
AUTOMATIC CONFIGURATION OF

QUEUEING NETWORK MODELS

FROM BUSINESS PROCESS

DESCRIPTIONS

By

UMA MAHESHWAR CHALAVADI

Bachelor of Engineering (Hons)

Birla Institute of Technology & Science

Pilani, India

2002

Submitted to Graduate College of the
Oklahoma State University

in partial fulfillment
of the requirements for

the Degree of

MASTER OF SCIENCE
December, 2004

 ii

AUTOMATIC CONFIGURATION OF

QUEUEING NETWORK MODELS

FROM BUSINESS PROCESS

DESCRIPTIONS

Thesis Approved:

 Dr. Manjunath Kamath

 Thesis Adviser

 Dr. William J. Kolarik

Dr. Nikunj P. Dalal

Dr. A. Gordon Emslie

Dean of the Graduate College

 iii

ACKNOWLEDGEMENTS

 My sincere thanks are due to my advisor Dr. Manjunath Kamath, without his

motivation, encouragement and support this thesis would not have been possible. I am

greatly indebted for his guidance both on personal and professional fronts. He was a huge

inspiration for me. I really consider myself lucky to have gotten a chance to be associated

so closely with a wonderful person like Dr. Kamath. Sir, thanks for being there for me

always.

 I would also like to thank my committee members Drs. Nikunj P. Dalal and

William J. Kolarik, for serving on my committee. Their guidance and suggestions were

invaluable to my work.

 It was a pleasure to work with all my colleagues at the Center for Computer

Integrated Manufacturing Enterprises (CCiMe). I extend my appreciation to all my

colleagues for patiently listening to all the related presentations and for offering their

critique. My special thanks are due to Karthik Ayodhiramanujan for his help and support.

I especially thank the DIME team for reviewing my work and for their suggestions and

constructive criticism. Special thanks are due to Chetan Yadati and Parthiban

Dhananjeyan. I also would want to thank my friends Partha Ayalasomayajula, Dheeraj

Babu Gulluru and Vamsi Maramreddy for helping me with the document.

 I dedicate this work to my parents for their love, support and encouragement

through all my endeavors.

 iv

TABLE OF CONTENTS

Chapter Page

1. Introduction ………………………………………………………………………...…1

2. Literature Review ……………………………………………………………….…..10

2.1 XML and Related Technologies …………………………………………….…11

2.2 Modeling Techniques based on XML ..………………………………………...12

2.3 DIME’s Approach to Enterprise Modeling ………………………………….....14

3. Overview of the Distributed Process Modeling of Next Generation Enterprises

(DIME) Framework...……………….……………………………………………….....16

3.1 Conceptual Model…………………………………………….……………….....16

3.2 The DIME Framework .…………………………………………………….…...17

3.2.1 Descriptive Modeling Layer ………………………………….………….……17

3.2.2 Scalable Representation Layer ……………….………………………….…...18

3.2.3 Enterprise Analysis Layer ……………………….……………………….……20

3.3 Current Status of the DIME Project ……………………...……………………..20

4. Research Statement and Methodology …………………………………………......23

4.1 Research Objectives ………………………………………………………….....24

4.2 Scope of the Research …………………………………………………………..25

4.3 Research Methodology ………………………………………………………....25

5. Queueing Network Markup Language......……………………..…….…..………...27

5.1 Introduction……..... ……………………………………………….………….....27

5.2 QNML Elements ……………………………………………….….………….....30

5.3 QNML Schema …………………………………………………….……………34

6. A Single-Step Approach for Automatic Configuration of a Queueing Network

Model……………………................................………………………………….……...37

6.1 Introduction & Background ……………………………………………………..37

 v

6.1.1 Business Process Model Notation….……………………….………….….....39

6.1.2 Queueing Network Model Notation………………………...……………......42

6.2 Mapping Schemes……………………………….……………………………….45

6.3 Transformation Algorithm ………………………………………………………58

6.4 Implementation…………………………………………………………………..59

7. A Multi-Step Approach for Automatic Configuration of a Queueing Network

Model……….………………………….……………………..……60

7.1 Introduction & Background ……………………………………………………..60

7.2 Mapping Schemes……………………………….……………………………….65

7.3 Transformation Algorithm ………………………………………………………74

7.4 Implementation ………………………………………………………………….75

8. Evaluation of Single-Step Approach and the Multi-Step Approach

……………………………………………………………………………………..…….76

8.1 Strengths and Limitations... ……………………………………………………..76

8.2 Evaluation Criteria……….. ……………………………………………………..79

8.2.1 Feasibility………………………….….……………………….………….….....79

8.2.2 Complexity in Modeling……………………………………...……………......80

8.2.3 Representational Capability…….….……………………….…….…….….....81

8.2.4 Formality……………………………………………………...……..………......82

8.2.5 Complexity in Retrieving Performance Measures…..…….………….….....82

8.3 Conclusions……..……………………………….……………………………….83

9. Conclusions and Future Work....................…………………………………………85

9.1 Research Summary………………………………………………………………85

9.2 Contributions…………………………………………………………………….87

9.3 Future Work………………………………………………………………….......87

References ………………………………………………………………………………90

Appendix A …………………………………………………………………………......93

Appendix B …………………………………………………………………………......94

Appendix C ……………………………………………………………………………..97

Appendix D ……………………………………………………………………………102

Appendix E ……………………………………………………………………………111

 vi

LIST OF TABLES

Table Page

Table 5.1. Sub-Elements of Network…………………………………………………….30

Table 5.2. Sub-elements of a Node..……….…………………………………………….31

Table 5.3. Sub-Elements of Queue……….…….………….…………………………….31

Table 5.4. Sub-Elements of Server..…………………………..…………………………31

Table 5.5. Sub-elements of an Arrival….……….……………………………………….32

Table 5.6. Sub-elements of Service….……….……………………………….…………32

Table 5.7. Sub-elements of Distribution...…….…………………………………………33

Table 5.8. Sub-elements of Flow…..….……….…………………………………….......33

Table 5.9. Sub-elements of Route ….……….……………………………………….......33

Table 6.1. Elements of a Business Process Model……………….………………………39

Table 6.2. Elements of a Queueing Network Model.……………………………………43

 vii

LIST OF FIGURES

Figure Page

Figure 1.1. DML Representation of Example 1.1...……………. …………………..........6

Figure 1.2. Petri net Representation of Example 1.1 ..…………. ………………….7

Figure 1.3. Open Network Queuing Model of Example 1.1…..……………..……….8

Figure 3.1. Conceptual Model for DIME Framework ..…………. ……………….17

Figure 3.2. DIME Framework ……………………...……………. ……………….19

Figure 3.3. Approaches to Analysis within the DIME Framework ………..………21

Figure 5.1. Meta model for Basic QNML ..………...……………. ……………….28

Figure 5.2a. QNML Schema (Probabilistic Routing)...…………. ………………….......35

Figure 5.2b. QNML Schema (Deterministic Routing).…………. ………………….......36

Figure 6.1. Pictorial Representation of the Single-Step Approach ……………………...38

Figure 6.2. A Business Process Model with Multiple Paths..………………..………......41

Figure 6.3a. A Sequential Process Model ………………………... ..……….…..….46

Figure 6.3b. A Sequential Process Model with Feedback..………....…………...….48

Figure 6.4. A Sequential Process Model (with Resource Sharing)…..….……..…. …….51

Figure 6.5. A Process Model with Choice (No Resource Sharing)……....……...... ……53

Figure 6.6. A Process Model with Choice and Resource Sharing)…..…….…….............55

Figure 7.1. Pictorial Representation of Multi-Step Approach …. ………………………61

Figure 7.2. Petri net Representation of a Process Model with Feedback…..……………66

Figure 7.3. Petri net Representation of a Process Model with Choice……..……………70

 viii

ABBREVIATIONS

BPML Business Process Modeling Language

BPMI Business Process Modeling Initiative

CIM Computer Integrated Manufacturing

DIME Distributed Integrated Process Modeling of Next Generation Enterprises

DISS DIME Intelligent Support System

DTD Document Type Definition

DXL Dynamics eXchange Language

eBXML Electronic Business using eXtensible Markup Language

IPM Integrated Process Management

IPM-PDL IPM-Process Definition Language

MXL Multimodeling eXchange Language

OASIS Organization for the Advancement of Structured Information Standards

PNML Petri Net Markup Language

QNML Queueing Network Markup Language

RAQS Rapid Analysis of Queueing Systems

UEML Unified Enterprise Modeling Language

XRL eXchangebale Routing Language

XML eXtensible Markup Language

XSLT eXtensible Style Sheet Language Transformation

XSD eXtensible Schema Definition

 1

Chapter 1

Introduction

A business process is an ordered sequence of tasks/activities involving people,

materials, energy, equipment, or information, designed to achieve a specific business

outcome. A business process defines what a business does and also determines how well

the business does what it does. Processes are critical components of almost all types of

systems supporting enterprise-level and business-critical activities. As identified by [8],

business processes are increasingly recognized as important corporate assets that need to

be managed throughout their life cycle. Especially, interests in next generation enterprise

structures such as e-businesses, virtual enterprises, B2B, B2C & B2G electronic

commerce companies, and globally dispersed supply-chains are driving current research

in this area.

Business process modeling relates to the representation and specification of an

enterprise’s operations. Information on cost drivers and process performance measures,

including time, quality and efficiency are critical for a holistic view of business processes

in an enterprise [6]. Analysis of these processes is important to identify improvement

opportunities. Existing process modeling techniques are descriptive and lack the much

needed prescriptive capabilities [6]. Also, they do not provide business modelers or

system architects with a formal theoretical base from which business processes can be

analyzed in a rigorous, quantitative manner. As identified in [17], the Web promises a

 2

different way of encoding model components, finding information, and a novel way of

performance modeling using client-server mechanisms. It is also suggested that XML and

related Web technologies can be used for model specification and performance analysis

using, for example, queueing or computer simulation. It is now possible to run a queueing

model inside a Web browser. Using process modeling techniques in conjunction with

performance modeling techniques such as queueing and simulation, enterprise issues

related to cost and time can be addressed in an integrated manner for a distributed

environment.

The emerging next-generation enterprise systems can be effective and scalable

only if their construction is guided by a strong theory-driven framework [10, 11, 12] that

takes an approach to link description with formal qualitative or quantitative analyses in

an integrated manner. This thesis significantly extends the analysis capability of such an

enterprise modeling framework [11] to include queueing models. To this end, a generic

model transformation scheme to support queueing analysis is developed. The

transformation scheme uses the process control flow and task resource requirements to

create a view where process instances flow through a network of resources. Two

alternative approaches were explored to automatically configure a queueing network

model from a business process description. The first approach generates a queueing

network model from a business process markup language description. The second

approach generates a queueing network model from a formal Petri-net based business

process representation, which is described using the Petri Net Markup Language

(PNML). Currently, there does not exist a portable and open representation to capture the

 3

specifications of a queueing network model. Hence, this research has also led to the

development of an XML-based markup language called the Queueing Network Markup

Language (QNML) to store the specifications of a queueing network model.

Distributed Integrated Process Modeling and Analysis of Next Generation

Enterprises (DIME) framework [10, 11, 12], developed at the Center for Computer

Integrated Manufacturing Enterprises (CCiMe) at Oklahoma State University, is a

framework that supports the design, analysis, automation and management of business

processes. This thesis was motivated by the need to extend the analysis capability of

DIME to include queueing models by making use of the existing graphical modeling

language, namely, the DIME Descriptive Language (DDL) [5, 10, 11, 12], and the Petri

net theory base. Petri nets were chosen to provide the theoretical foundation for the

DIME framework. Current analysis capability within the DIME framework is limited to

qualitative analyses using the Petri net representation. One of the key goals of the DIME

effort is to support performance analysis using multiple tools (e.g. queueing and

simulation). Since the goals of this thesis were motivated by the DIME effort, this thesis

has addressed its objectives by developing two alternative approaches to achieve

queueing analysis capability within the DIME framework. It is important to note the

reason queueing analysis was chosen instead of simulation. Simulation models employ

process-centric views. There is a reasonable one-to-one correspondence between the

elements of a process model and the constructs of a simulation model developed using

commercial simulation software such as Arena [15]. Whereas, a queueing model employs

a resource-centric view of the process model, and provides a different perspective. This

 4

new perspective provides the user/modeler with a better insight to the process in

consideration. The approaches developed here result in adding queueing analysis

capability within the DIME framework. However, the approaches are general in nature

and can be applied to any general purpose process modeling framework. In summary, the

creative effort needed to develop a mapping scheme between the process-centric and

resource-centric views and the potential to generalize the approach were the key reasons

behind the focus on queueing analysis

Within the DIME framework, a process model is described using the DIME

Descriptive Modeling Language constructs. The process model is stored in a computer

processable format using the DIME markup language for later retrieval, and sharing. This

transformation is achieved using a XSL Transformation (already developed). From the

available DML format, the process model can now be transformed into a Petri net model

and a queueing network model for further analysis as a result of this thesis effort. The

first version of a mapping scheme for transformation from DML to Petri nets (or

equivalent PNML) has been developed as part of the DIME research. The mapping

schemes from DML to QNML, the newly developed Queueing Network Markup

Language and from PNML to QNML are the ones that were developed as part of this

thesis. The development of the mapping schemes involved the study of the linkages

between the process modeling language constructs, DML, PNML and QNML. It was

essential to work thorough a variety of examples to understand and formalize the

linkages. To give a brief overview of the various representations studied as part of the

current effort, a process description from [15] is used in the following example. The

 5

activities in this example have dedicated resources. Hence, the transformation into a

queueing network model is straightforward.

Example 1.1

The following process description is used as an example to show the possible

formal representations envisioned by the DIME framework. An office that dispenses

automotive license plates has divided its customers into three categories based on the

location. There is one clerk assigned to each of the three areas who processes

application forms and collects payments. When a customer arrives at the office, a

computer generates a token based on the location information entered by the customer.

The token has the information as to which clerk processes the application and collects

payment. Based on this, the customer goes to the corresponding clerk. After completion

of this step, all customers are sent to a head clerk who checks the forms and issues the

plates. The interarrival time of customers is exponential with a rate of 0.25 customers per

minute. Processing times for clerks are Uniform(8,10) minutes. Service time of the head

clerk is Uniform(2.66,3.33) minutes.

