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CHAPTER 1

Introduction to Shortest Path Problems Under Uncertainty

The shortest path problem (SPP) is to find the path through a network with the

lowest “cost” — whether that cost is measured in miles, money, minutes, or any

other metric. This problem has been extensively studied over the past 50 years

(Pollack and Wiebenson, 1960; Dreyfus, 1969; Deo and Pang, 1984). When the

structure and costs of the network are known, then very fast and powerful tools

exist to find a shortest path, such as Dijkstra’s algorithm (Dijkstra, 1959).

In the real world, though, networks are afflicted with failures, and costs can

fluctuate randomly. This limits the applicability of classical, deterministic SPP al-

gorithms. Often the definition of a “shortest” path needs to be adjusted. Different

mathematical models and algorithms are needed to handle uncertainty. The fam-

ily of shortest path problems under uncertainty (modeled by probability distribu-

tions) are collectively called stochastic shortest path problems (SSPPs).

This thesis investigates one type of SSPP. In this SSPP, the arcs of a network

can fail randomly and independently with some probability. This model is useful

for roads that close due to accidents or severe weather or for PERT charts where

activities may not get done. The effect of arc failures on the overall network and the

shortest path will be investigated in order to create measures to quantify the loss

of an arc. Secondly, a quantitative measure of downside risk called Conditional

Value-at-Risk (CVaR) will be used to find short and robust paths in the network

(Rockafellar and Uryasev, 2002).
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1.1 Organization of this Thesis

Chapter 1 discusses the classical or deterministic shortest path problem (SPP), in-

cluding a formal definition and a review of the most common algorithms, before

providing some motivating examples to show how uncertainty in graphs affects

the SPP. This chapter also introduces the research problem. Chapter 2 reviews

the modeling approaches in the literature to show what kinds of uncertainty have

been captured and what kinds of uncertainty remain relatively less-studied. This

chapter also introduces the concept of CVaR.

Chapter 3 formulates the CVaR-Constrained Stochastic Shortest Path Problem

(CVARSPP) and develops three loss functions to model loss due to probabilistic

arc failures to use in the CVARSPP. This chapter also analyzes the loss functions,

deriving their distributions for uniform arc failures and some implications for their

behavior in CVARSPP models. Then, Chapter 4 presents some exploratory com-

putational experiments that illustrate the behavior of the CVARSPP models with

the loss functions, leading to some preliminary guidance on setting parameters.

Finally, Chapter 5 presents the conclusions of this thesis and some directions for

further research.

1.2 The Deterministic Shortest Path Problem

1.2.1 Formal Definition

Consider the network G = (N, A), consisting of N, a set of nodes, and A ⊆ N×N,

a set of directed arcs connecting pairs of nodes. For each arc (ij) ∈ A, node i is

called the tail and node j is called the head. Each arc also has an associated cost

cij ∈ R+. For each node i ∈ N, its in-neighborhood is defined as N−(i) = {j|(ji) ∈

A} and its out-neighborhood is defined as N+(i) = {j|(ij) ∈ A}.

A directed path P is a sequence of k distinct nodes (i1, i2, . . . , ik), where (ij, ij+1) ∈
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A for all j ∈ {1, . . . , k− 1}. Throughout the remainder of this thesis, directed paths

will be referred to simply as “paths”. The edge-induced subgraph of the path P

is denoted by G(P) = (N(P), A(P)). The path P can also be represented by an

incidence vector x ∈ {0, 1}|A| of arcs in P, which induces the subgraph G(x) =

(N(x), A(x)). The cost, also called weight or length, of a path P is cP = ∑
(ij)∈A(P)

cij.

Definition 1.2.1. (Deterministic Shortest Path Problem)

Given network G = (N, A) and nodes s, t ∈ N, the Point-to-Point Shortest Path

Problem is to find a minimum cost path from node s to t in G.

The Single-Source Shortest Path Problem is to find a shortest path from a source node

s ∈ N to each node i ∈ N\{s}.

The All-Pairs Shortest Path Problem is to find a shortest path from every node i ∈ N

to every other node j ∈ N.

1.2.2 Classical Results for Shortest Path Problem

In the absence of negative cost cycles in the network, the SPP is a well-solved

problem, for which several strongly-polynomial algorithms are known (Deo and

Pang, 1984). These algorithms assume that the weight of each arc in the network

is constant, and network structure (nodes and arcs) are known with certainty.

Algorithms for the SPP fall into two main categories: label-setting and label-

correcting (Deo and Pang, 1984). Dijkstra’s algorithm (Dijkstra, 1959) is an exam-

ple of a label-setting algorithm. The Bellman-Ford algorithm (Bellman, 1958) is a

label-correcting algorithm derived from dynamic programming. The label-setting

algorithms require all arc costs to be nonnegative, while the label-correcting al-

gorithms only require that the network have no negative cost cycles. The Floyd-

Warshall algorithm for the All-Pairs Shortest Path Problem (Floyd, 1962) is also

based on dynamic programming. The Single-Source and Point-to-Point Shortest

Path Problems can also be formulated as a linear program and solved with the net-
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work simplex method when the network contains no negative cost cycles (Dantzig,

1957).

1.2.3 Linear Programming Formulation of the Shortest Path Problem

The linear programming (LP) formulation of Point-to-Point SPP optimization model

is worth presenting on its own since this thesis extends this formulation. The con-

straint matrix for the LP formulation of the SPP is totally unimodular, so the ex-

treme point optimal solutions are integral (Ahuja et al., 1993).

Inputs

Network G = (N, A) is a directed network.

s ∈ N is the source node.

t ∈ N is the sink node.

cij is the cost of arc (ij) ∈ A.

Decision Variables

xij for all (ij) ∈ A. At any x ∈ {0, 1}|A|, xij = 1 implies that arc (ij) is in the solution

and xij = 0 implies that arc (ij) is not.

Formulation 1.2.2 (Deterministic Formulation).

Minimize ∑
(ij)∈A

cijxij (1.1)

4



subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(1.2)

xij ≥ 0 ∀ (ij) ∈ A (1.3)

1.3 Stochastic Shortest Path Problems

Uncertainty in the system underlying a network model may be modeled by ran-

dom variation in network parameters such as arc costs and in the structure of the

network, particularly node and arc failures. Once uncertainty is allowed into the

network model, there is no longer one well-defined shortest path problem. A fam-

ily of Stochastic Shortest Path Problems (SSPPs) arise instead, depending on which

elements in the network are uncertain and how the uncertainty is modeled. Fur-

thermore, SSPPs generally require the redefinition of the concept of feasible and

optimal solutions.

One SSPP models the arc cost cij as a random variable. Applications of this

model include modeling the travel time for an arc in a congested road network

or the task duration in a PERT network (Ball et al., 1995a). For this problem, two

ways to redefine the shortest path are in terms of expected length, which gives rise

to many stochastic programming approaches, and worst-case length, in which arc

costs are set at or close to their maximum possible values, which lies behind many

robust optimization approaches (Ball et al., 1995b).

Uncertainty about which node is the source or sink can be modeled by ran-

domly assigning a supply of +1 to one node or −1 to another. This would be

useful in modeling ambulance routing during an emergency when the driver dis-
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covers which ER has room for the patient en-route.

Allowing uncertainty in the structure of the network (e.g. uncertainty in the set

of nodes or arcs, or only partial knowledge) gives rise to another set of SSPPs. One

source of uncertainty is limited knowledge of the network, such as not knowing

the cost or head node of an arc until the tail is reached. This is frequently used

to model hide-and-seek or adversarial search on networks (Papadimitriou, 1991)

or for navigating real road networks without a map, such as after a major disaster

(Papadimitriou, 1991). Secondly, the nodes may be probabilistic — that is, they can

fail. This is used in modeling telecommunications networks or computer networks

(Jaillet, 1992).

Finally, the arcs may fail with some probability, giving rise to the subject of this

thesis. Allowing arcs to fail allows modeling a wide variety of disturbances in

networks. For instance, road closure in transportation networks, due to accidents,

weather, or other events, can be modeled as an arc failure. Cutting through the

cables in fiber optic networks, which happens during construction or fires (Ball

et al., 1995a), can also be modeled as arc failure. In a social network, an on-again

off-again friendship between two people can be modeled as an arc that fails after

an argument and is restored after a reconciliation. It is therefore desirable to find

a short, reliable path through a network. The redefinition of the shortest path

depends on the trade off between reliability and shortness.

