S1, S2, S3 and S4 and the respective timings in the heart sound signal with respect to 
the ECG are provided. 

Fig. 3 is a representative figure showing different classes of heart sounds and their 

respective timing with respect to the ECG signal. The figure also shows the timing of the 

ventricular pauses (systole and diastole) with respect to the ECG signal and the heart 

sounds. The systole begins at the end of S1 and lasts until the start of S2. The diastole on 

the other hand, relates to the ventricular filling, and begins at the end of S2 and lasts until 

the start of S1. 

 

Fig. 4 shows the frequency information related to a heart sound signal of a supine subject 

recorded at 250 Hz. The horizontal axis contains the frequency information represented 

in Hz while the vertical axis contains the amplitude information relative to each 

frequency. The S1 component of heart sounds occurs within a frequency band of 15- 30 
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Hz while the S2 component of heart sounds occurs within a frequency band of  30-45 Hz, 

as indicated by the three dominant frequency modes in these bands. 

 

             

 

Figure 4: Frequency portrait of heart sounds. The horizontal axis represents the 
frequency in Hz while the vertical axis represents the amplitude(volt) relative to the 
frequency in volts. This heart sound signal was recorded from a supine subject at 250 
Hz sampling rate .Heart sound signal S1 occurs near 20 Hz while S2 occurs near 35 Hz 

 

Apart from heart sounds, body sounds emanate from various mechanical activities of the 

body organs. While the cardiac sounds can be measured around the heart or arteries, the 

respiratory sounds can be measured around the respiratory tract or lungs.  Similarly, 

breath sounds can be measured at the trachea.  

Miwa et al. [41] measured body sounds at the neck around the carotid artery along with 

an ECG and respiratory signals obtained from airflow sensors. Continuous Wavelet 

Transform [34] was applied to the body sound data, and the heart rate and respiratory rate 

were determined. The heart rate and respiratory rate, expressed in terms of breaths/min or 

bpm calculated from body-sounds, were reported to be near the 63 [bpm] and 10.1[bpm], 

ranges respectively.  The heart rate and respiratory rate calculated from the ECG and 
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original respiratory waveform were also found to be near 63 [bpm] and 10.1[bpm]. 

Similarly, inter-beat intervals were coincident with the respiratory rate intervals (RRI) 

determined by the ECG. Some other groups have also attempted to use body sounds 

auscultation to gain information regarding breathing disorders [50, 51].  

Typically, healthcare professionals use standard stethoscopes to measure respiration rate. 

But this technique is more prone to human errors. Another technique called 

phonopneumography, is used to more accurately count respiration rate [42-44]. Acoustic 

sensors using a microphone detect analog breath sound signals which can be digitized 

and analyzed using computer algorithms to monitor respiration rate. Respiration signals 

can also be derived by having an acoustic sensor carrying a microphone placed on the 

trachea. Some groups have proposed use of bioacoustics sensors to obtain respiration 

signals. [47-49]. Inspiration and expiration signals can be obtained by segmenting the 

acquired data into different frequency ranges which contain respiration and other 

cardiological data.  

Noma et al. [45] proposed a method to obtain surrogate respiration using non-audible 

murmur (NAM) microphones. A NAM microphone was attached at the subject’s neck. 

ECG data and heart sounds (phonocardiograms) were also obtained simultaneously along 

with respiratory information. Respiration information was reported to be contained in the 

150-200Hz bandwidth in the acquired data. While NAM and trachea based estimates of 

respiration were found to be promising, they need an extra sensor, and these signals tend 

to be highly sensitive to body movement. However, the previous work does not report 

extensive validation of the surrogate respiration signals extracted and the experiments 

have not been tested under different conditions and on multiple subjects.   
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CHAPTER III 
 

PROBLEM DESCRIPTION AND RESEARCH OBJECTIVES 

Prior respiration studies have focused heavily on deriving surrogate respiration 

waveforms from ECG signals. The basic rationale behind the derivation of respiration 

from ECG is that respiration induces a modulation of cardiac signal’s electrical axis [1]. 

As discussed before, many algorithms like Empirical Mode Decomposition (EMD), 

principal component analysis (PCA) and wavelets have been implemented with varying 

effects to extract surrogate respiration waveforms from ECG data [2, 29, 24]. Heart 

sounds, on other hand, also provide useful information pertaining to the cardiovascular 

dynamics of the heart. The human race was aware of the existence of these cardiac 

sounds as early as 460 B.C. [40], But they have been employed for cardiac auscultation 

only since Rene’ Theophile’ invented the stethoscope in the 17
th

 century [40]. Heart 

sounds even today remain the primary source of auscultation at hospitals. However, 

extracting respiration information from these cardiac sounds has received little attention.  

 

This study addresses the need to study heart sounds as a possible alternative to traditional 

ECG derived respiration information. We have investigated a new method to estimate 

heart sounds based on ensemble averaging, as detailed in Chapter 4.1. To validate our 

algorithm, we have compared the waveform characteristics obtained using heart sounds 

with traditional ECG-derived respiration techniques as well as with the real-time 

respiration measuring instrument from Vivo Metrics. Specifically, we compare the 
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signals based on how well the respiration waveform, the peak to peak intervals, RSA and 

zero crossing intervals of the derived signals compare with those from the measured 

respiration signals (see Chapter 5). There are two perceivable benefits of conducting this 

study as listed below: 

1. Economic savings: As heart sounds are easily accessible to the doctor, there will 

be significant cost savings in terms of reduced technology (sensors and accessories) 

required to estimate respiration as compared to traditional heart sound derived respiration 

2. Ergonomic value: Reducing/eliminating the number of sensors required will make 

the process of collecting data much easier for the doctor and painless for the subject. 

 

We believe that heart sound analysis should be treated in more detail in order to generate 

other meaningful information related to cardiology such as structural abnormalities in the 

heart and defects characterized by heart murmurs. Also, there remains the possibility of 

calculating the respiratory rate measured using heart sounds and finding patterns to 

predict disorders like sleep apnea. This research has attempted to address some of these 

issues and we believe the results could lead us to some important insights pertaining to 

cardiovascular dynamics and diagnostics. 
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CHAPTER IV 
 

RESEARCH METHODOLOGY 

An overview of the procedure to extract respiratory waveforms from human subjects 

from ECG signals and heart sound data recorded simultaneously and synchronously using 

our new wireless sensor technology is presented in Fig. 5. The wearable vest from Vivo 

Metrics that records a single channel ECG and respiratory signals is used for validation 

studies of the desired respiration signals. 

 

Figure 5: Overview of surrogate respiration extraction methods 
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All experiments were carried out in the Sensor Networks and Complex Systems research 

laboratory (COMMSENS) at Oklahoma State University on 20 healthy male subjects 

with an age range of 25-35 years. The subjects were instrumented with two sensor suites, 

namely, a wireless unit developed at the COMMSENS lab and a wearable vest obtained 

from VivoMetrics. The samples were collected for a duration of ten minutes each. The 

sensor unit consisted of an electronic circuit connected to the electrodes, as well as a 

Bluetooth wireless unit to transmit Frank’s XYZ signals and one channel for transferring 

heart sound data to a remote computer for storage and analysis. The sensor unit uses 8 

electrodes- two each for X, Y, and Z axes, one for the heart sound and one for ground.  

The wireless sensor data was sampled at 250 Hz, and the single channel ECG and two 

channels of respiration signals (abdomen and ribcage) from the Vivo Metrics vest were 

sampled at 200 Hz. The data were collected from ten healthy subjects under 2 different 

physical states: upright standing (see Fig. 6), and supine (see Fig. 7). 

  

 

Figure 6: Male subject in an upright standing posture. The samples were collected at 
the rate of 250 Hz using the wireless sensing unit while the vest collected samples at 
the rate of 200 Hz. 
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Figure 7: Male subject in a supine posture. The samples were collected at the rate of 
250 Hz using the wireless sensing unit while the vest collected samples at the rate of 
200 Hz. 

