
 GREEDY RANDOMIZED ADAPTIVE SEARCH

 PROCEDURE FOR

 THE MAXIMUM CO-K-PLEX PROBLEM

 By

 AMOL ATMARAM BHAVE

 Bachelor of Engineering

 Shivaji University

 Kolhapur, India

2006

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2010

ii

 GREEDY RANDOMIZED ADAPTIVE SEARCH

 PROCEDURE FOR

 THE MAXIMUM CO-K-PLEX PROBLEM

 Thesis Approved:

 Dr. Balabhaskar Balasundaram

 Thesis Adviser

 Dr. Tieming Liu

 Dr. Ricki Ingalls

 Dr. Mark E. Payton

 Dean of the Graduate College

.

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance and the help of several

individuals who contributed and extended their valuable assistance in the completion of this

research study.

First and foremost, my utmost gratitude and most sincere thanks to my graduate advisor

and mentor, Dr. Balabhaskar (Baski) Balasundaram for his constant support, enthusiasm and

patience he has provided throughout my masters and research studies at Oklahoma State

University. His individuality, acquaintance and passion in area of operations research not only

provided an ideal atmosphere for learning and research but also influenced me in shaping my

professional life. I appreciate all his endless contributions to make my masters experience a

memorable one and all my admiration goes to him.

I owe my deepest gratitude to Dr. Tieming Liu and Dr. Ricki Ingalls for serving on my

graduate committee and for their support and patience during my research studies. Particularly, I

am deeply indebted to them for making my thesis proposal defense experience productive by

putting great efforts and giving valuable suggestions. I would also like to thank all the faculty in

the School of Industrial Engineering and Management, for making my masters studies at

Oklahoma State University a great experience.

I would like to thank Ameya Dhaygude and Sameer Mangalvedhe for their constant

support and for being wonderful colleagues at Oklahoma State University. I would like to thank

Harshal Patwardhan, Ganesh Walunj, Vivekanand Sharma, Sharad Yadav, Sushant Goltkar,

Niketan Mahadik, Abhishek Dhuri, Alok Dange, Kunal Divekar, Ameya Phadake and Kedar

iv

Vilankar for being wonderful friends and source of inspiration. Also I would like to thank

everybody for their involvement in the successful realization of my thesis, as well as expressing

my apology that I could not mention everyone personally.

Last but not the least, I would like to express my gratitude to my family, without their

endless support and love it could not have been achieved. I am ever grateful and indebted to my

parents for always giving me more than I wanted, more than I deserved and more than they could.

Finally, I would like to thank God for making me part of such a wonderful family.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. THE MAXIMUM CO-K-PLEX PROBLEM ...7

 2.1 Definitions, Notations and Background ...7

 2.2 Contributions..11

III. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE (GRASP)13

 3.1 Introduction to Metaheuristics ...13

 3.2 GRASP Metaheuristic ..15

 3.2.1 GRASP for the Maximum Independent Set Problem16

 3.2.2 GRASP for the Maximum Co-k-plex Problem20

 3.2.3 GRASP for the Maximum Weighted Co-k-plex Problem22

IV. COMPUTATIONAL EXPERIMENTS ..25

 4.1 General Implementation Details ..25

 4.2 Description of the Test-Bed ...27

 4.3 Numerical Results: MCPP-k and MWCPP-k ..27

V. CONCLUSION AND FUTURE WORK ...31

REFERENCES ..33

APPENDIX A ..36

APPENDIX B ..45

vi

LIST OF TABLES

Table Page

1. Iterative greedy randomized construction phase for the MISP...........................18

2. Local search phase for the MISP ..19

3. Iterative greedy randomized construction phase for the MCPP-221

4. Local search phase for the MCPP-2 ...21

5. Vertex weights in ...23

6. Iterative greedy randomized construction phase for the MWCPP-223

7. Local search phase for the MWCPP-2 ..24

8. Illustration of representation of vertex adjacency list ...26

9. Illustration of improvement in the GRASP running time (Max_Iterations = 10)

 ..27

10. DIMACS benchmarks...28

11. GRASP results for 10, 100, and 1000 iterations for the MCPP-137

12. Comparison of running time and solution quality between GRASP and

Balasundaram’s BC algorithm for the MCPP-k, k =1, 2, 339

13. Comparison of solution quality between GRASP and Balasundaram’s BC algorithm

for the MWCPP-k, k =1, 2, 3 ..41

vii

14. Comparison of running time between GRASP and Balasundaram’s BC algorithm

for the MWCPP-k, k =1, 2, 3 ..43

15. Results of GRASP for the maximum co-1-plex problem on DIMACS instances

 ..46

16. Results of GRASP for the maximum co-2-plex problem on DIMACS instances

 ..48

17. Results of GRASP for the maximum co-3-plex problem on DIMACS instances

 ..50

18. Results of GRASP for the maximum weighted co-1-plex problem on DIMACS

instances ..52

19. Results of GRASP for the maximum weighted co-2-plex problem on DIMACS

instances ..54

20. Results of GRASP for the maximum weighted co-3-plex problem on DIMACS

instances ..56

viii

LIST OF FIGURES

Figure Page

1. Illustration of cohesive subgroups ..3

2. Illustration of co-k-plexes for positive integer k=1, 2, and 310

3. Pseudo-code of generic GRASP for the maximum independent set problem16

4. Pseudo-code of the GRASP construction procedure for the MISP17

5. Pseudo-code of (2, 1)-exchange local search procedure for the MISP19

6. Pseudo-code of greedy randomized construction for the MCPP-k.....................20

7. Pseudo-code of local search for the MCPP-k ...22

8. Pseudo-code of greedy randomized construction for the MWCPP-k23

9. Pseudo- code of local search for the MWCPP-k ..24

1

CHAPTER I

INTRODUCTION

A graph G = (V, E) is defined by a set of vertices (V), and a set of edges (E) between pairs

of vertices. Graphs provide a convenient and simple way to represent massive data sets arising

from complex and large-scale real world systems by allowing association of attributes with its

vertices and edges. Properties of graphs provide useful information about the internal structure of

the system by identifying meaningful patterns in the dataset. It also facilitates these complex and

large scale problems to be solved using combinatorial optimization approaches. Some examples

of networks are as follows, electrical and power networks, wireless networks, logistical networks,

transportation networks, rail and airline service networks, telecommunication networks, computer

networks, biological networks and many more.

A sociogram (visualization of a social network by using a graph) was first presented by

Moreno in [1] to analyze structural properties and patterns of group interactions within the

network. The term social network was first coined by Barnes in [2]. “A social network is usually

represented by a graph, in which the set of vertices corresponds to the “actors” in a social network

and the edges correspond to the “ties” between them” [3]. Actors can be people or groups of

people, organizations and examples of tie between people or groups of people can be a

relationship and between organizations can be various transactions between them.

2

Social Network Analysis (SNA) is a tool in modern sociology and studies social behavior

of the actors in the social network. Thus, social networks can be easily and conveniently modeled

as a graph to study and analyze the behavior of social systems. Social network analysis aims at

understanding relationships within groups and analyzes useful patterns in the social network by

visualization and modeling. For example, insurance companies are interested to find group of

people who are most likely to buy their insurance policy by customizing their products on basis of

individual attributes such as age, occupation, gender etc. Social network analysis basically relies

on identifying cohesive subgroups in a social network depending upon the problem definition.

Notion of cohesive subgroups is important in SNA from sociological and data mining perspective

due to their desirable properties as follows (i) familiarity in subgroup members (few strangers)

(ii) reachability in subgroup members (quick communication) and (iii) robustness in subgroup

(not easily destroyed by removing members). We can model these properties using graph

theoretic concepts of vertex degrees, pair-wise distances/diameters and vertex connectivity,

respectively. Figure 1 generated using the “social graph” application of Facebook, illustrates the

notion of cohesive subgroups. In Figure 1, each node represents a friend of mine and there exists

an edge between the nodes if they know each other. It is straightforward to identify three cohesive

subgroups in Figure 1. The largest cohesive subgroup represents my group of friends at

Oklahoma State University. The middle and bottom subgroups represent my group of friends

from my hometown and bachelors college respectively.

Let us consider the network-based model of stock market [4, 5], which was built from

pair-wise correlations between all stocks traded in U.S. stock market over a specified period of

time. The main aim behind the analysis of the market graph is to find diversified portfolios that

consistently outperform the market trends. The stocks in the U.S. stock market are represented by

vertices in the market graph and an edge between two vertices indicates that the two stocks are

correlated above a user-defined correlation threshold value , -1 1. It is shown that edge

3

density in a constructed market graph is inversely proportional to , i.e., edges in the graph

decreases as increases in [6].

Figure 1. Illustration of cohesive subgroups

Let N be the total number of stocks in consideration and the correlation threshold Cij (-1

 Cij 1) is calculated using following formula [6, 7]:

4

 Eji,

RRRR

RRRR
C

jjii

jj
ij

ii

2222

Where,

 i = 1,…, N, j = 1,..., N

 Pi(t) is the price of the stock i on day t

 Ri(t) =
)1(

)(
ln

tP

tP

i

i defines return or trading volume of the stock i on day t

 iR =

T

t

t
T

iR
1

)(
1

defines mean of Ri(t) over T period of time

Different correlation threshold values are used to construct different instances of the

stock market graphs depending on the degree of diversification (minimize potential risk measured

as correlation associated in the portfolio) needed by user. This example is a graph-based data

mining application in stock market. More information about construction of the market graph can

be found in [4-6, 8]. Many network models that can be used to solve this diversified portfolio

selection problem in stock market were studied and analyzed in literature.

An independent set is a set of pair-wise non-adjacent vertices in the graph. A clique is a

complete subgraph with every vertex is adjacent to every other vertex in a graph. Independent set

and clique are equivalent under graph complementation. Clique was the earliest graph model for

representing cohesive subgroups (“strongly connected” subgroups in social network) [3, 9].

Cliques have highest possible degree, fastest reachability and strongest connectivity among

members. Although, cliques were thought to be perfect to characterize cohesive subgroups,

cliques were found to be too idealized and restrictive in practice. In the aforementioned data

mining application in stock market, independent sets are used to find a “perfectly diversified”

portfolio where market graph is generated with a negative correlation threshold . Moreover,

cliques are used to find group of stocks in pair-wise correlation with each other, i.e., stocks

5

exhibit similar price fluctuations. For example, correlation between Toyota and Ford stocks is

higher than correlation between Toyota and IBM. It is because Toyota and Ford belong to the

same family of the companies, i.e., both belong to the automobile industry. Intuitively, cliques

tend to identify entities similar in nature. An independent set represents a portfolio in the market

graph where all stocks in the independent set are negatively correlated. However, choosing such a

“perfectly diversified” portfolio with a large group of negatively correlated stocks is a difficult

task [6]. This idea motivates the relaxation of the independent set by allowing user controlled

interdependency in the subgroup where degree of the nodes are bounded from above.

We are motivated by this application and identified relaxations of such models. This

relaxation allows finding larger portfolios without losing diversity of the portfolios. Structural

relaxations for cliques and independent sets were introduced to explore and analyze more areas

within the graph. The clique relaxations such as k-clique (pair-wise distance bounded network)

[10-12], k-club (diameter bounded network) [10, 11] and k-plex (degree bounded network) [13]

and independent set relaxations such as co-k-plexes [9, 14] were introduced due to practical needs

in most of the data mining applications.

This thesis deals with such a graph theoretic independent set relaxation model introduced

by Balasundaram in [14] called a co-k-plex. The motivation behind this model is that the

independent set has no edge between any two vertices in a set whereas a co-k-plex allows a

limited number incident at each node. This parameterized model represents an independent set

when parameter k = 1 and provides an independent set relaxation for k > 1. As increasing the

value of k corresponds to a gradual relaxation of independence.

