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Research Summary 

 

This thesis provides a statistical framework for performance modeling and design of 

backscatter Radio Frequency Identification (RFID) systems.  The thesis also explores the 

uncertainties associated with certain parameters like tag orientation, gain of tag antenna, and 

power of reader antenna to ascertain a relationship between the measured and predicted values of 

tag read-rate probabilities. 

Starting from late 1990s, RFID systems are being increasingly adopted by the industry, 

especially in the fields of supply chain management, transportation, asset management, etc., for 

accurate tracking of inventories for real-time data management, reducing shrinkage, and 

increasing the visibility of the supply chain as a whole.  However, RFID systems come with 

certain inherent limitations, such as degradation of system performance due to uncertainties in 

system parameters, imprecision in performance specification and prediction, and deterioration of 

operation in metallic and absorptive environments. 

The current models for specifying and estimating performance are based purely on EM 

theory (e.g., using Friis free space equations) or statistical experimental modeling principles. 

Models based on EM theory are limited to specifying power received at the tag under certain 

simple, idealized conditions, and do not provide estimates of read-rates, which are de-facto 

industry quantifiers of an RFID system performance. The estimates of power levels do not 

consider uncertainties inherent to an industrial RFID system. On the other hand, the statistical 

models, being purely data-driven, suffer from lack of generalizability as their results cannot be 

extrapolated. This thesis investigates a statistical approach for assessing the system performance 

and proposes an analytical probabilistic model based on Friis free space expression that captures 
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the uncertainties existing in gain of tag antenna, power of reader antenna, frequency hopping, etc. 

A new term called propagation factor is introduced in the classical Friis free space equation to 

make it suitable for determining read-rate probabilities of tags placed in certain commonly 

occurring environmental conditions. Model was able to capture read rate probabilities for plastic 

bottle stored in plastic bags with an average accuracy of 92.5%, plastic bottles containing organic 

liquid have an average accuracy of 92%, and cardboard cartons containing plastic bags have 

around 91%. While the average accuracy of the model to predict read-rate probabilities for plastic 

bags containing organic solids is 90% and cardboard cartons containing metal cans is 88% 

Finally the thesis suggests a set of techniques to increase read-rate probabilities of RFID 

tags when placed on metal objects or in the presence of highly metallic environments. The 

suggested set of techniques make the tag comparatively more stable in normal operating 

conditions and increases its readability up to 100%. 
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Chapter 1  

Introduction and Research Objectives 

 

RFID (Radio Frequency Identification) systems are being incorporated to replace 

conventional automatic identification technologies including barcodes in several industrial sectors 

to improve the efficiency and accuracy of data transfer from physical objects to resource planning 

databases. Typical RFID applications include asset management, logistics, security, toll 

collection, point of sale, supply chain management, etc. [1]. Low cost (<10¢), ease of use, and 

thrust of EPC (Electronic Product Code) global standards [2], will make passive RFID tags more 

suitable to adapt to many more applications [3]. A passive RFID system based on the backscatter 

principle works in the following way (see Figure 1). The RFID reader transmits a signal in the 

form of EM (Electromagnetic) waves. An RFID tag within the field of the RFID reader receives 

the waves and converts the EM waves into voltage, to power the chip and electronic circuit in the 

tag. The tag thus transmits back a modulated signal containing the RFID code. 

 

Figure 1: Working of a typical RFID system [5] 
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An RFID system consists of three main components. The first one is the front end 

system, which consists of the tags, readers and antennas. The second is the RFID middleware, 

which consists of an event processor and a link to the central database where all the product 

information is stored. The last part of the RFID system is the backend system, which consists of 

the central database and an enterprise application which brings usefulness to the tag information 

retrieved from the tagged objects by the RFID middleware.  

 

The main applications of RFID systems integrated with enterprise applications are listed 

as follows [1]: 

1. supply chain automation 

2. real-time inventory tracking 

3. asset tracking 

4. retail stock management 

5. patient and accessory tracking in hospitals 

6. manufactured item tracking 

7. machine health monitoring (active RFID) 

 

The industry is currently looking for new ways to design RFID systems and predict their 

performance for various applications. Currently most approaches are rooted in EM 

(electromagnetic) theory, or purely empirical and statistical foundations. Integration of these two 

approaches is necessary for effective RFID system design and performance prediction. The thesis 

addresses the development of models that are based on EM theory and statistical principles for 

design and prediction of RFID systems. The specific tasks addressed in this thesis are as follows 

(also see Figure 2): 

1. documentation of current industrial best practices in RFID system design and operations 

2. experimental studies varying tag and reader parameters 
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3. analytical model development and validation 

4. experimental studies in a reverberation chamber  

5. statistical analysis approach for developing practical models  

6. extensions of analytical model to capture experimental effects  

7. experimental validation 

8. experimental setup and benchmarking of read-rate probabilities in metallic environments 

 

Experimental 

Study

Statistical 

Modeling

EM based 

Analytical 

Modeling

Validation

 

Figure 2: Roadmap of the thesis 

 

The remainder of this thesis is arranged as follows: Review of experimental studies in 

Chapter 2 and research gaps, problem description and approach in Chapter 3, statistical approach 

in Chapter 4, EM theory based analytical modeling in Chapter 5, benchmarking experiments for 

increasing read-rate probabilities in metallic environments is explained in Chapter 6, while 

Chapter 7 summarizes the contributions of thesis towards RFID research and the future work. 
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Chapter 2  

Background and Literature Review 

 

The studies on RFID system design have taken the following two broad approaches: 

1. hardware enhancement for increasing the RFID system efficiency  

2. experimental specification of RFID system parameters for various domains 

 

2.1 Hardware Enhancement for Increasing RFID System Efficiency 

In the first category, research is being done in the fields of antenna development, 

firmware development for readers, studies related to RF physics and alternative technology 

development. The communication between a tag and a reader is achieved by two basic methods, 

namely, inductive or near-field coupling and backscatter or far field coupling [4]. When the tag is 

located at a very close distance from the base station antenna, the data exchange from the tag to 

the antenna occurs due to the voltage induced in the tag coil through the antenna coil. This system 

behaves like a transformer type coupling, wherein the reader antenna acts as a primary coil and 

the tag’s coil as a secondary coil of the transformer. This kind of coupling exists only at short 

distances, which, practically speaking, is approximately 0.16 times the wavelength of the RF 

wave [3].  

 

Outside the inductive coupling range, there exists a communication between the tag and 

the base station antenna through the electromagnetic waves reflected by the tags. This kind of 

communication is called the backscatter coupling. Most of the RFID systems use the principle of 

backscattering of modulated waves to communicate between the tag and the reader. A backscatter 
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type RFID system consists of a tag, reader, antenna and a computer controller. Whenever the tag 

receives a signal from the base station, a voltage is sensed by a chip embedded in the tag. The DC 

voltage helps to charge a capacitor in the same circuit. This capacitor in turn operates a diode, 

which causes the chip information to be sent in the form of an electrical signal to the tag antenna. 

The antenna transmits the chip information in the form of modulated RF waves. This response of 

the tag is determined by an induced voltage, which can be computed by using the radar equation. 

The induced voltage depends on the field produced by the antenna (both transmitter and receiver) 

and the effective antenna height (form factor) of the tag. The chip in the tag helps in responding 

to the commands sent by the reader through the antenna obeying a definite protocol. The induced 

voltage causes a change in the RF impedance in the tag which causes a production of a 

backscatter signal that is detected by the base station antenna [5]. 

 

The power density (P) of the incident electromagnetic wave at a distance r  from the 

reader is given by, 

2 4 r

GP
P tt

π
=             (1) 

where, Pt  is the power transmitted by the reader antenna (transmitter antenna), and tG  is the gain 

of the reader antenna. 

 

The read range of an UHF based RFID system can be calculated by the Friis free space 

equation as follows [6], 

th

rtt

P

sGGPy
r

)1(

4

cos
2

−
=

π

θλ
       10 2

≤≤ s         (2) 

where, rG  is the gain of the tag antenna, λ  is the wavelength of the EM RF waves, thP  is the 

minimum threshold power required to power an RFID tag, yθ  is the angle made by the tag with 
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the reader plane, and 
2s  is the power reflection coefficient, which is the ratio of reflected power 

to incident power by the tag [7].    

 

It can be noticed that the power received by the tag is inversely proportional to the square 

of the distance between the tag and the base antenna. Studies reveal that the orientation of tag in 

the RF field affects its read range. A perfectly parallel tag, relative to the base station antenna, 

yields maximum read range, while a tag perpendicular to the base station antenna’s field has 

minimum to zero read range.  

 

Thus, efforts are made to make the tag parallel to the base station antenna by deploying 

one or more of the following measures: 

1. change in orientation of base station antenna to suit the orientation of the tag antenna 

2. use of redundant antennas for ensuring proper alignment of at least one antenna base station 

to the tag antenna 

3. increase in base station antenna power to negate the effect of tag orientation 

4. increase in polling rate of the antenna to make more reads in the same sampling time 

 

As discussed earlier, the size and shape (form factor) of the tag antenna have a significant 

effect on tag read-rates regardless of the coupling used for communication. There are various 

types of antennas available, among which the most commonly used are dipole, folded dipole, 

printed dipole, printed patch, squiggle and log-spiral. Among these, the dipole, folded dipole and 

squiggle antennas are omni-directional, thus allowing them to be read in all possible tag 

orientations, relative to the base antenna. On the other hand, directional antennas have good read 

range due to their good resistance to radiation patterns. Care must be taken while choosing an 
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antenna because the antenna impedance must match to the ASIC (application-specific integrated 

circuit) and to free space [8]. The four major considerations done while choosing an antenna are: 

1. type of antenna 

2. antenna impedance 

3. nature of the tagged object and 

4. vicinity of structures around the tagged object 

 

Another major consideration while designing RFID systems is that the tags get damaged 

in real world scenarios. Under such conditions, it is required that the tag must be read 

comfortably by the base antenna. Antennas might get distorted due to bending, for example, if 

placed on flexible materials like polythene bags or wrappers. The bending might occur due to 

loosening of the glue below the tag or due to mishandling of the tagged object. It is quite possible 

that the read range is affected by the distortions in tag antenna. It is observed that if a dipole 

antenna is bent at the point where it is fed with signals, its input return losses increase. It is also 

observed that the read range decreases by up to 40% if the antenna is bent by 90° at the feed 

point. 

 

In the power equation stated earlier, in cases of no tag distortion, the tag gain may be 

given as, 

rr DG =              (3) 
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where rD is directivity*. In the case of a distorted antenna, there will be a change in directivity as 

well as impedance mismatch. For a folded dipole antenna, the performance degradation due to 

antenna distortion is evaluated conveniently using the following equation, 

r

r

D

D

r

r
'

2
'

)1( ⋅Γ−=          (4) 

 

where rr  and '  are the operating ranges with and without distortion, respectively, and Γ is the 

reflection coefficient due to mismatch. It is also possible to predict the reduction in read range 

due to possible antenna distortion from the above equation [9].  

 

Every reader has a finite space within which it communicates with the tags. Such a finite 

space is called an interrogation zone. It often occurs that the interrogation zones of two or more 

readers intersect with each other. This is an example of reader collision. Such collisions may lead 

to a tag being read more than once or the tag not being read at all. While designing RFID 

systems, it is necessary to minimize the number and frequency of reader collisions [10]. This can 

be achieved by allocation of frequencies over time to various readers, which is similar to the 

working of cellular phone network systems. But, the inherent difference between a cellular phone 

and an RFID tag network is that cell phones are themselves capable of communicating to the right 

base station, while RFID tags are low functionality devices that depend on the base station itself 

to get themselves powered. Thus, the RFID tags are fundamentally incapable of determining the 

right base station (reader antenna) and aiding the communication process with the right reader 

[10]. Therefore, changing the reader controls is the only way to avoid reader collision. One 

method of doing this is to assign different times or different frequencies to individual readers. The 

problem in allotting different frequencies to different readers is the existence of a small 

                                                 
* The directivity of an antenna is defined as the ratio of the maximum value of the power radiated per unit 
solid angle, to the average power radiated per unit solid angle. 
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bandwidth for frequency available for a particular range. Thus, re-using the frequency bands i.e., 

allotting the same frequencies for readers located far from each other can be one of the practical 

solutions to avoid reader collision. 