 

There is a marked reduction in the number of electrodes (7 vs. 15) in the wireless unit as 

compared to the traditional 12-lead method. However, no discrepancies were found in the 

data collected. The ECG signals from the wireless system are time-synchronized with 

those from the vest to allow comparison of corresponding ECG and respiration 

waveforms from the vest and the wireless unit. The method for extracting surrogate 

respiration waveforms from heart sounds is based on identifying the salient heart sound 

signal patterns with the help of easily identifiable events from synchronously acquired 

ECG signals. Here, a nonlinear time scaling is applied on the measured heart sound 

signals to obtain an ensemble of time- averaged waveforms [12]. The scaling method 

relies on treating the signal as a cyclostationary process [53]. The respiration component 

is treated as the difference between the measured and averaged signals. Chapter 4.1 

describes this method of deriving respiration from heart sounds using a time averaging 



16 
 

method where, non-linear time scaling is applied to obtain an ensemble average signal, 

which facilitates the estimation of a respiration waveform. The resulting signal is 

compared with respiration signals measured concurrently from the Vivo Metrics vest, as 

well as EDR signals obtained using EMD and wavelet methods . In the EMD method 

described in Chapter 4.2, ECG data is processed into intrinsic modes of oscillation having 

equal number of extrema and zero crossing. Chapter 4.3 describes another method to 

estimate respiration using wavelet theory. Chapter 4.4 compares the performance of 

surrogate respiration obtained from heart sounds using EMD with the respiration 

obtained using the ensemble averaging method. A brief description of these methods is 

presented in the following subsections. 

 

   4.1 HEART SOUND DERIVED RESPIRATION 

 

As mentioned above, our wireless sensing unit collects heart sounds synchronously with 

ECG data.  This unique feature allows us to extract heart sound events efficiently through 

mapping with the ECG patterns, as well as to compare performances of alternative 

methods for extracting surrogate respiration signals. The measured heart sound signal can 

be written as 

             ( )   ( )   ( )                 (1) 

where,  ( )  is the measured heart sound signal,  ( )  is the noise-free heart sound 

waveform i.e., ideal signal, and  ( ) is noise. Here,  ( ) is assumed to be cyclostationary 

[12], i.e., 

                          ( ) =  (    ),                                                             (2) 
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and  ( )  is assumed to be a superposition of respiration and other ambient noise 

processes which are zero mean and independent of each other and   ( ), i.e.,  

   ( )      ( )      ( )               (3) 

where,     ( ) is a low frequency component of  ( ) that connotes respiration, and    ( ) 

is the complementary noise component that emerges from all other sources. Since  ( ) is 

cyclostationary, the noise-free signal component  ( ), can be estimated by averaging 

over all the cycles of the signal. Since different signals have different periods, one needs 

to take a time-scaled ensemble average of the signal [12]. According to the central limit 

theorem, the average of the large number of independent random variables follows a 

normal distribution with the mean close to the true mean of the cyclostationary signal.  

Fig. 8 summarizes the method used to estimate surrogate respiration from heart sounds.  

 

Figure 8: Steps involved in deriving surrogate respiration using the ensemble 
averaging technique. 
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The task has been made simpler due to unique feature of our system which performs 

synchronous measurement of ECG and heart sounds. This synchronous recording 

facilitates segmenting the heart sounds into different components which forms the basis 

for the further analysis. The following points describe the method to estimate respiration 

in greater detail. 

Identify S1 and S2. The sound components S1 and S2 have similar and often statistically 

indistinguishable time and frequency patterns. It is therefore challenging to correctly 

identify S1 and S2 components of a heart sound signal automatically. Sound component 

S1 occurs due to the closing of mitral and tricuspid valves, and it is generally 

synchronous in time with the peak of the QRS wave. Also, S2 follows the systolic pause 

that begins at the end of the T wave in the ECG.  Therefore, it is not hard to segment 

heart sounds S1 and S2, and the systolic and diastolic pauses within them when ECG data 

is employed as a reference. Hence, the synchronous measurement of heart sounds and 

ECG helps to identify S1 and S2 waves. Fig. 9 shows the alignment of heart sounds using 

ECG data as reference. The R peak in the QRS component of the ECG waveform, marks 

the beginning of the S1 component in the corresponding heart sound waveform measured 

synchronously. The end of the T wave in the ECG waveform, marks the beginning of the 

S2 component in the corresponding heart sound waveform. The samples were recorded 

from a healthy male subject in a supine position. The samples were collected at the 

sampling rate of 250 Hz.  
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Figure 9: Synchronized ECG and heart sound. The horizontal axis consists of time 
represented in sample points while the vertical axis consists of amplitude(volt) 
measured in volts relative to the time samples. Here, the samples were collected at 
the rate of 200 Hz from a healthy supine subject.  

                      .  

Derive Ensemble Average. Heart sounds as shown in Fig. 10, are roughly 

cyclostationary in nature, i.e.,  [  ( )  (   )]   [  ( )  (     )] for any time  , 

     , and T is the average beat length. The characteristics of  S1 and S2 waveforms 

(as observed from overlaying on each other) varied little from beat-to-beat as shown in 

Fig. 10. According to Tang et al. [12], the average correlation between two S1 waves 

from different beats was 0.97, and that between S2 waves was 0.95.  Heart cycle 

duration, however, varies from cycle to cycle [12]. This variation, generally known as 

heart rate variability (HRV) influences changes in cyclic stationarity. To account for this 

variability, we employ nonlinear time scaling on the signals. In nonlinear time scaling, 
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the timings of heart sounds are aligned from cycle to cycle, with the first heart sound 

cycle used as a reference. For every subsequent cycle in the heart sound signal, we keep 

the S1 and S2 samples of equal size and interpolate the systole and diastole samples (to 

align the timing of the cycles with the reference.) The nonlinear function used to perform 

nonlinear time scaling for the    cycle is defined as    (  ;  ).where    is the parameter 

vector  

From [12], the heart sound signals of the following cycles become: 

  ( )    (  (  ; ))     for i>1        (4) 

Here, the first cycle   ( ) is the reference cycle.    is the cycle duration for the    cycle. 

Fig. 11 shows the piecewise nonlinear function to estimate the ideal heart sound cycle. 

Segments 2-4 and segments 7-10 on the horizontal-axis represent S1 and S2, respectively. 

Hence the piecewise function is parallel with the reference cycle for these segments. We 

interpolate segments 1-2 and 4-7 (on the X-axis) which represent the diastole and systole, 

respectively in order to match them with the reference cycle. The interpolation is shown 

by the change in slope in the random cycle for segments 1-2 and 4-7. By constructing the 

interpolated signal using the   (  ;  ) functions as mentioned in [12], we are able to 

generate a heart sound cycle which is equal over the entire signal. Here,  ( ) which is the 

ideal heart sound cycle can thus be written as, 

               ( )   
 ⁄ ∑  ( ) 

                                                   (5) 

Where,  ( )  is the cycle duration at time,       [   ]    and  L is the number of cycles 

involved in the ensemble. 
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Figure 10: Cyclostationarity in heart sounds. S1 and S2 samples remain consistent from 
beat to beat. The horizontal axis shows time represented in sample points. The 
vertical axis shows the amplitude(volt) relative to each sample point represented in 
volts 

 

Figure 11: Piecewise function of nonlinear time scaling. The dotted line shows the 
cycle time of the reference cycle [1st cycle] while the solid line shows the interpolated 
cycle time of any random sample 

                     

This heart cycle in the resulting signal  ( ) comprises an ensemble average of each 

subcomponent of heart cycle, namely, S1, S2, systole and diastole joined together. This 
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heart cycle symbolizes the expected heart cycle of a virtual ideal heart. This heart cycle is 

replicated over the entirety of the signal. This obtained signal is shown in Fig. 13.                           

  Subtract Ensemble Average. As this ensemble signal is the expected ideal heart sound 

signal, any aberrations with this signal are termed noise. As respiration forms a part of 

this noisy signal, extracting noise is of interest to us, i.e., if we subtract this signal from 

the original signal, we will be left with noise. 