1.4 Research Problem

This thesis investigates models of the Stochastic Shortest Path Problem with Proba-

bilistic Arc Failures (SSPP-PAF) using Conditional Value-at-Risk (CVaR) constraints.

CVaR is a risk management tool that can trade off risk aversion and performance,

so it is able to handle varying levels of risk tolerance. Moreover, CVaR is based

on an explicit loss function, which allows more precision in modeling the effects
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of arc failures. The concept of CVaR is discussed in more detail in Chapter 2. This

thesis will limit itself to arcs that fail randomly and independently of each other

with some probability. All other graph parameters are deterministic.

1.5 Research Tasks

The objective of this thesis is to develop CVaR-based optimization models for the

SSPP-PAF. The solutions to these models should be paths that are short and robust

under arc failures; specifically, the loss due to arc failure as measured by using

CVaR should be low. To achieve this objective, the tasks listed below will be pur-

sued.

1. Model the effects of arc failures using different loss functions.

2. Develop and implement optimization models to find the shortest path sub-

ject to CVaR constraints.

3. Investigate the effect of different loss functions and CVaR bound on the fea-

sibility of the optimization model.

4. Gain insight into the difference between models using expected value and

CVaR via their behavior with different loss functions on carefully-chosen test

instances.

7



CHAPTER 2

A Review of Modeling Approaches for the Shortest Path Problem under

Uncertainty

2.1 Stochastic Programming Models

Stochastic programming is one of the approaches available to model optimiza-

tion problems under uncertainty. Stochastic programming models typically use

expected value to model the effect of uncertainty in the objective function and to

allow for recourse actions (Sen and Higle, 1999). As a measure of risk, expected

value is risk neutral. It weights gains as high as losses whereas human decision-

makers are often much more risk-averse (Canada et al., 2004), preferring to mini-

mize losses rather than maximize gains.

There have been a few stochastic programming models of the SSPP-PAF. Croucher

(1978) incorporated recourse decisions into a label-correcting algorithm for di-

rected acyclic networks using dynamic programming. The paper attempts to model

a traveler who has imperfect knowledge of a road network. In particular, the trav-

eler does not know whether an arc is blocked until arriving at its head. The objec-

tive of the algorithm is to find a path with the shortest expected length from each

node to the sink node given that the desired arc is unreliable. In the algorithm,

each node is labeled with the expected shortest path length to the sink. Each arc in

the network has a probability pij of being usable. At each node an outgoing arc is

selected. If the desired arc is broken, one of the other outgoing arcs of the node is

selected at random. When the node has only one outgoing arc, it is not allowed to

fail. Each node is labeled with the expected shortest path length to the sink, which

8



is the average of the labels of the out-neighbors weighted by their probability of

transversal. This algorithm is quick to compute, but it relies on the assumption

that at least one outgoing arc at each node will be usable.

Andreatta and Romeo (1988) built on Croucher (1978)’s paper to explicitly find

optimal recourse for a blocked arc, and they find a path that minimizes the ex-

pected length of the path including recourse, which they define as detours around

a failed arc. The model uses stochastic dynamic programming to solve the prob-

lem. This model suffers from the curse of dimensionality as the number of sce-

narios and the number of failed arcs per scenario grow. Like the previous paper,

this one seeks only to minimize the expected path length and does not give special

consideration to the extremes of the distribution.

2.2 Robust Optimization Models

Robust optimization is another approach to optimization under uncertainty. Ro-

bust optimization models seek to find solutions that are feasible no matter how

the underlying uncertainty resolves (Bertsimas et al., 2008). The uncertainty is

captured in an uncertainty set, which is a collection of possible future states of the

system being modeled. The optimal solution must be feasible for every element in

the uncertainty set. The uncertainty set need not contain every possible resolution

of the uncertainty, only the subset for which the the optimal solution must remain

feasible. Robust optimization tends to favor minimax objectives (Bertsimas et al.,

2008).

Recently Yu and Yang (1998) showed a version of the robust shortest path prob-

lem to be NP-complete. The paper considers a network with uncertain arc costs,

which are captured in a set of scenarios, and develops two robust optimization

models for the problem. The first model uses a minimax objective over the scenar-

ios. The second model seeks a path with the smallest possible range of lengths.
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Although the authors develop a dynamic programming algorithm for networks

with bounded numbers of scenarios, the algorithm is pseudopolynomial in the

number of scenarios. As the number of scenarios needed to capture the behavior

of a large graph grows very quickly, this algorithm is not suitable for large scale

uses (Yu and Yang, 1998).

2.3 Other Modeling Approaches

A conceptually similar approach to the SSSP-PAF is the Minimum Cost Reliabil-

ity Ratio Path Problem (MCRRPP), a bicriteria optimization model proposed by

Ahuja (1988). This problem considers paths from a single source node to a single

sink in directed network with arc failures. The objective is to find a path with the

optimal ratio of cost to reliability, defined as the probability of no arc failures on

the path. The author first develops optimality criteria for a bicriteria optimization

problem with the criteria of cost and reliability. The paper develops a pseudopoly-

nomial dynamic programming algorithm with a complexity of O(mnD log m) to

solve the problem, although the computational experiments found that average-

case complexity was much lower. The MCRRPP trades off cost and reliability in

a risk-neutral manner. By using reliability in the formulation of the MCRRPP, the

model implicitly a loss of 100% when any arc on the path fails, and 0% otherwise.

This approach is similar to the approach used in this thesis in that it uses arc fail-

ures and explicitly trades off cost and reliability.

In a related approach, Jaillet (1992) incorporates node failures into a SSPP model.

The goal of this model is to find an easily repairable path of minimum expected

length given node failures. The paper shows that the SSSP with probabilistic node

failures is in general NP-complete although some restricted types of the problem

are solvable in polynomial time.
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2.4 Models Based on Conditional Value-at-Risk

CVaR was developed in the late 1990s as an improvement on an earlier financial

risk measure called Value-at-Risk or VaR (Acerbi and Tasche, 2002). VaR has been

very popular, even being written into regulations in several countries (Rockafellar

and Uryasev, 2000), but it has a number of drawbacks (Rockafellar and Uryasev,

2000). For most probability distributions, VaR is difficult to compute and is not a

coherent risk measure (Artzner et al., 1999). CVaR, on the other hand, is a coherent

measure of risk and is easier to calculate (Acerbi and Tasche, 2002), where it is

called expected shortfall. More pertinently, Rockafellar and Uryasev presented a

way to use CVaR in optimization problems via a portfolio optimization example

(Rockafellar and Uryasev, 2002).

Intuitively, CVaR is the average of the upper tail of the distribution of losses

due to uncertainty, which are quantified in a loss function. The loss function and

the threshold for the upper tail are provided by the modeler. Figure 2.1 illustrates

VaR and CVaR for a negative binomial distribution with the tail threshold set at

the 90th percentile.

Currently CVaR is applied in several areas of finance such as insurance and

credit risk evaluation (Rockafellar and Uryasev, 2000). In these applications, risk

is usually specified in terms of monetary losses (Rockafellar and Uryasev, 2000)

although utility can be used as well. In more general contexts, though, CVaR is de-

fined in terms of a real-valued loss function L(x, Y), where Y is a vector of random

variables that model uncertainties in the underlying system, and x is a vector of

decisions. In portfolio optimization, Y would be future share prices for all compa-

nies traded in the stock market and x the portfolio allocation. For each decision x,

the loss function L(x, Y) is itself a random variable. Generally gains are modeled

as negative losses. In portfolio optimization, the loss is often measured in terms of

11



Figure 2.1: An example of VaR and CVaR
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return on investment (ROI), where the loss is negative if the ROI is positive.