 

When the number of fixed frequencies allotted to a set of readers is considerably less than 

the number of readers, the method of Time Division Multiple Access (TDMA) is deployed. Here, 

readers are allotted a particular time interval for communicating with the tag. The interference in 

an RFID system can be classified into reader-to-reader interference and tag-to-reader interference. 

In the first case, there is interference of frequency transmitted by one reader with that of the other 

reader. While in the latter case, the interference is due to the communication of more than one 

reader with the same tag at the same time. All the above problems of interferences can be tackled 

by the use of optimized algorithms for reader sequencing using frequency allocation or TDMA 

techniques. A possible solution may be to vary the power transmitted by the reader. This will vary 

the interrogation zone of the reader and will avoid collisions with other readers, though 

algorithms to vary the power transmitted by the reader have not been developed yet [10] . 

 

When individual system performance is not satisfactory, it is advisable to bring 

redundancy to the system. Low read rates of RFID systems make the deployment of redundant 

antennas and tags to identify the same object an imperative. Redundant tags are those tags that 

carry identical information performing identical functions. Dual tags are tags connected to each 

other having one or two antennas and with/without individual or shared memory, n tags serving 

the same purpose as that of dual tags can be used for beneficial use of multiple tags in product 

identification. 

 

It is observed that both the inductive coupling and backscatter based tags have a 

dependency on the angle of orientation of tag relative to the reader. Placement of two tags in two 
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flat planes, three tags in the three dimensional axes four tags along the faces of a regular 

tetrahedron, and so on, can help in achieving the above mentioned goals. 

 

In the case of both induced coupling as well as backscatter based tags, it is observed that 

the absolute increase in voltage factor increases with an increase in the number of tags, though 

the backscatter based tags have higher increases as compared to the inductive coupling based tags 

[11]. Even though adding one extra tag or two may be beneficial in increasing the induced 

voltage on a tag, adding four or more tags does not guarantee a substantial increase in angle of 

incidence and in turn, increase in the induced voltage on a tag.  Multi tag RFID systems help 

increase the fraction of maximum power by 0.88 times and increase the read distance by up to 

1.63 times [3]. This method has practically no effect on the binary and binary tree walking 

algorithms used by the RFID readers for “tag singulation” but requires twice as much time for 

singulation if the reader uses the randomized tree walking, slotted-terminating adaptive collection 

(STAC) and slotted Aloha algorithm based readers. 

 

2.2 Experimental Specification of RFID System Parameters 

The second category of studies concentrates on the increase in application feasibility of 

RFID systems through an industrial engineering perspective. In such studies, the RFID hardware 

is treated as a black box and the environmental factors or factors that can be tuned without 

changing the system hardware are optimized to improve RFID system performance. Such studies 

usually involve the performance measurement of RFID systems under different test conditions 

and optimizing the results obtained for increasing the system performance. There are many 

approaches to perform such studies, but the most favorable one is the approach of statistical 

analysis using tools such as ANOVA, Design of Experiments, Two Key Testing, SPC, pre-

control, etc. [12].  
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The most important issue in conducting experiments with RFID systems using the above 

tools is the lack of proper methodology, without which it is quite difficult to delineate inferences 

from the data available through the studies. One of the approaches is to conduct laboratory 

experiments using various endurance and performance tests and trying to replicate the same 

results in real world environments. A diligent approach [12] used for laboratory testing of RFID 

systems involves the following tests, 

1. Capture Zone Test 

2. Tag Separation Test 

3. Tag Orientation Test 

4. Multiple Tags in Antenna’s Capture Zone Test 

5. Single Tag in Motion at Low Speed 

6. Single Tag in Motion at High Speed 

 

In real world applications the following tests are conducted: 

1. Single Tag Mounted on Empty Container 

2. Single Tag Mounted on Filled Container 

3. Multiple Tags Mounted on Filled Containers on Pallet 

4. Plastic Shrink Wrap 

5. Forklift Transport 

6. Conveyor Test 

 

The capture test consists of testing a single RFID tag in the 180° circumference of the 

base antenna. Tag read-rates is tested in X-Y, Y-Z, and X-Z planes. Each plane is divided into 

eight zones of 45° each. The output is measured in terms of distance at which the read rate 

(number of successful reads/number of read samples) is 100%. 



 12 

 

The separation test is conducted to find out the minimum distance between two tags, such 

that both the tags get read at a 100% read rate. In the measurement, one tag is fixed at an arbitrary 

position, and another tag is kept directly over it. Then, the tag is moved circumferentially over the 

fixed tag at eight different angles. The moment the read rate falls below 100%, the movable tag is 

moved away from the fixed tag by a distance of 1cm and again the read rates at eight different 

locations are found out. This procedure is conducted until the read rate of 100% is achieved or 

until the distance between the tags exceeds 5 cm. 

 

The tag orientation test consists of tilting the tag circumferentially along the three planes 

X-Y, Y-Z, and X-Z. The maximum number of tags that can be present within an antenna’s 

capture zone, without any drop in performance is found. The transmitting antenna is kept at a 

maximum distance obtained from the capture zone test. Tags are added, one by one, to a 

cardboard mounting surface which is positioned in the X-Z plane. The distance between two tags 

is obtained from the tag separation test. 

 

The read-rates of tags under the influence of speed is found out through a single tag in 

motion at low speed test. Here, the tag is mounted on a drum rotated at a speed of less than 10 

kmph. The base antenna is mounted at a position corresponding to a distance obtained from the 

capture test. The drum is rotated along the X-Y plane, and the base antenna is placed 

perpendicular to the X-Z plane. The drum is rotated with increases in speeds from 0 kmph to 10 

kmph, and tests are conducted until the read rate falls below 100% 

 

After this test, the tag is tested at higher rotational speeds using the same methodology as 

above, except that the base antenna is positioned at half the maximum distance recorded in the 
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capture zone test. The drum is initially started at 10 kmph, and its speed is increased in the 

increments of 10 kmph until the read rate falls below 100%. 

 

In real world environmental testing, a single tag is first placed on an empty container, and 

various sizes and types of materials are tested. Tests are conducted on containers made up of 

cardboard, steel, plastic, aluminum, and glass. The sizes of the containers are fixed either to be 

cubical or cylindrical. A tag is mounted on a cubical container on one of the faces and presented 

in six different orientations, while a tag is placed on a cylindrical container and rotated in 

increments of 45°. 

 

In the filled container test, the container is filled with liquids like formaldehyde or 

hydraulic fluids and packed in packaging material like bubble wrap, perlite, and item in 

containers like aluminum cans, cardboard boxes, etc. The filled containers are initially placed at 

half the distance achieved in the capture zone test. The case of multiple tags mounted on filled 

containers is the same as that of the multiple tag test done in the laboratory experiments, except 

the tagged containers are placed on pallets and at randomized orientations, and each pallet is 

tested in four different orientations. The pallet is then wrapped with plastic wrap and then 

transported by a forklift, and the containers are tested on a conveyor. 

 

It is observed that when the tag is parallel to the reader antenna, it yields maximum read 

rates, while the read rate decreases when the tag orientation changes. One way to overcome this 

problem is to develop a scan tunnel that can hold multiple antennas (perpendicular to each other) 

so that the tag is always parallel to at least one antenna. Tags placed directly on metals or on 

liquid filled containers have large reductions in read rate. This is caused due to reflection of RF 

waves in erratic directions by metal surfaces. To counteract this problem, one needs to place the 

tag at a slightly offset (increasing the air gap between the tag and metal) from the metal container 
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or liquid filled containers. The maximum number of tags that could be read when placed close to 

one another is seven, which means that a pallet with not more than seven (7) tags on it will be 

read consistently by the current RFID system [12]. This is a very specific answer to the multiple 

tags scenario, and the results might vary with changes in environmental factors. RFID systems 

have a maximum read range of 559 to 610 mm under any environmental factors.  

 

Another study revealed that a consistent 100% read rate can be obtained when the tag 

density is four, and as the tag density increases, the read rate decreases to as low as 96% for a tag 

density of 60 tags [13]. A fairly consistent read rate of around 99% is observed until the number 

of tags is below 30. The authors also suggest that the running time in tag identification for a set of 

60 tags close to each other but well inside the optimized field coverage of the antenna, is 6000 

milliseconds. The theoretical read time is almost the same [13]. The tests were conducted in an 

absorbing environment.  

 

Apart from field strength, type of modulation, number of tags, speed, and environmental 

factors, read range is also dominated largely by the design of the antenna coil of an RFID tag. As 

shown in Figure 3, the graph of identification distance vs. diameter of antenna coil of the tag, 

though not linear, shows that the form factor (size of the tag) does play an important role in 

determining the read range of any tag [14].  
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Figure 3: Read range dependence on form factor [14] 

 

Tests suggest that a tag with an antenna diameter of 18 mm has an identification distance 

or read range just above 500 mm when tested in real world environments like hospitals and 

warehouses. Under such conditions, there is a substantial effect of metals and liquids on read rate.  

 

Quite often the protective layers or wrappings around a tag affect its read range. It is also 

possible that the presence of metals, plastics, foam, etc., has an adverse effect on the read rate as 

well as read range. It is observed that tags covered with wooden blocks from all sides have zero 

read-rates. A possible reason for this drop in read rates is because wood block most of the 

incident RF waves. Proximity of metals reduces the tag read-rates by more than 50% as compared 

with non-occluded tags. Tags placed under ceramics have reduced accuracy and less read-rate as 

compared to non-occluded tags. Even in static environments, the mean read-rate of the RFID 

system has high standard deviation which shows that the system has low precision. Any line of 

sight occlusion (involving metal) between a tag and any of the receivers results in the occluded 

receiver not even detecting the tag. Hardened plastic, foam and plastic wrap have little effect on 

tag read-rate probabilities [15]. It is suggested that the precision and accuracy of tag read-rate 

probabilities and positioning can be improved by deploying one or more of the following 

measures: 
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1. additional tagging 

2. higher frequency ranges 

3. additional receivers 

4. improvement in post processing of data 

 

A study was conducted by researchers at the Spokane Research Laboratory to reduce the 

number of accidents in a metal/nonmetal mine in Washington [16]. Experiments were conducted 

with different safety tools and ways to increase the safety at the site. Some of the potential 

devices considered were RFID systems, radars, close circuit (CC) TVs and backup alarms. The 

use of RFID systems seems to be the most promising solution to the above mentioned problem. A 

properly designed RFID system can solve many problems associated with the use of radars, CC 

TVs and backup alarms. It has a minimal chance of false alarm. If a pedestrian worker possessing 

a tag is in the vicinity of the mining equipment, readers mounted on the equipment will alert the 

operator. An active RFID system is used in this application. First, a spectral analyzer was used to 

find the approximate read range of the RFID system, and then actual experiments conducted 

revealed that 100% read rate was achieved up to a range of 7 ft. Detection of tag also depends on 

the physical orientation of the tag [16]. 

 

Apart from the above criteria, the data transmitting speed of a tag also, affects its read 

rate. A 64-bit tag with a data transmitting capacity of 16 kbps has higher read range and read rate 

even at higher tag speeds as compared to a tag with a transmitting speed of 32 kbps and 64 kbps. 

Furthermore, the average access time for a tag also increases with increase in data carrying 

capacity of tag [17].  