 Figure 1.1 represents the process description using the DIME Descriptive Modeling

Language constructs. The corresponding Petri net representation is shown in Figure 1.2.

Figure 1.3 presents the equivalent queueing network representation. This effort focused

on the generation of queueing network model represented in Figure 1.3 from models

represented in Figures 1.1 and 1.2. As mentioned earlier, this example was chosen for

illustrative purposes, and hence the generation of the queueing network model is greatly

simplified.

6

C
 Assign Token

H
 Preprocess by

Clerk 1

H
 Preprocess by

Clerk 2

H
 Preprocess by

Clerk 3

H
 Issue Plate by

Head Clerk
XOR XOR

Figure 1.1. DDL Representation of Example 1.1

7

Place Condition
P1 Customer Arrived
P2 Computer Available
P3 Token Assigned
P4 Clerk 1 Free
P5 Clerk 2 Free
P6 Clerk 3 Free
P7 Payment Collected
P8 Head Clerk Available
P9 License Plate Issued

Transition Activity
t1 Assign Token
t2 Preprocess by clerk 1
t3 Preprocess by clerk 2
t4 Preprocess by clerk 3
t5 Issue License Plate

t4 t3 t2

P1

P3 P4 P6

P7

P9

P8

P2

t1

t5

P5

Figure 1.2. Petri net Representation of Example 1.1

8

Node Resource
1 Computer
2 Clerk 1
3 Clerk 2
4 Clerk 3
5 Head Clerk

Unif(8,10)

Unif(8,10)

Unif(8,10)

Unif(2.66,3.33)

1

1

1

1/3*

1/3*

1/3* Expo(4) 3

 2

 4

 1 5

* Equal routing probabilities are assumed

Figure 1.3. Open Network Queueing Model of Example 1.1

 9

The rest of the document is organized as follows. Chapter 2 is a review of XML

and related technologies with a focus on their contribution to the area of enterprise

modeling. Chapter 3 presents some background on the DIME framework, and briefly

describes the DIME Descriptive Language and the various layers that make up the DIME

framework. Chapter 4 presents the research statement, and the research approach and

methodology that were followed to accomplish the goals of the thesis. Chapter 5 presents

the research work on the development of the Queueing Network Markup Language

(QNML). Chapter 6 presents the mapping schemes required for the single-step approach

(described in Section 3.3) and the corresponding transformation algorithm for

configuring a queueing network model from a business process description. Chapter 7

presents the mapping schemes required for the multi-step approach (described in Section

3.3) and the corresponding transformation scheme for configuring a queueing network

model from a business process described using a Petri net model. Chapter 8 presents a

qualitative comparison of the two approaches developed as part of this effort. Chapter 9

presents the contributions made by this thesis effort and explores some related areas for

future work.

 10

Chapter 2

Literature Review

Driven by the Computer Integrated Manufacturing (CIM) initiative, enterprise

modeling was born in the United States in the early 80’s and gained prominence through

large efforts like the ICAM project on IDEF [12]. From then on, enterprise modeling has

been an active research area through which many modeling languages, tools and

approaches have been developed. Examples of these are CIMOSA, PERA, IEM,

GERAM, and GRAI-GIM [12]. These techniques for enterprise modeling focused on

different dimensions of the business process life cycle. With the widespread use of the

Internet, the need for modeling techniques to support a distributed infrastructure, wherein

users are able to create, modify, and analyze process models from any location across the

globe, has increased. With the advent of XML and related technologies, and protocols

like SOAP [2], current research efforts are directed towards enabling enterprise modeling

in a distributed environment.

A brief overview of XML and related technologies is presented in Section 2.1, as these

technologies enable the implementation of next generation enterprise modeling. The

modeling techniques that use these technologies in the context of a distributed

environment are presented in Section 2.2. Section 2.3 is a brief discussion of the DIME

approach, and its similarities and differences with respect to the techniques discussed in

Section 2.2.

 11

2.1 XML and Related Technologies

XML is a markup language that allows users to define a set of tags that describe

the structure of a document. XML provides a basic syntax but does not define the actual

tags. The significant feature of XML is its extensibility. XML allows for custom tag-sets

specific to corporations, scientific disciplines and other such domains [3]. For example, a

user may specify logical tags such as Employee, SSN, Name, and Address to describe

data related to an employee. These logical data structures specific to a corporation can be

called as vocabularies. XML vocabularies provide more easily searchable documents and

databases, and a way to exchange information between many different organizations and

computer applications. Also additional validity constraints of these data can be stored in

an associated file called the Document Type Definition (DTD) file [4] or the XML

Schema (XSD) file [24].

 XML provides a structural representation of data that can be implemented broadly

and is easy to deploy. XML is a subset of SGML (Standard Generalized Markup

Language), modified and optimized for delivery over the Web. This standard has been

defined by the World Wide Web Consortium [4]. XML, which provides a data standard

that can encode the content, semantics, and schemata for a wide variety of cases, ranging

from simple to complex, can be used to mark up a purchase order, an invoice, a payment

advice, information about people and organizations, etc. Thus, XML ensures that

structured data will be uniform and understandable across a variety of applications,

software vendors and customers. XML is valuable to the Internet because it provides

interoperability using a flexible, open, standards-based format, with new ways of

 12

accessing legacy databases and delivering data to Web clients. Applications can be built

more quickly, are easier to maintain, and can easily provide multiple views on the

structured data. This resulting interoperability, maintainability and flexibility are the key

to the next generation philosophy of modeling over the Internet.

2.2 Modeling Techniques based on XML

Business Process Markup Language (BPML) [1] suggested by the Business

Process Management Initiative (BPMI) is a meta language for modeling business

processes. This initiative has delivered a schema for BPML. This language provides a

standard method to model mission-critical business processes. It also provides an

abstracted execution model for collaborative and transactional business processes based

on the concept of a transactional finite-state machine (FSM).

Electronic Business using eXtensible Markup Language (ebXML) was started in

1999 as an initiative of OASIS and the United Nations/ECE agency CEFACT [15]. The

original project envisioned and delivered five layers of substantive data specification,

including XML standards for business processes. ebXML is a modular suite of

specifications that enables enterprises of any size and in any geographical location to

conduct business over the Internet. Using ebXML, companies now have a standard

method to exchange business messages, conduct trading relationships, communicate data

in common terms and define and register business processes [7]. eBXML mainly

addresses the aspects related to software design.

 13

Unified Enterprise Modeling Language (UEML) [19] project was setup to

contribute to the solving of problems arising from the existence of multiple enterprise

modeling languages. The long-term objective of this project includes the definition of a

Unified Enterprise Modeling Language that will provide new means to improve

interoperability between business models, modeling languages and tools. The main aim

of the UEML project is to achieve interoperability between existing supporting tools as

well as newly developed tools.

Fishwick [16] presents the Rube Architecture that focuses on multimodeling and

customization. The primary purpose of the architecture is to facilitate dynamic

multimodel construction and reuse within 3D, immersive environment, which is a major

ingredient of the next generation philosophy of modeling. MXL and DXL are the two

modeling specification languages that are created to achieve the above stated purpose.

However, Fishwick’s [16] research to date is predicated on specifying and presenting

models and not on the analysis part of it.

eXchangeable Routing Language (XRL) [21] is a XML-based process definition

language which provides support for process routing between trading partners in order to

provide Internet-based electronic commerce services. The core feature of XRL is that it

provides a mechanism to describe processes at an instance level and not at the class level,

which enables partial ordering of tasks for one specific instance. The semantics of XRL

are expressed in terms of Petri nets for which powerful analysis techniques are available

[21]. A prototype workflow management system called the XRL/flower is developed

using Petri net based semantics.

 14

Integrated Process Management (IPM) [8] is a business process management

paradigm that aims at integrating processes using extensible Markup Language and

supporting design, analysis, automation, and management of business process

knowledge. IPM-PDL is an XML-based process definition language for integrated

process management. Process definitions and related data are integrated using XML,

which will be translated to a colored Petri net. Various analyses and simulation can be

performed to check the validity of a new process and estimate its performance.

2.3 DIME’s Approach to Enterprise Modeling

The XML-based techniques mentioned above are mainly designed for

exchangeability, that is, to exchange process definitions between two different systems.

Some of them just focus on process simulation, narrowly defined as execution of models,

rather than specification or presentation of them. Hence, they are not suitable for

supporting the whole process lifecycle since they concentrate on specific aspects of

lifecycle such as process definition, model specification or presentation, execution, and

process simulation, which by themselves are a part of the whole.

The overall approach of DIME, elaborated further in Chapter 3, is most similar to

that of XRL/flower and IPM in that all three adopt XML for the process definition

language. DIME Descriptive Modeling Language or DDL, shares similarities between

XRL and IPM-PDL. However, the fundamental difference is that the Petri nets are used

as the theoretical base in the DIME framework, whereas they are used for process

simulation in XRL/flower and IPM. Other formal techniques such as queueing and

simulation are suggested as potential tools for process analysis in the DIME framework.

 15

The advantage in this approach is that the specification of the business rules specific to

process analysis are postponed (not required) until the analysis technique or tool is

actually decided. The previous approaches are limited to tools that support analysis using

Petri nets, whereas the DIME’s approach allows for compatibility with various tools that

are designed to work for Petri nets, queueing or simulation. Thus the DIME approach has

a broader scope in terms of performance analysis and improvement of business processes.

 16

Chapter 3

Overview of the Distributed Integrated Process Modeling of Next

Generation Enterprises (DIME) Framework

The DIME framework is a result of research funded by the National Science

Foundation through grant # DMI-0075588, under the Scalable Enterprise Systems

Initiative. The DIME framework aims at integrating processes using eXtensible markup

language (XML) and supporting the design, analysis, automation, and management of

business processes. This chapter presents the background material on the DIME

framework. Section 3.1 describes the conceptual model that forms the basic framework of

DIME. Section 3.2 explains the layers that comprise the DIME framework in detail.

Section 3.3 presents the current status of the DIME project.

3.1 Conceptual Model

The following conceptual model for the framework is presented here for

completeness. For a detailed treatment of this subject the reader is encouraged to refer to

[6,10,11,12]. The emphasis here is on business users and specialized modelers, who

create, modify, analyze, and use enterprise process models. The model comprises of at

least two layers: front-end graphical and back-end formal. Additional layers could be

added for analysis. A theoretical base is established by well-defined mappings between

the user-oriented graphical model at the front end and corresponding formal

 17

representation at the back end. The mapping is two-way; a formal representation can be

generated from a user’s graphical model and vice versa.

Figure 3.1. Conceptual Model of the DIME Framework [6]

3.2 The DIME Framework

Based on the conceptual model described in Section 3.1, the DIME framework has

been developed. It aims at integrating processes using the eXtensible mark-up language

(XML) and supporting the design, analysis, automation, and management of business

process knowledge. The DIME framework (Figure 3.2) is composed of three layers:

1. Descriptive Modeling Layer

2. Scalable Representation Layer and

3. Enterprise Analysis Layer

3.2.1 Descriptive Modeling Layer

A graphical front-end language called the DIME Descriptive Modeling Language

(DDL) is defined in this layer. Following are the advantages of DDL over the existing

modeling languages: ease of modeling, control flow representation, accuracy of

modeling, differentiation between physical and electronic data, clarity of semantics,

 18

clarity of syntax, self-contained technique, separation of data and control flows, support

for hierarchical modeling, and ability to support formal analysis [5].

DDL uses a 3-tiered approach for enterprise process modeling. A basic

description of the process flow is created in the basic descriptive tier, which is

mandatory. In the transformational tier the user specifies several technical and business

parameters for each of the activities. In the tracking tier the user specifies target values or

operating ranges for enterprise performance measures and links to the enterprise system

to obtain real-time data or historical enterprise performance metrics. However, the

transformational tier and the tracking tier are optional. The tiered approach marks the

extensibility or scalability of the DDL.

3.2.2 Scalable Representation Layer

The scalable representation layer contains computer-processable representations

that enable internal (within the enterprise) and external (such as suppliers, and customers)

user groups to share information about processes. This layer includes XML

representations of the descriptive and formal models and the DIME mappings that are

achieved between these representations. The XML representation of the descriptive

model is captured using the DIME Markup Language (DML). DML is consistent with

emerging standards such as Resource Description Framework (RDF) and business-

process modeling language or BPML. DML is automatically created from the DDL using

a browser-resident program.

 19

Figure 3.2. DIME Framework [13]

Typical DML statements are shown below [13]:

<Activity id="T1">
 <ActivityName>Issue Token</ActivityName>
 <Classification>M</Classification>
 <ActivityDuration>1</ActivityDuration>
 <SCV>1</SCV>
 <INPUT>
 <RESOURCES>
 <Resource num="1" ResID="#R1">
 <UnitsRequired>1</UnitsRequired>
 </Resource>
 </RESOURCES>
 </INPUT>
 </Activity>

The other XML representations within this layer are for (1) Petri net models, (2) other

formal models such as queueing and simulation, and (3) formal views, such as cost,

 20

resource, and productivity views. With Petri nets providing the theory base, the two-way

mapping between the DML and the Petri net representation is fundamental to this

approach.

3.2.3 Enterprise Analysis Layer

This layer includes the various types of formal analyses that can be done with the

models created in the Scalable Representation Layer. System modelers, business process

analysts and engineering personnel are the primary users that would interact with this

layer. A knowledge-based expert system within DIME Intelligent Support System

(DISS) assists the users in the selection of the appropriate analysis technique. The

analyses in this layer include qualitative and quantitative analyses using Petri net models.

However, due to the layered structure of DIME, other modeling approaches can be

supported as well.

3.3 Current Status of the DIME Project

The first version of the graphical modeling language, the DIME Descriptive

Modeling Language (DDL) has been developed [5]. It builds on the strengths of existing

process modeling techniques such as data flow diagrams, IDEF techniques, and SAP’s

Event-driven Process Chain technique. The syntax and semantics of this language also

incorporate the knowledge derived from Petri net representations of workflow constructs.

A preliminary version of XML-based schema, for the DIME Markup Language (DML),

that stores the graphical process models has been completed [13]. The theory behind the

two-way mapping scheme between the graphical process modeling language (DDL) and

the Petri net representations has been designed and tested. A proof-of-concept prototype

 21

has been developed wherein a process model can be built using the DDL constructs. The

high level process model can further be expanded to describe the lower level processes.