A recent paper (Madadi et al., 2010) formulates a CVaR-based supply chain net-

work model in order to minimize the risk of defective pharmaceuticals in a med-

ical supply chain. Supplier failures and resulting defective pharmaceuticals are

the sources of uncertainty in this network. The demand at the customer nodes is

fixed. In the transportation network the arcs and their costs are deterministic. The

objective function minimizes the CVaR of the loss from defective pharmaceuticals.

The constraints trade off the cost of inspection versus the cost of defective prod-

ucts. They enumerate all possible scenarios and assign them a probability. This

was computationally feasible because the number of suppliers is likely to be small

compared to the number of customers. One strength of their model is that it allows

for a state of partial failure. This paper uses CVaR for managing production-side

risks. In contrast to this thesis, modeling uncertainty in the arcs of the underlying
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transportation network is not within the scope of Madadi et al. (2010)’s paper.

2.5 Formal Definition of CVaR

Definition 2.5.1 (Rockafellar and Uryasev (2002)). Let x ∈ X ⊂ Rn be a vector of

decision variables and Y : Ω → Rm be a vector of random variables defined on the sample

space Ω. Then the loss function L(x, Y) is a function of the decisions x and the random

variables Y.

The random variable L(x, Y) has a family of distributions, one for each x ∈ X. The

sample space of L(x, Y) is denoted by ΩL(x). Given a decision x, denote the probability

density function or the probability mass function of L(x, Y) by φL(`; x, Y) where ` ∈

ΩL(x) and the cumulative distribution function by ΦL(`; x, Y).

Note 2.5.2 (Finite Loss Functions). For each loss function discussed in this thesis, E{L(x, Y)} <

∞ for all x ∈ X.

The assumption that the uncertainties modeled by Y are not affected by the

choice of x is important (Rockafellar and Uryasev, 2002). For instance, in a financial

setting, this assumption implies that stock prices fluctuate randomly regardless of

who owns how much of each stock. Throughout this thesis the distribution of Y,

the random vector of arc failures, is assumed to be unaffected by the choice of path

x. In addition, it is assumed that arc failures are independent of each other. In

particular, for each arc (ij) ∈ A, Yij is a Bernoulli random variable, and Y : Ω →

{0, 1}|A| (see Section 3.1). Modeling of loss functions in the context of the SSPP-

PAF is discussed extensively in Section 3.3 of this thesis.

The VaR(x, β) is the quantile associated with the threshold probability β of the

distribution of L(x, Y) and is defined as follows:

Definition 2.5.3 (Rockafellar and Uryasev (2002)).

VaR(x, β) = min {`|ΦL(`; x, Y) ≥ β} (2.1)
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Definition 2.5.4 (Rockafellar and Uryasev (2002)). Given a threshold percentile β, the

cumulative upper β-tail distribution, denoted by Φβ,L(`; x, Y), is given by:

Φβ,L(`; x, Y) =


0 if ` < VaR(x, β)

ΦL(`;x,Y)−β
1−β if ` ≥ VaR(x, β)

(2.2)

Definition 2.5.5 (Rockafellar and Uryasev (2002)). For a given threshold percentile β,

the CVaR(x, β) of the loss associated with decision x is given by:

CVaR(x, β) = E {L(x, Y)|L(x, Y) ≥ VaR(x, β)} (2.3)

In this thesis the random vector Y represents arc failures, so the distribution

of Y is discrete. Hence, the loss functions induced are also discrete distributions.

For loss functions with finite discrete distributions, the CVaR of the loss is defined

below.

Proposition 2.5.6. (Proposition 8, Rockafellar and Uryasev (2002)) Assume that the sam-

ple space of Y is finite, so that for each x ∈ X the distribution of L(x, Y) is likewise discrete

and finite and ΦL(`; x, Y) is a step function with jumps at ` ∈ ΩL(x). For a fixed x, order

` ∈ ΩL such that `0 < `1 < · · · < `max. Let `k be the unique element of ΩL such that

ΦL(`k−1; x, Y) < β ≤ ΦL(`k; x, Y). (2.4)

The VaR(x, β) of the loss is given by

VaR(x, β) = `k. (2.5)

In addition, the CVaR(x, β) is given by

CVaR(x, β) =
1

1− β

[
(ΦL(`; x, Y)− β) `k +

`max

∑
`=`k+1

` · φL(`; x, Y)

]
. (2.6)
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2.6 Using CVaR in Optimization

The minimization formulas below were developed by Rockafellar and Uryasev

(2000, 2002) and rely on the convexity of CVaR.

Theorem 2.6.1 (Rockafellar and Uryasev (2002)). Let

Fβ(x, ζ) = ζ +
1

1− β
E
{
[L(x, Y)− ζ]+

}
, (2.7)

where [z]+ = max{0, z}. Fβ(x, ζ) is finite and convex as a function of ζ ∈ R and

CVaR(x, β) = min
ζ

Fβ(x, ζ). (2.8)

Denote the set of minimizers of Fβ(x, ζ) by Z. This set is a nonempty, closed interval,

reducing to a single point if the minimum ζ∗ of Fβ(x, ζ) is unique, and

VaR(x, β) = min{ζ ∈ Z}. (2.9)

In addition,

CVaR(x, β) = Fβ(VaR(x, β)). (2.10)

Since Fβ(x, ζ) is convex, it may be used in optimization problems. Specifi-

cally, the next theorem and corollary show that Fβ(x, ζ) can be used to minimize

CVaR(x, β) in the objective function or part of the constraints, which is how CVaR

is used in the CVARSPP.

Theorem 2.6.2 (Rockafellar and Uryasev (2002)). Minimizing CVaR(x, β) over x ∈ X

is equivalent to minimizing Fβ(x, ζ) over X×R since

min
x∈X

CVaR(x, β) = min
(x,ζ)∈X×R

Fβ(x, ζ). (2.11)

In addition, (x∗, ζ∗) ∈ X ×R are minimizers of Fβ(x, ζ) (not necessarily unique) if

and only if x∗ ∈ X is a minimizer of CVaR(x, β) and ζ∗ is a minimizer of Fβ(x∗, ζ).
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Since Fβ(x, ζ) is a convex piecewise linear function of ζ, it can be used as a

constraint or objective function in an optimization problem. This is helpful since

the direct formula in Proposition 2.5.6 requires computing VaR(x, β) in advance,

which is usually difficult (Rockafellar and Uryasev, 2002). Using Fβ(x, ζ) instead

allows the use of CVaR in optimization without having to compute the VaR(x, β)

in advance, as the corollary below mentions. The optimal solution found by mini-

mizing CVaR(x, β) via the minimization formula Fβ(x, ζ) will contain information

about VaR(x, β) as a byproduct.

Corollary 2.6.3 (Rockafellar and Uryasev (2002)). If (x∗, ζ∗) minimizes Fβ(x, ζ) over

X×R, then x∗ minimizes CVaR(x, β) over X and

CVaR(x∗, β) = Fβ(x∗, ζ∗) (2.12)

and

VaR(x∗, β) ≤ ζ∗, (2.13)

where equality holds if the set of minimizers Z of Fβ(x, ζ) (see Theorem 2.6.1) reduces to a

single point.

16



CHAPTER 3

Model Development and Analysis

3.1 Modeling Arc Failures

Throughout this thesis the simplifying assumption is made that failures are in-

dependent of each other. The probability that arc (ij) ∈ A fails is pij where

0 ≤ pij < 1. Arcs for which pij = 0 never fail. The random vector of arc fail-

ures, Y, is of length |A|. Each component of Y is a random variable Yij. If arc (ij)

fails for some ys ∈ Ω, then ys
ij = 0. In other words, Yij is a Bernoulli random

variable.

Yij ∼ Bernoulli(1− pij) ∀ (ij) ∈ A (3.1)

3.2 Formulation of the CVARSPP

This model is an extension of the deterministic LP model of the shortest path prob-

lem in Section 1.2.3. It simply adds a constraint on CVaR to the LP model. When

solved to optimality, a shortest path that satisfies the CVaR constraint will be cho-

sen. Unfortunately, adding a CVaR constraint generally destroys the integrality

of the shortest path polytope, so it is necessary to solve the problem as a MILP,

greatly increasing solution time.