This thesis addresses the optimization problem to find a largest co-k-plex in a graph and

develops a metaheuristic approach to solve this problem. We focus only on co-k-plex models for

parameter k = 1, 2, 3 and the related optimization problems. However, the approach is applicable

to any positive integer k.

6

The organization of this thesis in subsequent chapters is as follows: Chapter II presents

required notations and definitions from graph theory; and a review of literature on cliques and

clique relaxation models, independent sets and the associated optimization problems. Further, we

describe the independent set relaxation model and the associated research problems. Chapter III

describes the need for modern metaheuristic algorithms for solving combinatorial optimization

problems. One such heuristic algorithm to solve this research problem is then studied in

subsequent sections of Chapter III. Numerical results from computational experimentations on a

large test-bed of benchmark instances are presented in Chapter IV. Chapter V concludes with

important findings and provides quick insight of research work.

7

CHAPTER II

THE MAXIMUM CO-K-PLEX PROBLEM

2.1 DEFINITIONS, NOTATIONS AND BACKGROUND

Consider a simple, finite and undirected graph = (V, E), where V is the set of vertices,

and E is the set of edges between the vertices; E ⊆ {{u, v} | u, v ∈ V}. Let degG() = |{u : (u,) ∈

E}| denote the degree of in ; dG(u,) denotes the length of a shortest path in terms of number

of edges between vertices u and in , and diam() = max {dG(u,): (u,) ∈ E} is the

diameter of graph . [S] = (S, E (S S)), denotes the subgraph induced by S ⊆ V. N()

denotes the set of vertices which are adjacent to in graph , i.e. the number of edges incident at

 . A complement graph ̅ = (V, ̅) of the graph is a graph with the same vertices as and with

the property that two vertices in ̅ are adjacent if and only if they are not adjacent in , i.e. e ∈ ̅

if and only if e E. A graph is complete graph if its vertices are pair-wise adjacent, i.e. i, j ∈

V, {i, j} ∈ E. A subset of vertices S of graph is a clique if, there is an edge between each pair of

vertices, i.e., a clique induces a complete subgraph. A clique is called a maximal clique if it is not

contained in a larger clique. A maximum clique in a graph is a clique of maximum cardinality

in and the clique number for denotes by ω() is the cardinality of a maximum clique. The

maximum clique problem (MCP) is to find a largest clique in the given graph and it is known to

be NP-hard [15]. The maximum weighted clique problem (MWCP) (each vertex is associated

8

with positive weight in) is to find a clique of maximum weight in . The maximum clique

problem is the special case in which all weights are unity.

An independent set is a subset of pair-wise non adjacent vertices in . S ⊆ V is an

independent set in if and only if it forms a clique in ̅. An independent set is said to be maximal

if it is not contained in a larger independent set. The maximum independent set problem (MISP) is

to find an independent set of maximum cardinality and the independence number; α(), is the

cardinality of a maximum independent set in . MISP is known to be NP-hard [15]. The

maximum weighted independent set problem (MWISP) is to find an independent set of maximum

weight in . Finding a maximum independent set in is equivalent to finding a maximum clique

in ̅. The maximum independent set and maximum clique problems are closely related, we deal

with both the problems while describing the properties and algorithms for the maximum

independent set problem. In this case, it is clear that a result holding for the maximum clique

problem in will also be true for the maximum independent set problem in ̅. Thus, researchers

may not differentiate these problems, as solving one problem is equivalent to solving the other

problem on general graphs. The first algorithm for finding large cliques in a graph was published

by Harary and Ross in [16]. Since, many algorithms have been developed to find maximal cliques

in the graph [17]. Many exact algorithms based on branch and bound method for maximum clique

problem and independent set problem are available in literature. One of the important algorithms

is a recursive algorithm for maximum independent set problem proposed by Tarjan and

Trojanowski in [18] with complexity of O() which is then modified to complexity of

O() by Robson in [19]. Readers are referred to the text in [6, 17] for details regarding of

algorithms to find maximal or maximum cliques and related problems in . Also, many heuristics

are available to solve maximum clique and independent set problems in the literature [6]. Chapter

III will discuss in detail some greedy heuristics for these problems. The maximum independent

set/clique problem has applications in numerous fields, including information retrieval, signal

9

transmission analysis, classification theory, economics, scheduling, and biomedical engineering,

experimental design and computer vision and pattern recognition, map labeling and market graph

(portfolio optimization) etc. [17].

A subset of vertices S of a graph is a k-plex if, degG[S]() = | N(S | |S| - k; ∈

S. In other words, a subset of vertices of a is said to be k-plex if the degree of every vertex in

the induced subgraph [S] is at least |S| - k. A k-plex is maximal, if it is not contained in a larger

k-plex. Not that a 1-plex is a clique. A maximum k-plex is a k-plex of maximum cardinality in

and the k-plex number for is denoted as ωk(). The maximum k-plex problem is to find a largest

k-plex for the given graph and it is known to be NP-hard [9]. The maximum weighted k-plex

problem is to find a k-plex of maximum weight in .

A subset of vertices S of a graph G = (V, E) a co-k-plex if, degG[S] () = | N() S | k-1

 Є S. A co-k-plex induces a subgraph in which degree of a vertex Є S in [S] is at the most

k-1, i.e. [S] has maximum degree of k-1 or less. Figure 2 illustrates co-k-plexes for integer k =1,

2 and 3. A co-1-plex set in a graph is simply collection of nonadjacent vertices, i.e., an

independent set. Furthermore, a co-2-plex set is a set of independent vertices and matched pairs.

A co-3-plex set is a set of independent vertices, paths and cycles. Thus, co-k-plexes provide

systematic step-by-step relaxations of independent sets for each positive integer k. A co-k-plex is

maximal, if it is not contained in a larger co-k-plex. The maximum co-k-plex problem (MCPP-k)

is to find a maximum cardinality co-k-plex in and the co-k-plex number, αk() is the cardinality

of a maximum co-k-plex in . The maximum co-k-plex problem is also known to be NP-hard [9,

20, 21]. The maximum weight co-k-plex problem (MWCPP-k) is to find a co-k-plex of maximum

weight in . Seidman and Foster introduced the k-plex model to find degree bounded cohesive

subgraphs in [13]. The k-plexes are cohesive subgraphs which were introduced to relax the

structure of cliques. The co-k-plex and k-plex are equivalent under graph complementation, i.e.

10

the set S is a co-k-plex in if and only if S is a k-plex in ̅. Consequently, the maximum co-k-

plex problem and maximum k-plex problem are closely related and equivalent under graph comp-

(a) (b)

(c) (d)

Figure 2. Illustration of co-k-plexes for positive integer k=1, 2, and 3

(a) Original Graph, (b) co-1-plex (subgraph contains independent vertices, i.e., an independent

set), (c) co-2-plex (subgraph contains independent vertices and matched pairs), (d) co-3-plex

(subgraph contains independent vertices, paths and cycles)

11

lementation. This is analogous to the relationship between stable sets in and cliques in ̅.

Several exact algorithms for these problems are studied in [9, 14, 22, 23]. No metaheuristic

algorithm is available to solve this problem presently.

Diversified portfolio solution problem discussed in Chapter I is further studied in

perspective of finding diversified portfolios that have superior profitability in [22]. The main

drawback of the approach mentioned in Chapter I is the fact that the returns of the identified

diversified portfolios were not explicitly taken into account. To addressed this issue of finding

large, high-return diversified portfolios into a weighted market graph, each vertex is assigned a

weight. The weight of each vertex represents the return of corresponding stock over specified

period of time and it can be calculated by two equations as follows [22]:

1) wi
1
 =

)1(

)(
log

i

i

P

TP
,

2) wi
2
 = 1

)1(

)(

i

i

P

TP
,

Where, wi is the weight of the vertex i, i.e., overall return on i over T trading days. This

problem is solved and studied by using maximum weighted clique and k-plex in [22]. It is shown

that weighted clique relaxations offer more robustness and profitability as compare to weighted

cliques in the context of portfolio selection. It is shown that, 2-plexes offer reasonable “tight”

clique relaxations by providing good balance between the quality and size of the identified

diversified portfolio. This result forms the basis for studying the maximum weighted co-k-plex

problem in the context of identifying large, highly diversified profitable portfolios.

2.2. CONTRIBUTIONS

This thesis makes the following contributions. The metaheuristic approach known as

Greedy Randomized Adaptive Search Procedure (GRASP) has been thoroughly studied and a

12

GRASP algorithm has been developed for solving the maximum co-k-plex problem and the

maximum weighted co-k-plex problem. A suitable neighborhood definition is designed to

enhance local search effectiveness, ultimately improving GRASP performance. GRASP

algorithms for both problems have been implemented using the C++ programming language.

Efficient data structures and implementation techniques are used to reduce GRASP total running

time. Benchmark clique instances from the Second DIMACS challenge [9, 14, 24, 25] are

complemented to form independent set instances. Computational experiments are conducted on

these instances to analyze the effectiveness of GRASP by comparing numerical results of GRASP

with results obtained by an exact branch-and-cut algorithm from literature.

13

CHAPTER III

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE (GRASP)

3.1 INTRODUCTION TO METAHEURISTICS

Optimization problems of both practical and theoretical importance are divided into two

categories: those with continuous variables and those with discrete variables. Combinatorial

Optimization (CO) problems fall into a category of problems with discrete values for feasible

solutions. In this class of problems, we are looking for an object from a finite (or possibly

countably infinite) set of objects that corresponds to the maximum or minimum objective value.

Some well-known examples of CO problems are the Traveling Salesman Problem (TSP), the

Quadratic Assignment Problem (QAP), and the maximum clique/independent set problems.

A combinatorial optimization (CO) problem is described by a pair (S,) where is an

objective function to be minimized or maximized as per problem definition and S is a feasible

search space; each element of S can be a candidate solution. To solve a combinatorial

optimization problem, we need to find a solution s* ∈ S with minimum or maximum objective

function value. i.e. (s*) (s) for a minimization problem and (s*) (s) for a maximization

problem s ∈ S. Such a solution s* is a global optimal solution of the CO problem. To solve

such problems, exact and heuristic algorithms have been developed and studied. Exact algorithms

are guaranteed to provide an optimal solution in finite steps for every finite size instance of a CO

problem.

14

Most of the CO problems are categorized as NP-hard (no polynomial time exists to solve

them, unless). Therefore, exact algorithms might need exponential time in the worst-

case. Heuristic algorithms try to find a good quality solution instead of finding an optimal

solution in significantly reduced amount of time. Basic heuristic algorithms are distinguished as

constructive and local search methods. Constructive algorithms generate a feasible solution

starting from an empty solution. Local search algorithms iteratively find a better quality solution

to replace the current solution through intensive exploration of search space based upon

appropriately defined neighborhood structures.

A neighborhood structure is a mapping : S 2
S

that assigns to every s ∈ S set of

neighbors (s) ⊆ S. (s) is called the neighborhood of s. A locally minimal solution with

respect to a neighborhood structure is a solution ̂ such that s ∈ ̂ , (̂) (s). We call ̂

a strict locally minimal solution if (̂) (s) s ∈ ̂ , s ̂

Metaheuristics are widely used to solve combinatorial optimization problems because of

their simplicity and robustness. Metaheuristics are designed to produce good quality solutions in

reduced amount of time for complex combinatorial problems. Metaheuristics are not problem

specific and provide a framework for finding good quality solutions by efficiently exploring

neighborhood in short amount of computational time. Simulated Annealing (SA) [26], Tabu

Search (TS) [27-29], Greedy Randomized Adaptive Search Procedure (GRASP) [30, 31], Genetic

Algorithms (GA) [32, 33] and Variable Neighborhood Search (VNS) [34] are some of the well-

known metaheuristics used to solve large CO problems. Performance of metaheuristic algorithms

depends on the efficiency of algorithms to explore and exploit the search space. Therefore every

metaheuristic algorithm should be carefully designed with such aim.

