INFLUENCE OF DIFFERENT CULTURES OF LACTOBACILLI ON PERFORMANCE, BLOOD CHEMISTRY, AND IMMUNE RESPONSE OF NURSERY PIGS

By

MEGAN RENÉ BIBLE

Bachelor of Science in Animal Science

Oklahoma State University

Stillwater, Oklahoma

2005

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2009

INFLUENCE OF DIFFERENT CULTURES ON LACTOBACILLI ON PERFORMANCE, BLOOD CHEMISTRY, AND IMMUNE RESPONSE OF NURSERY PIGS

Thesis Approved:

Dr. Stanley E. Gilliland

Thesis Adviser

Dr. Scott D. Carter

Dr. Udaya DeSilva

Dr. A. Gordon Emslie

Dean of the Graduate College

ACKNOWLEDGMENTS

I would first like to express my thanks to Dr. Stanley Gilliland. I would not have made it without his kind words and endless encouragement. He truly is a man I have great respect for. I would like to thank him for his unintimidating environment for which I have learned a great amount from. Also, for his patience and guidance throughout my Masters program.

I would also like to thank my committee members, Dr. Scott Carter and Dr. Udaya DeSilva. Dr. Carter has been an inspiration to me with his endless commitment to his students and his ability to "get dirty." His active participation in his research is an inspiration. My respect and thanks goes out to Dr. DeSilva. I would not be in the position I am in today if not for him. I truly do appreciate his kindness to reach out to students when they are in need of advisement.

To my fellow lab mates and best friends, Sandra McCoy, Lacey Guillen, and Mindy James, I could not have completed my project without them. They are some of the hardest working women I have come across. They always kept my spirits high through much laughter and encouragement. These girls will always hold a special place in my heart.

My upmost appreciation goes out to Dr. Carter's crew. They were of great help to me during the project. I would not have been able to complete the project without their help. They answered endless questions and for that I am truly grateful.

iii

To my mom and dad, Mike and Lisa Mitchell, your love has supported me through some of my toughest times. Mom, you have instilled in me that I can do anything if I put my mind to it. You are an inspiration to me. Dad, you came into the family and never looked back. Your ability to love people for who they are is truly amazing. I love you both. My sister, Lacy, you are my hero. Whenever I was down and ready to quit, I thought of you and the trials you have surpassed. You are one my best friends and I truly love you.

Words will never describe my appreciation to my family, Josh, Wyatt, and Jayden Bible. They are the ones that deserve this degree because of their endless love and dedication to me. To my boys, you guys were always there for me with "I love yous," hugs, and kisses. Jayden and Wyatt you have brightened my life. I don't know what I would do without you two. You boys are the reason I get up in the morning. To my husband and best friend, Josh, I truly would not have made it if not for you. I couldn't ask for a better person to spend the rest of my life with. Your strong work ethic has inspired me to do what I do. Thank you for being there for me when I needed you the most. Thank you for your love, encouragement, and laughter. I love you more than words can say.

iv

TABLE OF CONTENTS

Chapter Pa	age
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
Probiotics/Direct-fed Microbials	3
Lactic Acid Bacteria (LAB)	4
Lactobacillus reuteri and Reuterin Production	6
<i>Lactobacillus reuteri</i> as a Probiotic/Direct-fed Microbials	
Gastrointestinal Tract Microflora in Swine	9
Direct-fed Microbials in Swine1	0
Xenotransplantation	1 2 3 4
Foodborne Pathogens in Swine1	8
Salmonella	21 23
References2	7

111.	SCREENING CUTLURES OF <i>LACTOBACILLUS REUTERI</i> FROM SWINE FOR POTENTIAL USE AS DIRECT-FED MICROBIALS
	Abstract
	Introduction
	Materials and Methods40
	Swine Cultures40
	Sources of Cultures40
	Maintenance of Cultures40
	Identification of Cultures41
	Bile Tolerance Assay42
	Feeding Studies
	Preparation and Plating of Cultures42
	Feeding Studies
	Plating, Enrichments, and Bax® System
	Plating
	Enrichments
	Bax® System
	Blood Collection and Blood Chemistry Analysis
	<i>Escherichia coli</i> Lipopolysaccharide (LPS) Challenge
	Statistical Analysis
	Results
	Swine Cultures54
	Culture Identification
	Bile Tolerance Assay54
	Feeding Studies
	Enumeration of Lactobacilli
	Growth and Performance55
	Microbial Analysis of Feces57
	Serum Blood Chemistry58
	Serum Immunoglobulins60
	Lipopolysaccharide (LPS) Challenge61
	Rectal Temperatures61
	Serum Blood Chemistry62
	Serum Immunoglobulins63
	Discussion

Direct-fed Microbials for Swine	81
Feeding Trials	82
Growth and Performance	
Microbial Counts	
Serum Blood Chemistry	83
Serum Immunoglobulins	
Lipopolysaccharide (LPS) Challenge	
Rectal Temperatures	
Serum Blood Chemistry	
Serum Immunoglobulins	
REFERENCES	92
APPENDIX A: Swine Cultures	97
APPENDIX B: Experiment 1 Raw Data	103
APPENDIX C: Experiment 2 Raw Data	170

LIST OF TABLES

Table	Page
1.	Composition of swine diet52
2.	Blood chemistry analysis53
3.	Comparison of bile tolerance of different cultures of lactobacilli65
4.	Growth and performance of nursery pigs fed different cultures of
	lactobacilli66
5.	Influence of different cultures of lactobacilli on weekly serum total
	protein67
6.	Influence of different cultures of lactobacilli on weekly serum AST 68
7.	Influence of different cultures of lactobacilli on LPS challenge serum
	globulin69
8.	Influence of different cultures of lactobacilli on LPS challenge serum
-	albumin:globulin ratio
9.	Influence of different cultures of lactobacilli on LPS challenge serum
	bili, total
10.	Influence of different cultures of lactobacilli on LPS challenge serum
	triglycerides72 Influence of different cultures of lactobacilli on LPS challenge serum
11.	
A1.	VLDL
AI.	by phenotypic characterization
A2.	Identification of isolates from wild boar intestines of <i>Lactobacillus</i>
<i>π</i> ∠.	<i>reuteri</i> by phenotypic characterization
A3.	Identification of <i>Lactobacillus acidophilus</i> by phenotypic
7.0.	characterization
A4.	Bile tolerance of cultures of lactobacilli
A5.	Comparison of bile tolerance of cultures of lactobacilli
B1.	Experiment 1 treatment counts of lactobacilli
B2.	Swine assignments for experiment 1 feeding lactobacilli cultures105
B3.	Experiment 1 weekly swine weights
B4.	Experiment 1 weekly ADG107
B5.	Experiment 1 weekly ADFI
B6.	Experiment 1 weekly F:G109
B7.	Experiment 1 overall growth and performance

Page

B8.		weekly fecal counts of coliforms	
B9.		weekly fecal counts of lactobacilli	
B10.	Experiment 1	weekly fecal counts of Campylobacter	113
B11.		testing of weekly fecal cultures of Campylobacter	
			114
B12.		testing of weekly fecal enrichment cultures of	
		acter positives	115
B13.	Experiment 1	testing of weekly fecal enrichment cultures of	
		positives	
		weekly glucose levels	
B15.	Experiment 1	weekly BUN levels	118
B16.	Experiment 1	weekly creatinine levels	119
B17.	Experiment 1	weekly BUN:creatinine levels	120
B18.	Experiment 1	weekly sodium levels	121
B19.	Experiment 1	weekly potassium levels	122
B20.	Experiment 1	weekly chloride levels	123
B21.	Experiment 1	weekly carbon dioxide levels	124
B22.	Experiment 1	weekly anion gap levels	125
B23.	Experiment 1	weekly calcium levels	126
B24.	Experiment 1	weekly total protein levels	127
		weekly albumin levels	
B26.	Experiment 1	weekly globulin levels	129
B27.	Experiment 1	weekly albumin:globulin levels	130
		weekly AST levels	
		weekly ALT levels	
		weekly ALKPhos levels	
		weekly bili, total levels	
		weekly cholesterol levels	
		weekly triglyceride levels	
		weekly HDL levels	
		weekly VLDL levels	
		weekly IgA levels	
		weekly IgG levels	
		weekly IgM levels	
		overall LPS challenge feed intake	
		LPS challenge swine weights	
		hourly LPS challenge rectal temperatures	
		hourly LPS challenge glucose levels	
		hourly LPS challenge BUN levels	
		hourly LPS challenge creatinine levels	
		hourly LPS challenge BUN:creatinine levels	
		hourly LPS challenge sodium levels	
		hourly LPS challenge potassium level	
		hourly LPS challenge chloride level	
2.0.			

B49. Experiment 1 hourly LPS challenge carbon dioxide level	152
B50. Experiment 1 hourly LPS challenge anion gap level	153
B51. Experiment 1 hourly LPS challenge calcium level	154
B52. Experiment 1 hourly LPS challenge total protein level	155
B53. Experiment 1 hourly LPS challenge albumin level	156
B54. Experiment 1 hourly LPS challenge globulin level	
B55. Experiment 1 hourly LPS challenge albumin: globulin ratio level	158
B56. Experiment 1 hourly LPS challenge AST level	
B57. Experiment 1 hourly LPS challenge ALT level	
B58. Experiment 1 hourly LPS challenge ALKPhos level	
B59. Experiment 1 hourly LPS challenge bili, total level	
B60. Experiment 1 hourly LPS challenge cholesterol level	163
B61. Experiment 1 hourly LPS challenge triglyceride level	164
B62. Experiment 1 hourly LPS challenge HDL level	
B63. Experiment 1 hourly LPS challenge VLDL level	
B64. Experiment 1 hourly LPS challenge IgA level	
B65. Experiment 1 hourly LPS challenge IgG level	
B66. Experiment 1 hourly LPS challenge IgM level	
C1. Experiment 2 treatment counts of lactobacilli	
C2. Swine assignments for experiment 2 feeding lactobacilli culture	
C3. Experiment 2 weekly swine weights	
C4. Experiment 2 weekly ADG	
C5. Experiment 2 weekly ADFI	
C6. Experiment 2 weekly F:G	
C7. Experiment 2 overall growth and performance	
C8. Experiment 2 weekly fecal counts of coliforms	
C9. Experiment 2 weekly fecal counts of lactobacilli	
C10. Experiment 2 weekly fecal counts of Campylobacter	
C11. Experiment 2 testing of weekly fecal cultures of Campylobacter	
positives	181
C12. Experiment 2 testing of weekly fecal enrichment cultures of	
Campylobacter positives	
C13. Experiment 2 rep 2 testing of weekly fecal enrichment cultures	
Escherichia coli O157:H7 positives	183
C14. Experiment 2 testing of weekly fecal enrichment cultures of	
Salmonella positives	
C15. Experiment 2 weekly glucose levels	
C16. Experiment 2 weekly BUN levels	
C17. Experiment 2 weekly creatinine levels	
C18. Experiment 2 weekly BUN:creatinine levels	
C19. Experiment 2 weekly sodium levels	
C20. Experiment 2 weekly potassium levels	
C21. Experiment 2 weekly chloride levels	191
C22. Experiment 2 weekly carbon dioxide levels	192

Page

C23.	Experiment 2 weekly	anion gap levels	193
		calcium levels	
		total protein levels	
C26.	Experiment 2 weekly	albumin levels	196
C27.	Experiment 2 weekly	globulin levels	197
		albumin:globulin levels	
		AST levels	
C30.	Experiment 2 weekly	ALT levels	200
		ALKPhos levels	
C32.	Experiment 2 weekly	bili, total levels	202
C33.	Experiment 2 weekly	cholesterol levels	203
C34.	Experiment 2 weekly	triglyceride levels	204
		HDL levels	
		VLDL levels	
C37.	Experiment 2 weekly	IgA levels	207
C38.	Experiment 2 weekly	IgG levels	208
C39.	Experiment 2 weekly	IgM levels	209
		LPS challenge feed intake	
C41.	Experiment 2 LPS ch	allenge swine weights	211
C42.	Experiment 2 hourly	LPS challenge rectal temperatures	212
C43.	Experiment 2 hourly	LPS challenge glucose levels	213
C44.	Experiment 2 hourly	LPS challenge BUN levels	214
C45.	Experiment 2 hourly	LPS challenge creatinine levels	215
C46.	Experiment 2 hourly	LPS challenge BUN:creatinine levels	216
C47.	Experiment 2 hourly	LPS challenge sodium levels	217
C48.	Experiment 2 hourly	LPS challenge potassium level	218
C49.	Experiment 2 hourly	LPS challenge chloride level	219
C50.	Experiment 2 hourly	LPS challenge carbon dioxide level	220
C51.	Experiment 2 hourly	LPS challenge anion gap level	221
C52.	Experiment 2 hourly	LPS challenge calcium level	222
C53.	Experiment 2 hourly	LPS challenge total protein level	223
C54.	Experiment 2 hourly	LPS challenge albumin level	224
C55.	Experiment 2 hourly	LPS challenge globulin level	225
		LPS challenge albumin:globulin ratio level	
C57.	Experiment 2 hourly	LPS challenge AST level	227
C58.	Experiment 2 hourly	LPS challenge ALT level	228
C59.	Experiment 2 hourly	LPS challenge ALKPhos level	229
C60.	Experiment 2 hourly	LPS challenge bili, total level	230
		LPS challenge cholesterol level	
		LPS challenge triglyceride level	
		LPS challenge HDL level	
		LPS challenge VLDL level	
		LPS challenge IgA level	
		LPS challenge IgG level	

Page

C67.	Experiment 2 hourly LPS challenge IgM level	237
	Adapted complete metabolic profile values for swine	
D2.	Adapted lipid panel values for swine	241
D3.	Adapted immunoglobulin values for swine	243

LIST OF FIGURES

Figure	Page	Э
1.	Changes in weekly serum IgA levels from Day 0 in response to different cultures of lactobacilli	
2.	Changes in weekly serum IgG levels from Day 0 in response to	
3.	different cultures of lactobacilli	
4.	different cultures of lactobacilli	
5.	<i>Escherichia coli</i> O111:B4 lipopolysaccharide	
-	cultures of lactobacilli in response to Escherichia coli O111:B478	
6.	Changes in serum IgG levels from hour 0 in response of different cultures of lactobacilli in response to <i>Escherichia coli</i> O111:B479	
7.	Changes in serum IgM levels from hour 0 in response of different cultures of lactobacilli in response to <i>Escherichia coli</i> O111:B4 80	

CHAPTER I

INTRODUCTION

Much research has been reported on probiotics and their use in swine. Some of areas that have been researched are influence on growth and performance, sub therapeutic antibiotic replacement, improved immune function, and pathogen reduction. One of the most commonly used probiotics is lactobacilli.

It has been demonstrated in nursery pigs that a mixture of lactobacilli has the capability to enhance the immune system. Feeding this mixture increased the cytokine interleukin 8 (IL-8) following a challenge of the pigs with lipopolysaccharide (LPS) (Walsh et al. 2008). A combination of certain species of lactobacilli, when combined with selenium, improved immunoglobulin G (IgG) levels in weanling pigs (Yu et al. 2004). A five-strain probiotic product, with species of *Lactobacillus*, decreased the prevalence of *Salmonella* Typhimurium. In addition, the probiotic reduced diarrhea and increased feed intake in the challenged swine (Casey et al. 2007). A commercially available product that contained streptococci and lactobacilli improved average daily gain and feed intake in pigs that were subjected to stress (Estienne et al. 2005). Various cultures of lactobacilli have the ability to excrete substances that are beneficial to the pig. Researchers have reported lysine and amylase production by different

cultures of lactobacilli isolated from swine. These secreted constituents improved the overall growth and performance of swine that consumed the cultures (Gilliland 1990, Lee et al. 2001). Also, lyophilized *L. reuteri* has shown to improve feed conversion in Landrace piglets (Chang et al. 2001).

The objective of this study was to evaluate eight different cultures of lactobacilli to determine which one(s) offer(s) the greatest potential as a probiotic for nursery pigs. There were two studies involved where each study contained a control group and four treatment (culture) groups. Growth and performance of individually housed nursery pigs were evaluated, as well as certain blood chemistry analytes and various components of the immune system. Additionally, the possible immune enhancing effects of the probiotic cultures were tested.

CHAPTER II

REVIEW OF LITERATURE

PROBIOTICS/DIRECT-FED MICROBIALS:

Probiotics (direct-fed microbials) are defined as "A live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial balance" (Fuller 1992). Some of the more widely used bacterial probiotics include species of the following genera: Lactobacillus, Bifidobacterium, Propionibacterium, Enterococcus, Streptococcus, Pediococcus, Lactococcus, Bacillus, and Leuconostoc (Fuller 1992). Lactobacilli and bifidobacteria are the most common species of direct-fed microbials (DFM) (Saarella et al. 2000). There are several criteria a bacterium must fulfill before it can be considered for use as a probiotic. The microorganism should be included on the Generally Recognized As Safe (GRAS) list. The bacterium must be able to survive, grow, and function in the gastrointestinal tract of the host, should be host specific, and acid and bile tolerant (Fuller 1992). There have been numerous studies performed with lactic acid bacteria (LAB) as beneficial probiotics. Lactic acid bacteria have demonstrated the ability to achieve the following: improvement of the nutritional value of food, anti-carcinogenic activity, control of intestinal pathogens, management of serum cholesterol levels, and enhancement of

lactose utilization (Gilliland 1990).

LACTIC ACID BACTERIA (LAB):

Lactic acid bacteria (LAB) are catalase negative, Gram positive rods or cocci that produce lactic acid as a major end product of fermentation (Sneath et al. 1986). The bacteria are found in decomposing plant material. The many genera that encompass the LAB are *Lactobacillus, Lactococcus, Leuconostoc, Pediococcus,* and *Streptococcus* (Sneath et al. 1986). Lactic acid bacteria are often mentioned as being important to improve health. These bacteria are used in cultured foods, such as dairy, vegetables, and meat, to create desired texture, flavor, nutritional value, and shelf-life of various foods and beverages. Bacterocins are antimicrobial proteins or peptides produced by some LAB. These compounds have known antimicrobial properties and thus may be important in improving shelf-live. Lactic acid bacteria, when used as probiotics or DFM, have been shown to improve the health of humans and animals (Downes and Ito 2001).

Research reports have indicated probiotics and DFM improve the nutritional value of food. It has been shown that natural lactic acid fermentation, when used on grains, can increase the nutritional availability of various nutrients. An increase in nutritional value of corn by lactic acid bacteria results from increased the availability of essential amino acids (Gilliland 1990). Another nutritional value is that some LAB excrete lysine. It has been demonstrated that pigs fed a diet low in protein, compared to the control, tended to have higher weight gains when fed a *Lactobacillus* strain that excreted lysine (Gilliland 1990).

Lactic acid bacteria and bifidobacteria can improve the growth of piglets and newborn calves. Abe et al. (2005) reported Holstein calves administered *B. pseudolongum* or *L. acidophilus* demonstrated a significant (P<0.05) increase in body weight compared to the control group. It was also observed that the feed to gain ratio and feed intake was better in both DFM groups than the control. In the same study, another study was done using 40 piglets. The piglets were administered *B. thermophilus* and *B. animals* or the control milk replacer. The mortality rate of the piglets fed *Bifidobacteria* was significantly (P<0.05) lower than the control. In addition, it was revealed that the pigs fed direct-fed microbials had higher weight gains than the control.

Swine have often been used as animal models to study lowering of cholesterol by lactobacilli. One report that used Göttingen minipigs revealed a lowering effect on serum cholesterol levels using a cocktail of two strains of *L. johnsonii* and one strain of *L. reuteri* all isolated from pigs. This was associated with an increase in numbers of *Lactobacillus* in the feces (Du Toit et al. 1998). In a study done by De Rodas et al. (1996), Yorkshire barrows were used to test the effects of lowering cholesterol using a combination of a strain of *L. acidophilus* and calcium. It was revealed that the DFM and the calcium tend to boost the reduction of serum cholesterol. The swine in the latter studies were fed a high cholesterol diet. This is helpful in understanding the way the human system works, since swine are closely related to humans when it comes to the treatment of hypercholesterolemia.

Lactic acid bacteria have been shown to decrease numbers of microbial intestinal pathogens. A major foodborne pathogen is *Escherichia coli* O157:H7. It was first identified as a pathogen in the early 1980's and has been a continual problem in the food industry (Brashears et al. 1998). Smith et al. (2005) reported that *E. coli* O157:H7 was inhibited in ground beef by a cocktail of LAB by 3 log cycles after 3 days at refrigeration temperatures. Another study done by Gilliland and Speck (1977) revealed a decrease of *E. coli* using *L. acidophilus* strains when grown in associative broth cultures. This study showed as much as an 87% inhibition of *E. coli* by a strain of *L. acidophilus*. Lactobacilli also have the capability to inhibit other pathogens, such as *Salmonella* Typhimurium, *Staphylococcus aureus*, and *Clostridium perfringens*, in associative broth cultures (Gilliland and Speck 1977). Lactobacilli have also been shown to decrease *E. coli* O157:H7 in fecal shedding of cattle (Younts-Dahl et al. 2005).

LACTOBACILLUS REUTERI AND REUTERIN PRODUCTION:

Lactobacillus reuteri is a heterofermentative, non-spore forming bacterium that is found in the gastrointestinal tract of animals and humans. Named after a German bacteriologist, G. Reuter, *L. reuteri* is a Gram positive lactic acid bacterium that is a slightly bent rod that can occur in singles, pairs, or small clusters. The mesophilic bacterium grows at 45°C, is catala se negative, and produces ammonia from arginine (Sneath et al. 1986).

Lactobacillus reuteri as a Probiotic/Direct-fed Microbial:

Lactobacillus reuteri has been used in many different animal species as a direct-fed microbial and humans as a probiotic. Yogurt supplemented with *L*.

rhamnosus and *L. reuteri* was fed to twelve Nigerian HIV positive women at a concentration of 2.5×10^9 cfu/mL. The supplemented yogurt eliminated nausea, diarrhea, and flatulence in all 12 treatment patients compared to 2 of the 12 control patients. The treatment group also exhibited an overall increase in cluster of differentiation 4 (CD4) counts; therefore, increasing the immune system (Anukam et al. 2008).

Mukai et al. (2002) tested the competitive binding of *L. reuteri* and *Helicobacter pylori* to *H. pylori* glycolipid receptor molecules, sulfatide and gangliotetraosylceramide (asialo-GM1). The objective of the study was to see if *L. reuteri* competed for the same glycolipids as *H. pylori*. The *L. reuteri* TM105 of chicken origin and the laboratory isolate strain JCM1081 both bound to the asialo-GM1 and sulfatide glycolipids, thus preventing *H. pylori* from binding. It was suggested that the lactobacilli produced a cell surface protein that inhibited *H. pylori* binding.

Lactobacillus reuteri was used in a survival and persistence swine study that was reported by De Angelis et al. (2007). The treatment pigs were fed a cocktail of *L. plantarum* 4.1 and *L. reuteri* 3S7 at 10^{10} viable cells per day where as the control group was not. The *L. reuteri* survived in the gastrointestinal tract of the pigs and was able to persist in the feces at $10^6 - 10^8$ cfu/g for six days after administration.

Fermented milk containing the probiotic *L. reuteri* was fed to swine (Ratcliffe et al. 1986). An additional treatment was yogurt that contained *L. acidophilus* and *Streptococcus thermophilus*. The results revealed that the

fermented milk and yogurt treatments did not differ significantly with both causing increases in total lactobacilli and decreases in *Enterobacteriaceae*.

<u>Reuterin:</u>

Lactobacillus reuteri produces a low molecular weight compound known as reuterin (Sung et al. 2003). Reuterin or β -hydroxypropionaldehyde (3-HPA) is produced under anaerobic conditions from the fermentation of glycerol. Reuterin is an antimicrobial compound that is water soluble, resistant to lipolytic and proteolytic activity, and active at a very wide pH spectrum (Arqués et al. 2004). It also has a wide antimicrobial range against Gram positive and Gram negative bacteria, along with protozoa, yeast, and molds (Kabuki et al. 1997, Cleusix et al. 2007).

Researchers reported in 2008 the sensitivity of intestinal bacteria to reuterin produced from *L. reuteri* ATCC 55730. Most of the bacteria tested, including *E. coli*, were inhibited by concentrations of 7.5-15.0 mM. *Bacteroides* species, *Bifidobacterium* species, *Eubacterium* species, and *Clostridium difficile* displayed a sensitivity of less than 7.5 mM of reuterin. However, certain species of lactobacilli and *Clostridium clostridioforme* displayed a resistance of 15.0 to 50.0 mM of reuterin (Cleusix et al. 2008).

Reuterin also has been tested in dairy products. Various concentrations of reuterin were tested to study the antagonistic effect toward *Listeria monocytogenes* and *E. coli* O157:H7 in milk and cottage cheese. Results revealed that the reuterin had a more inhibitory effect on the *E. coli* O157:H7 than the *L. monocytogenes*. Reuterin did, however, show a bactericidal effect on

both pathogens in the milk and cottage cheese. It was also discovered that the supplementation of 3% salt improved the effects of reuterin (EI-Ziney and Debevere 1998).

Another dairy study tested reuterin (R) in inoculated caujada, a dairy product manufactured in Spain, for control of the foodborne pathogens *L. monocytogenes* and *S. aureus*. It was observed that when the reuterin was added to the caujada there was a slight or minimal inhibition of the pathogens. However, when the reuterin was added with nisin (N) and lactoperoxidase (LPC) system, inhibition was seen. After day 12 the R + N + LPS combination produced the best results with *L. monocytogenes* being non-detectable and the *S. aureus* counts displaying a five log cycle decrease compared to the control (Arqués et al. 2008).

GASTROINTESTINAL TRACT MICROFLORA IN SWINE:

The gastrointestinal tract of swine is heavily populated with microorganisms. There are approximately $10^7 - 10^9$ cfu/g in the stomach, 10^9 cfu/g in the distal small intestine, and $10^{10} - 10^{11}$ cfu/g in the large intestine. Some of the common genera that dominate these areas are *Lactobacillus, Streptococcus, Peptococcus, Eubacterium, Bacteroides, Bifidobacterium,* and *Clostridium* with over 90% of the bacteria being Gram positive (De Angelis et al. 2006, Barnes 1986). The genera of most importance are *Lactobacillus* and *Streptococcus* because of their capability to help the gut function properly and improve health (Mare et al. 2006). It is believed that the first inhabitants of the

swine intestinal tract are streptococci and *Enterobacteriaceae*; however, lactobacilli counts do increase immensely after a week of birth (Natio et al. 1995).

It is suggested that *Lactobacillus* ssp. exist predominantly in the small intestine at cell numbers between $10^7 - 10^9$ cfu/mL (Mare et al. 2006). A report by Naito et al. (1995) described that the most common species of lactobacilli in the piglet are *L. acidophilus* and *L. reuteri*. It was observed that the first *Lactobacillus* that appeared in the piglets' intestines was *L. reuteri*, which was isolated on the first day of birth. *Lactobacillus acidophilus* first colonized the gut after a week of birth. It was also observed that the isolated lactobacilli were from the dams, as well as, the environment. Lactobacilli, along with species of *Bacillus*, *Bifidobacterium*, *Enterococcus*, and *Saccharomyces*, are common probiotics associated with swine (Mountzouris 2006). There are many uses for lactobacilli in swine as probiotics, such as, control of intestinal pathogens, eliminating antibiotic usage, and an increase in growth and performance.

DIRECT-FED MICROBIALS IN SWINE:

Xenotransplantation:

There have been numerous applications of lactobacilli direct-fed microbials in swine. One new use of lactobacilli as a beneficial dietary adjunct is for swine being grown for xenotransplantation. Germfree piglets orally inoculated once with *Lactobacillus paracasei* ssp. *paracasei* GS-1, a pig isolate, at two days of age did not have a significant effect on piglet growth. A few reasons for this insignificance could be that the *L. paracasei* GS-1 was utilizing nutrients for its own biological activities or it was causing an inflammatory response in the

intestine that affected nutrient utilization. It was also stated that this microbe could have the potential to cause an infection in these xenotransplant swine by infecting the blood and non-alimentary tissue (Loynachan et al. 2005). This is a problem if the organs from the porcine are going to be used for human organ transplantation.

Feed Additive:

Another area for the use of lactobacilli in swine is as an additive in pelleted feeds. De Angelis et al. (2006) subjected thirty-five pig isolates to a number of tests to determine if the isolates could survive in the stomach and intestinal tract of the pig. Additionally, they did tests to determine if the cultures might have antimicrobial activities against pathogens, viability after freeze drying, and be resistant to heat during feed pelleting. The results revealed that two subspecies of lactobacilli, *L. plantarum* and *L. reuteri*, had the capability to survive in high numbers in all of the latter conditions, thus making them possible swine feed additive DFM.

Pollmann et al. (1980) tested two commercially available swine feed additives to determine the effects on growth and performance of starter and finisher pigs. Probios, containing *L. acidophilus*, and Feed-Mate 68, that contains *S. faecium* type Cernelle 68, were the DFM products used. Pigs fed Probios were superior in performance when compared to the pigs fed *S. faecium*. It was also observed that the DFM, Probios, performed better on starter pigs than on finishers.

Control of Viruses:

Kritas and Morrison (2007) evaluated the influence of feeding *Lactobacillus casei* ssp. *rhamnosus* for the treatment of porcine reproductive and respiratory syndrome (PRRS). The direct-fed microbial was ingested orally through the water system at 6×10^9 cfu per day. Although the DFM did not have an effect on immune response in a way to affect PRRS virus, it did contribute a benefit in regards to average daily gain after pigs were challenged with the virus. *Antibiotic Alternative*:

A freeze dried culture composed primarily of *Lactobacillus acidophilus* was used to test its effects on growth performance of swine when compared to the antibiotic virginiamycin. The results revealed that this commercial DFM did not improve feed intake, feed efficiency, or average daily gain (Harper et al. 1983). The reason for this occurrence could be that the bacteria were not isolated from the host it was used in or its benefits in the swine were elsewhere. Another reason for no significant difference could have been from the low concentration of the DFM, 4×10^6 viable cells per gram. Maybe the concentration of the direct fed microbial should have been higher in order to have an effect on the animal (Fuller 1992).

A total of 21,755 nursery pigs were used to test the efficacy of the product BioPlus 2B against subtherapeutic antibiotic usage. BioPlus 2B is a probiotic that contains *B. licheniformis and B. subtilis*. There was no difference in feed to gain ratio, mortality rate, daily gain, daily feed intake, or feed cost per pig when compared to the control animals. Therefore, this DFM could be used in place of

the subtherapeutic antibiotics with no negative consequences (Kritas and Morrison 2005).

Increased Immunity:

Improving the health status of the swine industry by enhancement of the immune system is another area where direct-fed microbials have exhibited positive effects. A five-strain DFM product containing 2 strains of *L. murinus*, and one strain each of *L. pentosus*, *L. salivarius*, and *Pediococcus pentosaceus* was administered to Large White x Landrace crossbred weaned pigs. It was observed that the peripheral cluster of differentiation 4 and 8 plus T cells (CD4+CD8+T cells) were significantly (P<0.05) higher in the pigs fed DFM than the controls, 7.1% vs. 5.2%. After a lipopolysaccharide (LPS) challenge, the DFM group displayed a significant (P< 0.05) increase in the cytokine, interleukin 8 (IL-8), when compared to the control. Therefore, the DFM pigs exhibited an increased immune system when compared to the control pigs (Walsh et al. 2008).

When direct-fed microbials were combined with selenium a positive effect on swine immunodulation was observed. A total of ninety-six weaned pigs were randomly allotted to four treatment groups. The treatments were as follows: control, 0.3% DFM (*L. acidophilus, L. pentose,* and *B. subtilis*), 0.3% DFM + 0.3 ppm of organic selenium, and 55 ppm of carbadox. One week before the end of the trial, LPS was injected in the neck of each pig. The production of immunoglobulin G (IgG) was significantly (P<0.05) higher in the DFM + selenium

pigs than control pigs. However, the other treatments also exhibited a trend toward higher IgG concentrations than did the controls (Yu et al. 2004).

Another study tested the effects of two different DFM feed additives that are approved in the European Union. The probiotics of interest were Cylactin® (*Enterococcus faecium* NCIMB 10415) and Toyocerin® (*Bacillus cereus* var. toyoi NCIMB 40112). The study included two separate trials. In the both trials, Landrace x Duroc sows were randomly allocated into two groups, control or direct-fed microbial. Sows were fed the DFM 25 days after fertilization and the entire lactation period. Piglets of the DFM group had full access to the feed supplements 15 days after parturition, during weaning, and post weaning. *Bacillus cereus* increased immunoglobulin A (IgA) levels in the intestines in the sows. This DFM also showed an increase in the fecal IgA concentrations in the piglets from the DFM group right after weaning (Scharek et al. 2007).

Pathogen Elimination and Prevention:

Lactobacilli have been used in swine to reduce numbers of pathogens and/or potential pathogens present in the intestines and/or feces. Maré et al. (2006) revealed a decrease in colonization in pigs inoculated with *Enterococcus faecalis*. The direct-fed microbials used were *L. plantarum* and *L. salivarius*. The *L. salivarium* was of porcine origin. However, the *L. plantarum* isolate was isolated from sorghum beer and thus tolerated low pH. The study stated that the *E. faecalis* was inhibited only by 25% in the ileum by the *L. salivarius*. It was stated that the reason for the *L. plantarum* colonization of the ileum and colon was because the microbe was capable of withstanding the low pH of the small

intestine and thus could colonize the lower gut. *Lactobacillus plantarum* showed no effect on inhibition of *E. faecalis*.

Research reported by Gardiner et al. (2004) revealed a decrease in mean numbers of fecal *Enterobacteriaceae* by *L. salivarius, L. pentosus, Pediococcus pentasaceus* and a DFM cocktail (*L. salivarius, L. pentosus, P. pentasaceus* and two strains of *L. murinus*). The mean reduction in counts for the treatments were 98%, 97%, 87%, and 97%, respectively, 21 days after culture inoculation. However, the control had a mean reduction of 83%. This revealed no significant differences among the control.

An *in vitro* report studied the effects on adhesion of *Escherichia coli* K88, which causes post-weaning diarrhea, when porcine lactobacilli DFM were present (Blomberg et al. 1993). Using ileal mucus from a 35-day-old pig revealed proteins produced by each of the three lactobacilli caused an approximate 50% reduction in adhesion of *E. coli* K88 cells. The study should be done *in vivo* to further confirm their results.

Salmonella is one of the major culprits of gastroenteritis in humans; therefore, the elimination of the pathogen in swine is a must (Mead et al. 1999). A five-strain DFM product (two strains of *L. murinus*, *L. pentosus*, *L. salivarius*, and *Pediococcus pentosaceus*) was tested for ability to inhibit *Salmonella* in swine. There were three different treatments, a control, fermentate, and cell suspension. The pigs were fed for a total of 30 days. Six days after stopping the DFM, the crossbred pigs were challenged with *Salmonella* Typhimurium. There was a significant (P=0.01) reduction of *Salmonella* in the feces of both the

fermentate and suspension. Also, there was a reduction in diarrhea and a greater weight gain for the two direct-fed microbial treatments (Casey et al. 2007).

Growth and Performance:

Improving growth and performance of an animal has always been favored. There have been numerous studies performed that use lactobacilli as a direct-fed microbial in the swine industry to increase growth and performance. Estienne et al. (2005) used a commercially available swine DFM that contained lactobacilli and streptococci. This study revealed that there was no significant difference in pre-weaning performance. However, when the piglets were mixed (nonlittermate litters), there was a significant (P=0.05) increase in average daily gain and feed consumption of the mixed pigs. In this case, the DFM helped piglets that were subject to stress.

It has been demonstrated that *Lactobacillus acidophilus* can improve the starch utilization of feed in swine. After various tests were done, a *L. acidophilus* isolated from swine, which had a high amylolytic activity, was used for a feeding trial. Seventy-five Yorkshire pigs were allotted into three different treatments. The treatment groups were the following: control, low (3×10^8 cells/feeding), and high (3×10^9 cells/feeding). The DFM treatments demonstrated a significantly (P<0.05) higher average daily gain than the control. However, only the low level of direct-fed microbial had a significantly (P<0.05) better feed to gain than the other treatments (Lee et al. 2001).

Chang et al. (2001) used a swine isolate of *L. reuteri* to test the feed conversion rate and live weight gain in twenty-five Landrace piglets. The DFM was lyophilized and fed at two different concentrations, 10^6 (P6) and 10^8 (P8) cfu/g. There were five treatment groups: control, antibiotic fed, P6, P8, and P8 plus antibiotics. There was a significant (P<0.01) increase in total counts of lactobacilli in all of the DFM treatments. The direct-fed microbial groups feed conversion rate was significantly (P<0.01) better than the other two treatments. The P6 and P8 treatments consumed 34% less and the P8 plus antibiotics consumed 11% less feed than the control groups.

A total of 144 weaner pigs were used to test the effects of dry feed (DF) vs. liquid feed (LF). While performing the experiment, the microbial activity of the liquid feed was tested. It was revealed that the liquid feed was heavily populated with lactobacilli after five days and resembled a fermented feed. Results revealed that the LF pigs had a significantly (P<0.001) better daily gain than the DF pigs suggesting that the lactobacilli were at least partially responsible (Russell et al. 1996).

Direct-fed microbials have shown a potential to improve the performance of sows. A total of thirty-three first parity German Landrace sows were assigned to one of two groups (control or DFM). *Enterococcus faecium* DSM 7134 was fed to the DFM sows as a premix at 5 x 10^8 cfu/kg from day 90 of pregnancy until day 28 of lactation. There was a significant (P<0.03) difference in daily feed intake during lactation with the DFM sows consuming 0.45 kg/day more. The number of piglets born alive was significantly (P<0.05) higher in the DFM-fed

sows (9.2 vs. 7.7 piglets/litter). There was a trend to decrease mortality in the direct-fed microbial group than the control, 9% and 11%, respectively (Böhmer 2006).

There are many different potential benefits of *Lactobacillus* species as a DFM in swine. It is generally accepted that to have a positive impact on the animals it should be host specific and capable of surviving the stomach and gastrointestinal tract. However, it also should be understood that not every isolate of lactobacilli has positive effects on its host, in this case, a pig.

FOODBORNE PATHOGENS IN SWINE:

Salmonella:

Salmonella was first isolated from meat that had caused food poisoning in 1888 by Gaertner (Jay 2000). The bacterium is a Gram negative rod that is a facultative anaerobe (Krieg 1984). Salmonella are primarily found in the intestines of farm animals, humans, birds, reptiles, and rarely insects (Jay 2000). Some of the general symptoms of salmonellosis are fever, abdominal cramping, vomiting, chills, diarrhea, nausea, powerlessness and has the potential to be fatal (Ray 2001). It was reported in 1999 that 1,381 deaths were due to acute gastroenteritis where Salmonella accounted for 31% of those deaths (Mead et al. 1999). The Centers for Disease Control and Prevention (CDC) reported approximately 40,000 cases of salmonellosis occur a year in the United States with roughly 400 people dying from the bacterium a year. Salmonella is also more prevalent in the summer than the winter. The most common serotypes in

the United States are Typhimurium and Enteritidis (Centers for Disease Prevention and Control 2008b).

The incidence of *Salmonella* in U. S. swine farms is distributed throughout the United States. A recent study tested the prevalence of *Salmonella* species in farms for various animal species. There were 18 farms in five states (California, Alabama, North Carolina, Tennessee, and Washington) tested over a 2 year period. The types of swine farms included were production and farrowing. Various types of samples were taken including feces, rectal swabs, feed, bedding, soil, and litter. The percent of *Salmonella* positives are as follows: 33.3% fecal material, 16.7% fresh feed, 6.0% rectal swabs, 22.9% soil, and 29.2% trough feed (Rodriguez et al. 2006).

Several *Salmonella* species have been discovered in slaughterhouses. In 1989 there was a study that reported the frequency of *Salmonella* and other pathogens on swine carcasses and the slaughterhouse atmosphere. There were several different items tested for the pathogen including pig feces, diaphragms, slaughterhouse floor, and cold room floor. *Salmonella* was discovered in 45 of the 448 total samples obtained which turned out to be 10% of the pigs being carriers. The total number of positives were as follows: 3 of 200 diaphragms, 2 of 16 cold room floor swabs, 4 of 16 slaughterhouse floor swabs, and 36 of 200 feces. The most common strain found was *S. brandenburg* (Mafu et al. 1989).

Another study tested the prevalence of *Salmonella* in the slaughterhouse, the farm the swine came from, and the trucks used for transportation. It was demonstrated that *S. bovismorbificans* was isolated from the truck and the

carcasses. Isolates of *S. bredeney* were recovered from the truck and cecal contents. The truck, cecal contents, and lymph nodes were positive for *S.* Derby. Therefore, these species of *Salmonella* were introduced to the swine after the farm during transportation. Isolates of *S.* Typhimurium were found in the swine and environmental samples, but never at the slaughterhouse. However, this species was the most prevalent found at the farm (Magistrali et al. 2008).

Yet a different study reported that *Salmonella* Typhimurium was the most prevalent species detected in the slaughterhouse (Botteldoorn et al. 2003). The samples collected included environmental, mesenteric lymph nodes, feces from the colon, and carcass. They found 37% of the carcasses, 19% of the feces, and 21% of the mesenteric lymph nodes were positive for *Salmonella*. It was estimated that cross-contamination accounted for 29% of the carcass positives. The most prevalent *Salmonella* serotypes isolated from the environment and the feces were Typhimurium, Derby, and Livingstone. The most prevailing bacterium that was isolated from the carcasses was *S*. Typhimurium.

A major concern of salmonellosis is the multidrug-resistant *S*. Typhimurium DT104. This strain of *Salmonella* is usually resistant to at least 5 drugs, which are tetracycline, ampicillin, streptomycin, chloramphenicol, and sulfonamides. The first known isolate of DT104 was in the United Kingdom in the early 1980's. By the 1990's, the isolate was worldwide. *Salmonella* Typhimurium DT104 has been isolated from beef, sheep, pigs, and poultry (Helms et al. 2005). Lee et al. (2007) acquired intestinal contents from 152 Korean pigs. *Salmonella* species were recovered from ten of the samples with

one isolate having the characteristics of DT104. Another study performed by Farzan et al. (2008), tested 100 Ontario farms. Seventeen percent of the farms tested positive for *S*. Typhimurium DT104. There was a total of 80 positive isolates that was recovered from the swine feces and environmental samples.

However, it was been reported that *Salmonella* is more prevalent in antimicrobial-free (ABF) swine production systems than the conventional systems. From 20 farms sampled in North Carolina (10 conventional and 10 ABF) there were a total of 889 pigs and 743 carcasses tested for the presence of *Salmonella*. There was a significant difference between positive *Salmonella* isolates between the conventional and ABF production systems, 4.2% and 15.2%, respectively (Gebreyes et al. 2006).

Campylobacter.

Campylobacter enteritis is considered to be the most prevalent foodborne pathogen in the United States, even more prevalent than *E. coli* and *Salmonella* (Jay 2000). The pathogen is a Gram negative, microaerophilic spirella bacterium (Krieg 1984). It is estimated by the CDC that approximately 124 people die per year from infections from *Campylobacter*. Like *Salmonella*, *Campylobacter* occurs more frequently in the summer than the winter (Centers for Disease Control and Prevention 2008a). The majority of the species responsible for the enteritis is *C. jejuni*. Some of the symptoms of *Campylobacter* enteritis are fever, abdominal cramps, headache, and diarrhea. In severe cases, the symptoms may include bloody stools where the diarrhea is similar to ulcerative colitis. The bacterium is found in warm-blooded animals rather than the environment with a

large proportion of the meat animals shedding it in their feces (Jay 2000). The common species in swine is *C. coli* (Jacobs-Reitsma 2000).

Campylobacter is very prevalent in antibiotic-free swine production systems. Harvey et al. (1999) examined four continuous-flow farms that were free of subtherapeutic antibiotics for five years. The nine month study collected the viscera from the pigs during slaughter and cecal contents obtained from the viscera were used for testing. It was discovered that Campylobacter species were isolated from 70% to 100% of the swine tested. Of the samples tested, C. *coli* was dominant followed by *C. jejuni* and *C. lari*. The average log₁₀ concentrations of *C. coli* and *C. jejuni* isolates were 4.65 cfu/g. Another study was done to test the prevalence of *C. coli* in five antimicrobial-free (ABF) herds. It was done to see if there was any difference in outdoor (extensive) and indoor (intensive) environmental systems. The extensive swine were reared outside and had full access to soil. However, the intensive swine were raised in confinement with slatted floors, no soil. There were two types of samples obtained, farm and slaughter. Farm samples were feces from live swine and the slaughter samples were carcass swabs. Of the 546 samples collected, 526 were positive for *C. coli*, with 160 from slaughter and 366 from the farm. There was no significant difference observed between the extensive and intensive rearing (Gebreyes et al. 2005). One could argue that the reasons for such high numbers of Campylobacter are because of the continuous-flow system and from the elimination of the subtherapeutic antibiotics.