 

Tests are also conducted to assess the performance of RF systems placed in the proximity 

of different materials, like foam, plastic, liquids, consumable solids, etc. One such study [18] 
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gives interesting insights on case level tagging. Tags were tested to find out the effect of tag 

orientation and product variation on tag read-rate probabilities. Four basic tests were conducted, 

which are: 

1. Package Content – Total Reads 

2. Tag Orientation – Total Reads 

3. Package Content – Trials with 100% Reads 

4. Tag Orientation – Trials with 100% Reads 

 

Each test was conducted using empty cases, Foam-In-Place (FIP) cases, rice cases, empty 

bottle cases, and water bottle cases. Tags were placed each time in four different orientations on 

the cases, viz., outward, inward, forward, and downward. Outward location means the tags are 

placed on the front row of the pallet and so on for all other orientations. Each test was conducted 

for 25 times with the reader placed on wooden portals and the cases placed on a pallet unitized 

using a single layer of stretch wrap. A truck would carry the pallet at a top speed of 3.5 mph. 

When conducting the tests, the pallet truck, facing forward, was brought to full speed before 

entering the RFID systems, read range. Rice bottles had some headspace in the cases while the 

bottle cases did not. Firstly, a read range test was conducted on the readers to validate the effect 

of tag orientation at different read ranges, and a spectrum of range was plotted.  

 

Observations from the first (Package Content –Total Reads) test are summarized in 

Figure 4, those from the tests on Tag Orientation vs. Total Reads are summarized in Figure 5, 

those regarding package contents are shown in Figure 6, and the effects of tag orientation are 

observed in Figure 7. 
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Figure 4: Effect of package content on total reads [18] 
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Figure 5: Effect of tag orientation on total reads [18] 
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Package Content- Trials with 100% 
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Figure 6: Effect of package content on 100% reads [18] 
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Figure 7: Effect of tag orientation on 100% reads [22] 

 

The above results are summarized as follows: 

1. empty cases and empty bottle cases have practically no effect on read-rate probabilities under 

orientation  

2. rice bottles and filled bottles largely affect the tag read-rate probabilities 
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3. the lower the layer of cases on a stacked pallet, the lower is the tag read-rate probabilities 

4. the closer the tag is to the pallet jack, the lower is its read-rate probabilities 

5. read-rate probabilities of cases with filled water bottles can be increased by changing the tag 

orientation to “forward” 

6. strategic tag orientation and/or location can minimize the limitations of RF physics 

 

The study is limited by the inconsistency of tag quality, individual properties of the 

material inside the cases, and tag detuning due to interferences.  

 

Until this stage, we only considered the effect of individual tags on tag readability of 

other tags in their vicinity. But, this is not the case when two or more tags are used to serve the 

same purpose. Multiple tags can be used to identify the same product, thereby increasing the 

induced voltage on a tag, increased read range, increased product memory, and increased 

reliability, availability and durability of the system [11] .  

 

Transient market conditions and upcoming mandates drive the requirement of 

benchmarking the RFID techniques for comparing the performance of various RFID systems 

[19]. One such study says that there must be two benchmarking techniques: one for reading and 

the other for writing of passive UHF tags. The study measures the tag performance under various 

test conditions like [19]: 

1. read range 

2. orientation  

3. tag quality 

4. read speeds in isolation 

5. read speeds in population 

6. frequency response 
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The benchmarking in writing a tag is measured under the following test parameters 

1. reliability 

2. write speed 

The response rate is measured against the attenuation of transmitted power, and it is found that 

the response rate falls below 100% after the end of the “strong field zone”, which occurs at an 

attenuation of 12 dB and at a distance of 11.7 ft. The tag stops responding after a distance of 18.5 

ft or power attenuation levels above 16 dB. It is also observed that a good quality tag is readable 

in the strong field zone even at high attenuations.  

 

The time required to first read a tag is higher for a Class 1 tag than a Class 0 tag. The first 

few tags are read quickly. About 2/3rd of the n tags are read linearly with time, and the remaining 

1/3rd tags require exponential amounts of time to get read. Its is also observed that for an 

individual tag in a population, the read rate reduces exponentially with the number of tags for the 

Class 1 category,  and the same is observed for a Class 0 tag but with much higher ranges of read 

rate.  

 

In the proximity of metals, the tag performance is based on the separation distance from 

the tag and the metal surface. All tags become unreadable, even if the separation distance is 

reduced below 2.5 mm. Tags in proximity of water have an erratic behavior as compared to the 

same tag placed in free air. The read distance increases almost linearly with the increase in 

separation distance. 

 

As the UHF frequency hops between its bandwidth when the tag is placed in front of 

metals, the read range also changes. An increase in the separation results in increase in read 
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range. As the separation is decreased, the performance decreases rapidly at higher frequencies 

(e.g. 955 MHz) as compared to that at lower frequencies (e.g., 902 MHz).  

 

In spite of all these significant improvement measures, none of the papers try to develop a 

link between EM based theoretical advances and practical/statistical tools to develop and validate 

a generalized model for measuring RFID system performance.  
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Chapter 3  

Research Gaps, Problem Description and Approach 

 

The EM based design approaches aim at improving hardware and the antenna to 

maximize the power available at the tag. The Friis free space power model is extensively used as 

the basis for most of these design approaches. However, the models used for design purposes 

have limitations for estimating RFID system performance in complex fields. Hence, 

computational and statistical approaches are commonly used.  

 

Further, the analytical and deterministic computational models do not predict the 

performance metrics such as read rates that are emerging as industry standards for evaluating 

RFID systems. Elaborate experimentation and testing are usually employed for benchmarking the 

performance of an RFID system. Experimental approaches have the following shortcomings for 

performance estimation: (1) large sets of experiments consisting of several replications are 

necessary to estimate ordinate performance variables such as read rates, and (2) the resulting 

models have limited generalizability, i.e., the results cannot be extrapolated to the parameter 

value beyond the chosen experimental ranges. The model structures are not physically motivated; 

hence, little insights in the underlying EM phenomena may be gathered from experimentation 

results. 

 

The presented approach tries to overcome the predictability limitations of largely 

deterministic, current analytical models, as well as the generalizability limitations of the 

experimental models. The approach is based on considering the uncertainties prevailing in the 
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various tag and reader circuit properties, as well as electromagnetic (EM) propagation parameters 

and incorporating these as part of an extended Friis free-space model. 

 

The objective of this thesis is to derive a statistical approach towards systematically 

designing an effective RFID system for warehouse applications. This study has a three step 

approach: 

1. formulation of a RFID system performance model to predict read-rates at different read 

ranges, tag orientation relative to reader antenna, and relative tag-reader motions 

2. validating the model developed in step one using physical experiments 

3. development of an advanced and more generalized model that takes into account the effect of 

antenna attenuation along with all other factors as in steps 1 and 2    

 

Formulation of RFID system performance has been carried out using two different 

approaches. A statistical multiple regression approach to model RFID system performance is 

presented in Chapter 4. A new approach based on combining EM theory with statistical modeling 

is presented in Chapter 5. The limitations of tags affixed on metals not being read are addressed 

by a new set of techniques in Chapter 6. 
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Chapter 4  

Statistical Analysis for Performance Measurement of RFID 

Systems
*
 

 

4.1 Introduction 

Design of Experiments (DOE) is a systematic approach for investigation of a system or 

process. It is a structured, organized method for determining the relationship between factors (Xs) 

affecting a process and the output of that process (Y). The Xs will henceforth be called as Key 

Process Input Variables (KPIVs) and Ys will be called as Key Process Output Variables 

(KPOVs). For each KPIV, a number of levels are defined that represent the range for which the 

effect of that variable is desired to be known. An experimental plan is produced that tells the 

experimenter where to set each test parameter for each run of the test. The KPOV is then 

measured for each run. The method of analysis is to look for differences between KPOV readings 

for different groups of the KPIV changes. These differences are then attributed to the KPIVs 

acting alone (called a single effect) or in combination with another input variable (called an 

interactions). 

 

We use the following procedure from identification of KPIVs to drawing conclusions 

based on DOE studies: 

1. Determine all process input variables (PIVs) that affect the performance of RFID systems 

                                                 
* This portion of the document is an extension of [20] Govardhan, J.M., et al., Statistical Analysis and 
Design of RFID Systems for Monitoring Vehicle Ingress/Egress in Warehouse Environments. International 
Journal for Radio Frequency Identification Technology and Applications (IJRFITA), 2006 Sent for Review. 
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2. Segregate the PIVs into categories like reader parameters, tag parameters, environment, 

protocols, etc. by developing an Ishikawa diagram 

3. Filter the PIVs to get a small chunk of input variables that are measurable as well as may 

have maximum impact on the readability through a quality function deployment matrix 

4. Decide the coding scheme, measurement details and levels of KPIVs  

5. Decide the level of factorial experiments to be done depending on the nature of KPIVs, time 

constraint, and methods for measurement of the KPIVs 

6. Analyze the results by using ANOVA for identifying the most significant KPIVs  

7. Perform a stepwise regression analysis to identify the effect of each KPIV over the KPOV(s)  

8. Perform a response surface analysis for developing the model 

9. Plot surface plots wherever there is an interaction between continuous KPIVs and interaction 

plots for discrete KPIVs 

 

An RFID system is influenced by many factors or Process Input Variables (PIVs). It is 

important that correct factors are chosen to yield designs for successful implementation of the 

vehicle monitoring systems. The current EM theoretical models are not tractable for capturing the 

effects of these factors on the readability in real world environments. Statistical approaches are 

therefore imperative for effective design of the RFID systems [19]. Further, different factors will 

have significantly diverse influence on readability W only a select set of factors have major 

influence. Therefore, for facilitating tractable statistical analysis, these PIVs need to be filtered to 

extract a more compact set of KPIVs.  

• The tags used for this application must be durable, inexpensive and the user must be able to 

use its conventions to write relevant data on the tag. So, we propose to use two types of tags EPC 

Class 1 [21] and ISO 18000-6 compliant tags [22]. 

• Orientation of tag is the relative placement of the tag w.r.t. the field of polarization of the 

reader’s antenna. This may be parallel and perpendicular or oblique to the EM field along various 
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planes of references as shown in Figure 8. The orientation is specified in terms of 

angles )180 (0,  and )90 (0,  ),90 ,0( °∈°∈°∈ zyx θθθ .  

 

 

 

Z 

X 

Y Reader 

Tag 

 

Figure 8 : Tag orientation (all angles at zero degrees) 

 

• Form Factor refers to the size and shape of the tag antenna. It wields a significant influence 

on the EM field envelope generated in presence of a reader and the tags, which in turn is the main 

determinant of read-rates. 

• Tag Collision is the effect of one or more tags responding to the reader signal at the same 

time. This confuses the reader and requires complex algorithms such as binary tree method, etc., 

to distinguish between individual tags. 

• Operating environment holds significant influence on read-rate probabilities. For example, 

metal parts of a vehicle can hinder the free flow of information from the tag to the reader and vice 

versa, by reflecting the waves in all directions. There are different tags for different purposes. A 

θy 

θx 

θz 
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tag created exclusively for metallic environments, such as AWID’s ISO 18000-6 tag [23], works 

better in such environments than a general-purpose tag. In addition, the presence of other tags and 

reader antennas may cause an adverse effect on the EM field. Thus, the presence of more than 

one reader antenna may become a PIV in the experimentation. All the PIVs dicussed above are 

summarized in Table 1. 