Intensification and Diversification (I&D) are the most powerful and effective factors

driving metaheuristics performance to high levels. Glover and Laguna provide high level

descriptions of intensification and diversification in [27]. During intensification, algorithm

explores search space for high quality solutions in the neighborhood and during diversification,

15

moves to unexplored search space are made to find better solutions than found during

intensification. The moves in the search space greatly depend on the search philosophy of a

metaheuristic itself and the neighborhood structures defined for the problem. Therefore, one has

to ensure right balance between intensification and diversification to obtain an effective

metaheuristic.

3.2 GRASP METAHEURISTIC

GRASP is a multistart metaheuristic used to solve combinatorial optimization problems

[30, 31, 35, 36]. An iteration of the GRASP consists of two phases: a greedy randomized

construction phase and a local search phase. During the construction phase, an initial feasible

solution is built and in the local search phase a local optimum is found by investigating the

neighborhood of the current feasible solution based on neighborhood definition. The best solution

encountered during different iterations is returned by GRASP as final solution. GRASP is the first

metaheuristic that was built to construct initial solution by balancing greedy and randomized

approaches to enhance the performance of the local search. Hence, GRASP solutions are

generally significantly better than the single solution obtained from a random starting point.

GRASP has been successfully applied to a wide range of combinatorial optimization problems,

such as drawing and turbine balancing, scheduling, routing , problems in logic, including SAT,

MAX-SAT, and logical clause inference, partitioning problems, location and layout problems,

Graph theoretic applications, assignment problems, transportation problems etc. An annotated

bibliography of the GRASP literature from 1989 to 2008 is available in [37, 38].

The maximum co-k-plex problem is a NP-hard problem as discussed in Chapter II.

Therefore, metaheuristic algorithms can provide a good approach to solve the maximum co-k-

plex problem in relatively small amount of time to produce good quality solutions where exact

algorithms might take high computational time in the worst-case. The overall goal of this thesis is

16

to develop GRASP algorithm to solve MCPP-k and MWCPP-k on large graphs. This is the first

metaheuristic approach developed for this problem. The next section describes a generic GRASP

metaheuristic framework in the context of finding maximum independent sets in a given graph

developed by Resende et al. in [39]. Subsequently, we describe the GRASP metaheuristic

algorithm for the maximum co-k-plex and the maximum weighted co-k-plex problems developed

as part of this thesis research.

3.2.1 GRASP FOR THE MAXIMUM INDEPENDENT SET PROBLEM

Figure 3 and 4 present the pseudo-codes of a generic GRASP and the GRASP

construction procedure for the maximum independent set problem, respectively [39]. The

parameters Max_Iterations and Seed are the maximum number of iterations for GRASP

termination and the initial seed for the pseudorandom number generator, respectively.

Construction phase starts with an empty solution and the ordered candidate list (contains elements

that can be added one at a time to the current solution without violating feasibility) which

contains all the vertices. The list of the best candidates, called a Restricted Candidate List (RCL)

is constructed choosing best candidates from the candidate list by a greedy-randomized function

which depends on a parameter (0 1).

Figure 3. Pseudo-code of generic GRASP for the maximum independent set problem

 GRASP(Max_Iterations,Seed)

 Read_Input (V, E);

 Initialize Best Solution I* to an empty set;

 for i = 1, …, Max_Iterations do

 Generate ∈ [0, 1] randomly;

 = GreedyRandomizedConstruction(α);

I = LocalSearch();

if |I| > |I*| do

 I* = I;

end if

 end for

 return I*;

 end GRASP

17

The value of parameter decides the degree of “greediness” and “randomness” in the algorithm.

 = 1 provides pure randomness and = 0 provides pure greediness. An initial feasible solution

is built iteratively by randomly selecting element from RCL and adding to the current solution

one at a time. The technique of choosing elements randomly may generate different solutions at

each GRASP iteration and the value of is also chosen at random (but fixed for each major

GRASP iteration). At each construction iteration the candidate list is updated and then ordered by

using the greedy rule. The construction phase terminates when the candidate list is empty, i.e. no

candidate is available to improve current solution. Let us consider the graph = (V, E) as shown

in Figure 2 (a) to solve the MISP.

Let us consider α is generated equal to 0.5 in an iteration of the GRASP. The construction

phase starts with an empty solution (I = {}) and builds an independent set by adding vertices one

by one from RCL. C initially consists all the vertices, i.e. C = V and all the elements are ranked in

descending order based on degrees of the elements in [C]. (RCL) is constructed by adding

vertices which have a lesser or equal degree than threshold (Threshold Value = dmin + α (dmax–

dmin)) in [C]. An element is chosen randomly from RCL, suppose we have chosen vertex 3 (I =

{3}).

Figure 4. Pseudo-code of the GRASP construction procedure for the MISP

GreedyRandomizedConstruction (α)

Initial Independent set, = ;

Candidate list, C = V;

while|C| > 0 do

Let G[C] be the subgraph induced by the vertices in C;

Let degG(C)(u) be the degree of u ∈ C with respect to [C];

dmin= min{degG(C)(u) | u ∈ C};

dmax= max{degG(C)(u) | u ∈ C};

RCL = {u ∈ C | degG(C)(u) dmin + α (dmax − dmin)};

Select u at random from the RCL;

 = {u};

C = C \ (N(u) {u});

end while;

return ;

end GreedyRandomizedConstruction;

18

Thus, GRASP uses vertex degrees as the greedy function for constructing an independent

set. After adding a randomly selected vertex, C is updated such that if elements in C can be added

to current independent set one at a time without violating feasibility, i.e. selecting elements from

vertex list that are nonadjacent to every element in I. Thus, vertices 2, 4, 5, 7, 8, 9, 10 and 11

forms updated candidate list. The steps discussed so far are repeated until the termination

condition (the candidate list is not empty) of construction phase is satisfied.

C dmin dmax Threshold RCL Solution

{1,2,3,4,5,6,7,8,9,10,11,12} 1 6 3.5 {3,5,7,8,9,10,11,12} {3}

{2,4,5,7,8,9,10,11} 0 3 1.5 {8,9} {3,8}

{2,4,5,7,9,10,11} 0 3 1.5 {9} {3,8,9}

{2,4,5,7,10,11} 2 3 2.5 {4,5,10,11} {3,4,8,9}

{5,10,11} 0 1 0.5 {5} {3,4,5,8,9}

{10,11} 1 1 1 {10} {3,4,5,8,9,10}

Table 1. Iterative greedy randomized construction phase for the MISP

Table 1 presents the steps carried out in the greedy randomized construction phase to

construct an initial feasible solution. The greedy randomized construction phase for the MISP

returns an initial feasible solution, i.e. Solution set I = {3, 4, 5, 8, 9, 10} as shown in Figure 2 (b).

Figure 5 shows the pseudo-code of the local search phase for the maximum independent

set problem. Applying local search to improve each constructed solution is beneficial because of

the fact that constructed solutions are not guaranteed to be globally optimal especially for NP-

hard CO problems. The GRASP local search iteratively replaces the current solution by a better

solution from the neighborhood and terminates when no better solution is found in the

neighborhood. Thus, the performance of the local search algorithm depends on three factors: the

choice of neighborhood structure, efficient neighborhood search techniques and initial feasible

solution constructed in the construction phase. One possible neighborhood structure for local

search can be implemented by (2, 1) swap or exchange. This approach adds two new elements to

current solution after removing one element. The local search terminates when no such triplet can

19

be found and returns the current solution as the local optimum. Given a (maximal) independent

set (), the (2,1)-exchange local search neighborhood is given by 2() = { J ⊆ V : J is an

independent set, | \ J| = 1 and |J \ | = 2}. Local search starts with initial feasible solution, .

Suppose, initial feasible solution constructed during greedy randomized construction phase is

= {5, 6, 10, 12}. Note that is a maximal independent set. Local search tries to find a triplet in

the neighborhood of current solution. Table 2 presents solutions found during an iterative local

search phase, I = {3, 4, 5, 8, 9, 10} as shown in Figure 2 (b).

Figure 5. Pseudo-code of (2, 1)-exchange local search procedure for the MISP

H(I) Solution

{8,9,6} {5,8,9,10,12}

{3,4,12} {3,4,5,8,9,10}

Table 2. Local search phase for the MISP

The local search algorithm terminates when H(I) is empty, i.e. current solution cannot be

further improved. Thus, current independent set solution is said to be locally optimal and it is

returned to the GRASP where it is compared to the best independent set solution found so far. If

the locally optimal solution has higher cardinality than the best solution, then it is replaced by the

current locally optimal solution. In the next section, we will design GRASP in the context of co-

k-plexes for the maximum co-k-plex problem in .

LocalSearch()
H(I) = {(v, u, w) | v, u ∈V \ I, (v, u) E, w ∈ , and

v and u are nonadjacent to all vertices of I except w};

while |H(I)| > 0 do

Select (u, v, w) ∈ H(I);

I = I {u, v} \ {w};

H(I) = {(v, u, w) | v, u ∈ V \ I, (v, u) E, w ∈ I, and

v and u are nonadjacent to all vertices of I except w};

end while

return I;

end LocalSearch

20

3.2.2 GRASP FOR THE MAXIMUM CO-K-PLEX PROBLEM

 The pseudo-code of the generic GRASP and the greedy randomized construction phase

for the maximum co-k-plex problem are similar to that of for the maximum independent set

problem. After each GRASP iteration, locally maximum co-k-plex () solution is compared with

best co-k-plex (*) solution found so far. The best co-k-plex solution is replaced by the current

locally maximum co-k-plex solution if it is larger (| | > | *|). Finally, the best co-k-plex solution

encountered during different iterations is returned by GRASP.

Figure 6. Pseudo-code of greedy randomized construction for the MCPP-k

During the greedy randomized construction phase for the MCPP-k, candidate list C is

updated such that C = {u ∈ C : |N(u) | k-1 and N(u) S = } where, S = {u ∈ : | N(u)

| = k-1}, i.e., u can be added in C if it has no more than k-1 neighbors in the current co-k-plex and

no saturated node in S (node at degree k-1 in the current co-k-plex) is adjacent to u. Let us

consider the graph = (V, E) shown in Figure 2 (a) to solve the maximum co-k-plex problem for

k = 2 (co-2-plex). Suppose parameter is 0.5 in the following numerical example. Table 3

presents the steps carried out in the greedy randomized construction phase for the MCPP-2 to

GreedyRandomizedConstruction (α)

Initial co-k-plex, 0 = ;

Candidate list, C = V;

while |C| > 0 do

Let G[C] be the subgraph induced by the vertices in C;

Let degG(C)(u) be the degree of u ∈ C with respect to [C];

dmin= min{degG(C)(u) | u ∈ C};

dmax = max{degG(C)(u) | u ∈ C};

RCL = {u ∈ C | degG(C)(u) dmin + α (dmax − dmin)};

Select u at random from the RCL;

 0 = 0 {u};

C = {u ∈ C : |N(u) 0 | k-1 and N(u) S = },

 where, S = {u ∈ 0 : | N(u) 0 | = k-1};

end while;

return 0 ;

end GreedyRandomizedConstruction;

21

construct an initial feasible solution. The greedy randomized construction phase for the MCPP-2

returns an initial feasible solution, i.e. Solution set = {3, 4, 5, 8, 9, 10, 11, 12} as shown in

Figure 2 (c).