17



3.2.1 Additional Parameters

In addition to the notation used in Formulation 1.2.2, the following notation is

used throughout the rest of this thesis. Note that the set of arcs A is random. In

the formulation, we denote by A the set of arcs such that pij < 1.

• C is the maximum acceptable CVaR of loss.

• β is the percentile for the upper tail (e.g. 0.95, 0.99)

• S ⊆ Ω is the set of scenarios in the model, indexed by s. S may be a random

sample from Ω or the whole sample space if Ω is small.

• ps is the probability of scenario s, normalized so that ∑
s∈S

ps = 1. For equiprob-

able scenarios, set ps = 1
|S| ∀ s ∈ S.

• ys is the realization of the random vector Y corresponding to scenario s ∈ S.

3.2.2 CVARSPP Optimization Model

Formulation 3.2.1.

Minimize ∑
(ij)∈A

cijxij (3.2)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(3.3)

CVaR(x, β) ≤ C (3.4)

x ∈ {0, 1}|A| (3.5)

Constraint 3.4 can be rewritten in terms of the minimization formula Fβ(x, ζ)

from Theorem 2.6.1 as in the formulation below.
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Additional Decision Variables

• ζ ∈ R is VaR(x, β) at optimality.

• zs linearizes the excess loss [L(x, ys)− ζ]+ in scenario s ∈ S.

Formulation 3.2.2.

Minimize ∑
(ij)∈A

cijxij (3.6)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(3.7)

Fβ(x, ζ) ≤ C (3.8)

x ∈ {0, 1}|A| (3.9)

ζ ∈ R (3.10)

In Constraint 3.8,

Fβ(x, ζ) = ζ +
1

1− β ∑
s∈S

ps [L(x, ys)− ζ]+ . (3.11)

Constraint 3.8 can be linearized using standard techniques and the distribution

of L(x, Y) approximated by sampling to produce Formulation 3.2.3. As the loss

functions are developed in the next section, the CVARSPP models for each loss

function will be based on this formulation.

Formulation 3.2.3.

Minimize ∑
(ij)∈A

cijxij (3.12)
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subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(3.13)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (3.14)

zs ≥ L(x, ys)− ζ ∀ s ∈ S (3.15)

zs ≥ 0 ∀ s ∈ S (3.16)

x ∈ {0, 1}|A| (3.17)

ζ ∈ R (3.18)

3.3 Loss Functions

In this section three different loss function are introduced. Each loss function cor-

responds to a different effect of arc failures on the path. While the concepts behind

these loss functions have appeared in the literature before, explicitly formulating

and analyzing them as a part of a CVaR optimization model is the main contri-

bution of this thesis. All the loss functions measure properties of an s− t path x.

The first loss function is called the Path Reliability Loss Function and measures the

reliability of the path. The second function is the Arc Failure Loss Function, which

measures the number arc failures. The final loss function is the Detours Loss Func-

tion, which counts the number of detours around broken segments of a path.

3.3.1 Path Reliability

The first loss function to be considered derives from the basic physical interpre-

tation of the problem. It asks “Does the path break in the current scenario?” In
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other words, the loss is 0 if no arc fails on the current path and 1 otherwise. This

loss function is worth looking at because it is simple and comparable to other SSPP

approaches such as Ahuja (1988). This is the loss function implicit in the Most Reli-

able Path Problem, which finds the path with the lowest probability of failure (Ball

et al., 1995b). In Figure 3.1 the path reliability loss function measures a loss of one.

Figure 3.1: Path Reliability Loss Function: The loss for this path is 1.

Definition 3.3.1 (Path Reliability Loss Function).

Lr(x, Y) = max
(ij)∈A

xij(1−Yij) (3.19)

Remark 3.3.2. Lr(x, Y) = 0 if no arcs fail and 1 otherwise.

Lr(x, Y) ∼ Bernoulli(q0) (3.20)

where q0 = ∏
(ij)∈A(x)

(1− pij) for all (ij) ∈ A.

Note that the path reliability loss function is piecewise linear and convex in x,

so Formulation 3.2.3 can be further linearized to give the MILP below.

Formulation 3.3.3 (Path Reliability Loss Function).

Minimize ∑
(ij)∈A

cijxij (3.21)

subject to:
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∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(3.22)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (3.23)

zs ≥ xij(1− ys
ij)− ζ ∀ s ∈ S (3.24)

zs ≥ 0 ∀ s ∈ S (3.25)

x ∈ {0, 1}|A|; ζ ∈ R (3.26)

3.3.2 Number of Arc Failures

The second loss function counts the number of arcs that fail on the path. For a

decision-maker who is responsible for repairing the path, this loss function gives

an estimate of the amount of work to be done. In Figure 3.2, which is the same path

as Figure 3.1, the arc failure loss function measures a loss of three. The drawback

to this loss function is that not all arc failures, even on the path, may have an equal

impact on the path length. For example, in reality it may be very easy to avoid one

broken link.

Figure 3.2: Arc Failures Loss Function: The loss for this path is 3.

Definition 3.3.4 (Arc Failure Loss Function).

La(x, Y) = ∑
(ij)∈A

xij(1−Yij) (3.27)

Remark 3.3.5. If pij = p for all (ij) ∈ A, then La(x, Y) is the sum of Bernoulli random

variables and

La(x, Y) ∼ Bin(|A(x)|, 1− p) (3.28)
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Since the arc failure loss function is linear, Formulation 3.2.3 reduces to the

MILP below.

Formulation 3.3.6 (Arc Failure Loss Function).

Minimize ∑
(ij)∈A

cijxij (3.29)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(3.30)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (3.31)

zs ≥ ∑
(ij)∈A

xij(1− ys
ij)− ζ ∀ s ∈ S (3.32)

x ∈ {0, 1}|A|; z ∈ R
|S|
+ ; ζ ∈ R (3.33)

3.3.3 Number of Detours

The final loss function considered in this thesis counts the number of gaps in the

current path. A gap is any set of consecutive failed arcs, such as arcs (2, 3) and

(3, 4) in Figure 3.3. This loss function is related to ideas from Lagrangian relax-

ation and derives from the formulation of the problem. Mathematically the loss

function measures total violation of flow conservation due to chance in the form

of arc failures. This is a useful loss function to examine because it is common to

measure the violation of the constraints in stochastic programming, particularly in

terms of basic recourse. Figure 3.3 shows that on the same path as Figure 3.1 and

Figure 3.2 the detours loss function measures a loss of 2.
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Figure 3.3: Detours Loss Function: The loss for this path is 2.

Definition 3.3.7 (Detours Loss Function). The loss function is

Ld(x, Y) =
1
2 ∑

i∈N

∣∣∣∣∣∣ ∑
j∈N+(i)

xijYij − ∑
j∈N−(i)

xjiYji − bi

∣∣∣∣∣∣ (3.34)

where bs = 1, bt = −1 and bi = 0 for all i ∈ N\{s, t}. This loss function measures

violation of the flow balance constraints or number of detours needed.

The loss at some node i ∈ N is

Ld
i (x, Y) =

1
2

∣∣∣∣∣∣ ∑
j∈N+(i)

xijYij − ∑
j∈N−(i)

xjiYji − bi

∣∣∣∣∣∣ , (3.35)

and

Ld(x, Y) = ∑
i∈N

Ld
i (x, Y). (3.36)

Since flow conservation will only be violated at the ends of each gap in the

path, this loss function ends up counting the number of gaps. The loss function

can be interpreted physically as the number of detours necessary to avoid all the

gaps. Since one failed arc renders the following arc inaccessible, the failure of that

second arc does not cause additional loss. Until all the consecutive failed arcs have

all been repaired, that gap in the path must still be detoured around.