Table 1: List of PIVs  

Sr. No. PIVs 

Controllable(C) / Non 

Economical or Difficult to 

Change(N) / Fixed(F) 

1 Orientation of tag (θy,(θz) C 

2 Placement of tag (θx) C 

3 Weather N 

4 Vehicle type N 

5 Frequency range F 

6 Speed of vehicle C 

7 Reader placement C 

8 Reader make C 

9 Tag make C 

10 Form factor F 

11 Electronics installed in the vehicle N 

12 Tag collision N 

13 Metallic environment N 

14 Number of reader antennas C 

15 Frequency used F 

16 Standard compliance C 

17 Tag functionality C 
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Similar to the input variables, we selected four output variables as shown in the Ishikawa 

diagram in Figure 9. Tag read-rate probability is the most important output variable followed by 

robustness to environmental conditions (taken as noise), compatibility with the common RFID 

standards and lastly the cost of conducting this study.  

 

Figure 9: Ishikawa diagram 

 

A quality function deployment approach [24] was applied towards selecting the 

appropriate KPIVs. The selection is done in two phases based on matrix based filtering common 

to Quality Function Deployment (QFD).  

 

In the Phase 1 matrix, PIVs are listed on the top row of the matrix. KPOVs are listed 

along the first column, and their relative importance (one for least important and four for highly 

important) is listed in column 2. Among these, tag read-rate, is defined in terms of the probability 

that a given tag is read in a specified environment, of particular interest. Tag read-rate is 

determined by the fraction of the times a tag is read in a designed experiment. The KPIVs are 
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weighted according to their influence on each of the KPOVs on a 9,3,1,0 scale (9 is the highest 

and 0 is the lowest influence) [24]. The absolute technical importance is calculated by the 

following formula, 

∑
=

×=
n
i 1 importance sKPOV'  valueinfluence Importance Technical  

  

Then, the PIVs are ranked in ascending order relative to their technical importance and 

the PIVs with rank seven or less are chosen from the Phase 1 matrix (see Table 2). An arbitrary 

cut off rank of 8 is chosen to eliminate all KPIVs higher than rank 8. KPIVs are further filtered in 

Table 3. 

 

Also, the interrelationship matrix (as shown in Table 4) is built in the following manner. 

If the relationship between two PIVs is very strong, we say it as a highly positive relationship, 

which is denoted by the symbol “▲” in the interrelationship chart. A loosely positive relationship 

is denoted by “+”. If the relationship is weak, it is denoted by “W”; the case of no relationship is 

denoted by “▼”. 
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Table 2 : Selection of KPIVs- Phase 1 
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Read-rate  

(READ) 

4 3[25] 9[1] 9[13] 9[15] 9[1] 9[1] 9[25] 9[25] 9[1] 9[25] 3[13] 3[1] 9[13] 

Robust to Noise 2 1[4] 3[13] 3[1] 3[15] 9[25] 3[25] 9[25] 9[13] 3[1] 9[25] 9[13] 9[1] 3[1] 

Compatibility (with 

most common RFID 

standards and 

systems) 

3 3[25] 3[1] 3[1] 9[15] 9[25] 9[13] 3[25] 1[25] 1[1] 1[25] 1[13] 1[1] 3[1] 

Cost of study 1 3[25] 3[13] 3[1] 1[1] 1[25] 1[1] 1[1] 1[1] 3 1[25] 9[1] 1[1] 1[1] 

Technical Importance 26 54 54 72 84 70 55 57 48 58 42 36 52 

Rank 
 

12 7 7 2 1 3 6 5 9 4 10 11 8 

 

In Phase 2, we found that certain KPIVs are either fixed or not economical to change like reader frequency, and electromagnetic 

interferences, while the number of read antennas already at their maximum number (two antennas). Hence all these KPIVs were eliminated 

leaving us with seven KPIVs listed after the interrelationship diagram. 
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Table 3 : Selection of KPIVs - Phase 2 
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d
 

Read-rate  (READ) 4 9 9 9 9 9 9 9 9 9 9 

Robust to Noise 2 3 3 3 9 3 9 9 9 9 3 

Compatibility (with most common 

RFID standards and systems) 
3 3 3 9 9 9 0 1 1 1 3 

Cost of study 1 3 3 1 1 1 1 1 9 1 1 

Technical Importance 54 54 70 84 70 55 58 66 58 52 

Rank 
 

7 7 2 1 2 5 4 3 4 6 

Controllable [C] - Fixed [F] -Fixed 

Maximum [M] – Not Economical to 

Change [N] 

 C C C F C M C N N C 
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Table 4:  Interrelationship Matrix of KPIVs 
 

Highly Positive (▲), 

Loosely Positive (+), No 

relationship (▼), Weak 

Relationship (K) 

Form factor 

F
o
rm

 f
a
ct
o
r 

Tag  Placement/Position ▼[25] 

T
a
g
  
P
la
ce
m
en
t/
P
o
si
ti
o
n
 

(θ
x
) 

Tag Orientation +[4] ▼[4] 

T
a
g
 O
ri
en
ta
ti
o
n
 

(θ
y,
 θ
z)
 

Tag Protocol ▼[26] ▼[25] +[13] 

T
a
g
 P
ro
to
co
l 

Reader frequency ▼[25] ▲[25] W[13] ▼[26] 

R
ea
d
er
 f
re
q
u
en
cy
 

Reader Make ▼[25] ▲[4] +[13] ▲[27] ▼[26] 

R
ea
d
er
 M

a
k
e 

Number of Antennas +[25] +[13] W[25] ▼[15] W[25] ▲[26] 

N
u
m
b
er
 o
f 
A
n
te
n
n
a
s 

Reader-Tag Distance ▲[25] +[4] +[4] +[25] ▲[21] ▲[26] ▲[26] 

R
ea
d
er
-T
a
g
 D
is
ta
n
ce
 

EMI +[1] ▼[1] +[13] +[1] +[25] +[13] ▲[25] ▼[25] 

E
M
I 

Tag Density W[13] +[4] ▲[26] +[9] W[25] ▲[26] +[14] ▼[27] W[1] 

T
a
g
 D
en
si
ty
 

Weather W[4] ▼[25] W[13] ▼[25] +[25] W[26] +[15] ▼[13] +[25] ▼[26] 

W
ea
th
er
 

Vehicle type ▼[26] ▼[26] +[26] ▼[26] ▼[26] ▼[26] W[26] W[26] W[26] W[26] ▼[26] 

V
eh
ic
le
 t
y
p
e 

Vehicle Speed W[15] +[26] ▲[26] W[1] +[25] +[26] ▲[26] ▲[26] W[26] ▼[26] ▼[26] ▼[26] 

V
eh
ic
le
 S
p
ee
d
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Tables 2 and 3 along with the interrelationship matrix summarized in Table 4, lead to a 

conclusion on deciding seven KPIVs for the experimentation which are listed below:  

1. Reader make 

2. Tag make 

3. Distance between tag and reader 

4. Tag Placement angle (θx) 

5. Tag Orientation angle (θy) 

6. Tag Orientation angle (θz) 

7. Speed of the vehicle 

 

4.2 Experimentation Details 

Experiments were conducted on an open space at the entry of a parking lot at Oklahoma 

State University. The objective of these experiments is the following: 

a) statistically quantify the relative influence of various KPIVs on tag read-rate probabilities, 

b) propose the optimal combination of KPIVs that will enhance read-rate probabilities, and 

c) propose a mathematical relationship connecting tag read-rate probabilities to the various 

combinations of the  KPIVs 

 Figure 10 shows an Alien reader held tag a distance of 508 mm from the EPC Class 1 tag, 

mounted on the vehicle’s windshield.  



 35 

 

 

 

Figure 11 shows an AWID reader held at a distance of 508 mm from the ISO 18000-6 

tag. This setup is one of the various combinations of levels of KPIVs, required for the design of 

experiments. Figure 12 shows an Alien reader connected to a computer system required to 

extract the tag information from the reader. The connection from the reader to the backend 

computer is accomplished through an RS 232 or an Ethernet port. 

Alien
®
 Reader 

EPC Class 1 Tag 

Figure 10 : Tag-Antenna (Alien) setup for experimentation  
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Figure 11: Tag-Antenna (AWID) Setup for Experimentation 
 

 

Figure 12 : Reader to Computer System Connectivity 

 

Some of the KPIVs were either insignificant or their interactions do not comply with their 

hardware configurations. Lab experiments revealed that, the effects of tag placement (θx) and tag 

orientation (θz) (the tag flipping) on read-rate probabilities are insignificant (hence, they were 

ISO 18000-6 Tag 
AWID Reader 
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eliminated from the study). Furthermore, Alien® reader is incompatible with the ISO protocol 

and the AWID reader works well, only with the ISO protocol, so tag make as cannot be used as a 

potential KPIV. Hence a full factorial multi-level experiment was conducted with the following 

KPIVs: 

1. Reader Make 

2. Distance between tag and reader 

3. Speed of the vehicle 

4. Tag Orientation  (θy) 

 

With reference to the datasheets of individual readers, and lab experiments, we confirmed 

the read range distances for each reader. The levels of distance for each reader were determined 

based on prior lab experiments. The details of the various KPIVs and their ranges are summarized 

in Table 5 and 6. It is noteworthy that the reader make ‘R’ is ordinal, in that it is coded as 1 and 2 

depending on whether the Alien or AWID reader is used.  The distance ‘ r ’ is coded between 

levels 1- 10, corresponding to the actual distances ranging from  508 mm to 4572 mm, as 

summarized in Table 6. The speed ‘S’ is coded at three levels for 0, 16 and 32 kmph. θy is coded 

in two levels, for 0° and 90°. A full factorial multi-level experiment with eight replicates was 

conducted. 

Table 5 : Levels of Distances for each Reader 

Alien AWID 

Distance (mm) 

1270 508 

2159 1143 

2921 1828 

3683 2540 

4572 3175 
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Table 6 : Coding Scheme of KPIVs 

KPIV Symbol Type 

Range of 

Interest 

Level Coding 

How 

Measured 

Alien® 1 Reader 

Make 
R Ordinal 

AWID® 

2 

2 

Visual 

508 1 

1143 2 

1270 3 

1828 4 

2159 5 

2540 6 

2921 7 

3175 8 

3683 9 

Distance 

(mm) 
r Continuous 

4572 

10 

10 

Measuring 

Tape 

0 1 

16 2 

Speed 

(kmph) 

S Continuous 

32 

3 

3 

Vehicle 

Speedometer 

0 1 θy 

(degrees) 

θy Continuous 

90 

2 

2 

Visual 

 

4.3 Analysis of Experimental Results 

Analysis of the experimental results is done in two parts. Stepwise regression analysis 

was performed to identify the main factors. Next, a response surface regression analysis was 
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done, to facilitate detailed identification of significant main and interaction effects, and determine 

optimal settings. The regression model is shown in the following equation, 

 

ySrRySrRREAD θθ ⋅+⋅+−−−−=  14375.0 06869.0 45833.0 38125.0  16755.0 87778.004236.3  (5)     

 

The model captures 78% (R-Sq (adj)) of variation in read-rate probabilities observed 

during our experiments (See Table 7). Reader make (R) and the tag orientation (θy) seem to have 

a strong influence on read-rate probabilities based on examining their relative magnitudes of all 

KPIVs. Significantly, the joint effects of the reader make (R) and distances (r), as well as that of 

speed (S) and tag orientation (θy), have a major effect on read-rate probabilities.  

 
Table 7 : Response Surface Regression Analysis Results 

Term Coefficient P 

Constant 3.04236 0.000 

R -0.87778 0.000 

r -0.16755 0.000 

S -0.38125 0.000 

θy -0.45833 0.000 

R*r 0.06869 0.000 

S*θy 0.14375 0.001 

S = 0.1934 R-Sq =79.4% R-Sq(adj) =78.3% 
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Figure 13 : Interaction plot of read-rate (%) vs. distance r for different Reader Makes 

 

Figure 13 summarizes the joint effect of reader make R and the distance r on tag read-rate 

probabilities. The read-rate probabilities of the AWID reader to ISO compliant tags sharply drop 

after 1143 mm (around 4 feet). The Alien Reader is able to read EPC compliant tags beyond 2540 

mm. This might be because of the power level of the system. The higher the power radiated, the 

larger will be its read range.  