C dmin dmax Threshold RCL Co-2-plex

{1,2,3,4,5,6,7,8,9,10,11,12} 1 6 3.5 {3,5,7,8,9,10,11,12} {3}

{1,2,4,5,6,7,8,9,10,11,12} 0 5 2.5 {5,8,9,10,11,12} {3,8}

{2,4,5,7,9,10,11,12} 0 3 1.5 {9} {3,8,9}

{2,4,5,7,10,11,12} 0 3 1.5 {12} {3,8,9,12}

{2,4,5,7,10,11} 2 3 2.5 {7,11} {3,8,9,11,12}

{2,4,5,7,10} 1 3 2 {4,5,7,10} {3,8,9,10,11,12}

{4,5} 0 0 0 {4,5} {3,4,8,9,10,11,12}

{5} 0 0 0 {5} {3,4,5,8,9,10,11,12}

Table 3. Iterative greedy randomized construction phase for the MCPP-2

The main difference between local search for MCPP-k and MISP is in the neighborhood

definition. The local search neighborhood for MCPP-k is defined as, for a given (maximal) co-k-

plex (), q() = { J ⊆ V : J is a co-k-plex and | \ J | = 1 and | J \ | = q}, i.e. (q, 1) exchange

neighborhood for q = 2, 3, 4…. The neighborhood search can be implemented by using either a

best-improving or first improving move strategy. In best–improving strategy, all neighbors of the

current solution are investigated and evaluated for best improving neighbor. But first improving

strategy uses the first improving neighbor encountered. We use the first improving strategy to

reduce the running time of algorithm.

H() Co-2-plex

{8,12,3} {6,7,8,11,12}

{4,5,10,7} {4,5,6,8,10,11,12}

{3,9,6} {3,4,5,8,9,10,11,12}

Table 4. Local search phase for the MCPP-2

Local search starts with the initial feasible solution constructed during the greedy

randomized construction phase. Suppose, the initial feasible solution constructed during greedy

22

randomized construction phase is 0 = {3, 6, 7, 11}. Table 2 presents local search moves during

an iterative local search phase resulting in the local optimum = {3, 4, 5, 8, 9, 10, 11, 12} as

shown in Figure 2 (c).

Figure 7. Pseudo-code of local search for the MCPP-k

3.2.3 GRASP FOR THE MAXIMUM WEIGHTED CO-K-PLEX PROBLEM

The pseudo-code of the GRASP for the maximum weighted co-k-plex problem is similar

to that of the maximum independent set problem. After each GRASP iteration, locally maximum

weighted co-k-plex (w) solution is compared with best weighted co-k-plex (w*) solution found

so far. The best weighted co-k-plex solution is replaced by the current locally maximum weighted

co-k-plex solution if it has larger weight (w) > w*)). Finally, the best weighted co-k-plex

solution encountered during different iterations is returned by GRASP. During the greedy

randomized construction phase for the MWCPP-k, RCL is constructed by selecting candidates in

C such that RCL = {u ∈ C | W(u) Wmin + α (Wmax − Wmin)}.

Let us consider the graph = (V, E) shown in Figure 2 (a) to solve the maximum

weighted co-k-plex problem for k = 2 (co-2-plex). Suppose parameter is 0.5. Table 5 presents

weights associated with each vertex in the graph . Table 6 presents the steps carried out in the

greedy randomized construction phase for the MWCPP-2 to construct initial feasible solution.

LocalSearch()

H(= {(ui,…, uq, w) | ui ∈ V \ , w ∈ i = 1, ..., q, and

 | = \ {w} {ui, ..., uq} is a co-k-plex}

while |H(| > 0 do

Select (ui,…, uq, w) ∈ H(;
 = { ui,…, uq}\w;

H(= {(ui,…, uq, w) | ui ∈ V \ , w ∈ i = 1, ..., q, and

 | = \ {w} {ui, ..., uq} is a co-k-plex}

end while

return ;

end LocalSearch

23

The greedy randomized construction phase for the MWCPP-2 returns an initial feasible solution,

i.e. Solution set w
0 = {1, 4, 5, 9, 10, 11, 12} with maximum weight, W w

0) = 460 units.

Figure 8. Pseudo-code of greedy randomized construction for the MWCPP-k

u 1 2 3 4 5 6 7 8 9 10 11 12

W(u) 120 50 20 100 30 25 15 35 105 45 55 5

Table 5. Vertex weights in

C Wmin Wmax Threshold RCL Co-2-plex

{1,2,3,4,5,6,7,8,9,10,11,12} 5 120 62.5 {1,4,9} {4}

{1,2,3,5,6,7,8,9,10,11,12} 5 120 62.5 {1,9} {1,4}

{5,9,10,11,12} 5 105 55 {9,11} {1,4,9}

{5,10,11,12} 5 55 30 {5,10,11} {1,4,9,11}

{5,10,12} 5 45 25 {5,10} {1,4,9,10,11}

{5,12} 5 30 17.5 {5} {1,4,5,9,10,11}

{12} 5 5 5 {12} {1,4,5,9,10,11,12}

Table 6. Iterative greedy randomized construction phase for the MWCPP-2

Local search starts with an initial feasible solution constructed during the greedy

randomized construction phase. Suppose, initial feasible solution constructed during the greedy

GreedyRandomizedConstruction (α)

Initial weighted co-k-plex, w
0 = ;

Candidate list, C = V;

while |C| > 0 do

Let G[C] be the subgraph induced by the vertices in C;

Let W(u) be the weight of u ∈ C;

Wmin = min{W(u) | u ∈ C};

Wmax = max{W(u) | u ∈ C};

RCL = {u ∈ C | W(u) Wmin + α (Wmax − Wmin)};

Select u at random from the RCL;

 w
0 = w

0 {u};

C = {u ∈ C : |N(u) w
0 | k-1 and N(u) S = },

 where, S = {u ∈ w
0 : | N(u) w

0 | = k-1};

end while;

return 0 ;

end GreedyRandomizedConstruction;

24

randomized construction phase is w
0 = {3, 6, 7, 11} with weight, W(w

0) = 115. Table 7

presents local search moves during an iterative local search phase resulting in the local optimum

 w = {3, 4, 5, 8, 9, 10, 11, 12} with weight W(w) = 395 units as shown in Figure 2 (c).

Figure 9. Pseudo-code of local search for the MWCPP-k

H(w) Co-2-plex Weight

{2,8,9,12,6} {2,3,7,8,9,11,12} 285

{4,7} {2,3,4,8,9,11,12} 370

{5,10,2} {3,4,5,8,9,10,11,12} 395

Table 7. Local search phase for the MWCPP-2

In Chapter IV, extensive computational experiments are conducted to test the

effectiveness of both versions of GRASP for the MCPP-k and the MWCPP-k proposed in this

chapter.

LocalSearch(w)

H(w = {(ui,…, uq, w) | ui ∈ V \ w, w ∈ w i = 1, ..., q, and

 | w = w \ {w} {ui, ..., uq} is a co-k-plex and

 |)(iuW W(w)}

while | H(w | > 0 do

Select (ui,…, uq, w) ∈ H(w ;
 w= w { ui,…, uq}\ {w};

H(w = {(ui,…, uq, w) | ui ∈ V \ w, w ∈ w i = 1, ..., q, and

 | w = w \ {w} {ui, ..., uq} is a co-k-plex and

 |)(iuW W(w)}

end while

return w;

end LocalSearch

25

CHAPTER IV

COMPUTATIONAL EXPERIMENTS

This chapter presents our computational experiments conducted on both versions of

GRASP algorithm developed in Chapter III. Extensive investigation of GRASP algorithms

proposed for the maximum co-k-plex and weighted co-k-plex problems are performed on a large

test-bed of benchmark instances. In Section 4.1, we describe all the relevant GRASP algorithm

implementation details and in Section 4.2 we describe the instances used in testing. Our results on

both versions of GRASP algorithm are presented in Section 4.3.

4.1 GENERAL IMPLEMENTATION DETAILS

This section describes implementation details that are common to all our experiments. All

numerical experiments were conducted on Dell Precision T3500 with system configuration as

follows: Intel®Xeon®W3550 3.07 GHz processor, 3GB RAM and Microsoft Windows XP

Professional Version 2002 Service Pack 3 operating system. Two versions of the GRASP

algorithm for solving MCPP-k and MWCPP-k are implemented using the C++ programming

language. We use an adjacency list to represent graphs. An adjacency list contains lists of all

vertices that are adjacent to each vertex in the graph. Table 8 illustrates the adjacency list for the

graph in Figure 2 (a).

26

Vertex Adjacent vertices

1 3 4 6 8

 2 4 5 6 10

 3 1 6 12

 4 1 2 6 7

 5 2 7

 6 1 2 3 4 8 9

7 4 5 7

 8 1 6

 9 6

 10 2 11

 11 7 10

 12 3

Table 8. Illustration of representation of vertex adjacency list

While updating candidate list and determining degree of vertex in subgraph induced by

elements of candidate list during construction phase of GRASP, we recognized that these steps

take considerable amount of time. It is also observed that during local search, enumerating

neighboring solutions needs considerable amount of time. Thus, we used two vectors to keep

track of vertex degree in subgraph induced by elements of candidate list (C) and vertex degree in

subgraph induced by elements in current co-k-plex (solution) respectively as follows:

vector<int> DegreeCand; //keeps track of degree of the node in a subgraph induced

by elements of candidate list

vector<int> AddCandidate; //keeps track of the degree of each node in current co-k-

plex (solution), i.e. degG()(u), u ∈V

Initially, each element in vector “DegreeCand” represents degree of each vertex in

original graph. Degree of each vertex adjacent to u ∈ C is reduced by one when u is selected

radomly from RCL to add in the current co-k-plex (). This facilitates step of updating C by

keeping track of degree of v, v ∈ C & v , i.e.degree of vertex in [C]. This also helps to

determine maximum and minimum degree in [C] easily. The vector “AddCandidate” keeps

27

track of degree of each vertex in (number of vertex adjacent to u in) by increasing degree of

each vertex adjacent to u ∈ V when u is added to current . This helps to determine degree of v ∈

V in [] and facilitates the step of finding improving neighbors quickly. Table 9 illustrates

improvement in GRASP runtime. The naive version explicitly checks neighboring solutions while

the improved version uses the above mentioned data structures.

Graph |V| |E|
Naive GRASP Time

(secs)

Improved GRASP Time

(secs)

c-fat500-2.clq 500 9139 42.81 0.031

c-fat500-10.clq 500 46627 274.86 0.328

hamming10-2.clq 1024 518656 1504.40 6.937

Table 9. Illustration of improvement in the GRASP running time (Max_Iterations = 10)

4.2 DESCRIPTION OF THE TEST-BED

In our Experiments, we used benchmark clique instances from Second DIMACS

challenge [9, 14, 24, 25]. These instances have been used in the literature while studying

algorithms for the maximum k-plex problem [9]. Table 10 presents information regarding the 32

DIMACS benchmark instances used in this thesis for experimental purpose [24, 25]. Description

of DIMACS instances from Table 10 can be found in [9, 14, 40, 41]. For solving the maximum

weighted co-k-plex problem, weights are generated randomly between range 1 to 10n unit (n =

vertex set size) for the DIMACS instances.

4.3 NUMERICAL RESULTS: MCPP-k AND MWCPP-k

GRASP algorithms for MCPP-k and MWCPP-k were implemented and studied on instances in

Table 10 for k= 1, 2, 3. GRASP results are compared with the results obtained by Branch-and-Cut

exact algorithm in [9]. All numerical results in [9] on benchmark clique instances were obtained

by conducting experiments on Dell Precision PWS690® computers with 2.66GHz Xeon®

28

processor, 3GB RAM and 120GB HDD. Branch-and-Cut (BC) algorithm was implemented using

ILOG CPLEX 10.0® for solving the maximum k-plex and maximum weighted k-plex problems

for k =1, 2, 3 in [9]. Description of the BC algorithm and CPLEX® parameters can be found in

[9, 14].