    ( )   ( )   ( )      (6) 

This signal contains information regarding respiration   ( )  and external noise   ( ). We 

will have to further analyze this signal to obtain the surrogate respiration signal. 

 

Separate Respiratory Component. Several algorithms in the literature [12] mention 

ways to extract noise from the heart sounds. Adaptive noise cancellation is successful in 

enhancing heart sounds, but an additional reference signal representing a version of the 

primary input signal with a weak or essentially undetectable information carrying 

component is required [13,14]. Also, reduced-order Kalman filter and spectral subtraction 

have been applied to remove noise from heart sounds [15, 16]. These methods may 

degrade if noise and disturbance are non-Gaussian, non-stationary, or colored. Robust 

methods for the noise reduction of heart sounds are therefore needed [22]. To extract 

noise from the heart sound data, from Eq (5) we subtract the ensemble signal from the 

original heart sound signal.                         

Figures 12-14, explain the signal processing on heart sound waveforms. Heart sound data 

recorded from a healthy subject in an upright posture is pictured in Fig. 12. The heart 

sound waveform consists predominantly consists of S1 and S2 components. S3, S4 and 
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other murmurs (if any) are not dominant. Fig. 13 is a pictorial representation of the 

ensemble heart sound data derived using Eq (4). The S1 and S2 components along with 

the systole and diastolic pauses, recorded over different beats, were added together and 

the mean of each phase was calculated. The averaged phases were then aggregated to 

represent them as one signal. Further, this averaged signal was repeated over the entirety 

of the signal. The ensemble signal waveform derived thus, is pictured in Fig. 13.  Fig. 14 

shows the residual signal extracted after subtracting the ensemble data from the original 

heart sound sample. The ensemble signal is assumed to be the heart sound signal of an 

ideal heart. Any aberrations to this signal are termed noise. Also, respiration is believed 

to form a part of the noise.          

  

Figure 12: Heart sound data for an upright subject recorded at 250 Hz. The horizontal 
axis shows time represented in sample points. The vertical axis shows the 
amplitude(volt) relative to each sample point represented in volts  

 

As respiration occurs due to the modulation in amplitudes, it can be derived by 

determining the extremas (maxima or minima) of the signal obtained in Eq. (6) (here the 

maxima in each heart cycle are obtained by writing a Matlab code). Once all the maximas 
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are obtained over the entirety of the signal, they are joined together. This obtained signal 

is band limited with cutoff frequencies at 1Hz and 40 Hz. This filtering helps eliminate 

artifacts due to baseline wandering. We also perform a cubic spline interpolation over this 

signal to get a better smoothing effect.  

                         

Figure 13: Ensemble averaged signal stretched across the entire signal length. The 
horizontal axis shows time represented in sample points. The vertical axis shows the 
amplitude (volt) relative to each sample point represented in volts  

 

 

Figure 14: Noise obtained by subtracting the ensemble signal from the original signal. 
Here the samples were recorded at the rate of 250 Hz rate. The horizontal axis shows 
time represented in sample points. The vertical axis shows the amplitude(volt) relative 
to each sample point represented in volts  
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The resulting signal is treated as heart sound derived respiration, as shown in Fig. 15. The 

frequency representation of the heart sound derived respiration waveform is shown in 

Fig. 16. The horizontal axis represents the frequency in Hz while the vertical axis 

represents the amplitude (in volts) relative to the corresponding frequency. As is evident 

from the figure, a frequency peak exists near 0.3 Hz. Respiration is believed to be 

contained in a frequency range of 0.2-0.4Hz. The frequency peak’s being at 0.3 Hz in this 

case, further validates the premise that the derived waveform contains a respiration 

component. 

          

 

Figure 15: Heart sound derived respiration waveform. The horizontal axis shows time 
represented in sample points. The vertical axis shows the amplitude(volt) relative to 
each sample point represented in volts  
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.  

 

Figure 16: Frequency domain representation of heart sound derived respiration signal. 
The mode is obtained at 0.3 Hz and is believed to be the respiration component. The 

horizontal axis represents the frequency in Hz while the vertical axis represents the 

amplitude(volt) relative to a corresponding frequency in volts. 

 

4.2 EMPIRICAL MODE DECOMPOSITION METHOD 

The EMD method has met with notable success in the field of biomedical research, 

particularly in ECG analysis [9-11]. Empirical mode decomposition (EMD) is a method 

proposed by Huang et al. [7] that can be applied to study nonlinear and nonstationary 

properties of a time series. According to Campolo et al. [8], EMD performs better than 

other ECG derived respiration algorithms like the heart rate variability method and 

wavelet transform in terms of capturing the waveform and respiratory rate characteristics. 

The EMD method separates time-series into intrinsic oscillations using local, temporal 

and structural characteristics of the data [8]. The decomposition is done on the 

assumption that any data consists of different intrinsic modes of oscillation [7]. 
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EMD is obtained through a process called sifting. It decomposes a signal into low and 

high frequency components called intrinsic mode functions (IMFs) [2]. Each intrinsic 

mode represents a simple oscillation having an equal number of extrema and zero 

crossings, i.e., the oscillations are symmetric w.r.t local mean. Also, the mean value of 

the envelope defined by local maxima and local minima is zero [2]. Another view of 

EMD involves treating a signal to be composed of a sum of low frequency components 

and a high frequency component. The high frequency part is called the intrinsic mode 

function (IMF) while the low frequency part is called the residual, i.e., the signals can be 

represented as 

                 ( )=  ∑   ( )      ( )
 
        (7)                         

where,    ( ) are the IMF’s and   ( ) is the residual. The basic procedure to extract the 

IMFs is stated in the following algorithm: 

1. Identify local extrema (maxima and minima) 

2. Use a cubic spline interpolation to define upper and lower envelopes  by  

connecting all maxima      and all minima     ( ) separately. 

3. Calculate the local average at time ( ) . 

  ( )   (    ( )       ( ))                                                                              (8) 

4. Compute the intrinsic mode functions (IMF’s)    ( ) iteratively through a series of  

Reductions    ( )        ( )     ( ),         k= 1,      ,  p= 1,…, P,      ( )= ( )  (9) 

 Here,     ( ) is treated as a series, 

             ( ) is computed as the mean of upper and lower envelopes of    ( )  
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We repeated this procedure on the residual obtained after each iteration until in the whole 

data set, the number of extrema and the number of zero crossings either are equal or 

differ at most by one; and finally, at any point, the mean value of the envelope defined by 

the local maxima and the envelope defined by the local minima is zero. On computing all 

the IMFs we finally sum the IMFs lying in the range of respiration (0.2-0.33Hz). This 

aggregate signal represents a surrogate respiration signal. Fig. 17 shows a representative 

EDR derived from an ECG signal of a healthy subject in a supine position using EMD.                      

 

Figure 17: Surrogate respiration wave derived using EMD. The horizontal axis shows 
time represented in sample points. The vertical axis shows the amplitude(volt) relative 
to each sample point represented in volts  
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5. The process will repeat all steps until the following stoppage criterion (SD) is reached. 

 = [ ∑       ( )    ( )
 
       ]  /   [  ∑   

        
 ( )]   <   SD                   (10) 

6.  Obtain the residual      ( ) 

     ( )       ( )     ( )                                                                        (11) 
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Figure 18: Representation of EDR derived using EMD in frequency domain. The mode 

can be seen at 0.3 Hz which represents the respiration component. The horizontal 

axis represents the frequency in Hz while the vertical axis represents the 

amplitude(volt) relative to a corresponding frequency in volts. 

 

The waveform is a superimposition of IMFs lying in the range of normal respiration (0.2-

0.33Hz). Fig. 18 shows the representative EDR waveform shown in Fig. 17 represented 

in the frequency domain. The frequency peak being at 0.3 Hz in this case, further 

validates the assumption that the derived waveform contains a respiration component. 

4.3 WAVELET METHOD 

In this method, we have derived the respiratory waveform from an ECG using the 

amplitude method which is based on changing the amplitude of the R-wave in the QRS 

complex.  