However, *Campylobacter* is also ubiquitous in swine slaughter facilities where the pigs are housed in different swine systems. Malakauskas et al. (2006) studied the prevalence of *Campylobacter* in the slaughterhouses. It was discovered that 120 samples were positive for *Campylobacter*. It was also found that *C. coli* was the most prevalent isolate and *C. jejuni* was second. Another study by Pearce et al. (2003) tested the occurrence of *Campylobacter* in swine facilities. A total of 360 carcasses were sampled over a 30-day period. Just as in the previous study, *C.* coli was dominant followed by *C. jejuni*. However, this study revealed that there was no measurable presence of *Campylobacter* on the carcasses after chilling them overnight.

Species of *Campylobacter* have been reported on uncooked retail pork. Of approximately 1000 uncooked retail meats from various animal species, 259 samples were positive for *Campylobacter*. Of these positive samples, 21 were pork products. There were 18 *C. jejuni* positives and 3 *C. coli* positives isolated (Wong et al. 2007).

A *Campylobacter* species of possible concern that has been identified in swine is *C. hyointestinalis*. A report by Gorkiewicz et al. (2002) described a case study where an elderly woman acquired a bacterial gastroenteritis infection. After many characteristics tests were performed, the infecting bacterium was identified as *C. hyointestinalis*. Following further investigation, it was discovered that the isolate was acquired from a pig that the woman owned.

Escherichia coli 0157:H7:

Escherichia coli O157:H7 is a facultative anaerobic, Gram negative rod bacterium that was first identified as a foodborne pathogen in 1982 (Krieg 1984, Buchko et al. 2000). *Escherichia coli* O157:H7 causes symptoms such as fever, vomiting, bloody diarrhea, hemolytic uremic syndrome, and in some cases, death. It is estimated that more than 73,000 human infections occur each year in the U.S (Alam and Zurek 2006). Beef and dairy cattle are known carriers of this pathogenic bacterium (Standford et al. 2005). However, over the past decade, *E. coli* O157:H7 has been reported in healthy pigs in the United States, Japan, Sweden, and Canada (Cornick and VuKhac 2008). It was reported that in Chile, the prevalence of *E. coli* O157:H7 was higher in swine than cattle with occurrence being 10.8% and 2.9%, respectively (Cornick and Helgerson 2004).

Cornick and VuKhac (2008) reported that young adult swine, 100 to 150 lbs., can transmit *E. coli* O157:H7 indirectly. In the study, a donor pig was inoculated with 5 x 10^8 cfu of *E. coli* O157:H7 by ingestion of inoculated feed. There was a 100% recovery of the pathogen from the pigs that had nose-to-nose contact with the donor and an 83% recovery from the pigs that were housed in the same room as the donor pig. The reason behind the indirect transmission is likely from contaminated aerosols (Cornick and VuKhac 2008).

One reason that *E. coli* O157:H7 isn't observed as much in swine is the conditions. One study reported by Cornick and Helgerson (2004), stated that the infectious dose for 3 month old pigs was 6×10^3 cfu of *E. coli* O157:H7. The pathogen was transmitted by an infected pig at a dose less than 10^4 cfu/g. Three of the seven pigs exposed to the donor pigs that were shedding approximately

 10^2 cfu/g of the pathogen were positive. There was a 100% transmission of the pathogen to naïve pigs were the donor pigs were shedding more than 10^4 cfu/g. The study also stated that there is no difference in the type of housing used, floors vs. decks. Therefore, swine do not have a resistance to *E. coli* O157:H7 and under the right conditions could be a reservoir for the pathogen. A few reasons as to why swine have a very low occurrence of the pathogen could be that the farms have good management practices and the majority of the herds don't have any contact with the bacterium (Cornick and Helgerson 2004).

The National Animal Health Monitoring System (NAHMS) collected 2,526 fecal samples from 57 swine farms in 13 of the 17 major swine-producing states. The samples were obtained from August 2000 to April 2001. The fecal samples that were obtained were from 20 weeks or older finishers and cull sows that were within 10 days of slaughter. The feces were tested for several different pathogens, including *E. coli* O157:H7. The results revealed that only 4.2% of the samples tested positive for the O157 serotype (Feder et al. 2007).

Feral swine in Central California have the ability to contract and transmit *E. coli* O157:H7. It is assumed that the feral swine contracted the bacteria from cattle that were residents to the neighboring area. The swine then possibly contaminated the surrounding spinach fields by fecal contamination. The spinach from these fields was linked to an outbreak of *E. coli* O157:H7 that occurred in 27 U.S. states and Canada. The outbreak led to 3 deaths and 205 cases of illness. It was also reported that there was *E. coli* O157:H7 transmission between the feral pigs (Jay et al. 2007).

The first intensive testing for *E. coli* O157:H7 in swine was in 2003. The pathogen was recovered from the colon of slaughtered swine. Samples taken from the distal colon from 305 pigs were collected over an 8 month period. Approximately two to three inches of the feces-filled colon was obtained for testing. After enrichment, characteristic tests, pulsed-field gel electrophoresis (PFGE), ribotyping, and polymerase chain reaction (PCR) were performed, 6 of the 305 samples were positive for *E. coli* O157:H7. It was stated that swine do have the potential to harbor this foodborne pathogen (Feder et al. 2003).

REFERENCES

- 1. Abe, F., N. Ishibashi, and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. *J. Dairy Sci.* 78:2838-2846.
- 2. Alam, M. J., and L. Zurek. 2006. Seasonal prevalence of *Escherichia coli* O157:H7 in beef cattle feces. *J. Food Micro.* 69:3018-3020.
- Anukam, K. C., E. O. Osazuwa, H. B. Osadolor, A. W. Bruce, and G. Reid. 2008. Yogurt containing probiotic *Lactobacillus rhamnosus* GR-1 and *L. reuteri* RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. *J. Clin. Gastroenterol.* 42:239-243.
- 4. Arqués, J. L., J. Fernández, P. Gaya, M. Nuñez, E. Rodríguez, and M. Medina. 2004. Antimicrobial activity of reuterin in combination with nisin against foodborne pathogens. *Int. J. Food Microbiol*. 95:225-229.
- Arqués, J. L., E. Rodríguez, M. Nuñez, and M. Medina. 2008. Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on *Listeria monocytogenes* and *Staphylococcus aureus* in cuajada, a semisolid dairy product manufactured in Spain. *J. Dairy Sci.* 91:70-75.
- 6. Barnes, E. M. 1986. Anaerobic bacteria of the normal intestinal microflora of animals. Soc. Appl. Bacteriol. Symp. Ser. 13:225-238.
- 7. Blomberg, L., A. Henriksson, and P. L. Conway. 1993. Inhibition of adhesion of *Escherichia coli* K88 to piglet ileal mucus by *Lactobacillus* ssp. *Appl. Environ. Microbiol.* 59:34-39.
- 8. Böhmer, B. M., W. Kramer, and D. A. Roth-Maier. 2006. Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows. *J. Anim. Physiol. Anim. Nutr.* 90:309-315.
- Botteldoorn, N., M. Heyndrickx, N. Rijpens, K. Grijspeerdt, and L. Herman. 2003. Salmonella on pig carcasses: positive pigs and cross contamination in the slaughterhouse. J. Appl. Microbiol. 95:891-903.
- Brashears, M. M., S. S. Reilly, S. E. Gilliland. 1998. Antagonistic action of cells of *Lactobacillus lactis* toward *Eschrichia coli* O157:H7 on refrigerated raw chicken meat. *J. Food Prot.* 61:166-170.
- 11. Buchko, S. J., R. A. Holley, W. O. Olson, V. P. J. Gannon, and D. M. Veira. 2000. The effect of different grain diets on fecal shedding of *Escherichia coli* O157:H7 by steers. *J. Food Prot.* 63:1467-1474.

- 12. Casey, P. G., G. E. Gardiner, G. Casey, B. Bradshaw, P. G. Lawlor, P. B. Lynch, F. C. Leonard, C. Stanton, R. P. Ross, G. F. Fitzgerald, and C. Hill. 2007. A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with *Salmonella enterica* serovar Typhimurium. *Appl. Environ. Microbiol.* 73:1858-1863.
- 13. Centers for Disease Prevention and Control. 2008. Campylobacter. Available at http://www.cdc.gov/nczved/dfbmd/disease_listing/ campylobacter_gi.html. Accessed October 28, 2008.
- 14. Centers for Disease Prevention and Control. 2008. Salmonellosis. Available at http://www.cdc.gov/nczved/dfbmd/disease_listing/ salmonellosis_gi.html. Accessed October 28, 2008.
- Chang, Y. H., J. K. Kim, H. J. Kim, W. Y. Kim, Y. B. Kim, and Y. H. Park.
 2001. Selection of a potential probiotic *Lactobacillus* strain and subsequent *in vivo* studies. *Antonie van Leeuwenhoek* 80:193-199.
- 16. Cleusix, V., C. Lacroix, S. Vollenweider, M. Duboux, and G. Le Blay. 2007. Inhibitory activity spectrum of reuterin produced by *Lactobacillus reuteri* against intestinal bacteria. *BMC Microbiol.* 7:101-109.
- Cornick, N. A., and A. F. Helgerson. 2003. Transmission and infectious dose of *Escherichia coli* O157:H7 in swine. *Appl. Environ. Microbiol.* 70:5331-5335.
- Cornick, N. A., and H. VuKhac. 2008. Indirect Transmission of *Escherichia* coli O157:H7 occurs readily among swine but not among sheep. *Appl. Environ. Microbiol.* 74:2488-2491.
- De Angelis, M., S. Siragusa, M. Berloco, L. Caputo, A. Ragni, R. Burzigotti, and M. Gobbetti. 2007. Survival and persistence of *Lactobacillus plantarum* 4.1 and *Lactobacillus reuteri* 3S7 in the gastrointestinal tract of pigs. *Vet. Microbiol.* 123:133-144.
- 20. De Angelis, M., S. Siragusa, M. Berloco, L. Caputo, L. Settanni, G. Alfonsi, M. Amerio, A. Grandi, A. Ragni, and M. Gobbetti. 2006. Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. *Res. Microbiol.* 157:792-801.
- 21. De Rodas, B. Z., S. E. Gilliland, and C. V. Maxwell. 1996. Hypocholesterolemic action of *Lactobacillus acidophilus* ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. *J. Dairy Sci.* 79:2121-2128.

- 22. Downes, F. P., and K. Ito (eds). 2001. Compendium of methods for the microbiological examination of foods. 4th Ed. American Public Health Association, Washington DC.
- 23. Du Toit, M., C. M. A. P. Franz, L. M. T. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens, and W. H. Holzapfel. 1998. Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. *Int. J. Food Microbiol.* 40:93-104.
- 24. El-Ziney, M. G., and J. M. Debevere. 1998. The effect of reuterin on *Listeria monocytogenes* and *Escherichia coli* O157:H7 in milk and cottage cheese. *J. Food Prot.* 61:1275-1280.
- 25. Estienne, M. J., T. G. Hartsock, and A. F. Harper. 2005. Effect of antibiotics and probiotics on suckling pig and weaned pig performance. *Int. J. Appl. Res. Vet. Med.* 3:303-308.
- 26. Farzan, A., R. M. Friendship, C. Poppe, L. Martin, C. E. Dewey, and J. Funk. 2008. Molecular epidemiology and antimicrobial resistance of *Salmonella* Typhimurium DT104 on Ontario swine farms. *Can. J. Vet. Res.* 72:188-194.
- 27. Feder, I., J. T. Gray, R. A. Pearce, P. M. Fratamico, E. Bush, A. Porto-Fett, F. M. Wallace, P. J. Fedorka-Clay, and J. B. Luchansky. 2007. Testing of swine feces obtained through the National Animal Health Monitoring System's swine 2000 study of the presence of *Escherichia coli* 0157:H7. *J. Food Prot.* 70:1489-1492.
- Feder, I., F. M. Wallace, J. T. Gray, P. Fratamico, P. J. Fedorka-Cray, R. A. Pearce, J. E. Call, R. Perrine, and J. B. Luchansky. 2003. Isolation of *Escherichia coli* O157:H7 from intact colon fecal samples of swine. *Emerg. Infect. Dis.* 9:380-383.
- 29. Fuller, R. (ed). 1992. Probiotics: the scientific basis. Chapman & Hall, London.
- 30. Gardiner, G. E., P. G. Casey, G. Casey, P. B. Lynch, P. G. Lawlor, C. Hill, G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Relative ability of orally administered *Lactobacillus murinus* to predominate and persist in the porcine gastrointestinal tract. *Appl. Environ. Microbiol.* 70:1895-1906.
- 31. Gebreyes, W., S. Thakur, and W. E. M. Morrow. 2005. *Campylobacter coli*: prevalence and antimicrobial resistance in antimicrobial-free (ABF) swine production systems. *J. Antimicrob. Chemother.* 56:765-768.

- 32. Gebreyes, W. A., Thakur, and W. E. M. Morrow. 2006. Comparison of prevalence, antimicrobial resistance, and occurrence of multidrug-resistant *Salmonella* in antimicrobial-free and conventional pig production. *J. Food Prot.* 69:743-748.
- 33. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. *FEMS Microbiol. Rev.* 87:175-188.
- Gilliland, S. E., and M. L. Speck. 1977. Antagonistic action of *Lactobacillus acidophilus* towards intestinal and foodborne pathogens in associative cultures. *J. Food Prot.* 40:820-823.
- 35. Gorkiewicz, G., G. Feierl, R. Zechner, and E. L. Zechner. 2002. Transmission of *Campylobacter hyointestinalis* from a pig to a human. *J. Clin. Microbiol.* 40:2601-2605.
- 36. Harper, A. F., E. T. Kornegay, K. L. Bryant, and H. R. Thomas. 1983. Efficacy of vriginiamycin and a commercially-available lactobacillus probiotic in swine diets. *Anim. Feed Sci. Technol.* 8:69-76.
- 37. Harvey, R. B, C. R. Young, R. L. Ziprin, M. E. Hume, K. J. Genoese, R. C. Anderson, R. E. Droleskey, L. H. Stanker, and D. J. Nisbet. 1999. Prevalence of *Campylobacter* ssp isolated from the intestinal tract of pigs raised in an integrated swine production system. *J. Am. Vet. Med. Assoc.* 215:1601-1604.
- Helms, M., S. Ethelburg, K. Molbak, and the DT104 Study Group. 2005. International *Salmonella* Typhimurium DT104 infection, 1992-2001. *Emerg. Infect. Dis.* 11:859-867.
- Hyronimus, B., C. Le Marrec, A. Hadj Sassi, and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. *Int. J. Food Microbiol.* 61:1930197.
- 40. Jacobs-Reitsma, W. 2000. *Campylobacter* in the food supply, p. 467-481. In I. Nachamkin and M. J. Blaser (eds.), *Campylobacter*, 2nd Ed. ASM Press, Washington, D.C.
- 41. Jay, J. M. (ed) 2000. Modern food microbiology. 6th Ed. Aspen Publishers, Inc., Gaithersburg, MD.
- 42. Jay, M. T., M. Cooley, D. Carychao, G. W. Wiscomb, R. A. Sweitzer, L. Crawford-Miksza, J. A. Farrar, D. K. Lau, J. O'Connell, A. Millington, R. V. Asmundson, E. R. Atwill, and R. E. Mandrell. 2007. *Escherichia coli* 0157:H7 in feral swine near spinach fields and cattle central California coast. *Emerg. Infect. Dis.* 13:1908-1911.

- Kabuki, T., T. Saito, Y. Kawai, J. Uemura, and T. Itoh. 1997. Production, purification and characterization of reuterin 6, a bacteriocin with lytic activity produced by *Lactobacillus reuteri* LA6. *Int. J. Food Microbiol.* 34:145-156.
- 44. Kritas, S. K., and R. B. Morrison. 2007. Effect of orally administered *Lactobacillus casei* on porcine reproductive and respiratory syndrome (PRRS) virus vaccination in pigs. *Vet. Microbiol.* 119:248-255.
- 45. Kritas, S. K., and R. B. Morrison. 2005. Evaluation of probiotics as a substitute for antibiotics in a large pig nursery. *Vet. Rec.* 156:447-448.
- 46. Krieg, N. R. (ed) 1986. Bergey's manual of determinative bacteriology. 9th Ed. Williams and Wilkins Co., Baltimore, MD.
- 47. Lee, H. S., S. E. Gilliland, and S. Carter. 2001. Amylolytic cultures of *Lactobacillus acidophilus*: Potential probiotics to improve dietary starch utilization. *J. Food Sci.* 66:338-344.
- 48. Let, K. E., and Y. Lee. 2007. Isolation of multidrug-resistant *Salmonella typhimurium* DT104 from swine in Korea. *J. Microbiol.* 45:590-592.
- 49. Loynachan, A. T., J. E. Pettigrew, B. S. Wiseman, R. A. Kunkle, and D. L. Harris. 2005. Evaluation of a diet free of animal protein in germfree swine. *Xenotransplantation* 12:149-155.
- 50. Mafu, A. A., R. Higgins, M. Nadeau, and G. Cousineau. 1989. The incidence of *Salmonella, Campylobacter,* and *Yersinia enterocolitica* in swine carcasses and the slaughterhouse environment. *J. Food Prot.* 52:642-645.
- 51. Magistrali, C., A. M. Dionisi, P. De Curtis, L. Cucco, O. Vischi, S. Scuota, A. Zicavo, and G. Pezzotti. 2008. Contamination of *Salmonella* ssp. in a pig finishing herd, from the arrival of the animals to the slaughterhouse. *Res. Vet. Sci.* Article in press.
- 52. Malakauskas, M., K. Jorgensen, E. M. Neilsen, B. Ojeniyi, and J. E. Olsen. 2006. Isolation of *Campylobacter* spp. from a pig slaughterhouse and analysis of cross-contamination. *Int. J. Food Microbiol.* 108:295-300.
- 53. Maré, L., G. M. Wolfaard, and L. M. T. Dicks. 2006. Adhesion of Lactobacillus plantarum 423 and Lactobacillus salivarius 241 to the intestinal tract of piglets, as recorded with fluorescent *in situ* hybridization (FISH), and production of plantaricin 423 by cells colonized to the ileum. J. Appl. Microbio. 100:838-845.

- 54. Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. *Emerg. Infect. Dis.* 5:607-625.
- 55. Mountzouris, K. C. 2006. Assessment of the efficacy of probiotics, prebiotics and synbiotics in swine nutrition: a review. *Food Sci. Tech. Bull. Funct. Foods*. 3:51-71.
- Mukai, T., T. Asasaka, E. Sato, K. Mori, M. Matsumoto, and H. Ohori. 2002. Inhibition of binding *Helicobacter pylori* to the glycolipid receptors by probiotic *Lactobacillus reuteri*. *FEMS Immunol. Med. Microbiol.* 32:105-110.
- Naito, S., H. Hayashidani, K. Kaneko, M. Ogawa, and Y. Benno. 1995. Development of intestinal lactobacilli in normal piglets. *J. Appl. Bacterio.* 79:230-236.
- Pearce, R. A., F. M. Wallace, J. E. Call, R. L. Dudley, A. Oser, L. Yoder, J. J. Sheridan, and J. B. Luchansky. 2003. Prevalence of *Campylobacter* within a swine slaughter and processing facility. *J. Food Prot.* 66:1550-1556.
- 59. Pollman, D. S., D. M. Danielson, and E. R. Peo, Jr. 1980. Effects of microbial feed additives on performance of starter and growing-finishing pigs. *J. Anim. Sci.* 51:577-581.
- 60. Ratcliffe, B., C. B. Cole, R. Fuller, and M. J. Newport. 1986. The effect of yoghurt and milk fermented with porcine intestinal strain of *Lactobacillus reuteri* on the performance and gastrointestinal flora of pigs weaned at two days of age. *Food Microbiol.* 3:203-211.
- 61. Ray, B. 2001. Fundamental food microbiology. 2nd Ed. CRC Press, Boca Raton, FL.
- Rodriguez, A., P. Pangloli, H. A. Richards, J. R. Mount, and F. A. Draughon. 2006. Prevalence of *Salmonella* in diverse environmental farm samples. *J. Food Prot.* 69:2576-2580.
- 63. Russell, P. J., T. M. Geary, P. H. Brooks, and A. Campbell. 1996. Performance, water use and effluent output of weaner pigs fed ad libitum with either dry pellets or liquid feed and the role of microbial activity in the liquid feed. J. Sci. Food Agric. 72:8-16.

- 64. Saarella, M., G. Mogensen, R. Fondén, J. Mättö, and T. Mattila-Sandholm. 2000. Probiotic bacterial: safety, functional and technological properties. *J. Biotech.* 84:197-215.
- 65. Scharek, L., J. Guth, M. Filter, and M. F. G. Schmidt. 2007. Impact of the probiotic bacteria *Enterococcus faecium* NCIMB 10415 (SF68) and *Bacillus cereus* var. toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets. *Arch. Anim. Nutr.* 61:223-234.
- 66. Smith, L., J. E. Mann, K. Harris, M. F. Miller, and M. M. Brashears. 2005. Reduction of *Escherichia coli* O157:H7 and *Salmonella* in ground beef using lactic acid bacteria and impact on sensory properties. *J. Food Prot.* 68:1587-1592.
- 67. Sneath, P. H. A., N. S. Mair, and M. E. Sharp (eds) 1986. Bergey's manual of determinative bacteriology. 9th Ed. Williams and Wilkins Co., Baltimore, MD.
- Stanford, K., S. J. Bach, T. H. Marx, S. Jones, J. R. Hansen, G. L. Wallins, H. Zahiroddini, and T. A. McAllister. 2005. Monitoring *Escherichia coli* 0157:H7 in inoculated and naturally colonized feedlot cattle and their environment. *J. Food Microbiol.* 68:26-33.
- 69. Sung, H., C. Chen, H. Liang, and M. Hong. 2003. A natural compound (reuterin) produced by *Lactobacillus reuteri* for biological-tissue fixation. *Biomaterials*. 24:1335-1347.
- 70. Walsh, M. C., G. E. Gardiner, O. M. Hart, P. G. Lawlor, M. Daly, B. Lynch, R. T. Richert, S. Radcliffe, L. Giblin, C. Hill, G. F. Fitzgerald, C. Stanton, and P. Ross. 2008. Predominance of a bacteriocin-producing *Lactobacillus salivarius* component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. *FEMS Microbiol. Ecol.* 64:317-327.
- 71. Wong, T. L., L. Hollis, A. Cornelius, C. Nicol, R. Cook, and J. A. Hudson. 2007. Prevalence, numbers, and subtypes of *Campylobacter jejuni* and *Campylobacter coli* in uncooked retail meat samples. *J. Food Prot.* 70:566-573.
- 72. Younts-Dahl, S. M., G. D. Osborn, M. L. Galyean, J. D. Rivera, G. H. Loneragan, and M. M. Brashears. 2005. Reduction of *Escherichia coli* 0157:H7 in finishing beef cattle by various doses of *Lactobacillus acidophilus* in direct-fed microbials. *J. Food Prot.* 68:6-10.

73. Yu, I. T., C. C. Ju, H. L. Wu, and H. T. Yen. 2004. Effects of probiotics and selenium combination on immune and blood cholesterol concentration of pigs. *J. Anim.* Feed *Sci.* 13:625-634.

CHAPTER III

SCREENING CUTLURES OF *LACTOBACILLUS REUERTI* FROM SWINE FOR POTENTIAL USE AS DIRECT-FED MICROBIALS

Megan R. Bible, Scott D. Carter, and Stanley E. Gilliland

Robert M. Kerr Food and Agricultural Products Research and Technology Center

and

Department of Animal Science

Oklahoma State University

Stillwater, Oklahoma 74074

ABSTRACT

The objective of this study was to determine the effects of different cultures of lactobacilli on growth and performance of nursery swine as well as blood chemistry and immune response. Sixty Duroc x (Landrace x Yorkshire) crossbred pigs were divided into two studies with 2 experiments/study that were fed a typical nursery diet without antibiotics. Study one treatments were as follows: 1. control milk, 2. milk + L. reuteri DS-33 (DS-33), 3. milk + L. reuteri WB-74 (WB-74), 4. milk + L. reuteri WB-75 (WB-75), and 5. milk + L. acidophilus L-23 (L-23). Study two treatments were as follows: 1. control milk, 2. milk + L. reuteri DS-36 (DS-36), 3. milk + L. reuteri WB-37 (WB-37), 4. milk + L. reuteri WB-72 (WB-72), and 5. milk + L. reuteri WB-76 (WB-76). The pigs were individually house in metabolic crates and allowed an approximate one week adjustment period. The pigs were fed 10 mL of milk twice a day for 21 days. The culture treatment groups received the 10 mL of milk + 10^9 cfu/mL of the desired cultures twice daily. Weights and feed (dry weight basis) were measured weekly. The feed was collected, weighed, and dried. Growth and performance data were obtained weekly for 3 weeks. Blood was drawn weekly. The serum was collected and analyzed for various blood analytes and immunoglobulins. After a 3 week feeding trial, all of the pigs were subjected to a challenge with an Escherichia coli O111:B4 lipopolysaccharide (LPS). Blood was drawn and rectal temperatures were measured at hours 0, 1.5, 3.0, 6.0, 12, and 24. Additionally, pig weights were measured at hours 0, 6, 12, and 24. The same analyses were performed as mentioned before. The results for each study were variable.

Cultures DS-33, L-23, and DS-36 tended to cause better feed to gain ratios than observed for the control groups. Pigs fed culture L-23 exhibited a significantly higher total serum protein level than pigs in the control group. A significant difference was observed for serum aspartate aminotransferase (AST) where the culture DS-33 caused a lower level than the control pigs. The cultures WB-74, L-23, and WB-72 tended to increase serum IgA, IgG, and IgM, respectively. Culture DS-36 caused a significantly lower globulin level when compared to the control and DS-37 groups. Albumin:globulin ratio for pigs fed DS-36 or WB-76 was significantly higher than the control pigs at hour 3.0. Also, pigs fed DS-37 showed a significant reduction of levels of total bilirubin, triglyceride, and very low-density lipoprotein (VLDL) at hour 12 during the LPS challenge.

INTRODUCTION

Probiotics (direct-fed microbials) are defined as "A live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial balance" (Fuller 1992). Some of the more widely used bacterial probiotics and direct-fed microbials (DFM) include species of the following genera: *Lactobacillus, Bifidobacterium, Propionibacterium, Enterococcus, Streptococcus, Pediococcus, Lactococcus, Bacillus, and Leuconostoc* (Fuller 1992). Lactobacilli and bifidobacteria are the most common species of direct-fed microbials (Saarella et al. 2000). Some of these lactic acid bacteria reportedly have the ability to achieve the following: improvement of the nutritional value of food, anti-carcinogenic activity, control of intestinal pathogens, management of serum cholesterol levels, and enhancement of lactose utilization (Gilliland 1990).

Much research has been conducted on the use of lactobacilli to improve growth and performance of swine. A previous study by Lee et al. (2001) reported the production of amylase by a culture of *L. acidophilus* improved feed efficiency in nursery pigs. Lyophilized *L. reuteri* improved feed conversion in Landrace piglets (Chang et al. 2001). A commercially available swine DFM, containing lactobacilli and streptococci, did not improve growth and performance in preweaning piglets. However, when the pigs were mixed (non-littermate litters) the DFM caused an increase in feed consumption and average daily gain (Estienne et al. 2005).

Another area of direct-fed microbial research in swine is improving the immune system. Feeding a mixture of lactobacilli to nursery pigs increased the

cytokine interleukin 8 (IL-8) following a lipopolysaccharide (LPS) challenge (Walsh et al. 2008). During another LPS challenge immunoglobulin IgG was increased in weanling pigs that were administered a combination of lactobacilli, *Bacillus*, and selenium (Yu et al. 2004).

The focus of the present study was to determine the effects of cultures of *L*. *reuteri* as potential use as direct fed microbials. A total of sixty nursery pigs were used in two different studies. Each study consisted of four different cultures for a total of eight cultures. Feed conversions were calculated for each pig. Blood serum was used to test for IgA, IgG, and IgG, as well as serum blood chemistry. In addition the pigs were injected with a lipopolysaccharide (LPS) at the end of each trial to study the effects of the cultures of lactobacilli during an immune response.

MATERIALS AND METHODS

SWINE CULTURES:

Source of Cultures:

Cultures were obtained from Oklahoma State University's food microbiology culture collection. Five isolates of lactobacilli from a *Sus scrofa* (wild boar, WB) and nine from *Sus scrofa domestica* (domestic swine, DS) were investigated. The wild boar cultures were isolated from the small intestine of a wild boar in Canadian, Texas and were identified as the following based on phenotypic characteristics: *Lactobacillus reuteri* WB-72, WB-74, WB-75, WB-76, and WB-78. Eight of the domestic swine cultures were isolated from the feces of domestic, free ranging sows in Checotah, Oklahoma and were identified as the following based on phenotypic characteristics: *L. reuteri* DS-29, DS-31, DS-33, DS-35, DS-36, DS-37, DS-38, and DS-39. The last domestic swine culture, *L. acidophilus* L-23, was isolated from the feces of a pig that was housed in the swine barn at Oklahoma State University. The latter culture was used because it has been shown to improve growth and performance in pigs fed a high starchbased diet.

Maintenance of Cultures:

Weekly subcultures of each swine isolate were performed by using 1% inocula into 10 mL of sterile Lactobacilli de Man, Rogosa, and Sharpe (MRS) broth (Difco Laboratories, Franklin Lakes, NJ). The cultures were incubated at 37°C for 18 hours. Each culture was stored at refrigera tion temperatures (2-5°C)

between subcultures. The isolates were subcultured daily three consecutive times before use in any assay or feeding trial.

IDENTIFICATION OF CULTURES:

Cultures were subjected to the following characteristic tests: Gram stain, catalase test, growth at 15°C and 45°C, arginine hyd rolysis test, and carbohydrate fermentation patterns using Analytab Products Inc. (API) 50 CH system (bioMérieux, France).

The following characterization tests were performed to identify the cultures. Gram stains were performed on each to identify Gram positive rods. Those that were Gram positive were streaked on MRS agar, incubated at 37°C for 24 hours. Plates were flooded with a 3% hydrogen peroxide solution. The presence of effervescence confirmed a positive for catalase. Gram positive, catalase negative rods were regarded to be a *Lactobacillus* species.

Growth at 15°C and 45°C was performed by placing a 1% inoculum in 10 mL of sterile MRS broth. Before inoculating the 15°C tubes, they were placed in a 15°C water bath and allowed to equilibrate to that temperature. The 15°C and 45°C tubes were incubated for 5-7 days in a water bath and 48 hours in an incubator, respectively. The arginine hydrolysis test was done by inoculating (1%) 10 mL of arginine broth followed by incubation at 37°C for 24 hours (McCoy and Gilliland 2007). The arginine broth was prepared from individual components following the manufacturer's (Difco Laboratories, Franklin Lakes, NJ) directions. One drop of Nessler's reagent (Sigma-Aldrich, St. Louis, MO)

was mixed with one drop of each culture. The production of ammonia from arginine was indicated by an orange/gold precipitate. The fermentation patterns of the cultures were performed by using the API 50 CH system following the manufacturer's directions except that the strips were incubated in a Gas Pak anaerobic jar rather than placing mineral oil into each cuplet. The species of the cultures of lactobacilli were determined by comparing results from growth at 15°C and 45°C, ammonia production from arginine, and the carbohydrate fermentation patterns to those of the lactobacilli in the 9th Edition of Bergey's Manual of Determinative Bacteriology (Sneath et al. 1986).

BILE TOLERANCE ASSAY:

Bile tolerance assay was performed on each isolate as described by Walker and Gilliland (Walker and Gilliland 1993). However, the following exceptions were made to the method. The cultures were inoculated with 1% inoculum in 10 mL of MRS broth + 0.3% oxgall (Difco Laboratories, Franklin Lakes, NJ). Each tube was incubated in a 37℃ water ba th for seven hours. Absorbance readings at 620 nm were measured using a Milton Roy Spectronic 21D UV/VIS Spectrophotometer (Rochester, NY). Comparisons of cultures were based on the increases in absorbance from 0 to 4 hour. The assay was performed twice.

FEEDING STUDIES:

Preparation and Plating of Cultures:

The control milk was a 10% reconstituted skim milk solution that was resuspended with deionized water. Four hundred milliliters of reconstituted milk

was brought to a boil, allowed to cool, and aliquoted to four 250 mL sterile bottles (100 mL each). The bottles were stored in the refrigerator (2-5°C) for no longer than 3 to 4 days. Control milk was prepared every 3 to 4 days.

Frozen concentrated cultures of the swine isolates were prepared as described by Gilliland and Rich (Gilliland and Rich 1990) with the following exception. The cultures were grown statically in 500 mL of sterile MRS broth for 18 hours at 37°C. The concentrated cultures were stored in liquid nitrogen until needed. The frozen cultures were prepared two to three weeks before the start of each experiment. The number of viable cells per vial was verified by the pour plate method using appropriate decimal dilutions on MRS agar with an overlay. Sterile diluents were 0.1% peptone (Difco Laboratories, Detroit, MI) and 0.001% Antifoam A (Sigma-Aldrich, St. Louis, MO) in deionized water. The plates were incubated at 37°C for 48 hours. The appropriate numb er of vials were thawed in cold tap water (100 mL of water/vial) and added to 400 mL of milk prepared as the control milk for a concentration of 1×10^8 cfu/mL. The control milk was prepared as described earlier. The 400 mL of milk containing the lactobacilli were distributed into four sterile 250 mL bottles (100 mL each) and stored at 2-5°C for no longer than four days. Treatment milk was prepared fresh every 3 to 4 days until the end of each experiment.

The control and treatment groups were plated by the pour plate method with an overlay on MRS agar on day 0 and day 3 following preparation to confirm the appropriate concentration of cells was being administered.

Feeding Studies:

Each experiment consisted of fifteen Duroc x (Landrace x Yorkshire) pigs of the same sex (gilts or barrows) that were randomly allocated into one of five treatments at 3 replicates per treatment per experiment for a total of 6 replicates per treatment. The range of the pigs' ages when the experiments began were between 33 – 47 days of age. The pigs were randomly blocked by body weight and ancestry and housed in a controlled environment in individual metabolic crates manufactured by Alternative Design (Springdale, AR). There were two sets of treatments with two experiments per treatment study. Each set of treatments contained 30 pigs with an equal number of barrows and gilts. Study one treatments were as follows: 1. control milk, 2. milk + L. reuteri DS-33, 3. milk + L. reuteri WB-74, 4. milk + L. reuteri WB-75, and 5. milk + L. acidophilus L-23 (Appendix B Table B2). Study two treatments were as follows: 1. control milk, 2. milk + L. reuteri DS-36, 3. milk + L. reuteri WB-37, 4. milk + L. reuteri WB-72, and milk + L. reuteri WB-76 (Appendix C Table C2). Each pig received 10 mL twice a day of their respective treatment for three weeks. A one week adjustment period was used prior to the treatment period to permit the pigs to adjust to the crates, diet, and administration of the control milk. The pigs were fed ad libitum of a ground corn-soybean meal diet without antibiotics (Table 1). (The diet nutrients exceeded requirements based on the swine National Research Council (NRC).) After the adjustment period, the experiment was started by recording the appropriate baseline measurements (day 0). The pounds of feed consumed were recorded for each pig. Any wasted and/or uneaten feed from each pig was collected, dried, and weighed weekly.

Consumed and wasted/uneaten feed was used to calculate average daily feed intake and feed efficiency. Body weights were measured weekly and used to calculate average daily gain and feed to gain ratios. After each replication, the metabolic crates were washed with detergent and rinsed with water, thus disinfected.

PLATING, ENRICHMENTS, AND BAX® SYSTEM:

<u>Plating:</u>

Fecal samples, obtained by rectal palpation, were collected weekly from each pig. The person(s) taking the samples wore Nitrile gloves. However, if feces could not be obtained by this method, an apparent freshly voided fecal dropping was obtained from the pig's metabolic crate. New gloves were worn for each pig to prevent cross contamination. Feces were kept on ice no longer than 2 hours until plating could be accomplished. One gram of feces was weighed into a sterile Whirl-Pack filter bag (Nasco, Fort Atkinson, WI) and a 99 mL sterile diluent was added and pummeled for 60 seconds using an IUL Masticator (IUL Instruments, Barcelona, Spain). Additional dilutions were prepared as described earlier and plated with an overlay using the pour plate technique on Lactobacillus selection agar (LBSA) and Violet Red Bile agar (VRBA) (Difco Laboratories, Franklin Lakes, NJ). The LBSA was prepared following the manufacturer's (BBL Microbiology Systems, Cockeysville, MD) formulation. The LBSA plates were incubated at 37° for 48 hours in a carbon dioxide inc ubator (VWR International, West Chester, PA). The VRBA plates were incubated at 37℃ for 24 hours. Enrichments:

Fecal enrichment cultures for detection of *Salmonella* and *Campylobacter* were performed weekly for each pig. *Salmonella* enrichment was performed by aseptically transferring 1 mL of the 1:100 dilution prepared during plating (one from the filter bag) to 10 mL of sterile tetrathionate (TT), hajna broth (Difco Laboratories, Franklin Lakes, NJ) (Downes and Ito 2001). The broth was incubated for 18-24 hours at 37°C and placed at 2-5°C until the enrichment could be tested on the Bax® System (DuPont Qualicon, Wilmington, DE), which was no longer than four hours.

Enrichment of Campylobacter was done by aseptically transferring one gram of fresh feces to a sterile Whirl-Pack filter bag, adding 100 mL of sterile Bolton broth (Oxoid, Lenexa, KS) and stomaching as described earlier. The Bolton broth was supplemented with the following antibiotics in accordance to the Bacteriological Analytical Manual: 20 mg/L of sodium cefoperazone (Sigma-Aldrich, St. Louis, MO), 20 mg/L of trimethoprim lactate (Sigma-Aldrich, St. Louis, MO), 20 mg/L of vancomycin (Sigma-Aldrich, St. Louis, MO), and 2 mg/L of amphotericin B (Sigma-Aldrich, St. Louis, MO) (Hunt et al. 2001). After stomaching, the fecal solution was aseptically transferred to sterile 600 mL tissue culture flasks with 0.2 µm vented caps (BD, Franklin Lakes, NJ). The enrichment cultures were incubated according to the method described by Reilly and Gilliland (Reilly and Gilliland 2003). The cultures were incubated for 1-2 hours at 37℃ followed by 20-24 hours at 42℃ (Downes and Ito 2001). After enrichment, the fecal samples were stored at 2-5°C until tested on the Bax® System, which was fewer than four hours.

Carried out on only experiment two of study two was enrichment of *E. coli* O157:H7. One gram of feces was aseptically transferred to 10 mL of supplemented Gram negative (GN), hajna broth (Difco Laboratories, Franklin Lakes, NJ). The added supplements were the following: 50 ng/mL cefixime (Sigma-Aldrich, St. Louis, MO), 8 µg/mL vancomycin (Sigma-Aldrich, St. Louis, MO), and 10 µg/mL cefsulodin (Sigma-Aldrich, St. Louis, MO) (Cuesta Alonso et al. 2007). Samples were incubated for 18-24 hours at 37°C. The enriched samples were placed at refrigeration (2-5°C) temperatu re for no longer than four hours until further use on the Bax® System.

Bax® System:

All of the enrichment samples were tested on the Bax® System in accordance to the manufacturer's instructions. *Salmonella* enrichments were done using the *Salmonella* Bax® System PCR Assay kit (Dupont Qualicon, Wilmington, DE). *Escherichia coli* O157:H7 MP Bax® System PCR Assay kit (Dupont Qualicon, Wilmington, DE) was used for the *E. coli* O157:H7 enrichments. Real-time polymerase chain reaction (PCR) was performed on the *Campylobacter* enrichments using the *Campylobacter jejuni/coli/lari* Bax® System PCR Assay kit (Dupont Qualicon, Wilmington, DE). The *Salmonella* and *E. coli* O157:H7 kits only revealed if the sample was positive or negative for the pathogen. However, the *Campylobacter* kit confirmed a positive, the species present, and the estimated concentration (cfu/mL).

Confirmation of *Salmonella* positives were verified by streaking the presumptive positive enrichment cultures for isolation on XLT4 agar (Difco

Laboratories, Franklin Lakes, NJ). A confirmed Salmonella colony appeared black on the XLT4 agar. The enrichments that were positive for *E. coli* O157:H7 were subcultured three consecutive times in 10 mL of the supplemented GN broth at 37°C for 18 hours. In accordance to Cuesta Alonso et al. (Cuesta Alonsa et al. 2007) samples were immunoconcentrated on the mini Vidas system using the Vidas I.C.E. coli O157 kit (bioMérieux, France). The immunoconcentrated samples were spread plated on sorbitol MacConkey agar (SMAC) (Difco Laboratories, Franklin Lakes, NJ) and Chrom O157 agar (Chrom) (Chromagar Microbiology, Paris, France). The SMAC agar was supplemented with 50 µg/mL cefixime (Sigma-Aldrich, St. Louis, MO) and 2.5 µg/mL potassium tellurite (MP Biomedicals, Solon, OH). The antibiotics that were added to the Chrom agar were cefixime $(0.025 \,\mu g/mL)$ (Sigma-Aldrich, St. Louis, MO), cefsulodin (5 µg/mL) (Sigma-Aldrich, St. Louis, MO), and potassium tellurite (2.5 µg/mL) (MP Biomedicals, Solon, OH). Assumptive *E. coli* O157:H7 colony positives on SMAC appear colorless and appear mauve on Chrom. The colonies from the SMAC and Chrom were identified as *E. coli* O157:H7 positives by testing for the O157 and H7 antigens with Remel's agglutination test kits (Lenexa, KS).

BLOOD COLLECTION AND BLOOD CHEMISTRY ANALYSIS:

Blood samples from the pigs were collected on day 0 and weeks 1, 2, and 3. The day 0 sampling periods were used as the baseline for all weekly blood chemistry tests. Blood was drawn from the anterior vena cava using 10 mL

sterile serum vacutainers (BD, Franklin Lakes, NJ). The blood samples were placed on ice after collection and then refrigerated (2-5°C) overnight.

The samples were centrifuged for 10 minutes at 3,000 x g to separate the plasma from the serum. The serum was collected using a plastic transfer pipet and dispensed into seven appropriately labeled cryogenic vials per sample. The vials were stored at -20 $^{\circ}$ until further analyses.

Blood serum samples were analyzed for complete metabolic profile and lipid panel by the Stillwater Medical Hospital laboratory using a Vitros 5,1 FS Chemistry System (Ortho-Clinical Diagnostics, Raritan, NJ) (Table 2).

ESCHERICHIA COLI LIPOPOLYSACCHARIDE (LPS) CHALLENGE:

At the end of each 21 day experiment, each pig was subjected to a lipopolysaccharide (LPS) challenge to test the immune response. The LPS source was *Escherichia coli* O111:B4 (Sigma-Aldrich, Co., St. Louis, MO) that was suspended in 9 g/L of sterile saline for a final concentration of 25 µL/kg of body weight. The pigs were fasted for approximately 8 hours before the administration of LPS and were between 55 – 69 days of age. Before the LPS challenge, rectal temperature, body weight, and blood samples were taken from each pig (hour 0). Pigs were injected at 5 minute intervals into the intraperitoneal cavity in the lower abdomen with the weight-dependent LPS suspension. Besides the hour 0 readings that were recorded, rectal temperatures and blood was taken at hours 1.5, 3.0, 6.0, 12, and 24 at 5 minute intervals. In addition to the hour 0 body weight, weights were obtained at hours 6.0, 12, and 24. The pigs were fed 0.91 kg (2.0 lb) of feed after the 12 hour reading. The

wasted/uneaten feed was dried and weighed to calculate feed intake. Blood was drawn, handled, and transferred as described earlier. The vials were stored at - 20°C until blood chemistry analyses were done as previo usly explained.

IMMUNOGLOBULIN ANALYSIS:

All blood serum samples were analyzed for immunoglobulins A (IgA), G (IgG), and M (IgM). To test the concentrations of the immunoglobulins, an enzyme linked immunosorbent assay (ELISA) quantization kit was used (Bethyl Laboratories, Inc., Montgomery, TX). Serum samples were analyzed following the manufacturer's instructions.