Graphs |V| |E|
edge

density

brock200_1.clq 200 14834 0.745

brock200_2.clq 200 9876 0.496

brock200_4.clq 200 13089 0.658

brock400_2.clq 400 59786 0.749

brock400_4.clq 400 59765 0.749

brock800_2.clq 800 208166 0.651

brock800_4.clq 800 207643 0.65

c-fat200-1.clq 200 1534 0.077

c-fat200-2.clq 200 3235 0.163

c-fat200-5.clq 200 8473 0.426

c-fat500-1.clq 500 4459 0.036

c-fat500-2.clq 500 9139 0.073

c-fat500-5.clq 500 23191 0.186

c-fat500-10.clq 500 46627 0.374

hamming6-2.clq 64 1824 0.905

hamming6-4.clq 64 704 0.349

hamming8-2.clq 256 31616 0.969

hamming8-4.clq 256 20864 0.639

hamming10-2.clq 1024 518656 990

hamming10-4.clq 1024 434176 0.829

johnson8-2-4.clq 28 210 0.556

johnson8-4-4.clq 70 1855 0.768

MANN_a9.clq 45 918 0.927

MANN_a27.clq 378 70551 0.99

MANN_a45.clq 1035 533115 0.996

keller4.clq 171 9435 0.649

p_hat300-1.clq 300 10933 0.244

p_hat300-2.clq 300 21928 0.489

p_hat300-3.clq 300 33390 0.744

p_hat700-1.clq 700 60999 0.249

p_hat700-2.clq 700 121728 0.498

p_hat700-3.clq 700 183010 0.748

Table 10. DIMACS benchmarks

29

GRASP parameter “Max_Iterations” (termination criterion for GRASP algorithms) is set

to be 10 (Max_Iterations = 10). It is determined based on preliminary experiments on the GRASP

algorithm. Note that increasing GRASP iterations increases the probability of GRASP finding

better quality solutions, but it also increases computational time (Appendix A, Table 11). It was

found in preliminary experiments that 10 GRASP iterations provide good balance between

quality of solutions and amount of computational time required for this test bed of instances. Data

collected after termination of GRASP algorithm are as follows:

 Ak(G) = Cardinality of best co-k-plex found by GRASP

 k(G) = Cardinality of best weighted co-k-plex found by GRASP

)(GW
k = Best weight of the co-k-plex found by GRASP

 CTime = Construction phase total running time in secs

 LSTime = Local search phase total running time in secs

 GRASPTime CTime+ LSTime = GRASP total running time in secs

 LSHitRate = Number of times local search improved constructed initial feasible solution

 LSAvgPerInc = Average percentage improvement (size or weight) over initial

constructed solution by local search

Appendix A, Table 12 illustrates GRASP performance over BC exact algorithm. BC

algorithm is used to find the maximum cardinality k-plex in where GRASP is used to find

maximum cardinality co-k-plex in ̅ both problems are equivalent under graph complementation.

BC algorithm was run on DIMACS instances by setting a time limit of 10800 secs in [9]. BC

algorithm terminates when it hits this time limit and provides a lower and upper bound on the

optimum. The lower bound is more appropriate to compare with GRASP solutions. It is clear

from the results that GRASP is able to find good quality solutions very quickly.

30

Appendix A, Table 13 and Table 14 illustrate GRASP performance for solving the

maximum weighted co-k-plex problem in ̅ over BC algorithm used to solve the maximum

weighted k-plex problem in . BC algorithm was run on DIMACS instances by setting a

time limit of 3600 secs. As before GRASP is producing good quality solutions in very little

time. Overall GRASP results for the maximum co-k-plex and weighted co-k-plex problems can

be found in Appendix B.

31

CHAPTER V

CONCLUSION AND FUTURE WORK

This thesis presents the first metaheuristic approach to solve the maximum co-k-plex

problem. In literature, GRASP has been successfully implemented to solve many hard

combinatorial optimization problems such as the maximum clique and independent set problems

[6, 39, 42]. The main contribution of this thesis is the development of GRASP metaheuristic to

solve the maximum co-k-plex and weighted co-k-plex problems. The algorithmic development of

construction and local search phases for solving the maximum co-k-plex and weighted co-k-plex

problems were found to be the major challenges. Particularly, updating the candidate list in the

construction phase was found to be time consuming. An appropriate data structure and an

efficient procedure are designed to effectively update the candidate list that considerably reduced

the computational time of the construction phase.

The local search phase is enhanced by designing a suitable neighborhood definition that

ultimately improved the performance of GRASP. Further, GRASP developed to solve the

maximum weighted co-k-plex problem can be used to find large profitable portfolios of stocks

with high diversity. The maximum k-plex problem in is computationally equivalent to the

maximum co-k-plex problem in ̅ as discussed in Chapter II. Benchmark clique instances from

second DIMACS challenge [9, 14, 24, 25] are used to test the algorithms developed.

32

Effectiveness of the developed GRASP algorithms is confirmed by conducting extensive

computational experiments on these instances. Also, we have compared solutions provided by

both GRASP algorithms with results obtained by exact branch-and-cut algorithm from literature

[9].

Future Directions for Research. The maximum co-k-plex and weighted co-k-plex

problems can be used to find large profitable portfolios. A detailed computational study on very

large-scale stock market data can be done for testing effectiveness of the GRASP proposed in this

thesis.

In the recent past, hybridization of metaheuristics has emerged as an effective approach

to enhance metaheuristics performance. Hybridization of a GRASP with other metaheuristics was

successfully done in the literature to create new and effective metaheuristics. Some of the ways to

hybridize the GRASP can be found in [43]. For instance, one can try to extend a GRASP

algorithm proposed in this thesis to include path-relinking and the local search to include variable

neighborhood structure as used in the VNS heuristic.

33

REFERENCES

1. Moreno, J., Who shall survive?: A new approach to the problem of human

interrelations. 1934.

2. Barnes, J., Class and committees in a Norwegian island parish. Human relations,

1954. 7(1): p. 39.

3. Scott, J., Social Network Analysis. Sociology, 1988. 22(1): p. 109-127.

4. Boginski, V., S. Butenko, and P. Pardalos, On Structural Properties of the Market

Graph In: Inovation in Financial and Economic Networks, Nagurney, A (ed.).

2003: p. 28-45.

5. Boginski, V., S. Butenko, and P.M. Pardalos, Mining market data: A network

approach. Computers & Operations Research, 2006. 33(11): p. 3171-3184.

6. Butenko, S., Maximum independent set and related problems, with applications.

2003, Ph.D. Dissertation, University of Florida.

7. Mantegna, R. and H. Stanley, An introduction to econophysics: correlations and

complexity in finance. 2000: Cambridge Univ Press, Cambridge, UK.

8. Tse, C., J. Liu, and F. Lau, A network perspective of the stock market. Journal of

Empirical Finance, 2010. 17(4): p. 659-667.

9. Balasundaram, B., et al., Clique relaxations in social network analysis: The

maximum k-plex problem. 2008.

10. Mokken, R., Cliques, clubs and clans. Quality and Quantity, 1979. 13(2): p. 161-

173.

11. Alba, R., A graph-theoretic definition of a sociometric clique. The Journal of

Mathematical Sociology, 1973. 3(1): p. 113-126.

12. Luce, R., Connectivity and generalized cliques in sociometric group structure.

Psychometrika, 1950. 15(2): p. 169-190.

13. Seidman, S. and B. Foster, A graph-theoretic generalization of the clique concept.

The Journal of Mathematical Sociology, 1978. 6(1): p. 139-154.

14. Balasundaram, B., Graph theoretic generalizations of clique: Optimization and

extensions. 2007, Ph.D. Dissertation, Texas A&M University.

15. Garey, M. and D. Johnson, A Guide to the Theory of NP-Completeness.

Computers and Intractability, 1979. 3(5): p. 23-26.

16. Harary, F. and I. Ross, A procedure for clique detection using the group matrix.

Sociometry, 1957. 20(3): p. 205-215.

17. Bomze, I.M., et al., The maximum clique problem. Handbook of combinatorial

optimization, 1999. 4(1): p. 1-74.

34

18. Tarjan, R. and A. Trojanowski, Finding a maximum independent set. 1976:

Computer Science Department, Stanford University.

19. Robson, J., Algorithms for maximum independent sets. Journal of Algorithms,

1986. 7(3): p. 425-440.

20. Dessmark, A., K. Jansen, and A. Lingas, The maximum k-dependent and f-

dependent set problem. Algorithms and Computation, 1993: p. 88-97.

21. Djidev, H., et al., On the Maximum k-depedent set problem, Technical Report.

1992: Department of Computer Science, Lund University, Sweden. p. 92-91.

22. Trukhanov, S., Novel approaches for solving large-scale optimization problems

on graphs. 2008, Ph.D. Dissertation, Texas A&M University.

23. Moser, H., R. Niedermeier, and M. Sorge, Algorithms and experiments for clique

relaxations—finding maximum s-plexes. Experimental Algorithms, 2009: p. 233-

244.

24. Johnson, D. and M. Trick, Cliques, Coloring, and Satisfiability. Second DIMACS

Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science. American Mathematical Society, 1996.

25. Dimacs, Cliques, Coloring, and Satisfiability: Second Dimacs Implementation

Challenge. 1995. Online: http://dimacs.rutgers.edu/Challenges/.

26. Kirkpatrick, S., Optimization by simulated annealing: Quantitative studies.

Journal of Statistical Physics, 1984. 34(5): p. 975-986.

27. Glover, F. and M. Laguna, Tabu search. 1997, Kluwer Academic Publishers,

Boston.

28. Glover, F., Tabu Search: A Tutorial. Interfaces, 1990. 20(4): p. 74-94.

29. Glover, F., Tabu search-part II. ORSA journal on Computing, 1990. 2(1): p. 4-32.

30. Feo, T.A. and M.G.C. Resende, A probabilistic heuristic for a computationally

difficult set covering problem* 1. Operations research letters, 1989. 8(2): p. 67-71.

31. Feo, T.A. and M.G.C. Resende, Greedy randomized adaptive search procedures.

Journal of Global Optimization, 1995. 6(2): p. 109-133.

32. Kiehn, E. and J. Holland, Membrane and nonmembrane proteins of mammalian

cells. Organ, species, and tumor specificities. Biochemistry, 1970. 9(8): p. 1729-

1738.

33. Goldberg, D., Genetic algorithms in search and optimization. 1989, Reading,

MA: Addison-Wesley.

34. Hansen, P. and N. Mladenovic, An introduction to VNS. Meta-Heuristics:

Advances and Trends in Local Search Paradigms for Optimization, Kluwer

Academic Publishers, Boston, 1998.

35. Festa, P., Greedy randomized adaptive search procedures. AIROnews, 2003.

7(4): p. 7-11.

36. Festa, P. and M. Resende, GRASP: basic components and enhancements.

Telecommunication Systems, 2010: p. 1-19.

37. Festa, P. and M.G.C. Resende, GRASP: An annotated bibliography. Essays and

surveys in metaheuristics, 2002: p. 325–367.

38. Festa, P. and M.G.C. Resende, An annotated bibliography of GRASP–Part II:

Applications. International Transactions in Operational Research, 2009. 16(2): p.

131-172.

http://dimacs.rutgers.edu/Challenges/

35

39. Feo, T.A., M.G.C. Resende, and S.H. Smith, A Greedy Randomized Adaptive

Search Procedure for Maximum Indepedent Set. Operations Research, 1994.

42(5): p. 860-878.