 

Alien 

AWID 
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Figure 14 : Interaction plot of read-rate (%) vs. Speed for different Reader Makes 

 

Figure 14 depicts the effect of reader make R and speed S of the vehicle on tag read-rate 

probabilities. It can be inferred that the tag read-rate probabilities for the Alien reader with EPC 

compliant tags drops consistently with the increase in speed from 0 to 32 kmph whereas the tag 

read-rate probabilities for the AWID reader with the ISO compliant tags drops sharply after 0 

kmph. There exists no significant nonlinearity between read-rate probabilities and speed of the 

vehicle for both the read makes. It can be inferred that speed is a function of rate of change of yθ  

relative to distance r (
dt

ydθ
and

dt

dr
).  

 

AWID 

Alien 
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Figure 15 : Interaction plot of read-rate (%) vs. tag orientation ( yθ ) for different Reader Makes 

 

The effect of reader make R and yθ  over tag read-rate probabilities is shown in Figure 

15. Here we see that the tag read-rates for the Alien make reader with EPC compliant tags is 

higher at °= 0yθ  than at °= 90yθ . The AWID reader with ISO compliant tags has the same 

effect as above when yθ changes from °° 90  to0 , but in the latter case, the tag read-rate is 

considerably lower than in the case of the Alien reader. This is because when °= 0yθ , the tag is 

oriented parallel to the reader antenna, while at °= 90yθ , the tag is oriented perpendicular to the 

reader antenna. There is a maximum coupling when the tag is oriented in parallel than when it is 

oriented perpendicular with respect to the reader antenna. The difference in tag read-rates for 

different reader makes is due to the difference in power supplied by each reader to its antennas. 

AWID 

Alien 

θy 
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Figure 16 : Interaction plot of read-rate (%) vs. distance for different tag orientations ( yθ ) 

Figure 16 shows the combined effect of distance r and yθ over tag read-rates. The tag 

read-rates decrease consistently with the change in  yθ  from °° 90   to0  for each distance level. 

Tag read-rate is inversely proportional to the distance; hence, there is a polynomial fall in read-

rate probabilities with increase in distance.  
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Figure 17 : Interaction plot of read-rate (%) vs. tag orientation ( yθ ) at different speed settings 

θy = 0° 

θy = 90° 

θy        

0 kmph 

16 kmph 

32 kmph 
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Figure 17 shows the effect of Speed S and yθ over tag read-rate probabilities. It can be 

inferred that the tag read-rates are highest at 0 kmph speed and lowest at 32 kmph speed. It can be 

also concluded that the tag read-rate percentage decreases when yθ  changes from °° 90   to0 . 

There is a relationship between the speed at which the vehicle is moving and yθ . This is also 

reflected in the regression model (Interaction between speed S and yθ ). This is because when the 

vehicle is moving, yθ changes (i.e., at every position of the vehicle, yθ is different). 

0

1

Read-rate (%)

0.0
0

0.5

1.0

0 20 Speed (kmph)1500
303000

4500

Distance r (mm)
 

Figure 18 : 3D surface plot of read-rate (%) vs. distance r and speed 

 

The surface plot of tag read-rate (%) vs. distance r and speed S is depicted in Figure 18. 

The tag read-rate (%) decreases consistently with increase in speed and distance. At a speed of 16 

kmph, when the tag is placed at a distance of 0 to 1828 mm from the reader, the read-rate (%) 

does not vary much with respect to the distance. This region corresponds to a plateau in the 

surface plot of Figure 18. The optimal value of tag read-rate can be achieved when the speed is 16 

kmph and the distance is 2540 mm.  



 45 

 

4.4 Concluding Remarks 

The study focuses on deriving statistical characterization and models that lead to an 

optimal design of an RFID system for a specific application of vehicle ingress/egress monitoring 

in a warehouse environment. All the PIVs that are known to influence the tag read-rates of an 

RFID system are considered, and a method based on quality function deployment (QFD) [24] is 

used to  systematically determine a compact set of KPIVs. From the study, the influence of 

distance, tag orientation, speed of the vehicle, and reader make has been clearly delineated and 

rationalized based on electromagnetism. It has been shown that the read-rate undergoes a 

polynomial decrement with increase in distance (i.e., read range). In addition, the read-rate 

decreases almost linearly with increase in speed. Maximum read rate is obtained when the tag is 

placed in parallel with respect to the reader antenna, i.e., when °= 0yθ . Thus, statistical analysis 

helps in determining an optimal value of distance, speed, orientation, and other KPIVs for a 

particular implementation of an RFID system for ingress/egress monitoring. 
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Chapter 5  

Analytical Modeling Approach 

 

5.1 Introduction 

According to the Friis free space model, power received at the tag antenna rP  is given by 

2

222

)4(

cos)1(

r

ySGGP
P rtt
r

π

θλ−
=         (6) 

where tP  is the power transmitted by the reader antenna, tG  is the gain of reader antenna, rG  is the gain 

of tag antenna, 2S  is the power reflection coefficient, λ  is the wavelength of in EM waves, yθ  is the 

angle made by tag antenna with reader antenna, r  is distance between tag antenna and reader antenna. 

Here, the maximum value of the effective isotropic radiated power (EIRP) of the reader antenna, where  

ttGPEIRP =  is provided by the manufacturer.  The FCC regulations limit the upper bound of EIRP to 1W. 

It is assumed that a tag is readable if rP  exceeds a power threshold thP . When rP < thP , not enough power 

is available for the tag to respond. 

 

A typical reader antenna frequency is set to hop between 902 MHz to 928 MHz in channels, each 

of bandwidth equal to 0.5MHz [28]. Over this frequency range, the values of 2S , λ , and thP are known to 

undergo only a slight variation [29]. Significant uncertainty exists in the value of rG  due to unknown tag 

circuit parameter variations (e.g., detuning) due to uncertainties in the ambient media.   It has been noted 

previously that the value of rG is not deterministic and is known to vary between -6 dBi to +7 dBi [30]. 

Due to the nonplanar geometries of tag and reader antennae, as well as measurement methods affordable 

in read world applications, uncertainty also exists in the determination of the value of yθ . It was further 



 

 47 

observed that changes in the EIRP settings contribute to uncertainty in the gain of transmitter antenna tG . 

Within each frequency hop we estimate rP  using 5 samples. A band of +/-5% of the set value is taken 

into account for uncertainty in measuring yθ . Additionally, propagation medium that encapsulates the tag 

and the reader, which constitutes a non-ideal free space, has a significant influence on read-rate.  To 

account for the aggregation of uncertainties in rG  and propagation medium, we assume a zero mean 

normal distribution of rG with a  +/- 4σ level set at a 7dBi and include a propagation factor α as a gain on 

the variance to account for propagation uncertainty. Roughly α captures the observed variation in rP  over 

multiple reader scan cycles, each involving frequency hops over the range between 902-928 MHz as 

further elaborated in the following section. 

 

5.2 Experimentation Details Using Gen 1 RFID System 

Experiments were conducted similar to those explained in Section 4.2 but using just one reader 

(AWID MPR 2010 BR) and corresponding ISO 18000-6 tag. The KPIVs are explained in Table 8. 
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Table 8: Levels of KPIVs for Gen 1 RFID System 

KPIV Symbol Type 

Range of 

Interest 

Level Coding 

How 

Measured 

508 1 

1143 2 

1270 3 

1828 4 

2159 5 

2540 6 

2921 7 

3175 8 

3683 9 

Distance 

(mm) 
r Continuous 

4572 

10 

10 

Measuring 

Tape 

0 1 θy 

(degrees) 

θy Continuous 

90 

2 

2 

Protractor 
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5.3 Results Using Gen 1 RFID System 

 
 

Figure 19: Variation of power received at tag ( rP ) with frequency (f) at r = 508 mm and yθ = 0º with 

Propagation Factor α =3 
          

 

                       (a)                                                                             (b) 

Figure 20 : Variation of power received at tag ( yθ = 0º) with frequency (f) at r = 508 mm and (a) at 

Propagation Factor α =0 (b) Propagation Factor α =50 

 

Figure 19 shows the model’s prediction of variation of rP over the frequency range of 902 to 928 

MHz at r = 508 mm and yθ = 0º. A tag is read only when value of rP  values exceeds thP . The fraction of 
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times a rP  value exceeds thP  determines the probability of that tag is read at a given r and yθ , over the 

specified operating conditions (e.g. levels of tag and propagation uncertainties, tag and reader parameters, 

and the frequency hops). Table 9 compares mean read-rates obtained from the model with those measured 

from the experiments at different value of r and yθ . It is observed that the tag read-rate decreases with 

increase in distance r in both the model as well as experimental observations. Figure 20 supports the 

concept of including a propagation factor α  in the Friis free space expression. The figure (a) shows how a 

Friis expression predicts the tag read-rate probabilities of 100 % at propagation factor α =0 while figure 

(b) shows the tag read-rate probabilities of 74% at propagation factor α =50, within the given band of 

frequencies and for a given setting.  A comparison of the patterns decrement of tag read-rate with distance 

r between the model and experiments is shown in Figure 21. It is observed that the mean read-rates 

obtained through the experiments fall within the statistical band of read-rates as determined by the model.  
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Table 9: Summary of change in mean read-rate and its std. deviation with distance between tag and reader at EIRP = 1 W based on modeling approach 

using GEN 1 RFID System 

EIRP=1W 

yθ = 0º yθ = 90º 

Experiments Model Experiments Model 
Distance 

(mm) Mean 

Read-rate 

Std. 

Deviation 

of Read-

rate 

Mean Read-

rate 

Std. 

Deviation of 

Read-rate 

Mean 

Read-rate 

Std. 

Deviation of 

Read-rate 

Mean 

Read-rate 

Std. 

Deviation of 

Read-rate 

508 100 0 99.11 0.54 87.5 12.71 3.6238 1.1657 

1143 84.17 11.94 82.5 1.83 0 0 0 0 

1270 61.25 19.24 76.50 3.07 0 0 0 0 

1829 49.17 21.51 55.25 4.71 0 0 0 0 

2159 37.5 17.06 45.42 6.11 0 0 0 0 

2540 51.25 17.17 37.79 3.51 0 0 0 0 

2921 37.5 19.7 30.04 7.09 0 0 0 0 

3175 27.92 12.58 28.04 7.11 0 0 0 0 

3683 15.42 10.22 17.48 3.21 0 0 0 0 

4572 0 0 7.30 2.22 0 0 0 0 
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Figure 21: Comparison of read-rates obtained from the model with those from experiments (Tag: AWID® 

Gen 1, Model: Prox-Linc (MT APT 1014), Reader: MPR 2010 BR, EIRP =1W and yθ  = 0º) 

 

It is evident from Figure 22 that the tag read-rate at yθ =90 º, is close to zero due to the fact that 

rP  values have fallen well below the threshold power limit of the tag i.e., thP  for almost all frequencies. 

This is further verified from second part of Table 9. The presence of uncertainties in the propagation 

media, the tag and reader parameters, and angle of orientation cause the tag to respond thus to the reader 

signal, which the deterministic models fail to recognize. Figure 23 is comparison of mean read-rate from 

model with those from experiments at yθ =90º. The model is able to capture read-rate variations for r > 

508 mm. The possible presence of side lobes near yθ =90 º tends to make the model less predictive for r < 

1000 mm. 
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Figure 22: Variation of power received at tag ( rP ) with frequency (f) at r = 1270 mm and yθ = 90º 
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Figure 23: Comparison of read-rates obtained from the modeling approach with those from experiments 

(Tag: AWID® Gen 1, Model: Prox-Linc (MT APT 1014), Reader: MPR 2010 BR, EIRP =1W and yθ  = 90º) 
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5.4 Experimentation Details Using Gen 2 RFID System 

Additional experiments were conducted at the COMMSENS Lab, located in the Advanced 

Technology and Research Center of Oklahoma State University using a Generation 2 RFID system.  