STATISTICAL ANALYSIS:

All weekly and LPS challenge blood chemistry and serum immunoglobulin data were analyzed using a repeated measures analysis of variance (ANOVA) by means of the SAS software (SAS Institute, 2003). The first-order autoregressive covariance structure was implemented. Slice effect was used to test for any differences between treatments at different time points. Rectal temperatures from the LPS challenge were also analyzed in the exact manner. When there was a significant difference at day 0, a covariate was adopted. Differences were considered significant at the p<0.05 level. Pairwise differences were used when there was a significant difference.

The Fischer's exact test, using the SAS Software (SAS Institute, 2003), was used to evaluate the data from the fecal samples before and after enrichment for *Campylobacter*. Samples were considered positive for

Campylobacter if they were positive for any of the three species using the Bax® System and *Campylobacter jejuni/coli/lari* PCR Assay kit.

Using the SAS Software (SAS Institute 2003), a Proc Mixed ANOVA was utilized to analyze the performance data, which included average daily feed intake (weekly and LPS challenge), average daily gain (weekly and LPS challenge), feed:gain (weekly and LPS challenge), and LPS challenge weights. A slice effect was used to test for any differences in treatments among study. A significant difference was observed when p<0.05. When a significant difference was observed when p<0.05. When a significant differences among treatments. Data for numbers of fecal lactobacilli, fecal coliforms, and fecal *Campylobacter* counts using the Bax® System were analyzed in the same manner. The microbial counts were transposed into log₁₀ cfu/g or mL before statistics were done

Feed Stuffs	Amount (lb)
Corn grain	642.48
Soybean meal	292.60
L-Lysine HCI	1.90
L-Threonine	0.50
DL-Methionine	0.20
Soybean oil	30.00
Dicalcium phosphate	14.22
Limestone, ground	8.84
Sodium chloride	5.00
OSU Trace Mineral Mix ^a	1.50
OSU Vitamin Mix ^a	2.50
Ethoxyquin	0.25
TOTAL	1000.00

Table 1. Composition of swine diet

^aVitamin and mineral mix (Oklahoma State University, Stillwater, OK)

Analytes Tested	Units
Glucose	mg/dL
BUN ^b	mg/dL
Creatinine	mg/dL
BUN:Creatinie ratio	
Sodium	mEq/L
Potassium	mEq/L
Chloride	mEq/L
Carbon dioxide	mEq/L
Anion gap	
Calcium	mg/dL
Total protein	g/dL
Albumin Globulin	g/dL
Albumin:Globulin ratio	g/dL
AST ^c	11/1
	U/L
ALT ^d	U/L
ALKPhos ^e	U/L
Bili, total	mg/dL
Cholesterol	mg/dL
Triglycerides	mg/dL
HDL ^f	mg/dL
VLDL ^g	mg/dL

Table 2. Blood chemistry analysis^a

^aPerformed using a Vitros 5,1 FS Chemistry System (Stillwater Medical Center, Stillwater, OK)

^bBUN - blood urea nitrogen

^cAST - aspartate aminotransferase

^dALT - alanine aminotransferase

^eALKPhos - alkaline phosphatase

^fHDL - high-density lipoprotein

^gVLDL - very low-density lipoprotein

RESULTS

SWINE CULTURES:

Culture Identification:

The identities of the cultures from domestic swine (DS) and wild boar (WB) were based on characteristics reported in the 9th edition of Bergey's Manual of Determinative Bacteriology (Sneath et al., 1986). A total of 29 phenotypic characteristics were tested. The following cultures were identified as *L. reuteri*: DS-29, DS-31, DS-33, DS-35, DS-36, DS-37, DS-38, DS-39, WB-72, WB-74, WB-75, WB-76, and WB-78. The identity of *L. acidophilus* L-23 (Lee et al. 2001) was confirmed as well. (The phenotypic identification characteristics for all cultures are listed in Appendix A in Tables A1, A2, and A3.)

<u>Bile Tolerance Assay:</u>

The cultures of lactobacilli performed very similar in the bile tolerance assay with a range for the increases in A_{520nm} for hour 4 of 0.309 – 0.598 (Table 3). All of the cultures of *L. reuteri* performed better than *L. acidophilus* L-23. The culture that appeared to have the highest bile tolerance was *L. reuteri* DS-36. The bile tolerance (based on A_{520nm} data) of culture for study 1 feeding trial ranged from 0.309 to 0.557 and included cultures *L. acidophilus* L-23 (L-23), *L. reuteri* WB-74 (WB-74), WB-75 (WB-75), and DS-33 (DS-33). The ranges for study 2 were 0.430 to 0.598 and included cultures *L. reuteri* DS-36 (DS-36), DS-37 (DS-37), WB-72 (WB-72), and WB-76 (WB-76). (For the averages of the complete bile tolerance assay view Table A4 in Appendix A.)

FEEDING STUDIES:

Enumeration of Lactobacilli:

For both studies all of the treatments (milk with added lactobacilli), besides the control, met the target count of 8.00 log₁₀ cfu/mL. The counts for study 1 DS-33 and L-23 counts remained fairly constant from day 0 to day 3 or 4 for each batch of milk prepared. Study 2 cultures DS-36 and DS-37 also were stable. However, in study 1 cultures WB-74 and WB-75 declined in viability by approximately 0.5 log cycle from day 0 to day 3 or 4. A decrease of 1.00 log cycle was observed for study 2 cultures WB-72 and WB-76. (See Table B1 in Appendix B and Table C1 in Appendix C for the treatment counts.)

Growth & Performance:

Beginning (day 0) and ending weights (week 3) in study 1 were measured to test growth. There was no overall treatment (P=0.9827) effect or treatment x experiment interaction (P=0.9675) for day 0. A significant experiment (P=0.0350) effect was seen where the pigs (barrows) in experiment 2 were heavier. However, there were no differences among treatments (P=0.7946) or a treatment x experiment interaction (P=0.8801). Study 2 beginning weights did not demonstrate a difference in treatment (P=0.9987), experiment (P=0.6364), or treatment x experiment interaction (P=0.9985). Week 3 did reveal a trend for the experiment (P=0.0703), but no treatment (P=0.8654) effect or treatment x experiment interaction (P=0.8849). The pigs in experiment 1 (gilts) in study 2 tended to be heavier than those in experiment 2 (barrows). (The weights are listed in Table B3 in Appendix B and in Table C3 in Appendix C.)

When analyzing the data from study 1, it was observed that during week 2 a control pig (# 13) was an outlier, thus we removed his data from the week 2 results of the growth and performance analyses. There was no overall treatment (P=0.5641) effect or treatment x experiment interaction (P=0.6176) for average daily gain (ADG). Numerically, the ADG for the group receiving the culture DS-33 was higher than the control group although the difference was not significant. There was a significant experiment (P=0.0099) effect where the pigs in experiment 2 (barrows) gained more weight than those in experiment 1 (gilts). The overall average daily feed intake (ADFI) did not reveal any significant differences for the treatment (P=0.6803) or treatment x experiment interaction (P=0.9127). Pigs fed culture DS-33 numerically consumed more feed than the control. There was a significant experiment (P=0.0473) effect where the barrows consumed more feed. Analysis of data for feed efficiency did not reveal any differences among the treatments (P=0.1078) or treatment x experiment interaction (P=0.1022), but a experiment (P=0.0001) effect was observed. Numerically, culture DS-33 caused the most efficient feed to gain (F:G). Pigs in experiment 1 (barrows) had a better overall F:G than those in experiment 2 (gilts). There was a trend (P=0.0667) in the experiment 1, but not in experiment 2 (P=0.1667), where some of the treatments had a more efficient F:G than the control. The cultures of lactobacilli that caused a better F:G were L-23, DS-33, and WB-75 although the differences were not significantly different (P>0.05) (Table 3). (The raw data for growth and performance are in Tables B4, B5, B6, and B7 in Appendix B.)

Data for ADG in study 2 did not reveal a treatment (P=0.3507) effect or treatment x experiment interaction (P=0.3432). However, numerically culture DS-36 caused a greater ADG than the control group. A experiment (P<0.0001) effect was observed where experiment 1(gilts) gained more weight than experiment 2 (barrows). There was an overall experiment (P<0.0001) effect for ADFI, but no differences were found in the treatment (P=0.3218) effect or the treatment x experiment interaction (P=0.8559). The pigs in experiment 1 (gilts) gained more weight throughout the entire study. The treatment DS-36 numerically had a higher ADFI than the control. There was not an overall treatment (P=0.5542) effect, but there was a experiment (P=0.0055) and treatment x experiment interaction (P=0.0352) for feed efficiency. The barrows F:G was better than gilts. A treatment (P=0.0318) effect was observed in the barrows. In this case, DS-37 treatment F:G was poorer than the control and other cultures of lactobacilli. A experiment (P=0.0145) effect, a treatment x experiment interaction (P=0.0145), and a treatment (P=0.0642) trend at week 1 was noticed. The control group performed poorer than DS-36, WB-72, and WB-76 groups. The gilts were more efficient in converting feed to gain. A treatment (P=0.0011) effect was observed in the barrows. The culture DS-37 had an inferior F:G compared to the control and other DFM treatments (Table 4). (The raw growth and performance data is in Appendix C in Tables C4, C5, C6, and C7.)

Microbial Analysis of Feces:

No significant effects of any treatments on numbers of coliform or total facultative lactobacilli were found for either study. There was an exception. Study 2 had a week 2 treatment (P=0.0454) effect where culture WB-76 was significantly lower than the control group. There also was no effect of any treatment on number of *Campylobacter* in the fecal material for either study. In most cases the numbers, if present, were below the detection level for direct plating. (The counts for the study 1 see Tables B8, B9, and B10 in Appendix B and Tables C8, C9, and C10.)

For both studies, enrichment cultures for the detection of *Campylobacter* revealed that all treatments had positive carriers for *C. coli*, but not for *C. jejuni* or *lari*. No trend was observed throughout the studies for the incidence of positives confirmed with Bax® System. Also, none of the pigs in study 1 were confirmed *Salmonella* positive. There were only two pigs confirmed positive for *Salmonella* in study 2. The enrichment tests for *Escherichia coli* O157:H7 did not reveal any to be positive. Thus, there were not sufficient numbers or positive samples to enable any observed effect of feeding the lactobacilli. (For the results of the Bax® positives, see Appendix B in Tables B11, B12, and B13 and Appendix C in Tables C11, C12, C13, and C14.)

Serum Blood Chemistry:

Compared to the control group for either study none of the cultures caused significant (p>0.05) changes in the following blood serum levels: glucose, blood urea nitrogen (BUN), creatinine, BUN:creatinine ratio, sodium, potassium, chloride, carbon dioxide, calcium, albumin, globulin, albumin:globulin ratio,

alanine aminotransferase (ALT), alkaline phosphatase (ALKPhos), total bili, cholesterol, triglycerides, high-density lipoprotein (HDL), and very low-density lipoprotein (VLDL). (Raw data for blood chemistry analytes are in Tables B14-B35 in Appendix B and Tables C15-C36 in Appendix C.)

In study 1, there was a significant treatment (P=0.0067) and week (P<0.0001) effect on total serum protein, but no treatment x week interaction (P=0.4121). Culture DS-33 caused the lowest amount of serum protein, but it was not different than the control group. However, culture L-23 resulted in the highest overall mean serum protein compared to the control (P<0.05). An increase for total protein was observed over time for all treatments and the control. There were differences in treatments (P=0.0101) at week 3. The groups that were fed the cultures WB-74 and L-23 exhibited higher (P<0.05) serum protein than did the group fed DS-33. The control and WB-75 groups were the same and not different from the cultures DS-33, L-23, or WB-74 (P<0.05). Even though there were effects on total serum protein, there were no significant differences in levels of albumin or globulin. In study 2, there was no treatment (P=0.9096) effect for total protein or treatment x week interaction (P=0.6131), but a week (P<0.0001) effect was observed. Numerically the groups fed the cultures DS-36, WB-72, and WB-76 had overall higher total serum protein than the control group (Table 5).

For study 1, there was an overall significant treatment (P=0.0181) and week (P<0.0001) effect for serum aspartate aminotransferase (AST). Treatment x week interaction (P=0.1715) was not significant. The group fed the culture DS-

33 exhibited significantly lower AST than did the control and other groups, except WB-74. The highest numerical AST level was observed in L-23, but it was not different from the control. A significant treatment (P=0.0008) effect was revealed at week 1. The results were the same for week 1 as seen in the overall treatment effect. Therefore, DS-33 group had the lowest level with no differences between it and the group fed WB-74. The treatment with the highest level was the group fed L-23, but there was no difference between it and the control. There were no differences in AST levels among treatments (P=0.9356) or treatment x week interaction (P=0.7318) for study 2. A significant week (P=0.0411) effect was observed. The group fed the culture DS-36 had a much higher level of AST on day 0 than the control group and other treatment groups, but it dropped drastically by the end of week 1 (Table 6).

Serum Immunoglobulins:

No significant treatment effects were observed on immunoglobulin A (IgA) for either study. There was a trend toward higher IgA levels in the groups fed culture L-23, WB-74, or WB-75 than for the control group (P=0.1116) in study 1. A numerical difference was observed at week 1. The groups fed WB-74 or WB-75 showed an increased change in IgA while the control group decreased. All of the treatment and control groups exhibited increases in IgA by week 3 compared to week 2. In study 2 all the treatment and control groups had increased IgA at week 1 with pigs fed culture WB-76 causing the highest increase (Figure 1).

No treatment differences for study 1 or 2 were observed for levels of serum immunoglobulin G (IgG). In study 1 pigs fed L-23 had an overall higher IgG level than the control group. The increases for the group fed culture L-23 were consistently higher than any of the groups. The control group exhibited little change during the entire feeding study. In study 2 none of the cultures caused greater increases in IgG than the control group. The serum levels DS-37, DS-36, and WB-71 decreased some during week 1; however, that for WB-76 did not. After week 1, all of the treatment and control groups increased until the end of the feeding trial. At the end of the study culture DS-37 exhibited a slightly higher change than the control group (Figure 2).

No effect was observed for serum immunoglobulin M (IgM) for either study. At week 1, in study 1 culture, WB-74 was the only treatment that exhibited an increased change. Just as observed for the IgA levels, the IgM levels for the control group remained fairly constant. Cultures WB-74, WB-75, and L-23 caused increased changes at week 3. In study 2 the cultures DS-37, WB-72, and WB-76 had an increased change at week 1 with culture WB-72 having the largest increase. This trend continued to week 2 with the pigs fed culture WB-72 still exhibiting the largest increase. Throughout the entire study the control demonstrated little change in IgM levels (Figure 3).

LIPOPOLYSACCHARIDE (LPS) CHALLENGE:

Rectal Temperatures:

An overall hourly (P<0.0001) effect was observed for rectal temperatures for both studies, but there was no treatment effect or treatment x hour interaction. The temperatures increased from hour 0 to hour 3.0. The temperatures started to fall after hour 3.0 and continued to decrease until hour 12 (Figure 4).

Serum Blood Chemistry:

There were very few significant differences for the blood analytes observed during the LPS challenge. There were no overall differences for treatment or treatment x hour interaction for the following: glucose, BUN, creatinine, BUN:creatinine ratio, sodium, potassium, chloride, carbon dioxide, anion gap, calcium, total protein, albumin, albumin:globulin ratio, AST, ALT, cholesterol, and HDL. (All of the LPS challenge blood analytes are listed in Tables B42-B63 in Appendix B and Tables C43-C64 in Appendix C.)

While there were no treatment differences in study 1 for serum globulin levels during the LPS challenge, numerically, culture WB-74 caused a higher serum globulin average than observed for the control group. For study 2 an overall treatment (P=0.0462) and hour (P<0.0001) effect was noticed for serum globulin levels, but there was no treatment x hour interaction (P=0.9994). The control group exhibited a higher level than the pigs fed DS-36 (Table 7).

There were no overall significant treatment differences observed for studies 1 and 2 for albumin:globulin ratio. In study 1, the overall ratios for pigs fed cultures of lactobacilli were numerically higher than the control group. This also was true for each hourly measurement. At 3.0 hour post challenge, pigs fed cultures DS-36 and WB-76 had higher ratios than the control pigs in study 2 (P<0.05) (Table 8). These cultures continued to exhibit higher ratios (although not significant) than the control group throughout the challenge (Table 8).

Levels of bilirubin (bili) in serum LPS challenge were not significantly influenced by treatments in either study, but there was an hour (P<0.0001) effect.

In study 1, the culture DS-33 caused a numerically lower bili average than the control group at each time beyond hour 3.0. Levels of bili in study 2 tended to be lower in pigs fed culture DS-37 than the control group. Culture DS-37 caused a significantly (P<0.05) lower total bili level than the control group at hour 12 (Table 9).

Serum triglycerides in study 1 were not significantly influenced by any treatment. Values for the control group tended to be higher than all of the groups fed cultures of lactobacilli. Study 2 revealed a trend toward treatment (P=0.1105) and an hourly (P<0.0001) effect with no treatment x hour interaction (P=0.9349). The control group had an overall higher triglyceride level than all of the direct-fed microbial cultures. At 12 hour post challenge, the control group was significantly (P=0.0093) higher than pigs fed cultures DS-36, DS-37, and WB-72 with the DS-37 group exhibiting the lowest level (Table 10).

A treatment effect for study 1 was not observed for serum VLDL. There was no treatment x hour interaction (P=0.9490), but a treatment (P=0.1105) trend and hourly (P<0.0001) effect for study 2. The control group had a higher VLDL average than all of the cultures of lactobacilli with this trend continuing for every hourly reading. A significant treatment (P=0.0128) effect was observed at hour 12 where the control group was higher than pigs fed DS-37 (Table 11).

Serum Immunoglobulins:

Serum IgA for study 1 or 2 was not significantly affected by treatment. An hourly (P=0.0002) effect was observed for study 1. The pigs fed L-23, at hours 1.5 and 3.0, were the only ones that exhibited an increased change in IgA. In

study 2 there was an hourly (P<0.0001) effect on levels of IgA and a treatment x hour interaction (P=0.0128). At hours 1.5, 3.0, and 6.0 the culture DS-36 had a larger increased change than the control group (Figure 5).

No treatment effect for levels of serum IgG in either study was observed, but both exhibited an hourly (P<0.0001) effect (Figure 6). All pigs showed a decrease in IgG levels at hour 1.5. Pigs fed L-23 tended to have a higher level of IgG than the control pigs at hour 6.0 in study 1. Culture WB-76 from study 2 was the only culture that caused an apparent increase at hour 1.5 while all the others exhibited a decrease in IgG (Figure 6).

No significant treatment differences in either study were observed for serum IgM. Both studies did have an hour (P<0.0001) effect. Culture L-23 numerically had a higher IgM average than the control group. In study 1, the levels of IgM dropped at hour 1.5 for all treatment and control groups. However, at hour 3.0 pigs fed L-23 caused a larger increased change than the control pigs. In study 2, pigs fed culture WB-76 was the only group that exhibited an increased change at hour 1.5 (Figure 7).

Isolate	Rep 1 ^b	Rep 2 ^b	Mean
L. reuteri DS-29	0.575	0.512	0.544
L. reuteri DS-31	0.550	0.516	0.533
L. reuteri DS-33	0.598	0.516	0.557
L. reuteri DS-35	0.536	0.500	0.518
L. reuteri DS-36	0.653	0.542	0.598
L. reuteri DS-37	0.463	0.397	0.430
L. reuteri DS-38	0.542	0.478	0.510
L. reuteri DS-39	0.576	0.481	0.529
L. reuteri WB-72	0.702	0.436	0.569
L. reuteri WB-74	0.577	0.397	0.487
L. reuteri WB-75	0.650	0.388	0.519
L. reuteri WB-76	0.685	0.427	0.556
L. reuteri WB-78	0.643	0.366	0.505
L. acidophilus L-23	0.354	0.263	0.309

Table 3. Comparisons of bile tolerance of different cultures of lactobacilli^a

^aIn deMan, Rogasa, Sharpe (MRS) broth + 0.3% oxgall

 $^{\rm b} Values$ are increases in $A_{\rm 620nm}$ after hour 4 at 37 $^{\rm C}$

0 1 2											
Study ^a	Treatment ^a	Experiement ^a 1	ADG ^b (kg)	ADFI ^c (kg)	F:G ^d						
	Control		0.53	0.93	1.68						
	Control	2	0.52	0.88	1.69						
		Mean	0.53	0.91	1.69						
		1	0.68	1.09	1.52						
	DS-33	2	0.53	0.93	1.77						
		Mean	0.60	1.01	1.65						
		1	0.57	1.02	1.75						
1	WB-74	2	0.51	0.93	1.84						
		Mean	0.54	0.98	1.80						
		1	0.61	1.01	1.59						
	WB-75	2	0.46	0.88	1.90						
		Mean	0.54	0.94	1.74						
		1	0.60	0.98	1.57						
	L-23	2	0.53	0.93	1.78						
		Mean	0.56	0.96	1.68						
	-										
		1	0.36	0.57	1.59 ^y						
	Control	2	0.50	0.88	1.69						
		Mean	0.43	0.71	1.64						
		1	0.40	0.63	1.57 ^y						
	DS-36	2	0.55	0.93	1.71						
		Mean	0.47	0.78	1.64						
		1	0.29	0.52	1.77 ^z						
2	DS-37	2	0.53	0.88	1.66						
		Mean	0.41	0.70	1.72						
		1	0.35	0.55	1.56 ^y						
	WB-72	2	0.49	0.86	1.76						
		Mean	0.42	0.71	1.66						
		1	0.38	0.59	1.56 ^y						
	WB-76	2	0.50	0.88	1.75						
		Mean	0.44	0.73	1.65						

Table 4. Growth and performance of nursery pigs fed different cultures of lactobacilli

^aDescription of treatments for study 1: control, *L. reuteri* DS-33, *L. reuteri* WB-74, *L. reuteri* WB-75, and *L. acidophilus* L-23. Experiment 1 - barrows and experiment 2 - gilts, n=15 pigs/rep. Description of treatmentsfor study 2: control, *L. reuteri* DS-36, *L. reuteri* DS-37, *L. reuteri* WB-72, and *L. reuteri* WB-76. Experiment 1 - gilts and experiment 2 - barrows, n=15 pigs/experiment

^bADG - average daily gain

^cADFI - average daily feed intake

^dF:G - feed to gain ratio

^{y,z}Values for F:G in study 2 followed by different subscript letters differ significantly (P<0.05).

Study ^a	Treatment ^a	-	Week 1	Week 2	Week 3	Mean
Sludy	Healineill	Day 0	VVEEK I	VVEEK Z		
	Control	4.8	4.4	4.6	5.2 ^{y,z}	4.8 ^{x,y}
	DS-33	4.4	4.5	4.8	4.9 ^y	4.6 [×]
1	WB-74	4.6	4.5	4.9	5.6 ^z	4.9 ^{y,z}
	WB-75	4.7	4.5	4.7	5.2 ^{y,z}	4.8 ^{x,y}
	L-23	4.7	4.9	5.0	5.6 ^z	5.1 ^z
	Control	4.6	4.6	5.0	5.1	4.8
	DS-36	4.9	4.5	5.0	5.1	4.8
2	DS-37	4.5	4.6	5.1	5.0	4.8
	WB-72	4.8	4.7	5.0	5.2	4.9
	WB-76	4.8	4.4	5.3	5.2	4.9

Table 5. Influence of different cultures of lactobacilli on weekly serum total protein (g/dL)

^aDescription of treatments see Table 4

^{x,y,z}Values in different columns in study 1 followed by different subscript letters differ significantly (P<0.05).

			(U/L)			
Study ^b	Treatment ^b	Day 0	Week 1	Week 2	Week 3	Mean
	Control	68	71 ^{y,z}	49	51	60 ^{y,z}
	DS-33	54	50 [×]	52	45	50 [×]
1	WB-74	62	58 ^{x,y}	47	55	55 ^{x,y}
	WB-75	64	80 ^z	52	52	62 ^{y,z}
	L-23	73	77 ^z	52	62	66 ^z
	Control	81	73	70	52	69
	DS-36	138	60	56	49	76
2	DS-37	68	68	74	52	65
	WB-72	90	63	64	48	66
	WB-76	69	67	66	62	66

Table 6. Influence of different cultures of lactobacilli on weekly serum AST^a

^aAST - aspartate aminotransferase

^bDescription of treatments see Table 4

x,y,z Values in different columns in study 1 followed by different subscript letters differ significantly (P<0.05).

						5	3	(3)
Study ^b	Treatment ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24	Mean
	Control	2.0	1.8	1.7	1.9	2.0	2.0	1.9
	DS-33	1.7	1.6	1.5	1.7	1.8	1.9	1.7
1	WB-74	2.1	2.0	1.8	2.0	2.0	2.1	2.0
	WB-75	1.8	1.6	1.7	1.8	1.8	1.9	1.8
	L-23	2.1	1.9	1.8	1.9	2.0	1.9	1.9
	Control	2.1	1.9	2.3	2.1	2.0	2.1	2.1 ^z
	DS-36	1.9	1.7	2.0	1.7	1.7	1.8	1.8 ^y
2	DS-37	2.1	2.0	2.3	1.9	1.9	2.0	2.0 ^z
	WB-72	2.0	1.9	2.2	1.7	1.8	1.9	1.9 ^{y,z}
	WB-76	2.0	1.9	2.1	1.8	1.9	1.9	1.9 ^{y,z}

Table 7. Influence of different cultures of lactobacilli on LPS^a challenge serum globulin (g/dL)

^bDescription of treatments see Table 4

^{y,z}Values for globulin mean in study 2 followed by different subscript letters differ significantly (P<0.05).

Study ^b	Treatment ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24	Mean
	Control	1.6	1.4	1.4	1.5	1.4	1.4	1.5
	DS-33	1.9	1.8	1.6	1.8	1.7	1.6	1.7
1	WB-74	1.8	1.6	1.4	1.6	1.5	1.4	1.6
	WB-75	1.9	1.8	1.6	1.7	1.7	1.6	1.7
	L-23	1.8	1.6	1.6	1.8	1.7	1.5	1.7
	Control	1.4	1.4	1.6 ^y	1.5	1.4	1.3	1.4
	DS-36	1.8	1.7	2.0 ^z	1.8	1.7	1.7	1.8
2	DS-37	1.4	1.4	1.6 ^y	1.5	1.4	1.3	1.4
	WB-72	1.6	1.6	1.8 ^{y,z}	1.7	1.6	1.5	1.6
	WB-76	1.6	1.6	1.9 ^z	1.7	1.6	1.5	1.6

Table 8. Influence of different cultures of lactobacilli on LPS^a challenge serum albumin:globulin ratio

^bDescription of treatments see Table 4

^{y,z}Values for hour 3.0 albumin:globulin ratio in study 2 followed by different subscript letters differ significantly (P<0.05).

Study ^b	Treatment ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24	Mean
	Control	0.15	0.18	0.25	0.33	0.78	0.10	0.30
	DS-33	0.18	0.18	0.13	0.29	0.57	0.13	0.25
1	WB-74	0.17	0.18	0.18	0.38	0.80	0.25	0.33
	WB-75	0.18	0.17	0.20	0.42	0.63	0.12	0.29
	L-23	0.23	0.20	0.22	0.30	0.70	0.10	0.29
	Control	0.12	0.10	0.22	0.25	0.62 ^z	0.12	0.24
	DS-36	0.22	0.13	0.28	0.28	0.45 ^{y,z}	0.10	0.24
2	DS-37	0.13	0.15	0.20	0.13	0.28 ^y	0.12	0.17
	WB-72	0.10	0.18	0.25	0.12	0.53 ^z	0.12	0.22
	WB-76	0.20	0.17	0.20	0.20	0.53 ^z	0.18	0.25

Table 9. Influence of different cultures of lactobacilli on LPS^a challenge serum bili, total (mg/dL)

^bDescription of treatments see Table 4

^{y,z}Values for hour 12 total bilirubin in study 2 followed by different subscript letters differ significantly (P<0.05).

Study ^b	Treatment ^b	Hour 0		Hour 3.0	Hour 6.0	Hour 12	Hour 24	Mean
	Control	31	25	23	21	59	33	32
	DS-33	29	31	21	22	56	41	33
1	WB-74	34	36	30	30	63	51	41
	WB-75	37	30	24	28	82	38	40
	L-23	46	29	25	25	70	40	39
	Control	44	37	45	36	70 ^z	45	46
	DS-36	35	32	38	28	52 ^{x,y}	36	37
2	DS-37	38	34	37	22	38 [×]	34	34
	WB-72	35	32	38	24	54 ^{x,y}	33	36
	WB-76	41	31	39	24	58 ^{y,z}	34	38

Table 10. Influence of different cultures of lactobacilli on LPS^a challenge serum triglycerides (mg/dL)

^bDescription of treatment see Table 4

^{x,y,z}Values for hour 12 triglycerides in study 2 followed by different subscript letters differ significantly (P<0.05).

						5		(3 /
Study ^c	Treatment ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24	Mean
	Control	6.0	5.0	4.3	4.2	11.8	6.5	6.3
	DS-33	5.8	6.3	4.0	4.3	11.2	8.2	6.6
1	WB-74	6.8	7.0	6.0	6.0	12.7	10.0	8.1
	WB-75	7.5	5.8	4.8	5.8	16.3	7.8	9.0
	L-23	9.2	5.8	4.5	4.8	11.5	9.0	8.1
	Control	8.7	7.7	9.0	7.2	13.8 ^z	8.8	9.2
	DS-36	8.2	6.5	7.7	5.7	10.5 ^{y,z}	7.5	7.5
2	DS-37	8.5	6.8	7.5	4.5	7.7 ^y	7.0	9.8
	WB-72	6.8	6.3	7.5	4.7	10.7 ^{y,z}	6.7	7.1
	WB-76	8.3	6.2	7.7	5.0	11.5 ^z	6.8	7.6

Table 11. Influence of different cultures of lactobacilli on LPS^a challenge serum VLDL^b (mg/dL)

^bVLDL - very low-density lipoprotein

^cDescription of treatment see Table 4

 $x_{y,z}$ Values for hour 12 VLDL in study 2 followed by different subscript letters differ significantly (P<0.05).

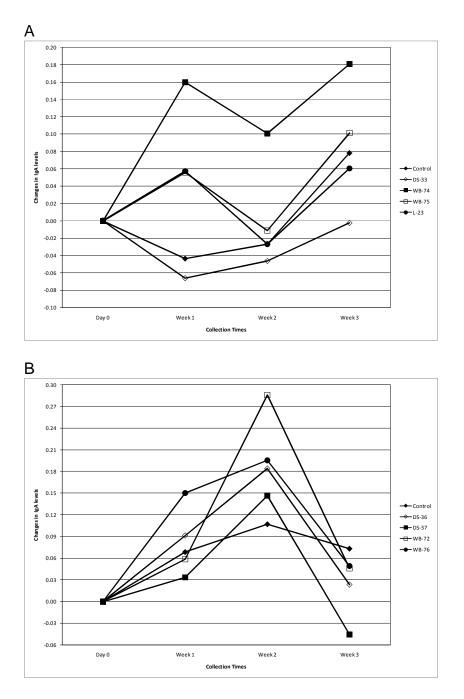


Figure 1. Changes in weekly serum IgA levels from day 0 in response to different cultures of lactobacilli. Six pigs per treatment and two experiments per study. A) Treatment descriptions: \diamond control, \Diamond *L. reuteri* DS-33, \blacksquare *L. reuteri* WB-74, \Box *L. reuteri* WB-75, \bullet *L. acidophilus* L-23. B) Treatment descriptions: \diamond control, \Diamond *L. reuteri* DS-36, \blacksquare *L. reuteri* DS-37, \Box *L. reuteri* WB-72, \bullet *L. reuteri* WB-76.

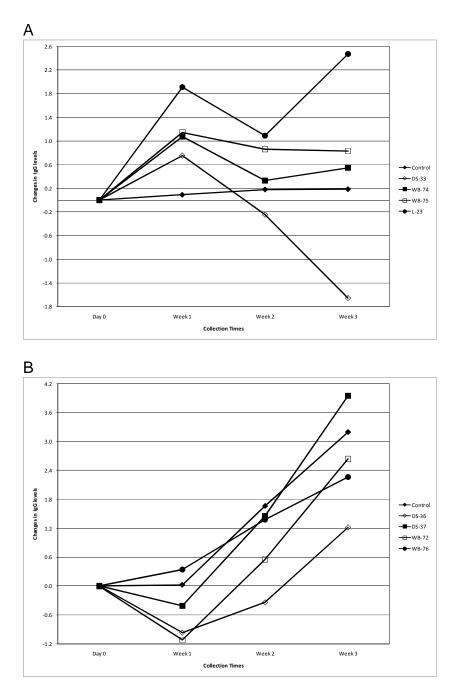


Figure 2. Changes in weekly serum IgG levels from day 0 in response to different cultures of lactobacilli. Six pigs per treatment and two experiments per study. A) Treatment descriptions: \diamond control, \diamond *L. reuteri* DS-33, \blacksquare *L. reuteri* WB-74, \Box *L. reuteri* WB-75, \bullet *L. acidophilus* L-23. B) Treatment descriptions: \diamond control, \diamond *L. reuteri* DS-36, \blacksquare *L. reuteri* DS-37, \Box *L. reuteri* WB-72, \bullet *L. reuteri* WB-76.

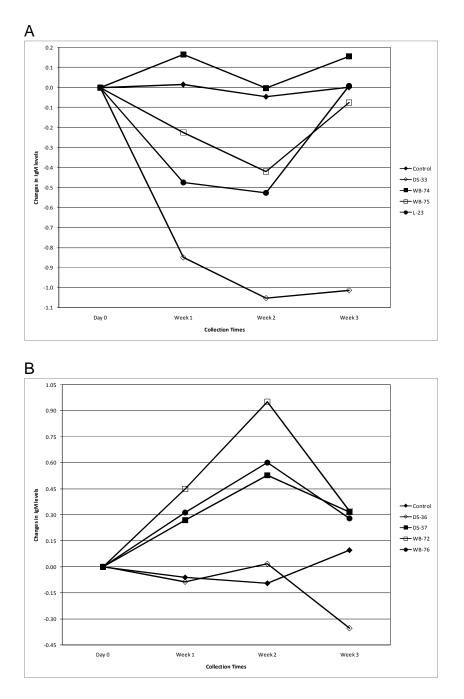


Figure 3. Changes in weekly serum IgM levels from day 0 in response to different cultures of lactobacilli. Six pigs per treatment and two experiments per study. A) Treatment descriptions: \diamond control, \diamond *L. reuteri* DS-33, \blacksquare *L. reuteri* WB-74, \Box *L. reuteri* WB-75, \bullet *L. acidophilus* L-23. B) Treatment descriptions: \diamond control, \diamond *L. reuteri* DS-36, \blacksquare *L. reuteri* DS-37, \Box *L. reuteri* WB-72, \bullet *L. reuteri* WB-76.

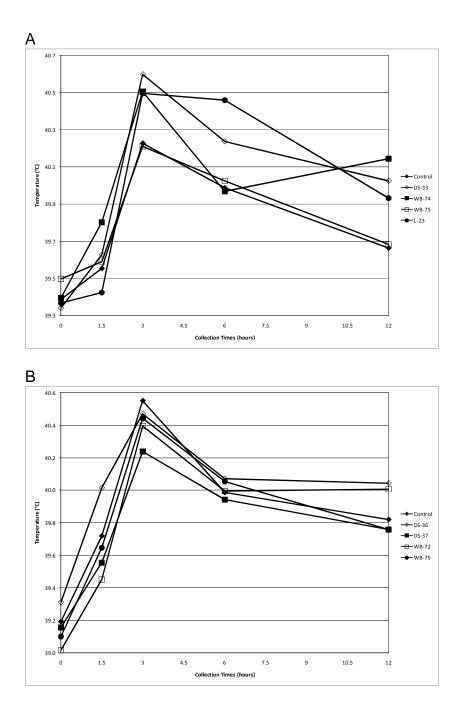


Figure 4. Rectal temperatures of different cultures of lactobacilli in response to *Escherichia coli* O111:B11 lipopolysaccharide. Six pigs per treatment and two experiments per study. A) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-33, *L. reuteri* WB-74, □ *L. reuteri* WB-75, ● *L. acidophilus* L-23. B) Treatment descriptions: ◆ control, ◊ *L. reuteri* WB-72, *L. reuteri* WB-76.

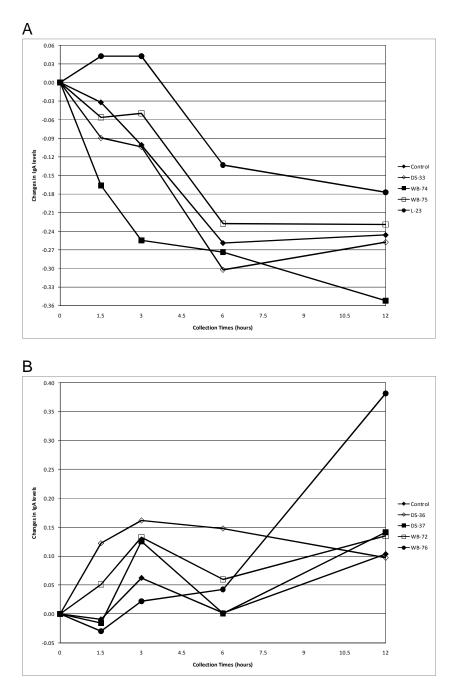


Figure 5. Changes in serum IgA levels from hour 0 of different cultures of lactobacilli in response to *Escherichia coli* O111:B11 lipopolysaccharide. Six pigs per treatment and two experiments per study. A) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-33, ■ *L. reuteri* WB-74, □ *L. reuteri* WB-75, ● *L. acidophilus* L-23. B) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-36, ■ *L. reuteri* DS-37, □ *L. reuteri* WB-72, ● *L. reuteri* WB-76.

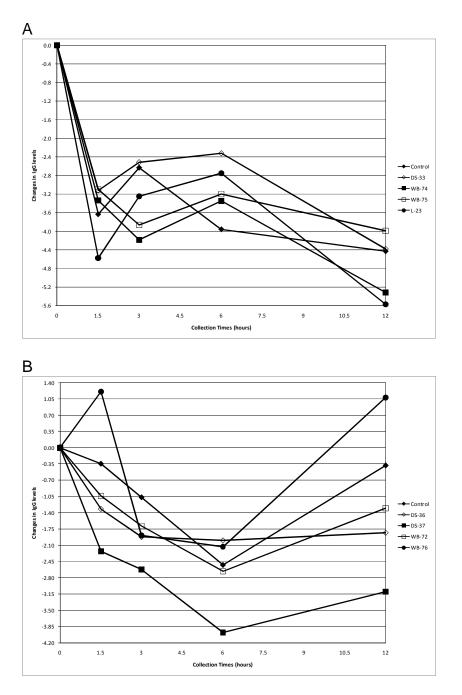


Figure 6. Changes in serum IgG levels from hour 0 of different cultures of lactobacilli in response to *Escherichia coli* O111:B11 lipopolysaccharide. Six pigs per treatment and two experiments per study. A) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-33, ■ *L. reuteri* WB-74, □ *L. reuteri* WB-75, ● *L. acidophilus* L-23. B) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-36, ■ *L. reuteri* DS-37, □ *L. reuteri* WB-72, ● *L. reuteri* WB-76.



Figure 7. Changes in serum IgM levels from hour 0 of different cultures of lactobacilli in response to *Escherichia coli* O111:B11 lipopolysaccharide. Six pigs per treatment and two experiments per study. A) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-33, ■ *L. reuteri* WB-74, □ *L. reuteri* WB-75, ● *L. acidophilus* L-23. B) Treatment descriptions: ◆ control, ◊ *L. reuteri* DS-36, ■ *L. reuteri* DS-37, □ *L. reuteri* WB-72, ● *L. reuteri* WB-76.

DISCUSSION

DIRECT-FED MICROBIALS FOR SWINE:

Direct-fed microbials (DFM) offer several potential benefits for swine including: improved growth and performance, pathogen reduction, increased immunity, and less post-weaning stress. Some of the most commonly used DFM for swine are species of *Lactobacillus*, *Bifidobacteria*, *Enterococcus*, and *Saccharomyces* (Mountzouris 2006).

Lactobacillus acidophilus L-23 (L-23) was used for study 1 because it was shown to improve growth and performance in nursery pigs in previous studies. The culture was isolated from a pig from Oklahoma State University's swine herd. It produces amylase and is bile tolerant. The culture had improved average daily gain (ADG) and feed:gain (F:G) of weaning pigs on a high starch diet (Lee et al. 2001).

The cultures of *L. reuteri* used in this study were isolated from feces of open range pigs and from the small intestines of a wild boar. *Lactobacillus reuteri* is one of the first species of lactobacilli to colonize the intestines of pigs (Naito et al. 1995). The cultures from the domestic swine and wild boar were more bile tolerant than L-23. *Lactobacillus reuteri* DS-36 (DS-36) was the most bile tolerant followed by *L. reuteri* WB-72 (WB-72), DS-33 (DS-33), and WB-76 (WB-76). Because they appeared more bile tolerant than the other cultures, they were chosen for the studies. A previous study revealed, of cultures tested, the more bile tolerant lactobacilli, fed to newborn calves resulted higher levels of intestinal lactobacilli (Gilliland et al. 1984). Also, a mid-range bile tolerant culture

was chosen, *L. reuteri* WB-75 (WB-75) along with two other cultures that were similar in bile tolerance to L-23, *L. reuteri* WB-74 (WB-74) and DS-37 (DS-37).

FEEDING STUDIES:

Growth & Performance:

While L-23 was shown in a previous study to significantly improve growth and performance in swine (Lee et al. 2001), it did not cause similar results in the present study. This may have resulted from the variations in dietary components. More likely the difference was due to how the culture had been grown. In the study reported by Lee et al. (2001) the culture was grown in broth containing starch as the sole carbohydrate to insure active amylase in the cells. For the present study the growth medium contained glucose as the only carbohydrate. Thus, a sufficient level of amylase may have been lacking.

Pigs fed cultures L-23 and DS-33 did better than the control especially in experiment 1 of study 1(P=0.067). These cultures caused a more efficient F:G than any of the cultures of lactobacilli and the control for study 1. Even though differences were marginal, cultures DS-33 or L-23 might be considered for future larger scale feeding trials. In study 2, pigs fed the culture DS-36 exhibited a trend toward higher ADG and ADFI than did those in the control group. While the differences were not significant nor was there an indication of improved F:G, DS-36 might merit further consideration based on this information. When data on performance is considered for both studies there is no clean cut information to support the use of any of the cultures to improve performance of the pigs.

should further evaluate DS-33, L-23, or DS-36. This should involve more pigs and imposition of less handling of the pigs for feeding and/or drawing blood. In the future studies the pigs should be handled in a setting similar to that used in the commercial industry.

Microbial Counts:

No conclusive results can be drawn from either study in reducing coliforms or *Campylobacter* in swine. The most prevalent species of *Campylobacter* in swine is *C. coli* (Jacobs-Reitsma 2000). These results coincide with both studies in the present study in that the only species of *Campylobacter* identified was *C. coli. Salmonella* was detected in only two pigs and they were in study 2. It is thought that prevalence of *Salmonella* is herd related (Done 2001). *Escherichia coli* O157:H7 was tested in study 2 experiment 2 with no confirmed positives reported. The bacterium, *E. coli*, is one of the major cause of illness in nursery pigs with *E. coli* K88 being the most virulent (Done 2001). There have been no reported cases of *E. coli* O157:H7 in commercial pigs in the United States. It is believed that swine do not harbor this pathogen because of the management practices and little contact with the pathogen (Cornick and Helgerson 2004), but they are capable of harboring it (Cornick and VuKhac 2008).

Serum Blood Chemistry:

The normal range for total serum protein in pigs is 4.40-8.28 g/dL (Lindemann et al. 1993, Mersmann and Pond 2001, Odink et al. 1990, Tumbleson and Kalish 1972). Plasma is approximately 5-7% protein. Total protein in blood serum includes albumin and globulin (Kaneko 1989b). In study 1

pigs fed L-23 and WB-74 exhibited a significantly higher total protein level than the control group. For study 2 there was no overall treatment effect. Several factors could have increased total protein, such as albumin or globulin levels (Mersmann and Pond 2001). Thus *L. acidophilus* L-23 or *L. reuteri* WB-74 appears to be the best choice for increasing total serum protein.