40. Hasselberg, J., P. Pardalos, and G. Vairaktarakis, Test case generators and

computational results for the maximum clique problem. Journal of Global

Optimization, 1993. 3(4): p. 463-482.

41. Pardalos, P. and J. Xue, The maximum clique problem. Journal of Global

Optimization, 1994. 4(3): p. 301-328.

42. Abello, J., P. Pardalos, and M. Resende, On maximum clique problems in very

large graphs. External memory algorithms, 1999. 50: p. 119–130.

43. Resende, M.G.C., Metaheuristic Hybridization with GRASP. Tutorials in

Operations Research. Inst. for Mgmt Sci. and OR, 2008.

36

APPPENDIX A

RESULTS OF

GRASP

V/S

BC EXACT ALGORITHM

FOR THE MAXIMUM CO-K-PLEX AND WEIGHTED CO-K-PLEX PROBLEMS

 Appendix A presents comparison between GRASP and BC algorithms for MCPP-k and

MWCPP-k. Table 11 shows performance of the GRASP algorithm for 10, 100 and 1000

iterations. Table 12, 13 and 14 show effectiveness of GRASP algorithm by comparing with

results obtained by BC algorithm.

37

Graph\No. of Iterations
co-1-plex size (A(G)) Time (secs)

10 100 1000 10 100 1000

brock200_1.clq 20 20 21 0.001 0.047 0.468

brock200_2.clq 10 10 12 0.001 0.047 0.312

brock200_4.clq 15 16 16 0.001 0.047 0.359

brock400_2.clq 24 24 24 0.016 0.125 1.187

brock400_4.clq 25 25 25 0.031 0.125 1.187

brock800_2.clq 19 19 20 0.031 0.328 3.219

brock800_4.clq 20 20 20 0.047 0.343 3.14

c-fat200-1.clq 12 12 12 0.001 0.063 0.406

c-fat200-2.clq 24 24 24 0.001 0.078 0.688

c-fat200-5.clq 58 58 58 0.031 0.359 3.359

c-fat500-1.clq 14 14 14 0.015 0.218 2.047

c-fat500-2.clq 26 26 26 0.031 0.265 2.531

c-fat500-5.clq 64 64 64 0.078 0.719 7.016

c-fat500-10.clq 126 126 126 0.328 3.188 31.141

hamming6-2.clq 32 32 32 0.001 0.062 0.344

hamming6-4.clq 4 4 4 0.001 0.032 0.047

hamming8-2.clq 128 128 128 0.14 1.422 13.876

hamming8-4.clq 16 16 16 0.001 0.047 0.438

hamming10-2.clq 512 512 512 6.938 72.233 716.739

hamming10-4.clq 40 40 40 0.078 0.625 6.187

Table 11. GRASP results for 10, 100, and 1000 iterations for the MCPP-1

38

Graph\No. of Iterations
co-1-plex size (A(G)) Time (secs)

10 100 1000 10 100 1000

johnson8-2-4.clq 4 4 4 0.001 0.015 0.016

johnson8-4-4.clq 14 14 14 0.001 0.032 0.109

keller4.clq 11 11 11 0.001 0.031 0.234

keller5.clq 25 27 27 0.031 0.313 3.031

MANN_a9.clq 16 16 16 0.001 0.015 0.109

MANN_a27.clq 126 126 126 0.235 2.171 21.172

MANN_a45.clq 343 343 343 4.25 40.687 401.737

p_hat300-1.clq 8 8 8 0.015 0.078 0.719

p_hat300-2.clq 25 25 25 0.015 0.125 1.093

p_hat300-3.clq 35 36 36 0.031 0.156 1.484

p_hat700-1.clq 10 10 11 0.047 0.36 3.562

p_hat700-2.clq 44 44 44 0.078 0.61 5.938

p_hat700-3.clq 62 62 62 0.11 0.875 8.657

Table 11. GRASP results for 10, 100, and 1000 iterations for MCPP-1 (continued)

39

Graphs
BC

GRASP

α(G) α2(G) α3(G) Time (secs) A(G) A2(G) A3(G) Time (secs)

brock200_1.clq [20,31] [25, 53] [29, 70] 10800 10800 10800 20 25 28 0.001 0.001 0.015

brock200_2.clq 12 [13, 24] [15, 37] 152.5 10800 10800 10 13 14 0.001 0.016 0.001

brock200_4.clq 17 [19, 41] [22, 58] 6617.5 10800 10800 15 19 21 0.001 0.016 0.015

brock400_2.clq [24, 68] [27, 133] [32, 151] 10800 10800 10800 24 28 32 0.016 0.015 0.031

brock400_4.clq [23, 69] [27, 133] [32, 151] 10800 10800 10800 25 27 31 0.031 0.015 0.031

brock800_2.clq [19, 116] [23, 253] [26, 305] 10800 10800 10800 19 22 25 0.031 0.047 0.047

brock800_4.clq [19, 108] [23, 252] [26, 304] 10800 10800 10800 20 22 25 0.047 0.046 0.063

c-fat200-1.clq 12 12 12 17.1 148.9 6 12 12 10 0.001 0.001 0.001

c-fat200-2.clq 24 24 24 10.4 19.1 2.828 24 24 16 0.001 0.001 0.001

c-fat200-5.clq 58 58 58 2.1 2.1 1.125 58 58 33 0.031 0.031 0.015

c-fat500-1.clq 14 14 14 1334.4 1356.1 39.734 14 14 11 0.015 0.015 0.015

c-fat500-2.clq 26 26 26 535.7 605.3 33.437 26 26 17 0.031 0.015 0.016

c-fat500-5.clq 64 64 64 141.6 141.5 45.86 64 64 36 0.078 0.062 0.031

c-fat500-10.clq 126 126 126 39.3 76.5 13.547 126 126 67 0.328 0.172 0.063

hamming6-2.clq 32 32 32 0.001 0.001 96.094 32 32 32 0.001 0.001 0.001

hamming6-4.clq 4 6 8 0.2 0.3 0.407 4 6 8 0.001 0.001 0.001

hamming8-2.clq 128 128 [128, 143] 0.001 189.5 10800 128 128 128 0.14 0.156 0.203

hamming8-4.clq 16 16 [20, 32] 52.2 8115.2 10800 16 16 20 0.001 0.001 0.015

hamming10-2.clq 512 [512, 530] [512, 566] 0.8 10800 10800 512 512 512 6.938 8.844 15.656

hamming10-4.clq [36, 234] [41, 153] [51, 286] 10800 10800 10800 40 44 53 0.078 0.109 0.172

Table 12. Comparison of running time and solution quality between GRASP and Balasundaram’s BC algorithm for the MCPP-k, k =1, 2, 3

40

Graphs
BC

GRASP

α(G) α2(G) α3(G) Time (secs) A(G) A2(G) A3(G) Time (secs)

johnson8-2-4.clq 4 5 8 0.001 0.001 0.047 4 5 8 0.001 0.001 0.001

johnson8-4-4.clq 14 14 18 0.1 4.4 28.75 14 14 18 0.001 0.001 0.001

keller4.clq 11 15 21 129.8 365.4 737.781 11 15 21 0.001 0.001 0.001

keller5.clq [26, 50] [31, 83] [40, 167] 10800 10800 10800 25 31 39 0.031 0.046 0.094

MANN_a9.clq 16 26 36 0.001 0.001 0.015 16 26 36 0.001 0.001 0.001

MANN_a27.clq 126 236 351 430.3 79.8 0.031 126 236 351 0.235 0.828 1.5

MANN_a45.clq [344, 347] [662, 668] 990 10800 10800 0.141 343 662 990 4.25 16.343 33.718

p_hat300-1.clq 8 [9, 66] [12, 29] 127 10800 10800 8 10 12 0.015 0.015 0.016

p_hat300-2.clq [25, 51] [28, 85] [36, 78] 10800 10800 10800 25 30 36 0.015 0.047 0.031

p_hat300-3.clq [35, 71] [43, 108] [50, 112] 10800 10800 10800 35 43 51 0.031 0.031 0.046

p_hat700-1.clq [11, 40] [10, 291] [13, 296] 10800 10800 10800 10 11 13 0.047 0.046 0.046

p_hat700-2.clq [44, 208] [50, 298] [58, 298] 10800 10800 10800 44 52 60 0.078 0.125 0.141

p_hat700-3.clq [62, 201] [73, 311] [83, 293] 10800 10800 10800 62 75 87 0.11 0.187 0.282

Table 12. Comparison of running time and solution quality between GRASP and Balasundaram’s BC algorithm for the MCPP-k, k =1, 2, 3

(continued)

41

Graph
BC GRASP

)(1 GW)(2 GW)(3 GW)(1 GW)(2 GW)(3 GW

brock200_1.clq 28455 [34503, 62211] [39440, 69381] 28455 28455 37683

brock200_2.clq 14556 17536 [20564, 20566] 14556 17334 19887

brock200_4.clq 21324 25889 [31326, 55398] 21324 21324 28717

brock400_2.clq [67233, 225025] [75217, 272498] [93337, 307543] 63392 75411 88076

brock400_4.clq [67102, 210135] [79529, 272183] [95056, 337542] 67102 76421 88096

brock800_2.clq [111150, 916516] [127835, 1376970] [143897, 1375300] 109374 128849 141235

brock800_4.clq [109273, 918006] [140704, 1381870] [163373, 1365850] 110473 132771 151756

c-fat200-1.clq 15420 15420 15882 15420 15420 15013

c-fat200-2.clq 27112 27112 27112 27112 27112 21301

c-fat200-5.clq 65414 65414 65414 65414 65414 65414

c-fat500-1.clq 45187 45187 45187 45187 45187 32716

c-fat500-2.clq 76178 76178 76178 76178 76178 55507

c-fat500-5.clq 179508 179508 179508 179508 179508 148842

c-fat500-10.clq 338046 338046 338046 338046 338046 338046

hamming6-2.clq 11635 11635 12100 11635 11635 12100

hamming6-4.clq 2021 2896 3808 2021 2894 3547

hamming8-2.clq 169034 175098 [187101, 196159] 169034 169034 188359

hamming8-4.clq 28799 [32619, 124196] [40595, 93721] 28799 28799 37518

hamming10-2.clq [2618690, 2618780] [2650000, 2790000] [2684660, 3067230] 2618690 2665520 2475380

hamming10-4.clq 2618690 [353752, 2433450] [451272, 2429940] 277650 277650 417314

Table 13. Comparison of solution quality between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3

42

Graph
BC GRASP

)(1 GW)(2 GW)(3 GW)(1 GW)(2 GW)(3 GW

johnson8-2-4.clq 925 1216 1731 925 1216 1731

johnson8-4-4.clq 7508 7685 9824 7508 7672 9824

keller4.clq 14140 20058 [24411, 24413] 13352 20058 24015

keller5.clq [140699, 506572] [187274, 1254230] [241092, 1274340] 128431 170354 206480

MANN_a9.clq 5596 7362 9111 5596 7362 9111

MANN_a27.clq [299319, 405511] 577927 700216 343159 343159 700216

MANN_a45.clq [2573130, 2573150] 4301300 5203950 2571200 4301300 5203950

p_hat300-1.clq 16303 20455 24899 16303 16303 22727

p_hat300-2.clq [40355, 40359] [50890, 101732] [59927, 130841] 40355 50028 58458

p_hat300-3.clq [65947, 162690] [78285, 161837] [93069, 178645] 65023 77059 87147

p_hat700-1.clq [50462, 648095] [54871, 951804] [67901, 1110503] 47037 47037 70408

p_hat700-2.clq [173232, 683481] [215491, 1045690] [252983, 1081170] 174048 212077 244995

p_hat700-3.clq [254492, 721752] [295874, 1075250] [349467, 1085640] 251397 294538 334295