This prototype allows the conversion of the graphical process models to formal Petri net

representations. This is achieved in two steps. In the first step, the information specific to

the model is captured in a computer processable format using the DIME Markup

Language (DML). In the second step, the DML representation that has been so obtained

is transformed to an equivalent Petri-net representation using the Petri Net Markup

Language (PNML). This transformation is accomplished using a XSL transformation.

 (a) Multi-Step Approach (b) Single-Step Approach

Figure 3.3. Approaches to Analysis within the DIME Framework

Process Markup
 Language

Queueing Network
Markup Language

Process Markup
 Language

1

Petri net
Markup Language

Queueing Network
Markup Language

1

2

 22

In the initial version of the DIME framework, Petri nets serve as the theoretical

base. Petri nets also provide the backend representation to enable further analyses. That

is, the other formal representations for queueing, simulation, etc., should be generated

from the Petri net representation. This multi-step approach is illustrated in Figure 3.3(a).

In addition to the DDL capturing all the required information for the chosen analysis

technique, if further validation is also incorporated within the analysis tool, then it is not

always mandatory to make a transformation into the Petri net representation.

This leads to a new approach for generating formal representations directly from

the graphical modeling language constructs. This single-step approach is illustrated in

Figure 3.3(b). There was some ongoing research in this regard at the beginning of this

thesis, and the validity of the single-step was being debated. Hence, the current research

focused on generating formal representations for queueing models using both the multi-

step and single-step approaches with an aim to evaluate the pros and cons of the two

approaches. Eventually, this effort forms a basis for using either the multi-step approach

or the single-step approach to support the multiple analysis capability within the DIME

framework.

 23

Chapter 4

Research Statement and Methodology

Existing enterprise process modeling frameworks do not provide adequate support

for modeling and performance analysis of business processes in a distributed and

integrated environment. This is primarily due to their concentration on specific aspects of

the process lifecycle such as process definition, model specification or presentation, and

execution. Specifically, there is a definite need for an approach to enable performance-

based analysis of business processes using techniques like queueing and simulation in a

distributed and integrated environment. Particularly, within the DIME framework, there

is a need to extend analysis to include queueing and simulation techniques.

This research was an integral part of a larger process modeling research program and

partially addressed the above issue. As explained in Section 3.3, the initial version of the

DIME framework envisioned the generation of formal representations for queueing

models using the Petri net representation as the backend. However, in this thesis effort,

the formal representation for queueing analysis will be generated from both the Petri net

representation and the DIME Descriptive Modeling Language. This thesis also evaluated

and compared these two approaches called the multi-step and single-step approaches,

respectively.

 24

4.1 Research Objectives

The purpose of this thesis was to design, develop, and test ways to generate queueing

network models from both the existing graphical modeling language description and the

backend Petri net representation. To achieve this, the following objectives were

identified.

1. To develop a Queueing Network Markup Language (QNML), that allows for

computer processable apecification of queueing network models.

2. To generate a corresponding schema for QNML.

3. To conduct a thorough evaluation of the DIME Descriptive Modeling Language,

in order to analyze its features and contribution to the modeling task, and to

enhance its constructs to support quantitative and qualitative analyses.

4. To study linkages for mappings between Petri Net Markup Language [2, 9]

(PNML) and Queueing Network Markup Language (QNML) and generate

appropriate transformation schemes for the multi-step approach as illustrated in

Figure 3.3(a).

5. To study linkages for mappings between the DIME Descriptive Modeling

Language (DDL) and Queueing Network Markup Language (QNML) and

generate appropriate transformation schemes for the single-step approach as

illustrated in Figure 3.3(b).

6. To recommend an approach to generate formal representations for queueing

analysis within the DIME framework, by evaluating the pros and cons of the

multi-step and the single-step approaches as described in Section 3.3.

 25

4.2 Scope of the Research

The purpose of this research was to develop formal representations within the

DIME framework to support performance analysis using queueing theory. The central

idea was to develop a general purpose representation which could be used either as a part

of an integrated environment or used in isolation. The current DIME framework is

designed to use Petri net representation as the back-end to generate other formal

representations. However, as part of the current effort, two-way mappings schemes

between DIME Descriptive Modeling Language and queueing models were explored in

addition to the mappings between the Petri nets and queueing models. Other theoretical

bases were not explored as part of this research. Also, formal representation for analysis

using simulation techniques, which is a part of the DIME framework, was not explored as

part of this thesis effort.

4.3 Research Methodology

In order to accomplish the objectives stated in Section 4.1, the effort was divided into the

following stages.

Stage 1: The existing modeling approaches were studied and explored in detail to gain an

understanding of their purpose, strengths and limitations.

Stage 2: In this stage, the linkages between process modeling constructs, their

representations and corresponding queueing models were identified. Specifically,

linkages between the DIME Modeling Language, corresponding Petri net representation

and queueing network models were studied.

 26

Stage 3: Based on the information collected above, a set of elements that are required for

the queueing network models were identified, and a meta model was developed. Based

on the meta model a markup language (QNML) for queueing networks was specified.

Stage 4: In this stage, the mapping schemes between DDL and QNML, and between

PNML and QNML were designed. Transformations were accomplished through general

transformation algorithms developed based on the mapping schemes.

Stage 5: In this stage, the pros and cons of the approaches developed in the previous stage

were evaluated, and an approach is recommended to generate formal representations for

queueing analysis within the DIME framework.

Stage 6: This stage involved potential enhancements and extensions to the DIME

Descriptive Modeling Language (DDL) and the DIME framework to incorporate the

changes required.

 27

Chapter 5

Queueing Network Markup Language (QNML)

This chapter presents the work on the development of a markup language for

queueing network models, called the Queueing Network Markup Language (QNML).

Section 5.1 gives a brief introduction to the QNML. The building blocks or the elements

of the QNML are presented in Section 5.2. To standardize the QNML and to validate

QNML documents, a schema is proposed in Section 5.3.

5.1 Introduction

Queueing Network Markup Language (QNML) proposed here is an XML-based

interchange format for queueing network models. The QNML described here is a starting

point for a standard interchange format for queueing network model specifications.

Although the QNML developed here focuses on supporting queueing analysis within the

DIME framework, it has enough generality to be used in other settings as well. This

section presents a preliminary meta model for QNML and describes the individual

QNML elements. Figure 5.1 shows the meta model of basic QNML in UML notation (see

note in Appendix A for details of the UML notation). The meta model for QNML

consists of classes that makeup the markup language. These classes are translated to

XML elements. These elements are the keywords of QNML and can be called as QNML

elements. Each element is comprised of attributes and other elements. A unique identifier

 28

 29

is used to refer to each of the elements. The associations between the elements in the

meta model define the relationships between them.

5.1.1 Description of the QNML Meta Model

A queueing network file may consist of one or more queueing network

specifications. A network can be an open network, a closed network or a mixed network.

Each network is made up of nodes and flow elements that connect the nodes. Each node

is associated with one or more servers. A single-server node has a single server

associated with it and a multi-server node has at least two servers associated with it. Also

there is a queue in front of every node except a delay (or infinite server) node. A node is

further comprised of arrival and service elements that correspond to the arrival and

service information of the entities that visit the node. The arrival and service elements

share a distribution class to describe the parameters of the arrival and service processes.

A distribution element here could take a two-moment approach or include the

corresponding probability distribution parameters for describing the inter arrival or

service information. A flow element can be viewed as an arc connecting two nodes.

Hence, it has an origin node and a destination node as its sub-elements. The flow element

also captures the routing information of entities or a class of customers flowing from a

node to any other node in the network. The flow of entities through the network could

also be described by a collection of routes. Each route consists of a sequence of

operations that correspond to a deterministic path an entity or a class of customers can

take. Each operation is associated with a node in a route and can be viewed as a node

visit of an entity following that route. A flow element captures the probabilistic routing

 30

information and a route captures the deterministic routing information of entities or

classes of customers in the queueing network model.

5.2 QNML Elements

This section describes the individual elements of the QNML. A brief description

of each of the elements is followed by its sub-elements. The data types and allowable

values are also listed along with the sub-elements.

QNFile

A QNFile element is used to describe a queueing model. As a queueing model can

be made up of one or more networks, a QNFile has one or more of the Network elements.

Network

A Network element represents a queueing network in the queueing model. It

could be of one of the following three types: Open, Closed or Mixed. A network is

composed of one or more nodes and zero or more route elements. In addition, the sub-

elements listed in Table 5.1 describe the network.

Table 5.1 Sub-Elements of Network

Node

 A node represents a resource pool in the queueing network. It is typically

Element Description Data Type Allowable Values
Type Describes the type of network String Open/Closed/Mixed

CustomerCount
Maximum number of customers allowed in the
network at any one time Integer 1, 2, …, ∞

NodeCount Number of nodes in the network Integer 1, 2, …, N

RoutingInformation
Describes if the routing information provided is
either Probabilistic or Deterministic String Probabilistic/Deterministic

 31

associated with a queue and has one or more servers. In addition to the queue and server

elements, other sub-elements of a Node element are listed in Table 5.2.

Table 5.2 Sub-Elements of Node

Queue

A Queue element is associated to a node and represents the queue that is present

in front of any node. The elements listed in Table 5.3 help describe a queue.

Table 5.3 Sub-Elements of Queue

Server

A Server element is associated with a Node. A server is a specific resource

instance from the resource pool. The elements listed in Table 5.4 help describe a server.

Table 5.4 Sub-Elements of Server

Operation

An Operation element is associated with a Route element. It is a node visit in the

route. Hence it refers to a Node element. A mean processing rate of service and a

Element Description Data Type Allowable Values
Name Resource name String e.g. Clerk
Type Type of the resource String Human,Computer,Machine
Descriptiom Description of the resource String e.g. Pre-processing

ServerCount
Count of the number of units of a resource
available Integer 1, 2, …, N

Utilization To store the utilization of the node Double R

Element Description Data Type Allowable Values
Size Capacity of the queue Integer 1, 2, …, ∞
Discipline Service Discipline String e.g. FIFO/LIFOSIRO
Mean Length Average Queue Length Double R

Element Description Data Type Allowable Values
Service Time Processing time information Service
Utilization Utilization of particular resource Double R

 32

squared coefficient of variation of the service time or a distribution are needed to describe

an Operation. These service attributes are readily captured by a Service element. Hence,

an Operation element has Service as its sub-element.

Arrival

An Arrival element provides the arrival information to a node. It is composed of a

Distribution element and also has rate and squared coefficient of variation (SCV) as its

sub-elements as listed in Table 5.5.

Table 5.5 Sub-Elements of Arrival

Service

The Service element provides the service information for server or an operation. It

is composed of a Distribution element to and also has mean rate and squared coefficient

of variation as its sub-elements as listed in Table 5.6.

Table 5.6 Sub-Elements of Service

Distribution

A Distribution element is used to specify probability distributions. Table 5.7 lists

its sub-elements.

Element Description Data Type Allowable Values
ArrivalRate External arrival rate to the node Double R

SCV
Squared coefficient of variation of the interarrival
time Double R

Distribution Probability Distribution of the interarrival time String e.g. Exponential

Element Description Data Type Allowable Values
Mean Mean service time Double R
SCV Squared coefficient of variation of service time Double R
Distribution Probability Distribution of the service time Distribution e.g. Exponential

 33

Table 5.7 Sub-Elements of Distribution

Flow

A Flow element corresponds to probabilistic routing between the nodes of a

queueing network. It specifies the probability with which an entity is routed from a node

to another node. Table 5.8 lists the sub-elements of a Flow element.

Table 5.8 Sub-Elements of Flow

Route

A Route element is an ordered collection of operations. A multi-class queueing

network can be specified using a collection of routes. Table 5.9 lists the sub-elements of a

Route element.

Table 5.9 Sub-Elements of Route

Graphics

 A Graphics element is provided to store the graphical information related to the

pictorial representation of the queueing network model. This element as such does not

add any extra detail to the specification of the queueing network, but could potentially be

Element Description Data Type Allowable Values
Name Name of the distribution String e.g. Poisson
Parameters Parameters associated with the distribution ArrayList

Element Description Data Type Allowable Values
OriginNode Origin Node ID Ref R
DestinationNode Destination Node ID Ref R
RoutingProbability Probability of visting the destination node next Double [0,1]

Element Description Data Type Allowable Values
OperationCount Number of operations in the route Integer N
ArrivalRate External arrival rate to the first node in the route Double R

SCV
Squared coefficient of variation of the interarrival
time Double R

Operation Node visits Operation

 34

used for storing information related to the graphical representation of the queueing

network. Since this information is tool specific, the details of this element are ignored in

this discussion.

Tool/Solver Info

This element is defined to capture any tool specific information that is of

significance. Potentially, this could be used to interpret the performance measures or

account for any assumptions that are specific to the tool used. Ideally, if all the queueing

analysis software tools report the same performance measures in the same format, then

this element can be eliminated. The specific sub-elements cannot be determined at this

stage as the QNML has not been used or tested with the available queueing analysis

software tools.

5.3 QNML Schema

Based on the elements that are described in the previous section, the allowable

values for each element are captured as part of the QNML schema defined in this section.

Figures 5.2a and 5.2b show the design view of the schema developed for the QNML.

Figure 5.2a shows the schema of the branch that uses Nodes and Flow elements

(probabilistic routing) to describe a Queueing Network Model, whereas Figure 5.2b

shows the schema of the branch that uses Routes (deterministic routing) to describe a

Queueing Network Model. Please refer to Appendix B for the schema document of the

QNML.

 35

Figure 5.2a. QNML Schema for Probabilistic Routing

 36

Figure 5.2b. QNML Schema for Deterministic Routing

Figure 5.2b. QNML Schema for Deterministic Routing

 37

Chapter 6

A Single-Step Approach for Automatic Configuration of a

Queueing Network Model

This chapter presents an overview of the procedure developed and the

mapping scheme required for the “single-step” approach (described in Section 3.3) to

automatically configure a queueing network model from a business process

description. Section 6.1 presents the definitions, formal notations and representations

for both process models and queueing network models. The mappings that are

required to translate a business process description, which is described by the DIME

Markup Language (DML) to a queueing network model described by Queueing

Network Markup Language (QNML), are presented in Section 6.2. Section 6.3

presents the algorithm that automates the translation of DML to QNML. Section 6.4

presents the implementation details of the transformation.