Lemma 3.3.8. For any incidence vector x of an s− t path,

Ld(x, Y) = ∑
i∈N(x)

Ld
i (x, Y)

Proof. A feasible s− t path x corresponds to a graph G(x) = (N(x), A(x)). Nodes

i /∈ N(x) have no arcs incident at them, and s, t ∈ N(x). Hence,
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Ld
i (x, Y) =

1
2

∣∣∣∣∣∣ ∑
j∈N+(i)

xijYij − ∑
j∈N−(i)

xjiYji − bi

∣∣∣∣∣∣ ∀ i /∈ N(x) (3.37)

=
1
2

∣∣∣∣∣∣ ∑
j∈N+(i)

0 ·Yji − ∑
j∈N−(i)

0 ·Yij − 0

∣∣∣∣∣∣ (3.38)

= 0 (3.39)

So

Ld(x, Y) = ∑
i∈N(x)

Ld
i (x, Y) (3.40)

Lemma 3.3.9. If x is an incidence vector of an s− t path, then

Ld
s (x, Y) =

1
2
|Ysi − 1| where i ∈ N+(s) ∩ N(x), (3.41)

Ld
j (x, Y) =

1
2

∣∣Yij −Yjk
∣∣ ∀ j ∈ N(x)\{s, t}, (3.42)

where i ∈ N−(j) ∩ N(x) and k ∈ N+(j) ∩ N(x), and

Ld
t (x, Y) =

1
2

∣∣1−Yjt
∣∣ where j ∈ N−(t) ∩ N(x). (3.43)

Proof. A feasible s − t path x corresponds to a graph G(x) = (N(x), A(x)) such

that one arc incident must be incident to s and t and two arcs to all other nodes

i ∈ N(x)\{s, t}.

At s, N−(s) = ∅ and bs = 1. Also, xsi = 0 if i /∈ N(x).

Ld
s (x, Y) =

1
2

∣∣∣∣∣∣ ∑
j∈N+(s)

xsjYsj − 0− bs

∣∣∣∣∣∣ (3.44)

=
1
2
|1 ·Ysk + 0− 1| for some k ∈ N+(s) (3.45)

=
1
2
|Ysk − 1| (3.46)
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Similarly, at t, there exists some k ∈ N−(t) ∩ N(x) such that,

Ld
i (x, Y) =

1
2
|0− 1 ·Ykt − (−1)| (3.47)

=
1
2
|1−Ykt| (3.48)

For j ∈ N(x)\{s, t}, let N−(j) ∩ N(x) = {i}, and N+(j) ∩ N(x) = {k}.

Ld
j (x, Y) =

1
2

∣∣∣∣∣∣ ∑
u∈N−(j)

xujYuj − ∑
v∈N+(j)

xjvYjv − bj

∣∣∣∣∣∣ (3.49)

=
1
2

∣∣1 ·Yij − 1 ·Yjk − 0
∣∣ (3.50)

=
1
2

∣∣Yij −Yjk
∣∣ (3.51)

Corollary 3.3.10. For all j ∈ N(x)\{s, t}, Ld
j (x, Y) = 1

2 if Yij 6= Yjk; that is, if one arc

fails and the other does not. If Yij = Yjk, then Ld
j (x, Y) = 0. Ld

s (x, Y) = 1
2 if Ysi = 0, and

similarly for t.

Each gap consisting of consecutive nodes v1 . . . vk ∈ N(x) results in a loss of
k

∑
i=1

Ld
vi
(x, Y) = 1. (3.52)

Corollary 3.3.11. The sample space for Ld(x, Y) is Ωd = {0, 1, . . . ,
⌊
|N(x)|

2

⌋
}

Distribution of Detours Loss Function

Theorem 3.3.12. Suppose that all arcs have an equal probability of failure; that is, pij = p

for all (ij) ∈ A. In that case, the pmf of the detours loss function Ld(x, Y) is given by

φL(`; x, Y) =



q|A(x)| when ` = 0,
|A(x)|−`+1

∑
i=`

|A(x)|−i
∑

j=`−1
piq|A(x)|−i( i−1

`−1)(
j−1
`−2)(|A(x)| − i− j + 1)

when ` = 1 . . .
⌊
|N(x)|

2

⌋
, and

0 otherwise,

(3.53)

where q = 1− p.
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Proof. From Corollary 3.3.11, we know that there are between 0 and
⌊
|N(x)|

2

⌋
gaps

in the path subgraph G(x) = (N(x), A(x)). Let us then consider the number of

ways to distribute the failed arcs into gaps and the surviving arcs into “fragments”.

Let Ld(x, Y) = ` ∈ Ωd be the loss. Suppose ` > 0. Denote by i the number of

failed arcs. By Corollary 3.3.10, the failed arcs must be distributed into exactly `

gaps with at least one arc in each gap, which implies that i ≥ `. The number of

ways to distribute the i failed arcs into ` gaps with at least one arc in each gap is

( i−1
`−1).

Denote by j the total number of surviving arcs between the first and last failed

arcs. Between each of the ` gaps are `− 1 “fragments” of at least one surviving arc

each, which implies that `− 1 ≤ j ≤ |A(x)| − i. The number of ways to distribute

the j surviving arcs into `− 1 fragments with at least one arc in each fragment is

( j−1
`−2).

The length of the entire path segment from the first to the last failed arc is

i + j ≤ |A(x)|. This segment may start anywhere in the first |A(x)| − i− j + 1 arcs.

The total number of ways to arrange i failed arcs with j ≤ |A(x)| − i surviving arcs

between the failed arcs into ` gaps with `− 1 fragments between them is

(
i− 1
`− 1

)(
j− 1
`− 2

)
(|A(x)| − i− j + 1). (3.54)

The probability of i arcs failing and a loss of ` is then

P(L(x, Y) = ` and∑
(ij)∈A(x)

Yij = i) = piq|A(x)|−i
|A(x)|−i

∑
j=`−1

(
i− 1
`− 1

)(
j− 1
`− 2

)
(|A(x)|− i− j+ 1).

(3.55)

Hence the total probability of a loss of ` is

P(L(x, Y) = `) =
|A(x)|−`+1

∑
i=`

|A(x)|−i

∑
j=`−1

piq|A(x)|−i
(

i− 1
`− 1

)(
j− 1
`− 2

)
(|A(x)| − i− j + 1).

(3.56)
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The case of L(x, Y) = 0 is a special case. The only possible number of arc

failures is i = 0, and all arcs must fall into a single fragment. The probability of

` = 0 is therefore

φL(0; x, Y) = q|A(x)| (3.57)

As was the case with the path reliability loss function, the detours loss function

is piecewise linear and convex.

Formulation 3.3.13 (Detours Loss Function).

Minimize ∑
(ij)∈A

cijxij (3.58)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(3.59)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (3.60)

zs ≥ ∑
i∈N

`s
i − ζ ∀ s ∈ S (3.61)

`s
i ≥ ∑

j∈N−(i)
xjiys

ji − ∑
j∈N+(i)

xijys
ij − bi (3.62)

`s
i ≥ bi + ∑

j∈N+(i)
xijys

ij − ∑
j∈N−(i)

xjiys
ji (3.63)

zs ≥ 0 ∀ s ∈ S (3.64)

x ∈ {0, 1}|A|; ` ∈ R|S| ×R|N|; ζ ∈ R (3.65)

Table 3.1 summarizes the different loss functions.
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Table 3.1: Summary of Loss Functions (LF)

Name Formulation Sample Space

Path Reliability LF Lr(x, Y) = max
(ij)∈A

xij(1−Yij) {0, 1}

Arc Failure LF La(x, Y) = ∑
(ij)∈A

xij(1−Yij) {0, . . . |A(x)|}

Detours LF Ld(x, Y) = 1
2 ∑

i∈N
| ∑

j∈N−(i)
xjiYji

− ∑
j∈N+(i)

xijYij − bi|

{0, . . .
⌊
|N(x)|

2

⌋
}

3.4 Comparison of Loss Functions

3.4.1 Magnitude of Losses

As shown in Table 3.1, the sample space for the path reliability loss function is a

subset of the sample space for the detours loss function, which is in turn a subset

of the sample space for the arc failure loss function. Furthermore, the loss as mea-

sured by the arc failure loss function will always be greater than or equal to the loss

measured by the detours loss function, which will in turn be greater than or equal

to the loss measured by the path reliability loss function for the same realization

ys ∈ Ω.