Catalyzing L-aspartate and 2-oxoglutarate to oxaloacetate and glutamate is one of the functions of AST. An elevated level of this enzyme in the serum is a good indicator of soft tissue damage, but the location of the damage not known because the enzyme is not organ-specific (Kramer 1989). Elevation of the blood enzyme has been associated with white muscle disease in pigs (Cardinet 1989). For AST, there was an overall treatment effect where the level for the group fed DS-33 was significantly lower than that of the control. There was also a significant week 1 effect where DS-33 was lower than the control. To effectively reduce levels of AST in pigs, *L. reuteri* DS-33 is a clear choice among the cultures tested.

Serum Immunoglobulins:

The normal range for levels of serum IgA in pigs are 0.369 to 0.609 mg/mL (Swamy et al. 2008, White et al. 2002). In study 1 weekly IgA values increased more, although not significantly, in the group fed culture WB-74 than in the control animals. During the first week the values for cultures WB-75 and L-23 also increased more than the control. In study 2 none of the culture groups caused consequently greater increases compared to the control group. Based on these observations, WB-74 appears to be the culture of choice.

Reported ranges for serum IgG are 4.980 to 7.904 (Swamy et al. 2008, White et al. 2002). Pigs in study 1 were outside of this range. Culture L-23 exhibited the largest increase in change for study 1 of all groups. None of the cultures in study 2 had higher increases when compared to the control group. It is recommended that culture L-23 be used to increase IgG in nursery pigs.

The IgM levels for both studies were within the reported normal serum values (Swamy et al. 2008, White et al. 2002). The only culture in study 1 that had a higher increase than the control group was culture WB-74. The same trend was noticed in study 2 with culture WB-72 exhibiting higher changes than the control group. This culture had a large increase of serum IgM. Thus, to increase serum IgM levels in the nursery pig culture *L. reuteri* WB-72 could be administered.

LIPOPOLYSACCHARIDE (LPS) CHALLENGE:

The *Escherichia coli* O111:B4 lipopolysaccharide (LPS) was used to study the immune response of the pigs ingesting lactobacilli. This LPS has been shown to cause an immune response in nursery pigs (Mandali et al. 2000, Mandali et al. 2002, Smith 2006). Lipopolysaccharide, a cell wall component, affects the animal immunologically as live bacteria would (Mandali et al. 2002). *Rectal Temperatures:*

The temperatures of the pigs for both studies peaked at hour 3.0 with no significant differences observed. This is an indication that an immune response occurred (Van Gucht et al. 2004). Similar results were reported by Smith (2006). In study 2, pigs fed DS-37, although not significant, had a lower temperature than

the control group. This could be an indication of reduced response by the pigs to the LPS.

Serum Blood Chemistry:

Blood is involved in many functions of the body. Blood has the capability to regulate body temperature by distributing heat. It helps remove metabolic wastes by transporting them to the liver, kidneys, lungs, or intestines. A defense system of white blood cells and antibodies is another function. It is involved in respiration and nutrient transportation. Blood regulates metabolism through hormone transportation. Acid-base balance of the body is also maintained in the blood (Rand and Murray 2000).

Total protein consists mainly of globulin and albumin. Serum total protein levels may be decreased as result of catabolism, which is a result of a fever, inflammation, or chronic disease. Total protein may also be altered by serum IgG since it is composed of 15-25% of IgG. Globulin and albumin levels are similar in the pig, but this is not true for all mammalian species. Albumin levels run parallel with total protein levels (Mersmann and Pond 2001). Globulin is found in three fractions, α , β , and γ , with various bodily responsibilities (Kaneko 1989b). With that no differences were found for globulin levels in study 1. Culture DS-36 in study 2 had a significantly lower globulin level than the control and DS-37 groups. A possible explanation for the lower globulin level may be that culture DS-33 exhibited the lowest IgG level. Serum IgG is one of the most abundant globulins found in the γ fraction (Swenson 1984).

Albumin:Globulin ratio will increase in dehydration because of an increase in albumin levels or as a result of a decrease in globulins. Albumin may also increase due to it binding to serum constituents to be filtered by the kidneys. However, a decrease in albumin:globulin ratio could be a sign of liver problems (Kaneko 1989b). In study 1 no differences were observed. In study 2 the ratios were higher than the control group at hour 3.0 for cultures DS-36 and WB-76. These cultures numerically had the highest albumin levels for that hour as well. Cultures *L. reuteri* DS-36 or WB-76 may be helpful in reducing blood constituents during an immune response or cause dehydration.

Total bilirubin (bili) is a measurement of the end product of red blood cell turnover. It is produced by specialized macrophages in the liver. It is conjugated in the liver and secreted into the bile. It is converted several different times and is finally secreted out the feces which give it its brown color. One of the end products is absorbed into the kidneys thus giving urine its yellow color (Yen 2001). In study 1, control group bili levels were numerically higher than pigs fed cultures DS-33, WB-75, and L-23. In study 2 pigs fed DS-37 had a significantly lower level than the control. It is thought that the lipopolysaccharide caused an inflammatory response in the pigs. This response triggered the release of cytokines. The cytokine, tumor necrosis factor (TNF), promoted anemia in the body by shortening red blood cells' life span and decreasing production (Stockham 2000). Since total bili is related to erythrocyte turnover, it is possible that the control group may have a higher TNF than pigs fed DS-37. Thus, the control group red blood cells life spans were reduced, having a higher turnover,

and subsequent higher total bili. When liver injury was induced, a reduction in total bilirubin has been reported in rats rectally supplemented with *L. plantarum* (Adawi et al. 1997). The culture DS-37 has the possibility to reduce turnover of red blood cells in nursery pigs during an immune response.

Serum triglyceride levels are increased during fasting (Mersmann and Pond 2001). This held true for both studies. The triglyceride levels drastically increased from hour 0 to hour 12 following the challenge with LPS. The pigs were fed after the hour 12 measurement and by hour 24 triglyceride levels dropped. Study 1 did not have any noticeable differences in serum triglyceride levels. However, during study 2, the control had a significantly higher level than did the group fed DS-37. It has been demonstrated that as hours of feed deprivation are increased so are triglyceride levels (Webel et al. 1997). Keeping triglyceride levels low during a LPS challenge or feed deprivation in swine is possible by feeding the culture *L. reuteri* DS-37.

The proteins VLDL, HDL, and LDL are considered to be α-globulins. Stress from temperature can cause VLDL and LDL to increase in the serum (Kaneko 1989a). Very low-density lipoprotein (VLDL) is composed of 60% serum triglycerides (Mersmann and Pond 2001). Study 1 did not have any observed differences for VLDL. Study 2 pigs fed DS-37 had a significantly lower serum VLDL than the control pigs. The reason could be the higher percentage of triglycerides found in VLDL. Since the triglycerides increased, a trickle effect occurred where the VLDL also increased. Another explanation is that LPS was bound by VLDL, HDL, and low-density lipoprotein (LDL) and secreted out of the

system through the liver cells, hepatocytes (Tuin 2006). Therefore, culture DS-37 will decrease VLDL during an intestinal Gram-negative challenge.

Serum Immunoglobulins:

Immunoglobulins are a portion of γ -globulins and considered plasma proteins (Swenson 1984). These proteins are secreted by plasma cells, B cells, unlike other globulins, which are synthesized in the liver (Rand and Murray 2000). They are able to function as membrane-bound and soluble proteins (Modiano 2000). There are five classifications of immunoglobulins (Ig), IgA, IgD, IgE, IgG, and IgM. Immunoglobulin G (IgG) is the most abundant of the immunoglobulins. It is found in the blood and tissue (Swenson 1984). It can bind to inflammatory cells that have special surface receptors (Modiano 2000). Immunoglobulin G opsonizes bacteria which makes it easier for phagocytosis. It is also the main antibody for the secondary response that neutralizes viruses and bacterial toxins (Rand and Murray 2000). The glycoprotein IgA is found in external excretions, such as colostrum, saliva, and tears. It is involved in infections of microorganisms in the gastrointestinal tract and mouth (Swenson 1984). This immunoglobulin provides an important barrier at mucosal epithelial cells, which are involved in pathogenic bacteria (Porter 1973). The initial antibody produced, IgM, attacks foreign red blood cells (Modiano 2000, Swenson 1984).

Serum IgA levels for pigs fed culture L-23 was the only group in study 1 that exhibited an increase, but it was only slight. Study two culture DS-36 caused a trend toward higher increased changes than the control pigs at hour

1.5, 3.0, and 6.0. Therefore, a choice to increase IgA levels during a LPS response might be culture DS-36.

Serum IgG levels for pigs fed DS-33 in study 1 increased more than in the control group at hours 3.0 and 6.0. In study 2, at hours 1.5 and 12, culture DS-36 had higher increases than the control pigs. A choice to increase IgG levels during a Gram-negative challenge are the cultures *L. reuteri* DS-33 and DS-36.

At hour 3.0 in study 1, culture L-23 exhibited the largest increased change serum IgM. Culture WB-76 in study 2 had a higher increased change than the control for hours 1.5 and 12. Thus, cultures L-23 and WB-76 have the potential to increase serum IgM during an LPS challenge.

It should also be mentioned that in study 2 there was an age difference in pigs in the two experiments. Pigs in experiment 2 were 11 days younger than those in experiment1. Some of the variability observed for this study could be related for this age difference.

Since the LPS was injected into the gut, studying the effects of intestinal immunoglobulins is future work to be completed. It will be interesting to observe the differences of blood serum and intestinal immunoglobulins for the different cultures of lactobacilli. Fecal immunoglobulins will be completed for this trial before submitting a manuscript for publication. It has already been stated that IgA is secreted into the intestines. Therefore, it will be interesting to observe the fecal IgA levels for the studies.

As well as testing serum immunoglobulins, cytokines are another indicator of an immune response. Webel et al. (1997) reported after 2 hours of an

intraperitoneal injection of 5 μ L/kg of body weight of LPS *E. coli* K-235, plasma tumor necrosis factor- α (TNF- α) was elevated 10-fold. Interleukin-6 (IL-6) was elevated 200-fold by hour 4 of the challenge. These cytokines are made by stimulated macrophages (Van Heugten et al. 1994). The cytokines TNF- α and IL-6 will be tested on blood serum before manuscript submission.

Suggested future research would be to evaluate the influence of different cultures of lactobacilli on complete blood cell counts. The blood cells should respond to a bacterial infection. Erythrocytes and platelets will change during most bacterial infections. Mast cells contribute a role in unique inflammatory responses. Basophils and eosinophils have an essential role in tissue inflammation (Stockham 2000). Thus, it would be interesting to study these effects on pigs fed the cultures of lactobacilli during a similar LPS challenge.

REFERENCES

- 1. Adawi, D., F. B. Kasravi, G. Molin, and B. Jeppsson. 1997. Effect of *Lactobacillus* supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. *Hepatology*. 25:642-647.
- 2. Cardinet III, G. H. 1989. Skeletal muscle function, p. 462-495. *In.* J. J. Kaenko (ed.), Clinical biochemistry of domestic animals. Academic Press, Inc., San Diego, CA.
- 3. Chang, Y. H., J. K. Kim, H. J. Kim, W. Y. Kim, Y. B. Kim, and Y. H. Park. 2001. Selection of a potential probiotic *Lactobacillus* strain and subsequent *in vivo* studies. *Antonie van Leeuwenhoek* 80:193-199.
- Cornick, N. A., and A. F. Helgerson. 2003. Transmission and infectious dose of *Escherichia coli* O157:H7 in swine. *Appl. Environ. Microbiol.* 70:5331-5335.
- 5. Cornick, N. A., and H. VuKhac. 2008. Indirect Transmission of *Escherichia coli* O157:H7 occurs readily among swine but not among sheep. *Appl. Environ. Microbiol.* 74:2488-2491.
- 6. Cuesta Alonso, E. P., S. E. Gilliland, and C. R. Krehbiel. 2007. Incidence and toxin production ability of *Escherichia coli* O157:H7 isolated from cattle trucks. *J. Food Prot.* 70:2383-2385.
- 7. Done, S. 2001. Enteric and respiratory diseases in the young weaned piglet, p. 223-248. *In* M. A. Varley and J. Wiseman (eds), The weaner pig: nutrition and management. CABI Publishing, New York, NY.
- Downes, F. P., and K. Ito (eds) 2001. Compendium of methods for the microbiological examination of foods. 4th Ed. American Public Health Association, Washington, DS.
- 9. Estienne, M. J., T. G. Hartsock, and A. F. Harper. 2005. Effect of antibiotics and probiotics on sucking pig and weaned pigs performance. *Int. J. Appl. Res. Vet. Med.* 3:303-308.
- 10. Fuller, R. (ed). 1992. Probiotics: the scientific basis. Chaman & Hall, London.

- 11. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. *FEMS Microbiol. Rev.* 87:175-188.
- Gilliland, S. E., and C. N. Rich. 1990. Stability during frozen and subsequent refrigerated storage of *Lactobacillus acidophilus* grown at different pH. *J. Dairy Sci.* 73:1187-1192.
- Gilliland, S. E., T. E. Staley, and L. J. Bush. 1984. Importance of bile tolerance of *Lactobacillus acidophilus* used as a dietary adjunct. *J. Dairy Sci.* 67:3045-3051.
- Hunt, J. M., C. Abeyta, and T. Tran. 2001. Bacteriological analytical manual online. Available at http://www.cfsan.fda.gov/~ebam/bam-7.htm. Accessed 15 January 2009.
- 15. Jacobs-Reitsma, W. 2000. *Campylobacter* in the food supply, p. 467-481. *In* I. Nachamkin and M. J. Blaser (eds.), *Campylobacter*, 2nd Ed. ASM Press, Washington, D.C.
- Kaneko, J. J., 1989. Appendixes, p. 877-901. *In.* J. J. Kaneko (ed.), Clinical biochemistry of domestic animals. Academic Press, Inc., San Diego, CA.
- 17. Kaneko, J. J. 1989. Serum proteins and the dysproteinemias, p. 142-165. *In.* J. J. Kaneko (ed.), Clinical biochemistry of domestic animals. Academic Press, Inc., San Diego, CA.
- Kramer, J. W. 1989. Clinical enzymology, p. 338-363. *In.* J. J. Kaneko (ed.), Clinical biochemistry of domestic animals. Academic Press, Inc., San Diego, CA.
- 19. Lee, H. S., S. E. Gilliland, and S. Carter. 2001. Amylolytic cultures of *Lactobacillus acidophilus*: potential probiotics to improve dietary starch utilization. *J. Food Sci.* 66:338-344.
- 20. Lindemann, M. D., D. J. Blodgett, E. T. Kornegay, and G. G Schurig. 1993. Potential ameliorators of aflatoxicosis in weanling/growing swine. *J. Anim. Sci.* 71:171-178.
- 21. Mandali, S. L., S. D. Carter, A. B. Arquitt, E. A. Droke, B. J. Stoecker, L. J. Spicer, and M. J. Rincker. 2000. Effects of dietary zinc and endotoxin challenge on the acute phase response in weanling pigs. *J. Anim. Sci.* 79:71.

- 22. Mandali, S. L. B. J. Stoecker, C. V. Maxwell, B. Z. De Rodas, and A. B. Arquitt. 2002. Endotoxin decreases 51CrCl3 uptake in early weaned pigs. *Biol. Trace Element Res.* 88:145-152.
- 23. McCoy, S., and S. E. Gilliland. 2007. Isolation and characterization of *Lactobacillus* species having potential for use as probiotic cultures for dogs. *J. Food Sci.* 72:94-97.
- 24. Mersmann, H. J. and W. G. Pond. 2001. Hematology and blood serum constituents, p. 560-584. *In* W. G. Pond and H. J. Mersmann (eds), Biology of the domestic pig. Cornell University Press, Ithaca, NY.
- 25. Modiano, J. F. 2000. Immunoglobulins, p. 904-909. *In* B. F. Feldman, J. G. Zinkl, and N. C. Jain (eds), Schalm's veterinary hematology. Lippincott Williams & Williams, Baltimore, MD.
- 26. Mountzouris, K. C. 2006. Assessment of the efficacy of probiotics, prebiotics, and synbiotics in swine nutrition: a review. *Food Sci. Tech. Bull. Funct. Foods* 3:51-71.
- 27. Naito, S., H. Hayashidani, K. Kaneko, M. Ogawa, and Y. Benno. 1995. Development of intestinal lactobacilli in normal piglets. *J. Appl. Bacterio.* 79:230-236.
- 28. Odink, J., J. F. M. Smeets, I. J. R. Visser, H. Sandman, and J. M. A. Snijders. 1990. Hematological and clinicochemical profiles of healthy swine and swine with inflammatory processes. *J. Anim. Sci.* 68:163-170.
- 29. Porter, P. 1973. Intestinal defense in the young pig a review of the secretory antibody systems and their possible role in oral immunisation. *Vet. Rec.* 92:658-664.
- Rand, M. L., and R. K. Murray. 2000. Plasma proteins, immunoglobulins, and blood coagulation, p. 737-762. *In.* R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell (eds), Harper's biochemistry. Appleton & Lange, Stamford, CT.
- 31. Reilly, S. S., and S. E. Gilliland. 2003. Improved culturing techniques for *Campylobacter. J. Food Sci.* 68:2752-2757.
- 32. Saarella, M., G. Mogensen, R. Fondén, J. Mättö, and T. Mattila-Sandholm. 2000. Probiotic bacterial: safety, functional and technological properties. *J. Biotech.* 84:197-215.
- 33. Smith, L. M. 2006. Potential for enhancing the hypocholesterolemic effect of *Lactobacillus acidophilus* with soluble fiber and the influence of the

Lactobacillus on immune response [MSc thesis]. Stillwater, OK.: Oklahoma State University. 90 p. Available from: Oklahoma State University, Stillwater, OK.

- 34. Sneath, P. H. A., N. S. Mair, and M. E. Sharp (eds) 1986. Bergey's manual of determinative bacteriology. 9th Ed. Williams and Wilkins, Co., Baltimore, MD.
- 35. Stockham, S. L. 2000. Hematologic changes due to bacterial infections, p. 38-43. *In* B. F. Feldman, J. G. Zinkl, and N. C. Jain (eds), Schalm's veterinary hematology. Lippincott Williams & Williams, Baltimore, MD.
- 36. Stogdale, L. 1981. Correlation of changes in blood chemistry with pathological changes in the animal's body: II electrolytes, kidney function tests, serum enzymes, and liver function tests. JS. Afr. Vet. Assoc. 52:155-164.
- 37. Swamy, H. V. L. N., T. K. Smith, E. J. MacDonald, H. J. Boermans, and E. J. Squires. 2008. Effects of feeding a blend of grains naturally contaminated with *Fusarium* mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. *J. Anim. Sci.* 80:3257-3267.
- 38. Swenson, M. J. 1984. Physiological properties and cellular and chemical constituents of blood, p. 15-40. *In* M. J. Swenson (ed), Dukes' physiology of domestic animals. Cornell University Press Ltd., London.
- Tuin, A., A. Huizinga-Van der Vlag, A. M. A. van Loenen-Weemaes, D. K. F. Meijer, and K. Poelstra. 2006. On the role and fate of LPSdephosphorylating activity in the rat liver. *Am. J. Physiol. Gastrointest. Liver Physiol.* 290:G377-G385.
- 40. Tumbleson, M. E., and P. R. Kalish. 1972. Serum biological and hematological parameters in crossbred swine from birth through eight weeks of age. *Can. J. Comp. Med.* 36:202-209.
- 41. Van Gucht, S., G. Labarque, K. Van Reeth. 2004. The combination of PRRS virus and bacterial endotoxin as a model for multifactorial respiratory disease in pigs. *Vet. Immunol. Immunopathol.* 102:165-178.
- 42. Van Heugten, E., J. W. Spears, and M. T. Coffey. 1994. The effect of dietary protein on performance and immune response in weanling pigs subjected to an inflammatory challenge. *J. Anim. Sci.* 72:2661-2669.

- 43. Walker, D. K., and S. E. Gilliland. 1993. Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by *Lactobacillus acidophilus. J. Dairy Sci.* 76:956-961.
- 44. Walsh, M. C., G. E. Gardiner, O. M. Hart, P. G. Lawlor, M. Daly, B. Lynch, R. T. Richert, S. Radcliffe, L. Giblin, C. Hill, G. F. Fitzgerald, C. Stanton, and P. Ross. 2008. Predominance of a bacteriocin-producing *Lactobacillus salivarius* component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. *FEMS Microbiol. Ecol.* 64:317-327.
- 45. Webel, D. M., B. N. Finck, D. H. Baker, and R. W. Johnson. 1997. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. *J. Anim. Sci.* 75:1514-1520.
- 46. White, L. A., M. C. Newman, G. L. Cromwell, and M. D. Lindemann. 2002. Brewers dried yeast as a source of mannan oligosacchardies for weanling pigs. *J. Anim. Sci.* 80:2619-2628.
- 47. Yen, J. T. 2001. Digestive System, p.391-453. *In* W. G. Pond and H. J. Mersmann (eds), Biology of the domestic pig. Cornell University Press, Ithaca, NY.
- 48. Yu, I. T., C. C. Ju, H. L. Wu, and H. T. Yen. 2004. Effects of probiotics and selenium combination on immune and blood cholesterol concentration of pigs. J. Anim. Feed Sci. 13:6

APPENDIX A

SWINE CUTLURES

Carbohydrate	Bergey's ^b	DS-29 [°]	DS-31 [°]	DS-33 ^c	DS-35 [°]	DS-36 ^c	DS-37 ^c	DS-38 ^c	DS-39 ^c
D-Arabinose	+	-	-	-	-	-	-	-	-
Ribose	+	+	+	+	+	+	+	+	+
D-Xylose	-	-	-	+	+	+	+	+	+
Galactose	+	+	+	+	+	+	+	+	+
D-Glucose	+	+	+	+	+	+	+	+	+
D-Fructose	+	-	-	-	-	-	-	-	-
D-Mannose	-	-	-	-	-	-	-	-	-
Rhamnose	-	-	-	-	-	-	-	-	-
Mannitol	-	-	-	-	-	-	-	+	-
Sorbitol	o ^d	-	-	-	-	-	-	-	-
Amygdaline	o ^d	-	-	-	-	-	-	-	-
Esculine	-	-	-	-	-	-	-	-	-
Salicine	-	-	-	-	-	-	+	-	-
Cellobiose	-	-	-	-	-	-	+	-	-
Maltose	+	+	+	+	+	+	+	+	-
Lactose	+	+	+	+	+	+	+	+	-
Melibiose	+	+	+	+	+	+	+	+	+
Saccharose	+	-	-	+	+	+	-	+	+
Trehalose	-	-	-	-	-	-	+	-	-
Melezitose	-	-	-	-	-	-	-	-	-
D-Raffinose	+	+	+	+	+	+	+	+	+
Gluconate	+	-	-	-	-	-	-	-	-
Growth at 15℃	-	-	-	-	-	-	-	-	-
Growth at 45℃	+	+	+	+	+	+	+	+	+
NH_4^+ from Arg.	+	+	+	+	+	+	+	+	+

Table A1. Identification of isolates from domestic pigs of Lactobacillus reuteriby phenotypic characterization^a

^aBased on the API 50 CH system (bioMérieux, France)

^bThe carbohydrate reactions are from the 9th Edition of Bergery's Manual of Determinative Bacteriology

^cAll were Gram positive, catalase negative rods

^do = reaction not determined

		phonotypic		-		
Carbohydrate	Bergey's ^b	WB-72 ^c	WB-74 ^c	WB-75 ^c	WB-76 ^c	WB-78 ^c
D-Arabinose	+	-	-	-	-	-
Ribose	+	+	+	+	+	+
D-Xylose	-	+	+	+	+	+
Galactose	+	+	+	+	+	+
D-Glucose	+	+	+	+	+	+
D-Fructose	+	+	-	+	+	+
D-Mannose	-	-	-	-	-	-
Rhamnose	-	-	-	-	-	-
Mannitol	-	-	-	-	-	-
Sorbitol	o ^d	-	-	-	-	-
Amygdaline	o ^d	+	-	-	-	-
Esculine	-	+	+	+	+	+
Salicine	-	+	+	-	+	-
Cellobiose	-	-	-	-	-	-
Maltose	+	+	+	+	+	+
Lactose	+	+	+	+	+	+
Melibiose	+	+	+	+	+	+
Saccharose	+	+	+	+	+	+
Trehalose	-	-	-	-	-	-
Melezitose	-	-	-	-	-	-
D-Raffinose	+	+	+	+	+	+
Gluconate	+	+	+	-	-	+
Growth at 15℃	-	-	-	-	-	-
Growth at 45℃	+	+	+	+	+	+
NH_4^+ from Arg.	+	+	+	+	+	+

Table A2. Identification of isolates from wild boar intestines of *Lactobacillus reuteri* by phenotypic characterization

^aBased on the API 50 CH system (bioMérieux, France)

^bThe carbohydrate reactions are from the 9th Edition of Bergery's Manual of Determinative Bacteriology

^cAll were catalase negative, Gram positive rods

^do = reaction not determined

Carbohydrate	Bergey's ^b	<i>L. acidophilus</i> L-23 ^c
D-Arabinose		-
Ribose	_	+
D-Xylose	_	+
Galactose	+	+
D-Glucose	+	+
D-Fructose	+	+
D-Mannose	+	+
Rhamnose	т -	- -
Mannitol	_	+
Sorbitol	_	- -
Amygdaline	+	+
Esculine	+	+
Salicine	-	+
Cellobiose	+ +	+
	-	-
Maltose	+	+
Lactose	+	+
Melibiose	+/-	+
Saccharose	+	+
Trehalose	+/-	+
Melezitose	-	-
D-Raffinose	+/-	+
Amidon	+	+
Gluconate	-	-
Growth at 15℃	-	-
Growth at 45℃	+	+
NH_4^+ from Arg.	-	-

Table A3. Identification of *Lactobacillus acidophilus* L-23 by phenotypic characterization^a

^aBased on the API 50 CH system (bioMérieux, France)

^bThe carbohydrate reactions are from the 9th Edition of Bergery's Manual of Determinative Bacteriology

^c*L. acidophilus* L-23 is a catalase negative, Gram positive rod

<u> </u>	_						Linua Ch	11a
Isolate	Rep	Hour 1 ^b	Hour 2 ^b			Hour 5 ^b	Hour 6 ^b	Hour 7 ^b
L routori DC 20	1	0.040	0.105	0.299	0.575	0.785	1.166	1.341
L. reuteri DS-29	2	0.034	0.085	0.239	0.512	0.682	0.959	1.154
	Mean	0.037	0.095	0.269	0.544	0.734	1.063	1.248
	1	0.043	0.111	0.278	0.550	0.694	1.044	1.154
L. reuteri DS-31	2	0.039	0.076	0.227	0.516	0.718	1.024	1.234
2. 1001011 20 01	Mean	0.033	0.094	0.253	0.533	0.706	1.024	1.194
	Wear	0.041	0.004	0.200	0.000	0.700	1.004	1.134
	1	0.046	0.136	0.343	0.598	0.983	1.153	1.203
L. reuteri DS-33	2	0.032	0.092	0.257	0.516	0.818	0.824	1.210
	Mean	0.039	0.114	0.300	0.557	0.901	0.989	1.207
	1							
	1	0.040	0.103	0.274	0.536	0.693	1.006	1.231
L. reuteri DS-35	2	0.036	0.088	0.246	0.500	0.648	0.928	1.168
	Mean	0.038	0.096	0.260	0.518	0.671	0.967	1.200
	1	0.057	0.135	0.342	0.653	0.765	0.937	1.180
L. reuteri DS-36	2	0.037	0.100	0.342	0.542	0.689	0.937	1.180
2. 1001011 20-00	∠ Mean	0.036	0.100	0.287	0.542	0.669	0.857	1.180
	Mean	0.047	0.110	0.515	0.530	0.727	0.007	1.100
	1	0.039	0.980	0.231	0.463	0.722	0.854	0.971
L. reuteri DS-37	2	0.048	0.098	0.228	0.426	0.623	0.720	1.019
	Mean	0.044	0.539	0.230	0.445	0.673	0.787	0.995
	1	0.035	0.139	0.315	0.542	0.861	0.945	1.030
L. reuteri DS-38	2	0.039	0.106	0.276	0.478	0.660	0.662	1.048
	Mean	0.037	0.123	0.296	0.510	0.761	0.804	1.039
	1	0.052	0.146	0.326	0.576	0.672	0.937	0.824
L. reuteri DS-39	2	0.032	0.140	0.320	0.370	0.072	0.956	0.824
E. lealen DO 33	∠ Mean	0.047	0.100	0.200	0.529	0.713	0.930	0.921
	Wear	0.000	0.120	0.200	0.525	0.710	0.047	0.075
	1	0.036	0.114	0.304	0.702	0.971	1.416	1.446
L. reuteri WB-72	2	0.025	0.078	0.215	0.436	0.659	0.767	0.821
	Mean	0.031	0.096	0.260	0.569	0.815	1.092	1.134
	1	0.041	0.100	0.250	0.577	0.811	1.431	1.301
L. reuteri WB-74	2	0.022	0.061	0.190	0.397	0.601	0.703	0.771
	Mean	0.032	0.081	0.220	0.487	0.706	1.067	1.036
	1	0.036	0.100	0.267	0.650	0.846	1.384	1.414
L. reuteri WB-75	2	0.036	0.060	0.267	0.850	0.646	0.699	0.769
L. Teuteri WD-10	∠ Mean	0.022	0.080	0.180	0.388	0.601	1.042	1.092
	weat	0.029	0.000	0.224	0.018	0.724	1.042	1.092
	1	0.034	0.100	0.288	0.685	0.863	1.217	1.507
L. reuteri WB-76	2	0.022	0.068	0.200	0.427	0.619	0.701	0.767
	Mean	0.028	0.084	0.244	0.556	0.741	0.959	1.137
	1	0.037	0.101	0.269	0.643	1.046	1.401	1.221
L. reuteri WB-78	2	0.019	0.054	0.171	0.366	0.570	0.682	0.742
	Mean	0.028	0.078	0.220	0.505	0.808	1.042	0.982
	4	0.000	0.070	0 4 5 0	0.054	0 5 40	0.670	0.700
L opidanhilua L 22	1	0.036	0.076	0.153	0.354	0.548	0.678	0.732
L. acidophilus L-23	2 Mean	0.036	0.060	0.126	0.263	0.476	0.658	0.738
	iviean	0.036	0.068	0.140	0.309	0.512	0.668	0.735

Table A4. Bile tolerance of cultures of lactobacilli^a

^aIn deMan, Rogasa, Sharpe (MRS) broth + 0.3% oxgall

 $^{\rm b} Values$ are increases in $A_{\rm 620nm}$ at 37°C.

	Dacilli		
Isolate	Rep 1 ^b	Rep 2 ^b	Mean
L. reuteri DS-29	0.575	0.512	0.544
L. reuteri DS-31	0.550	0.516	0.533
L. reuteri DS-33	0.598	0.516	0.557
L. reuteri DS-35	0.536	0.500	0.518
L. reuteri DS-36	0.653	0.542	0.598
L. reuteri DS-37	0.463	0.397	0.430
L. reuteri DS-38	0.542	0.478	0.510
L. reuteri DS-39	0.576	0.481	0.529
L. reuteri WB-72	0.702	0.436	0.569
L. reuteri WB-74	0.577	0.397	0.487
L. reuteri WB-75	0.650	0.388	0.519
L. reuteri WB-76	0.685	0.427	0.556
L. reuteri WB-78	0.643	0.366	0.505
L. acidophilus L-23	0.354	0.263	0.309

Table A5. Comparisons of bile tolerance of cultures of lactobacilli^a

^aIn deMan, Rogasa, Sharpe (MRS) broth + 0.3% oxgall

^bValues are increases in A_{620nm} after hour 4 at 37°C.

APPENDIX B

STUDY 1 RAW DATA

	010	,	
Treatment ^b	Exp.	Day 0	Day 3 or 4
Control	1	1.72	3.08
Control	2	2.38	2.86
L. reuteri DS-33	1	7.91	8.00
L. Teulen DS-33	2	8.06	8.06
	-		
L. reuteri WB-74	1	8.00	7.53
	2	7.98	6.76
L. reuteri WB-75	1	7.23	6.60
	2	7.30	6.62
L. acidophilus L-23	1	7.76	7.71
	2	7.96	7.90

Table B1. Study 1 treatment counts of lactobacilli^a (Log₁₀ cfu/mL)

^aPlated on deMan, Rogasa, Sharpe agar (MRSA)

 $^{\rm b}$ Ideal count for treatments was 8.00 \log_{10} cfu/mL

Study	Treatment ^a	Exp. 1 Pig ^b	Crate Number	Exp. 2 Pig ^c	Crate Number
		10-4	3	33-12	1
	Control	5-1	8	30-9	3
		2-5	13	41-7	14
		9-3	2	41-5	2
	L. reuteri DS-33	2-1	9	33-11	8
		7-3	12	38-8	15
		2-3	1	41-6	4
1	L. reuteri WB-74	7-4	10	31-6	5
		10-13	14	33-13	11
		12-4	4	33-8	10
	L. reuteri WB-75	9-2	7	41-3	6
		5-4	11	36-4	9
		7-6	16	33-7	16
	L. acidophilus L-23	12-1	6	41-2	7
		4-1	15	30-10	12

Table B2. Swine assignments for study 1 feeding lactobacilli cultures

^aAll treatments were fed 10 mL twice a day; Lactobacilli concentrations fed were 1 x 10^9 cfu/mL

^bExperiment 1 were all barrows (n=15)

^cExperiment 2 were all gilts (n=15)

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	12.43	16.60	19.87	24.58
	1 ^b	8	9.98	13.15	18.14	20.68
		13	11.25	16.33	16.87	20.23
	Exp.	1 Mean	11.22	15.36	18.29	21.83
Control	I	1	11.52	15.15	18.60	24.63
	2 ^c	3	10.07	13.15	16.51	21.50
	-	14	9.03	11.52	14.42	19.28
	Exp.	2 Mean	10.21	13.28	16.51	21.80
		all Mean	10.78	14.47	17.53	21.82
			40.04	40.54		
	. h	2	12.34	16.51	22.50	26.67
	1 ^b	9	10.89	13.43	18.05	21.41
		12	10.80	14.97	20.96	26.49
	Exp.	1 Mean	11.34	14.97	20.50	24.86
L. reuteri DS-33		2	11.70	15.51	19.05	24.40
	2 ^c	8	10.30	14.51	17.87	22.41
		15	8.44	10.98	14.24	18.73
		2 Mean	10.15	13.67	17.06	21.85
	Overa	all Mean	10.83	14.41	19.02	23.57
		1	12.79	17.24	21.68	24.68
	1 ^b	10	12.79		20.32	24.00
	1	10	10.80	15.06		25.04
	Eve	1 Mean		12.25	15.69	
I way start M/D 74	Exp.		11.31	14.85	19.23	22.74
L. reuteri WB-74	06	4	11.43	14.61	17.06	22.00
	2 ^c	5	10.07	13.52	16.83	20.87
		11	8.71	12.25	15.69	21.05
		2 Mean	10.07	13.46	16.53	21.30
	Overa	all Mean	10.78	14.25	18.07	22.12
		4	11.61	15.79	20.41	24.58
	1 ^b	7	11.34	14.97	19.32	22.23
	-	11	10.07	14.51	19.32	22.86
	Exp.	1 Mean	11.01	15.09	19.69	23.22
L. reuteri WB-75		6	10.43	12.52	15.42	19.64
	2 ^c	9	9.80	13.34	16.01	20.68
	-	10	11.34	15.06	17.60	22.14
	Exp.	2 Mean	10.52	13.64	16.34	20.82
		all Mean	10.80	14.47	18.25	22.19
	L	5	13.15	16.96	23.22	27.31
	1 ^b	6	11.79	14.70	18.87	22.95
		15	10.70	14.15	18.05	21.32
	Exp.	1 Mean	11.88	15.27	20.05	23.86
L. acidophilus L-23		7	10.80	13.43	16.96	21.86
	2 ^c	12	7.89	11.34	14.88	19.14
	_				40.07	0 - 0 4
		13	12.25	16.15	18.87	25.04
	Exp.	13 2 Mean all Mean	12.25 10.31	16.15 13.64	18.87 16.90	25.04 22.01

Table B3 . Study 1 weekly swine weights (kg)

^bExperiment 1 were barrows

			(ly ADG ^a (l		14/. 1 2
Treatment ^b	Exp. ^b	Pig ^b	Week 1	Week 2	Week 3
		3	0.60	0.47	0.79
	1 ^c	8	0.45	0.71	0.42
		13	0.73	0.08	0.56
	Exp.	. 1 Mean	0.59	0.42	0.59
Control		1	0.52	0.49	0.75
	2 ^d	3	0.44	0.48	0.62
		14	0.36	0.41	0.61
	Exp.	. 2 Mean	0.44	0.46	0.66
	Over	all Mean	0.52	0.44	0.63
		2	0.60	0.86	0.70
	1 ^c	9	0.36	0.66	0.56
		12	0.60	0.86	0.92
	Evn	. 1 Mean		0.79	
L. reuteri DS-33	Exb.	2	0.52 0.54	0.79	0.73
L. IEUIEII DO-00	2 ^d	2	0.54 0.60	0.51	0.67
	2	8 15	0.80	0.48 0.47	0.57
	Eve				
		2 Mean	0.50	0.48	0.60
	Over	all Mean	0.51	0.64	0.66
		1	0.64	0.64	0.50
	1 ^c	10	0.61	0.75	0.79
		14	0.27	0.49	0.47
	Exp.	. 1 Mean	0.51	0.63	0.58
L. reuteri WB-74		4	0.45	0.35	0.62
	2 ^d	5	0.49	0.47	0.50
	_	11	0.51	0.49	0.67
	Exp.	. 2 Mean	0.48	0.44	0.60
		all Mean	0.49	0.53	0.59
		4	0.00	0.00	0.70
		4	0.60	0.66	0.70
	1 ^c	7	0.52	0.62	0.48
		11	0.64	0.69	0.59
	Exp.	. 1 Mean	0.58	0.66	0.59
L. reuteri WB-75	ed	6	0.30	0.41	0.53
	2 ^d	9	0.51	0.38	0.58
	<u> </u>	10	0.53	0.36	0.57
		2 Mean	0.44	0.39	0.56
	Over	all Mean	0.51	0.52	0.57
		5	0.54	0.89	0.68
	1 ^c	6	0.41	0.60	0.68
		15	0.49	0.56	0.54
	Exp.	. 1 Mean	0.48	0.68	0.64
L. acidophilus L-23		7	0.38	0.51	0.61
	2 ^d	12	0.49	0.51	0.53
		13	0.56	0.39	0.77
	Exp.	. 2 Mean	0.48	0.47	0.64
		all Mean	0.48	0.57	0.64
			0.40	0.57	0.04

Table B4. Study 1 weekly ADG^a (kg)

^aADG - average daily gain

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

	e B5. Stud		•	•	
Treatment ^b	Exp. ^b	Pig⁵	Week 1	Week 2	Week 3
		3	0.69	0.96	1.54
	1 ^c	8	0.58	1.00	1.03
		13	0.76	0.84	0.98
	Exp.	1 Mean	0.68	0.93	1.18
Control		1	0.75	0.98	1.23
	2 ^d	3	0.68	0.88	1.01
		14	0.54	0.74	1.11
	Exp.	2 Mean	0.66	0.87	1.12
	Over	all Mean	0.67	0.90	1.15
	1		0.96	1 10	4 45
		2	0.86	1.10	1.45
	1 ^c	9	0.50	0.85	1.16
		12	0.95	1.21	1.69
	Exp.	1 Mean	0.77	1.05	1.43
L. reuteri DS-33	-	2	0.86	0.94	1.19
	2 ^d	8	0.85	0.95	1.08
		15	0.62	0.84	1.06
		2 Mean	0.78	0.91	1.11
	Over	all Mean	0.77	0.98	1.27
		1	0.95	1.03	1.34
	1 ^c	10	0.83	1.03	1.59
		14	0.53	0.85	1.08
	Evn	1 Mean	0.76	0.85	1.34
L. reuteri WB-74	L.\p.	4	0.70	0.92	1.10
L. Teulen VID-14	2 ^d	4 5	0.82	0.92	1.04
	2	11	0.82	0.89	1.19
	Evo	2 Mean	0.73	0.92	1.19
		all Mean			
	Over		0.77	0.94	1.22
		4	0.80	1.02	1.23
	1 ^c	7	0.74	1.00	1.10
		11	0.65	1.09	1.48
	Exp.	1 Mean	0.73	1.04	1.27
L. reuteri WB-75		1 Mean 6		1.04 0.85	1.27 0.96
L. reuteri WB-75	Exp.		0.73	-	
L. reuteri WB-75		6	0.73 0.62	0.85	0.96 1.05
L. reuteri WB-75	2 ^d	6 9	0.73 0.62 0.78	0.85 0.80	0.96
L. reuteri WB-75	2 ^d Exp.	6 9 10	0.73 0.62 0.78 0.84	0.85 0.80 0.83	0.96 1.05 1.16
L. reuteri WB-75	2 ^d Exp.	6 9 10 <u>2 Mean</u> all Mean	0.73 0.62 0.78 0.84 0.75 0.74	0.85 0.80 0.83 0.83 0.93	0.96 1.05 1.16 1.06 1.16
L. reuteri WB-75	2 ^d Exp. Over	6 9 10 2 Mean all Mean 5	0.73 0.62 0.78 0.84 0.75 0.74	0.85 0.80 0.83 0.83 0.93 1.24	0.96 1.05 1.16 1.06 1.16 1.47
L. reuteri WB-75	2 ^d Exp.	6 9 10 <u>2 Mean</u> all Mean 5 6	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63	0.85 0.80 0.83 0.83 0.93 1.24 0.91	0.96 1.05 1.16 1.06 1.16 1.47 1.47
L. reuteri WB-75	2 ^d Exp. Over 1 ^c	6 9 10 <u>2 Mean</u> all Mean 5 6 15	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63 0.78	0.85 0.80 0.83 0.83 0.93 1.24 0.91 0.99	0.96 1.05 1.16 1.06 1.16 1.47 1.47 1.13 0.87
	2 ^d Exp. Over 1 ^c	6 9 10 <u>2 Mean</u> all Mean 5 6	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63	0.85 0.80 0.83 0.83 0.93 1.24 0.91	0.96 1.05 1.16 1.06 1.16 1.47 1.47
L. reuteri WB-75	2 ^d Exp. Over 1 ^c Exp.	6 9 10 2 Mean all Mean 5 6 15 1 Mean 7	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63 0.78	0.85 0.80 0.83 0.83 0.93 1.24 0.91 0.99	0.96 1.05 1.16 1.06 1.16 1.47 1.47 1.13 0.87 1.16 1.16
	2 ^d Exp. Over 1 ^c	6 9 10 <u>2 Mean</u> all Mean 5 6 15 1 Mean	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63 0.78 0.74	0.85 0.80 0.83 0.83 0.93 1.24 0.91 0.99 1.04	0.96 1.05 1.16 1.06 1.16 1.47 1.47 1.13 0.87 1.16
	2 ^d Exp. Over 1 ^c Exp.	6 9 10 2 Mean all Mean 5 6 15 1 Mean 7	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63 0.78 0.74 0.67	0.85 0.80 0.83 0.93 1.24 0.91 0.99 1.04 0.94	0.96 1.05 1.16 1.06 1.16 1.47 1.47 1.13 0.87 1.16 1.16
	2 ^d Exp. Over 1 ^c Exp. 2 ^d	6 9 10 2 Mean all Mean 5 6 15 1 Mean 7 12	0.73 0.62 0.78 0.84 0.75 0.74 0.80 0.63 0.78 0.74 0.67 0.70	0.85 0.80 0.83 0.83 0.93 1.24 0.91 0.99 1.04 0.94 0.92	0.96 1.05 1.16 1.06 1.16 1.47 1.13 0.87 1.16 1.16 1.06

Table B5. Study 1 weekly ADFl^a (kg)