6.1 Introduction and Background

In the single-step approach a process model description is used to directly

generate a queueing network model for analysis. The transformation is actually

between the computer processable formats of the corresponding models. More

specifically, a business process model, represented by a markup language like DML

 38

<P
ro

ce
ss

>

 </

Pr
oc

es
s>

<N
od

e>

 </
N

od
e>

D
M

L
Bu

sin
es

s P
ro

ce
ss

 M
od

el

Q
N

M
L

Q
ue

ue
in

g
N

et
w

or
k

M
od

el

 Fi
gu

re
 6

.1
. P

ic
to

ri
al

 R
ep

re
se

nt
at

io
n

of
 th

e S
in

gl
e-

St
ep

 A
pp

ro
ac

h

1

2 3

11

22 33

 39

is transformed to a queueing network model, represented by a markup language like

QNML. To achieve this transformation it is important to identify the mappings

between the various elements that make up each of the models. Section 6.1.1 presents

the formal notations required to define both a process model as well as a queueing

network model. Section 6.2 uses the formal notation of Section 6.1.1 to define the

mappings between a business process model and a queueing network model. Figure

6.1 shows these ideas pictorially.

The definitions and formal notation suggested by [17] are used for defining a

process model. The definitions from [23] are used for defining queueing network

models.

6.1.1 Business Process Model Notation

A business process model is a collection of elements listed in Table 6.1.

Table 6.1 Elements of a Business Process Model

Element Notation

Activities / Tasks T
Resources R

XOR – Splits Xs
XOR – Joins Xj
And – Splits As
And – Joins Aj

Task / Activity: An abstraction of either a unit activity or a composite description of

a larger sub-process, embedded in the process’s definition. It is graphically

represented with a rounded rectangular symbol in accordance with DDL.

AND-Split: A logical operand that models the concurrent creation of several parallel

threads of control from a single incoming flow.

 40

AND-Join: A logical operand that models the asynchronous completion of several

parallel sub-threads of execution, to be followed by a common outgoing flow.

XOR-Split: A logical operand that depicts choice in the selection of exactly one of

several possible outgoing control flows from a single incoming flow.

XOR-Join: A logical operand that merges several mutually exclusive, multiple

sources of control, to create a common outgoing flow.

Formally a business process model is a directed graph G = (V, E) where

The following additional definitions (not part of [17]) were developed.

Definition: P = {P1, P2, P3, …, Pp}is the set of all PATHs from S to F.

A PATH from S to F is an ordered sequence of activities (S, T1, T2, T3, …, Tn, F),

where Ti ∈ T. This definition of PATH is a simplified definition of the PATH

contained in [17].

 41

Definition: A function Enumerate (G) = P, returns the set of all PATHs of the

business process model represented by G.

This enumeration for a business process model to generate all paths can be

achieved using an algorithm like the one described in [17]. Developing such an

algorithm was not within the scope of the current effort. In the example shown in the

Figure 6.1, the two possible PATHs are:

P1 = {T1, T2, T3, T4} and P2 = {T1, T2, T5, T6}.

Hence, Enumerate(G) should return {P1, P2}. The “Start (S)” and “Finish (F)” nodes

have been omitted here for simplicity.

Figure 6.2. A Business Process Model with Multiple Paths

Resources

A business process in the course of its execution, will use some resources –

more specifically, tasks in a process will often require the use of resources (e.g.,

machines, people, and instruments) that the tasks capture (i.e., access and exclusively

use), which are then released by either the tasks that captured them, or by

subsequently executed tasks. In specifying the resource requirements of a process, the

R1

 T1
R2

 T2

R3

 T3

R4

 T4

R4

 T5

R2

 T6

XOR

 42

focus is on re-usable, non-perishable, non-depleteable physical or informational

entities that are accessed or captured by tasks, which are then subsequently released

wholly, without loss or detriment in their size, quantity or operational ability [17]. A

resource is graphically represented at the top left corner of the activity block in

accordance with DDL. More formally, the resource requirements for the tasks in a

process are specified as defined in [17].

The following additional definition (not part of [17]) is used.

Definition: A function Resource(Ti) = {Rk ∈ R}, returns the set of resource(s)

required by activity Ti.

6.1.2 Queueing Network Model Notation

At the outset, a queueing network model is a network of nodes and directed

arcs. It is important to note that the nodes represent service facilities and the arcs

represent movement of customers, jobs, or data packets. Customers enter the network

at any of the nodes, move from node to node along the directed arcs, and eventually

leave the system from a node. To model such a system, information regarding the

nodes and the routing information is critical. The routing is either deterministic or

probabilistic in nature. Deterministic routing is specified by a set of routes and

probabilistic routing by a routing matrix. Deterministic routing is typically used

when the specific routes can be clearly identified, i.e., ordered sequences of node

visits that different customer types (or classes) follow. Probabilistic routing is used

when the number of possible routes becomes very large, and hence, difficult to

 43

specify. The customer flow in this case is specified by routing probabilities, i.e.,

probabilities of going to different destination nodes from a given origin node. The

routing probabilities are often arranged in the form of a routing matrix.

Since deterministic routing using routes has a closer resemblance to actual

process executions, it was chosen as the mode of specification in all the models

(discussed in Section 6.2) that would allow such a specification. The required

elements required to specify a queueing network model are listed in Table 6.2.

Table 6.2. Elements of a Queueing Network Model.

Element Notation
Node N

Routing Matrix Q
Route r’

Node: A node is a service facility, where customers come for some service or

processing. A node consists of servers (resources), which provide service, to the

customers. If all servers at a node are busy when a customer arrives, then the

customer joins a queue and waits until a server is free.

Routing Matrix: The flow of customers from one node to another is specified by a

routing matrix. It is (n × n) matrix, where n is the number of nodes in the network.

Each element in the matrix is a probability with which a customer moves from a node

to another node in the network. For example, qij the element in row i and column j,

corresponds to the probability with which a customer visiting node i visits node j next

for service.

 44

Route: A route specifies the sequence of the nodes visited by a class of customers.

The flow of customers specified by routes is deterministic in that the sequence is

ordered and given.

Formally, N = {Ni, i= 1, 2, 3, …, n} is a set of nodes in the network.

Also for each node Nj,

mj = number of servers at node Nj.

λ0j = external arrival rate at node Nj.

c0j
2 = squared coefficient of variation of external arrival process at node Nj.

τj = mean service time at node Nj.

csj
2 = squared coefficient of variation of service time distribution at node Nj.

Q is a (n × n) routing matrix.

Q ≡ [qij] ; i, j = 1, 2, 3, …, n.

r’ = {ri , i = 1, 2, 3, …, r} is the set of all possible routes in the network,

Where, a route },,;...;,;,;,,{ 2
1111

2
12,1212

2
11,1111

2
1111 11 nsnnss cNcNcNcnr τττλ=

where, ni = number of nodes on route k

 λi = external arrival rate for class k represented by route ri

ci
2 = variability parameter of external arrival process for route ri.

nij = the jth node visited by class on route ri

τij = the mean service time of class i on route ri at the jth node on route ri.

csi
2 = the squared coefficient of variation of the service time of class i on route

ri at the jth node.

 45

The above set of notations was chosen based on the notation defined in [23]

which is considered to be a defacto standard framework for queueing network

modeling and solution.

6.2 Mapping Schemes

A study of various examples of business process models revealed the

following types of business process model configurations.

Type 1. A sequential model with a series of activities where each activity requires

a different resource.

Type 2. A sequential model with a series of activities, where some of the activities

share (common) resources.

Type 3. A model with a choice of paths. Each path is a sequential model with a

series of activities where each activity requires a different resource.

Type 4. A model with a choice of paths. Each path is a sequential model with a

series of activities where some of the activities share (common) resources.

Type 5. A model with branching into concurrent set of activities that merge later,

where some of the activities may share (common) resources.

By using examples of each type of the above process model configurations and

their equivalent queueing models, it was observed that models of types 1, 2, 3 and 4

are typical and give rise to queueing network models that can be solved at least

approximately. However, there is no satisfactory means of solving models with

concurrency (type 5) using existing queueing network theory. So type 5 was

determined to be beyond the scope of the thesis effort and hence, not included for

 46

further consideration. The mapping schemes for types 1, 2, 3 and 4 are explained in

Section 6.2. For the sake of simplicity, following assumptions were made while

modeling resource requirements.

 An activity requires only one unit of an available resource.

 A resource that is seized by an activity is released by the same activity.

 A resource that is seized by an activity is released by the same activity before

the control is transferred to the succeeding activity, if any.

Type 1: A sequential process model with a series of activities where each activity

requires a different resource.

Case 1a: No feedback is involved.

Model

Figure 6.3a is a pictorial representation of a sequential process model. Note

that there could be multiple instances of the process depicted that are active at any

given time.

Figure 6.3a. A Sequential Process Model

Additional Assumptions

 Without any loss of generality it can assumed that the activity Tj requires

resource Rj , j = 1, 2, …, t.

 There is no feedback. A process instance executes an activity only once.

R1

 T1

R2

 T2

R3

 T3

 47

Mappings

 The queueing network model consists of a single class of customers. For

every resource Rj in resource set R, there exists a corresponding node Nj in the

queueing network model. The number of nodes in the network, n = |R| = t.

 The number of servers at node Nj, mj is equal to Rj
, the number of available

units of resource Rj.

 Because of the sequential nature, there exists only one path P1 = {Ti, i=1, 2,

…, t} specified by the control flow in the process model. This would

correspond to one route, r1 in a queueing network.

o This implies that r’ = {r1}

o Where

},,;...;,;,;,,{ 2
1111

2
12,1212

2
11,1111

2
1111 11 nsnnss cNcNcNcnr τττλ=

Here n1 = t, as the number of operations is equal to the number of

activities.

 The service time parameters of a node (operation) Nj on route r1 correspond to

the activity duration parameters of activity Tj that requires resource Rj. For

example, the mean service time, τj, of node Nj is the mean duration of Tj that

requires Rj.

 The external arrival rate parameters λ1 and c1
2 are obtained from the process

initiation logic.

 48

Formally the mappings can be summarized in the following steps:

Case 1b: Feedback is involved.

Model

The pictorial representation of a sequential process model with feedback is

shown in Figure 6.3b. The feedback is after activity T2 in the model represented in

Figure 6.3b. In a general model the feedback can transfer the control to any of the

activities preceding the XOR junction used for feedback. Note that there could be

multiple instances of the process depicted that are active at any given time.

Figure 6.3b. A Sequential Process Model with Feedback

R1

 T1

R2

 T2

R3

 T3

XOR XOR

 49

Additional Assumptions

 Without any loss of generality we can assume the activity Tj requires resource

Rj , j = 1, 2, …, t.

Mappings

 For every resource Rj in resource set R, there exists a corresponding node Nj

in the queueing network model. The number of nodes in the network, n = |R| =

t.

 The number of servers at node Nj, mj is equal to Rj
, the number of available

units of resource Rj.

 Because of feedback, one or more nodes can be visited a random number of

times. Hence, it is not possible to specify a deterministic routing in this case.

The routing probabilities are specified in the routing matrix.

 The routing matrix Q = [qij], is given by where

 In the example given in Figure 6.3b, q12 = 1, q23 = p2, q22 = (1 - p2).

 The service time parameters of node Nj correspond to the activity duration

parameters of activity Tj that requires resource Rj. The mean service time τj of

node Nj is the mean duration of Tj that requires Rj.

 The external arrival rate parameters λ1 and c1
2 are obtained from the process

initiation logic.

 50

Formally the mappings can be summarized in the following steps:

 51

Type 2: A sequential model with a series of activities, where some of the activities

share (common) resources.

Model

The pictorial representation of a sequential process model where some of the

activities share resources is shown in Figure 6.4. The resource R1 is shared by

activities T1 and T3 in the model represented in Figure 6.4. Note that there could be

multiple instances of the process depicted that are active at any given time.

 Figure 6.4. A Sequential Process Model (with Resource Sharing)

Additional Assumptions

 There is no feedback. A process instance executes an activity only once.

Mappings

 The queueing network model consists of a single class of customers.

 For every resource Rj in resource set R, there exists a corresponding node Nj

in the queueing network model. The number of nodes in the network, n = |R|.

 The number of servers at node Nj, mj is equal to Rj
, the number of available

units of resource Rj.

 Because of the sequential nature, there exists only one path P1 specified by the

control flow in the process model. This would correspond to one route, r1 in

the queueing network.

R1

 T1

R2

 T2

R1

 T3

 52

 Where },,;...;,;,;,,{ 2
111

2
12,1212

2
11,1111

2
1111 111 nsnnss cNcNcNcnr τττλ=

The number of operations n1 in the route r1 will be equal to t, the total number

of activities. Note that t > n because of resource sharing.

 The service time parameters of node Nj will have to be computed as part of

network solution procedure and is not part of the network model specification.

 The external arrival rate parameters λ1 and c1
2 are obtained from the process

initiation logic.

Formally the mappings can be summarized in the following steps:

 53

Type 3: A model with a choice of paths. Each path is a sequential model with a

series of activities where each activity requires a different resource.

Model

The pictorial representation of a process model with choice is shown in Figure

6.5. The choice is between the path P1 = {T1, T2, T3, T4} and path P2 = {T1, T2, T5,

T6} in the model represented in Figure 6.5. Note that there could be multiple

instances of the process depicted that are active at any given time.

Figure 6.5. A Process Model with Choice (No Resource Sharing)

Additional Assumptions

 Without any loss of generality it can assumed that the activity Tj requires

resource Rj , j = 1, 2, …, t.

Mappings

 For every resource Rj in resource set R, there exists a corresponding node Nj

in the queueing network model. The number of nodes in the network, n = |R|.

 The model is not sequential, hence there exists a set of paths P (defined

earlier), specified by the control flow in the process model. The set of paths P

defines a set of routes r’ = {rk , k = 1, 2, 3, …., nr} in the queueing network

R1

 T1

R2

 T2

R3

 T3

R4

 T4

R5

 T5

R6

 T6

XOR

 54

model, where nr, the number of routes in the queueing network model is the

number of paths in P.

 Also for each path Pi ∈ P, there exists a ri ∈ r’. All valid paths can be

obtained using an enumeration algorithm (refer [17] for example).