These experiments were aimed at investigating tag read-rates under more complex sets of material 

combinations in the ambient medium. The RFID system used Alien® Gen 2 reader ALR 9800. Here, the 

RFID tag (from Alien Gen 2 squiggle tags ALL 9440 (98.2 mm x 12.3 mm) [31] was placed on plastic, 

metal and cardboard containers that encapsulated plastic, metal, organic solids or organic liquids, 

respectively, as summarized in Table 10. The EIRP of the reader was varied by changing the power 

attenuation levels through Alien® Gateway Software. A full factorial experiment was designed using the 

KPIVs and their respective levels shown in Table 11. See Figures 24 through 27 for the placement of tag 

on different objects and the read-rate measurement procedure. Reader antennas are placed on a metallic 

support and the whole setup is placed on the measurement table. The object to be tracked is first tagged 

and then placed on a non metallic platform as seen in the pictures. 

 

Figure 24: Placement of tag on plastic bag containing organic solid (noodles) stored in plastic bag and metal 

cans in cardboard carton 
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Figure 25:  Placement of tag on plastic bottle containing organic liquid (water) and plastic bottle stored in 

plastic bag 

 

 
Figure 26: Placement of tag on cardboard carton containing organic solid (noodles) 
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              Figure 27: Read-rate measurement procedure 

 
 

Table 10: Combination of container and contained material used for read-rate measurements using 

Gen 2 RFID System 

Outside Container Inside Material 

Plastic (Zip- lock Bag) Plastic (Empty Water Bottle) 

Plastic (Water Bottle) Organic Liquid (Water) 

Plastic (Zip- lock Bag) Organic Solid (Noodles) 

Cardboard (Carton) 
Plastic 

(Plastic Bags) 

Cardboard (Carton) Metal (Cola Can) 

Metal (Cola Can) Organic Liquid (Water) 
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Table 11: Levels of KPIVs for Gen 2 RFID System 

KPIV Symbol Type 
Range of 

Interest 
Levels Coding 

How 

Measured 

1 1 

0.398 2 EIRP (W) ttGP  Continuous 

0.158 

3 

3 

Alien® 

Gateway 

Software 

508 1 

1016 2 

2032 3 

Distance 

(mm) 
r Continuous 

3048 

4 

4 

Measuring 

Tape 

0 1 

45 2 
Orientation 

(degrees) 
yθ  Continuous 

90 

3 

3 

Protractor 

Metal 1 

Plastic 2 
Outside 

Material 

 

OM 

 

Ordinal 

Cardboard 

3 

3 

Visual 

Organic 

Liquid 
1 

Organic 

Solid 
2 

Metal 3 

Inside 

Material 
IM Ordinal 

Plastic 

4 

4 

Visual 

 

5.5 Results Using Gen 2 RFID System 

The model discussed earlier is able to predict read-rate probabilities of RFID systems under 

certain environmental conditions. A single value of propagation factor α  is able to justify the variations 

in read-rate probabilities irrespective of EIRP, tag orientation and distance levels. Individual values of 

propagation factor α  for each environmental condition (outside container and inside material) which can 

be seen in Table 12. 

 



 

 58 

Table 12: Value of Propagation factor for combination of containers and contained materials at all EIRPs 

using Gen 2 RFID System 

Outside Container Inside Material 

Value of Propagation 

factor for all EIRPs 

(α ) 

Plastic (Zip- lock Bag) Plastic (Empty Water Bottle) 22 

Plastic (Water Bottle) Organic Liquid (Water) 10 

Plastic (Zip- lock Bag) Organic Solid (Noodles) 4 

Cardboard (Carton) 
Plastic 

(Plastic Bags) 
8 

Cardboard (Carton) Metal (Cola Can) 20 

 

The read-rates measured from the experiments, with a tag affixed to a plastic bag that contained a 

plastic bottle, at different r, yθ and EIRP values are compared with the corresponding results from the 

model in Table 14. As seen in Table 12, the α  value is set at 22 for all EIRP values. The results show that 

the model correctly captures both the mean read-rates and the standard deviation of the read rates with 

and average 92% accuracy for mean read-rates. The experimental read-rate measurements were within the 

3σ read-rate estimates from the model as summarized in Figures 28 through 30. 

 

In the second case, RFID tag was placed on plastic bottle containing organic liquid (water) and 

read-rates were measured for different values of r, yθ and EIRP. Table 12 shows the α  value set at 10 for 

all EIRP values. The experimental mean read-rates had an accuracy of 92% when compared with the 

mean read-rates obtained from the model as summarized in Table 15 . Almost all the experimental read-

rate measurements were within the 3σ read-rate estimates from the model as summarized in Figures 31 

through 33. 

 

Thirdly, a tag were placed on plastic bag containing organic solids (noodles) and tested for 

different values r, yθ and EIRP as seen in Table 16.  The α  value is set at 4 for all EIRP values. The 

accuracy of experimental results and modeling data is reduced to 90% in this case.  Experimental results 
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at EIRP of 0.398 W and 0.158 W falls within the 3σ read-rate estimates from the model as summarized in 

Figures 34 through 36.  

 

Fourthly, a tag was placed on cardboard box containing plastic bags at different values of r, 

yθ and EIRP as seen in Table 17. As seen in Table 12 the α  value is set at 8 for all EIRP values.  Results 

show that the model correctly captures both the mean read-rates and the standard deviation of the mean 

read-rates with average 92.5% accuracy for mean read-rates. The experimental read-rate measurements 

were within the 3σ read-rate estimates from the model as summarized in Figures 37 through 39. 

 

Lastly, a tag was affixed on cardboard boxes containing metal can and tested at changing values 

of r, yθ and EIRP as seen in Table 18. The α  value is set at 20 for all EIRP values. Experimental mean 

read-rates showed an unusual increase in read-rates at higher distances. The model was able to justify this 

increase which is evident from Figures 40 through 42. The model predicted an accuracy of close to 88%, 

which is seen prominently from the experimental results at an EIRP of 0.398 and 0.158 W.  The model 

was able to capture the experimental results within its 3σ limits.  

 

Table 13 gives a summary of RMS errors in the predicted read-rates obtained from the model and 

actual read-rate percentages from the experiments. It is quite evident that the model is able to capture 

more than 90% of the variation in the actual read-rates. The table also shows that even at higher 

attenuations or lower power ratings, the model is able to predict the read-rates with an overall accuracy of 

91.58% and the model has a high degree of accuracy while predicting the read-rates for plastic bottles 

stored in plastic bags (average accuracy =91.62%), plastic bottles containing organic liquids (average 

accuracy =90.71%) and plastic bags stored in cardboard cartons (average accuracy =92.5%).  
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Table 13: Mean percentage error in actual (experimental) and predicted (modeling) read-rates for all 

combinations of outside container and inside material at different values of EIRP 

Root Mean Square (RMS) 

error in actual 

(experimental) and 

predicted (model) read-rate 

percentages 

EIRP (W) 

Outside 

Container 

Inside 

Material 

1 0.398 0.158 

Average 

Percentage 

Accuracy 

Plastic 
(Zip- lock 

Bag) 

Plastic 
(Empty 
Water 
Bottle) 

7.56 8 9.6 91.61 

Plastic 
(Water 
Bottle) 

Organic 
Liquid 
(Water) 

7.15 9.78 10.96 90.70 

Plastic 
(Zip- lock 

Bag) 

Organic 
Solid 

(Noodles) 
18.16 4.15 8.98 89.57 

Cardboard 
(Carton) 

Plastic 
(Zip-
Lock 
Bags) 

9.45 10.61 2.44 92.50 

Cardboard 
(Carton) 

Metal 
(Cola 
Can) 

11.74 12.6 10.1 88.52 
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Table 14: Summary of change in mean read-rate and its standard deviation with distance between tag and reader for plastic bottle stored in plastic bag 

based on results obtained from model 

EIRP=1W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model 
Distance 

(mm) Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 100.0 0.0 99.8 0.2 100.0 0.0 98.6 0.7 40.5 10.5 41.0 3.5 

1016 95.8 2.3 96.9 1.0 54.3 8.2 73.3 4.9 22.9 2.1 32.6 4.5 

2032 92.5 3.0 92.9 3.1 60.0 0.0 60.5 3.4 33.1 6.3 23.4 4.7 

3048 85.6 4.5 87.1 4.2 40.0 0.0 45.5 2.9 22.5 1.9 17.4 2.1 

 

EIRP=0.398W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

508 94.4 3.2 83.9 4.2 83.3 5.6 76.1 3.7 25.2 5.6 25.3 3.1 

1016 95.2 3.3 82.0 4.5 56.4 14.9 43.5 4.4 14.8 5.7 17.2 3.0 

2032 60.0 0.0 68.8 4.7 47.3 3.6 42.0 4.0 20.0 0.0 16.0 2.6 

3048 59.5 4.5 52.1 4.0 40.0 0.0 32.9 4.1 2.8 2.3 8.4 2.5 
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EIRP=0.158W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

508 56.5 2.9 43.9 6.0 72.6 2.9 62.2 3.7 10.0 7.8 19.2 5.2 

1016 51.7 1.6 38.9 5.0 13.9 9.8 25.0 4.8 1.5 1.8 14.8 4.5 

2032 42.2 3.1 34.8 7.0 18.5 2.1 22.9 4.8 2.4 2.5 10.3 2.6 

3048 20.8 3.8 33.6 4.8 20.8 2.2 22.1 3.6 1.9 2.3 1.3 0.7 
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Figure 28: Comparison of read-rates obtained from the modeling approach with those from experiments for plastic bottle stored in plastic bag with 

EIRP =1W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 29: Comparison of read-rates obtained from the modeling approach with those from experiments for plastic bottle stored in plastic bag with 

EIRP =0.398 W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 30: Comparison of read-rates obtained from the modeling approach with those from experiments for plastic bottle stored in plastic bag with 

EIRP =0.158 W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Table 15: Summary of change in mean read-rate and its standard deviation with distance between tag and reader for organic liquid stored in plastic 

bottle based on results obtained from model 

EIRP = 1W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 88.9 0.0 77.0 4.1 59.6 6.7 72.1 5.2 56.3 4.4 25.0 4.7 

1016 55.6 0.0 71.4 4.5 55.8 1.6 55.4 4.5 41.8 1.7 29.3 7.3 

2032 52.9 3.1 53.7 3.0 31.6 7.0 41.1 4.6 37.3 1.6 21.8 5.2 

3048 37.4 2.1 45.6 3.6 21.2 4.7 34.9 4.4 1.3 1.4 6.3 1.9 

 

EIRP = 0.398 W  

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 63.6 4.5 59.6 5.5 50.8 4.9 54.2 4.5 28.7 2.5 34.4 3.9 

1016 52.5 7.6 46.7 7.0 25.8 5.4 36.7 5.5 30.5 1.9 27.5 7.7 

2032 1.4 1.2 22.9 6.6 0.0 0.0 10.8 2.8 21.1 1.0 10.4 1.8 

3048 0.0 0.0 14.7 6.4 0.0 0.0 3.6 2.5 0.0 0.0 3.3 1.3 
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EIRP=0.158 W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

Mean 
Read-
rate 

Std. 
Deviation of 

Read-rate 

508 56.7 2.9 49.3 7.5 40.0 2.5 38.2 4.1 16.0 3.9 16.0 3.9 

1016 21.3 6.4 34.9 5.1 1.4 1.3 23.1 4.4 0.0 0.0 2.2 2.0 

2032 0.0 0.0 14.2 4.5 0.0 0.0 15.2 4.8 0.0 0.0 3.7 0.9 

3048 0.0 0.0 12.8 4.0 0.0 0.0 10.3 7.8 0.0 0.0 2.4 0.8 
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Figure 31: Comparison of read-rate obtained from the modeling approach with those from experiments for organic liquid stored in plastic bottle with 