The procedure employed is summarized as followed: 

1) Filter the ECG from X-lead (Frank XYZ system) sampled at 200 Hz, using a 300
th

 

order FIR high pass digital filter in Matlab at the cutoff frequency of 1 Hz. This step will 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

x 10
-3

Frequency(Hz)

A
m

p
lit

u
d

e
(V

o
lt)



30 
 

eliminate the baseline wandering effect. It causes the baseline of the ECG signal to 

fluctuate from the normal position. 

2) Use wavelets to find the time locations and amplitudes of R-peaks, and form a 

pulse train of R-peaks at their respective locations. 

3) Use a cubic spline interpolation method to obtain a uniformly sampled pulse train, 

and treat the resulting signal as the surrogate for respiration information. 

The result here is the EDR (ECG derived respiratory) signal. However, in a particular 

case when T-wave amplitudes are relatively high compared to the R-peak, most of the 

algorithms to detect the R-peak fail. They erroneously recognize the T-wave as the R-

wave resulting in an inaccurate EDR signal. Fig. 19 shows one such instance. It is an 

ECG waveform recorded on a supine subject at a sampling rate of 250 Hz.   

                  

Figure 19: ECG signal with a high amplitude T-wave. Here the samples were extracted 
at 250 Hz rate. The horizontal axis shows the time represented in sample points. The 
vertical axis shows the amplitude(volt) relative to each sample point represented in 
volts                    . 

 

To solve this problem, we propose a method to reduce the amplitude of the T-wave by 

using a wavelet decomposition method. Coiflet 5 is used for this purpose. The signal is 

decomposed at eight levels. Then, the decomposed signals only from levels 1-5 are used 
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for reconstruction. The reconstructed signal is shown in Fig. 20. Fig. 21 shows three 

waveforms, viz., the derived respiratory waveform (thick dashed line), rib cage 

respiration waveform (solid line) and abdominal respiration waveform (thin dashed line). 

The abdominal and rib cage respiratory waveforms appear in phase and have similar 

frequency content. The derived respiration waveform appears slightly out of phase as 

compared to the other signals but appears to have similar frequency distribution. 

                        

 

Figure 20: Reconstructed ECG signal from level one to five of wavelet decomposed 
signals. Here the samples were extracted at 250 Hz rate. The horizontal axis shows 
time represented in sample points. The vertical axis shows the amplitude(volt) relative 
to each sample point represented in volts  
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Figure 21: Signal Comparison between EDR signal (thick dashed line), Rib-cage 
respiratory (solid), and abdominal respiratory (thin dashed line). The horizontal axis 
shows time represented in sample points. The vertical axis shows the amplitude (volt) 
relative to each sample point represented in volts  

 

4.4 HEART SOUND DERIVED RESPIRATION USING EMD 

For validation purposes, we have also implemented EMD on heart sounds to compare 

surrogate respiration obtained using EMD with the surrogate respiration obtained using 

ensemble averaging as discussed in this section. The heart sound signal is decomposed 

into intrinsic mode functions similar to the ones obtained in Chapter 4.1. The intrinsic 

mode functions lying within the respiration frequency range (0.2 Hz-0.33 Hz) are added 

up to represent the surrogate respiration derived from heart sounds.  

Fig. 22 shows the surrogate respiratory signal obtained after applying EMD on heart 

sounds. The figure shows the derived respiration waveform for a healthy subject in a 

supine state recorded at a sampling rate of 250 Hz.  Fig. 23 shows the frequency domain 

representation of the obtained surrogate respiratory signal. The mode is obtained at 0.33 
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Hz and lies in the respiratory range. This range indicates that the derived surrogate 

respiration waveform may contain respiratory content.  

 

Figure 22: Surrogate respiration obtained applying EMD on heart sounds. The 
horizontal axis shows time represented in sample points. The vertical axis shows the 
amplitude(volt) relative to each sample point represented in volts  

                                   

 

Figure 23: Frequency domain representation of heart sound derived respiration signal 
using EMD. The horizontal axis represents the frequency in Hz while the vertical axis 

represents the amplitude (volt) relative to a corresponding frequency in volts. 

 

In summary, different methods to derive surrogate respiration from ECG and heart 

sounds have been discussed. The surrogate respiration obtained using these methods, was 

compared and the comparison summary has been documented in the Chapter 5.
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CHAPTER V 
 

VALIDATION STUDIES AND RESULTS 

To validate the results, we compared our results with the real respiratory signal. Along 

with collecting the ECG and heart sound data from our sensor, we also collected ECG 

data and respiration data using Vivo Metric’s respiration and ECG measurement device. 

The data collected using our sensor and the machine was synchronous with a lag in the 

range of 10-20 sec. The lag was mainly due to either delay in human measurement or the 

machine’s internal processing boot up time. This lag was eliminated by synchronizing the 

ECG signals obtained by the machine and the sensor. Cross correlation was used to align 

the two ECG signals. Cross correlation is defined as a measure of similarity between two 

waveforms as a function of time lag applied to them. Its mathematical expression is as 

follows: 

                                             (     )   [ (  )   (  )]      (12)  

Upon alignment, the correlation between the two ECG signals was in the range of    

99.1%-99.5%. Along with the ECG, the machine also synchronously measures 

respiration at the ribcage and at the abdomen. Surrogate respiration data obtained using 

EMD, wavelets and heart sound was compared with these measured signals using 

Pearson’s correlation (See Table 1). Apart from wave to wave correlations, we have also 

calculated the correlation between the respiratory rate and frequency accuracy for the 
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four signals. The respiratory rate was calculated in 3 ways: 1.) using RSA functionality in 

AcqKnowledge 4.0 application. 2.) determining correlation between zero crossing 

intervals for all four signals, and   3.) calculating the correlation between peak to peak 

intervals for all signals and comparing them against peak to peak intervals of the 

measured respiration signal. 

The measured and the derived respiration signals using heart sound and ECG are shown 

in an overlay portrait in Fig. 24. We observe that the wave to wave correlation of all 

signals w.r.t real respiration is rather low ( <60%). However, the frequency range of all 

derived respiration signals as well as the respiratory rate and the peak to peak intervals 

seems to match well with the real respiration ( >70%). This finding can also be 

validated by the results in the Table 1. 

 

Figure 24: All four signals (Real respiration (measured from Vivo Metric’s Vest, EMD 
derived surrogate respiration (EDR), heart sound derived surrogate respiration and 
EMD derived heart sound respiration) are plotted together. 
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Figure 25: All four signals (Real respiration (measured from Vivo Metric’s Vest, 

EMD derived surrogate respiration (EDR), heart sound derived surrogate 

respiration and EMD derived heart sound respiration) in terms of breathing 

intervals. 

Fig. 25 depicts the four signals in terms of breathing intervals. The breathing intervals 

represent the peak to peak time and are expressed in seconds. The X axis displays the 

number of intervals over the sample signals, while the Y axis represents the breathing 

intervals in seconds.  Here, RS refers to heart-sound-derived surrogate respiration, EMD 

to ECG-derived surrogate respiration obtained using the EMD method, EMD-HSR to the 

surrogate respiration obtained using the EMD method on heart sounds, and WDR-to-

wavelet derived surrogate respiration. The average respiration accuracy which can be 

calculated looking at zero-crossing intervals, and the RSA, calculated by looking at the 

respiratory rate, both compared with respect to real respiratory parameters are used to 

compare results obtained using the ECG and heart sounds. From the results presented in 

Table 1, we can say with further assurance that heart sounds can serve as a suitable 

source for extracting respiratory information.  
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The results from different experiments are also summarized using box plots in Fig. 26-31. 

‘Q1’ is first quartile value (0-25
th

 percentile) data point of each sample set. ‘Min’ is the 

minimum value of the sample set. ‘Median’ is the median percentile value of the sample 

set. ‘Max’ is the maximum value of the sample set. ‘Q3’is the third quartile value (75
th

 –

max percentile) of the sample set. 