On each route rk (where k = 1, 2, 3, …., nr)

 The number of nodes is equal to the number of activities in path Pk.

 The jth node visited is the node corresponding to the resource required by the

jth activity in path Pk

 The service time parameters of node visit j on route rk corresponds to the

activity duration parameters of the jth activity of path Pk. For example, the

mean service time of 3rd node on path 2 is the duration of T5 that requires

resource R5.

Formally the mappings can be summarized in the following steps:

 55

Type 4: A model with choice of paths. Each path is a sequential model with a series

of activities where some of the activities share (common) resources.

Model

The pictorial representation of a process model with choice and some of the

activities that share resources is shown in Figure 6.5. In the model represented in

Figure 6.6, the choice is between the path P1 = {T1, T2, T3, T4} and path P2 = {T1, T2,

T5, T6}. Also resource R2 is shared by activities T2 and T6, and the resource R4 is

shared by activities T4 and T5. Note that there could be multiple instances of the

process depicted that are active at any given time.

Additional Assumptions

 A process instance executes an activity only once.

Figure 6.6. A Process Model with Choice and Resource Sharing

Mappings (same as in type 3)

 For every resource Rj in resource set R, there exists a corresponding node Nj

in the queueing network model. The number of nodes in the network, n = |R|.

R1

 T1

R2

 T2

R3

 T3

R4

 T4

R4

 T5

R2

 T6

XOR

 56

 The model is not sequential, hence there exists a set of paths P (defined

earlier), specified by the control flow in the process model. The set of paths P

defines a set of routes r’ = {rk , k = 1, 2, 3, …., nr} in the queueing network

model, where nr, the number of routes in the queueing network model is the

number of paths in P.

 Also for each path Pi ∈ P, there exists a ri ∈ r’. All valid paths can be

obtained using an enumeration algorithm (refer [17] for example).

On each route rk (where k = 1, 2, 3, …., nr)

 The number of nodes is equal to the number of activities in path Pk.

 The jth node visited is the node corresponding to the resource required by the

jth activity in path Pk

 The service time parameters of node visit j on route rk corresponds to the

activity duration parameters of the jth activity of path Pk. For example, the

mean service time of 3rd node on path 2 is the duration of T5 that requires

resource R5.

 The external arrival rate parameters λk and ck
2 are obtained from the process

initiation logic.

 57

Formally the mappings can be summarized in the following steps:

 58

6.3 Transformation Algorithm

 Following algorithm was developed to automatically configure a queueing network

model from a business process description, based on the mappings from Section 6.2.

 59

6.4 Implementation

As a proof-of-concept implementation for the algorithm presented in Section

6.3, a prototype function was programmed using the VB.NET language. The function

that was developed is DML2QNML. This function takes a DML file as input and

generates a corresponding QNML file. On successful generation the function returns

a boolean true, otherwise it return a boolean false. The prototype of the function is:

Function DML2QNML (DML As XMLDocument) As Boolean

The code for this function is presented in Appendix C. This function is implemented

as part of a simple Windows based environment, which would allow the user to

specify the required inputs. The screenshots for this environment are provided in

Appendix E.

 60

Chapter 7

A Multi-Step Approach for Automatic Configuration of a

Queueing Network Model

This chapter presents an overview of the technique developed and the mapping

scheme required for the multi-step approach (described in Section 3.3) to automatically

configure a queueing network model from a Petri net representation of a business

process. Section 7.1 presents the definitions, formal notations and representations for

Petri nets. The mappings that are required to translate a Petri net based business process

representation, which is described using the Petri Net Markup Language (PNML), to a

queueing network model described by Queueing Network Markup Language (QNML),

are identified in Section 7.2. Section 7.3 presents an algorithm that automates the

translation of PNML to QNML. Section 7.4 presents the implementation details of the

transformation.

7.1 Introduction and Background

This approach is basically a two-step approach, wherein a business process model

is first transformed to a Petri net representation which is then transformed to a queueing

network model for analysis. The transformation is between the computer processable

formats of the corresponding models. More specifically, a business process model,

 61

 Bu
sin

ess
 Pr

oc
ess

 M
od

el
DM

L
QN

M
L

Qu
eu

ein
g N

etw
or

k M
od

el

<P
roc

ess
>

 </P
roc

ess
>

<N
od

e>

 </N
od

e>

<T
ask

>

 </T

ask
>

PN
M

L

 Fig
ur

e 7
.1.

 Pi
cto

ria
l R

ep
res

en
tat

ion
 of

 th
e M

ult
i-S

tep
 A

pp
ro

ac
h 1

2 3

11

22 33

 62

represented by a markup language like DML is transformed to a Petri-net model,

represented by a mark up language like PNML. The next step is to transform the Petri-net

model, represented by a markup language like PNML to a queueing network model,

represented by a mark up language like QNML. To achieve the transformation it is

important to identify the mappings between the various elements that make up each of the

models. Section 7.1.1 presents the formal notations required to define a Petri net based

process model. The formal notation defined in Section 6.1.2 is used for specification of

the queueing network model. Section 7.2 uses the formal notation of Sections 7.1.1 and

6.1.2 to define the mappings between the Petri-net based process model and a queueing

network model. Figure 7.1 shows these ideas pictorially.

Notation and Definitions

Petri nets

Petri nets or place-transition nets are classical models of concurrency, non

determinism, and control flow, first proposed in 1962 by Carl Adam Petri. Petri nets

provide an elegant and mathematically rigorous modeling framework for discrete event

dynamical systems. In this section an overview of Petri nets is presented with the aid of

several definitions [20]. For a detailed treatment of Petri nets the reader is referred to

[20].

Definition: A Petri net is a four-tuple (P, T, IN, OUT) where

 P = {p1, p2, p3, …, pn} is a set of places

 T = {t1, t2, t3, …, tn} is a set of transitions

 P U T ≠ Ф, P I T = Ф

 63

IN: (P X T) N is an input function that defines directed arcs from places to transitions,

and OUT: (P X T) N is an output function that defines directed arcs from transitions

to places.

Pictorially, places are represented by circles and transitions by horizontal or

vertical bars. If IN (pi, tj) = k , where k > 1 is an integer, a directed arc from place pi to

transition tj is drawn with a label k. If IN (pi, tj) = 1, we include an unlabeled directed arc.

If IN (pi, tj) = 0 then no arc is drawn from pi to tj. Similarly OUT (pi, tj) results in a

directed arc from transition tj to place pi if OUT (pi, tj) > 0.

Places of Petri nets usually represent conditions or resources in the system while

transitions model the activities in the system.

Definition: The set of input places of transition tj , denoted by IP(tj), and the set of output

places of tj, denoted by OP(tj) are defined by

IP(tj) = {pi ∈ P: IN (pi, tj) ≠ 0 }

OP (tj) = {pi ∈ P: OUT (pi, tj) ≠ 0}

Definition: A marking M of a Petri net is a function M: P N. A marked Petri net is a

Petri net with an associated marking. If M (pi) = mi > 0 then the marking is represented

by mi black dots inside place pi.

Definition: A transition tj of a Petri net is said to be enabled in a marking M if

 M (pi) ≥ IN (pi, tj) ∀ pi ∈ IP(tj)

An enabled transition tj can fire at any time. When a transition tj enabled in a marking M

fires, a new marking M’ is reached according to the equation

 M’ (pi) = M (pi) + OUT (pi, tj) - IN (pi, tj) ∀ pi ∈ P

 64

Stochastic Petri nets

Classical Petri nets are useful in investigating qualitative or logical properties of

concurrent systems. However, for quantitative performance evaluation, the concept of

time needs to be added to the definition of the Petri nets. Time is associated with

transitions, indicating that they can fire some time after they become enabled. The

association of deterministic time led to the development of timed Petri nets. However to

associate random time durations with the firing of transitions, Stochastic Petri nets

(SPNs) are used [20].

Definition: A SPN is a sex-tuple (P, T, IN, OUT, M0, F) where (P, T, IN, OUT, M0) is a

marked Petri net and F is a function with domain (R[M0] X T), which associates with

each transition in each reachable marking, a random variable. The function F is called the

firing function and the random variable F (M, t) for M ∈ R[M0] and t ∈ T as the firing

time of transition t in the marking M.

The following additional definitions are needed.

Definition: A function Resource (ti) = {Rki ⊂ IP(ti)}, returns the set of resource(s)

required by transition ti.

Definition: Let PN be a Petri net. A function Enumerate (PN) returns the set of all

transition firing sequences that lead to process termination.

Enumerate (PN) = TSF = {TSFi, i = 1, 2, …, nr}

 65

7.2 Mapping Schemes

Petri nets are process-centric views of business process models. The

correspondence between the business process model elements and the Petri nets has been

identified within the DIME framework. The Figure 7.1 shows this mapping between

business process model elements and Petri nets. An extension to this mapping would be

to include resource requirements for an activity and correspondingly for a task in Petri

nets. A resource required by an activity in a business process model would transform into

an input place for the task corresponding to the activity. Also the number of units of a

resource available would translate to the number of tokens in the input place.

Formally,

where BP stands for business process model and PN stands for Petri net model.

With this background, the transformations between Petri nets and queueing

models can be achieved. To do so, the types of process models defined in Section 6.2 are

used here also. However, only models of types 1b and 4 models from Section 6.2 are

discussed in this section. Models of types 1a, 2 and 3 are special cases of type 4. To

arrive at a generalized transformation scheme it is enough to identify the mapping

schemes for types 1b and 4.

 66

Figure 7.2: Petri net Representation of a Process Model with Feedback

(Refer to Figure 6.1b for the corresponding process model)

Notation Description
ti Transition i
Pi Place i
Ri Resource i

t2

t1

t3

P1

P2

P3

P4

R3

R1

R2

t0

 67

Type 1b: A sequential model with a series of activities where each task requires a

different resource. Feedback allowed.

Model

The pictorial representation of the business process model is shown in Figure 6.3b

in Section 6.2 and the corresponding Petri net model is shown here in Figure 7.2. Note

that there could be multiple instances of the process depicted that are active at any given

time.

Additional Assumptions

 Without any loss of generality we can assume the activity Tj requires resource Rj ,

j = 1, 2, …, t.

Mappings

 For every resource Rj ∈ IP (tj), there exists a corresponding node Nj in the

queueing network model. The number of nodes in the network, n = |IP| = t.

 The number of servers at node Nj, mj is equal to M0 (Rj), the number of available

units of resource Rj in the initial marking.

 Because of feedback, one or more nodes can be visited a random number of times.

Hence, it is not possible to specify a deterministic routing in this case. The routing

probabilities are specified in the routing matrix.

 The routing matrix Q = [qij], is given by

 The service time parameters of node Nj correspond to the mean firing rate of

transition tj that requires resource Rj, denoted by Mean (F(M, tj)).

 68

 The external arrival rate parameters λ01 and c01
2 are obtained by the functions Rate

(F (M, t0)) and SCV (F (M, t0)) respectively.

For completeness, the mappings to translate a business process model to a Petri net model

are presented here.

 69

Formally the mappings to translate a Petri net to a queueing network model can be

summarized in the following steps

 70

Figure 7.3: Petri net Representation of a Process Model with Choice

(Refer to Figure 6.6 for the corresponding process model)

Notation Description
ti Transition i
Pi Place i
Ri Resource i

t5

t2

t1

t3

P5

t4 t6

R1 P1

P2

R3 R4 P3

P4

R2

t0

 71

Type 4: A model with a choice of paths. Each path is a sequential model with a series

of activities where some of the activities share (common) resources.

Model

The pictorial representation of a business process model with choice and the

corresponding Petri net is shown in Figure 7.3. Note that there could be multiple

instances of the process depicted that are active at any given time.

Additional Assumptions

 There is no feedback. An entity flows through an activity only once.

Mappings

 For every resource Rj ∈ IP (tj), there exists a corresponding node Nkj in the

queueing network model. The number of nodes in the network, n = |IP| = t.

 The number of servers at node Nj, mj is equal to M0 (Rj), the number of available

units of resource Rj in the initial marking.

 The model is not sequential, hence there exists a set of transition firing sequences

(defined earlier), specified by the control flow in the process model. The set of

transition firing sequences TSF corresponds to the set of routes r’ = {rk , k = 1, 2,

3, …., nr} in the queueing network model, where nr, the number of routes in the

queueing network model is the number of sequences in TSF.

 Also for each path TSFi ∈ TSF, there exists a ri ∈ r’. All valid firing sequences

can be obtained using an enumeration algorithm (defined earlier).

On each route rk (where k = 1, 2, 3, …., nr)

 The number of nodes is equal to the number of transitions in transition firing

sequence TSFk.

 72

 The jth node visited is the node corresponding to the resource required by the jth

transition in transition firing sequence TSFk.

 The service time parameters of node visit j on route rk correspond to the mean rate

of firing of the jth transition in path TSFk.

 The external arrival rate parameters λ01 and c01
2 are obtained by the functions Rate

(F (M, t0)) and SCV (F (M, t0)) respectively.

For completeness, the mappings to translate a Business process model to a Petri net

model are presented here.

 73

The mappings to translate form a Petri net model to a queueing network model can be

summarized in the following steps.

 74

7.3 Transformation Algorithm

Based on the mappings identified in Section 7.2, the following algorithm was

developed to automatically configure a queueing network model from a Petri net

representation of the business process description.

 75

7.4 Implementation

As a proof-of-concept for the algorithm presented in section 7.3, a prototype

function was programmed using VB.NET language. Two functions were developed,

namely DML2PNML and PNML2QNML. The function DML2PNML takes a DML file

as input and generates a PNML file. This PNML file would then serve as input to the

function PNML2QNML, which generates a QNML file. On successful generation both

the functions return a boolean true, otherwise a boolean false is returned. The prototypes

of the functions are as follows:

Function DML2PNML (DML As XMLDocument) As Boolean

Function PNML2QNML (PNML As XMLDocument) As Boolean

The code for these functions is presented in Appendix D. These functions are

implemented as part of a simple Windows based environment, which would allow the

user to specify the required inputs. The screenshots for this environment are provided in

Appendix E.