EIRP =1W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  =90º  
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Figure 32: Comparison of read-rates obtained from the modeling approach with those from experiments for organic liquid stored in plastic bottle with 

EIRP =0.398W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 33: Comparison of read-rate obtained from the modeling approach with those from experiments for organic liquid stored in plastic bottle with 

EIRP =0.158W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º
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Table 16: Summary of change in mean read-rate and its standard deviation with distance between tag and reader for organic solid stored in plastic bag 

based on results obtained from model 

EIRP = 1W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model 
Distance 

(mm) Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 100.0 0.0 97.2 2.8 82.1 4.8 86.7 2.8 15.1 9.7 34.5 7.3 

1016 76.7 1.3 77.9 3.3 26.5 8.8 72.6 4.1 32.4 9.9 33.8 3.8 

2032 83.5 2.0 78.1 3.8 81.5 2.9 77.3 4.2 62.1 6.6 27.3 4.8 

3048 71.8 3.6 70.6 4.3 55.8 4.0 68.5 4.9 7.2 5.2 6.3 2.2 

 

EIRP = 0.398 W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model 
Distance 

(mm) Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 100.0 0.0 99.5 0.7 74.4 6.0 77.1 5.6 37.3 10.9 44.2 3.1 

1016 100.0 0.0 93.8 4.4 57.5 10.3 68.9 4.4 32.0 5.7 35.3 2.3 

2032 87.5 0.0 80.2 3.8 79.7 3.1 54.1 6.0 35.9 7.6 33.7 3.2 

3048 57.1 5.1 56.8 6.0 43.9 3.0 45.7 1.4 1.9 2.0 0.2 0.2 

 



 

 72 

 

EIRP = 0.158 W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 100.0 0.0 91.5 4.5 92.4 2.1 88.6 2.2 47.8 6.5 60.2 4.2 

1016 98.6 1.4 86.8 4.3 76.4 3.7 82.6 0.8 60.7 4.6 49.5 4.4 

2032 100.0 0.0 82.1 7.7 81.0 3.7 79.1 3.1 37.9 5.4 34.5 2.2 

3048 90.4 4.1 82.1 4.7 68.3 3.7 70.1 4.1 0.0 0.0 4.1 1.5 
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Figure 34: Comparison of read-rate obtained from the modeling approach with those from experiments for organic solid stored in plastic bag with 

EIRP =1W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 35: Comparison of read-rate obtained from the modeling approach with those from experiments for organic solid stored in plastic bag with 

EIRP =0.398W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 36: Comparison of read-rate obtained from the modeling approach with those from experiments for organic solid stored in plastic bag with 

EIRP =0.158W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º



Table 17: Summary of change in mean read-rate and its standard deviation with distance between tag and reader for plastic bag stored in cardboard 

carton based on results obtained from model 

EIRP = 1W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model 
Distance 

(mm) Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

Mean 
Read-
rate 

Std. 
Deviation 
of Read-

rate 

508 100.0 0.0 93.0 2.1 89.0 1.4 92.3 1.8 97.1 2.1 52.7 3.6 

1016 88.9 3.7 89.9 2.6 84.4 3.5 84.8 2.1 55.3 4.4 47.3 9.8 

2032 78.1 2.1 65.8 4.4 59.6 4.9 53.6 3.0 45.0 4.5 41.9 4.3 

3048 64.9 5.2 45.3 6.9 30.8 2.0 35.4 5.6 38.6 2.8 30.1 4.1 

 

EIRP = 0.398 W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

508 100.0 0.0 85.8 4.7 100.0 0.0 81.0 6.0 43.0 7.8 33.1 5.7 

1016 83.4 3.8 66.5 5.9 71.4 2.0 57.3 4.9 26.2 8.5 21.0 2.3 

2032 52.1 4.3 48.1 3.8 40.6 2.0 33.2 4.8 7.6 5.2 4.7 1.8 

3048 37.5 0.0 30.3 3.7 1.6 1.6 8.7 3.2 0.0 0.0 0.4 0.2 

 



 

 77 

 

EIRP = 0.158 W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

508 100.0 0.0 82.9 6.7 100.0 0.0 78.7 6.7 79.5 2.6 75.0 4.4 

1016 100.0 0.0 77.9 5.2 80.7 2.6 76.2 6.4 74.5 4.2 70.4 3.3 

2032 83.4 4.7 73.5 6.9 66.7 5.4 72.0 4.3 48.0 2.6 50.1 3.1 

3048 44.5 3.1 46.8 3.5 23.8 4.5 24.6 1.8 0.0 0.0 1.6 0.7 
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Figure 37: Comparison of read-rate obtained from the modeling approach with those from experiments for plastic bag stored in cardboard carton with 

EIRP =1W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 38: Comparison of read-rate obtained from the modeling approach with those from experiments for plastic bag stored in cardboard carton with 

EIRP =0.398W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 39: Comparison of read-rate obtained from the modeling approach with those from experiments for plastic bag stored in cardboard carton with 

EIRP =0.158W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Table 18: Summary of change in mean read-rate and its standard deviation with distance between tag and reader for metal cans stored in cardboard 

carton based on results obtained from model 
EIRP = 1 W 

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

508 100.0 0.0 97.3 4.9 100.0 0.0 89.9 2.5 54.9 7.5 47.8 3.5 

1016 81.4 1.5 95.8 4.2 54.6 4.6 48.8 5.2 43.1 4.6 44.9 5.5 

2032 100.0 0.0 92.7 4.3 48.3 7.8 45.8 4.7 9.7 2.5 33.3 4.1 

3048 100.0 0.0 89.9 4.3 54.5 2.8 45.3 4.0 45.1 4.2 30.1 6.2 

 

EIRP = 0.398 W  

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

508 100.0 0.0 86.9 4.3 100.0 0.0 73.3 4.8 83.1 2.8 63.0 1.1 

1016 89.5 2.9 77.3 5.3 71.2 2.6 66.6 4.2 49.8 5.7 49.4 2.5 

2032 64.9 1.5 63.7 4.1 35.6 8.4 46.6 6.1 20.1 2.6 32.3 4.1 

3048 68.1 5.0 59.2 3.8 31.2 1.8 27.8 3.2 19.9 5.4 11.1 3.2 
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EIRP = 0.158 W   

yθ =0º yθ =45º yθ =90º 

Experiments Model Experiments Model Experiments Model Distance 
(mm) Mean 

Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

Mean 
Read-
rate 

Std. 
Deviation 

of Read-rate 

508 100.0 0.0 82.3 3.0 78.4 5.5 56.3 6.8 23.3 7.1 30.4 4.6 

1016 53.7 2.2 62.3 3.4 31.7 6.7 33.2 5.4 4.4 2.5 11.1 2.3 

2032 33.3 0.0 32.3 7.9 20.4 2.3 21.8 3.4 3.8 2.1 5.3 2.7 

3048 16.7 0.0 27.8 4.4 9.9 2.9 19.8 3.8 7.4 4.7 4.2 3.8 

 



 

 83 

0

20

40

60

80

100

120

508 1016 2032 3048
Distance r (mm)

R
ea
d
-r
a
te
 (
%
)

UCL (Model) LCL (Model)

Mean (Experimental) Mean (Model)

0

20

40

60

80

100

120

508 1016 2032 3048
Distance r (mm)

R
ea
d
-r
a
te
 (
%
)

UCL (Model) LCL (Model)

Mean (Experimental) Mean (Model)  
(a)                                                                                (b) 

 

0

20

40

60

80

100

120

508 1016 2032 3048
Distance r (mm)

R
ea
d
-r
a
te
 (
%
)

UCL (Model) LCL (Model)

Mean (Experimental) Mean (Model)  
(c) 

Figure 40: Comparison of read-rate obtained from the modeling approach with those from experiments for metal cans stored in cardboard carton with 

EIRP =1W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 41: Comparison of read-rate obtained from the modeling approach with those from experiments for metal cans stored in cardboard carton with 

EIRP =0.398W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 
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Figure 42: Comparison of read-rate obtained from the modeling approach with those from experiments for metal cans stored in cardboard carton with 

EIRP =0.158W and (a) yθ  = 0º (b) yθ  = 45º (c) yθ  = 90º 

 



5.6 Summary 

An approach based on including uncertainty associated with the various components of an RFID 

system as well as the ambient propagation medium, as part of the Friis free space model was able to 

effectively predict read-date probabilities. As succinctly summarized in Table 13 it is evident that the 

model is able to capture about 91.6% of the variations in the actual read-rates. The table also shows the 

results hold for different attenuations or lower power ratings. The model has a high degree of accuracy 

while predicting the read-rates for plastic bottles stored in plastic bags (average accuracy =91.62%), 

plastic bottles containing organic liquids (average accuracy =90.71%) and plastic bags stored in 

cardboard cartons (average accuracy =92.5%). 

 

It is noteworthy that the complete trends of how read-rate probabilities vary with distance, 

orientation and power levels for a given setting of materials, RFID system components and environment 

can be captured using a Friis free space model with an appropriately chosen propagation factor. Based on 

these results, it is evident that a combination of statistical approaches with analytical EM models 

improves the extrapolation of RFID read-rates in a given environment. Only the propagation factor value 

needs to be calibrated as one changes the operating conditions. The model approach is but a step towards 

developing a robust methodology to predict RFID tag read-rates in complex industrial environments.  

 

5.7 Concluding Remarks 

Results obtained through the probabilistic analytical modeling of read rate based on the Friis free 

space equation through a quantification of uncertainties provides new insights on the nature of tag read-

rates. This is not possible using the deterministic approaches to quantify tag read-rates done so far in the 

literature. Furthermore, the verification of the closeness of the modeling approach with the experimental 

observations described in Chapter 5 establishes the validity of the new modeling approach.  
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CHAPTER 6  

Experiments to Improve Read-Rate Probabilities for RFID Tags in 

Metallic Environments 

 

6.1 Key Results 

Perfect (i.e., 100 %) read-rate probabilities for tracking metal objects using RFID systems can be 

achieved by placing a tag on the metal surface under the following conditions: 

1 there exists an air gap of at least 1.5 mm between the tag and the metal surface and  

2 the reader and the object being tracked are placed in a reverberation chamber with the tuner 

rotating at a speed of 0.0145 revolutions per second.  

The air gap with which we were able to achieve such perfect read-rates is at least 41-233 %  less than the 

thickness of air-gaps or isolators reported in the current literature and industry claims [32, 33]. It is 

observed that for air gaps over 2 mm (33% more than what is suggested in this thesis), the tags tend to 

bend or peel-off and the RFID system becomes unreliable. 

 

Little success has been reported towards improving the read-rates of tags placed on metal objects 

or tag present in highly metallic environments. The reason for this shortcoming of RFID systems in 

metallic environments is that metals reflect incident electromagnetic (EM) waves and scatter them in all 

directions [34]. This causes the tags in the vicinity of metals not to get enough power to respond to the 

reader requests. It is required that the tag receives power ≥  thP , which is the threshold power to make 

circuits in the tag to activate and respond back to the reader signals [30]. Some studies show that 

including an isolator  of 2.54 mm thickness between the tag and the metal surface can increase the read-

rate probabilities [33]. A recent research studies done at the University of Kansas suggest that a 
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specialized tag with a metal ground plate of 5 mm thickness is necessary to isolate the tag from the metal 

surface for achieving higher read-rates [32]. Efforts are also being made to construct a large RFID tag to 

nullify the effect of metals in the vicinity of the tags, for increasing the read-rate probabilities [35]. Using 

such a thick isolator makes the tag unstable and vulnerable to bend and peel-off during normal operating 

conditions. To improve the tag read-rate probabilities it is imperative to develop a set of techniques that 

promotes read-rate probabilities of tags in such environments. 