Legends: RS: Respiration derived from heart sounds (ensemble averaging) compared  

      with respiration  

              EMD-HSR: Heart sound derived respiration obtained using EMD compared      

               with real respiration 

               EDR: EDR derived from EMD compared with respiration  

              WDR: EDR derived from wavelets compared with respiration  

Figures 26-31 show the box plots for the zero crossing intervals, peak to peak intervals 

and RSA correlation values compared with real respiration across supine and upright 

categories. Even though the wave to wave correlation for respiration derived from heart 

sounds is not as good as that obtained from wavelets (with the real respiratory signal), 

other pertinent factors like the frequency accuracy (zero crossing intervals) , peak to peak 

intervals and respiratory rate (RSA) outperform or equal both EDR techniques. 
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  Table 1: Correlation analysis of four categories of derived respiration signals and 

their parameters compared with the measured respiration signal parameters 

 

 

Figure 26:  Comparison of box plots from various methods and measurements for zero 
crossing intervals in upright samples. The horizontal axis shows the various signals 
used in the analysis compared with respect to the real respiration. The vertical axis 
shows the correlation coefficients  

 

Figure 27: Comparison of box plots from various methods and measurements for zero 
crossing intervals in supine samples. The horizontal axis shows the various signals 
used in the analysis compared with respect to the real respiration. The vertical axis 
shows the correlation coefficients  
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Figure 28: Comparison of box plots from various methods and measurements for RSA 
in Upright samples. The horizontal axis shows the various signals used in the analysis 
compared with respect to the real respiration. The vertical axis shows the correlation 
coefficients  

 

 

Figure 29: Comparison of box plots from various methods and measurements for RSA 
in Supine samples. The horizontal axis shows the various signals used in the analysis 
compared with respect to the real respiration. The vertical axis shows the correlation 
coefficients  
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Figure 30: Comparison of box plots from various methods and measurements for peak 
to peak intervals for upright samples. The horizontal axis shows the various signals 
used in the analysis compared with respect to the real respiration. The vertical axis 
shows the correlation coefficients  

 

 

Figure 31: Comparison of box plots from various methods and measurements for peak 
to peak intervals for supine samples. The horizontal axis shows the various signals 
used in the analysis compared with respect to the real respiration. The vertical axis 
shows the correlation coefficients  

This chapter compared the results obtained using the derived respiration signals with the 

measured respiration signal waveforms. The heart sound derived respiration shows 

promising results ( > 80%) when compared with measured respiration parameters. 

Further research should be pursued, involving calculating heart sound derived respiration, 

which could open up newer avenues for estimating respiration derived parameters. 

0.5

0.6

0.7

0.8

0.9

1

RS EMD-HSR EDR WDR

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t 

Method for deriving respiration 

Q1

Min

Median

Max

Q3

0

0.2

0.4

0.6

0.8

1

1.2

RS EMD-HSR EDR WDRco
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t 

Method for deriving respiration 

Q1

Min

Median

Max



41 
 

 

 

 

 

 

CHAPTER VI 
 

PREDICTING SLEEP APNEA USING RESPIRATION INFORMATION 

Sleep apnea is a common disorder in which a person has shallow breaths or one or more 

pauses in breathing during sleep. An apnea is defined in adults as the cessation of airflow 

for 10 or more seconds [56]. Breathing pauses can last from a few seconds to minutes. 

They often occur 30 times or more during an hour [54]. It is estimated that 12-18 million 

Americans are affected by sleep apnea [57]. The following table gives some statistics 

regarding the severity of this disorder in the United States. 

Table 2: US Sleep Apnea Statistics [58] 

 

 Approximately 1 in 15 or 6.62% or 18 million people in the USA believed to have sleep 

apnea with over 50% of all apnea cases being diagnosed in patients with more than 40 
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years of age. SA is found to be more prevalent in men than women. It has been observed 

that 4 to 9% of middle-aged men and 2 to 4% of middle-aged women suffer from sleep 

apnea [58]. 

In particular, there are two types of sleep apnea viz., obstructive sleep apnea (OSA) and 

central sleep apnea (CSA). OSA is characterized by periodic complete or partial upper 

airway obstruction during sleep, causing intermittent cessations of breathing (apneas) or 

reductions in airflow (hypopneas) despite ongoing respiratory effort [55]. Total costs 

attributed to the treatment of OSA stand at $3.4 billion [59]. When a person tries to 

breathe, any air that squeezes past the obstruction can cause loud snoring. Obstructive 

sleep apnea is more common in people who are overweight, but it can affect anyone [54].  

Central sleep apnea (CSA) is a less common type of sleep apnea. This disorder happens if 

the area of the brain that controls breathing doesn't send the correct signals to the 

breathing muscles. As a result, the subject makes no effort to breathe for brief periods. 

Central sleep apnea often occurs with obstructive sleep apnea, but it can occur alone. 

Snoring doesn't typically happen with central sleep apnea [54]. Polysomnography is 

increasingly being used to investigate patients with possible sleep apnoea/ hypopnoea 

syndrome (SAHS). Apnea-Hypopnea Index (AHI) results are used to diagnose sleep 

apnea. AHI levels between 5-15 are termed mild sleep apnea; people with levels between 

15 and 30 are classified as having moderate sleep apnea, while those having levels more 

than 30 are classified as having severe sleep apnea [60].  

As the respiration pattern is affected during apnea, understanding respiration rate 

becomes vital in order to predict the occurrence of sleep apnea. This chapter attempts to 

address this problem using advanced predictive modeling tools like neural networks, 
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regression, and decision trees. The Physionet’s Apnea-ECG database consists of a 

collection of samples containing ECG, SpO2 content and three variants of respiration 

information viz., chest respiration, abdomen respiration and nasal respiration [61]. 

Annotations specifying apneic/non-apneic periods are also included. Fig. 32 is a ten 

second representation of Physionet’s Apnea ECG database signal (a01er). This signal was 

recorded for more than eight hours at a sampling rate of 100 Hz. 

 

Fig 32: A representative collection of signals consisting of ECG, Chest respiration, 

Abdomen respiration, Nasal respiration and SpO2 content is presented [61]. The 

recorded signal is 10 seconds in length. 
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The signal records ECG, Chest respiration, Abdomen Respiration, Nasal Respiration 

along with SpO2 content. The data sample also consists of apnea annotations at 1 minute 

intervals. These annotations were considered a target variable for further analysis. The 

Predictive Modeling toolbox in SAS Enterprise Miner was used for analyzing signals in 

order to predict sleep apnea onset. Apart from respiration signals, heart rate represented 

in beats per minute (BPM) was also estimated by calculating the RR intervals in the ECG 

signal. The target variable (apnea annotations) was recoded into a binary representation 

with apneic episodes represented by a string of 1’s and non-apneic periods represented as 

a string of 0’s. As the respiration signals have a time series component, the nasal 

respiration signal along with its ten time lagged versions ranging from a lag of ten 

samples to 100 samples respectively, were included as input variables in the analysis. 

ECG and SpO2 variables were rejected.  

6.1 Data Modeling 

The dataset was combined with these input variables as well as target variables included 

in the final dataset used for modeling. Fig. 33 depicts the steps involved in classifying 

sleep apnea. The procedure involves a total of five steps comprising preparing a dataset 

suitable for use, oversampling of target variable, data partitioning for validation, 

application of predictive models like decision trees, neural networks, and regression and 

finally comparison within these models. 

As the target variable consists of an unequal proportion of 0’s and 1’s, there is a 

possibility that it might bias the results of the model. In order to remove this uncertainty, 
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we employ an oversampling method in order to obtain a sample consisting of equal 

numbers of 0’s and 1’s. 

 

 

 

Fig. 33: A block diagram explaining steps involved in classifying onset of sleep 

apnea. 

Further, 50 % of the sample data is partitioned for calibration or training, while the 

remaining 50 % is used for validating the trained model. Different predictive modeling 

tools, such as decision trees, neural networks and regression analysis were used to predict 

the onset of apnea (Target=1). Appendix 1 shows the modeling procedure used in SAS 

Enterprise Miner. Apart from these modeling tools, an ensemble node was also used for 

comparison. This node generates results which are an average of all the results calculated 

by other predictive modeling tools. The results obtained after running these models are 

compared to select the best model. The best model is selected based on lowest 

misclassification rate.  