Table 13. Comparison of solution quality between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3 (continued)

43

Graph

BC GRASP

Time (secs)

k=1 k=2 k=3 k=1 k=2 k=3

brock200_1.clq 33.813 3600 3600 0.016 0.016 0.016

brock200_2.clq 8.141 328.296 1175.45 0.001 0.016 0.001

brock200_4.clq 37.781 2985.45 3600 0.001 0.001 0.016

brock400_2.clq 3600 3600 3600 0.015 0.031 0.031

brock400_4.clq 3600 3600 3600 0.016 0.031 0.031

brock800_2.clq 3600 3600 3600 0.032 0.031 0.047

brock800_4.clq 3600 3600 3600 0.031 0.031 0.047

c-fat200-1.clq 4.672 8.078 6.328 0.001 0.001 0.015

c-fat200-2.clq 5.157 12.235 17.25 0.001 0.015 0.016

c-fat200-5.clq 2.515 5.687 6.968 0.031 0.016 0.031

c-fat500-1.clq 271.89 153.031 2091.22 0.001 0.001 0.015

c-fat500-2.clq 288.109 275.453 405.047 0.015 0.015 0.016

c-fat500-5.clq 271.938 247.765 288 0.046 0.046 0.031

c-fat500-10.clq 112.235 129.422 190.39 0.234 0.234 0.078

hamming6-2.clq 0.109 0.078 0.563 0.001 0.001 0.015

hamming6-4.clq 0.25 1.031 0.625 0.001 0.001 0.001

hamming8-2.clq 0.204 8.625 3600 0.141 0.141 0.641

hamming8-4.clq 2.985 3600 3600 0.001 0.001 0.015

hamming10-2.clq 3.984 3600 3600 9.203 39.703 57.265

hamming10-4.clq 3.984 3600 3600 0.078 0.078 0.282

Table 14. Comparison of running time between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3

44

Graph

BC GRASP

Time (secs)

k=1 K =2 k=3 k=1 k=2 k=3

johnson8-2-4.clq 0.171 0.188 0.125 0.001 0.001 0.001

johnson8-4-4.clq 0.14 4.797 8.266 0.001 0.001 0.016

keller4.clq 1.266 503 750.266 0.015 0.001 0.016

keller5.clq 3600 3600 ≥ 3600 0.031 0.062 0.11

MANN_a9.clq 0.094 0.062 0.078 0.001 0.001 0.001

MANN_a27.clq 3600 0.156 0.125 0.421 0.421 0.922

MANN_a45.clq 0.344 0.328 0.203 10.437 36.625 23.109

p_hat300-1.clq 28.204 417.921 1043.4 0.001 0.001 0.015

p_hat300-2.clq 112.547 3600 3600 0.001 0.032 0.031

p_hat300-3.clq 755.641 3600 3600 0.031 0.047 0.078

p_hat700-1.clq 3600 3600 3600 0.015 0.015 0.016

p_hat700-2.clq 3600 3600 3600 0.063 0.141 0.203

p_hat700-3.clq 3600 3600 3600 0.141 0.297 0.516

Table 14. Comparison of running time between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3 (continued)

45

APPPENDIX B

RESULTS OF

GRASP ALGORITHM FOR MCPP-k AND MWCPP-k

Appendix B presents overall GRASP results on both combinatorial optimization

problems, MCPP-k and MWCPP-k. Tables 15, 16, and 17 present the statistics collected on

GRASP algorithm for the maximum co-k-plex problem. Also, Tables 18, 19 and 20 present the

statistics collected on GRASP algorithm for the maximum weighted co-k-plex problem.

46

Graph A(G) CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

brock200_1.clq 20 0.001 0.001 0.001 0.7 0.116

brock200_2.clq 10 0.001 0.001 0.001 0.2 0.292

brock200_4.clq 15 0.001 0.001 0.001 0.2 0.084

brock400_2.clq 24 0.001 0.001 0.016 0.5 0.126

brock400_4.clq 25 0.016 0.001 0.031 0.6 0.130

brock800_2.clq 19 0.031 0.001 0.031 0.4 0.116

brock800_4.clq 20 0.031 0.016 0.047 0.5 0.141

c-fat200-1.clq 12 0.001 0.001 0.001 0 0

c-fat200-2.clq 24 0.001 0.001 0.001 0 0

c-fat200-5.clq 58 0.016 0.015 0.031 0 0

c-fat500-1.clq 14 0.015 0.001 0.015 0 0

c-fat500-2.clq 26 0.001 0.031 0.031 0 0

c-fat500-5.clq 64 0.078 0.001 0.078 0 0

c-fat500-10.clq 126 0.281 0.016 0.328 0 0

hamming6-2.clq 32 0.001 0.001 0.001 0 0

hamming6-4.clq 4 0.001 0.001 0.001 0 0

hamming8-2.clq 128 0.11 0.015 0.14 0 0

hamming8-4.clq 16 0.001 0.001 0.001 0.4 0.260

hamming10-2.clq 512 6.594 0.281 6.938 0 0.000

hamming10-4.clq 40 0.047 0.015 0.078 0.9 0.201

Table 15. Results of GRASP for the maximum co-1-plex problem on DIMACS instances

47

Graph A(G) CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

johnson8-2-4.clq 4 0.001 0.001 0.001 0 0

johnson8-4-4.clq 14 0.001 0.001 0.001 0.3 0.409

keller4.clq 11 0.001 0.001 0.001 0.6 0.151

keller5.clq 25 0.031 0.001 0.031 0.8 0.157

MANN_a9.clq 16 0.001 0.001 0.001 0.1 0.067

MANN_a27.clq 126 0.203 0.016 0.235 0.3 0.008

MANN_a45.clq 343 3.984 0.219 4.25 0 0

p_hat300-1.clq 8 0.001 0.001 0.015 0.2 0.155

p_hat300-2.clq 25 0.001 0.015 0.015 0.7 0.229

p_hat300-3.clq 35 0.001 0.015 0.031 0.9 0.091

p_hat700-1.clq 10 0.031 0.016 0.047 0.4 0.234

p_hat700-2.clq 44 0.015 0.047 0.078 0.9 0.428

p_hat700-3.clq 62 0.047 0.047 0.11 0.8 0.231

Table 15. Results of GRASP for the maximum co-1-plex problem on DIMACS instances (continued)

48

Graph A2(G) CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

brock200_1.clq 25 0.001 0.001 0.001 0.6 0.127

brock200_2.clq 13 0.016 0.001 0.016 0.3 0.279

brock200_4.clq 19 0.001 0.001 0.016 0.4 0.259

brock400_2.clq 28 0.015 0.001 0.015 0.7 0.101

brock400_4.clq 27 0.015 0.001 0.015 0.8 0.128

brock800_2.clq 22 0.032 0.001 0.047 0.8 0.155

brock800_4.clq 22 0.015 0.031 0.046 0.8 0.085

c-fat200-1.clq 12 0.001 0.001 0.001 0.7 3.000

c-fat200-2.clq 24 0.001 0.001 0.001 0.7 3.582

c-fat200-5.clq 58 0.016 0.001 0.031 0.8 11.044

c-fat500-1.clq 14 0.015 0.001 0.015 0.2 6.000

c-fat500-2.clq 26 0.015 0.001 0.015 0.3 8.244

c-fat500-5.clq 64 0.047 0.015 0.062 1 12.832

c-fat500-10.clq 126 0.047 0.109 0.172 1 25.313

hamming6-2.clq 32 0.001 0.001 0.001 0.1 0.333

hamming6-4.clq 6 0.001 0.001 0.001 0.4 0.500

hamming8-2.clq 128 0.109 0.032 0.156 0.1 0.096

hamming8-4.clq 16 0.001 0.001 0.001 0.8 0.367

hamming10-2.clq 512 7.314 1.467 8.844 0.1 0.183

hamming10-4.clq 44 0.015 0.079 0.109 1 0.350

Table 16. Results of GRASP for the maximum co-2-plex problem on DIMACS instances

49

Graph A2(G) CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

johnson8-2-4.clq 5 0.001 0.001 0.001 0 0

johnson8-4-4.clq 14 0.001 0.001 0.001 0.2 0.220

keller4.clq 15 0.001 0.001 0.001 0.6 0.091

keller5.clq 31 0.031 0.015 0.046 0.7 0.176

MANN_a9.clq 26 0.001 0.001 0.001 0.4 0.053

MANN_a27.clq 236 0.733 0.079 0.828 0.1 0.009

MANN_a45.clq 662 15.749 0.485 16.343 0 0

p_hat300-1.clq 10 0.015 0.001 0.015 0.4 0.280

p_hat300-2.clq 30 0.016 0.001 0.047 0.9 0.313

p_hat300-3.clq 43 0.031 0.001 0.031 0.8 0.117

p_hat700-1.clq 11 0.031 0.001 0.046 0.7 0.197

p_hat700-2.clq 52 0.062 0.048 0.125 0.9 0.374

p_hat700-3.clq 75 0.094 0.078 0.187 1 0.342

Table 16. Results of GRASP for the maximum co-2-plex problem on DIMACS instances (continued)

50

Graph A3(G) CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

brock200_1.clq 28 0.001 0.001 0.015 0.8 0.196

brock200_2.clq 14 0.001 0.001 0.001 0.7 0.238

brock200_4.clq 21 0.001 0.001 0.015 0.7 0.235

brock400_2.clq 32 0.015 0.016 0.031 0.9 0.111

brock400_4.clq 31 0.015 0.001 0.031 0.8 0.148

brock800_2.clq 25 0.047 0.001 0.047 1 0.127

brock800_4.clq 25 0.032 0.015 0.063 1 0.136

c-fat200-1.clq 10 0.001 0.001 0.001 0.3 0.333

c-fat200-2.clq 16 0.001 0.001 0.001 0.3 0.333

c-fat200-5.clq 33 0.001 0.015 0.015 0.5 8.350

c-fat500-1.clq 11 0.015 0.001 0.015 0.2 0.333

c-fat500-2.clq 17 0.016 0.001 0.016 0.3 1.306

c-fat500-5.clq 36 0.031 0.001 0.031 0.2 4.167

c-fat500-10.clq 67 0.016 0.031 0.063 0.3 10.611

hamming6-2.clq 32 0.001 0.001 0.001 0.6 0.173

hamming6-4.clq 8 0.001 0.001 0.001 0.3 0.422

hamming8-2.clq 128 0.109 0.078 0.203 0.6 0.090

hamming8-4.clq 20 0.001 0.001 0.015 0.9 0.284

hamming10-2.clq 512 7.017 8.592 15.656 0.6 0.080

hamming10-4.clq 53 0.093 0.063 0.172 1 0.246

Table 17. Results of GRASP for the maximum co-3-plex problem on DIMACS instances

51

Graph A3(G) CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

johnson8-2-4.clq 8 0.001 0.001 0.001 1 0.276

johnson8-4-4.clq 18 0.001 0.001 0.001 0.9 0.212

keller4.clq 21 0.001 0.001 0.001 1 0.159

keller5.clq 39 0.016 0.062 0.094 0.9 0.132

MANN_a9.clq 36 0.001 0.001 0.001 0.4 0.160

MANN_a27.clq 351 1.375 0.094 1.5 0.4 0.137

MANN_a45.clq 990 33.049 0.576 33.718 0.1 0.092

p_hat300-1.clq 12 0.001 0.001 0.016 0.7 0.304

p_hat300-2.clq 36 0.015 0.001 0.031 0.6 0.272

p_hat300-3.clq 51 0.001 0.046 0.046 0.9 0.317

p_hat700-1.clq 13 0.046 0.001 0.046 0.9 0.292

p_hat700-2.clq 60 0.047 0.078 0.141 0.9 0.504

p_hat700-3.clq 56 0.062 0.063 0.141 1 0.345

Table 17. Results of GRASP for the maximum co-3-plex problem on DIMACS instances (continued)