 76

Chapter 8

Evaluation of the Single-Step Approach and the Multi-Step Approach

This chapter presents the strengths and limitations of the single-step and multi-

step approaches discussed in Chapters 6 and 7. Also, a qualitative evaluation of both the

single-step and the multiple-step approaches is presented here. Section 8.1 summarizes

the strength and limitations, and Section 8.2 is devoted to the discussion of the qualitative

evaluation. The focus of this evaluation is to bring out the similarities, differences and

limitations of the abovementioned approaches. This evaluation was based on the

following criteria: Feasibility of the Approach, Complexity in Modeling,

Representational Capability, Formality, and the Complexity in Retrieving Performance

Measures. Section 8.3 presents the conclusions drawn from the evaluation in Section 8.2.

8.1 Strengths and Limitations

Single-Step Approach

 The main strengths of this approach are due to the feasibility and simplicity of this

approach. The strengths that are evident at this point of time are as follows.

 The translation from the process domain to the queueing analysis domain is direct

and involves only a single step.

 77

 As there are no intermediate steps, in general, there is less potential for loss of

information between the translations.

 The mappings suggested using this approach are general and are extensible to

other general process modeling frameworks.

 The complexity involved in retrieving the results from the queueing analysis

domain to the process domain is less in this approach.

Despite the simplicity of this approach there are some limitations that are evident

at this point of time:

 Lack of a theory base in the process domain is a limitation to extensibility of this

approach.

 The analysis capability is limited to the analysis capability that could be obtained

via the existing queueing theory. Some qualitative analysis that could be achieved

using a theory base is missing in this approach.

 The analysis capability is limited to the configurations discussed in Section 6.2,

though some extensions are possible as suggested in Section 9.3. Hence to

analyze a real world process situation, some assumptions must be made.

 The actual strength of this approach is in the representational capability provided

by the graphical modeling language. The ability to capture the resource

requirements in the process modeling language could itself be a limitation for this

approach.

 78

Multi-Step Approach

 The main strengths of this approach are due to the feasibility and formality

associated with the intermediate Petri net representation. Strengths that are evident at this

point of time are summarized below.

 The translation from process domain to the queueing analysis domain is feasible.

 The mappings suggested using this approach are general and are extensible to

other process modeling frameworks.

 Though, there is an additional step in translating to Petri nets from the process

description, the formality provided by the Petri nets serve as a theory base for

further translations.

 This approach is more desirable in frameworks that provide the multi-analysis

capability, as the intermediate process representation using the Petri nets forms

the base format.

 This approach also provides insight into the process domain, as analysis using

Petri nets could reveal some logical aspects of the process descriptions.

Despite the feasibility of this approach there are some limitations that are evident

at this point of time:

 As there is an intermediate step of translation, there is a greater possibility of loss

of some information.

 The analysis capability includes the analysis using queueing models and

qualitative analysis using the Petri net representation.

 79

 The analysis capability is limited to the configurations discussed in Section 6.2,

though some extensions are possible as suggested in Section 9.3. To analyze a

real world process situation, some assumptions have to be made. Since there is an

additional step of translating to the Petri nets, some additional assumptions may

have to be made.

 The actual strength of this approach is in the formality provided by the Petri nets.

The ability to capture the process domain requirements using Petri nets could

itself be a limitation for this approach.

 Existing Petri net representation does not provide means to store the analysis

results which are to be transferred back to the process model. This also

contributes to the limitations of the multi-step approach.

8.2 Evaluation Criteria

8.2.1 Feasibility

The mappings identified for both the single-step approach and the multi-step

approach described in chapters 6 and 7 suggest that both the approaches are feasible.

Essentially, in both the approaches, a process-centric view is translated to a resource

centric view. In the single-step approach, the graphical process model is directly

translated to a queueing model. The mappings that are required for this translation are

specified in Section 6.2 of Chapter 6. In the second case the graphical process model is

converted to a Petri net, which in turn is translated into a queueing model. Although the

queueing model is being generated from a Petri net, the underlying methodology is still

the same: generating the queueing network model from a process-centric view of the

 80

system. In this case the Petri net model provides the process-centric view. The

translations from the Petri net representation to the queueing model are specified in

Section 7.2 of the Chapter 7. There is no conceptual difference in either of the approaches

as the same methodology is followed in identifying the mappings.

8.2.2 Complexity in Modeling

The complexity in either of the approaches can be attributed to the difficulty in

arriving at the mappings for each intermediate step. The level of complexity increases

with the change of views at each intermediate step. For instance, consider the two step

process where the first step involves conversion to a process-centric view and the second

step involves conversion to a resource centric view. As the views are different, a one-to-

one mapping may not exist between them. This in turn adds to the complexity of the

entire process. Further, the number of such intermediate translations complicates to the

modeling effort.

Since the single-step approach involves only a direct conversion, the complexity

is relatively less. This additional step in the multi-step approach is expected to add some

complexity to the overall process. However, in the intermediate step, the translation is

between the same views. As there is a one-to-one correspondence between the process

model and a Petri net representation as identified in [12], this added step of mappings

does not contribute significantly to the complexity of the overall process. However, this

is an extra step compared to the single-step approach. At this juncture, it is difficult to

arrive at a conclusion as to which of these approaches is better.

 81

8.2.3 Representational Capability

The graphical languages existing in the literature encompass different dimensions

of the business process life cycle. The amount of detail that could be captured using the

graphical language constructs constrains the specification of any model. A considerable

amount of detail in the process models is required for specification purposes. However,

for analyses, all the details may not be required. Depending upon the analysis technique

chosen, some detail needs to be ignored or some extra detail needs to be added to the

existing model. This extra information may not be readily captured by the modeling

constructs. For example, if queueing is chosen as the analysis technique, details regarding

the resource requirements are important and the information regarding the other entities

could be ignored. In the process models the resource availability is not explicitly

provided. The modeling language chosen should be capable of capturing the resource

requirements.

In both the approaches discussed in this thesis, the same modeling language’s

(DDL) constructs are used. The DDL provides the capability of storing the resource

requirements assuming that all the necessary details are provided by the user. In the first

approach, the translation is from these constructs directly, hence there is no difficulty in

identifying the resources and the corresponding mappings. In the second approach, when

the process model is translated to a Petri net, these resource requirements are captured as

input places. All the other required entities are also captured as input places. So there

needs to be a way to identify or differentiate an input place that corresponds to a resource

from the other input places that are a result of other required entities. Otherwise, it would

be difficult to achieve the mappings as suggested earlier. One feasible solution to this is

 82

to attach a special label to identify an input place that corresponds to a resource. This

could be viewed as a representational constraint in this approach.

Also, in the second approach though a Petri net is suggested as the base model,

depending on the analysis technique chosen specialized Petri nets may have to be used

instead of high level Petri nets. For example, to configure a queueing model stochastic

Petri nets need to be used as suggested in Chapter 7. The required specialization may be a

potential constraint in this approach.

8.2.4 Formality

Various modeling languages have been suggested in the literature. It is difficult to

find a formal language that can capture all the details from a process model developed

using different modeling languages. The formality suggested by [17] is used in this thesis

for both the approaches. As DDL fits the formality used here, the suggested mappings

hold in the single-step approach where, the mappings are shown between these formal

elements. However, if a different modeling language is used, then there is a possibility

that it may not fit the formality suggested. In such a case the first approach may not be

feasible as is. However, such a case may not be encountered in the literature. In the multi-

step approach, the base model is a Petri net, which has a standard formality associated

with it. This standard gives us an added confidence in the validity of this approach.

8.2.5 Complexity in Retrieving Performance Measures

One of the desired functionalities of these approaches is to interpret and pass the

performance measures obtained as a result of the analysis back to the modeler. Both the

approaches have some limitations in this regard. However, this desired functionality is

more practical in the single-step approach, where the graphical modeling language can

 83

store some if not all of the measures from the queueing model. As suggested by [5], DDL

allows for holding some of these performance measures. However, if the modeler

chooses a language other than the DDL, the ease of achieving this functionality depends

on the capability of that language.

In the second approach, since Petri nets are used as the intermediate

representation, there is a need to augment the Petri nets to hold these measures and pass

them back to the process model. Since the computer processable format of Petri nets, the

PNML, is still in the development stage, addition of such functionality may not be a

daunting task.

Also it should be noted that, in order to achieve the functionality of interpreting the

performance measures, the entire process needs to be guided by an intelligent support

system like the DISS within the DIME framework.

8.3 Conclusions

 In Section 8.2, the pros and cons of the single-step and the multi-step approaches

were evaluated with respect to the criteria suggested. It should be noted that both the

approaches are feasible, but complexity varies based on the criterion evaluated. Also, it is

evident that both the single-step and multi-step approaches have their strengths and

limitations of different dimensions. At this juncture, there is no clear winner as both the

approaches suggest complexities in their own respect. Also these approaches were

evaluated only with the limited criteria suggested in the previous section. The pros and

cons of the respective approaches were assessed mainly with queueing analysis in view.

At the outset, the single-step approach is feasible and simple but lacks the much needed

 84

theory base to drive the translation from a business process description to a performance

model. However, as suggested in the DIME framework, the need for an established

theory base such as Petri nets for driving the analysis in a distributed and integrated

framework, favors the choice of the multi-step approach. However, it has to be noted that,

if the multi-step approach is used, the downside would be the complexity in passing the

performance measures back to the process model. But as suggested in Section 8.2.5, this

drawback could be addressed with more research in this area. With this limited

knowledge, it would be too early to recommend an approach that could potentially be

used as the approach to generate performance models from business process descriptions.

 85

Chapter 9

Conclusions and Future Work

This final chapter is divided into three sections. The first section summarizes the

research completed. The second section lists the contributions of this thesis and the third

section outlines areas for future work.

9.1 Research Summary

Focus of Research

The purpose of this research was to develop formal representations within the

DIME framework to support performance analysis using queueing theory. The central

idea was to develop a general purpose representation which could be used either as a part

of an integrated environment or used in isolation. The existing framework is designed to

use Petri net representation as the back-end to generate other formal representations. As

part of the current effort, two-way mappings schemes between DIME Descriptive

Modeling Language and queueing models were explored in addition to the mappings

between the Petri nets and queueing models.

 86

Methodology Employed

The existing modeling approaches were studied and explored in detail to gain an

understanding of their purpose, strengths and limitations. The next step was to study and

identify the linkages between modeling constructs, their representations and

corresponding queueing models. Specifically, linkages between the DIME Modeling

Language, corresponding Petri net representation and the queueing models were studied.

This was followed by the development of a set of elements that are required for the

specification of queueing network models. Based on the elements, a meta model was

developed to identify the relationships between these elements. A markup language

(QNML) for queueing networks was then specified. This step was followed by the

development of two-way mapping schemes between DDL and QNML, and two-way

mapping schemes between PNML and QNML. Transformations were accomplished

through the transformation algorithms. Next, the pros and cons of the approaches from

the previous step were evaluated for suggesting an approach to generate formal

representations for queueing analysis within the DIME framework.

Results

The outcomes of this thesis are two XML based approaches to automatically

configure a queueing Network model from a business process description. Also a

standard XML-based interchange format, called the Queueing Network Markup

Language (QNML), is developed as part of this research effort to store and exchange

queueing network descriptions.

 87

9. 2 Contributions

The main contribution of this research is enabling the performance analysis using

queueing models within DIME Framework. Also an approach to support performance

analysis (through queueing models) of business processes is suggested. Though this

approach has been developed with DIME framework in view, it could also be used in

isolation. During the course of this research, an XML-based markup language, called

Queueing Network Markup Language has been developed to describe queueing network

models. Also this thesis provides an insight for translation of business process

descriptions to other quantitative models like simulation models.

9.3 Future Work

This thesis effort is a first step towards enabling performance analysis of business

process models in an integrated and distributed environment. The main purpose here was

to develop an approach to enable queueing analysis, in doing so many simplifying

assumptions have been made. To model a real world system and analyze it, the developed

methodology may not be adequate. However, using the developed methodology as base,

extensions can be made to achieve analysis of a realistic system. To make this effort

complete, the following considerations need to be made in future.

1. Though the resource sharing issue was addressed in the business process models

studied as part of this thesis, it is assumed that any activity that captures a

resource is also the activity that releases it. However, this is not usually the case

 88

in many real world systems. This dimension of modeling needs to be explored as

part of the future work.

2. In all the process models it was assumed that an activity requires a single unit of a

resource of the same type. However, this could be extended to accommodate

multiple units of multiple resources.

3. Since this effort was mainly focused on business process modeling and the main

contributions are towards the field of enterprise modeling, no effort was made to

explore solutions of any special cases in queueing models. For example,

concurrency in business process models could be modeled using a fork-join queue

with some assumptions. However, arriving at such models was not the focus of

this research and is left for future work.

4. This research was mainly focused on taking a business process description to a

queueing model and analyzing it. However, in an integrated and distributed

environment, interpreting the analysis results and carrying them back to the

modeler is also a significant step. Though some ideas have been presented in the

initial sections, the actual implementation needs a methodology to drive the

thrust. This dimension also needs to be explored in future. The complications in

this case are that the results reported are tool specific. So there needs to be a

standard methodology through which some uniformity is achieved.

5. One of the outcomes of this thesis is the identification of the need for a Queueing

Network Markup Language. This thesis effort has led to an initial version of

QNML. However, this needs to be distributed among the queueing community for

review and acceptance. Also there may be many changes that need to be made

 89

during the course of the suggested review. The ultimate goal of QNML would be

to become the standard input for all queueing analysis tools. This would be one of

the areas where some research may also be conducted in future.

 90

References

1. Arkin, A., 2003. “Business Process Modeling Language – BPMI Proposed

Recommendation,” Retrieved from http://www.bpmi.org/bpml-spec.esp. Last

accessed July 7, 2004.

2. Billington, J., et al., 2003. “The Petri Net Markup Language: Concepts,

Technology, and Tools,” Retrieved from http://www.informatik.hu-

berlin.de/top/pnml/. Last accessed July 23, 2004.

3. Birbeck, M., et al., 2001. Professional XML. Wrox Press Inc. Chicago, IL.

4. Bray, T., Paoli, J., Sperberg-McQueen, C., and Maler, E., Yergeau, F., 2000,

"eXtensible Markup Language (XML) 1.0 (Second Edition),” Retrieved from

World Wide Web Consortium (W3C) website: http://www.w3.org/TR/REC-xml.

Last accessed July 7, 2004.

5. Chaugule, A., 2001. A User-Oriented Enterprise Process Modeling Language.

Masters Thesis, Oklahoma State University, Stillwater, OK.