Theorem 3.4.1. For all feasible paths x and realizations of the random vector of arc failures

ys ∈ Ω,

Lr(x, ys) ≤ Ld(x, ys) ≤ La(x, ys). (3.66)

Proof. Consider an arbitrary feasible s − t path, corresponding to the incidence

vector x, and ys, a realization of Y. Let `r = Lr(x, ys), `d = Ld(x, ys), and `a =

La(x, ys). If no two arcs fail consecutively, then each arc failure is its own gap in

the path, and `d = `a. Otherwise at least two arcs will fail in a row, and `d < `a.

Therefore Ld(x, ys) ≤ La(x, ys).
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If `d = 0, no arcs have failed, so `r = 0 and `d = `r. If `d ≥ 1, then at least one

arc has failed, and `r = 1. When `d ≥ 2, therefore, `d > `m. That is, Lr(x, ys) ≤

Ld(x, ys).

3.4.2 CVaR as a function of β

Before beginning the next chapter, it is useful to examine how the choice of β affects

CVaR(x, β). This section gives some guidance that will be used to check the results

in the next chapter. Theorem 3.4.2 shows that CVaR(x, β) is piecewise hyperbolic

in β but not necessarily convex in β.

Theorem 3.4.2. Let L(x, Y) be a loss function with a finite discrete distribution. Given a

fixed feasible path x, the corresponding loss distribution is φL(`; x, Y) with sample space

ΩL(x) = {0, 1 . . . `max}. For each ` ∈ ΩL(x), CVaR(x, β) satisfies:

CVaR(x, β) = `+
E
{
[L(x, Y)− `]+

}
1− β

(3.67)

when P(L(x, Y) < `) < β ≤ P(L(x, Y) ≤ β).

Proof. For each ` ∈ ΩL(x), let β` = P(L(x, Y) ≤ `), let β−1 = 0, and consider

CVaR(x, β) for each β ∈ (β`−1, β`]. Applying Proposition 2.5.6 gives:

CVaR(x, β) =
1

1− β

[
`(ΦL(`; x, Y)− β) +

`max

∑
i=`+1

i · φL(i; x, Y)

]
(3.68)

=
1

1− β

[
`ΦL(`; x, Y)− `β +

`max

∑
i=`+1

(i− `+ `)φL(i; x, Y)

]
(3.69)

=
1

1− β

[
`ΦL(`; x, Y)− `β + `

`max

∑
i=`+1

φL(i; x, Y) +
`max

∑
i=`+1

(i− `)φL(i; x, Y)

]
(3.70)

=
1

1− β

[
`(1− β) +

`max

∑
i=`+1

(i− `)φL(i; x, Y)

]
(3.71)

= `+
1

1− β

[
`max

∑
i=`+1

(i− `)φL(i; x, Y)

]
(3.72)
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CHAPTER 4

Computational Experiments

The experiments in this chapter are exploratory, meant to illustrate the use and

effects of CVaR. The purpose of these computational experiments are to explore the

behavior of the three loss functions as C and β vary, to compare the loss functions

to each other, and to illustrate the difference between using CVaR and expected

value to chose a path though an uncertain network.

4.1 Implementation Details

The experiments were performed on two HP xw4600 workstations with a quad-

core 2.50 GHz Intel Core 2 CPU and 8 GB of RAM. The operating system on the

first computer was Windows XP and on the other Windows Vista. The experiments

were programmed using Python 2.7 (Van Rossum, 2003) and Gurobi 4.0.2 (Gu

et al., 2010). The networks were implemented using the Networkx graph package

(Hagberg et al., 2008). The Numpy matrix package (Oliphant, 2006) and the Scipy

scientific computing package (Jones et al., 2001) were used for some calculations

and for generating scenarios. Data was collected and stored in a Sqlite3 database

using the SQLAlchemy object-relationship manager package (ORM) (Bayer et al.,

2011). Finally, results were analyzed and visualized with a mix of Microsoft Ac-

cess, Microsoft Excel, and Matplotlib (Hunter, 2007), a Python plotting package.
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4.2 Experiments

Test instances were implemented as a directed network with source and sink at-

tributes, a list of integer arc weights, a list of arc failure probabilities, and a set of

scenarios. The network edges, arc weights, arc failure probabilities, and scenar-

ios were all stored in the database using Python’s built-in pickle module. Since

these experiments are exploratory, smaller instances were chosen. Preliminary ex-

periments had found that instances of several hundred nodes took a long time to

solve. Some of the larger and denser networks ran out of memory as well. The

final test bed consisted of seven instances divided into three groups. The instances

are summarized in Table 4.1.

Table 4.1: Summary of Test Bed

Name Nodes Arcs Density Scenarios Notes

exp0002 6 9 30.0% 512 Complete enumeration

branch02 27 30 4.27% 100 Only one arc per branch fails.

branch03 27 30 4.27% 100 Less expensive paths are less reli-

able.

branch04 27 30 4.27% 100 pij ∼ Uni f (0, 1), cij ∼ DU(1, 100)

gnp01 25 59 9.83% 100 pij ∼ Uni f (0, 1), cij ∼ DU(1, 100)

gnp02 25 138 23.0% 100 pij ∼ Uni f (0, 1), cij ∼ DU(1, 100)

gnp03 25 243 40.5% 100 pij ∼ Uni f (0, 1), cij ∼ DU(1, 100)

For each instance, the deterministic shortest path (DSP), the most reliable path

(MRP, the path with the lowest probability of failure), and the most direct path

(MDP, the path with the fewest arcs from source to sink) were calculated and

recorded. All the sets of scenarios were generated as random samples of size 100

and treated as equiprobable except exp0002. All scenarios for that instance were
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enumerated and their exact probability used in optimization. Descriptions of each

component of a test instance were also stored in the database (see Appendix B for

details).

The main experiment mapped the level sets of the optimal cost as a function

of β and C for each of the three loss functions. The full CVARSPP formulation

for each loss function are in Chapter 3 and Appendix A. The parameter β was

varied from 0 to 0.99 in increments of 0.01. The parameter C was varied from

0 to `max in increments of 0.01`max. The optimization status (infeasible, optimal,

or unfinished), setup time, solve time, number of nodes, and number of integer

feasible solutions found during optimization were recorded for each optimization

run. If the run solved to optimality, the objective value, the values of each decision

variable, and the arcs, cost, and reliability of the optimal path were recorded as

well. For full details of what was recorded, see Appendix B.

4.2.1 Group 1: Complete Enumeration

The purpose of the first test network was to enable direct comparison with the

analytical results in Section 3.4. The CVARSPP models were still small enough

to solve in <1s on average, despite containing all 512 scenarios. Since the network

only contained 6 nodes and 9 arcs, it was possible to completely enumerate all s− t

paths. The arc costs and failure probabilities for each path were chosen to force the

MDP to be the MRP and have the highest cost and the DSP to be the least reliable.

Figure 4.1 contains a diagram of the resulting test network.

The lower edges of the level sets of the optimal path length are CVaR(x, β) for

each path x that was optimal for the region. The values predicted by Theorem 3.4.2

are plotted over the level sets in Appendix C and agree with the optimal solutions

found during the experiment. The level sets are piecewise hyperbolic but not con-

vex in general. The plot for the detours loss function in Figure C.2(b) shows that
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Figure 4.1: Network exp0002
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the lower edge of the MRP contour is flat at `max = 1 for β ≥ 0.675. The other two

paths represented on the plot have three arcs, so the lower edge of their level sets

keep increasing toward `max = 2.

4.2.2 Group 2: Branch Networks

The effect of varying the arc failure probabilities on equal-length paths was exam-

ined in a branch network consisting of a source and sink node connected by five

internally node-disjoint paths of five nodes each, as shown in Figure 4.2. In the

first test network, branch02, only one arc was allowed to fail in each branch. As

indicated by Theorem 3.4.1, all three loss functions gave the same results for each

combination of β and C (Figures C.4(a), (b), and (c)).

In the second test network, branch03, the arc costs and arc failure probabilities

were set so that more reliable paths also had higher cost (Figure D.2). For instance,

each arc on the MRP had cij = 5 and pij = 0.05, each arc on the next most reliable

path had cij = 4 and pij = .1, and so on down to the DSP, where each arc had

cij = 1 and pij = 0.25. The goal of this setup was to see if each path would be

optimal in some region of the (β, C) plane. This was indeed the case under all
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Figure 4.2: Branch Network Structure
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three loss functions.