52

Graph I(G)

)(1 GW CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

brock200_1.clq 18 28455 0.001 0.001 0.016 0.9 0.253

brock200_2.clq 9 14556 0.001 0.001 0.001 1 0.307

brock200_4.clq 13 21324 0.001 0.001 0.001 0.9 0.268

brock400_2.clq 21 63392 0.001 0.015 0.015 1 0.174

brock400_4.clq 21 67102 0.001 0.001 0.016 0.8 0.192

brock800_2.clq 18 109374 0.001 0.016 0.032 0.9 0.262

brock800_4.clq 17 110473 0.015 0.001 0.031 0.9 0.280

c-fat200-1.clq 12 15420 0.001 0.001 0.001 0 0

c-fat200-2.clq 22 27112 0.001 0.001 0.001 0 0

c-fat200-5.clq 58 65414 0.001 0.015 0.031 0 0

c-fat500-1.clq 12 45187 0.001 0.001 0.001 0 0

c-fat500-2.clq 26 76178 0.001 0.001 0.015 0 0

c-fat500-5.clq 64 179508 0.046 0.001 0.046 0 0

c-fat500-10.clq 125 338046 0.202 0.016 0.234 0 0

hamming6-2.clq 32 11635 0.001 0.001 0.001 0.8 0.373

hamming6-4.clq 4 2021 0.001 0.001 0.001 0.2 0.129

hamming8-2.clq 128 169034 0.032 0.093 0.141 1 0.374

hamming8-4.clq 16 28799 0.001 0.001 0.001 0.9 0.449

hamming10-2.clq 512 2618690 1.328 7.812 9.203 1 0.507

hamming10-4.clq 34 277650 0.031 0.031 0.078 1 0.372

Table 18. Results of GRASP for the maximum weighted co-1-plex problem on DIMACS instances

53

Graph I(G))(1 GW CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

johnson8-2-4.clq 4 925 0.001 0.001 0.001 0 0

johnson8-4-4.clq 14 7508 0.001 0.001 0.001 0.9 0.257

keller4.clq 11 13352 0.001 0.001 0.015 0.7 0.214

keller5.clq 20 128431 0.001 0.016 0.031 1 0.255

MANN_a9.clq 16 5596 0.001 0.001 0.001 0.8 0.154

MANN_a27.clq 119 343159 0.155 0.251 0.421 0.9 0.072

MANN_a45.clq 331 2571200 3.657 6.733 10.437 1 0.079

p_hat300-1.clq 7 16303 0.001 0.001 0.001 0.6 0.312

p_hat300-2.clq 23 40355 0.001 0.001 0.001 1 0.471

p_hat300-3.clq 32 65023 0.001 0.016 0.031 1 0.250

p_hat700-1.clq 9 47037 0.001 0.001 0.015 0.9 0.403

p_hat700-2.clq 40 174048 0.001 0.047 0.063 1 0.545

p_hat700-3.clq 59 251397 0.015 0.11 0.141 1 0.668

Table 18. Results of GRASP for the maximum weighted co-1-plex problem on DIMACS instances (continued)

54

Graph 2(G))(2 GW CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

brock200_1.clq 22 34503 0.001 0.015 0.031 1 0.159

brock200_2.clq 11 17334 0.001 0.001 0.016 0.8 0.181

brock200_4.clq 16 24239 0.001 0.001 0.016 0.8 0.202

brock400_2.clq 25 75411 0.001 0.015 0.031 1 0.119

brock400_4.clq 25 76421 0.001 0.015 0.031 0.9 0.313

brock800_2.clq 21 128849 0.001 0.016 0.031 1 0.223

brock800_4.clq 21 132771 0.001 0.015 0.031 0.8 0.411

c-fat200-1.clq 12 15420 0.001 0.001 0.001 0.5 3.860

c-fat200-2.clq 22 27112 0.001 0.001 0.015 0.7 5.492

c-fat200-5.clq 58 65414 0.001 0.016 0.016 1 8.747

c-fat500-1.clq 12 45187 0.001 0.001 0.001 0.6 5.179

c-fat500-2.clq 26 76178 0.001 0.001 0.001 0.5 3.444

c-fat500-5.clq 64 179508 0.001 0.015 0.015 0.7 18.799

c-fat500-10.clq 125 338046 0.032 0.077 0.125 0.9 23.407

hamming6-2.clq 32 11635 0.001 0.001 0.001 1 0.191

hamming6-4.clq 6 2894 0.001 0.001 0.001 0.1 0.318

hamming8-2.clq 128 175098 0.047 0.25 0.328 1 0.177

hamming8-4.clq 16 31099 0.001 0.016 0.016 0.9 0.411

hamming10-2.clq 512 2665520 2.155 37.485 39.703 1 0.270

hamming10-4.clq 43 338057 0.032 0.14 0.187 1 0.672

Table 19. Results of GRASP for the maximum weighted co-2-plex problem on DIMACS instances

55

Graph 2(G))(2 GW CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc

johnson8-2-4.clq 5 1216 0.001 0.001 0.001 0.6 0.181

johnson8-4-4.clq 14 7672 0.001 0.001 0.001 0.9 0.246

keller4.clq 14 20058 0.001 0.001 0.001 0.8 0.273

keller5.clq 27 170354 0.03 0.016 0.062 1 0.337

MANN_a9.clq 25 7362 0.001 0.001 0.001 1 0.129

MANN_a27.clq 234 577927 0.72 1.061 1.813 1 0.079

MANN_a45.clq 660 4301300 15.688 20.859 36.625 1 0.045

p_hat300-1.clq 9 20455 0.001 0.001 0.001 0.9 0.411

p_hat300-2.clq 28 50028 0.016 0.001 0.032 1 0.709

p_hat300-3.clq 41 77059 0.001 0.032 0.047 1 0.431

p_hat700-1.clq 11 61555 0.001 0.015 0.015 0.6 0.657

p_hat700-2.clq 47 212077 0.031 0.094 0.141 1 1.329

p_hat700-3.clq 67 294538 0.031 0.25 0.297 1 0.818

Table 19. Results of GRASP for the maximum weighted co-2-plex problem on DIMACS instances (continued)

56

Graph 3(G))(3 GW CTime(secs) LSTime(secs) GRASPTime(secs) LSHitRate LSAvgPerInc

brock200_1.clq 25 37683 0.016 0.001 0.016 0.9 0.115

brock200_2.clq 13 19887 0.001 0.001 0.001 0.7 0.475

brock200_4.clq 19 28717 0.016 0.001 0.016 0.8 0.340

brock400_2.clq 28 88076 0.001 0.016 0.031 1 0.257

brock400_4.clq 30 88096 0.001 0.015 0.031 1 0.309

brock800_2.clq 23 141235 0.016 0.015 0.047 1 0.323

brock800_4.clq 22 151756 0.015 0.016 0.047 1 0.205

c-fat200-1.clq 10 15013 0.001 0.001 0.015 0.7 1.299

c-fat200-2.clq 22 21301 0.001 0.001 0.016 0.3 1.117

c-fat200-5.clq 58 65414 0.001 0.015 0.031 0.6 2.994

c-fat500-1.clq 10 32716 0.001 0.001 0.015 0.8 0.407

c-fat500-2.clq 17 55507 0.001 0.001 0.016 0.6 1.211

c-fat500-5.clq 62 148842 0.001 0.016 0.031 0.6 1.060

c-fat500-10.clq 125 338046 0.047 0.016 0.078 0.3 0.069

hamming6-2.clq 28 12100 0.001 0.001 0.015 0.8 0.083

hamming6-4.clq 8 3547 0.001 0.001 0.001 0.7 0.532

hamming8-2.clq 128 188359 0.142 0.483 0.641 1 0.216

hamming8-4.clq 18 37518 0.015 0.001 0.015 1 0.600

hamming10-2.clq 366 2475380 3.628 53.59 57.265 1 0.154

hamming10-4.clq 51 417314 0.061 0.205 0.282 1 0.389

Table 20. Results of GRASP for the maximum weighted co-3-plex problem on DIMACS instances

57

Graph 3(G))(3 GW CTime(secs) LSTime(secs) GRASPTime(secs) LSHitRate LSAvgPerInc

johnson8-2-4.clq 8 1731 0.001 0.001 0.001 0.3 0.050

johnson8-4-4.clq 18 9824 0.001 0.001 0.016 0.9 0.223

keller4.clq 18 24015 0.001 0.001 0.016 1 0.430

keller5.clq 38 206480 0.001 0.094 0.11 1 0.524

MANN_a9.clq 29 9111 0.001 0.001 0.001 0.6 0.101

MANN_a27.clq 351 700216 0.828 0.063 0.922 1 0.234

MANN_a45.clq 990 5203950 22.437 0.578 23.109 1 0.165

p_hat300-1.clq 10 22727 0.001 0.001 0.015 0.9 0.378

p_hat300-2.clq 31 58458 0.016 0.015 0.031 1 0.603

p_hat300-3.clq 42 87147 0.001 0.078 0.078 1 0.454

p_hat700-1.clq 13 70408 0.001 0.001 0.016 0.9 0.442

p_hat700-2.clq 57 244995 0.001 0.203 0.203 1 1.108

p_hat700-3.clq 82 334295 0.015 0.469 0.516 1 0.714

Table 20. Results of GRASP for the maximum weighted co-3-plex problem on DIMACS instances (continued)

VITA

Amol Atmaram Bhave

Candidate for the Degree of

Master of Science

Thesis: GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE FOR THE

MAXIMUM CO-K-PLEX PROBLEM

Major Field: Industrial Engineering and Management

Biographical:

Education:

December, 2010

Master of Science in Industrial Engineering and Management

Oklahoma State University, Stillwater, OK, USA

June, 2006

Bachelor of Engineering in Mechanical Engineering

Shivaji University, Kolhapur, MH, India

Experience:

Research Assistant (January, 2009 - December, 2010)

Oklahoma State University, Stillwater, OK, USA

Research Engineer (September, 2007 – May, 2008)

Indian Institute of Technology, Bombay, Mumbai, MH, India

Junior Engineer (June, 2006 – August, 2007)

Atharva Engineering Company, Mumbai, MH, India

Professional Memberships:

Alpha Pi Mu

Institute for Operations Research and the

Management Sciences

Society for Industrial and Applied Mathematics

ADVISER’S APPROVAL: Dr. Balabhaskar Balasundaram

Name: Amol Atmaram Bhave Date of Degree: December, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE FOR

THE MAXIMUM CO-K-PLEX PROBLEM

Pages in Study: 57 Candidate for the Degree of Master of Science

Major Field: Industrial Engineering and Management

The focus of this thesis is a degree based relaxation of independent sets in graphs

called co-k-plexes and the related combinatorial optimization problem of finding a

maximum cardinality co-k-plex in . This thesis develops a metaheuristic approach for

solving the maximum co-k-plex problem which is known to be NP-hard. The approach is

further extended for finding a maximum weighted co-k-plex in where vertices of are

associated with specific weights. As the maximum co-k-plex problem in is equivalent

to the maximum k-plex problem in ̅, many applications of this problem can be found in

clustering and data mining social networks, biological networks, internet graphs and

stock market graphs among others.

In this thesis, a Greedy Randomized Adaptive Search Procedure (GRASP) is

developed to solve the maximum co-k-plex and maximum weighted co-k-plex problems.

Computational experiments are performed to study the effectiveness of the proposed

metaheuristic on benchmark instances. Finally, the performance of the developed GRASP

algorithms for both versions was confirmed by comparing the running time and solution

quality with results obtained by an exact algorithm.