6. Dalal, N., Kamath, M., Kolarik, W., and Sivaraman, E., 2004. “Toward an

Integrated Framework for Modeling Enterprise Processes,” Communications of

the ACM, Vol. 47, Iss. 3, pg. 83-87.

7. Electronic Business using eXtensible Markup Language (ebXML), 1999.

Retrieved from http://www.ebxml.org. Last accessed July 7, 2004.

 90

8. Choi, I., Song, M., Park, C., and Park, N., 2003. “An XML Based Process

Definition Language for Integrated Process Management,” Computers in Industry.

Vol. 50, Iss. 1; pg. 85 –102.

9. Jungel, M., Kindler, E., and Weber, M., 2000. “The Petri Net Markup Language,”

Petri Net Newsletter, 59:24-29.

10. Kamath, M., Dalal, N., Kolarik, W., Chaugule, A., Sivaraman, E., and Lau, A.,

2001, “Process Modeling Techniques for Enterprise Analysis and Design – A

Comparative Evaluation,” Proceedings of the 10th Industrial Engineering

Research Conference, IIE, Norcross, GA.

11. Kamath, M., Dalal, N., Kolarik, W., Lau, A., Sivaraman, E., Chaugule, A.,

Choudhury, S., Gupta, A., and Channahalli, R., 2002, “An Integrated Framework

for Process and Performance Modeling of Next Generation Enterprise Systems:

Design and Development Issues,” Proceedings of the University Synergy

Program (USP) Conferenc.

12. Kamath, M., Dalal, N., Chaugule, A., Sivaraman, E., and Kolarik, W., 2003, “A

Review of Enterprise Process Modeling Techniques,” in Scalable Enterprise

Systems: An Introduction to Recent Advances, V. Prabhu, S. Kumara, and M.

Kamath, (Eds)., Kluwer Academic Publishers, Boston, MA, 1–32.

13. Kamath, M., Dalal, N., Kolarik, W., 2004, “The Distributed Integrated Process

Modeling of Next Generation Enterprises Framework,” Working Paper, Center

for Computer Integrated Enterprises, Oklahoma State University, Stillwater, OK.

 91

14. Kelton, D., Sadowski, R., and Sadowski, D., 2002, Simulation with Arena, Second

Edition. McGraw-Hill, Inc., New York, NY.

15. Organization for the Advancement of Structured Information Standards (OASIS),

2000, Retrieved from the “XML.org: The XML Industry Portal,” website:

http://www.xml.org. Last accessed June 30, 2004.

16. Fishwick, P., 2002, “Using XML for Simulation Modeling,” Proceedings of the

2002 Winter Simulation Conference, Vol. 1, pg. 616-622.

17. Sivaraman, E., 2003. Formal Techniques for Analyzing Business Process Models.

PhD Dissertation, Oklahoma State University, Stillwater, OK.

18. Sivaraman, E. and Kamath, M., 2002, “On the use of Petri Nets for Business

Process Modeling”, Proceedings of the 11th Industrial Engineering Research

Conference. , IIE, Orlando, FL.

19. Unified Enterprise Modeling Language (UEML), 2002, Retrieved from “The

UEML Portal,” website: http://www.ueml.org. Last accessed July 25, 2004.

20. Viswanadham, N., and Narahari, Y., 1998, Performance Modeling of Automated

Manufacturing Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ.

21. Van der Aalst, W.M.P., and Kumar, A., 2003, “XML Based Schema Definition

for Support of Inter-organizational Workflow,” Information Systems Research,

Vol. 14, Iss. 1, pg.23-47.

22. Weidmann T, 2002, “Next Generation Simulation Environments Founded on

Open Source Software And XML Based Standard Interfaces,” Proceedings of the

2002 Winter Simulation Conference.

 92

23. Whitt, W. (1983), “The Queueing Network Analyzer,” Bell Systems Technical

Journal, 62, No 9, 2779-2815.

24. World Wide Web Consortium (W3C), 2001, “XML Schema,” Retrieved from

http://www.w3.org/XML/Schema.html. Last accessed July 23, 2004.

 93

Appendix A

UML Notation:

Abstract Class

Composition

Generalization

Abstract Class

Composition

Generalization

Association

 94

Appendix B

QNML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:complexType name="QNFile">
 <xs:annotation>
 <xs:documentation>Root Element</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="Network">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Network"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Network">
 <xs:sequence>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="CustomerCount" type="xs:integer"/>
 <xs:element name="NodeCount" type="xs:integer"/>
 <xs:element name="RoutingInformation" type="xs:string"/>
 <xs:choice>
 <xs:element name="Node" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Node"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Route">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Operation">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Operation">
 <xs:sequence>
 <xs:element name="Service">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Service"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Node" maxOccurs="unbounded">
 <xs:complexType>

 95

 <xs:sequence>
 <xs:element name="Arrival" type="Arrival"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Node">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>
 <xs:element name="ServerCount" type="xs:integer"/>
 <xs:element name="Utilization" type="xs:double"/>
 <xs:sequence>
 <xs:element name="Server" type="Server" maxOccurs="unbounded"/>
 <xs:element name="Queue" type="Queue"/>
 <xs:element name="Flow" type="Flow" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:element name="Arrival" type="Arrival"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Flow">
 <xs:sequence>
 <xs:element name="OriginNode" type="xs:IDREF"/>
 <xs:element name="DestinationNode" type="xs:IDREF"/>
 <xs:element name="RoutingProbability" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Queue">
 <xs:sequence>
 <xs:element name="Size" type="xs:integer"/>
 <xs:element name="Discipline" type="xs:string"/>
 <xs:element name="MeanLength" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Server">
 <xs:sequence>
 <xs:element name="ServiceTime" type="xs:double"/>
 <xs:element name="Utilization" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Operation">
 <xs:sequence>
 <xs:element ref="Node"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Arrival">
 <xs:sequence>
 <xs:element name="Rate" type="xs:double"/>
 <xs:element name="SCV" type="xs:double"/>
 <xs:element name="Distribution" type="Distribution"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Service">
 <xs:sequence>
 <xs:element name="Mean" type="xs:double"/>
 <xs:element name="SCV" type="xs:double"/>
 <xs:element name="Distribution" type="Distribution"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Distribution">

 96

 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Parameters" type="xs:ENTITIES"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Route">
 <xs:sequence>
 <xs:element name="OperationCount" type="xs:integer"/>
 <xs:element name="ArrivalRate" type="xs:double"/>
 <xs:element name="SCV" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Node"/>
</xs:schema>

 97

Appendix C

Function DML2QNML

 '***
 'This function takes a DMLFile as input and returns a
 'boolean true after the QNML File is written. If any
 'exception is encountered it return a false.
 '
 'This function uses the following other class objects
 '1.Activity
 '2.Resource
 '3.ResourceRequired
 '***

 Function DML2QNML(ByVal DMLFile As XmlDocument) As Boolean
 Dim ResourcePool As New ArrayList
 Dim ActivityPool As New ArrayList

 Try
 'Reading Part of the DML
 Dim reader As XmlNodeReader = New XmlNodeReader(DMLFile)
 While reader.Read()
 'This loop reads all the resource elements and buils a
resource object list
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Resource" Then
 Dim ResObj As New Resource
 ResObj.id = reader.GetAttribute("id")
 Do
 reader.Read()
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Name" Then
 ResObj.Name = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Type" Then
 ResObj.Type = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Description" Then
 ResObj.Description = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Count" Then
 ResObj.Count =
Convert.ToInt16(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Utilization" Then
 ResObj.Utilization =
Convert.ToDouble(reader.ReadString)
 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "Resource")

 98

 ResourcePool.Add(ResObj)
 End If

 'This loop reads all the Activity elements and buils a
Activity object list
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Activity" Then
 Dim ActObj As New Activity
 ActObj.id = reader.GetAttribute("id")
 Do
 reader.Read()
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "ActivityName" Then
 ActObj.Name = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Type" Then
 ActObj.Type = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Classification" Then
 ActObj.Classification = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "ActivityDuration" Then
 ActObj.ActivityDuration =
Convert.ToInt16(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "SCV" Then
 ActObj.SCV =
Convert.ToDouble(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "INPUT" Then
 Do
 reader.Read()
 'This loop reads all the Resources
required by an activity
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "RESOURCES" Then
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "Resource" Then
 ActObj.ResourceReq.id =
reader.GetAttribute("ResID")
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "UnitsAvailable" Then

ActObj.ResourceReq.UnitsRequired = Convert.ToInt16(reader.ReadString)
 End If
 Loop Until (reader.NodeType
= XmlNodeType.EndElement) And (reader.Name = "Resource")
 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "RESOURCES")
 End If

 99

 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "INPUT")

 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "Activity")
 ActivityPool.Add(ActObj)
 End If
 End While

 'Writing Part of the PNML from DML
 Dim NodeCount, OperationCount, i, j, k As Integer
 Dim textWriter As XmlTextWriter = New
XmlTextWriter(OutputFile, Nothing)
 textWriter.WriteStartDocument()
 textWriter.WriteStartElement("QNFile")
 textWriter.WriteStartElement("QNML")

 textWriter.Formatting = Formatting.Indented
 'Following lines add general information about the network
to the QNFile
 'Only open Queueing Networks with Deterministic routing
were considered here
 textWriter.WriteStartElement("Network")
 textWriter.WriteElementString("Type", "Open")
 textWriter.WriteElementString("CustomerCount", "Infinity")
 textWriter.WriteElementString("NodeCount",
ResourcePool.Count().ToString)
 textWriter.WriteElementString("RoutingInformation",
"Deterministic")

 NodeCount = ResourcePool.Count()

 'This loop writes the Node elements using the Resource list
 For i = 1 To NodeCount
 Dim ResObj As Resource
 ResObj = ResourcePool.Item(i - 1)

 Dim id As String = "n" & i.ToString()
 textWriter.WriteStartElement("Node")

 'Following lines add general information about the node
 textWriter.WriteAttributeString("id", ResObj.id)
 textWriter.WriteElementString("Name", ResObj.Name)
 textWriter.WriteElementString("Type", ResObj.Type)
 textWriter.WriteElementString("Description",
ResObj.Description)
 textWriter.WriteElementString("ServerCount",
ResObj.Count)
 textWriter.WriteElementString("Utilization",
ResObj.Utilization)
 'Following lines add general information about the
Server to the node element

 100

 'Only Single Server systems were considered here
 textWriter.WriteStartElement("Server")
 textWriter.WriteElementString("ServiceTime", "")
 textWriter.WriteElementString("Utilization", "")
 textWriter.WriteEndElement() ' End Server
 'Following lines add Queue information to the node
element
 textWriter.WriteStartElement("Queue")
 textWriter.WriteElementString("Size", "Infinity")
 textWriter.WriteElementString("Discipline", "FCFS")
 textWriter.WriteElementString("MeanLength", "")
 textWriter.WriteEndElement() ' End Queue
 'Following lines add Arrival information to the node
element
 textWriter.WriteStartElement("Arrival")
 textWriter.WriteElementString("Rate", "")
 textWriter.WriteElementString("SCV", "")
 textWriter.WriteElementString("Distribution", "--")
 textWriter.WriteEndElement() ' End Arrival

 textWriter.WriteEndElement() ' End Node

 Next

 'Based on the path information provided, the Route elements
are wriiteen in this loop
 For j = 1 To PathCount

 OperationCount = EnumPathObj(j).Operations.GetLength(0)

 textWriter.WriteStartElement("Route")
 textWriter.WriteAttributeString("id", "R" & j)

 'On each path, the Activities correspond to the
Operations
 'This loop builds the Activities on each path and a
corresponding operation is added
 'to the Route
 For i = 1 To OperationCount

 Dim ActObj As Activity
 For k = 1 To ActivityPool.Count()
 ActObj = ActivityPool(k - 1)
 If ActObj.id = EnumPathObj(j).Operations(i - 1)
Then
 Exit For
 End If
 Next

 textWriter.WriteStartElement("Operation")

 textWriter.WriteAttributeString("id", ActObj.id)
 textWriter.WriteElementString("Name", ActObj.Name)

 101

 textWriter.WriteElementString("Node",
ActObj.ResourceReq.id)
 textWriter.WriteElementString("Description",
ActObj.Description)

 textWriter.WriteStartElement("Service")
 textWriter.WriteElementString("Mean",
ActObj.ActivityDuration)
 textWriter.WriteElementString("SCV", ActObj.SCV)
 textWriter.WriteElementString("Distribution", "--")
 textWriter.WriteEndElement() ' End Service

 textWriter.WriteEndElement() ' End Operation
 Next
 textWriter.WriteEndElement() ' End Route
 Next

 'Following lines Close all the open tags from the beginning
 textWriter.WriteEndElement() ' End Network
 textWriter.WriteEndElement() 'End QNML
 textWriter.WriteEndElement() 'End QNFile
 textWriter.WriteEndDocument() 'End XMLDocument
 textWriter.Close()

 Return True
 Catch ex As Exception

 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error)
 Return False

 End Try

 End Function

 102

Appendix D

Function DML2PNML

'***
 'This function takes a DMLFile as input and returns a
 'boolean true after the PNML File is written. If any
 'exception is encountered it return a false.
 '
 'This function uses the following other class objects
 '1.Transition
 '2.Resource
 '3.ResourceRequired
 '
 'This function takes transitiona and resource input places
 'into consideration. Output Places are ignored.
 '***

 Function DML2PNML(ByVal DMLFile As XmlDocument) As Boolean

 Dim ResourcePool As New ArrayList
 Dim ActivityPool As New ArrayList

 Try
 'Reading Part of the DML
 Dim reader As XmlNodeReader = New XmlNodeReader(DMLFile)
 While reader.Read()
 'This loop reads all the resource elements and buils a
resource object list
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Resource" Then
 Dim ResObj As New Resource
 ResObj.id = reader.GetAttribute("id")
 Do
 reader.Read()
 If reader.NodeType = XmlNodeType.Element And
_reader.Name = "Name" Then
 ResObj.Name = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Type" Then
 ResObj.Type = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Description" Then
 ResObj.Description = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "ServerCount" Then
 ResObj.Count =
Convert.ToInt16(reader.ReadString)