^aADFI - average daily feed intake

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

	le B6. Stuc				
Treatment ^b	Exp. ^b	Pig ^b	Week 1	Week 2	Week 3
		3	1.16	2.05	1.96
	1 ^c	8	1.29	1.40	2.43
		13	1.04	10.75	1.75
	Exp.	1 Mean	1.16	4.73	2.05
Control		1	1.45	1.99	1.63
	2 ^d	3	1.54	1.83	1.62
		14	1.53	1.78	1.83
		2 Mean	1.51	1.87	1.69
	Over	all Mean	1.34	3.30	1.87
	Г	2	1.44	1.29	2.08
	1 ^c	9	1.38	1.29	2.00
		12	1.59	1.41	1.83
	Evo	1 Mean	1.47	1.33	1.00
L. reuteri DS-33		2	1.58	1.86	1.78
realen DO-00	2 ^d	2	1.38	1.80	1.78
		15	1.42	1.80	1.89
	Evo	2 Mean	1.57	1.88	1.86
		all Mean	1.57	1.60	1.80
	Over		1.52	1.60	1.95
		1	1.50	1.62	2.68
	1 ^c	10	1.37	1.36	2.02
		14	1.86	1.72	2.30
	Exp.	1 Mean	1.58	1.57	2.33
L. reuteri WB-74		4	1.63	2.62	1.79
	2 ^d	5	1.66	1.87	2.06
		11	1.49	1.86	1.78
	Exp.	2 Mean	1.59	2.12	1.88
	Over	all Mean	1.59	1.84	2.11
	T	4	1.24	1 55	1 77
	40	4	1.34	1.55	1.77
	1 ^c	7	1.42	1.61	2.28
	Eva	11 1 Mean	1.03 1.26	1.59 1.58	2.51
. reuteri WB-75	Exp.	6	2.08	2.05	2.19 1.83
L. TEULETT VVD-13	2 ^d	9	2.08 1.54	2.05	1.80
	²	9 10	1.54 1.58	2.10	2.04
	Evo	2 Mean	1.58	2.28	2.04
		all Mean	1.73	1.86	2.04
	0,00		1.50	1.00	2.04
		5	1.48	1.38	2.16
	1 ^c	6	1.51	1.53	1.65
				4 77	1.60
		15	1.58	1.77	1.00
	Exp.	15 1 Mean	1.58 1.52	1.77	1.80
L. acidophilus L-23					
L. acidophilus L-23	Exp.	1 Mean	1.52	1.56	1.80
L. acidophilus L-23	2 ^d	1 Mean 7 12 13	1.52 1.79	1.56 1.85	1.80 1.90
L. acidophilus L-23	2 ^d	1 Mean 7 12	1.52 1.79 1.42	1.56 1.85 1.83	1.80 1.90 1.99

Table B6. Study 1 weekly F:G ratio^a

^aF:G - feed to gain

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Control L. reuteri DS-33 $ \begin{array}{c} 1^{e} & 3 & 0.62 & 1.06 & 1.64 \\ 1^{e} & 8 & 0.53 & 0.87 & 1.57 \\ 13 & 0.45 & 0.86 & 1.84 \\ \hline Exp. 1 Mean & 0.53 & 0.93 & 1.68 \\ 1 & 0.59 & 0.99 & 1.68 \\ 2^{f} & 3 & 0.51 & 0.86 & 1.66 \\ 14 & 0.46 & 0.80 & 1.74 \\ \hline Exp. 2 Mean & 0.52 & 0.88 & 1.69 \\ \hline Overall Mean & 0.53 & 0.91 & 1.69 \\ \hline \\ L. reuteri DS-33 $ $ \begin{array}{c} 2 & 0.72 & 1.14 & 1.51 \\ 1^{e} & 9 & 0.53 & 0.84 & 1.51 \\ 12 & 0.79 & 1.28 & 1.55 \\ \hline Exp. 1 Mean & 0.68 & 1.08 & 1.52 \\ 2 & 0.57 & 1.00 & 1.74 \\ 2^{f} & 8 & 0.55 & 0.96 & 1.76 \\ \hline 15 & 0.46 & 0.84 & 1.82 \\ \hline Exp. 2 Mean & 0.53 & 0.93 & 1.77 \\ \hline Overall Mean & 0.60 & 1.01 & 1.65 \\ \hline \\ 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ \hline & 14 & 0.41 & 0.81 & 1.89 \\ \hline \\ Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ \hline \end{array} $	Table B7. Stu					
Control $\begin{array}{c} 1^{e} & 8 & 0.53 & 0.87 & 1.57 \\ & 13 & 0.45 & 0.86 & 1.84 \\ \hline Exp. 1 Mean & 0.53 & 0.93 & 1.68 \\ 2^{f} & 3 & 0.51 & 0.86 & 1.66 \\ & 14 & 0.46 & 0.80 & 1.74 \\ \hline Exp. 2 Mean & 0.52 & 0.88 & 1.69 \\ \hline Overall Mean & 0.53 & 0.91 & 1.69 \\ \hline Overall Mean & 0.53 & 0.91 & 1.69 \\ \hline Overall Mean & 0.68 & 1.08 & 1.55 \\ \hline Exp. 1 Mean & 0.68 & 1.08 & 1.55 \\ \hline Exp. 1 Mean & 0.68 & 1.08 & 1.55 \\ \hline Exp. 1 Mean & 0.68 & 1.08 & 1.55 \\ \hline Exp. 2 Mean & 0.53 & 0.93 & 1.77 \\ \hline Overall Mean & 0.60 & 1.01 & 1.65 \\ \hline 15 & 0.46 & 0.84 & 1.82 \\ \hline Exp. 2 Mean & 0.53 & 0.93 & 1.77 \\ \hline Overall Mean & 0.60 & 1.01 & 1.65 \\ \hline \\ L. reuteri WB-74 & 1 & 0.59 & 1.11 & 1.84 \\ 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ 14 & 0.41 & 0.81 & 1.89 \\ \hline Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ 4 & 0.47 & 0.92 & 1.93 \\ 2^{f} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ \hline \\ Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline \\ L. reuteri WB-75 & 4 & 0.47 & 0.92 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ L. reuteri WB-75 & 5 & 0.71 & 1.17 & 1.58 \\ 1^{e} & 6 & 0.56 & 0.89 & 1.57 \\ \hline \\ L. acidophilus L-23 & 7 & 0.50 & 0.92 & 1.86 \\ 2^{f} & 12 & 0.51 & 0.93 & 1.78 \\ \hline \end{array}$	Treatment ^a	Exp. ^a	Pig ^a	ADG ^b	ADFI ^c	F:G ^d
Control $ \begin{array}{c} 13 & 0.45 & 0.86 & 1.84 \\ Exp. 1 Mean & 0.53 & 0.93 & 1.68 \\ 1 & 0.59 & 0.99 & 1.68 \\ 2^{t} & 3 & 0.51 & 0.86 & 1.66 \\ 14 & 0.46 & 0.80 & 1.74 \\ Exp. 2 Mean & 0.52 & 0.88 & 1.69 \\ \hline Overall Mean & 0.53 & 0.91 & 1.69 \\ \hline \\ L. reuteri DS-33 & 2 & 0.72 & 1.14 & 1.51 \\ 1^{e} & 9 & 0.53 & 0.84 & 1.51 \\ 12 & 0.79 & 1.28 & 1.55 \\ Exp. 1 Mean & 0.68 & 1.08 & 1.52 \\ 2 & 0.57 & 1.00 & 1.74 \\ 2^{t} & 8 & 0.55 & 0.96 & 1.76 \\ 15 & 0.46 & 0.84 & 1.82 \\ Exp. 2 Mean & 0.53 & 0.93 & 1.77 \\ \hline Overall Mean & 0.60 & 1.01 & 1.69 \\ \hline \\ L. reuteri WB-74 & 1 & 0.59 & 1.11 & 1.84 \\ 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ 14 & 0.41 & 0.81 & 1.89 \\ Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ & 14 & 0.47 & 0.92 & 1.93 \\ 2^{t} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.89 \\ \hline \\ L. reuteri WB-75 & 4 & 0.47 & 0.92 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.98 & 1.69 \\ \hline L. reuteri WB-75 & 4 & 0.47 & 0.92 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.98 & 1.80 \\ \hline \\ L. reuteri WB-75 & 5 & 0.71 & 1.17 & 1.58 \\ \hline \\ L. acidophilus L-23 & 5 & 0.71 & 1.17 & 1.58 \\ 1^{e} & 6 & 0.56 & 0.89 & 1.57 \\ \hline \\ L. acidophilus L-23 & 7 & 0.50 & 0.92 & 1.86 \\ 2^{t} & 12 & 0.51 & 0.88 & 1.62 \\ \hline \\ Exp. 2 Mean & 0.60 & 0.98 & 1.57 \\ \hline \\ \hline \\ L. acidophilus L-23 & 7 & 0.50 & 0.92 & 1.86 \\ 2^{t} & 12 & 0.51 & 0.88 & 1.57 \\ \hline \\ \hline $			3			1.64
Control Exp. 1 Mean 0.53 0.93 1.68 2 ¹ 3 0.51 0.86 1.68 2 ¹ 3 0.51 0.86 1.69 14 0.46 0.80 1.74 Exp. 2 Mean 0.52 0.88 1.69 Overall Mean 0.53 0.91 1.69 Uverall Mean 0.53 0.91 1.69		1 ^e	8	0.53	0.87	1.57
1 0.59 0.99 1.68 2 ^t 3 0.51 0.86 1.66 14 0.46 0.80 1.74 Exp. 2 Mean 0.52 0.88 1.69 Overall Mean 0.53 0.91 1.69 L. reuteri DS-33 2 0.72 1.14 1.51 1° 9 0.53 0.84 1.51 12 0.79 1.28 1.55 Exp. 1 Mean 0.68 1.08 1.52 2 0.57 1.00 1.74 2 ^t 8 0.55 0.96 1.76 15 0.46 0.84 1.82 Exp. 2 Mean 0.53 0.93 1.77 Overall Mean 0.60 1.01 1.68 1° 10 0.72 1.15 1.53 14 0.41 0.81 1.89 Exp. 1 Mean 0.57 1.02 1.75 2 ^t 5 0.49 0.91 </td <td></td> <td></td> <td>13</td> <td>0.45</td> <td>0.86</td> <td>1.84</td>			13	0.45	0.86	1.84
L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri		Exp.	. 1 Mean	0.53	0.93	1.68
L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri WB-75 L. reuteri WB-75 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 $ \begin{array}{c} 14 & 0.46 & 0.80 & 1.74 \\ Exp. 2 Mean & 0.52 & 0.88 & 1.69 \\ 2 & 0.72 & 1.14 & 1.51 \\ 12 & 0.79 & 1.28 & 1.55 \\ 12 & 0.79 & 1.28 & 1.55 \\ 12 & 0.77 & 1.00 & 1.74 \\ 2 & 8 & 0.55 & 0.96 & 1.76 \\ 12 & 0.57 & 1.00 & 1.74 \\ 2 & 8 & 0.55 & 0.96 & 1.76 \\ 15 & 0.46 & 0.84 & 1.82 \\ Exp. 2 Mean & 0.60 & 1.01 & 1.65 \\ 16 & 0.72 & 1.15 & 1.53 \\ 14 & 0.41 & 0.81 & 1.89 \\ Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ 4 & 0.47 & 0.92 & 1.93 \\ 2^{i} & 5 & 0.49 & 0.91 & 1.88 \\ 10 & 0.72 & 1.15 & 1.53 \\ 14 & 0.47 & 0.92 & 1.93 \\ 2^{i} & 5 & 0.49 & 0.91 & 1.88 \\ 10 & 0.72 & 1.50 & 1.72 \\ Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline 0 verall Mean & 0.54 & 0.98 & 1.80 \\ \hline 0 verall Mean & 0.61 & 1.01 & 1.59 \\ \hline 10 & 0.49 & 0.94 & 1.94 \\ \hline 11 & 0.64 & 1.08 & 1.59 \\ \hline 12 & 11 & 0.64 & 0.88 & 1.90 \\ \hline 0 verall Mean & 0.61 & 1.01 & 1.59 \\ \hline 13 & 0.57 & 0.99 & 1.72 \\ \hline 14 & 6 & 0.56 & 0.89 & 1.52 \\ \hline 15 & 0.53 & 0.88 & 1.62 \\ \hline 15 & 0.53 & 0.88 & 1.62 \\ \hline 13 & 0.57 & 0.99 & 1.72 \\ \hline 14 & 2 & 0.51 & 0.89 & 1.76 \\ \hline 13 & 0.57 & 0.99 & 1.72 \\ \hline 17 & Exp. 2 Mean & 0.53 & 0.93 & 1.78 \\ \hline $	Control		1	0.59	0.99	1.68
Exp. 2 Mean 0.52 0.88 1.69 Overall Mean 0.53 0.91 1.69 V 2 0.72 1.14 1.51 1° 9 0.53 0.84 1.51 12 0.79 1.28 1.55 Exp. 1 Mean 0.68 1.08 1.52 2 0.57 1.00 1.74 2' 8 0.55 0.96 1.76 15 0.46 0.84 1.82 Exp. 2 Mean 0.53 0.93 1.77 Overall Mean 0.60 1.01 1.65 16 0.72 1.15 1.53 14 0.47 0.92 1.93 2' 5 0.49 0.91 1.88 11 0.56 0.95 1.72 Exp. 2 Mean 0.51 0.93 1.84 Overall Mean 0.51 0.93 1.84 10 0.65 1.02 1.50		2 ^f	3	0.51	0.86	1.66
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			14	0.46	0.80	1.74
L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri WB-75 L. reuteri WB-75 L. acidophilus L-23 L. ac		Exp.	. 2 Mean	0.52	0.88	1.69
L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri		Over	all Mean	0.53	0.91	1.69
L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri		-				
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 12 & 0.79 & 1.28 & 1.55 \\ Exp. 1 Mean & 0.68 & 1.08 & 1.52 \\ 2 & 0.57 & 1.00 & 1.74 \\ 2 ^{t} & 8 & 0.55 & 0.96 & 1.76 \\ 15 & 0.46 & 0.84 & 1.82 \\ \hline Exp. 2 Mean & 0.53 & 0.93 & 1.77 \\ \hline Overall Mean & 0.60 & 1.01 & 1.65 \\ \hline \\ L. reuteri WB-74 $ $ \begin{array}{c} 1 & 0.59 & 1.11 & 1.84 \\ 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ 14 & 0.41 & 0.81 & 1.89 \\ \hline Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ 14 & 0.47 & 0.92 & 1.93 \\ 2 ^{t} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ \hline Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 0.88 & 1.90 \\ \hline \\ \hline \\ Verall Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.74 \\ \hline \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.50 & 0.92 & 1.86 \\ \hline \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 0.69 & 1.57 \\ \hline \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 0.38 & 1.57 \\ \hline \\ \hline \\ L. reuteri WB-75 $ $ \begin{array}{c} 4 & 0.65 & 0.95 & 1.74 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \end{array} $ $ \begin{array}{c} 1 & 0.54 & 0.95 & 0.92 & 1.86 \\ \hline \\ \hline \\ \hline \\ \end{array} $ $ \begin{array}{c} 1 & 0.52 & 0.92 & 1.86 \\ \hline \\ \hline \\ \hline \\ \end{array} $ $ \begin{array}{c} 1 & 0.52 & 0.92 & 1.86 \\ \hline \\ \hline \end{array} $ $ \begin{array}{c} 1 & 0.57 & 0.99 & 1.72 \\ \hline \end{array} $ $ \begin{array}{c} 1 & 0.57 & 0.99 & 1.72 \\ \hline \end{array} $ $ \begin{array}{c} 1 & 0.57 & $						
L. reuteri DS-33 Exp. 1 Mean 0.68 1.08 1.52 2 0.57 1.00 1.74 2^{t} 8 0.55 0.96 1.76 15 0.46 0.84 1.82 Exp. 2 Mean 0.53 0.93 1.77 Overall Mean 0.60 1.01 1.65 1 0.59 1.11 1.84 1^{e} 10 0.72 1.15 1.53 14 0.41 0.81 1.89 Exp. 1 Mean 0.57 1.02 1.75 4 0.47 0.92 1.93 2^{t} 5 0.49 0.91 1.88 11 0.56 0.95 1.72 Exp. 2 Mean 0.51 0.93 1.84 Overall Mean 0.54 0.98 1.80 11 0.64 1.08 1.59 L. reuteri WB-75 4 0.65 1.02 1.50 1^{e} 7 0.54 0.95 1.68 11 0.64 1.08 1.59 Exp. 1 Mean 0.61 1.01 1.59 6 0.41 0.81 1.96 11 0.64 1.08 1.59 Exp. 1 Mean 0.61 1.01 1.59 2^{t} 9 0.49 0.88 1.79 10 0.49 0.94 1.94 Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 5 0.71 1.17 1.58 1^{e} 6 0.56 0.89 1.52 15 0.53 0.88 1.62 Exp. 1 Mean 0.60 0.98 1.57 15 0.53 0.88 1.62 Exp. 2 Mean 0.50 0.92 1.86 2^{t} 12 0.51 0.89 1.76 3 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78		1 ^e				
L. reuteri DS-33 2 0.57 1.00 1.74 2^{f} 8 0.55 0.96 1.76 15 0.46 0.84 1.82 Exp. 2 Mean 0.53 0.93 1.77 Overall Mean 0.60 1.01 1.65 1 0.59 1.11 1.84 1^{e} 10 0.72 1.15 1.53 14 0.41 0.81 1.89 Exp. 1 Mean 0.57 1.02 1.75 4 0.47 0.92 1.93 2^{f} 5 0.49 0.91 1.88 11 0.56 0.95 1.72 Exp. 2 Mean 0.51 0.93 1.84 Overall Mean 0.54 0.98 1.80 1 0.64 1.08 1.59 Exp. 1 Mean 0.61 1.01 1.59 6 0.41 0.81 1.96 11 0.64 1.08 1.59 Exp. 1 Mean 0.61 1.01 1.59 6 0.41 0.81 1.96 11 0.64 1.08 1.59 Exp. 1 Mean 0.61 1.01 1.59 6 0.41 0.81 1.96 10 0.49 0.94 1.94 Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 10 0.49 0.94 1.94 Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 15 0.53 0.88 1.62 15 0.53 0.88 1.62 15 0.53 0.88 1.62 15 0.53 0.88 1.62 Exp. 1 Mean 0.60 0.98 1.57 15 0.53 0.88 1.62 Exp. 2 Mean 0.53 0.93 1.78 16 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78			12			
$L. reuteri WB-74 = \begin{bmatrix} 2^{f} & 8 & 0.55 & 0.96 & 1.76 \\ 15 & 0.46 & 0.84 & 1.82 \\ \hline Exp. 2 Mean & 0.53 & 0.93 & 1.77 \\ \hline Overall Mean & 0.60 & 1.01 & 1.65 \\ \hline & & & & & & \\ \hline & & & & & & \\ 1 & 0.59 & 1.11 & 1.84 \\ 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ 14 & 0.41 & 0.81 & 1.89 \\ \hline & & & & & & \\ Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ 4 & 0.47 & 0.92 & 1.93 \\ 2^{f} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ \hline & & & & & \\ Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline & & & & & \\ \hline & & & & & \\ L. reuteri WB-75 & & & & \\ L. reuteri WB-75 & & & & \\ \hline & & & & & \\ L. acidophilus L-23 & & \\ \hline & & & & \\ L. acidophilus L-23 & & \\ \hline & & & & \\ \hline & & & & \\ L. acidophilus L-23 & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		Exp.				
L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri	L. reuteri DS-33		_			
L. reuteri WB-74 L. reuteri WB-75 L. reuteri		2 ^f		0.55	0.96	1.76
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{c} 1 & 0.59 & 1.11 & 1.84 \\ 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ 14 & 0.41 & 0.81 & 1.89 \\ Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ 4 & 0.47 & 0.92 & 1.93 \\ 2^{f} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline Verall Mean & 0.61 & 1.01 & 1.59 \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ 2^{f} & 9 & 0.49 & 0.88 & 1.79 \\ 10 & 0.49 & 0.94 & 1.94 \\ Exp. 2 Mean & 0.46 & 0.88 & 1.90 \\ Overall Mean & 0.54 & 0.95 & 1.74 \\ \hline $ L. acidophilus L-23 $ \begin{array}{c} 5 & 0.71 & 1.17 & 1.58 \\ 1^{e} & 6 & 0.56 & 0.89 & 1.52 \\ 15 & 0.53 & 0.88 & 1.62 \\ Exp. 1 Mean & 0.60 & 0.98 & 1.57 \\ 7 & 0.50 & 0.92 & 1.86 \\ 2^{f} & 12 & 0.51 & 0.89 & 1.76 \\ 13 & 0.57 & 0.99 & 1.72 \\ Exp. 2 Mean & 0.53 & 0.93 & 1.78 \\ \end{array} $				0.46	0.84	1.82
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{c} 1 & 0.59 & 1.11 & 1.84 \\ 1^{6} & 10 & 0.72 & 1.15 & 1.53 \\ & 14 & 0.41 & 0.81 & 1.89 \\ \hline Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ & 4 & 0.47 & 0.92 & 1.93 \\ 2^{f} & 5 & 0.49 & 0.91 & 1.88 \\ & 11 & 0.56 & 0.95 & 1.72 \\ \hline Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & & & & \\ & & & & & & &$		Exp.	. 2 Mean	0.53	0.93	1.77
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{c} 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ & 14 & 0.41 & 0.81 & 1.89 \\ \hline Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ & 4 & 0.47 & 0.92 & 1.93 \\ 2^{f} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ \hline Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline \\ L. reuteri WB-75 & 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ L. reuteri WB-75 & 6 & 0.41 & 0.81 & 1.96 \\ 2^{f} & 9 & 0.49 & 0.88 & 1.79 \\ 10 & 0.49 & 0.94 & 1.94 \\ \hline \\ Exp. 2 Mean & 0.54 & 0.95 & 1.74 \\ \hline \\ L. acidophilus L-23 & 7 & 0.50 & 0.92 & 1.86 \\ 2^{f} & 12 & 0.51 & 0.89 & 1.76 \\ \hline \\ 13 & 0.57 & 0.99 & 1.72 \\ \hline \\ Exp. 2 Mean & 0.53 & 0.93 & 1.78 \\ \hline \end{array} $		Over	all Mean	0.60	1.01	1.65
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{c} 1^{e} & 10 & 0.72 & 1.15 & 1.53 \\ & 14 & 0.41 & 0.81 & 1.89 \\ \hline Exp. 1 Mean & 0.57 & 1.02 & 1.75 \\ & 4 & 0.47 & 0.92 & 1.93 \\ 2^{f} & 5 & 0.49 & 0.91 & 1.88 \\ 11 & 0.56 & 0.95 & 1.72 \\ \hline Exp. 2 Mean & 0.51 & 0.93 & 1.84 \\ \hline Overall Mean & 0.54 & 0.98 & 1.80 \\ \hline \\ L. reuteri WB-75 & 4 & 0.65 & 1.02 & 1.50 \\ 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ 11 & 0.64 & 1.08 & 1.59 \\ \hline Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ \hline \\ L. reuteri WB-75 & 6 & 0.41 & 0.81 & 1.96 \\ 2^{f} & 9 & 0.49 & 0.88 & 1.79 \\ 10 & 0.49 & 0.94 & 1.94 \\ \hline \\ Exp. 2 Mean & 0.54 & 0.95 & 1.74 \\ \hline \\ L. acidophilus L-23 & 7 & 0.50 & 0.92 & 1.86 \\ 2^{f} & 12 & 0.51 & 0.89 & 1.76 \\ \hline \\ 13 & 0.57 & 0.99 & 1.72 \\ \hline \\ Exp. 2 Mean & 0.53 & 0.93 & 1.78 \\ \hline \end{array} $		1		0.55		
L. reuteri WB-74 L. reuteri WB-74 $ \frac{14}{2^{f}} 0.41 0.81 1.89 \\ Exp. 1 Mean 0.57 1.02 1.75 \\ 4 0.47 0.92 1.93 \\ 2^{f} 5 0.49 0.91 1.88 \\ 11 0.56 0.95 1.72 \\ Exp. 2 Mean 0.51 0.93 1.84 \\ \hline Overall Mean 0.54 0.98 1.80 \\ \hline Verall Mean 0.54 0.98 1.80 \\ \hline Verall Mean 0.54 0.98 1.80 \\ \hline Verall Mean 0.61 1.02 1.50 \\ 1^{e} 7 0.54 0.95 1.68 \\ 11 0.64 1.08 1.59 \\ Exp. 1 Mean 0.61 1.01 1.59 \\ 6 0.41 0.81 1.96 \\ 2^{f} 9 0.49 0.88 1.79 \\ 10 0.49 0.94 1.94 \\ Exp. 2 Mean 0.46 0.88 1.90 \\ \hline Overall Mean 0.54 0.95 1.74 \\ \hline Verall Mean 0.54 0.95 1.74 \\ \hline Verall Mean 0.54 0.95 1.74 \\ \hline L. acidophilus L-23 \\ \hline L. acidophilus L-23 \\ \hline Pereodet A term $		_				
L. reuteri WB-74		1 ^e			-	
L. reuteri WB-74 2^{f} 5 0.49 0.91 1.88 11 0.56 0.95 1.72 Exp. 2 Mean 0.51 0.93 1.84 Overall Mean 0.54 0.98 1.80 11 0.65 1.02 1.50 1^{e} 7 0.54 0.95 1.68 11 0.64 1.08 1.59 Exp. 1 Mean 0.61 1.01 1.59 6 0.41 0.81 1.96 2^{f} 9 0.49 0.88 1.79 10 0.49 0.94 1.94 Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 15 0.53 0.88 1.62 Exp. 1 Mean 0.60 0.98 1.57 15 0.53 0.88 1.62 Exp. 1 Mean 0.60 0.98 1.57 7 0.50 0.92 1.86 2^{f} 12 0.51 0.89 1.76 13 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp.				
L. reuteri WB-75 L. acidophilus L-23 L. acido	L. reuteri WB-74		-			1.93
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 [†]	5	0.49	0.91	1.88
L. reuteri WB-75 L. reuteri WB-75 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 $\frac{0}{10}$ $\frac{0}{10}$ $\frac{1}{11}$ $\frac{1}{11$			11	0.56	0.95	
L. reuteri WB-75 L. reuteri WB-75 L. reuteri WB-75 $= \frac{4}{0.65}$ 1.02 1.50 1^{e} 7 0.54 0.95 1.68 11 0.64 1.08 1.59 = Exp. 1 Mean 0.61 1.01 1.59 6 0.41 0.81 1.96 2^{f} 9 0.49 0.88 1.79 10 0.49 0.94 1.94 = Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 $= \frac{5}{15}$ 0.71 1.17 1.58 1^{e} 6 0.56 0.89 1.52 $= \frac{15}{15}$ 0.53 0.88 1.62 = Exp. 1 Mean 0.60 0.98 1.57 7 0.50 0.92 1.86 2^{f} 12 0.51 0.89 1.76 $= \frac{13}{13}$ 0.57 0.99 1.72 = Exp. 2 Mean 0.53 0.93 1.78		Exp.	. 2 Mean	0.51	0.93	1.84
L. reuteri WB-75 L. reuteri WB-75 $ \begin{array}{c} 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ & 11 & 0.64 & 1.08 & 1.59 \\ \hline Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ 0 & 0.49 & 0.88 & 1.79 \\ 10 & 0.49 & 0.94 & 1.94 \\ \hline Exp. 2 Mean & 0.46 & 0.88 & 1.90 \\ \hline Overall Mean & 0.54 & 0.95 & 1.74 \\ \hline \\ & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & & \\ & & & & & & & & & \\ \hline & & & & & & & & & & \\ & & & & & & & & &$		Over	all Mean	0.54	0.98	1.80
L. reuteri WB-75 L. reuteri WB-75 $ \begin{array}{c} 1^{e} & 7 & 0.54 & 0.95 & 1.68 \\ & 11 & 0.64 & 1.08 & 1.59 \\ \hline Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ 0 & 0.49 & 0.88 & 1.79 \\ 10 & 0.49 & 0.94 & 1.94 \\ \hline Exp. 2 Mean & 0.46 & 0.88 & 1.90 \\ \hline Overall Mean & 0.54 & 0.95 & 1.74 \\ \hline \\ & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & & \\ & & & & & & & & & \\ \hline & & & & & & & & & & \\ & & & & & & & & &$		1				
L. reuteri WB-75 L. reuteri WB-75 $= \frac{11}{2^{f}} \frac{0.64}{9} \frac{1.08}{0.61} \frac{1.01}{1.01} \frac{1.59}{1.59}$ $= \frac{6}{0.41} \frac{0.61}{0.81} \frac{1.06}{1.90}$ $= \frac{2^{f}}{9} \frac{9}{0.49} \frac{0.49}{0.94} \frac{0.88}{1.90}$ $= \frac{10}{0.49} \frac{0.94}{0.94} \frac{1.94}{1.94}$ $= \frac{10}{0.94} \frac{1.94}{1.94}$ $= \frac{10}{0.94$						
L. reuteri WB-75 $ \begin{array}{c} Exp. 1 Mean & 0.61 & 1.01 & 1.59 \\ 6 & 0.41 & 0.81 & 1.96 \\ 2^{f} & 9 & 0.49 & 0.88 & 1.79 \\ 10 & 0.49 & 0.94 & 1.94 \\ Exp. 2 Mean & 0.46 & 0.88 & 1.90 \\ Overall Mean & 0.54 & 0.95 & 1.74 \\ \end{array} $ L. acidophilus L-23 $\begin{array}{c} 5 & 0.71 & 1.17 & 1.58 \\ 1^{e} & 6 & 0.56 & 0.89 & 1.52 \\ 15 & 0.53 & 0.88 & 1.62 \\ Exp. 1 Mean & 0.60 & 0.98 & 1.57 \\ 15 & 0.50 & 0.92 & 1.86 \\ 2^{f} & 12 & 0.51 & 0.89 & 1.76 \\ 13 & 0.57 & 0.99 & 1.72 \\ Exp. 2 Mean & 0.53 & 0.93 & 1.78 \\ \end{array} $		1°				
L. reuteri WB-75 2^{f} 9 0.49 0.88 1.79 10 0.49 0.94 1.94 Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 L. acidophilus L-23 7 0.50 0.92 1.86 2^{f} 12 0.51 0.89 1.72 Exp. 2 Mean 0.53 0.93 1.78		<u> </u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L. reuteri WB-75		-			
Exp. 2 Mean 0.46 0.88 1.90 Overall Mean 0.54 0.95 1.74 J 5 0.71 1.17 1.58 1 ^e 6 0.56 0.89 1.52 15 0.53 0.88 1.62 Exp. 1 Mean 0.60 0.98 1.57 2 ^f 12 0.51 0.89 1.76 13 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78		2'				
Overall Mean 0.54 0.95 1.74 5 0.71 1.17 1.58 1 ^e 6 0.56 0.89 1.52 15 0.53 0.88 1.62 Exp. 1 Mean 0.60 0.98 1.57 2 ^f 12 0.51 0.89 1.76 13 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78						
L. acidophilus L-23 2 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 2 1 1 1 1 1 1 1 1 1 1 1 1 1						
L. acidophilus L-23 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		Over	all Mean	0.54	0.95	1.74
L. acidophilus L-23 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			5	0.71	1 17	1 59
L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 Provide Alignment of the second secon		1 e				
Exp. 1 Mean 0.60 0.98 1.57 L. acidophilus L-23 7 0.50 0.92 1.86 2 ^f 12 0.51 0.89 1.76 13 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78						
L. acidophilus L-23 2 ^f 12 0.51 0.89 1.76 13 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78		Eva				
2 ^f 12 0.51 0.89 1.76 13 0.57 0.99 1.72 Exp. 2 Mean 0.53 0.93 1.78		⊢ xp.				
130.570.991.72Exp. 2 Mean0.530.931.78	L. acidopriilus L-23	of				
Exp. 2 Mean 0.53 0.93 1.78		2				
		<u> </u>				
Overall Mean 0.56 0.96 1.68						
		Over	all Mean	0.56	0.96	1.68

Table B7. Study 1 overall growth and performance (kg)

 $^{\mathrm{a}}\textsc{Description}$ of treatments, experiments, and pigs - see Table B2

^bADG - average daily gain

^cADFI - average daily feed intake

^dF:G - feed to gain ratio

^eExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week
		3	5.80	7.18	6.43	8.59
	1 ^c	8	8.54	6.74	7.34	6.40
		13	5.86	6.56	7.11	5.76
	Exp	. 1 Mean	6.74	6.82	6.96	6.91
Control	,	1	8.18	6.85	5.54	6.75
Control	2 ^d	3	7.30	6.32	5.87	5.86
	2	14	7.65	7.51	6.76	5.20
	Exp	. 2 Mean	7.71	6.89	6.06	5.94
		all Mean	7.22	6.86	6.51	6.43
		2	6.78	5.91	5.86	7.11
	1 ^c	9	7.26	5.83	7.70	6.15
		12	5.73	5.94	5.76	4.08
	Exp	. 1 Mean	6.59	5.89	6.44	5.78
L. reuteri DS-33		2	6.69	5.83	6.36	6.20
	2 ^d	8	8.90	7.53	7.32	6.57
	_	15	6.40	7.26	8.30	6.52
	Exp	. 2 Mean	7.33	6.87	7.33	6.43
		all Mean	6.96	6.38	6.88	6.11
	!					-
		1	5.04	7.73	7.72	5.41
	1 ^c	10	6.04	7.36	7.74	6.04
	-	14	4.88	4.73	5.45	6.04
	Exp	. 1 Mean	5.32	6.61	6.97	5.83
L. reuteri WB-74		4	6.43	5.92	7.89	6.78
	2 ^d	5	7.52	8.00	7.73	7.86
	_	11	8.20	7.69	7.26	5.94
	Exp	. 2 Mean	7.38	7.20	7.62	6.86
		all Mean	6.35	6.91	7.30	6.35
	-					
		4	6.28	6.74	7.94	7.08
	1 ^c	7	5.98	6.30	5.91	6.11
		11	7.15	7.26	6.90	7.11
	Exp	. 1 Mean	6.47	6.77	6.92	6.77
L. reuteri WB-75		6	7.46	6.76	5.65	4.69
	2 ^d	9	6.30	6.23	6.88	5.97
		10	7.08	4.93	8.08	5.15
		. 2 Mean	6.95	5.97	6.87	5.27
	Over	all Mean	6.71	6.37	6.89	6.02
	1		F 00	E 04	0.00	7.0.1
		5	5.96	5.81	6.62	7.64
	1 ^c	6	8.08	5.61	6.26	5.94
		15	7.34	5.53	6.15	6.79
	Exp		7.13	5.65	6.34	6.79
L. acidophilus L-23	. d	7	6.88	7.20	7.20	7.63
	2 ^d	12	6.67	6.95	6.76	7.23
	<u> </u>	13	7.80	7.95	6.48	5.99
		. 2 Mean	7.12	7.37	6.81	6.95
	Over	all Mean	7.12	6.51	6.58	6.87

Table B8. Study 1 weekly fecal counts of coliforms^a (Log₁₀ cfu/mL)

^aPlated on violet red bile agar (VRBA)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	/ Week 3
Healment	Exp.				7.82	
	1 ^c	3	9.60	9.92		8.11
	1.	8	10.00	9.60	9.15	9.40
	Evo	13 1 Moon	9.83	9.18	9.59	9.11
Control	⊏xp	. 1 Mean	9.81	9.57	8.85 9.78	8.88
Control	2 ^d	1 3	9.88	9.65		9.63
	2		9.08	9.04	9.38	9.45
	- Eve	14 2 Maan	9.54	9.71	9.26	9.51 9.53
		. 2 Mean	9.50	9.47	9.47	
	Over	all Mean	9.65	9.52	9.16	9.20
		2	9.84	9.51	7.34	8.08
	1 ^c	9	9.72	8.93	9.30	8.99
		12	9.85	9.00	9.23	9.62
	Exp	. 1 Mean	9.80	9.14	8.62	8.90
L. reuteri DS-33		2	9.81	9.30	9.36	9.11
	2 ^d	8	9.93	9.15	9.57	9.00
	_	15	9.46	10.08	9.18	9.43
	Exp	. 2 Mean	9.73	9.51	9.37	9.18
		all Mean	9.77	9.33	9.00	9.04
	•					
		1	9.80	9.49	9.30	8.63
	1 ^c	10	9.72	7.20	8.15	9.28
		14	8.87	7.89	8.98	9.18
	Exp	. 1 Mean	9.46	8.19	8.81	9.03
L. reuteri WB-74		4	9.46	9.08	8.87	9.15
	2 ^d	5	9.83	9.32	8.08	9.43
		11	9.63	9.26	9.58	9.57
	Exp	. 2 Mean	9.64	9.22	8.84	9.38
	Over	all Mean	9.55	8.71	8.83	9.21
		4	9.51	9.85	8.23	8.28
	1 ^c	7	9.34	9.53	8.26	8.90
	1	, 11	8.98	8.32	8.98	9.36
	Exp	. 1 Mean	9.28	9.23	8.49	8.85
L. reuteri WB-75		6	9.67	9.34	9.61	9.65
	2 ^d	9	9.59	8.58	9.34	9.56
		10	9.34	9.41	9.69	9.87
	Exp	. 2 Mean	9.54	9.11	9.55	9.69
		all Mean	9.41	9.17	9.02	9.27
		5	9.45	9.28	9.11	9.61
	1 ^c	6	9.08	9.45	7.67	9.41
		15	9.74	9.72	7.94	10.11
	Exp		9.42	9.48	8.24	9.71
L. acidophilus L-23		7	9.00	8.77	8.57	9.00
	2 ^d	12	9.08	9.00	9.11	9.08
		13	9.53	9.11	7.91	9.32
		. 2 Mean	9.20	8.96	8.53	9.13
	Over	all Mean	9.31	9.22	8.39	9.42

Table B9. Study 1 weekly fecal counts of lactobacillia (Log $_{10}$ cfu/mL)