6.2 Results of preliminary analysis 

The results obtained using the preliminary model and the recurrence models that follow 

this model are based on four metrics: Validation Misclassification Rate, Lift, Sensitivity 

and Specificity. The definitions of the following variables are as follows: 

Prepared 

Dataset 

Oversampling  Data Partition 

Predictive 

Models 

Model 

Comparison 
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1. Misclassification Rate: Rate at which misclassification occurs in the validation 

data (Misclassification occurs when the predicted target value is not equal to the 

actual target value). 

2. Lift: Lift indicates the improvement provided by the model with respect to the 

baseline (random guess probability).  

 

3. Sensitivity: Sensitivity is defined as a ratio of true positives (TP) to the sum of 

true positives and false negatives (FN) 

                           Sensitivity = 
  

(     )
     (13) 

Where, TP is the number of true values correctly predicted (Predicted True as 

True), FN is the number of true values predicted as false. 

 

4. Specificity: Specificity is defined as a ratio of true negatives (TN) to the sum of 

true negatives and false positives (FP) 

                           Sensitivity = 
  

(     )
     (14) 

Where, TP is the number of true values correctly predicted (Predicted False as 

False), FN is the number of false values predicted as true. 

 

Results generated by the models are listed in Table 3. 

The best model was the model which used the AutoNeural node settings in SAS 

Enterprise Miner (see Appendix 2). The AutoNeural node is an automated tool which 
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finds the optimal configurations of a neural network model based on various feed forward 

network configurations [62]. The AutoNeural node provides a lift of 1.97 over the 

baseline, which indicates that we can classify the apneic episode 1.97 times better than 

the base probability. Fig. 34 gives a graphical representation of sensitivity vs. the false 

positive ratio for all the models used in the analysis. The baseline is represented by the 45 

degree line. All models are compared with respect to the baseline model. 

Table 3: Results generated by different models used in SAS Enterprise Miner for 

preliminary analysis 

Selected Model Model Description Validation 

Misclassification 

Rate 

Lift 

Y Auto Neural 0.1091 1.97764 

 Ensemble 0.115858 1.9248 

 Neural Network 0.14077 1.8312 

 Decision Tree 0.145737 1.8656 

 Regression 0.285674 1.7784 
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Fig 34: ROC index chart showing the sensitivity vs. 1-specificity ratio for 

preliminary analysis 

The sensitivity and (1-specificity) values are plotted against each other across every 

percentile. The plot obtained by joining these points is represented in the ROC chart. An 

ROC index greater than 0.7 is considered to be a strong model. The validation ROC 

index for this model= 0.95, which indicates that the model is robust. Table 4 shows the 

sensitivity and specificity ratios for the different models used in the analysis. 

Table 4: Table of sensitivity and specificity ratios for preliminary analysis 

Model Sensitivity Specificity 

Neural network 84.84% 87% 

Regression 70.25% 72.60% 

AutoNeural 88.11% 90.04% 

Decision Tree 85.16% 85.68% 

Ensemble` 89.32% 87.5% 

 

The AutoNeural model which came out to be the best model in terms of misclassification 

rate shows a sensitivity of 88.11% and a sensitivity of 90.04% . 
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6.3 Recurrence Analysis 

The study of dynamic systems is the study of the long-term behavior of evolving systems 

[64]. Dynamic systems are characterized by mathematical models where a fixed rule 

underlies the time dependence of a point in a geometric space. For example, the swinging 

of a pendulum is quantified by an underlying pattern that can be characterized as a 

dynamic system. Recurrence is a fundamental property of dynamical systems, a property 

which can be exploited to characterize the system’s behavior in the phase space [63]. A 

recurrence plot (RP) is a powerful tool for visualization and analysis of recurrence 

patterns [63]. RP’s were originally posited as qualitative tools to detect hidden rhythms 

graphically [66]. Webber et.al [65] explain recurrence by considering a system of literal 

waves on the seas as measured from buoy instrumentation, as plotted in Fig. 35. The 

figure indicates that each of the waves (of the same height) in (A) are recurrent with one 

another at time instances which are non- periodic. In order to go beyond the visual 

impression yielded by RP’s, recurrence quantification analysis (RQA) uses several 

measures of complexity for quantifying small scale structures in RP’s [63]. These 

measures are based on the recurrence point density and the diagonal and vertical line 

structures of the RP [63].  In this study, the respiration rate derived by applying EMD on 

ECG signals and heart rate variability derived as a measure of RR intervals were 

processed using RQA. Besides RR intervals, we also input the RQA model with the 

following parameters:  

1. Dimension M=7 

2. Delay T=5 
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3. Size of neighborhood       [   (         )     (         )] 

4. Window size         

5. Shifting Window Size:      

6. Minimal Length of diagonal line structure:        

7. Minimal Length of vertical line structure:        

8. Theiler Window :     (       ) 

 

Fig. 35: A typical recurrence plot [65] is shown in (B) above which captures 

points at wave height of 0.9 ft identically represented along vertical and 

horizontal axes. The horizontal and vertical axes represent time in hours. 

Only the intersecting pixels mapping our matches at 0.9ft are represented 

while all other pixels are ignored. 

 

The results yielded 13 features (see Appendix 4) which are fed as an input to the 

predictive analysis model in SAS Enterprise Miner to predict sleep apnea. Some of the 

important outputs measured are described below: 
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1. Recurrence Rate: It is a measure of density of recurrence points in the RP 

It is the probability that a state occurs in a Ԑ- neighborhood in phase space. 

                                                         ( )  
 

  
  ∑     ( )

 

     
                                    (15) 

2. Determinism: Determinism(DET) is defined as the ratio of recurrence points that 

form the diagonal structures (of at least length (    )to all recurrence points 

   DET =   
∑    ( )

 

      

∑    ( )
 

   

     (16) 

3. Mean diagonal line length : The mean diagonal line length ( L) is defined as the 

average time that two segments of a trajectory are close to each other, and can be 

predicted as the mean prediction time. 

                                             
∑    ( )

 

      

∑   ( )
 

      

     (17) 

4. Longest diagonal length: It is the longest diagonal length found in the RP.  

                                                  ({  }   
  )                                                (18) 

5. Entropy: Entropy (ENTR) reflects the complexity of the RP with respect to the 

diagonal lines. For example, the entropy of uncorrelated white noise is small, 

indicating low complexity. 

                                              ∑  ( )     ( )
 

      
                              (19) 

6. Laminarity: Laminarity (LAM) is defined as a ratio between the recurrence 

points forming the vertical structures and the entire set of recurrence points that 

can be computed. 
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∑    ( )

 

      

∑    ( )
 

   

    (20) 

7. Trapping time: It is defined as the average length of the vertical structures. It 

indicates the mean time a system will abide in a particular state. 

                                                
∑    ( )

 

      

∑  ( )
 

      

    (21) 

8. Maximal length of vertical lines: It can be regarded analogously to the standard 

measure     .    is the absolute number of vertical lines. 

                                                          ({  }   
  )    (22) 

Following there models were run in total, two of which consisted of respiration rate and 

heart rate variability as separate models, while the third model included both respiration 

rate and HRV as inputs in order to predict the onset of sleep apnea characterized by apnea 

annotations used in Chapter 6.2. The models have been summarized in Table 5 

 

Table 5: Summary of models: 

Model Input 

Model 1 RQA features of respiratory 

rate 

Model 2 RQA features of HRV 

Model 3 RQA features of both HRV 

and respiratory rate 
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6.4 Results obtained using RQA for Model 1(Respiration features) 

Table 6 and 7 show the results obtained by using five predictive models on the target 

(sleep apnea annotations). The Respiration rate features obtained using RQA were 

processed using Principal Component Analysis (PCA). Principal component analysis was 

used to reduce the multi-collinearity among the input variables. Fig. 36 shows a 

representative figure showing variables transformed into its principal components. 