In the final branch network, branch04, arc costs and arc failure probabilities

were generated randomly for all arcs in order to observe how the CVARSPP mod-

els would respond to a wider range of arc reliabilities and path costs. The arc fail-

ure probabilities pij were drawn from a Unif(0, 1) distribution and the costs cij from

a DU(1, 100) distribution. Since each branch is six arcs long, the expected reliabil-

ity of each path is low. Even the MRP of branch04 failed in 98 out of 100 scenarios,

giving an expected loss of 0.98 under the path failure loss function. When β > 0.98,

the minimum choice of C that resulted in a feasible solution to the CVARSPP model

under the path reliability loss function is C = 1 as shown in Figure C.8(a). The

other two loss functions discriminated among paths, as E
{

Ld(xMRP, ys)
}
= 1.55

and E {La(xMRP, ys)} = 2.05. This result suggests that the path reliability loss

function is better suited for networks with highly reliable arcs or shorter s− t paths

and should potentially be used with smaller β values.

4.2.3 Group 3: Uniform Random Networks

The final group of test networks are uniform random networks (Erdös and Rényi,

1959) of 25 nodes with different densities. The arc costs and failure probabilities

were randomly generated from pij ∼ Unif(0, 1) and cij ∼ DU(1, 100). The purpose
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of this group of test networks was to observe the effect of increasing densities and

the behavior of the CVARSPP models on less controlled test networks. As the

density increased from 0.0983 for gnp01 to 0.230 for gnp02 to 0.405 for gnp03, the

number of paths that were feasible in some region of the (β, C) plane increased as

well, from 2 to 4 to 6 (Figures C.10(c), C.12(c), and C.14(c)).

Network gnp02 also provided an illustration of the effects of sampling. The

path corresponding to the region labeled 53 had two arcs, one of which failed in

all 100 scenarios. That arc had a probability of failure of 0.96, so its failure in all

scenarios is an artifact of sampling. This resulted in the path being infeasible for

C < 1 under the path reliability loss function but being chosen under the detours

and arc failure loss functions, as in Figure C.11(d). Under the detours loss function,

though, CVaR(x53, β) = 1 for all β ≤ 1. If the scenarios had been fully enumerated,

the path would be feasible in some narrow region under the path reliability loss

function.

4.3 Comparison of Loss Functions

To expand on Section 4.2.2 above, another feature of the the path reliability loss

function is that, unless the network contains a path with no arcs that can fail, above

β = 1− P(YMRP = 0) the instance will be infeasible for all C < 1. The CVAR-

SPP model under the detours loss function has a feasible solution with C < `max

for all β ≤ 1 in five out of seven networks. Under the arc failure loss function

the CVARSPP model has a feasible solution with C < `max for all β ≤ 1 for all

seven test networks. This suggests that β should be chosen somewhat lower and

C somewhat higher within the range (0, `max), when using the path reliability loss

function instead of the detours or arc failure loss functions. The detours loss func-

tion can use the same values of β as the arc failure loss function for most networks.

Only in networks with higher arc failure probabilities does β need to be adjusted
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slightly downward to preserve feasibility for C < `max. The CVaR limit C, on the

other hand, should be chosen lower in the range (0, `max) than under the arc fail-

ure loss function, although precise guidance must wait on further computational

experiments.

Figure C.2 shows how the average optimal path length, average optimal path

reliability, average CVaR loss varied as β increased for the test instances using net-

work exp0002. For each loss function, the instances which solved to optimality

were grouped by β. Figure C.3(d) records the percentage of instances in the exper-

iment that were feasible for each β and loss function. Figures C.3(a)-(c) record the

average optimal path reliability, optimal path length, and optimal path CVaR for

the instances that solved to optimality. The results all test networks are recorded

in Appendix C.
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CHAPTER 5

Conclusion and Future Work

This thesis formulates CVaR-based models for the SSPP-PAF. The literature con-

tains models for the SSPP-PAF using robust optimization and expected value ob-

jectives in stochastic programming (Chapter 2). There has also been some work

attempting to trade off robustness and path length (see Ahuja (1988)). Although

CVaR has recently been used for supply-chain optimization (Madadi et al., 2010),

to our knowledge this is the first attempt to use CVaR for a SSPP. The major con-

tributions of this thesis are formulating the CVARSPP and developing three ways

of modeling loss.

The results found in Chapter 3 develop the loss functions. The three loss func-

tions measure whether the path breaks, the number of gaps, and the number

of arc failures with corresponding physical interpretations. Distributions for the

each loss function were found for networks with uniform arc failure probabilities.

The distribution of the path failure loss function was identified for any path with

probabilistic arc failures. Moreover, an analytical characterization of the shape of

CVaR(x, β) in terms of β was derived. Finally, it was shown that, for each possi-

ble scenario the arc failure loss function is always at least as large as the detours

loss function, which is in turn always at least as large as the path reliability loss

function.

The lower edge of the level sets of the the fully-enumerated test network exp0002

agreed with the values calculated analytically. The computational experiments

suggest that the path reliability loss function be used for networks with more reli-
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able paths and the tail threshold β should be set lower than when using the other

loss functions. In general, the CVaR-based formulations find more reliable paths

than when using expected value.

This thesis has focused on modeling. Future research is needed to investigate

computational issues. Preliminary experiments have indicated that scaling is likely

to prove challenging. A decomposition approach such as the one proposed by

Künzi-Bay and Mayer (2006) may be needed to handle larger instances. Another

scaling issue is the number of scenarios. Even the small networks in this study

showed the effects of sampling. As the network grows, the number of scenarios

needed to approximate the actual loss distribution increases rapidly. Some inves-

tigation into a better sampling scheme might also help with scaling.

Another area for further investigation lies in extending single-stage CVaR-based

formulations to two-stage recourse models of the SSPP-PAF. Finally, more inves-

tigation into the behavior of the CVaR-based formulation over a wider and more

representative collection of networks is needed. It would be particularly interest-

ing to test the models against some real-world networks, which include their own

patterns of arc failures. Relaxing the assumption of independent arc failures and

extending the analysis of the loss functions is another avenue to explore.
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APPENDIX A

Optimization Models

A.1 Parameters

These parameters are used in all three optimization models.

• Graph G = (N, A) is a directed network.

• S ⊆ Ω is the set of scenarios in the model, indexed by s. S may be a random

sample from Ω or the whole sample space if Ω is small.

• cij is the cost of arc (ij) ∈ A.

• ys is the realization of the random vector Y corresponding to scenario s ∈ S.

• ps is the probability of scenario s, normalized so that
S
∑

s=1
ps = 1.

• C is the maximum acceptable CVaR loss.

• β is the percentile for the upper tail (e. g. 0.50, 0.95, 0.99).

A.2 Decision Variables

• xij indicates which arcs are chosen for the shortest path. xij = 1 if arc (ij) is

chosen, and 0 otherwise.

• ζ ∈ R is VaR(x, β) at optimality.

• zs linearizes the excess loss [L(x, ys)− ζ]+ in scenario s ∈ S.

• `s
i is the loss at node i ∈ N in scenario s ∈ S and linearizes the loss function.
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A.3 Path Reliability Loss Function

Lr(x, Y) = max
(ij)∈A

xij(1−Yij) (A.1)

Formulation A.3.1 (Path Reliability Loss Function).

Minimize ∑
(ij)∈A

cijxij (A.2)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(A.3)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (A.4)

zs ≥ xij(1− ys
ij)− ζ ∀ s ∈ S, (ij) ∈ A (A.5)

x ∈ {0, 1}|A|; z ∈ R
|S|
+ ; ζ ∈ R (A.6)
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A.4 Arc Failure Loss Function

La(x, Y) = ∑
(ij)∈A

xij(1−Yij) (A.7)

Formulation A.4.1 (Arc Failure Loss Function).