^aPlated on *Lactobacillus* selection agar (LBSA)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Control $\begin{array}{c ccccccccccccccccccccccccccccccccccc$						(======================================	
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Treatment ^b	Exp. ^b	Pig ^b	Day 0 ^c	Week 1	Week 2	Week 3
$ reuteri WB-74 = \begin{bmatrix} 13 & NA & 4.00 & 4.00 & 4.00 \\ Exp. 1 Mean & NA & 4.18 & 4.00 & 4.43 \\ 1 & 4.00 & 4.00 & 4.00 & 4.00 \\ 2^{e} & 3 & 6.30 & 4.34 & 4.00 & 4.54 \\ 14 & 5.45 & 4.65 & 4.53 & 4.54 \\ Exp. 2 Mean & 5.25 & 4.33 & 4.18 & 4.36 \\ \hline Overall Mean & 5.25 & 4.26 & 4.09 & 4.39 \\ \hline Overall Mean & 5.25 & 4.26 & 4.09 & 4.39 \\ \hline Overall Mean & 5.25 & 4.26 & 4.00 & 4.00 \\ 1^{d} & 9 & NA & 4.59 & 4.00 & 4.00 \\ 1^{d} & 9 & NA & 4.59 & 4.00 & 4.00 \\ 12 & NA & 4.00 & 4.00 & 4.00 \\ 2^{e} & 8 & 4.00 & 4.57 & 4.00 & 4.00 \\ 2^{e} & 8 & 4.00 & 4.57 & 4.00 & 4.00 \\ 15 & 4.00 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Exp. 2 Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Exp. 2 Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dverall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Dveral Dveral Mean & 4.37 & 4.00 & 4.00 & 4.00 $			3	NA	4.00	4.00	4.69
Control $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 ^d	8	NA	4.54	4.00	4.59
Control $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			13	NA	4.00	4.00	
Control $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Exp					
$L. reuteri WB-74$ $L. reuteri WB-74$ $L. reuteri WB-75$ $\frac{2^{\circ} 3 6.30 4.34 4.00 4.00 4.54}{14 5.45 4.65 4.33 4.18 4.36}{0.0verall Mean 5.25 4.26 4.09 4.39}{0.00 4.00 4.00 4.00 4.00 4.00 12 NA 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 16 4.16 4.19 4.26 4.19 0.15 4.00 4.00 4.00 4.00 12^{\circ} 5 4.00 4.00 4.00 4.00 4.00 14 10 NA 6.90 6.46 4.54 14 NA 4.71 4.00 4.40 4.40 4.40 4.40 4.40 4.40 4.4$	Control		-	4.00			
$L. reuteri DS-33 = \frac{14}{2^{e}} \frac{5.45}{2} \frac{4.65}{4.33} \frac{4.54}{4.18} \frac{4.36}{4.36} \\ \hline Overall Mean 5.25 \frac{4.26}{4.26} \frac{4.09}{4.09} \frac{4.39}{4.39} \\ \hline 0 \frac{1^{d}}{9} \frac{9}{NA} \frac{4.59}{4.59} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 12 \frac{NA}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 12 \frac{NA}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 2 \frac{4.48}{4.00} \frac{4.57}{4.00} \frac{4.00}{4.00} \\ \hline 2^{e} \frac{8}{8} \frac{4.00}{4.00} \frac{4.57}{4.00} \frac{4.00}{4.00} \\ \hline 15 \frac{4.00}{4.00} \frac{4.00}{4.00} \frac{4.56}{4.19} \\ \hline 0 \frac{1^{d}}{10} \frac{10}{NA} \frac{4.40}{6.90} \frac{4.00}{6.46} \frac{4.54}{4.19} \\ \hline 0 \frac{1^{d}}{10} \frac{10}{NA} \frac{6.90}{6.90} \frac{6.46}{6.454} \\ \hline 14 \frac{14}{14} \frac{NA}{14} \frac{4.71}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 11 \frac{5.76}{5} \frac{4.64}{4.18} \frac{4.18}{4.43} \\ \hline 2^{e} \frac{5}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 11 \frac{5.76}{5} \frac{4.64}{4.64} \frac{4.18}{4.18} \frac{4.19}{4.13} \\ \hline 0 \frac{1^{d}}{7} \frac{7}{NA} \frac{4.57}{4.57} \frac{4.60}{5.51} \\ \hline 11 \frac{10}{2^{e}} \frac{6}{9} \frac{6.5.94}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 10 \frac{4.00}{4.00} \frac{4.40}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 10 \frac{4.00}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 10 \frac{4.00}{10} \frac{4.48}{4.00} \frac{4.74}{4.74} \\ \hline 2^{e} \frac{9}{9} \frac{4.00}{4.00} \frac{4.00}{4.00} \frac{4.00}{4.00} \\ \hline 10 \frac{4.00}{10} \frac{4.48}{4.00} \frac{4.74}{4.74} \\ \hline 2^{e} \frac{9}{9} \frac{4.00}{4.00} \frac{4.00}{4.00} \frac{4.61}{4.38} \\ \hline 0 \frac{1^{d}}{6} \frac{5.94}{NA} \frac{4.00}{4.00} \frac{4.01}{4.00} \frac{4.38}{4.00} \\ \hline 15 \frac{5.94}{16} \frac{4.16}{4.01} \frac{4.38}{4.38} \\ \hline 0 \frac{15}{5} \frac{NA}{A} \frac{4.49}{4.43} \frac{4.43}{4.00} \\ \hline 15 \frac{5.94}{16} \frac{4.10}{4.00} \frac{4.56}{4.19} \\ \hline 0 \frac{13}{15} \frac{7}{14} \frac{4.10}{4.00} \frac{4.59}{4.59} \frac{4.59}{4.19} \\ \hline 0 \frac{13}{15} \frac{7}{14} \frac{4.10}{4.00} \frac{4.59}{4.59} \frac{4.59}{4.19} \\ \hline 0 \frac{13}{15} \frac{7}{14} \frac{4.10}{4.00} \frac{4.59}{4.59} \frac{4.59}{4.10} \\ \hline 0 \frac{13}{13} \frac{4.71}{4.10} \frac{4.81}{4.19} \frac{4.13}{4.19} \\ \hline 0 \frac{13}{13} \frac{7}{14} \frac{4.10}{4.81} \frac{4.19}{4.19} \\ \hline 0 \frac{13}{13} \frac{7}{11} \frac{4.10}{4.81} \frac{4.19}{4.19} \\ \hline 0 \frac{13}{1$		2 ^e	3				
L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. r			14	5.45	4.65	4.53	
Overall Mean 5.25 4.26 4.09 4.39 1 ^d 9 NA 4.00 4.00 4.00 1 ^d 9 NA 4.59 4.00 4.00 12 NA 4.00 4.00 4.00 4.00 12 NA 4.20 4.00 4.00 4.00 2 4.48 4.00 4.00 4.00 4.00 2 ^e 8 4.00 4.00 4.00 4.00 2 ^e 8 4.00 4.00 4.00 4.00 $2e$ 8 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.16 1.16 4.19 4.43 4.00 4.00 4.12^{e} 5 4.00 4.00 4.00 4.00 4.12^{e} 5 4.00 4.00 4.00 4.00		Exp	. 2 Mean				
L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 1^{d} 9 NA 4.59 4.00 4.00 12 NA 4.00 4.00 4.00 12 NA 4.00 4.00 4.00 12 A.48 4.00 4.07 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 16 4.19 4.13 4.09 Overall Mean 4.16 4.19 4.13 4.09 0 Verall Mean NA 4.79 4.56 4.19 0 Verall Mean NA 4.79 4.56 4.19 0 Verall Mean 4.37 4.10 4.81 4.19 0 Verall Mean 4.37 4.45 4.57 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.48 4.04 4.74 Exp. 2 Mean 4.65 4.16 4.01 4.38 0 Verall Mean 4.65 4.33 4.27 4.44 14 NA 4.479 4.56 4.19 15 NA 5.88 4.64 4.00 15 NA 5.88 4.64 4.00 15 NA 5.88 4.64 4.00 15 NA 5.88 4.64 4.00 16 A.00 4.00 4.00 4.00 17 A.41 4.30 5.90 4.58 2 ^e 12 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 14 4.37 4.10 4.81 4.19					4.26	4.09	
L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 1^{d} 9 NA 4.59 4.00 4.00 12 NA 4.00 4.00 4.00 12 NA 4.00 4.00 4.79 4.00 4.00 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 15 4.00 4.00 4.00 4.00 16 4.19 4.13 4.09 Overall Mean 4.16 4.19 4.13 4.09 10 NA 6.90 6.46 4.54 14 NA 4.71 4.00 4.48 Exp. 1 Mean NA 4.79 4.56 4.19 0 Verall Mean 4.37 4.10 4.81 4.19 0 Verall Mean 4.37 4.45 4.67 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.00 4.00 4.00 10 4.00 4.48 4.04 4.74 Exp. 2 Mean 4.65 4.16 4.01 4.38 0 Verall Mean 4.65 4.33 4.27 4.44 14 NA 4.479 4.56 4.19 15 NA 5.88 4.64 4.00 15 NA 5.88 4.64 4.00 16 A.00 4.00 4.00 4.00 17 A.41 4.30 5.90 4.58 2 ^e 12 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 14 4.37 4.10 4.81 4.19							
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 12 & NA & 4.00 & 4.00 & 4.00 \\ Exp. 1 Mean & NA & 4.20 & 4.00 & 4.00 \\ 2^{e} & 8 & 4.00 & 4.57 & 4.00 & 4.00 \\ 2^{e} & 8 & 4.00 & 4.57 & 4.00 & 4.00 \\ 15 & 4.00 & 4.00 & 4.00 & 4.56 \\ \hline Exp. 2 Mean & 4.16 & 4.19 & 4.13 & 4.09 \\ \hline Overall Mean & 4.16 & 4.19 & 4.13 & 4.09 \\ \hline 0 Verall Mean & NA & 4.71 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ \hline 14 & NA & 4.71 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ \hline 2^{e} & 5 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ \hline 2^{e} & 5 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ \hline 2^{e} & 5 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & NA & 4.45 & 4.57 & 4.60 & 5.51 \\ 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline L. reuteri WB-75 & 4.61 & NA & 4.49 & 4.52 & 4.50 \\ \hline L. reuteri WB-75 & 4.61 & NA & 4.49 & 4.52 & 4.50 \\ \hline L. reuteri WB-75 & 4.61 & NA & 4.49 & 4.52 & 4.50 \\ \hline L. acidophilus L-23 & 5 & NA & 4.00 & 4.61 & 4.56 \\ \hline 1^{d} & 6 & NA & 4.49 & 4.43 & 4.00 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline L. acidophilus L-23 & 7 & 4.41 & 4.30 & 5.90 & 4.58 \\ \hline 2^{e} & 12 & 4.00 & 4.00 & 4.00 & 4.00 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline 0 Verall Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline 16 & NA & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline $		d					
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} Exp. 1 Mean NA 4.20 4.00 4.00 4.00 2^{6} 8 4.00 4.57 4.00 4.00 2^{6} 8 4.00 4.57 4.00 4.00 4.56 15 4.00 4.00 4.00 4.56 Exp. 2 Mean 4.16 4.19 4.26 4.19 0verall Mean 4.16 4.19 4.26 4.19 0verall Mean 4.16 4.19 4.13 4.09 10 NA 6.90 6.46 4.54 14 NA 4.71 4.00 4.00 4.00 11 0 NA 6.90 6.46 4.54 14 NA 4.71 4.00 4.48 Exp. 1 Mean NA 4.79 4.56 4.19 4.12 2^{6} 5 4.00 4.00 4.00 4.00 4.00 11 5.76 4.64 4.18 4.43 Exp. 2 Mean 4.37 4.10 4.81 4.19 0verall Mean 4.37 4.10 4.81 4.19 0verall Mean 4.37 4.45 4.57 4.00 11^{d} 7 NA 4.57 4.60 5.51 11 NA 4.45 4.57 4.60 5.51 11 NA 4.46 4.38 4.00 10 10 4.00 4.00 4.00 4.00 10 10 4.00 4.0$		1 ^u					
L. reuteri DS-33 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$L. reuteri WB-74 = \begin{bmatrix} 2^{e} & 8 & 4.00 & 4.57 & 4.00 & 4.00 \\ 15 & 4.00 & 4.00 & 4.00 & 4.56 \\ \hline Exp. 2 Mean & 4.16 & 4.19 & 4.26 & 4.19 \\ \hline Overall Mean & 4.16 & 4.19 & 4.13 & 4.09 \\ \hline Overall Mean & 4.16 & 4.19 & 4.13 & 4.09 \\ \hline 1^{d} & 10 & NA & 4.40 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.48 \\ \hline Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ 4 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.57 & 4.00 \\ 1^{d} & 7 & NA & 4.57 & 4.60 & 5.51 \\ 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline 10 & 4.00 & 4.00 & 4.00 & 4.01 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.01 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.01 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.01 \\ \hline 10 & 4.00 & 4.48 & 4.04 & 4.74 \\ \hline Exp. 2 Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline Exp. 2 Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline \end{bmatrix}$		Exp					
$L. reuteri WB-74 = \begin{bmatrix} 15 & 4.00 & 4.00 & 4.00 & 4.56 \\ Exp. 2 Mean & 4.16 & 4.19 & 4.26 & 4.19 \\ \hline 0 Verall Mean & 4.16 & 4.19 & 4.13 & 4.09 \\ \hline 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.48 \\ \hline 14 & NA & 4.79 & 4.56 & 4.19 \\ \hline 2^{e} & 5 & 4.00 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 5 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline 0 Verall Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline 0 Verall Mean & A.37 & 4.45 & 4.57 & 4.00 \\ 1^{d} & 7 & NA & 4.57 & 4.60 & 5.51 \\ 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.49 & 4.52 & 4.50 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ \hline 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ \hline 10 & 4.00 & 4.48 & 4.04 & 4.74 \\ \hline Exp. 2 Mean & 4.65 & 4.16 & 4.01 & 4.38 \\ \hline 0 Verall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline \end{bmatrix}$	L. reuteri DS-33						
$L. reuteri WB-74 = \begin{bmatrix} Exp. 2 Mean & 4.16 & 4.19 & 4.26 & 4.19 \\ \hline Overall Mean & 4.16 & 4.19 & 4.13 & 4.09 \\ \hline 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ \hline 14 & NA & 4.71 & 4.00 & 4.40 \\ \hline 14 & NA & 4.71 & 4.00 & 4.48 \\ \hline Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline 4 & 4.00 & 4.00 & 4.00 & 4.00 \\ \hline 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline 0 Verall Mean & NA & 4.49 & 4.52 & 4.50 \\ \hline 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline 12^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.01 \\ \hline 2^{e} & 9 & 4.00 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.41 \\ 2^{e} & 9 & 4.00 & 4.00 & 4.41 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline 13 & 4.71 & 4.00 & 4.00 & 4.53 \\ \hline 2^{e} & 12 & 4.00 & 4.00 & 4.53 & 4.00 \\ \hline 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline \end{array}$		2 ^e					
$L. reuteri WB-74 = \begin{bmatrix} 1 & NA & 4.40 & 4.00 & 4.00 \\ 1^{d} & 10 & NA & 6.90 & 6.46 & 4.54 \\ 14 & NA & 4.71 & 4.00 & 4.48 \\ Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ 4 & 4.00 & 4.00 & 4.00 & 4.40 \\ 2^{e} & 5 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline \\ L. reuteri WB-75 & \begin{bmatrix} 4 & NA & 4.45 & 4.57 & 4.00 \\ 1^{d} & 7 & NA & 4.57 & 4.60 & 5.51 \\ 11 & NA & 4.46 & 4.38 & 4.00 \\ Exp. 1 Mean & NA & 4.49 & 4.52 & 4.50 \\ \hline \\ & Exp. 2 Mean & 4.65 & 4.16 & 4.01 & 4.38 \\ \hline \\ & Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline \\ L. acidophilus L-23 & \begin{bmatrix} 5 & NA & 4.00 & 4.61 & 4.56 \\ 1^{d} & 6 & NA & 4.49 & 4.43 & 4.00 \\ 15 & NA & 5.88 & 4.64 & 4.00 \\ 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline \\ & Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline \\ & 2^{e} & 12 & 4.00 & 4.00 & 4.53 & 4.00 \\ \hline \\ & 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline \\ & Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline \end{array}$							
L. reuteri WB-74 $L. reuteri WB-74$ $L. reuteri WB-74$ $\frac{1}{4} \begin{array}{c} 1 \\ 10 \\ 1^{d} \\ 10 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$							4.19
L. reuteri WB-74 $ \begin{array}{c} 1^{d} 10 \\ 14 \\ 14 \\ NA \\ 4.71 \\ 4.00 \\ 4.11 \\ 5.76 \\ 4.64 \\ 4.18 \\ 4.19 \\ 0 \\ 0 \\ 11 \\ 5.76 \\ 4.64 \\ 4.18 \\ 4.19 \\ 0 \\ 0 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.44 \\ 4.52 \\ 4.50 \\ 10 \\ 4.00 \\$		Over	all Mean	4.16	4.19	4.13	4.09
L. reuteri WB-74 $ \begin{array}{c} 1^{d} 10 \\ 14 \\ 14 \\ NA \\ 4.71 \\ 4.00 \\ 4.11 \\ 5.76 \\ 4.64 \\ 4.18 \\ 4.19 \\ 0 \\ 0 \\ 11 \\ 5.76 \\ 4.64 \\ 4.18 \\ 4.19 \\ 0 \\ 0 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.45 \\ 4.69 \\ 4.19 \\ 19 \\ 0 \\ 10 \\ 4.00 \\ 4.44 \\ 4.52 \\ 4.50 \\ 10 \\ 4.00 \\$			1	ΝΔ	4.40	4.00	4.00
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{c} 14 & NA & 4.71 & 4.00 & 4.48 \\ Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ 4 & 4.00 & 4.00 & 4.00 & 4.00 \\ 12^{6} & 5 & 4.00 & 4.00 & 4.00 & 4.00 \\ 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & A.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & A.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & NA & 4.45 & 4.57 & 4.60 & 5.51 \\ \hline 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.49 & 4.52 & 4.50 \\ \hline 6 & 5.94 & 4.00 & 4.00 & 4.00 \\ \hline 2^{6} & 9 & 4.00 & 4.00 & 4.00 & 4.00 \\ \hline 10 & 4.00 & 4.48 & 4.04 & 4.74 \\ \hline Exp. 2 Mean & 4.65 & 4.16 & 4.01 & 4.38 \\ \hline Overall Mean & A.65 & 4.16 & 4.01 & 4.38 \\ \hline Overall Mean & A.65 & 4.16 & 4.01 & 4.38 \\ \hline Overall Mean & NA & 4.49 & 4.43 & 4.00 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline L. acidophilus L-23 & 7 & 4.41 & 4.30 & 5.90 & 4.58 \\ 2^{6} & 12 & 4.00 & 4.00 & 4.53 & 4.00 \\ \hline 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline \end{array} $		1 ^d	-				
L. reuteri WB-74 $ \begin{array}{c} Exp. 1 Mean NA 4.79 4.56 4.19 \\ 4 4.00 4.00 4.00 4.00 4.41 \\ 2^{e} 5 4.00 4.00 4.00 4.00 \\ 11 5.76 4.64 4.18 4.43 \\ Exp. 2 Mean 4.37 4.10 4.81 4.19 \\ \hline Overall Mean 4.37 4.45 4.69 4.19 \\ \hline Overall Mean 4.37 4.45 4.69 4.19 \\ \hline Overall Mean A.37 4.45 4.57 4.00 \\ 1^{d} 7 NA 4.57 4.60 5.51 \\ 11 NA 4.46 4.38 4.00 \\ \hline Exp. 1 Mean NA 4.49 4.52 4.50 \\ \hline Cxevelone B-75 6 5.94 4.00 4.00 4.00 4.01 \\ 2^{e} 9 4.00 4.00 4.00 4.00 4.01 \\ 10 4.00 4.48 4.04 4.74 \\ \hline Exp. 2 Mean 4.65 4.16 4.01 4.38 \\ \hline Overall Mean 4.65 4.33 4.27 4.44 \\ \hline Cxevelone B-75 A 4.00 A.00 A.00 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.00 A.00 A.00 \\ \hline Cxevelone B-75 A 4.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 A.00 \\ \hline Cxevelone B-75 A 4.00 A.00 A.00 \\ \hline Cxevelone B-75 A 4.00 A.00 A.00 \\ \hline Cxevelone B-75 A 4.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 A.00 \\ \hline Cxevelone B-75 A 4.37 A.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.37 A.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.37 A.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.37 A.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.37 A.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.37 A.10 A.81 A.19 \\ \hline Cxevelone B-75 A 4.00 A.00 \\ \hline Cxevelone B-75 A 4.00 A.00 $		1					
L. reuteri WB-74 $2^{e} 5 4.00 4.00 4.00 4.00 4.00 4.00 11 5.76 4.64 4.18 4.43 4.43 Exp. 2 Mean 4.37 4.10 4.81 4.19 Overall Mean 4.37 4.45 4.69 4.19 Overall Mean 4.37 4.45 4.69 4.19 0verall Mean 4.37 4.45 4.57 4.00 1d 7 NA 4.57 4.60 5.51 11 NA 4.46 4.38 4.00 Exp. 1 Mean NA 4.49 4.52 4.50 6 5.94 4.00 4.00 4.01 4.41 2^{e} 9 4.00 4.00 4.00 4.00 4.00 10 4.00 4.48 4.04 4.74 Exp. 2 Mean 4.65 4.16 4.01 4.38 Overall Mean 4.65 4.33 4.27 4.44 0verall Mean 4.65 4.33 4.27 4.44 0verall Mean 14.65 4.33 4.27 4.44 10 Exp. 1 Mean NA 4.49 4.43 4.00 15 NA 5.88 4.64 4.00 13 4.71 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.0$		Exp					
$L. \ acidophilus L-23 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	I routori WB-74						
$L. \ acidophilus L-23 = \begin{bmatrix} 11 & 5.76 & 4.64 & 4.18 & 4.43 \\ Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.69 & 4.19 \\ \hline Overall Mean & 4.37 & 4.45 & 4.57 & 4.00 \\ 1^d & 7 & NA & 4.57 & 4.60 & 5.51 \\ \hline 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.49 & 4.52 & 4.50 \\ \hline 6 & 5.94 & 4.00 & 4.00 & 4.00 \\ \hline 10 & 4.00 & 4.48 & 4.04 & 4.74 \\ \hline Exp. 2 Mean & 4.65 & 4.16 & 4.01 & 4.38 \\ \hline Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline \\ L. \ acidophilus L-23 & \hline T & 4.41 & 4.30 & 5.90 & 4.58 \\ 2^e & 12 & 4.00 & 4.00 & 4.00 & 4.00 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline \end{array}$	L. TEULETT WD-14	0 ^e					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2					
$L. \ reuteri \ WB-75$ $\frac{4}{10} A \\ -7 NA \\ -4 A.45 \\ -7 A.45 \\ -7 A.60 \\ -7 A.60 \\ -5.94 \\ -4.00 \\ -5.88 \\ -6.4 \\ -4.00 \\ -5.88 \\ -6.4 \\ -5.90 \\ -5$		Evo					
L. reuteri WB-75 $\begin{array}{ c c c c c c c c } & 4 & NA & 4.45 & 4.57 & 4.00 \\ 1^{d} & 7 & NA & 4.57 & 4.60 & 5.51 \\ & 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline & Exp. 1 Mean & NA & 4.49 & 4.52 & 4.50 \\ \hline & 6 & 5.94 & 4.00 & 4.00 & 4.00 \\ 10 & 4.00 & 4.00 & 4.00 & 4.00 \\ 10 & 4.00 & 4.48 & 4.04 & 4.74 \\ \hline & Exp. 2 Mean & 4.65 & 4.16 & 4.01 & 4.38 \\ \hline & Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline & & & & & & \\ L. acidophilus L-23 & \hline & & & & & \\ & & & & & & & & \\ L. acidophilus L-23 & \hline & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ L. acidophilus L-23 & \hline & & & & & & & \\ & & & & & & & & & &$							
$L. reuteri WB-75 = \begin{bmatrix} 1^{d} & 7 & NA & 4.57 & 4.60 & 5.51 \\ 11 & NA & 4.46 & 4.38 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.49 & 4.52 & 4.50 \\ \hline & 6 & 5.94 & 4.00 & 4.00 & 4.00 \\ 10 & 4.00 & 4.00 & 4.00 & 4.00 \\ 10 & 4.00 & 4.48 & 4.04 & 4.74 \\ \hline & Exp. 2 Mean & 4.65 & 4.16 & 4.01 & 4.38 \\ \hline & Overall Mean & 4.65 & 4.33 & 4.27 & 4.44 \\ \hline & & & & & & & & & & & & & & & & & &$		Over		4.37	4.40	4.09	4.19
L. reuteri WB-75 $\frac{11}{2^{e}} \frac{NA}{4.46} \frac{4.38}{4.38} \frac{4.00}{4.00}$ Exp. 1 Mean NA 4.49 4.52 4.50 6 5.94 4.00 4.00 4.00 4.01 2 ^e 9 4.00 4.00 4.00 4.00 10 4.00 4.48 4.04 4.74 Exp. 2 Mean 4.65 4.16 4.01 4.38 Overall Mean 4.65 4.33 4.27 4.44 $\frac{5}{1^{d}} \frac{5}{6} \frac{NA}{4.49} \frac{4.43}{4.43} \frac{4.00}{4.00}$ Exp. 1 Mean NA 4.79 4.56 4.19 $\frac{7}{13} \frac{4.41}{4.71} \frac{4.30}{4.30} \frac{5.90}{5.90} \frac{4.58}{4.58}$ 2 ^e 12 4.00 4.00 4.00 4.00 13 4.71 4.00 4.00 4.00 Exp. 2 Mean 4.37 4.10 4.81 4.19			4	NA	4.45	4.57	4.00
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 ^d	7	NA	4.57	4.60	5.51
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			11			4.38	
L. reuteri WB-75 2^{e} 9 4.00 4.00 4.00 4.41 2^{e} 9 4.00 4.00 4.00 4.00 4.00 10 4.00 4.48 4.04 4.74 Exp. 2 Mean 4.65 4.16 4.01 4.38 Overall Mean 4.65 4.33 4.27 4.44 5 NA 4.00 4.61 4.56 1^{d} 6 NA 4.49 4.43 4.00 15 NA 5.88 4.64 4.00 Exp. 1 Mean NA 4.79 4.56 4.19 2^{e} 12 4.00 4.00 4.53 4.00 13 4.71 4.00 4.00 4.00 Exp. 2 Mean 4.37 4.10 4.81 4.19		Exp	. 1 Mean				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L. reuteri WB-75						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ^e	9				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$L. acidophilus L-23 = \begin{bmatrix} 5 & NA & 4.00 & 4.61 & 4.56 \\ 1^{d} & 6 & NA & 4.49 & 4.43 & 4.00 \\ 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ 7 & 4.41 & 4.30 & 5.90 & 4.58 \\ 2^{e} & 12 & 4.00 & 4.00 & 4.53 & 4.00 \\ 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline \end{bmatrix}$		Exp					
$L. acidophilus L-23 = \begin{bmatrix} 1^d & 6 & NA & 4.49 & 4.43 & 4.00 \\ 15 & NA & 5.88 & 4.64 & 4.00 \\ \hline Exp. 1 Mean & NA & 4.79 & 4.56 & 4.19 \\ \hline 7 & 4.41 & 4.30 & 5.90 & 4.58 \\ 2^e & 12 & 4.00 & 4.00 & 4.53 & 4.00 \\ \hline 13 & 4.71 & 4.00 & 4.00 & 4.00 \\ \hline Exp. 2 Mean & 4.37 & 4.10 & 4.81 & 4.19 \\ \hline \end{bmatrix}$		Over	all Mean	4.65	4.33	4.27	4.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>			4.00		4 = 6
15 NA 5.88 4.64 4.00 Exp. 1 Mean NA 4.79 4.56 4.19 7 4.41 4.30 5.90 4.58 2 ^e 12 4.00 4.00 4.53 4.00 13 4.71 4.00 4.00 4.00 Exp. 2 Mean 4.37 4.10 4.81 4.19		d					
Exp. 1 Mean NA 4.79 4.56 4.19 L. acidophilus L-23 7 4.41 4.30 5.90 4.58 2 ^e 12 4.00 4.00 4.53 4.00 13 4.71 4.00 4.00 4.00 Exp. 2 Mean 4.37 4.10 4.81 4.19		1 [°]					
L. acidophilus L-23 2 ^e 12 4.00 4.00 4.53 4.00 13 4.71 4.00 4.00 4.00 Exp. 2 Mean 4.37 4.10 4.81 4.19							
2° 12 4.00 4.00 4.53 4.00 13 4.71 4.00 4.00 4.00 Exp. 2 Mean 4.37 4.10 4.81 4.19		Exp					
134.714.004.004.00Exp. 2 Mean4.374.104.814.19	L. acidophilus L-23						
Exp. 2 Mean 4.37 4.10 4.81 4.19		2 ^e					
Overall Mean 4.37 4.45 4.69 4.19					4.10	4.81	4.19
		Over	all Mean	4.37	4.45	4.69	4.19

Table B10. Study 1 weekly fecal counts of Campylobacter^a (Log₁₀ cfu/mL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cNA - not analyzed

^dExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0 ^c	Week 1	Week 2	Week 3
		3	NA	-	-	+
	1 ^d	8	NA	+	-	+
		13	NA	-	-	-
	Ex	p. 1 Mean	NA	1	0	2
Control		1	-	-	-	-
	2 ^e	3	+	+	-	+
		14	+	+	+	+
	Ex	p. 2 Mean	2	2	1	2
	Ove	erall Mean	2	3	1	4
		2	NA	-	-	-
	1 ^d	9	NA	+	-	-
		12	NA	-	-	-
	Ex	p. 1 Mean	NA	1	0	0
L. reuteri DS-33		2	+	-	+	-
	2 ^e	8	-	+	-	-
		15	-	-	-	+
	Ex	p. 2 Mean	1	1	1	1
		erall Mean	1	2	1	1
			-			
		1	NA	+	-	-
	1 ^d	10	NA	+	+	+
		14	NA	+	_	+
	Ex	p. 1 Mean	NA	3	1	2
L. reuteri WB-74		4	-	-	-	+
	2 ^e	5	-	-	-	_
		11	+	+	+	+
	Ex	p. 2 Mean	1	1	1	2
		erall Mean	1	4	2	4
			•	•	-	•
		4	NA	+	+	-
	1 ^d	7	NA	+	+	+
		11	NA	+	+	_
	Ex	p. 1 Mean	NA	3	3	1
L. reuteri WB-75		6	+	-	-	+
	2 ^e	9	-	-	-	-
		10	-	+	+	+
	Ex	p. 2 Mean	1	1	1	2
		erall Mean	1	4	4	3
			-			
		5	NA	-	+	+
	1 ^d	6	NA	+	+	-
	l '	15	NA	+	+	-
	Ex	p. 1 Mean	NA	2	3	1
L. acidophilus L-23		7	+	+	+	+
	2 ^e	, 12	-	-	+	-
	-	13	+	-	-	-
	Fx	p. 2 Mean	2	1	2	1
		erall Mean	2	3	5	2
	000		2	5	5	2

Table B11. Study 1 testing of weekly fecal cultures of Campylobacter positives^a

^bDescription of treatments, experiments, and pigs - see Table B2

^cNA - not analyzed

^dExperiment 1 were barrows

		positive	∋s°			
Treatment ^b	Exp. ^b	Pig⁵	Day 0	Week 1	Week 2	Week
		3	+	+	+	+
	1 ^c	8	+	+	+	+
		13	+	+	+	+
	Ex	p. 1 Mean	3	3	3	3
Control		1	-	-	-	-
	2 ^d	3	+	+	+	+
		14	+	+	+	+
	Ex	p. 2 Mean	2	2	2	2
	Ove	erall Mean	5	5	5	5
	r					
	1 ^c	2 9	+	+	+	+
	1.	9 12	+	+	+	+
			+	+	+	+
	EX	p. 1 Mean 2	3+	3	3	3
L. reuteri DS-33	2 ^d	2 8	+	+	+	+
	2		-	+	+	+
		15	+ 2	+ 3	+ 3	- 2
		p. 2 Mean	—			
	00	erall Mean	5	6	6	5
		1	+	+	+	-
	1 ^c	10	+	+	+	+
		14	+	+	+	+
	Fx	p. 1 Mean	3	3	3	2
L. reuteri WB-74		4	+	+	+	+
	2 ^d	5	_	_	_	-
	-	11	+	+	+	-
	Fx	p. 2 Mean	2	2	2	1
		erall Mean	5	5	5	3
		4	+	+	-	+
	1 ^c	7	+	+	+	+
		11	+	+	+	+
	Ex	p. 1 Mean	3	3	2	3
. reuteri WB-75		6	+	+	+	+
	2 ^d	9	+	+	+	-
		10	+	+	+	+
		p. 2 Mean	3	3	3	2
	Ove	erall Mean	6	6	5	5
	1					
	1 ^c	5 6	+	+	+	+
		ь 15	+ +	++	+	+ +
	Ev	p. 1 Mean	3	3	2	3
			5			
acidonhilus 1-22			L.	<u></u>		<u>т</u>
L. acidophilus L-23		7	+	+	+	+
L. acidophilus L-23	2 ^d	7 12	-	+	+ +	+ -
L. acidophilus L-23	2 ^d	7				+ - - 1

Table B12. Study 1 testing of weekly fecal enrichment cultures of *Campylobacter* positives^a

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

		positive	∋s∽			
Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week
		3	-	-	-	-
	1 ^c	8	-	-	-	-
		13	-	-	-	-
	Ex	p. 1 Mean	0	0	0	0
Control		1	-	-	-	-
	2 ^d	3	-	-	-	-
		14	-	-	-	-
	Ex	p. 2 Mean	0	0	0	0
	Ove	erall Mean	0	0	0	0
		2	-	-	-	-
	1 ^c	9	-	-	-	-
		12	-	-	-	-
	Ex	p. 1 Mean	0	0	0	0
L. reuteri DS-33		2	-	-	-	-
	2 ^d	8	-	-	-	-
		15	-	-	-	-
		p. 2 Mean	0	0	0	0
	Ove	erall Mean	0	0	0	0
		1	-	-	-	-
	1 ^c	10	-	-	-	-
		14	-	-	-	-
	Ex	p. 1 Mean	0	0	0	0
. reuteri WB-74		4	-	-	-	-
	2 ^d	5	-	-	-	-
		11	-	-	-	-
		p. 2 Mean	0	0	0	0
	Ove	erall Mean	0	0	0	0
		4				
	1 ^c	4 7	-	-	-	-
	1-	7 11	-	-	-	-
	Ev	p. 1 Mean	- 0	0	0	0
L. reuteri WB-75		<u>6</u>	-	-	0	-
L. IEULEII VVD-13	2 ^d	6 9	-	-	-	-
	2°	9 10	-	-	-	-
	Evi	p. 2 Mean	- 0	0	0	0
		erall Mean	0	0	0	0
	000		0	0	0	0
		5	-	-	-	-
	1 ^c	6	-	-	-	-
		15	-	-	-	-
	Fx	p. 1 Mean	0	0	0	0
L. acidophilus L-23		7	-	-	-	-
	2 ^d	, 12	-	-	-	-
	-	13	-	-	-	-
	Ex	p. 2 Mean	0	0	0	0
		erall Mean		-	-	-

Table B13. Study 1 testing of weekly fecal enrichment cultures of Salmonella positives^a

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	135	117	116	123
	1 ^b	8	122	112	109	120
		13	126	111	95	113
ľ	Exp.	1 Mean	128	113	107	119
Control		1	111	117	103	133
	2 ^c	3	131	112	119	140
	-	14	110	111	107	116
	Exp.	2 Mean	117	113	110	130
		all Mean	123	113	108	124
		2	124	127	117	130
	1 ^b	9	129	120	144	142
		12	110	86	105	124
	Exp.	1 Mean	120	111	122	132
L. reuteri DS-33		2	124	127	111	122
	2 ^c	8	99	120	114	106
		15	96	86	133	104
	Exp. 2 Mean		106	111	119	111
	Over	all Mean	112	111	121	121
		4	400	404	404	440
	۰h	1	126	131	121	113
	1 ^b	10	133	141	135	133
-		14	106	105	101	90
	Exp.	1 Mean	120	126	119	112
L. reuteri WB-74		4	105	131	108	152
	2 ^c	5	103	141	101	136
		11	124	105	125	128
=		2 Mean	111	126	111	139
	Over	all Mean	114	126	115	125
ſ		4	126	112	114	128
	1 ^b	7	123	112	117	120
	I	, 11	123	101	109	121
	Evn	1 Mean	104	110	113	122
	∟∧p.			110		
l reuteri WR-75		h	1∩0	112	104	111
L. reuteri WB-75	2 ^c	6 9	109 119	112 116	104 102	111 127
L. reuteri WB-75	2 ^c	9	119	116	102	127
L. reuteri WB-75		9 10	119 119	116 101	102 108	127 145
L. reuteri WB-75	Exp.	9 10 2 Mean	119 119 116	116 101 110	102 108 105	127 145 128
L. reuteri WB-75	Exp.	9 10	119 119	116 101	102 108	127 145
L. reuteri WB-75	Exp.	9 10 2 Mean	119 119 116	116 101 110	102 108 105	127 145 128
L. reuteri WB-75	Exp.	9 10 2 Mean all Mean	119 <u>119</u> <u>116</u> 117 123	116 101 110 110 120	102 108 105 109 118	127 145 128 125 118
L. reuteri WB-75	Exp. Over	9 10 2 Mean all Mean 5 6	119 119 116 117 123 132	116 101 110 110 120 112	102 108 105 109 118 103	127 145 128 125 118 118 115
L. reuteri WB-75	Exp. Over	9 10 2 Mean all Mean 5 6 15	119 <u>119</u> <u>116</u> <u>117</u> 123 132 116	116 101 110 110 120 112 131	102 108 105 109 118 103 106	127 145 128 125 118 118 115 125
	Exp. Over	9 10 2 Mean all Mean 5 6 15 . 1 Mean	119 119 116 117 123 132 116 124	116 101 110 110 120 112 131 121	102 108 105 109 118 103 106 109	127 145 128 125 118 115 125 119
L. reuteri WB-75	Exp. Over 1 ^b Exp.	9 10 2 Mean all Mean 5 6 15 1 Mean 7	119 119 116 117 123 132 116 124 99	116 101 110 110 120 112 131 121 120	102 108 105 109 118 103 106 109 126	127 145 128 125 118 115 125 119 131
	Exp. Over	9 10 2 Mean all Mean 5 6 15 1 Mean 7 12	119 119 116 117 123 132 116 124 99 101	116 101 110 120 112 131 121 120 120 112	102 108 105 109 118 103 106 109 126 97	127 145 128 125 118 115 125 119 131 140
	Exp. Over 1 ^b Exp. 2 ^c	9 10 2 Mean all Mean 5 6 15 1 Mean 7 12 13	119 119 116 117 123 132 116 124 99 101 109	116 101 110 120 112 131 121 120 112 120 112 131	102 108 105 109 118 103 106 109 126 97 105	127 145 128 125 118 115 125 119 131 140 176
	Exp. Over 1 ^b Exp. 2 ^c Exp.	9 10 2 Mean all Mean 5 6 15 1 Mean 7 12	119 119 116 117 123 132 116 124 99 101	116 101 110 120 112 131 121 120 120 112	102 108 105 109 118 103 106 109 126 97	127 145 128 125 118 115 125 119 131 140

Table B14. Study 1 weekly glucose levels (mg/dL)