 103

 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Utilization" Then
 ResObj.Utilization =
Convert.ToDouble(reader.ReadString)
 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "Resource")
 ResourcePool.Add(ResObj)
 End If
 'This loop reads all the Activity elements and buils a
Activity object list
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Activity" Then
 Dim ActObj As New Activity
 ActObj.id = reader.GetAttribute("id")
 Do
 reader.Read()
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "ActivityName" Then
 ActObj.Name = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Type" Then
 ActObj.Type = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Classification" Then
 ActObj.Classification = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "ActivityDuration" Then
 ActObj.ActivityDuration =
Convert.ToInt16(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "SCV" Then
 ActObj.SCV =
Convert.ToDouble(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "INPUT" Then
 'This loop reads all the Resources required
by an activity
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "RESOURCES" Then
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "Resource" Then
 ActObj.ResourceReq.id =
reader.GetAttribute("ResID")
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "UnitsAvailable" Then

ActObj.ResourceReq.UnitsRequired = Convert.ToInt16(reader.ReadString)
 End If
 Loop Until (reader.NodeType
= XmlNodeType.EndElement) And (reader.Name = "Resource")

 104

 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "RESOURCES")
 End If

 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "INPUT")

 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "Activity")
 ActivityPool.Add(ActObj)
 End If
 End While

 'Writing Part of the PNML from DML
 Dim IPlaceCount, TransitionCount, i, j, k As Integer
 Dim textWriter As XmlTextWriter = New
XmlTextWriter(OutputFile, Nothing)
 textWriter.WriteStartDocument()
 textWriter.WriteStartElement("PNML")

 textWriter.Formatting = Formatting.Indented
 'Following lines add general information about the Petri
net
 'Only open Stochastic Petri nets were considered here
 textWriter.WriteStartElement("PetriNet")
 textWriter.WriteElementString("Type", "Stochastic")

 IPlaceCount = ResourcePool.Count()
 'This loop writes the Input Places using the Resource list
 textWriter.WriteStartElement("InputPlaces")
 For i = 1 To IPlaceCount
 Dim ResObj As Resource
 ResObj = ResourcePool.Item(i - 1)

 Dim id As String = "n" & i.ToString()
 'Following lines add general information about the
InputPlace of type Resource
 textWriter.WriteStartElement("Resource")
 textWriter.WriteAttributeString("id", ResObj.id)
 textWriter.WriteElementString("Name", ResObj.Name)
 textWriter.WriteElementString("Type", ResObj.Type)
 textWriter.WriteElementString("Description",
ResObj.Description)
 textWriter.WriteElementString("TokenCount",
ResObj.Count)
 Next
 textWriter.WriteEndElement() ' End InputPlaces

 'This loop writes the Trasitions using the Activity list
 For i = 1 To TransitionCount
 Dim TransObj As Transition
 TransObj = CType(ActivityPool.Item(i - 1), Transition)

 Dim id As String = "t" & i.ToString()

 105

 textWriter.WriteStartElement("Transition")
 textWriter.WriteAttributeString("id", TransObj.id)
 textWriter.WriteElementString("TransitionName",
TransObj.Name)
 textWriter.WriteElementString("Type", TransObj.Type)
 textWriter.WriteElementString("MeanFiringRate",
TransObj.MeanFiringRate)
 textWriter.WriteElementString("SCV", TransObj.SCV)

 textWriter.WriteStartElement("PLACES")
 textWriter.WriteStartElement("Resource")

 textWriter.WriteAttributeString("id",
TransObj.ResourceReq.id)
 textWriter.WriteStartElement("UnitsRequired",
TransObj.ResourceReq.UnitsRequired)

 textWriter.WriteEndElement() 'End Resource
 textWriter.WriteEndElement() 'End Places
 textWriter.WriteEndElement() 'End Transition

 Next

 textWriter.WriteEndElement() ' End PetriNet

 textWriter.WriteEndElement() 'End PNML
 textWriter.WriteEndDocument() 'End XMLDocument
 textWriter.Close()

 Return True

 Catch ex As Exception

 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error)
 Return False

 End Try

 106

Function PNML2QNML

'***
 'This function takes a PNMLFile as input and returns a
 'boolean true after the QNML File is written. If any
 'exception is encountered it return a false.
 '
 'This function uses the following other class objects
 '1.Transition
 '2.Resource
 '3.ResourceRequired
 '***

 Function PNML2QNML(ByVal PNMLFile As XmlDocument) As Boolean
 Dim ResourcePool As New ArrayList
 Dim TransitionPool As New ArrayList
 Try
 'Reading Part of the PNML
 Dim reader As XmlNodeReader = New XmlNodeReader(PNMLFile)
 While reader.Read()
 'This loop reads all the Input Places and buils a
resource object list from it
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "InputPlaces" Then
 reader.Read()
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Resource" Then
 Dim ResObj As New Resource
 ResObj.id = reader.GetAttribute("id")
 Do
 reader.Read()
 If reader.NodeType = XmlNodeType.Element
And reader.Name = "Name" Then
 ResObj.Name = reader.ReadString
 ElseIf reader.NodeType =
XmlNodeType.Element And reader.Name = "Type" Then
 ResObj.Type = reader.ReadString
 ElseIf reader.NodeType =
XmlNodeType.Element And reader.Name = "Description" Then
 ResObj.Description = reader.ReadString
 ElseIf reader.NodeType =
XmlNodeType.Element And reader.Name = "TokenCount" Then
 ResObj.Count =
Convert.ToInt16(reader.ReadString)
 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "Resource")
 ResourcePool.Add(ResObj)
 End If
 End If

 107

 'This loop reads all the Transition elements and buils
a transaction object list
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "Transition" Then
 Dim TransObj As New Transition
 TransObj.id = reader.GetAttribute("id")
 Do
 reader.Read()
 If reader.NodeType = XmlNodeType.Element And
reader.Name = "TransitionName" Then
 TransObj.Name = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "Type" Then
 TransObj.Type = reader.ReadString
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "MeanFiringRate" Then
 TransObj.MeanFiringRate =
Convert.ToInt16(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "SCV" Then
 TransObj.SCV =
Convert.ToDouble(reader.ReadString)
 ElseIf reader.NodeType = XmlNodeType.Element
And reader.Name = "INPUT" Then
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "PLACES" Then
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "Resource" Then
 TransObj.ResourceReq.id =
reader.GetAttribute("ResID")
 Do
 reader.Read()
 If reader.NodeType =
XmlNodeType.Element And reader.Name = "TokensRequired" Then

TransObj.ResourceReq.UnitsRequired = Convert.ToInt16(reader.ReadString)
 End If
 Loop Until (reader.NodeType
= XmlNodeType.EndElement) And (reader.Name = "Resource")
 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "PLACES")
 End If

 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "INPUT")

 End If
 Loop Until (reader.NodeType =
XmlNodeType.EndElement) And (reader.Name = "Transition")
 TransitionPool.Add(TransObj)
 End If

 108

 End While

 'Writing Part of the QNML from PNML
 Dim NodeCount, OperationCount, i, j, k As Integer
 Dim textWriter As XmlTextWriter = New
XmlTextWriter(OutputFile, Nothing)
 textWriter.WriteStartDocument()
 textWriter.WriteStartElement("QNFile")
 textWriter.WriteStartElement("QNML")
 textWriter.Formatting = Formatting.Indented
 'Following lines add general information about the network
to the QNFile
 'Only open Queueing Networks with Deterministic routing
were considered here
 textWriter.WriteStartElement("Network")
 textWriter.WriteElementString("Type", "Open")
 textWriter.WriteElementString("CustomerCount", "Infinity")
 textWriter.WriteElementString("NodeCount",
ResourcePool.Count().ToString())
 textWriter.WriteElementString("RoutingInformation",
"Deterministic")

 NodeCount = ResourcePool.Count()
 'This loop writes the Node elements using the Resource list

 For i = 1 To NodeCount
 Dim ResObj As Resource
 ResObj = ResourcePool.Item(i - 1)

 Dim id As String = "n" & i.ToString()
 textWriter.WriteStartElement("Node")

 textWriter.WriteAttributeString("id", ResObj.id)
 textWriter.WriteElementString("Name", ResObj.Name)
 textWriter.WriteElementString("Type", ResObj.Type)
 textWriter.WriteElementString("Description",
ResObj.Description)
 textWriter.WriteElementString("ServerCount",
ResObj.Count)
 textWriter.WriteElementString("Utilization",
ResObj.Utilization)
 'Following lines add general information about the
Server to the node element
 'Only Single Server systems were considered here
 textWriter.WriteStartElement("Server")
 textWriter.WriteElementString("ServiceTime", "")
 textWriter.WriteElementString("Utilization", "")
 textWriter.WriteEndElement() ' End Server
 'Following lines add Queue information to the node
element
 textWriter.WriteStartElement("Queue")
 textWriter.WriteElementString("Size", "Infinity")
 textWriter.WriteElementString("Discipline", "FCFS")
 textWriter.WriteElementString("MeanLength", "")
 textWriter.WriteEndElement() ' End Queue

 109

 'Following lines add Arrival information to the node
element
 textWriter.WriteStartElement("Arrival")
 textWriter.WriteElementString("Rate", "")
 textWriter.WriteElementString("SCV", "")
 textWriter.WriteElementString("Distribution", "--")
 textWriter.WriteEndElement() ' End Arrival

 textWriter.WriteEndElement() ' End Node
 Next

 'Based on the Transition firing Sequences provided, the
Route elements are writteen in this loop
 For j = 1 To TSFCount

 OperationCount =
EnumFiringSeqObj(j).Operations.GetLength(0)

 textWriter.WriteStartElement("Route")
 textWriter.WriteAttributeString("id", "R" & j)
 'On each sequence, the Transitions correspond to the
Operations
 'This loop builds the Transitions on each path and a
corresponding operation is added
 'to the Route
 For i = 1 To OperationCount

 Dim TransObj As Transition
 For k = 1 To TransitionPool.Count()
 TransObj = TransitionPool(k - 1)
 If TransObj.id =
EnumFiringSeqObj(j).Operations(i - 1) Then
 Exit For
 End If
 Next

 textWriter.WriteStartElement("Operation")

 textWriter.WriteAttributeString("id", TransObj.id)
 textWriter.WriteElementString("Name",
TransObj.Name)
 textWriter.WriteElementString("Node",
TransObj.ResourceReq.id)
 textWriter.WriteElementString("Description",
TransObj.Description)

 textWriter.WriteStartElement("Service")
 textWriter.WriteElementString("Mean",
TransObj.MeanFiringRate)
 textWriter.WriteElementString("SCV", TransObj.SCV)
 textWriter.WriteElementString("Distribution", "--")
 textWriter.WriteEndElement() ' End Service

 110

 textWriter.WriteEndElement() ' End Operation
 Next
 textWriter.WriteEndElement() ' End Route
 Next

 'Following lines Close all the open tags from the beginning
 textWriter.WriteEndElement() ' End Network

 textWriter.WriteEndElement() 'End QNML
 textWriter.WriteEndElement() 'End QNFile
 textWriter.WriteEndDocument() 'End XMLDocument
 textWriter.Close()
 Return True
 Catch ex As Exception

 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error)
 Return False

 End Try
 End Function

 111

Appendix E

Screenshots of the Windows based environment for QNML Configuration

1. Choosing the function to execute

2. Screen shot browsing the input DML file

 112

3. Providing the location to save the output QNML File

4. Providing the Enumerated Paths as input

VITA

Uma Maheshwar Chalavadi

Candidate for the Degree of

Master of Science

Thesis: AUTOMATIC CONFIGURATION OF QUEUEING NETWORK

MODELS FROM BUSINESS PROCESS DESCRIPTIONS

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Hyderabad, India, on July 28, 1979, the son of
Chandra Sekhar and Shashikala Chalavadi.

 Education: Received the Bachelor of Engineering Degree in Mechanical

Engineering from Birla Institute of Technology & Science,
Pilani in May, 2002; graduated with first class honors.
Completed the requirements for the Master of Science degree
in Industrial Engineering and Management at Oklahoma State
University in December, 2004.

 Experience: Currently working as a Software Developer in the

Department of Bio-Systems at Oklahoma State University.
Earlier worked as a graduate research assistant in the same
department. Also, worked as Teaching Assistant in the School
of Industrial Engineering and Management, at Oklahoma State
University from August 2003 to May 2004.

 Professional Memberships: Alpha Pi Mu (National Honor Society for
Industrial Engineers)

Name: Uma Maheshwar Chalavadi Date of Degree: December, 2004

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: AUTOMATIC CONFIGURATION OF QUEUEING NETWORK

MODELS FROM BUSINESS PROCESS DESCRIPTIONS

Pages in Study: 112 Candidate for the Degree of Master of Science

Major Field: Industrial Engineering and Management

Scope and Method of Study: The purpose of this study was to develop a transformation
scheme for automatic configuration of queueing network models from business process
descriptions. Such a transformation scheme would enable queueing analysis of process
models within an enterprise modeling framework, which is theory driven and links
business process descriptions with formal qualitative and quantitative analyses in an
integrated manner. A framework of this kind is suitable for next generation enterprises
such as e-businesses, virtual enterprises, and global supply chains. The aim of this
research was to extend the analysis capability of such an enterprise modeling framework.
The transformation scheme uses the process control flow and task resource requirements
to create a view where activities belonging to one or more process instances flow through
a network of resources. Two alternative approaches were explored to automatically
configure a queueing network model from a business process description. The first
approach called the single-step approach generates a queueing network model from a
business process markup language description. The second approach called the multi-
step approach generates a queueing network model from a formal Petri-net based
business process representation, which is described using the Petri Net Markup Language
(PNML). An XML-based interchange format, called the Queueing Network Markup
Language (QNML), was developed as part of this research effort to store queueing
network descriptions. As a proof of concept, the transformation scheme was
implemented as part of the DIME framework, developed at the Center for Computer
Integrated Manufacturing Enterprises, Oklahoma State University. The DIME framework
was a result of research funded by the National Science Foundation through grant # DMI-
0075588, under the Scalable Enterprise Systems Initiative.

Findings and Conclusions: Two feasible approaches were developed to automatically
configure queueing network models from business process descriptions. This research
also led to the development of QNML, a Queueing Network Markup Language, which is
a XML-based format to describe queueing network models. This work has also enabled
the queueing analysis capability within the DIME framework.

Advisor’s approval: Dr. Manjunath Kamath