Minimize ∑
(ij)∈A

cijxij (A.8)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(A.9)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (A.10)

zs ≥ ∑
(ij)∈A

xij(1− ys
ij)− ζ ∀ s ∈ S (A.11)

x ∈ {0, 1}|A|; z ∈ R
|S|
+ ; ζ ∈ R (A.12)
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A.5 Detours Loss Function

Ld(x, Y) = ∑
i∈N

∣∣∣∣∣∣ ∑
j∈N−(i)

xjiYji − ∑
j∈N+(i)

xijYij − bi

∣∣∣∣∣∣ (A.13)

Formulation A.5.1 (Detours Loss Function).

Minimize ∑
(ij)∈A

cijxij (A.14)

subject to:

∑
j∈N+(i)

xij − ∑
j∈N−(i)

xji =


1 if i = s

−1 if i = t

0 if i ∈ N\{s, t}

(A.15)

ζ +
1

1− β ∑
s∈S

pszs ≤ C (A.16)

zs ≥ ∑
i∈N

`s
i − ζ ∀ s ∈ S (A.17)

`s
i ≥ ∑

j∈N−(i)
xjiys

ji − ∑
j∈N+(i)

xijys
ij − bi ∀ s ∈ S, i ∈ N (A.18)

`s
i ≥ bi + ∑

j∈N+(i)
xijys

ij − ∑
j∈N−(i)

xjiys
ji ∀ s ∈ S, i ∈ N (A.19)

x ∈ {0, 1}|A|; z ∈ R
|S|
+ ; ` ∈ R|S| ×R|N|; ζ ∈ R (A.20)
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APPENDIX B

Schema of Experiment Database

This appendix describes the database used in the computational experiments. The

database contains all data generated during the experiments. The database schema

is diagrammed in Figure B.2 using crow’s foot notation. Each table in the database

and its fields are described below. The database was normalized to the Backus-

Naur Third Normal Form (Kendall and Kendall, 2008) before being selectively de-

normalized for ease of use.

B.1 Database Tables

Graph The table for the directed networks. This does not contain arc weights, arc

failure probabilities, or scenarios.

name The name of the directed network.

descr A sentence or two describing the network to a human reader.

n The number of nodes.

a The number of arcs.

source The source node of the network.

sink The sink node of the network.

density The density of the network

obj The Python object containing the arc list.

Weights The table for arc weights (cij).
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name A short name for the arc weights.

descr A sentence or two describing the arc weights or their generation method

to a human reader.

obj The Python object containing the list of arc weights.

length The number of weights in the list of arc weights.

graph_id Foreign key to Graphs table.

AFPs The table for arc failure probabilities (pij).

name A short name for the arc failure probabilities.

descr A sentence or two describing the arc failure probabilities and their gen-

eration method to a human reader.

obj The Python object containing the arc failure probabilities.

length The number of arc failure probabilities in the list.

graph_id Foreign key to Graphs table.

Scenarios The table for scenarios (ys and ps for all s ∈ S)

name A short name for this set of scenarios.

descr A sentence or two describing the scenarios and their generation method

to a human reader.

s The number of scenarios.

scen_array The Python object containing an |A| × s Numpy matrix of the

scenarios. Each row is ys, the incidence vector of arc failures.

ps The Python object containing a Numpy vector of scenario probabilities.

Each element is corresponds to ps.

empafp The Python object containing a Numpy vector of |A| entries. Each

entry is the percent of scenarios in which that arc fails.
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afp_id Foreign key to AFPs table.

TestInstance The table for instances. This is a full network scenarios and with

weights and failure probabilities attached to each arc.

name A short name for this instance.

graph_id Foreign key to Graphs table.

wts_id Foreign key to Weights table.

scen_id Foreign key to Scenarios table.

Path The table for information about paths of interest through a network.

rel The a-priori reliability (i.e. ∏
(ij)∈A(x)

(1− pij)).

cost The cost of the path (i.e. ∑
(ij)∈A(x)

cij).

arcs Number of arcs in this path.

type Classification — DSP, MRP, MDP, or an optimal solution to some CVAR-

SPP instance.

inst_id Foreign key to the TestInstance table.

sol_id Optional: Foreign key to the Solution table.

PathArcs The table that stores the arcs in a path.

head The head of an arc in a path.

tail The tail of an arc in a path.

path_id Foreign key the the Path table indicating which path contains these

arcs.

Exp The table of summary information about a computational experiment. The

information in this table is mostly intended as notes for a human reader.
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name A short name for this set of experiment.

descr A summary of the experiment.

goal The objective of the experiment.

beta_method A summary of how the tail threshold probabilities β are to be

generated.

c_method A summary of how the maximum acceptable losses C are to be

generated.

loss_fns The loss functions involved in this experiment.

computer The machine used to run the experiment.

solver The program used to solve the CVARSPP models.

Param The table storing solver control parameters such as time limit.

filename The name of the file with the parameters for the solver to read.

folder The path to the file.

suffix The extension of the file indicates format.

plist The Python object containing the parameters, a duplicate of the file.

Run Each record represents a unique instance of the CVARSPP.

name A short name for this CVARSPP instance.

beta The tail threshold probability β.

C The Python object representing the arc failure probabilities (a BLOB in SQL

terms).

loss_fn Which loss function to use; i.e., which specific model to choose (see

Appendix A).

solved Flag indicating whether the run has been sent to the solver or not.
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exp_id Foreign key to Exp table.

param_id Foreign key to the Param table.

inst_id Foreign key to TestInstance table.

OptInfo The table for information reported by the solver about an instance. If an

optimal solution is found, it is stored in the Solution table.

optimal Did the instance solve to optimality?

grb_status The status code reported by the solver.

setup The time to set up each instance.

sol_time The solution time for each instance.

iter The number of simplex iterations performed for all the nodes explored.

nodes The number of branch-and-bound nodes explored.

best_bound If the solver ran out of time, the best bound found during opti-

mization.

num_sol The number of integer feasible solutions during optimization.

obj The Python object containing all the information about running the op-

timization which was returned by the solver.

date Timestamp for the optimization run.

run_id Foreign key for the Run table.

Solution The table for information about the optimal solution to a run.

obj_cost The cost of the optimal path.

var The VaR for this instance.

cvar The CVaR for the instance, calculated C and the slack in the CVaR con-

straint.
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cvar_slack The slack in the CVaR constraint.

dvs The Python object containing the values of all decision variables.

run_id Foreign key for the Run table.

B.2 Database Schema

Figure B.1: Legend: Crow’s Foot Notation

Primary Key

Attribute

(FK): Foreign

Key

(O): Optional

Table Name
Relationship Symbol

Zero or one-to-zero or one

Zero or one-to-many

One-to-zero or many

One-to-many

53



Figure B.2: Database Schema for Computational Experiments after Kendall and

Kendall (2008)
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APPENDIX C

Objective Function Contour Graphs by Loss Function

This appendix contains graphs of the objective function values for each test in-

stance and loss function.
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APPENDIX D

Test Network Diagrams

D.1 Small Network: exp0002

The scenarios for this small network are completely enumerated. Arc failure prob-

abilities are chosen to force the MDP to be the MRP and have the highest cost while

the DSP is the least reliable path.
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Figure D.1: Network exp0002
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D.2 Branch Networks

The three following networks have five disjoint paths, or branches, of six arcs con-

necting the source s to sink t.

Figure D.2: Network branch02

The arc weights cij are drawn from DU(1, 100). One arc is allowed to fail on each

branch with probability pij drawn from Unif(0, 1).
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Figure D.3: Network branch03

The arc failure probabilities and arc costs are uniform across each branch. As the

cost of the path increases from the DSP to the most expensive path, so does the

reliability.
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Figure D.4: Network branch04

The arc failure probabilities pij are drawn from Unif(0, 1), and the arc weights cij

are drawn from DU(1, 100).
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D.3 Uniform Random Networks

The final three networks are GNP(n, p) random networks (Erdös and Rényi, 1959).

All three networks have n = 25 nodes. The arc failure probabilities pij are drawn

from Unif(0, 1), and arc weights cij from DU(1, 100).

Figure D.5: Network gnp01 — GNP(25, 0.1)
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Figure D.6: Network gnp02 — GNP(25, 0.25)
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Figure D.7: Network gnp03 — GNP(25, 0.4)
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