^bExperiment 1 were barrows

Control $\begin{array}{c} 3 & 9 & 8 & 9 \\ 1^6 & 8 & 12 & 8 & 9 \\ 13 & 9 & 15 & 6 & 4 \\ \hline 13 & 9 & 15 & 6 & 4 \\ \hline 14 & 11 & 18 & 6 & 4 \\ 2^d & 3 & 10 & 8 & 6 & 4 \\ \hline 14 & 8 & 15 & 8 & 1 \\ \hline 2^d & 3 & 10 & 10 & 7 & 4 \\ \hline 0 & 0 & 0 & 10 & 10 & 7 & 4 \\ \hline 0 & 0 & 0 & 0 & 10 & 7 & 4 \\ \hline 0 & 0 & 0 & 0 & 10 & 10 & 7 & 4 \\ \hline 0 & 0 & 0 & 0 & 10 & 10 & 7 & 4 \\ \hline 0 & 0 & 0 & 0 & 10 & 10 & 7 & 4 \\ \hline 0 & 0 & 0 & 0 & 10 & 10 & 7 & 4 \\ \hline 12 & 10 & 8 & 9 & 9 \\ \hline 12 & 10 & 8 & 9 & 9 \\ \hline 12 & 10 & 8 & 9 & 9 \\ \hline 12 & 10 & 8 & 9 & 9 \\ \hline 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 12 & 10 & 8 & 9 & 9 & 10 & 9 & 9 \\ \hline 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 2 & 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 2 & 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 2 & 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 2 & 2 & 7 & 8 & 8 & 8 & 9 & 9 \\ \hline 2 & 2 & 7 & 8 & 7 & 10 & 7 & 9 \\ \hline 0 & 2 & 7 & 10 & 7 & 8 & 9 & 9 \\ \hline 1 & 1 & 10 & 9 & 8 & 7 & 10 & 7 & 9 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 7 & 1 \\ \hline 0 & 0 & 0 & 7 & 6 & 9 & 9 \\ \hline 0 & 0 & 7 & 6 & 9 & 12 & 1 & 10 & 8 & 1 \\ \hline 1 & 1 & 0 & 7 & 6 & 9 & 12 & 1 & 10 & 8 & 1 \\ \hline 1 & 1 & 0 & 7 & 6 & 9 & 12 & 1 & 10 & 10 & 7 & 1 \\ \hline 1 & 0 & 0 & 0 & 7 & 6 & 9 & 12 & 1 & 10 & 10 & 7 & 1 \\ \hline 1 & 0 & 0 & 0 & 7 & 6 & 9 & 12 & 1 & 10 & 10 & 7 & 1 \\ \hline 1 & 1 & 0 & 7 & 6 & 9 & 12 & 1 & 10 & 10 & 7 & 1 \\ \hline 1 & 0 & 0 & 0 & 7 & 0 & 9 & 12 & 1 & 10 & 10 & 7 & 1 \\ \hline 1 & 0 & 0 & 7 & 1 & 0 & 9 & 12 & 1 & 10 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 7 & 0 & 9 & 12 & 1 & 10 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 7 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	Treatment ^b	Exp. ^b	Pig ^b		Week 1		Week 3
Control $\begin{array}{c} 1^{c} & 8 & 12 & 8 & 9 \\ & 13 & 9 & 15 & 6 & 4 \\ \hline & Exp. 1 Mean & 10 & 10 & 8 & 6 \\ 2^{d} & 3 & 10 & 8 & 6 & 4 \\ \hline 2^{d} & 3 & 10 & 10 & 7 & 4 \\ \hline 2^{d} & 3 & 10 & 10 & 7 & 4 \\ \hline & Exp. 2 Mean & 10 & 10 & 7 & 4 \\ \hline & Overall Mean & 10 & 10 & 7 & 4 \\ \hline & Overall Mean & 10 & 10 & 7 & 4 \\ \hline & 0 & 2 & 7 & 8 & 8 & 9 & 4 \\ \hline & 1^{c} & 9 & 9 & 13 & 10 & 9 & 4 \\ \hline & 12 & 10 & 8 & 9 & 9 & 4 \\ \hline & 1^{c} & 9 & 9 & 13 & 10 & 9 & 4 \\ \hline & 12 & 10 & 8 & 9 & 9 & 4 \\ \hline & 12 & 10 & 8 & 9 & 9 & 4 \\ \hline & 12 & 10 & 8 & 9 & 9 & 4 \\ \hline & 12 & 10 & 8 & 9 & 4 \\ \hline & 2^{d} & 8 & 7 & 13 & 7 & 4 \\ \hline & 2^{d} & 8 & 7 & 13 & 7 & 4 \\ \hline & 2^{d} & 8 & 7 & 13 & 7 & 4 \\ \hline & 0 & 0 & 0 & 10 & 7 & 7 & 6 & 4 \\ \hline & 10 & 1^{c} & 10 & 9 & 8 & 7 & 7 & 6 & 4 \\ \hline & 11 & 13 & 16 & 7 & 9 & 9 & 12 & 1 \\ \hline & 0 & 0 & 0 & 10 & 7 & 10 & 7 & 4 \\ \hline & 10 & 0 & 0 & 10 & 7 & 10 & 7 & 4 \\ \hline & 10 & 0 & 0 & 10 & 7 & 1 & 10 & 7 & 4 \\ \hline & 11 & 13 & 16 & 7 & 9 & 12 & 1 \\ \hline & 0 & 0 & 0 & 10 & 10 & 7 & 1 \\ \hline & 1^{c} & 7 & 6 & 6 & 7 & 7 & 6 & 8 & 4 \\ \hline & 10 & 7 & 6 & 8 & 11 & 10 & 10 \\ \hline & 1^{c} & 7 & 6 & 6 & 7 & 7 & 6 & 8 \\ \hline & Exp. 1 & Mean & 9 & 10 & 8 & 1 \\ \hline & 10 & 7 & 6 & 9 & 12 & 1 \\ \hline & 1^{c} & 6 & 9 & 10 & 7 & 1 \\ \hline & 0 & 0 & 0 & 10 & 7 & 7 & 6 & 9 \\ \hline & Exp. 2 & Mean & 7 & 8 & 9 & 4 \\ \hline & 0 & 0 & 0 & 10 & 7 & 1 \\ \hline & 11 & 6 & 6 & 8 & 0 \\ \hline & 12^{d} & 12 & 11 & 10 & 8 & 1 \\ \hline & 13 & 9 & 7 & 5 & 1 \\ \hline & Exp. 2 & Mean & 11 & 9 & 7 & 1 \\ \hline \end{array}$	Treatment	Exp.		Day 0		Week 2	9
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$, C					
Control $ \begin{array}{c} Exp. 1 Mean 10 10 8 4 4 \\ 1 11 8 6 6 \\ 2^{d} 3 10 8 6 \\ 14 8 15 8 1 \\ Exp. 2 Mean 10 10 7 4 \\ Overall Mean 10 10 7 4 \\ Overall Mean 10 10 7 4 \\ Overall Mean 10 10 7 4 \\ 2 7 8 8 8 9 \\ 12 10 8 9 10 9 \\ 12 10 8 9 10 9 \\ 2 7 8 8 8 9 \\ 2 7 8 8 8 9 \\ 2 7 8 8 8 9 \\ 2 7 8 8 8 9 \\ 2 7 8 8 8 9 \\ 2 2 7 8 8 8 9 \\ 2 2 7 8 8 8 9 \\ 2 2 7 8 8 8 9 \\ 2 2 7 8 8 8 9 \\ 2 2 7 8 8 8 9 \\ 2 2 7 8 8 8 9 \\ 2 2 4 8 7 13 7 \\ 15 7 8 6 6 9 \\ 2 2 4 8 7 13 7 \\ 15 7 8 6 \\ Exp. 2 Mean 7 10 7 \\ Overall Mean 9 10 8 9 \\ 2 4 4 10 5 7 1 \\ 2 4 5 7 8 7 4 \\ 14 11 16 10 1 \\ Exp. 1 Mean 9 10 8 9 \\ 2 4 5 7 8 7 1 \\ 2 4 11 3 16 7 9 \\ 2 4 11 13 16 7 9 \\ 2 4 11 1 3 16 7 9 \\ 2 4 11 1 0 1 0 7 1 \\ Overall Mean 9 10 8 1 \\ 2 4 9 7 6 8 8 1 \\ 11 1 6 6 8 8 6 \\ Exp. 2 Mean 10 10 7 1 \\ 0 0 7 6 9 10 7 \\ 10 7 6 9 10 7 \\ 10 7 6 9 10 7 \\ 10 7 6 9 10 7 \\ 10 7 6 9 10 7 \\ 10 7 6 9 10 7 \\ 10 7 6 9 10 7 \\ 11 1 0 8 1 \\ 13 9 7 5 1 \\ 14 9 9 9 9 \\ 2 4 12 11 10 8 1 \\ 13 9 7 5 1 \end{array} $		1					7
Control $ \begin{array}{c} 1 & 11 & 8 & 6 \\ 2^{d} & 3 & 10 & 8 & 6 \\ 14 & 8 & 15 & 8 & 1 \\ \hline Exp. 2 Mean & 10 & 10 & 7 & 4 \\ \hline 0 & 0verall Mean & 10 & 10 & 7 & 4 \\ \hline 1 & 0 & 9 & 9 & 13 & 10 & 9 \\ 1 & 12 & 10 & 8 & 9 & 9 \\ \hline 1 & 12 & 10 & 8 & 9 & 9 \\ \hline 2 & 7 & 8 & 8 & 9 & 9 \\ \hline 2 & 7 & 8 & 8 & 9 & 9 \\ \hline 2 & 2^{d} & 8 & 7 & 13 & 7 & 9 \\ 2^{d} & 8 & 7 & 13 & 7 & 9 \\ \hline 2 & 2^{d} & 8 & 7 & 13 & 7 & 9 \\ \hline 2 & 2^{d} & 8 & 7 & 13 & 7 & 9 \\ \hline 2 & 2^{d} & 8 & 7 & 13 & 7 & 9 \\ \hline 2 & 2^{d} & 8 & 7 & 13 & 7 & 9 \\ \hline 2 & 15 & 7 & 8 & 6 & 9 \\ \hline 2 & 0 & 0verall Mean & 8 & 10 & 8 & 9 \\ \hline 1 & 1 & 6 & 5 & 7 & 1 \\ \hline 1 & 1 & 6 & 5 & 7 & 1 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 13 & 16 & 7 & 9 \\ \hline 1 & 1 & 1 & 10 & 10 & 7 & 1 \\ \hline 1 & 2^{d} & 9 & 7 & 6 & 6 & 8 & 1 \\ \hline 1 & 1 & 2^{d} & 9 & 7 & 6 & 8 & 1 \\ \hline 1 & 1 & 2^{d} & 9 & 7 & 6 & 8 & 9 & 9 \\ \hline 1 & 1 & 15 & 7 & 7 & 6 & 9 \\ \hline 1 & 15 & 7 & 7 & 6 & 9 \\ \hline 1 & 13 & 9 & 7 & 5 & 1 \\ \hline 1 & 13 & 9 & 7 & 5 & 1 \\ \hline \end{array} $		Evo		-			8
$L. reuteri DS-33 = \begin{bmatrix} 2^d & 3 & 10 & 8 & 6 & 4 \\ 14 & 8 & 15 & 8 & 1 \\ \hline Exp. 2 Mean & 10 & 10 & 7 & 4 \\ \hline Overall Mean & 10 & 10 & 7 & 4 \\ \hline Overall Mean & 10 & 10 & 7 & 4 \\ \hline 1^c & 9 & 9 & 13 & 10 & 9 \\ \hline 12 & 10 & 8 & 9 & 9 \\ \hline Exp. 1 Mean & 9 & 10 & 9 & 9 \\ \hline 2^d & 8 & 7 & 13 & 7 & 9 \\ \hline 2^d & 8 & 7 & 13 & 7 & 9 \\ \hline 15 & 7 & 8 & 6 & 9 \\ \hline 2^d & 8 & 7 & 13 & 7 & 9 \\ \hline 15 & 7 & 8 & 6 & 9 \\ \hline Exp. 2 Mean & 7 & 10 & 7 & 9 \\ \hline 0verall Mean & 8 & 10 & 8 & 9 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 2^d & 5 & 7 & 8 & 7 & 10 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline 10 & 7 & 6 & 6 & 7 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline 10 & 7 & 6 & 6 & 8 & 8 \\ \hline 2^d & 9 & 7 & 6 & 6 & 8 & 9 \\ \hline 0 & 10 & 7 & 6 & 9 & 9 \\ \hline 0 & 2^d & 9 & 7 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 9 & 10 & 7 & 10 \\ \hline 10 & 7 & 6 & 9 & 10 & 7 & 6 \\ \hline 11 & 6 & 6 & 8 & 8 & 11 & 10 & 11 \\ \hline 2^d & 9 & 7 & 6 & 6 & 8 & 11 \\ \hline 10 & 7 & 6 & 9 & 10 & 7 & 6 & 9 \\ \hline 0 & 15 & 7 & 7 & 6 & 8 \\ \hline 11 & 15 & 7 & 7 & 6 & 6 \\ \hline 12 & 0 & 7 & 6 & 9 & 10 & 7 & 6 & 9 \\ \hline 0 & 15 & 7 & 7 & 6 & 8 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline 1 & 2^d & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline \end{array}$	Control	⊏xp					8
14 8 15 8 1 Exp. 2 Mean 10 10 7 4 Overall Mean 10 10 7 4 L. reuteri DS-33 1^{c} 9 9 13 10 9 L. reuteri DS-33 2^{c} 7 8 8 9 10 9 9 L. reuteri DS-33 2^{d} 8 7 13 7 9 9 13 10 9 9 L. reuteri DS-33 2^{d} 8 7 13 7 9 9 13 10 9 9 13 10 9 10 9 10 10 10 10 10 10 10 10 10 10 11 11 16 11 13 16 7 11 10 10 11 11 13 16 7 11 10 11 11 11 11 11 11	Control	od	•				
Exp. 2 Mean 10 10 7 10 Overall Mean 10 10 7 10 7 10 L. reuteri DS-33 1^c 9 9 13 10 9 L. reuteri DS-33 1^c 9 9 13 10 9 2^d 7 8 8 9 9 2^d 7 8 8 9 9 2^d 8 7 13 7 9 2^d 8 7 13 7 9 2^d 8 7 13 7 9 Overall Mean 8 10 7 10 7 1^c 10 9 8 7 13 10 14 1^c 10 9 10 7 1 10 10 L. reuteri WB-74 1^c 16 5 7 11 13 16 7		2					8
L. reuteri DS-33 1 0 10 7 8 8 9 10 10 7 8 8 9 9 13 10 10 10 10 7 8 8 9 9 13 10 9 9 13 10 9 9 13 10 9 12 10 8 9 9 13 10 9 12 10 8 9 13 10 9 13 10 10 11 13 16 7 8 6 9 12 10 7 8 10 10 11 11 16 10 11 11 16 10 11 11 10 11 <th11< th=""> 11 11 <th11< <="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td></th11<></th11<>							10
L. reuteri DS-33							8
L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri		Over	all Mean	10	10	1	8
L. reuteri DS-33 L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 $1^{c} 5 9 9 13 10 9 12 11 10 7 12 7 8 8 9 9 12 11 13 9 7 5 12 11 10 7 12 12 11 10 12 12 11 10 12 12$			2	7	8	8	9
L. reuteri DS-33 $\begin{array}{ c c c c c c c c } \hline 12 & 10 & 8 & 9 & 9 \\ \hline Exp. 1 Mean & 9 & 10 & 9 & 9 \\ \hline 2 & 7 & 8 & 8 & 9 \\ 2^{d} & 8 & 7 & 13 & 7 & 9 \\ \hline 15 & 7 & 8 & 6 & 9 \\ \hline 15 & 7 & 8 & 6 & 9 \\ \hline 15 & 7 & 8 & 6 & 9 \\ \hline 0 & 0 & 0 & 10 & 7 & 9 \\ \hline 0 & 0 & 0 & 10 & 8 & 9 \\ \hline 1^{c} & 10 & 9 & 8 & 7 & 10 \\ \hline 1^{c} & 10 & 9 & 8 & 7 & 10 \\ \hline 1^{c} & 10 & 9 & 8 & 7 & 10 \\ \hline 1^{c} & 10 & 9 & 8 & 7 & 10 \\ \hline 1^{c} & 10 & 9 & 8 & 7 & 10 \\ \hline 2^{d} & 5 & 7 & 8 & 7 & 10 \\ \hline 2^{d} & 5 & 7 & 8 & 7 & 10 \\ \hline 2^{d} & 5 & 7 & 8 & 7 & 10 \\ \hline 2^{d} & 5 & 7 & 8 & 7 & 10 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline 12^{d} & 5 & 7 & 8 & 7 & 10 \\ \hline 10 & 0 & 0 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 10 & 10 & 7 & 1 \\ \hline 0 & 0 & 0 & 0 & 10 & 10 & 7 & 1 \\ \hline 1^{c} & 7 & 6 & 6 & 7 & 10 \\ \hline 11 & 6 & 6 & 8 & 8 & 10 \\ \hline 11 & 6 & 6 & 8 & 8 & 10 \\ \hline 12^{d} & 9 & 7 & 6 & 8 & 8 \\ \hline 0 & 0 & 0 & 0 & 10 & 7 & 0 \\ \hline 11 & 6 & 6 & 9 & 10 & 7 & 0 \\ \hline 12^{d} & 9 & 7 & 6 & 8 & 8 \\ \hline 0 & 0 & 0 & 0 & 0 & 7 & 0 \\ \hline 12 & 10 & 7 & 6 & 9 & 12 & 1 \\ \hline 1^{c} & 6 & 9 & 10 & 7 & 0 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 12 & 10 & 7 & 6 & 9 & 12 & 1 \\ \hline 1^{c} & 6 & 9 & 10 & 7 & 0 \\ \hline 12 & 0 & 7 & 14 & 9 & 9 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{array}$		1 ^C					9
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} Exp. 1 Mean 9 10 9 4 2 7 8 8 8 2^{d} 8 7 13 7 9 13 7 9 15 7 8 6 Exp. 2 Mean 7 10 7 0verall Mean 8 10 8 0 8 0 9 8 7 10 9 8 7 14 11 16 10 1 Exp. 1 Mean 9 10 8 14 11 16 10 1 Exp. 1 Mean 9 10 8 14 11 16 10 1 Exp. 1 Mean 9 10 8 14 10 5 7 1 2^{d} 5 7 8 7 12^{d} 5 7 8 7 11 13 16 7 Exp. 2 Mean 10 10 7 10 7 1 Overall Mean 9 10 8 11 13 16 7 Exp. 2 Mean 10 10 7 11 0 1 Overall Mean 9 10 8 10 8 11 13 16 7 Exp. 2 Mean 10 10 7 10 7 10 7 6 9 7 6 8 11 0 1 2^{d} 9 7 6 8 10 7 6 10 7 6 10 7 6 10 7 6 10 7 Exp. 2 Mean 7 8 9 0 Verall Mean 7 8 9 0 Verall Mean 7 8 9 0 Verall Mean 7 8 9 2^{d} 12 11 10 8 13 9 7 5 1 Exp. 2 Mean 11 9 7 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1 1 13 $							9
L. reuteri DS-33 $ \begin{array}{c} 2 & 7 & 8 & 8 \\ 2^{d} & 8 & 7 & 13 & 7 \\ 15 & 7 & 8 & 6 \\ \hline Exp. 2 Mean & 7 & 10 & 7 \\ \hline Overall Mean & 8 & 10 & 8 \\ \hline \hline exp. 2 Mean & 7 & 10 & 7 \\ \hline Overall Mean & 8 & 10 & 8 \\ \hline exp. 2 Mean & 7 & 10 & 7 \\ \hline Overall Mean & 9 & 10 & 8 \\ \hline 1^{c} & 10 & 9 & 8 & 7 \\ \hline 1^{c} & 10 & 9 & 8 & 7 \\ \hline 1^{c} & 10 & 9 & 8 & 7 \\ \hline 1^{c} & 10 & 9 & 8 & 7 \\ \hline 1^{c} & 10 & 9 & 8 & 7 \\ \hline 2^{d} & 5 & 7 & 8 & 7 \\ \hline 2^{d} & 5 & 7 & 8 & 7 \\ \hline 1^{c} & 5 & 7 & 8 & 7 \\ \hline 2^{d} & 5 & 7 & 8 & 7 \\ \hline 1^{c} & 5 & 7 & 8 & 7 \\ \hline 2^{d} & 5 & 7 & 8 & 7 \\ \hline 1^{c} & 7 & 6 & 6 & 7 \\ \hline 1^{c} & 7 & 6 & 6 & 7 \\ \hline 1^{c} & 7 & 6 & 6 & 7 \\ \hline 1^{c} & 7 & 6 & 6 & 7 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 10 & 7 & 6 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 \\ \hline 13 & 9 & 7 & 5 \\ \hline \hline 1 & 0 & 2 & Mean & 11 & 9 & 7 \\ \hline \end{array} $		Exp					9
$L. reuteri WB-74 = \begin{bmatrix} 2^d & 8 & 7 & 13 & 7 & 9 \\ 15 & 7 & 8 & 6 & 9 \\ \hline Exp. 2 Mean & 7 & 10 & 7 & 9 \\ \hline Overall Mean & 8 & 10 & 8 & 9 \\ \hline 1^c & 10 & 9 & 8 & 7 & 7 \\ \hline 1^c & 10 & 9 & 8 & 7 & 7 \\ \hline 14 & 11 & 16 & 10 & 1 \\ \hline Exp. 1 Mean & 9 & 10 & 8 & 9 \\ \hline 2^d & 5 & 7 & 8 & 7 & 9 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline 2^d & 5 & 7 & 8 & 7 & 9 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline 2^d & 5 & 7 & 8 & 7 & 9 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline 2^d & 5 & 7 & 6 & 6 & 7 \\ \hline 11 & 0 & 0 & 7 & 1 \\ \hline 0 \text{ overall Mean } 9 & 10 & 8 & 1 \\ \hline 1^c & 7 & 6 & 6 & 7 & 9 \\ \hline 11 & 16 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 9 & 10 \\ 2^d & 9 & 7 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 9 & 9 \\ \hline 2^d & 9 & 7 & 6 & 8 & 9 \\ \hline 0 \text{ overall Mean } 7 & 8 & 9 & 9 \\ \hline 11 & 10 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 8 \\ \hline 10 & 7 & 6 & 9 & 10 \\ \hline 15 & 7 & 7 & 6 & 8 \\ \hline 10 & 7 & 6 & 9 & 10 \\ \hline 15 & 7 & 7 & 6 & 8 \\ \hline 10 & 7 & 6 & 9 & 10 \\ \hline 15 & 7 & 7 & 6 & 8 \\ \hline 10 & 7 & 14 & 9 & 9 & 9 \\ \hline 2^d & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{array}$	L. reuteri DS-33	Елр					9
$L. reuteri WB-74 = \begin{bmatrix} 15 & 7 & 8 & 6 & 9 \\ Exp. 2 Mean & 7 & 10 & 7 & 9 \\ Overall Mean & 8 & 10 & 8 & 9 \\ 1^{c} & 10 & 9 & 8 & 7 & 9 \\ 14 & 11 & 16 & 10 & 1 \\ Exp. 1 Mean & 9 & 10 & 8 & 9 \\ 14 & 10 & 5 & 7 & 1 \\ 2^{d} & 5 & 7 & 8 & 7 & 9 \\ 11 & 13 & 16 & 7 & 9 \\ 11 & 13 & 16 & 7 & 9 \\ 11 & 13 & 16 & 7 & 9 \\ 11 & 13 & 16 & 7 & 9 \\ 0verall Mean & 9 & 10 & 8 & 1 \\ 0verall Mean & 9 & 10 & 8 & 1 \\ \end{bmatrix}$ $L. reuteri WB-75 = \begin{bmatrix} 4 & 7 & 11 & 10 & 7 & 1 \\ 0 & 7 & 6 & 6 & 7 & 9 \\ 11 & 6 & 6 & 8 & 8 \\ 0 & 10 & 7 & 6 & 8 & 8 \\ 10 & 7 & 6 & 9 & 9 \\ 0verall Mean & 7 & 8 & 9 & 9 \\ \hline \\ L. acidophilus L-23 = \begin{bmatrix} 5 & 9 & 9 & 12 & 1 \\ 1^{c} & 6 & 9 & 10 & 7 & 6 \\ 13 & 9 & 7 & 5 & 1 \\ 13 & 9 & 7 & 5 & 1 \\ \hline \\ Exp. 2 Mean & 11 & 9 & 7 & 1 \end{bmatrix}$		2 ^d					9
Exp. 2 Mean 7 10 7 9 Overall Mean 8 10 8 9 1° 10 9 8 7 9 1° 10 9 8 7 9 14 11 16 10 1 Exp. 1 Mean 9 10 8 9 2 ^d 5 7 8 7 1 2 ^d 5 7 8 7 1 2 ^d 5 7 8 7 1 2 ^d 7 10 10 7 1 Overall Mean 9 10 8 1 1° 7 6 6 7 1 2 ^d 9 7 6 8 8 L. reuteri WB-75 6 8 11 10 1 2 ^d 9 7 6 8 8 9 L. reuteri		2					9
Overall Mean 8 10 8 9 1 6 5 7 1 1° 10 9 8 7 14 11 16 10 1 Exp. 1 Mean 9 10 8 9 2d 5 7 8 7 1 2d 7 8 7 1 10 7 1 Overall Mean 9 10 7 6 8 1 10 1 2d 9 7 6 8 1 10 1 2d 9 7 6 8 1 10 1 1 1 1 1 1 1 1 1 1 1		Evn					9
L. reuteri WB-74 $L. reuteri WB-74$ $L. reuteri WB-74$ $\frac{1}{1}^{c} 10 9 8 7 11 16 10 11}{Exp. 1 Mean 9 10 8 9 10 8 9 10 10 7 11 13 16 7 9 11 13 16 7 9 11 13 16 7 9 10 8 11 13 16 7 9 10 8 11 13 16 7 9 10 8 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 11 10 10 7 10 10 7 6 9 10 7 6 10 10 7 6 9 10 7 6 10 10 10 10 10 10 10 10 10 10 10 10 10 $							9
L. reuteri WB-74 $ \begin{array}{c} 1^{c} & 10 & 9 & 8 & 7 \\ & 14 & 11 & 16 & 10 & 1 \\ \hline Exp. 1 Mean & 9 & 10 & 8 & 9 \\ & 4 & 10 & 5 & 7 & 1 \\ 2^{d} & 5 & 7 & 8 & 7 & 9 \\ \hline 12^{d} & 5 & 7 & 8 & 7 & 9 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline Exp. 2 Mean & 10 & 10 & 7 & 1 \\ \hline Overall Mean & 9 & 10 & 8 & 1 \\ \hline \\ L. reuteri WB-75 \\ \begin{array}{c} 4 & 7 & 11 & 10 & 9 \\ \hline 1^{c} & 7 & 6 & 6 & 7 & 9 \\ \hline 11 & 6 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 9 & 9 \\ \hline Cverall Mean & 7 & 8 & 9 & 9 \\ \hline Cverall Mean & 7 & 8 & 9 & 9 \\ \hline \\ L. acidophilus L-23 \\ \begin{array}{c} 5 & 9 & 9 & 12 & 1 \\ 1^{c} & 6 & 9 & 10 & 7 & 6 \\ \hline Exp. 1 Mean & 8 & 9 & 8 \\ \hline 7 & 14 & 9 & 9 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{array} $		Over		0	10	0	9
L. reuteri WB-74 $ \begin{array}{c} 1^{c} & 10 & 9 & 8 & 7 \\ & 14 & 11 & 16 & 10 & 1 \\ \hline Exp. 1 Mean & 9 & 10 & 8 & 9 \\ & 4 & 10 & 5 & 7 & 1 \\ 2^{d} & 5 & 7 & 8 & 7 & 9 \\ \hline 12^{d} & 5 & 7 & 8 & 7 & 9 \\ \hline 11 & 13 & 16 & 7 & 9 \\ \hline Exp. 2 Mean & 10 & 10 & 7 & 1 \\ \hline Overall Mean & 9 & 10 & 8 & 1 \\ \hline \\ L. reuteri WB-75 \\ \begin{array}{c} 4 & 7 & 11 & 10 & 9 \\ \hline 1^{c} & 7 & 6 & 6 & 7 & 9 \\ \hline 11 & 6 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 9 & 9 \\ \hline Cverall Mean & 7 & 8 & 9 & 9 \\ \hline Cverall Mean & 7 & 8 & 9 & 9 \\ \hline \\ L. acidophilus L-23 \\ \begin{array}{c} 5 & 9 & 9 & 12 & 1 \\ 1^{c} & 6 & 9 & 10 & 7 & 6 \\ \hline Exp. 1 Mean & 8 & 9 & 8 \\ \hline 7 & 14 & 9 & 9 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{array} $			1	6	5	7	8
L. reuteri WB-74 $ \begin{array}{c} 14 & 11 & 16 & 10 & 1 \\ Exp. 1 Mean & 9 & 10 & 8 & 9 \\ 4 & 10 & 5 & 7 & 1 \\ 2^d & 5 & 7 & 8 & 7 & 2 \\ 11 & 13 & 16 & 7 & 9 \\ Exp. 2 Mean & 10 & 10 & 7 & 1 \\ Overall Mean & 9 & 10 & 8 & 1 \\ \hline Verall Mean & 9 & 10 & 8 & 1 \\ 1^c & 7 & 6 & 6 & 7 & 7 \\ 11 & 6 & 6 & 8 & 8 \\ Exp. 1 Mean & 6 & 8 & 8 & 7 \\ 2^d & 9 & 7 & 6 & 8 & 4 \\ 10 & 7 & 6 & 9 & 7 \\ Exp. 2 Mean & 7 & 8 & 9 & 9 \\ Overall Mean & 7 & 8 & 9 & 9 \\ \hline L. reuteri WB-75 $ L. acidophilus L-23 $ \begin{array}{c} 1^c & 5 & 9 & 9 & 12 & 1 \\ 1^c & 6 & 9 & 10 & 7 & 6 \\ Exp. 1 Mean & 8 & 9 & 8 \\ \hline 2^d & 12 & 11 & 10 & 8 & 1 \\ 13 & 9 & 7 & 5 & 1 \\ Exp. 2 Mean & 11 & 9 & 7 & 1 \end{array} $		1 ^c					7
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							12
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp					9
$L. reuteri WB-75 = \begin{bmatrix} 2^d & 5 & 7 & 8 & 7 & 4 \\ 11 & 13 & 16 & 7 & 9 \\ Exp. 2 Mean & 10 & 10 & 7 & 1 \\ \hline Overall Mean & 9 & 10 & 8 & 1 \\ \hline Overall Mean & 9 & 10 & 8 & 1 \\ 1^c & 7 & 6 & 6 & 7 & 7 \\ 11 & 6 & 6 & 8 & 8 & 7 \\ \hline 11 & 6 & 6 & 8 & 8 & 7 \\ \hline 11 & 6 & 6 & 8 & 8 & 7 \\ \hline 2^d & 9 & 7 & 6 & 8 & 8 \\ \hline 2^d & 9 & 7 & 6 & 8 & 8 \\ \hline 10 & 7 & 6 & 9 & 7 \\ \hline 2^d & 9 & 7 & 6 & 8 & 9 & 9 \\ \hline Overall Mean & 7 & 8 & 9 & 9 \\ \hline 0verall Mean & 7 & 8 & 9 & 6 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 2^d & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{bmatrix}$	L. reuteri WB-74	I				7	14
$L. \ reuteri \ WB-75$ $L. \ reuteri \ WB-75$ $L. \ acidophilus \ L-23$ $L. \ acidophilus \ L-23$ $\frac{11}{12} \ 11 \ 10 \ 10 \ 7 \ 11 \ 10 \ 10 \ 7 \ 11 \ 10 \ 10$		2 ^d					8
L. acidophilus L-23 = L. acidophilus L-23		_					9
$L. \ reuteri \ WB-75 = \begin{bmatrix} 4 & 7 & 11 & 10 & 8 & 1 \\ 1^c & 7 & 6 & 6 & 7 & 11 \\ 11 & 6 & 6 & 8 & 0 & 0 \\ Exp. 1 \ Mean & 6 & 8 & 8 & 11 & 10 & 1 \\ 2^d & 9 & 7 & 6 & 8 & 11 & 10 & 1 \\ 2^d & 9 & 7 & 6 & 8 & 0 & 0 & 0 \\ 10 & 7 & 6 & 9 & 12 & 1 & 10 & 7 & 6 & 9 & 0 & 0 \\ Exp. 2 \ Mean & 7 & 8 & 9 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline U & U & U & U & U & U & U & U & U & U$		Exp					10
L. reuteri WB-75 $L. \ reuteri WB-75$ $L. \ reuter$							10
L. reuteri WB-75 $\frac{11^{c}}{6} \begin{array}{c} 7 & 6 & 6 & 7 \\ 11 & 6 & 6 & 8 \\ \hline Exp. 1 Mean & 6 & 8 & 8 \\ \hline 0 & 7 & 6 & 8 & 11 \\ 2^{d} & 9 & 7 & 6 & 8 \\ \hline 10 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 10 & 7 & 6 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{array}$				0	10	0	10
L. reuteri WB-75 $\frac{11^{c}}{6} \begin{array}{c} 7 & 6 & 6 & 7 \\ 11 & 6 & 6 & 8 \\ \hline Exp. 1 Mean & 6 & 8 & 8 \\ \hline 0 & 7 & 6 & 8 & 11 \\ 2^{d} & 9 & 7 & 6 & 8 \\ \hline 10 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 0 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 15 & 7 & 7 & 6 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{array}$			4	7	11	10	8
L. reuteri WB-75 $\frac{11}{2^{d}} \begin{array}{ccccccccccccccccccccccccccccccccccc$		1 ^c	7	6	6		7
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			11			8	6
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp	. 1 Mean	6	8	8	7
$L. acidophilus L-23 = \begin{bmatrix} 2^{d} & 9 & 7 & 6 & 8 & 2 \\ 10 & 7 & 6 & 9 & 7 \\ Exp. 2 Mean & 7 & 8 & 9 & 9 \\ \hline 0 \text{Verall Mean} & 7 & 8 & 9 & 8 \\ \hline 11^{c} & 6 & 9 & 10 & 7 & 6 \\ 15 & 7 & 7 & 6 & 9 \\ \hline 12 & 11 & 7 & 6 & 9 \\ \hline 2^{d} & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{bmatrix}$	L. reuteri WB-75				11	10	11
$L. acidophilus L-23 = \begin{bmatrix} 10 & 7 & 6 & 9 \\ Exp. 2 Mean & 7 & 8 & 9 & 9 \\ \hline 0 Verall Mean & 7 & 8 & 9 & 6 \\ \hline 1^c & 6 & 9 & 10 & 7 & 6 \\ 15 & 7 & 7 & 6 & 9 \\ \hline Exp. 1 Mean & 8 & 9 & 8 & 7 \\ \hline 1^d & 12 & 11 & 10 & 8 & 1 \\ \hline 1^3 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{bmatrix}$		2 ^d	9				8
Overall Mean 7 8 9 8 5 9 9 12 1 1^c 6 9 10 7 6 15 7 7 6 8 Exp. 1 Mean 8 9 8 7 2^d 12 11 10 8 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1					6	9	7
Overall Mean 7 8 9 8 5 9 9 12 1 1^c 6 9 10 7 6 15 7 7 6 8 Exp. 1 Mean 8 9 8 7 2^d 12 11 10 8 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1		Exp	. 2 Mean	7	8	9	9
L. acidophilus L-23 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				7	8	9	8
$L. acidophilus L-23 = \begin{bmatrix} 1^c & 6 & 9 & 10 & 7 & 6 \\ 15 & 7 & 7 & 6 & 9 \\ \hline Exp. 1 Mean & 8 & 9 & 8 & 7 \\ 7 & 14 & 9 & 9 & 9 \\ 2^d & 12 & 11 & 10 & 8 & 1 \\ \hline 13 & 9 & 7 & 5 & 1 \\ \hline Exp. 2 Mean & 11 & 9 & 7 & 1 \\ \hline \end{bmatrix}$		1				4.2	
15 7 7 6 9 Exp. 1 Mean 8 9 8 7 7 14 9 9 9 2 ^d 12 11 10 8 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1							11
Exp. 1 Mean 8 9 8 7 L. acidophilus L-23 7 14 9 9 9 2 ^d 12 11 10 8 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1		1					6
L. acidophilus L-23 2 ^d 12 11 10 8 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1		<u> </u>					5
2 ^d 12 11 10 8 1 13 9 7 5 1 Exp. 2 Mean 11 9 7 1		Exp					7
13 9 7 5 1 Exp. 2 Mean 11 9 7 1	L. acidophilus L-23		-				9
Exp. 2 Mean 11 9 7 1		2 ^d	12	11	10	8	10
Exp. 2 Mean 11 9 7 1			13				10
		Exp					10
Uverali viean 10 9 8			all Mean	10	9	8	9

Table B15. Study 1 weekly BUN^a levels (mg/dL)

^aBUN - blood urea nitrogen

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	1.0	0.9	1.0	1.0
	1 ^b	8	0.9	0.9	0.9	1.0
		13	0.8	1.1	0.9	1.1
	Exp	. 1 Mean	0.9	1.0	0.9	1.0
Control		1	1.2	0.9	1.0	1.1
	2 ^c	3	1.0	0.9	1.1	1.0
		14	1.0	1.1	1.1	1.1
		. 2 Mean	1.1	1.0	1.1	1.1
	Over	all Mean	1.0	1.0	1.0	1.1
		2	0.9	1.0	1.1	1.1
	1 ^b	9	1.0	1.2	1.0	1.0
		12	0.8	0.8	0.9	0.9
	Exp	. 1 Mean	0.9	1.0	1.0	1.0
L. reuteri DS-33		2	0.9	1.0	1.2	1.3
	2 ^c	8	0.9	1.2	1.2	1.0
		15	1.0	0.8	0.9	0.9
	Exp	. 2 Mean	0.9	1.0	1.1	1.1
		all Mean	0.9	1.0	1.1	1.0
		1	0.9	0.8	0.9	0.9
	1 ^b	10	0.9	1.0	1.0	0.9 1.0
	'	10	0.9	1.2	1.0	1.0
	Evn	. 1 Mean	0.9	1.0	1.0	1.0
I routori WB-74		4	1.0	0.8	1.3	1.0
L. Teulen WD-14	2 ^c	4 5	1.0	1.0	1.0	1.7
	2	11	1.1	1.2	1.0	1.2
	Evo	. 2 Mean	1.0	1.0	1.1	1.1
		all Mean	1.0	1.0	1.1	1.2
	0101		1.0	1.0	1.1	1.2
		4	0.9	0.9	1.1	1.1
	1 ^b	7	0.9	0.9	0.9	1.1
		11	0.9	1.0	0.9	1.0
. reuteri WB-74	Exp	. 1 Mean	0.9	0.9	1.0	1.1
L. reuteri WB-75		6	1.0	0.9	1.2	1.2
	2 ^c	9	1.0	0.9	1.1	1.2
		10	0.9	1.0	1.3	1.2
	Exp	. 2 Mean	1.0	0.9	1.2	1.2
	Over	all Mean	0.9	0.9	1.1	1.1
		5	1.0	1.2	1.2	1.1
	1 ^b	6	0.9	1.1	1.0	1.0
	'	15	0.7	0.8	0.9	0.9
	Fxn	. 1 Mean	0.9	1.0	1.0	1.0
L. acidophilus L-23		7	1.4	1.0	1.2	1.2
L. aciuophillus L-23	2 ^c	7 12	1.4	1.2		1.2
	[∠]				1.0	
		13	1.1	0.8	1.0	1.4
		. 2 Mean	1.2	1.0	1.1	1.3
	Over	all Mean	1.1	1.0	1.1	1.2

Table B16. Study 1 weekly creatinine levels (mg/dL)

^bExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		3	9.8	9.3	9.0	8.6
	1 ^c	8	13.6	8.9	10.7	6.4
		13	11.3	13.4	6.8	7.4
	Exp	. 1 Mean	11.6	10.5	8.8	7.5
Control		1	8.9	9.3	6.1	6.3
Control	2 ^d	3	10.7	8.9	5.9	8.1
	<u> </u>	14	7.6	13.4	6.9	8.9
	Exp	. 2 Mean	9.1	10.5	6.3	7.8
		all Mean	10.3	10.5	7.6	7.6
	0.00	annoan	10.0	10.0	7.0	7.0
		2	7.9	7.8	7.1	8.3
	1 ^c	9	9.1	11.3	9.5	8.7
L. reuteri DS-33		12	12.1	9.6	10.1	9.7
	Exp	. 1 Mean	9.7	9.6	8.9	8.9
	l	2	7.3	7.8	6.4	6.6
	2 ^d	8	8.1	11.3	6.4	8.8
		15	7.0	9.6	6.8	10.0
	Exp	. 2 Mean	7.5	9.6	6.5	8.5
	Over	all Mean	8.6	9.6	7.7	8.7
	1	1	7.0	6.7		0.0
	1 ^c	10			8.0	8.8
	1-		10.5	7.6	6.7	6.8
	- Eve	14	11.9	12.9	10.3	12.0
	Ехр	. 1 Mean	9.8	9.1	8.3	9.2
L. reuteri WB-74	od	4	9.7	6.7	5.6	8.4
	2 ^d	5	6.6	7.6	7.0	6.2
		11 2 Maan	12.0	12.9	6.5	7.8
		. 2 Mean	9.4	9.1	6.4	7.5
	Over	all Mean	9.6	9.1	7.4	8.3
		4	7.3	11.7	9.1	7.2
	1 ^c	7	6.9	6.8	7.4	6.0
		11	6.6	6.7	8.7	5.7
	Exp	. 1 Mean	6.9	8.4	8.4	6.3
L. reuteri WB-75		6	8.4	11.7	8.3	8.9
	2 ^d	9	7.3	6.8	7.2	6.6
		10	7.3	6.7	7.4	5.8
	Exp	. 2 Mean	7.7	8.4	7.6	7.1
		. 2 Mean all Mean	7.7 7.3		7.6 8.0	7.1 6.7
		all Mean	7.3	8.4 8.4	8.0	6.7
	Over	all Mean 5	7.3 8.5	8.4 8.4 8.0	8.0 10.3	6.7 9.7
		all Mean 5 6	7.3 8.5 10.0	8.4 8.4 8.0 9.2	8.0 10.3 7.0	6.7 9.7 5.4
	Over 1 ^c	all Mean 5 6 15	7.3 8.5 10.0 10.1	8.4 8.4 8.0 9.2 8.5	8.0 10.3 7.0 6.4	6.7 9.7 5.4 5.6
	Over 1 ^c	all Mean 5 6 15 . 1 Mean	7.3 8.5 10.0 10.1 9.5	8.4 8.4 8.0 9.2 8.5 8.6	8.0 10.3 7.0 6.4 7.9	6.7 9.7 5.4 5.6 6.9
L. acidophilus L-23	Over 1 ^c Exp	all Mean 5 6 15 . 1 Mean 7	7.3 8.5 10.0 10.1 9.5 9.5	8.4 8.4 9.2 8.5 8.6 8.0	8.0 10.3 7.0 6.4	6.7 9.7 5.4 5.6 6.9 7.1
L. acidophilus L-23	Over 1 ^c	all Mean 5 6 15 . 1 Mean	7.3 8.5 10.0 10.1 9.5	8.4 8.4 8.0 9.2 8.5 8.6	8.0 10.3 7.0 6.4 7.9	6.7 9.7 5.4 5.6 6.9
L. acidophilus L-23	Over 1 ^c Exp	all Mean 5 6 15 . 1 Mean 7	7.3 8.5 10.0 10.1 9.5 9.5	8.4 8.4 9.2 8.5 8.6 8.0	8.0 10.3 7.0 6.4 7.9 7.6	6.7 9.7 5.4 5.6 6.9 7.1
L. acidophilus L-23	Over 1 ^c Exp 2 ^d	all Mean 5 6 15 . 1 Mean 7 12	7.3 8.5 10.0 10.1 9.5 9.5 9.1	8.4 8.4 9.2 8.5 8.6 8.0 9.2	8.0 10.3 7.0 6.4 7.9 7.6 8.0	6.7 9.7 5.4 5.6 6.9 7.1 7.0

Table B17. Study 1 weekly BUN^a:creatinine ratio levels

^aBUN - blood urea nitrogen

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		3	151	137	143	144
	1 ^b	8	140	140	140	143
		13	135	137	142	145
	Exp	. 1 Mean	142	138	142	144
Control		1	139	137	135	147
	2 ^c	3	132	140	147	136
		14	137	137	138	137
	Exp	. 2 Mean	136	138	140	140
		all Mean	139	138	141	142
	<u>т</u>	<u> </u>	151	141	144	115
	1 ^b	2	151			145
	1-	9	142	140	140	141
		12	139	139	142	142
routori DC 00	Exp	. 1 Mean	144	140	142	143
L. reuteri DS-33	C ^C	2	135	141	144	154
	2 ^c	8	134	140	142	129
		15	134	139	138	125
		. 2 Mean	134	140	141	136
	Over	all Mean	139	140	142	139
		1	142	140	143	143
	1 ^b	10	142	140	142	150
		14	138	137	140	144
	Exp	. 1 Mean	141	139	142	146
L. reuteri WB-74		4	136	140	141	152
	2 ^c	5	137	140	134	149
		11	133	137	144	139
	Exp	. 2 Mean	135	139	140	147
		all Mean	138	139	141	146
	1	4	145	142	140	146
	1 ^b	4 7			143	146
	1		146	142	142	145
	Ev.	11 1 Moon	140	137	137	143
L routori MD 75	Exp		144	140	141	145
L. reuteri WB-75	oc.	6	139	142	143	148
	2 ^c	9	138	142	131	143
		<u>10</u>	137	137	140	144
		. 2 Mean	138	140	138	145
	Over	all Mean	141	140	139	145
		5	152	139	143	143
	1 ^b	6	146	142	143	144
		15	136	138	140	142
	Exp	. 1 Mean	145	140	142	143
L. acidophilus L-23		7	138	139	151	146
	2 ^c	, 12	140	142	134	142
		12	137	138	134	142
	Eva					
		. 2 Mean	138	140	140	146
	Over	all Mean	142	140	141	144

Table B18. Study 1 weekly sodium levels (mEq/L)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	10.6	8.8	9.7	12.3
	1 ^b	8	10.1	8.8	9.0	10.8
		13	9.3	10.0	8.7	10.4
	Exp	. 1 Mean	10.0	9.2	9.1	11.2
Control		1	9.6	8.8	9.2	10.0
	2 ^c	3	11.5	8.8	9.9	9.9
		14	9.9	10.0	9.3	9.6
	Exp	. 2 Mean	10.3	9.2	9.5	9.8
	Over	all Mean	10.2	9.2	9.3	10.5
	1	2	9.9	7.9	9.0	10.4
	1 ^b	2 9	9.9 9.7	9.7	9.0 9.7	
	1	9 12	9.7 7.5			11.7
	Evo			8.0	8.3	9.3
I routori DS 22		<u>. 1 Mean</u> 2	9.0	8.5	9.0	10.5
L. reuteri DS-33	2 ^c		9.1	7.9	9.2 7.6	10.2
	2	8	9.7	9.7	7.6	8.1
		15 2 Maan	9.2	8.0	9.1	8.8
		2 Mean	9.3	8.5	8.6	9.0
	Over	all Mean	9.2	8.5	8.8	9.8
		1	11.0	9.3	9.0	11.0
	1 ^b	10	9.6	10.4	9.9	13.0
		14	8.7	8.4	8.7	10.5
	Exp	. 1 Mean	9.8	9.4	9.2	11.5
L. reuteri WB-74		4	8.6	9.3	9.1	10.0
	2 ^c	5	9.4	10.4	8.0	9.7
		11	9.6	8.4	9.3	9.9
	Exp	. 2 Mean	9.2	9.4	8.8	9.9
		all Mean	9.5	9.4	9.0	10.7
		4	0.0	10.0		10.0
	1 ^b	4	9.3	10.0	8.6	10.8
	1 1	7	10.0	9.3	9.2	11.5
	Ev-	11 1 Moon	8.2	8.1	9.4	9.6
L routori MD 75	Exp.	. 1 Mean	9.2	9.1	9.1	10.6
L. reuteri WB-75	CC C	6	8.9	10.0	8.5	10.5
	2 ^c	9	10.8	9.3	9.5	9.1
		10	9.5	8.1	9.7	10.2
		2 Mean	9.7	9.1	9.2	9.9
	Over	all Mean	9.5	9.1	9.2	10.3
		5	9.7	9.0	9.5	10.6
	1 ^b	6	9.0	9.1	9.3	10.9
		15	8.0	8.4	8.8	10.0
	Fxn	. 1 Mean	8.9	8.8	9.2	10.5
L. acidophilus L-23		7	9.6	9.0	10.2	10.3
L. аспортних L-23	2 ^c	7 12	9.0 9.8	9.0 9.1		
	[∠]				9.5	9.0
	<u> </u>	13	10.0	8.4	8.6	10.9
		. 2 Mean	9.8	8.8	9.4	10.1
	· •	all Mean	9.4	8.8	9.3	10.3

Table B19. Study 1 weekly potassium levels (mEq/L)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	111	103	106	106
	1 ^b	8	107	104	105	107
		13	102	105	107	107
	Exp	. 1 Mean	107	104	106	107
Control		1	105	103	101	110
	2 ^c	3	101	104	107	104
		14	103	105	100	102
	Exp	. 2 Mean	103	104	103	105
	Over	all Mean	105	104	104	106
	1	2	113	105	105	106
	1 ^b	9	108	110	108	100
	'	12	102	105	106	103
	Exp	. 1 Mean	102	103	106	104
L. reuteri DS-33		2	102	107	106	111
2. 1001011 20 00	2 ^c	8	102	110	100	96
		15	100	105	102	90 97
	Exp	. 2 Mean	100	107	100	101
		all Mean	101	107	105	104
	0.61		104	107	105	104
		1	108	106	103	103
	1 ^b	10	106	109	107	109
		14	102	104	104	103
	Exp	. 1 Mean	105	106	105	105
L. reuteri WB-74		4	102	106	104	111
	2 ^c	5	106	109	102	113
		11	103	104	107	106
	Exp	. 2 Mean	104	106	104	110
		all Mean	105	106	105	108
	1	4	106	105	104	105
	1 ^b	7	100	103	104	109
		, 11	103	107	107	103
	Exp		105	107	107	104
L. reuteri WB-75		6	105	105	100	100
	2 ^c	9	103	103	98	109
		9 10	102	107	100	104
	Fyn	. 2 Mean	103	107	100	105
		all Mean	103	100	103	106
						100
	, h	5	114	104	106	105
	1 ^b	6	107	105	107	107
		15	101	101	106	107
L. acidophilus L-23	Exp	. 1 Mean	107	103	106	106
		7	104	104	109	108
L. acidophilus L-23					404	400
L. acidophilus L-23	2 ^c	12	105	105	101	106
L. acidophilus L-23	2 ^c	12 13	105 102	105 101	101 103	106 112
L. acidophilus L-23						

Table B20. Study 1 weekly chloride levels (mEq/L)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		3	25	23	24	23
	1 ^b	8	20	25	26	20
		13	20	16	20	21
	Exp	. 1 Mean	22	21	23	21
Control		1	21	23	20	24
	2 ^c	3	16	25	28	20
		14	28	16	28	23
	Exp	. 2 Mean	22	21	25	22
		all Mean	22	21	24	22
			05	04		0.4
	1 ^b	2	25	21	22	24
	1~	9	22	18	20	16
		12	26	23	23	24
	Exp	. 1 Mean	24	21	22	21
L. reuteri DS-33		2	27	21	27	29
	2 ^c	8	24	18	27	23
		15	24	23	24	21
		. 2 Mean	25	21	26	24
	Over	all Mean	25	21	24	23
		1	16	20	27	27
	1 ^b	10	24	16	25	21
	'	14	26	24	22	25
	Exp	. 1 Mean	22	20	25	24
L. reuteri WB-74		4	22	20	23	24
	2 ^c	5	19	16	21	18
	2	11	18	24	23	17
	Evn	. 2 Mean	20	24	23	20
		all Mean	20		22	20
	0vei		21	20	24	
		4	25	26	24	21
	1 ^b	7	21	23	22	19
		11	26	19	20	21
	Exp	. 1 Mean	24	23	22	20
L. reuteri WB-75		6	25	26	28	27
	2 ^c	9	21	23	19	23
	1 -	10	25	19	23	21
	Exp	. 2 Mean	24	23	23	24
		all Mean	24	23	23	22
				05	0.1	
	. h	5	26	25	24	22
	1 ^b	6	26	24	23	21
		15	24	23	21	19
	Exp	. 1 Mean	25	24	23	21
L. acidophilus L-23		7	22	25	23	24
	2 ^c	12	22	24	21	18
		13	22	23	19	15
	Exp	. 2 Mean	22	24	21	19

Table B21. Study 1 weekly carbon dioxide levels (mEq/L)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		3	25.1	19.6	22.7	27.4
	1 ^b	8	22.7	19.6	18.1	26.0
		13	22.4	26.2	23.2	26.8
	Exp	. 1 Mean	23.4	21.8	21.3	26.7
Control		1	22.4	19.6	23.4	24.1
	2 ^c	3	26.1	19.6	21.3	22.3
	_	14	16.0	26.2	18.8	21.3
	Exp	. 2 Mean	21.5	21.8	21.2	22.6
		all Mean	22.5	21.8	21.3	24.7
				00.4	25.0	05.0
	1 ^b	2	23.2	23.1	25.8	25.8
	1~	9	21.8	22.4	22.0	27.4
		12	17.2	19.3	21.5	22.6
	Exp	. 1 Mean	20.7	21.6	23.1	25.3
L. reuteri DS-33		2	15.8	23.1	20.3	24.7
	2 ^c	8	17.8	22.4	20.0	18.1
		15	19.2	19.3	20.8	16.1
		. 2 Mean	17.6	21.6	20.4	19.6
	Over	all Mean	19.2	21.6	21.7	22.5
		1	28.9	23.9	21.5	23.9
	1 ^b	10	21.8	25.2	19.7	32.4
		14	17.6	17.5	22.9	25.9
	Exp	. 1 Mean	22.8	22.2	21.4	27.4
L. reuteri WB-74		4	20.6	23.9	22.6	27.6
	2 ^c	5	21.9	25.2	18.9	27.2
	_	11	21.8	17.5	22.8	26.6
	Exp	2 Mean	21.4	22.2	21.4	27.1
		all Mean	22.1	22.2	21.4	27.3
		4	23.8	21.7	23.6	20 F
	1 ^b	4 7				30.5
	1		28.4	20.9	21.5	28.7
	E	11 1 Moon	18.9	19.7	19.9	27.9
	⊨	. 1 Mean	23.7	20.8	21.7	29.0
L. reuteri WB-75	C ^C	6	18.9	21.7	18.7	21.9
	2 ^c	9	26.2	20.9	23.0	25.7
		10	18.8	19.7	26.0	27.8
		. 2 Mean	21.3	20.8	22.6	25.1
	Over	all Mean	22.5	20.8	22.1	27.1
		5	22.0	19.3	23.1	26.6
	1 ^b	6	21.9	22.6	21.4	27.6
		15	18.9	22.4	22.0	26.3
	Exp	. 1 Mean	20.9	21.4	22.2	26.8
L. acidophilus L-23		7	21.4	19.3	28.5	23.2
	2 ^c	12	22.8	22.6	20.3	26.0
	F	13 2 Maan	22.3	22.4	23.1	33.2
		. 2 Mean all Mean	22.2	21.4	24.3	27.5
	1 ()/07		21.6	21.4	23.2	27.2