 

Experiments to investigate improvements in tag read-rate probabilities in metallic environments 

were conducted by placing an Alien ALR9800 reader and Alien Gen 2 Squiggle tags (from the 

COMMSENS lab) in a reverberation chamber located at the department of Electrical Engineering at 

Oklahoma State University, Stillwater.  

 

6.2 Experimental Setup  

The reverberation chamber used in our experiments consisted of a metal enclosure in the shape of 

a cuboid of dimensions 2133 x 762 x 1219 mm3. It has a tuner which is connected to a stepper motor. The 

motor operation is controlled by a LabVIEW® program. The tuner has a maximum speed of 2000 

steps/second with a 48000 steps circumferential sweep distance.  The reverberation chamber has a useable 

volume of 914 x 457 x 914 mm3 which is at a distance of 889 mm from the place where the reader is 

placed.  A top view of the reverberation chamber is shown below. 

  

 

 

Reverberation 
Chamber 

Usable Volume 

889 mm 
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RFID tag (Alien Gen 2 Squiggle) is affixed on a metal cola can with the help of spacers (poster 

tapes) so as to create an air gap of 1.5 mm between the tag and the metal surface (See Figure 45).  The 

reader antennas are placed in the reverberation chamber as shown in Figure 46.  The metal can is placed 

on a cardboard box so that there should not be a direct metal-to-metal contact between the metal can and 

the floor of the reverberation chamber. 

 

                  Figure 43: Reverberation Chamber 

 

 

           Figure 44: LABVIEW® program for controlling the tuner speed 
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Figure 45: RFID tag slapped on metal can using spacers 

 

 

Figure 46: Placement of reader antennae in a reverberation chamber 

 
 

6.3 Design of Experiments 

The objective of these experiments is to study the variation of the read-rate probabilities of a tag 

when affixed to a metal object and placed in a highly metallic environment of a reverberation chamber. 

Screening experiments were conducted using five KPIVs, namely, EIRP of the reader, tag spacing, 

distance between the tag and the reader, tag orientation, and tuner speed. As shown in Table 19, a full 

factorial design of experiment study was conducted with each KPIV varying in three levels It was 

Spacer 

Tuner 
Reader 

Antennas 

Reverberation Chamber 
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observed that the distance, EIRP and tag orientation have little effect on variations in read-rate 

probabilities.  So the main experiments were conducted using only tag spacing and tuner speed as KPIVs, 

each varying at three levels.  

 

Table 19: Levels of KPIVs for Reverberation Chamber Experiments using Gen 2 RFID System 

KPIV Symbol Type 

Range 

of 

Interest  

Level Coding 
How 

Measured 

1 1 

0.398 2 EIRP (W) R Continuous 

0.158 

3 

3 

Alien 
Gateway 
Software 

1 1 

1.5 2 

Tag 
Spacing 

(mm) 
T Continuous 

3 

3 

3 

Vernier 
Caliper 

889 1 

1270 2 
Distance 

(mm) 
r Continuous 

1778 

3 

3 

Measuring 
Tape 

0 1 

45 2 

Tag 
Orientation 
(degrees) 

 θy Continuous 

90 

3 

3 

Protractor 

100 1 

1000 2 

Tuner 
Speed 

(steps/sec) 
S Continuous 

2000 

3 

3 

LabVIEW 
Program 

 
 

6.4 Results 

It is observed that read-rate probabilities of a tag are zero percent in normal environmental 

conditions. Figure 47 shows the variation of read rate probabilities with tag spacing and tuner speed 

(rotations). It can be noticed that read rate probabilities reduce drastically when the tag spacing is reduced 

below 1.5mm. It is also observed that a tuner speed of 2000 step/sec and a tag spacing of 1.5 mm ensure 

consistent read-rate probabilities close to 100%. There is little effect of EIRP of the reader on read rate 

probabilities. Direct contact or tag spacing below 1.5 mm makes the tag almost unreadable even at the 

highest speed of tuner rotation and the highest EIRP setting. This effect of reduction in tag read-rates is 

caused by the generation of eddy currents in the vicinity of the reader and tag. These eddy currents absorb 
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RF energy thus reducing the RF field on the tag. Moreover, these eddy currents are perpendicular to the 

metal surface which further reduces the RF field [34]. Also, at some frequencies the energy reflected by 

metals interfere with the RF field at the tag and the reader [34]. Experiments were also conducted at zero 

tuner speed and the read-rate probabilities were found to be close to zero percent.  

 

Table 21 shows that tag spacing below 1.5 mm yields zero read-rate probabilities even at the 

highest tuner speeds, whereas tag spacing above 3 mm gives good (100%) read-rate probabilities even at 

1000 steps/sec of tuner speed. It was also observed that a tag gets increasingly unstable and vulnerable to 

peel off and wear at tag spacing more than 1.5 mm. There is no effect of changes in distance, tag 

orientation and power setting. 

 

Read-rate (%)

0.0

0.5

1.0

03
2

10001
0Tag Spacing (mm) 2000 Tuner Speed (steps/sec)

 

                Figure 47: 3D Surface Plot of Tag Read rate (%) vs. Tag Spacing and Tuner Speed 

  

Tuner Rotations =100 steps/sec 
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After the initial experiments, the tag was tested with just two KPIVs i.e., tuner speed and tag 

spacing with lower denominations of tag spacing like 0, 0.5, 1, 1.5, and 3 mm (see Table 21). It is noted 

that a tag spacing of at least 1.5 mm is required for getting the tag read in the reverberation chamber and a 

tag spacing of 3 mm can yield perfect read-rates even at lower tuner speeds. 

 

Table 20: Comparison of read-rate probabilities at different settings of tuner speed and tag spacing 

 

Tag Spacing 
(mm) 

Tuner Speed 
(steps/sec) 

Read Rate 
(%) 

0 

0.5 

1 

100-2000 0 

100 22 

1000 94 1.5 

2000 100 

100 31 

1000 3 

2000 
100 

 

6.5 Concluding Remarks 

The approach explained above gives a solution to the non readability of RFID tags in metallic 

conditions or when used in tracking metal objects. It is imperative to use an isolating medium between the 

tag and the reader but is not a complete solution to achieve 100% read rates. The use of a reverberation 

chamber with tuner speed of 2000 steps/sec and an isolating medium of at least 1.5 mm thickness is 

required. It is economically more viable to use a simple RFID tag with 1.5 mm thick spacers and slight 

modifications in the conveyor to convert it into a reverberation chamber with a tuner than using isolator 

based tags or large tags costing $14.83 [33] apiece which is at least 50 times more than the solution 

suggested in this chapter. This technique, if implemented properly, will yield great industrial benefits and 
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long-term savings to by reducing shrinkage of inventories of metal objects and high value assets in major 

industries like aviation and defense. 
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CHAPTER 7  

Contributions and Future Work 

 

7.1 Contributions 

 

The thesis develops a statistical approach for designing RFID systems. It uses the classical design 

of experiments approach to delineate interactions between individual system components including 

distance and speed. The thesis also applied this approach for monitoring goods in a vehicle ingress/egress 

monitoring systems in warehouse and manufacturing systems.  This approach will serve as a useful tool 

during the design of RFID systems in complex environments where analytical and computational models 

often are inaccurate in capturing the prevailing fields.   

 

An analytic modeling approach to predict read-rate probabilities of RFID systems in given 

conditions is explained in this thesis. The approach modifies the Friis free space with the help of a single 

factor (called propagation factorα ) that can be credited to be responsible for the uncertainties existing in 

the ambient media, tag orientations, and effects of frequency hopping and power attenuation on the gain 

of tag antenna. The thesis for the first time develops a link between the power calculated from the Friis 

expression and the industry need for specifying performance in terms of whether a tag is read or not in a 

given set of conditions. The resulting models were able to predict tag read-rates with an accuracy as high 

as 92.5% (plastic objects stored in plastic bags) with a minimum accuracy of 88% (metal cans stored in 

cardboard cartons) when compared to the experimental results.  
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To overcome the problem of non-readability of tags in metallic environments or when affixed to 

metal objects, the thesis tries to explore the concept of reverberation of EM waves for the first time in 

RFID system design. Following a series of statistically designed experiments, a technique to achieve 

perfect read-rates from tags affixed to metals was specified. It consists of: an air gap of 1.5 mm between 

the tag and the metal surface and the reader and the metal object being tracked are placed in a 

reverberation chamber with the tuner rotating at a speed of 0.0145 revolutions per second.  This result can 

lead to more durable metal object tracking systems thereby reducing the operating costs by more than 50 

times of the current costs incurred by the industries. 

 

7.2 Future Work 

The statistical methods and modeling approach discussed so far can be made more accurate for 

RFID system performance estimation through the consideration of the following factors/concepts in the 

Friis free space equation: 

1 Physical determination of the values of the propagation factor 

The model developed in the thesis is based on propagation factor values which are found out 

through trial and error. It is required that the value of the propagation factor be determined through a 

physical way or through a definite expression just like the Friis free space equation. This will give a 

revolutionary boost for implementing the model developed in Chapter 5 to be effectively implemented in 

the industry. 

2 Manifestation of EM principles in a reverberation chamber 

A reverberation chamber being a complex environment, the manifestation of EM field in the 

presence of RFID tag and reader is required. The Friis free space equation discussed in Chapter 5 holds 

good in a free space or an environment which is similar to an anechoic chamber (An anechoic chamber is 

a room that is isolated from external sound or electromagnetic radiation sources, sometimes using sound 
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proofing, and prevents the reflection of wave phenomena (reverberation) [36]. The concepts of 

reverberation chamber are exactly opposite to that of an anechoic chamber, thus making it imperative to 

modify the model discussed in the thesis for reverberating environments.  

3 Use of actual value of thP  

Using actual value of threshold power thP of a tag, (found to be -26.5 dBm from the primary 

experiments conducted in the anechoic chamber) in the model discussed in Chapter 4, will make the 

model more realistic and accurate in predicting read-rate probabilities in various environments. A realistic 

value of thP  will facilitate in direct implementation of the model in industries, thereby alleviating the need 

of extensive experimentation and analysis on the site of implementation. 
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Scope and Method of Study: The current models for specifying and estimating performance of RFID 
systems are based purely on EM theory (e.g., using Friis free space equations) or statistical 
experimental modeling principles. Models based on EM theory are limited to specifying power 
received at the tag under certain simple, idealized conditions, and do not provide estimates of 
read-rates, which are de-facto industry quantifiers of an RFID system performance. The estimates 
of power levels do not consider uncertainties inherent to an industrial RFID system. On the other 
hand, the statistical models, being purely data-driven, suffer from lack of generalizability as their 
results cannot be extrapolated. This thesis investigates a statistical approach for assessing the 
system performance and proposes an analytical probabilistic model based on Friis free space 
expression that captures the uncertainties existing in gain of the tag antenna, power of the reader 
antenna, frequency hopping, etc. Finally the thesis suggests a set of techniques to increase read-
rate probabilities of RFID tags when placed on metal objects or in the presence of highly metallic 
environments.  

 

Findings and Conclusions:   

1. A statistical approach to design RFID systems for ingress/egress monitoring for warehouse and 
manufacturing environments has been developed. It has been shown that the tag read-rate 
probabilities undergo a polynomial decrement with increase in distance (i.e., read range). 

2. An analytical model based on Friis Free Space Equation to predict read-rate probabilities of RFID 
systems for a given set of conditions is developed. A new term called propagation factor is introduced 
in the classical Friis free space equation to make it suitable for determining read-rate probabilities of 
tags placed in certain commonly occurring environmental conditions 

3. The thesis explains the use of a reverberation chamber environment for the first time in the field of 
RFID system development. An approach that uses a reverberation chamber to achieve perfect (100%) 
read-rate probabilities for tracking metal objects is validated.  
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