 

Fig 36: Principal components matrix showing representation of all variables with 

respect to target  

Seven PC’s out of 12 were selected which accounted for 99% of the total cumulative 

variance. The sensitivity and (1-specificity) values are plotted against each other across 

every percentile. The plot obtained by joining these points is represented in the ROC 

chart in Fig. 37 
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Fig 37: ROC index chart showing the sensitivity vs. 1-specificity ratio for model 1 

An ROC index of greater than 0.7 is considered to indicate strong models. The validation 

ROC index for this model is 84.7%, which indicates that the model is robust.  

Table 6: Table of sensitivity and specificity ratios 

Model Sensitivity Specificity 

Neural network 84.7% 75.29% 

Regression 70.58% 74.11% 

AutoNeural 57.64% 76.47% 

Decision Tree 83.52% 70.58% 

Ensemble` 87.05% 75.29% 

 

Based on the model comparison results, the Ensemble model has the lowest 

misclassification rate and therefore is the best model. Figure 38 shows the representation 

of the target variable for both the model prediction and in the original dataset. The 

horizontal axis represents time in minutes while the vertical axis represents the state of 

the binary variable. 
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A 

 

   B

 

Fig 38: Target distribution in (a) original dataset for respiration rate (b) predicted 

dataset 
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Table 7: Results generated by different models used in SAS Enterprise Miner 

Selected 

Model 

Model 

Description 

Validation 

Misclassification 

Rate 

Lift 

Y Ensemble 0.2 1.75 

 Neural 

Network 

0.2 1.5 

 Tree 0.2294 1.73 

 Regression 0.2401 1.25 

 AutoNeural 0.3294 1.56 

 

6.5 Results obtained using RQA for Model 2 (HRV features) 

Tables 8 and 9 show the results obtained by using five predictive models on the target 

(sleep apnea annotations). The respiration rate features obtained using RQA were 

processed using Principal Component Analysis (PCA). Principal component analysis was 

used to reduce the multi-collinearity among the input variables. Seven PC’s out of 12 

were selected which accounted for 99% of the total cumulative variance. 

 

Fig 39: ROC index chart showing the sensitivity vs. 1-specificity ratio for model 2 

The sensitivity and (1-specificity) values are plotted against each other across every 

percentile. The plot obtained by joining these points is represented in the ROC chart. An 

ROC index of greater than 0.7 is considered to indicate strong model. The validation 
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ROC index for this model is 89.9%, which indicates that the model is robust. Based on 

the model comparison results, the Auto Neural model has the lowest misclassification 

rate and therefore is the best model. 

Table 8: Table of sensitivity and specificity ratios 

Model Sensitivity Specificity 

Neural network 80% 80% 

Regression 70.58% 82.35% 

AutoNeural 96.47% 84.7% 

Decision Tree 75.29% 81.1% 

Ensemble` 81.1% 82.35% 

 

Table 9: Results generated by different models used in SAS Enterprise Miner 

Selected Model Model Description Validation 

Misclassification 

Rate 

Lift 

Y AutoNeural 0.14 1.25 

 Ensemble 0.18 1.5 

 Neural Network 0.2 2 

 Decision Tree 0.21 1.71 

 Regression 0.23 2 

 

Figures 40 show the representation of the target variable for both the model prediction 

and as seen in the original dataset. The horizontal axis represents time in minutes while 

the vertical axis represents the state of the binary variable. 
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A 

 

B 

 

 Fig 40: HRV target distribution in (a) Original dataset and (b) Predicted 

dataset 

6.6 Results obtained using RQA for Model 3(Respiration rate and heart rate features ) 

Two types of tests were conducted to develop and validate model 3. In the first case, 

respiration and heart rate features were directly used as inputs to the classification model 
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and in the second case, ten permutations of respiration and heart rate features were used 

as inputs to the classification model. The sleep apnea annotations were used as a target 

which is binary in nature. Auto Neural node, decision trees, neural network and 

regression apart from ensemble averaging node were used to classify sleep apnea. The 

settings have been listed in the appendix.  

Case 1 results:  

The sensitivity and (1-specificity) values are plotted against each other across every 

percentile in Fig. 43. The plot obtained by joining these points is represented in the ROC 

chart. An ROC index greater than 0.7 is considered to be a strong model. The validation 

ROC index for this model is 94.9%, which indicates that the model is robust. 

 

Fig 41: ROC index chart showing the sensitivity vs. 1-specificity ratio for model 1 

Tables 10 and 11 show the results obtained using five predictive models on the target 

(sleep apnea annotations) 
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Table 10: Table of sensitivity and specificity ratios for model 3 

Model Sensitivity Specificity 

Neural network 87.09% 81.13% 

Regression 75.8% 87.73% 

AutoNeural 91.93% 85.84% 

Decision Tree 72.58% 92.45% 

Ensemble` 83.87% 71.7% 

 

Based on the model comparison results, a decision tree was found to be the best model 

considering it had the lowest misclassification rate. 

Table 11: Results generated by different models used in SAS Enterprise Miner for 

model 3 

Selected Model Model Description Validation 

Misclassification 

Rate 

Lift 

Y AutoNeural 0.1194 2.7 

 Decision Tree 0.1563 2.7 

 Ensemble 0.1577 2.6 

 Neural Network 0.1664 2.3 

 Regression 0.1729 1.89 

 

The HRV and respiration rate features obtained using RQA were processed using 

principal component analysis (PCA). Principal component analysis was used to reduce 

the multi-collinearity among the input variables.  
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Thirteen PC’s out of 24 were selected and accounted for 99% of the total cumulative 

variance (Refer to Appendix 3). Figures 42 show the representation of the target variable 

for both the model prediction and as seen in the original dataset. The horizontal axis 

represents time in minutes while the vertical axis represents the state of the binary 

variable. To further test the validity of the model, we divided the dataset into two 

datasets: one having data from 12 samples out of 15, while the other having data from the 

remaining three samples. The dataset containing remaining three samples are used to 

score the model built using the dataset containing 12 samples. 

A

 

B

 

Figure 42: (a) Target distribution for both respiration rate and heart rate features 

in model three and (b) Predicted distribution for both respiration rate and heart 

rate features in model 3             
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 Case 3 results:  

This procedure is repeated for ten independent data permutations of the 12 sample 

dataset. The results obtained for the best classification model (AutoNeural) suggested that 

the validation misclassification rate was 8.9%. Based on these results, we can state with 

improved confidence, that the model built earlier was robust. 

 

Figure 43. Box plots for the ten permutations 

Decision analysis based filtering: 

The transitions that last for less than 60 sec are likely to be artifacts. Therefore, we 

developed a rule to disregard these double transitions. The results from such a filtering 

are summarized in Fig. 47.  
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Figure 44: Decision based filtering procedure on predicted dataset 

6.7 Model Comparison of all four models 

The Table 12 below and Figs. 45-48 describe all four models (Best model in each 

category) with respect to the sensitivity, specificity, lift and misclassification rate 

parameters. Preliminary Analysis Model stands out in two out of four categories. Also, 

the sensitivity and specificity values are stable in preliminary analysis model.  

 

Fig 45: Sensitivity vs Selected Model. Best model based on sensitivity is model 2 

0 100 200 300 400 500
0

0.5

1

Time in Minutes

T
a
rg

e
t

82
84
86
88
90
92
94
96
98

Preliminary
Analysis

Model1 Model2 Model3

Se
n

si
ti

vi
ty

 

Model Selected 

Sensitivity vs selected model 



64 
 

Table 12: Model comparison 

 Sensitivity 
 

Specificity 
 

Lift 
 

Misclassification 
Rate 
 

Preliminary 
Analysis 
 

88.11 
 

90.04 
 

1.97 
 

0.1091 
 

Model 1 
(Respiration rate) 

87.05 
 

75.29 
 

1.75 
 

0.2 
 

Model 2 
(HRV) 

96.47 
 

84.7 
 

1.25 
 

0.14 
 

Model 3 
(HRV and 

Respiration Rate) 

91.93 
 

85.84 
 

2.7 
 

 
0.1194 

 

 

Fig. 45 shows a plot of Sensitivity against Selected Model for all four models used. 

Based on these results, the model that would be selected based on the sensitivity criterion 

only, is Model 2 which is a recurrence analysis of heart rate variability. 

 

Fig 46: Specificity vs Selected model. Best model selected is Preliminary Analysis. 
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Fig. 46 shows a plot of Specificity against Selected Model for all four models used. 

Based on these results, the model that would be selected based on the specificity criterion 

only, is Preliminary analysis which is a recurrence analysis of both the respiration and 

heart rate variability. 

Fig. 47 shows a plot of Lift against Selected Model for all four models used. Based on 

these results, the model that would be selected based on the lift criterion only, is the 

Model 3.  

 

Fig 47: Lift vs Selected Model. Best model selected is Model 3 

 

Fig 48: Misclassification Rate vs Selected Model. Best Model selected is Preliminary 
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Fig. 48 shows a plot of misclassification rate against Selected Model for all four models 

used. Based on these results, the model that would be selected based on the 

misclassification criterion only, is the Preliminary analysis model.  

Chapter 6 touched upon an important application of estimating respiratory rate to classify 

sleep apnea. Similarly, respiration information could also be used to understand 

cardiovascular dynamics better, as many heart diseases have been linked with respiration 

as talked about before. 
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CHAPTER VII 
 

SUMMARY 

This thesis proposes, a respiration extraction algorithm using phonocardiogram signals 

that employs the technique of ensemble averaging to derive respiration. The respiration 

waveform obtained by applying this algorithm to the phonocardiogram signals was found 

to contain a higher correlation with the real respiration than the respiration waveform 

extracted using ECG methods. The method is simple to use and could provide a low cost 

alternative to the popular ECG diagnosis.  

The important findings from this study are as follows: 

1. A method to derive respiration from heart sounds is presented, and the new 

method was found to match the real respiration signal better than the traditional ECG 

methods in terms of respiratory frequency accuracy and respiratory rate. 

2. On average, the correlation between respiration waveforms derived from heart 

sounds with respect to the measured  respiration is 36% and 32% for supine and upright 

samples respectively,  compared to 26% and 18 % for EMD derived EDR and 55% each 

for wavelet derived EDR.   

3. On average, the correlation between frequency accuracy for respiration derived 

from heart sounds with respect to the real respiration is 87% and 84% for supine and 

upright samples respectively, compared to 83% and 82 % for EMD derived EDR and 

78% and 83% for wavelet derived EDR.  
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4.  On average, the correlation between respiration rate derived from heart sounds 

with respect to the real respiration is 89% and 87% for supine and upright samples 

respectively, compared to 83% and 85 % for EMD derived EDR and 88% and 85% for 

wavelet derived EDR.  

5. On average, the correlation between RSA values derived from heart sounds with 

respect to the real respiration is 83% and 83% for supine and upright samples 

respectively, compared to 79% and 78 % for EMD derived EDR and 79% and 74% for 

wavelet derived EDR.  

6.  The ensemble averaging method gives better results than the EMD method on 

heart sounds in all categories except the RSA for upright subjects. 

7. Model comparisons within the preliminary analysis model consisting of nasal 

respiration as well as its time lagged components and heart rate, when compared with  

recurrence models, shows that the model3 has a higher lift (2.7) than the recurrence 

models( Preliminary Analysis: 1.97, Model 1: 1.75, Model 2: 1.25)Model comparison 

within preliminary analysis model consisting of nasal respiration as well as its time 

lagged components and heart rate when compared with  recurrence models shows that the 

preliminary analysis model has a lower misclassification rate (10%) than the recurrence 

models( Model 1: 20% Model 2: 14%, Model 3: 11.94%) 
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CHAPTER VIII 
 

FUTURE WORK 

 

 

This thesis presented an approach to predict sleep apnea using recurrence analysis. In 

model 1, the recurrence analysis technique was implemented on heart rate and respiration 

rate, derived from ECG, to extract 13 features for each signal respectively. Here, features 

were extracted in a separate state space independent of each other. Cross-recurrence 

analysis is a bivariate extension of the recurrence analysis technique, and can be used to 

analyze the dependencies between two different systems by comparing their states [63]. 

Cross-recurrence analysis could possibly be used, to understand interdependencies in the 

cardiorespiratory dynamics of the body, by treating the respiratory rate and heart rate in a 

same state space.  

 

Sleep apnea has been linked to a variety of cardiorespiratory disorders like hypertension, 

sudden infant death syndrome, high blood pressure and a risk of heart attack. Detection of 

patterns causing sleep apnea based on the classification methods explored in this work, 

could possibly open opportunities for researchers to better understand and predict 

symptoms leading to these other disorders.  
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APPENDICES 
 

1. Predictive Modeling XML in SAS Enterprise Miner 

 

 

 

2. Model results 

 
 

 

 



80 
 

 

3. Principal Components 

 

 

 

4. Output features obtained using RQA: 

Output: 
Y(:, 1) = RR     (recurrence rate) 
Y(:, 2) = DET    (determinism) 
Y(:, 3) = <L>    (mean diagonal line length) 
Y(:, 4) = Lmax   (maximal diagonal line length) 
Y(:, 5) = ENTR   (entropy of the diagonal line lengths) 
Y(:, 6) = LAM    (laminarity) 
Y(:, 7) = TT     (trapping time) 
Y(:, 8) = Vmax   (maximal vertical line length) 
Y(:, 9) = T1     (recurrence time of 1st type) 
Y(:,10) = T2     (recurrence time of 2nd type) 
Y(:,11) = RTE    (recurrence time entropy, i.e., RPDE) 
Y(:,12) = Clust  (clustering coefficient) 
Y(:,13) = Trans  (transitivity) 
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5. Neural Network Settings: 

 

 

 

6. Decision Tree Settings: 
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7. Logistic regression settings: 

 

 

 

8. AutoNeural node: Default setting 

 

9. Ensemble node settings: Default
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Scope and Method of Study: This research investigates an approach to derive respiration 

waveform from heart sound signals, and compare the waveform signal obtained thus with 

those obtained from alternative methods for deriving respiration waveforms from 

measured ECG signals. The investigations indicate that HSR can lead to a cost effective 

alternative to the use of respiratory vests to analyze cardiorespiratory dynamics for 

clinical diagnostics and wellness assessments. The derived respiratory rate was further 

used to classify Type III sleep apnea periods using recurrence analysis. Detection of 

patterns causing sleep apnea could open up opportunities to researchers to better 

understand and predict symptoms leading to disorders linked with sleep apnea like 

hypertension, sudden infant death syndrome, high blood pressure and a risk of heart 

attack. 

 

Findings and Conclusions:   

 

Surrogate respiratory signals derived from heart sounds (HSR) are found to have 32% 

and 36% correlation with the actual respiratory signals recorded at upright and supine 

positions, respectively, as compared to EMD derived respiration signals (EDR) that have 

(18% and 26%) correlation with the respiration waveforms measured in upright and 

supine positions, respectively. Wavelet-derived respiration (WDR) signals show a higher 

wave-to-wave correlation  (55% and 55%) than HSR and EDR waveforms, but the 

respiratory sinus arrhythmia (RSA), zero crossing intervals, and respiratory rates of the 

HSR correlate better with the measured values, compared with those from EDR and 

WDR signals. Three models were implemented using recurrence analysis to classify sleep 

apnea events and were compared with a vectorized time series derived model. Advanced 

predictive modeling tools like decision trees, neural networks and regression models were 

used to classify sleep apnea events form non-apneic events. Model comparison within 

preliminary analysis model consisting of nasal respiration as well as its time lagged 

components and heart rate when compared with  recurrence models shows that the 

preliminary analysis model(vectorized time series) has a lower misclassification rate 

(10%) than the recurrence models( Model 1: 20% Model 2: 14%, Model 3: 12%). 