Table B22. Study 1 weekly anion gap levels

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	11.2	10.7	10.0	10.4
	1 ^b	8	10.8	11.7	10.2	10.0
		13	10.8	10.2	9.6	11.0
	Exp	. 1 Mean	10.9	10.9	9.9	10.5
Control		1	10.9	10.7	10.1	11.1
	2 ^c	3	10.1	11.7	10.7	9.2
		14	9.8	10.2	10.0	9.6
	Exp	. 2 Mean	10.3	10.9	10.3	10.0
		all Mean	10.6	10.9	10.1	10.2
	T	<u> </u>	11 7	10.6	11.0	10.0
	1 ^b	2	11.7	10.6	11.0	10.9
	1-	9	11.0	10.3	10.5	11.1
		12	12.8	10.2	10.6	10.7
I routori DC 00	Exp	. 1 Mean	11.8	10.4	10.7	10.9
L. reuteri DS-33	~ ^C	2	10.1	10.6	10.7	11.1
	2 ^c	8	9.9	10.3	10.5	8.5
		15 2 Maan	10.2	10.2	9.8	8.3
		. 2 Mean	10.1	10.4	10.3	9.3
	Over	all Mean	11.0	10.4	10.5	10.1
		1	10.6	10.7	10.4	10.6
	1 ^b	10	10.2	10.2	10.3	11.5
		14	9.9	9.9	10.0	11.0
	Exp	. 1 Mean	10.2	10.3	10.2	11.0
L. reuteri WB-74		4	9.8	10.7	10.0	11.6
	2 ^c	5	11.0	10.2	9.4	10.3
		11	9.3	9.9	10.6	9.7
	Exp	. 2 Mean	10.0	10.3	10.0	10.5
	Over	all Mean	10.1	10.3	10.1	10.8
		4	11.8	10.8	10.5	10.8
	1 ^b	4 7	11.7	10.8	10.5	10.8
		7 11	10.5	9.7	10.5	
	Exp			<u>9.7</u> 10.4	10.3	11.1
L. reuteri WB-75		6	<u>11.3</u> 9.8	10.4	10.4	<u>11.1</u> 10.5
L. TEULETT VID-10	2 ^c	9	9.8 10.4	10.8	9.7	10.5
	2 ×	9 10	10.4	9.7	9.7 10.3	10.6
	Evn	. 2 Mean	10.0	<u>9.7</u> 10.4	10.3	10.4
		all Mean	10.7	10.4	10.0	10.3
						. 0.0
	L	5	12.9	11.1	11.5	11.0
	1 ^b	6	11.4	10.9	10.3	10.7
		15	10.5	10.1	9.9	10.6
	Exp	. 1 Mean	11.6	10.7	10.6	10.8
L. acidophilus L-23		7	9.9	11.1	11.4	10.6
, -	2 ^c	12	10.5	10.9	9.3	9.8
		13	9.9	10.1	9.4	10.8
	Exp	. 2 Mean	10.1	10.7	10.0	10.4
	Over	all Mean	10.9	10.7	10.3	10.6

Table B23. Study 1 weekly calcium levels (mEq/L)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	5.1	3.9	4.8	5.3
	1 ^b	8	5.2	4.6	4.3	5.1
		13	4.9	4.8	4.3	5.6
	Exp	. 1 Mean	5.1	4.4	4.5	5.3
Control		1	4.4	3.9	4.6	5.5
	2 ^c	3	5.1	4.6	5.5	4.8
		14	4.3	4.8	4.3	4.8
	Exp	. 2 Mean	4.6	4.4	4.8	5.0
	Over	all Mean	4.8	4.4	4.6	5.2
		2	5.1	4.6	5.1	5.6
	1 ^b	9	4.5	4.1	4.0	4.9
	'	12	4.7	4.7	4.9	5.3
	Exp	. 1 Mean	4.8	4.5	4.7	5.3
L. reuteri DS-33		2	3.9	4.6	4.9	5.9
	2 ^c	8	4.2	4.1	5.2	3.9
	-	15	3.8	4.7	4.9	3.6
	Exp	. 2 Mean	4.0	4.5	5.0	4.5
		all Mean	4.4	4.5	4.8	4.9
	-					
	h	1	4.9	4.8	5.1	5.6
	1 ^b	10	4.5	4.4	4.6	5.8
		14	4.5	4.3	4.7	5.7
	Exp	. 1 Mean	4.5	4.5	4.8	5.7
L. reuteri WB-74		4	4.5	4.8	5.3	6.2
	2 ^c	5	4.6	4.4	4.6	5.5
		11	4.5	4.3	5.1	4.6
		. 2 Mean	4.5	4.5	5.0	5.4
	Over	all Mean	4.5	4.5	4.9	5.6
		4	4.9	4.9	4.6	5.2
	1 ^b	7	4.9	4.1	4.5	5.2
		11	4.8	4.4	4.7	5.6
	Exp	. 1 Mean	4.9	4.5	4.6	5.3
L. reuteri WB-75		6	4.5	4.9	5.0	5.4
	2 ^c	9	4.9	4.1	4.4	4.7
		10	4.3	4.4	4.8	5.0
	Exp	. 2 Mean	4.6	4.5	4.7	5.0
		all Mean	4.7	4.5	4.7	5.2
		E	FO	16	E 1	E 0
	1 ^b	5	5.2	4.6	5.1	5.8
	1 1	6	4.9	5.1	4.8	5.3
		15	4.7	5.1	5.0	5.4
	Exp.	. 1 Mean	4.9	4.9	5.0	5.5
L. acidophilus L-23		7	4.6	4.6	5.6	5.6
	2 ^c	12	4.7	5.1	4.8	5.3
						~ ~ ~
		13	4.3	5.1	4.5	6.3
	Exp	13 . 2 Mean	4.3 4.5	5.1 4.9	4.5 5.0	6.3 5.7

Table B24. Study 1 weekly total protein levels (g/dL)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		3	3.2	2.3	2.8	3.5
	1 ^b	8	2.9	2.4	2.4	3.2
		13	2.3	2.3	2.2	3.2
	Exp	1 Mean	2.8	2.3	2.5	3.3
Control		1	2.7	2.3	2.9	3.8
	2 ^c	3	2.7	2.4	3.2	2.7
		14	2.3	2.3	2.3	2.6
	Exp	2 Mean	2.6	2.3	2.8	3.0
	Over	all Mean	2.7	2.3	2.6	3.2
	[2	3.3	2.9	3.3	3.8
	1 ^b	9	2.6	2.3	2.4	3.4
	1	12	3.0	3.2	3.3	3.8
	Evo	. 1 Mean	3.0	2.8	3.0	3.7
L. reuteri DS-33		2	2.1	2.8	3.0	3.8
L. IGUIGII DO-00	2 ^c	2 8	2.1	2.9	3.3	3.0 2.3
	2	8 15	2.4 1.9	2.3 3.2	3.3 2.7	2.3
	Evn	. 2 Mean	2.1	2.8	3.0	2.0
		all Mean				
	Over		2.6	2.8	3.0	3.2
		1	3.0	3.2	3.3	3.8
	1 ^b	10	2.7	2.7	2.9	4.3
		14	2.5	2.3	2.5	3.2
	Exp	1 Mean	2.6	2.7	2.9	3.8
L. reuteri WB-74		4	2.4	3.2	2.8	3.5
	2 ^c	5	2.3	2.7	2.4	3.0
	_	11	2.4	2.3	3.2	3.0
	Exp	2 Mean	2.4	2.7	2.8	3.2
		all Mean	2.5	2.7	2.9	3.5
	T	4	3.0	3.0	3.0	3.6
	1 ^b	4 7				
			3.2	2.5	2.7	3.4
	Evo	11 . 1 Mean	2.6	2.3	2.7	3.7
routori MD 75	⊏xp		2.9 2.5	2.6	2.8	3.6
L. reuteri WB-75	° c	6		3.0	2.9	3.4
	2 ^c	9 10	3.0	2.5	2.8	3.2
	Ev.	10 . 2 Mean	2.6 2.7	2.3 2.6	2.8 2.8	2.9
		all Mean				3.2
			2.8	2.6	2.8	3.4
		5	3.5	3.0	3.6	4.2
	1 ^b	6	2.7	2.9	2.6	3.2
		15	2.7	2.9	3.0	3.4
	Exp	. 1 Mean	3.0	2.9	3.1	3.6
L. acidophilus L-23		7	2.3	3.0	3.4	3.5
	2 ^c	12	2.1	2.9	2.5	2.9
	1	40	07	2.9	2.8	4.2
		13	2.7	2.3	2.0	7.2
	Exp	2 Mean	2.7	2.9	2.9	3.5

Table B25. Study 1 weekly albumin levels (g/dL)

 $^{\mathrm{a}}\textsc{Description}$ of treatments, experiments, and pigs - see Table B2

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	1.9	1.6	1.9	1.7
	1 ^b	8	2.4	2.2	1.9	2.0
		13	2.6	2.5	2.1	2.4
	Exp	. 1 Mean	2.3	2.1	2.0	2.0
Control		1	1.7	1.6	1.7	1.7
	2 ^c	3	2.3	2.2	2.3	2.1
		14	2.0	2.5	2.0	2.2
		. 2 Mean	2.0	2.1	2.0	2.0
	Over	all Mean	2.2	2.1	2.0	2.0
		2	1.9	1.7	1.8	1.8
	1 ^b	9	1.9	1.9	1.6	1.5
		12	1.8	1.5	1.6	1.5
	Exp	. 1 Mean	1.9	1.7	1.7	1.6
L. reuteri DS-33		2	1.8	1.7	1.9	2.1
2. 1001011 20 00	2 ^c	8	1.8	1.9	1.9	1.6
		15	1.9	1.5	2.1	1.6
	Exp	. 2 Mean	1.8	1.7	2.0	1.8
		all Mean	1.8	1.7	1.8	1.7
	0.00		1.0		1.0	
		1	1.9	1.6	1.7	1.8
	1 ^b	10	1.8	1.7	1.7	1.5
		14	2.0	2.0	2.1	2.4
	Exp	. 1 Mean	1.9	1.8	1.8	1.9
L. reuteri WB-74		4	2.2	1.6	2.5	2.7
	2 ^c	5	2.3	1.7	2.2	2.5
		11	2.0	2.0	1.9	1.5
	Exp	. 2 Mean	2.2	1.8	2.2	2.2
	Over	all Mean	2.0	1.8	2.0	2.1
		4	1.9	1.9	1.7	1.6
	1 ^b	7	1.7	1.5	1.8	1.8
	'	11	2.2	2.1	1.9	1.9
	Exp	. 1 Mean	1.9	1.8	1.8	1.8
L. reuteri WB-75		6	2.0	1.9	2.1	2.1
	2 ^c	9	1.9	1.5	1.6	1.5
	-	10	1.7	2.1	2.0	2.1
	Exp	. 2 Mean	1.9	1.8	1.9	1.9
		all Mean	1.9	1.8	1.9	1.8
	L .	5	1.7	1.6	1.5	1.6
	1 ^b	6	2.2	2.2	2.2	2.1
	<u> </u>	15	2.0	2.2	2.0	2.0
	Exp	. 1 Mean	2.0	2.0	1.9	1.9
L. acidophilus L-23		7	2.3	1.6	2.2	2.1
	2 ^c	12	2.6	2.2	2.3	2.4
	<u> </u>	13	1.7	2.2	1.7	2.1
		. 2 Mean	2.2	2.0	2.1	2.2
		all Mean	2.1	2.0	2.0	2.1

Table B26. Study 1 weekly globulin levels (g/dL)

^bExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		3	1.7	1.4	1.5	2.0
	1 ^b	8	1.2	1.1	1.2	1.6
		13	0.9	0.9	1.0	1.4
	Exp	. 1 Mean	1.3	1.1	1.2	1.7
Control		1	1.6	1.4	1.7	2.3
	2 ^c	3	1.2	1.1	1.4	1.3
		14	1.1	0.9	1.1	1.2
	Exp	. 2 Mean	1.3	1.1	1.4	1.6
	Over	all Mean	1.3	1.1	1.3	1.6
	1	2	1.7	1.4	1.5	2.0
	1 ^b	9	1.2	1.4	1.3	1.6
		12	0.9	0.9	1.0	1.4
	Exp	. 1 Mean	1.3	1.1	1.2	1.7
L. reuteri DS-33	Елр	2	1.6	1.4	1.7	2.3
	2 ^c	8	1.0	1.1	1.4	1.3
		15	1.1	0.9	1.1	1.2
	Eyn	. 2 Mean	1.3	1.1	1.4	1.6
		all Mean	1.3	1.1	1.3	1.6
	0101		1.5	1.1	1.5	1.0
		1	1.5	2.0	1.9	2.1
	1 ^b	10	1.5	1.6	1.7	2.8
		14	1.2	1.1	1.2	1.3
	Exp	. 1 Mean	1.4	1.6	1.6	2.1
L. reuteri WB-74		4	1.1	2.0	1.1	1.3
	2 ^c	5	1.0	1.6	1.1	1.2
		11	1.2	1.1	1.6	2.0
	Exp	. 2 Mean	1.1	1.6	1.3	1.5
	Over	all Mean	1.3	1.6	1.4	1.8
		4	1.6	1.6	1.8	2.2
	1 ^b	7	1.9	1.7	1.5	1.9
		, 11	1.2	1.1	1.4	1.9
	Exp	. 1 Mean	1.6	1.5	1.6	2.0
L. reuteri WB-75		6	1.2	1.6	1.4	1.6
	2 ^c	9	1.6	1.7	1.8	2.2
		10	1.5	1.1	1.4	1.4
	Exp	. 2 Mean	1.4	1.5	1.5	1.7
		all Mean	1.5	1.5	1.6	1.9
		5	2.0	1.9	2.4	2.7
	1 ^b	6	1.2	1.3	1.2	1.5
		15	1.4	1.3	1.5	1.7
	Exp	. 1 Mean	1.5	1.5	1.7	2.0
L. acidophilus L-23		7	1.0	1.9	1.5	1.7
	2 ^c	12	0.8	1.3	1.1	1.2
		13	1.6	1.3	1.7	2.0
		. 2 Mean	1.1	1.5	1.4	1.6
	Over	all Mean	1.3	1.5	1.6	1.8

Table B27. Study 1 weekly albumin:globulin ratio levels

^bExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		3	74	62	50	52
	1 [°]	8	84	82	62	55
		13	68	70	45	54
	Exp	. 1 Mean	75	71	52	54
Control		1	55	62	38	43
	2 ^d	3	64	82	42	39
	-	14	65	70	57	62
	Exp	. 2 Mean	61	71	46	48
		all Mean	68	71	49	51
			07			
	. 6	2	67	51	59	50
	1 ^c	9	73	57	41	46
		12	40	41	66	53
	Exp	. 1 Mean	60	50	55	50
L. reuteri DS-33	e d	2	43	51	34	38
	2 ^d	8	57	57	46	43
	<u> </u>	15	46	41	67	37
		. 2 Mean	49	50	49	39
	Over	all Mean	54	50	52	45
		1	67	55	59	57
	1 ^c	10	41	49	50	50
		14	60	70	41	53
	Exp	. 1 Mean	56	58	50	53
L. reuteri WB-74		4	58	55	34	56
	2 ^d	5	55	49	35	60
		11	88	70	60	52
	Exp	. 2 Mean	67	58	43	56
	Over	all Mean	62	58	47	55
		4	53	51	38	41
	1 [°]	7	87	67	55	59
	'	, 11	68	122	66	62
	Fxn	. 1 Mean	69	80	53	54
L. reuteri WB-75		6	50	51	52	59
	2 ^d	9	76	67	44	47
		10	52	122	56	44
	Exp	. 2 Mean	59	80	51	50
		all Mean	64	80	52	52
		5	E 2	64	E F	70
	1 ^c	5	53 57	64 67	55 49	70 45
	1-	6 15	57 105	67 101	48 66	45 77
	Evo	15 . 1 Mean	105	101	66 56	<u>77</u> 64
L paidaphilus L 00	⊏xp		72	77	56	
<i>L. acidophilus</i> L-23	2 ^d	7 12	72 97	64 67	45 50	45 65
	2-				59 41	65 72
	Ev.	13 2 Moon	<u>56</u> 75	101	41 48	72 61
		. 2 Mean		77		61
	Over	all Mean	73	77	52	62

Table B28. Experiment 1 weekly AST^a levels (U/L)

^aAST - aspartate aminotransferase

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
	1	3	69	54	54	59
	1 ^c	8	66	54	54	59
		13	47	44	49	66
	Exp	. 1 Mean	61	51	52	61
Control	I	1	45	54	31	34
	2 ^d	3	30	54	40	25
	_	14	51	44	63	59
	Exp	. 2 Mean	42	51	45	39
		rall Mean	51	51	49	50
	1	0	4.4	0.4	07	45
		2	41	34	37	45
	1 ^c	9	71	75	51	58
		12	51	57	75	81
	Exp	. 1 Mean	54	55	54	61
L. reuteri DS-33		2	34	34	39	34
	2 ^d	8	37	75	36	28
		15	26	57	39	29
		. 2 Mean	32	55	38	30
	Over	rall Mean	43	55	46	46
		1	57	64	55	65
	1 ^c	10	43	45	38	53
		14	53	51	49	53
	Exp	. 1 Mean	51	53	47	57
L. reuteri WB-74		4	40	64	39	50
	2 ^d	5	38	45	33	34
	2	11	56	51	54	41
	Exp	. 2 Mean	45	53	42	42
		rall Mean	48	53	45	49
		4	53	51	43	46
	1 ^c	7	61	53	45	50
		11	48	49	38	52
	Exp	. 1 Mean	54	51	42	49
L. reuteri WB-75	4	6	41	51	53	54
	2 ^d	9	43	53	50	55
		10	40	49	33	30
		. 2 Mean	41	51	45	46
	Over	rall Mean	48	51	44	48
		5	49	46	47	60
	1 ^c	6	50	49	43	42
	.	15	53	59	67	71
	Exp	. 1 Mean	51	51	52	58
L. acidophilus L-23		7	53	46	46	41
	2 ^d	12	39	49	37	30
	-	13	45	59	43	41
	Fxn	. 2 Mean	46	51	42	37
		rall Mean	48	51	47	48
	0.6		-0	JI	7/	+0

Table B29. Experiment 1 weekly ALT^a levels (U/L)

^aALT - alanine aminotransferase

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		3	392	220	179	226
	1 ^c	8	331	220	270	291
		13	280	213	196	247
	Exp	. 1 Mean	334	218	215	255
Control		1	225	220	179	204
	2 ^d	3	151	220	246	156
	-	14	231	213	203	198
	Exp	. 2 Mean	202	218	209	186
		rall Mean	268	218	212	220
	1	0	444	240	054	000
	4.6	2	411	249	254	263
	1 ^c	9	311	208	195	230
		12	409	232	231	257
	Exp	. 1 Mean	377	230	227	250
L. reuteri DS-33	2 ^d	2	253 166	249	224	188
	2	8 15	166 103	208 232	175 155	114 93
	Evo		174	232	185	132
		. 2 Mean				
	Ove	rall Mean	276	230	206	191
		1	392	310	247	263
	1 ^c	10	440	319	290	336
		14	322	204	273	315
	Exp	. 1 Mean	385	278	270	305
L. reuteri WB-74		4	252	310	218	247
	2 ^d	5	197	319	151	161
		11	318	204	301	231
	Exp	. 2 Mean	256	278	223	213
	Ove	rall Mean	320	278	247	259
		4	448	277	269	278
	1 ^c	7	297	185	178	207
		, 11	364	182	213	262
	Exn	. 1 Mean	370	215	220	249
L. reuteri WB-75	p	6	272	277	239	252
	2 ^d	9	308	185	225	199
	-	10	264	182	259	212
	Exp	. 2 Mean	281	215	241	221
		rall Mean	326	215	231	235
		5	341	223	205	229
	1 ^c	6	412	250	238	289
L. acidophilus L-23		15	319	214	218	166
	Exp	. 1 Mean	357	229	220	228
	ed	7	208	223	236	197
	2 ^d	12	250	250	158	152
	—	13 2 Maar	216	214	206	196
		. 2 Mean	225	229	200	182
		rall Mean	291	229	210	205

Table B30. Experiment 1 weekly ALKPhos^a levels (U/L)

^aALKPhos - alkaline phosphatase

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0 ^b	Week 1 ^b	Week 2 ^b	
		3	0.2	0.1	0.1	0.2
	1 ^c	8	0.4	0.1	0.1	0.1
		13	0.3	0.3	0.1	0.1
	Exp	. 1 Mean	0.3	0.2	0.1	0.1
Control		1	0.1	0.1	0.1	0.2
	2 ^d	3	0.5	0.1	0.2	0.2
		14	0.2	0.3	0.1	0.1
		. 2 Mean	0.3	0.2	0.1	0.2
	Over	all Mean	0.3	0.2	0.1	0.2
	[2	0.4	0.2	0.3	0.2
	1 ^c	9	0.1	0.1	0.1	0.3
		12	0.3	0.1	0.2	0.2
	Exp	. 1 Mean	0.3	0.1	0.2	0.2
L. reuteri DS-33		2	0.1	0.2	0.1	0.2
	2 ^d	8	0.1	0.1	0.1	0.1
	-	15	0.1	0.1	0.3	0.1
	Exp	. 2 Mean	0.1	0.1	0.2	0.1
		all Mean	0.2	0.1	0.2	0.2
		1	0.2	0.1	0.2	0.2
	1 ^c	10	0.2	0.1	0.2	0.3
		14	0.1	0.1	0.1	0.1
	Exp	. 1 Mean	0.2	0.1	0.2	0.2
L. reuteri WB-74		4	0.2	0.1	0.1	0.1
	2 ^d	5	0.2	0.1	0.2	0.2
		11	0.4	0.1	0.1	0.1
		. 2 Mean	0.3	0.1	0.1	0.1
	Over	all Mean	0.2	0.1	0.2	0.2
		4	0.1	0.3	0.1	0.3
	1 ^c	7	0.3	0.1	0.1	0.2
		11	0.2	0.2	0.3	0.1
	Exp	. 1 Mean	0.2	0.2	0.2	0.2
L. reuteri WB-75		6	0.1	0.3	0.1	0.3
	2 ^d	9	0.3	0.1	0.2	0.1
		10	0.1	0.2	0.1	0.1
		. 2 Mean	0.2	0.2	0.1	0.2
	Overall Mean		0.2	0.2	0.2	0.2
		5	0.2	0.2	0.2	0.3
	1°	5	0.2	0.2	0.2	0.3
	1 ^c	6	0.2	0.2	0.1	0.2
		6 15	0.2 0.2	0.2 0.2	0.1 0.2	0.2 0.1
L acidonhilus L-22		6 15 . 1 Mean	0.2 0.2 0.2	0.2 0.2 0.2	0.1 0.2 0.2	0.2 0.1 0.2
L. acidophilus L-23	Exp	6 15 . 1 Mean 7	0.2 0.2 0.2 0.1	0.2 0.2 0.2 0.2	0.1 0.2 0.2 0.2	0.2 0.1 0.2 0.1
L. acidophilus L-23		6 15 . 1 Mean 7 12	0.2 0.2 0.2 0.1 0.1	0.2 0.2 0.2 0.2 0.2 0.2	0.1 0.2 0.2 0.2 0.1	0.2 0.1 0.2 0.1 0.3
L. acidophilus L-23	Exp 2 ^d	6 15 . 1 Mean 7	0.2 0.2 0.2 0.1	0.2 0.2 0.2 0.2	0.1 0.2 0.2 0.2	0.2 0.1 0.2 0.1

Table B31. Study 1 weekly bili, total levels (mg/dL)

^aDescription of treatments, experiments, and pigs - see Table B2

^bAll 0.1 individual pig values were equal to <0.1

^cExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0 ^b	Week 1 ^b	Week 2 ^b	Week 3
		3	50	50	69	65
	1 ^c	8	100	88	80	88
		13	55	74	64	70
	Exp	. 1 Mean	68	71	71	74
Control		1	70	50	88	95
	2 ^d	3	77	88	107	82
		14	77	74	82	83
	Exp	. 2 Mean	75	71	92	87
	Over	all Mean	72	71	82	81
		2	63	55	62	71
	1 ^c	9	50	50	50	59
	'	12	69	65	76	82
	Exp	. 1 Mean	60	57	63	71
L. reuteri DS-33		2	51	55	72	97
2	2 ^d	8	95	50	96	81
		15	53	65	66	50
	Evo	. 2 Mean	66	57	78	76
		all Mean	64	57	70	73
	Over		04	57	70	73
		1	50	50	50	51
	1 ^c	10	50	67	71	83
		14	50	59	50	60
	Exp	. 1 Mean	50	59	57	65
L. reuteri WB-74	· · ·	4	67	50	92	101
	2 ^d	5	84	67	80	76
		11	73	59	81	72
	Exp	. 2 Mean	75	59	84	83
		all Mean	62	59	71	74
		4	50	59	65	81
	1 ^c	7	50 50	60	66	82
	'	, 11	73	80	83	104
	Eyn	. 1 Mean	58	66	71	89
L. reuteri WB-75		6	62	59	79	84
	2 ^d	9	69	60	56	52
		10	100	80	116	82
	Eyn	. 2 Mean	77	66	84	73
		all Mean	67	66	78	81
	1				- 4	
		5	76	67	74	89
	1 ^c	6	62	69	64	81
	<u> </u>	15	51	59	64	79
	Exp	. 1 Mean	63	65	67	83
L. acidophilus L-23		7	67	67	88	85
	2 ^d	12	78	69	78	86
		13	82	59	78	109
		. 2 Mean	76	65	81	93
	Over	all Mean	69	65	74	88

Table B32. Study 1 weekly cholesterol levels (mg/dL)

^aDescription of treatments, experiments, and pigs - see Table B2

^bAll 50 individual pig values were equal to <50

^cExperiment 1 were barrows

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		3	27	19	26	15
	1 ^b	8	36	16	24	30
		13	25	31	25	26
	Exp	. 1 Mean	29	22	25	24
Control		1	32	19	45	28
	2 ^c	3	42	16	57	40
		14	56	31	38	42
	Exp	. 2 Mean	43	22	47	37
	Over	all Mean	36	22	36	30
	1 ^b	2	30	21	38	21
		9	30 45	38	39	37
		9 12	43 23	20	28	24
	Evo	. 1 Mean	33	20		24
L. reuteri DS-33		2 2	24	20	35 41	44
realer D0-00	2 ^c	2 8	24 41	21 38	41 39	44 35
	2	8 15	41 25	38 20	39 27	35 15
			30	20		31
		. 2 Mean			36	
	Over	all Mean	31	26	35	29
	1 ^b	1	35	25	24	23
		10	17	53	29	36
		14	26	23	15	52
	Exp	. 1 Mean	22	34	23	37
L. reuteri WB-74		4	38	25	29	36
	2 ^c	5	22	53	25	28
	_	11	76	23	46	31
	Exp	. 2 Mean	45	34	33	32
		all Mean	36	34	28	34
	1 ^b	4	23	17	21	19
	'					
		7	39 25	28	29	28
		11 1 Moon	25	36	31	36
L. reuteri WB-75	⊢	. 1 Mean	29	27	27	28
Teulen VVD-10	2 ^c	6 9	54 42	17	24	41
	2			28	29 84	28
	Evo	10 . 2 Mean	40 45	36 27	84 46	68 46
		all Mean	45 37	27	36	40 37
						•
	1 ^b	5	32	19	22	31
		6	22	24	15	20
		15	25	19	24	25
L. acidophilus L-23	Exp	. 1 Mean	26	21	20	25
		7	40	19	49	44
	2 ^c	12	46	24	21	77
		13	54	19	27	79
	Exp	. 2 Mean	47	21	32	67

Table B33. Study 1 weekly triglyceride levels (mg/dL)

^aDescription of treatments, experiments, and pigs - see Table B2

^bExperiment 1 were barrows

Control $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
Control $ \begin{array}{c} $				19	21	20	24
Control $ \begin{array}{c} Exp. 1 Mean 26 25 24 27 \\ 1 28 21 27 28 \\ 2^d 3 24 33 32 25 \\ 14 27 22 28 25 \\ Exp. 2 Mean 26 25 29 26 \\ Overall Mean 26 25 27 27 \\ \hline 2 25 26 27 30 \\ 1^{6} 9 20 16 17 25 \\ 12 30 29 28 34 \\ Exp. 1 Mean 25 24 24 30 \\ 2 21 26 27 35 \\ 2^{d} 8 30 16 30 28 \\ 15 26 29 28 18 \\ Exp. 2 Mean 26 24 28 27 \\ 0verall Mean 25 24 24 30 \\ 2 21 26 27 35 \\ 2^{d} 8 30 16 30 28 \\ 15 26 29 28 18 \\ Exp. 2 Mean 26 24 28 27 \\ Overall Mean 25 24 26 28 \\ \hline 1 1 17 16 17 18 \\ 16 30 28 \\ 15 26 29 28 18 \\ Exp. 2 Mean 26 24 28 27 \\ Overall Mean 25 24 26 28 \\ \hline 1 1 27 19 30 28 \\ 2 d 5 35 22 30 22 \\ 11 27 19 30 28 \\ Exp. 2 Mean 29 19 31 28 \\ Overall Mean 23 19 24 25 \\ \hline L. reuteri WB-74 \\ L. reuteri WB-75 \\ L. reuteri WB-76 \\ L. reuteri WB-75 \\ $		1 ^c	8	38	33	28	33
Control $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	21	22	25	24
$L. reuteri WB-74$ $L. reuteri WB-74$ $L. reuteri WB-74$ $L. reuteri WB-75$ $L. reuteri WB-75$ $L. reuteri WB-75$ $L. reuteri WB-75$ $\frac{2^{d} 3 24}{14} \frac{33}{27} \frac{22}{22} \frac{28}{25} \frac{22}{27} \frac{27}{27} 2$		Exp	. 1 Mean	26	25	24	27
14 27 22 28 25 Exp. 2 Mean 26 25 29 26 Overall Mean 26 25 27 27 I 2 25 26 27 30 1° 9 20 16 17 25 12 30 29 28 34 Exp. 1 Mean 25 24 24 30 2 21 26 27 35 2 ^d 8 30 16 30 28 15 26 29 28 18 Exp. 2 Mean 25 24 26 28 Overall Mean 25 24 26 28 1 1° 10 17 18 23 14 19 19 13 18 24 2d 5 35 22 30 22 11 27 19 30	Control		1	28	21	27	28
Exp. 2 Mean 26 25 29 26 Overall Mean 26 25 27 27 I 2 25 26 27 30 1 ^c 9 20 16 17 25 12 30 29 28 34 Exp. 1 Mean 25 24 24 30 2 ^d 8 30 16 30 28 15 26 29 28 18 Exp. 2 Mean 26 24 28 27 Overall Mean 25 24 28 28 1 ^c 10 17 22 24 30 14 19 19 13 18 Exp. 1 Mean 18 19 18		2 ^d	3	24	33	33	25
L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 $\frac{0}{2^{d}}$ $\frac{2}{12}$ $\frac{25}{26}$ $\frac{26}{29}$ $\frac{25}{24}$ $\frac{26}{24}$ $\frac{25}{24}$ $\frac{26}{24}$ $\frac{25}{24}$ $\frac{26}{24}$ $\frac{27}{24}$ $\frac{26}{26}$ $\frac{27}{35}$ $\frac{27}{24}$ $\frac{2}{24}$ $\frac{21}{26}$ $\frac{26}{29}$ $\frac{28}{28}$ $\frac{11}{15}$ $\frac{17}{16}$ $\frac{17}{16}$ $\frac{17}{16}$ $\frac{17}{17}$ $\frac{16}{17}$ $\frac{17}{16}$ $\frac{17}{17}$ $\frac{16}{17}$ $\frac{17}{122}$ $\frac{24}{24}$ $\frac{30}{24}$ $\frac{2}{25}$ $\frac{11}{27}$ $\frac{17}{19}$ $\frac{11}{27}$ $\frac{19}{19}$ $\frac{30}{28}$ $\frac{28}{24}$ $\frac{29}{11}$ $\frac{29}{23}$ $\frac{29}{28}$ $\frac{21}{26}$ $\frac{24}{28}$ $\frac{27}{27}$ $\frac{27}{26}$ $\frac{24}{26}$ $\frac{28}{34}$ $\frac{11}{15}$ $\frac{20}{21}$ $\frac{21}{22}$ $\frac{24}{30}$ $\frac{30}{21}$ $\frac{21}{22}$ $\frac{21}{22}$ $\frac{21}{30}$ $\frac{21}{22}$ $\frac{21}{30}$ $\frac{21}{30}$ $\frac{21}{31}$ $\frac{21}{25}$ $\frac{21}{25}$ $\frac{21}{26}$ $\frac{31}{26}$ $\frac{21}{25}$ $\frac{21}{26}$ $\frac{31}{26}$ $\frac{21}{25}$ $\frac{21}{26}$ $\frac{31}{26}$ $\frac{21}{25}$ $\frac{21}{26}$ $\frac{31}{26}$ $\frac{21}{25}$ $\frac{23}{26}$ $\frac{31}{26}$ $\frac{31}{26}$ $\frac{23}{26}$ $\frac{31}{26}$ $\frac{23}{26}$ $\frac{31}{26}$ $\frac{23}{26}$ $\frac{32}{26}$ $\frac{32}{27}$ $\frac{33}{30}$ $\frac{30}{2}$ $\frac{2}{12}$ $\frac{27}{26}$ $\frac{26}{26}$ $\frac{33}{26}$ $\frac{25}{27}$ $\frac{35}{25}$ $\frac{26}{28}$ $\frac{32}{27}$ $\frac{32}{35}$ $\frac{26}{26}$ $\frac{32}{27}$ $\frac{32}{35}$ $\frac{26}{26}$ $\frac{32}{27}$ $\frac{32}{35}$ $\frac{26}{26}$ $\frac{32}{31}$ $\frac{15}{25}$ $\frac{25}{26}$ $\frac{26}{33}$ $\frac{31}{29}$ $\frac{25}{27}$ $\frac{35}{35}$ $\frac{26}{26}$ $\frac{32}{27}$ $\frac{35}{25}$ $\frac{26}{26}$ $\frac{32}{27}$ $\frac{35}{25}$ $\frac{26}{26}$ $\frac{32}{27}$ $\frac{32}{35}$ $\frac{26}{26}$ $\frac{32}{30}$ $\frac{32}{12}$ $\frac{7}{22}$ $\frac{23}{30}$ $\frac{30}{30}$ $\frac{2}{2}$ $\frac{7}{12}$ $\frac{22}{23}$ $\frac{30}{30}$ $\frac{32}{2}$ $\frac{7}{12}$ $\frac{22}{23}$ $\frac{30}{30}$ $\frac{32}{2}$ $\frac{7}{12}$ $\frac{22}{23}$ $\frac{30}{30}$ $\frac{32}{2}$ $\frac{7}{12}$ $\frac{22}{23}$ $\frac{30}{30}$ $\frac{32}{2}$ $\frac{7}{12}$ $\frac{22}{23}$ $\frac{30}{30}$ $\frac{30}{2}$ $\frac{7}{25}$ $\frac{26}{26}$ $\frac{32}{31}$ $\frac{15}{25}$ $\frac{26}{26$			14	27	22	28	25
L. reuteri DS-33 $ \begin{array}{c} 2 & 25 & 26 & 27 & 30 \\ 1^{\circ} & 9 & 20 & 16 & 17 & 25 \\ 12 & 30 & 29 & 28 & 34 \\ Exp. 1 Mean & 25 & 24 & 24 & 30 \\ 2 & 21 & 26 & 27 & 35 \\ 2^{d} & 8 & 30 & 16 & 30 & 28 \\ 15 & 26 & 29 & 28 & 18 \\ \hline Exp. 2 Mean & 26 & 24 & 28 & 27 \\ \hline Verall Mean & 25 & 24 & 26 & 28 \\ \hline 11 & 17 & 16 & 17 & 18 \\ 1^{\circ} & 10 & 17 & 22 & 24 & 30 \\ 14 & 19 & 19 & 13 & 18 \\ \hline Exp. 1 Mean & 18 & 19 & 18 & 22 \\ 2^{d} & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline Exp. 2 Mean & 23 & 19 & 24 & 25 \\ \hline 2^{d} & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline Exp. 2 Mean & 23 & 19 & 24 & 25 \\ \hline 4 & 20 & 21 & 22 & 30 \\ 11 & 27 & 19 & 30 & 28 \\ \hline Cverall Mean & 23 & 19 & 24 & 25 \\ \hline 4 & 20 & 21 & 22 & 30 \\ \hline 11 & 30 & 26 & 29 & 38 \\ \hline Exp. 1 Mean & 24 & 25 & 26 & 34 \\ \hline 11 & 30 & 26 & 29 & 38 \\ \hline Exp. 1 Mean & 24 & 25 & 26 & 34 \\ \hline 10 & 35 & 26 & 36 & 25 \\ \hline Exp. 2 Mean & 26 & 25 & 29 & 25 \\ \hline Overall Mean & 25 & 25 & 28 & 30 \\ \hline 15 & 23 & 25 & 26 & 31 \\ \hline L. acidophilus L-23 & 15 & 23 & 25 & 26 & 32 \\ \hline L. acidophilus L-23 & 7 & 22 & 23 & 30 & 30 \\ \hline 2^{d} & 12 & 27 & 26 & 26 & 30 \\ \hline 13 & 29 & 25 & 27 & 35 \\ \hline Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline 13 & 29 & 25 & 27 & 35 \\ \hline Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline 25 & 27 & 35 \\ \hline Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \end{array} $				26	25	29	26
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 1^{c} & 9 & 20 & 16 & 17 & 25 \\ 12 & 30 & 29 & 28 & 34 \\ \hline Exp. 1 Mean & 25 & 24 & 24 & 30 \\ 2 & 21 & 26 & 27 & 35 \\ 2^{d} & 8 & 30 & 16 & 30 & 28 \\ \hline 15 & 26 & 29 & 28 & 18 \\ \hline Exp. 2 Mean & 26 & 24 & 28 & 27 \\ \hline Overall Mean & 25 & 24 & 26 & 28 \\ \hline \\ L. reuteri WB-74 \\ L. reuteri WB-74 \begin{array}{cccccccccccccccccccccccccccccccccccc$		Over	rall Mean	26	25	27	27
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 1^{c} & 9 & 20 & 16 & 17 & 25 \\ 12 & 30 & 29 & 28 & 34 \\ \hline Exp. 1 Mean & 25 & 24 & 24 & 30 \\ 2 & 21 & 26 & 27 & 35 \\ 2^{d} & 8 & 30 & 16 & 30 & 28 \\ \hline 15 & 26 & 29 & 28 & 18 \\ \hline Exp. 2 Mean & 26 & 24 & 28 & 27 \\ \hline Overall Mean & 25 & 24 & 26 & 28 \\ \hline \\ L. reuteri WB-74 \\ L. reuteri WB-74 \begin{array}{cccccccccccccccccccccccccccccccccccc$			2	25	26	27	30
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 12 & 30 & 29 & 28 & 34 \\ Exp. 1 Mean & 25 & 24 & 24 & 30 \\ 2 & 21 & 26 & 27 & 35 \\ 2^d & 8 & 30 & 16 & 30 & 28 \\ 15 & 26 & 29 & 28 & 18 \\ \hline Exp. 2 Mean & 26 & 24 & 28 & 27 \\ \hline Overall Mean & 25 & 24 & 26 & 28 \\ \hline & 1 & 17 & 16 & 17 & 18 \\ 1^c & 10 & 17 & 22 & 24 & 30 \\ 14 & 19 & 19 & 13 & 18 \\ \hline Exp. 1 Mean & 18 & 19 & 13 & 22 \\ 4 & 24 & 16 & 32 & 35 \\ 2^d & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline & 2^d & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline & 2^d & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline & 2^d & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline & 2^d & 5 & 35 & 22 & 30 & 22 \\ \hline & 11 & 27 & 19 & 30 & 28 \\ \hline & 2^d & 5 & 35 & 22 & 30 & 22 \\ \hline & 11 & 30 & 26 & 29 & 38 \\ \hline & 2^d & 9 & 23 & 28 & 20 & 19 \\ \hline & 10 & 35 & 26 & 36 & 25 \\ \hline & Exp. 2 Mean & 26 & 25 & 29 & 25 \\ \hline & Overall Mean & 25 & 25 & 26 & 31 \\ \hline & 15 & 23 & 25 & 26 & 31 \\ \hline & 15 & 23 & 25 & 26 & 31 \\ \hline & 15 & 23 & 25 & 26 & 31 \\ \hline & Exp. 1 Mean & 25 & 25 & 26 & 31 \\ \hline & 15 & 23 & 25 & 26 & 31 \\ \hline & 15 & 23 & 25 & 26 & 31 \\ \hline & Exp. 1 Mean & 25 & 25 & 26 & 32 \\ \hline & 7 & 22 & 23 & 30 & 30 \\ & 2^d & 12 & 27 & 26 & 26 & 32 \\ \hline & 7 & 22 & 23 & 30 & 30 \\ & 2^d & 12 & 27 & 26 & 26 & 32 \\ \hline & 7 & 22 & 23 & 30 & 30 \\ & 2^d & 12 & 27 & 26 & 26 & 32 \\ \hline & 7 & 22 & 23 & 30 & 30 \\ & 2^d & 12 & 27 & 26 & 26 & 32 \\ \hline & 7 & 22 & 23 & 30 & 30 \\ & 2^d & 12 & 27 & 26 & 26 & 33 \\ \hline & Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline \end{array} $		1 ^c					
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} Exp. 1 Mean 25 24 24 30 \\ 2 21 26 27 35 \\ 2^{d} 8 30 16 30 28 \\ 15 26 29 28 18 \\ \hline Exp. 2 Mean 26 24 28 27 \\ \hline Overall Mean 26 24 28 27 \\ \hline Overall Mean 26 24 28 27 \\ \hline Overall Mean 18 19 13 18 \\ Exp. 1 Mean 18 19 13 22 \\ 4 24 16 32 35 \\ 2^{d} 5 35 22 30 22 \\ 11 27 19 30 28 \\ \hline Exp. 2 Mean 29 19 31 28 \\ \hline Overall Mean 23 19 24 25 \\ \hline \\ L. reuteri WB-75 \\ L. reuteri $							
L. reuteri DS-33 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp					
$L. reuteri WB-74 = \begin{bmatrix} 2^d & 8 & 30 & 16 & 30 & 28 \\ 15 & 26 & 29 & 28 & 18 \\ \hline Exp. 2 Mean & 26 & 24 & 28 & 27 \\ \hline Overall Mean & 25 & 24 & 26 & 28 \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	L. reuteri DS-33						
$L. reuteri WB-74 = \begin{bmatrix} 15 & 26 & 29 & 28 & 18 \\ Exp. 2 Mean & 26 & 24 & 28 & 27 \\ \hline Overall Mean & 25 & 24 & 26 & 28 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$		2 ^d					
L. reuteri WB-74 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
L. reuteri WB-74 L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fxn					
L. reuteri WB-74 $L. reuteri WB-74 = \begin{bmatrix} 1 & 17 & 16 & 17 & 18 \\ 1^{\circ} & 10 & 17 & 22 & 24 & 30 \\ 14 & 19 & 19 & 13 & 18 \\ \hline Exp. 1 Mean & 18 & 19 & 18 & 22 \\ 4 & 24 & 16 & 32 & 35 \\ 2^{d} & 5 & 35 & 22 & 30 & 22 \\ 11 & 27 & 19 & 30 & 28 \\ \hline Exp. 2 Mean & 29 & 19 & 31 & 28 \\ \hline Overall Mean & 23 & 19 & 24 & 25 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$							
L. reuteri WB-74 $ \begin{array}{c} 1^{c} 10 17 22 24 30 \\ 14 19 19 13 18 \\ Exp. 1 Mean 18 19 18 22 \\ 4 24 16 32 35 \\ 2^{d} 5 35 22 30 22 \\ 11 27 19 30 28 \\ Exp. 2 Mean 29 19 31 28 \\ \hline Overall Mean 23 19 24 25 \\ \hline \\ $		0101		25	24	20	20
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	17	16	17	18
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 ^c	10	17	22	24	30
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	19	19	13	18
$L. \ acidophilus L-23 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp	. 1 Mean	18	19	18	22
$L. acidophilus L-23$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L. reuteri WB-74		4	24	16	32	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ^d	5	35	22	30	22
$L. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			11	27	19	30	28
L. <i>reuteri</i> WB-75 $L. reuteri WB-75$ $L. reuteri WB-75$ $\frac{4 & 20 & 21 & 22 & 30 \\ 1^{c} & 7 & 21 & 28 & 28 & 34 \\ 11 & 30 & 26 & 29 & 38 \\ \hline Exp. 1 Mean & 24 & 25 & 26 & 34 \\ 6 & 21 & 21 & 30 & 31 \\ 2^{d} & 9 & 23 & 28 & 20 & 19 \\ 10 & 35 & 26 & 36 & 25 \\ \hline Exp. 2 Mean & 26 & 25 & 29 & 25 \\ \hline Overall Mean & 25 & 25 & 28 & 30 \\ \hline 0verall Mean & 25 & 25 & 28 & 30 \\ \hline 15 & 23 & 25 & 26 & 31 \\ \hline 15 & 23 & 25 & 26 & 31 \\ \hline 15 & 23 & 25 & 26 & 31 \\ \hline Exp. 1 Mean & 25 & 25 & 26 & 31 \\ \hline 2^{d} & 12 & 27 & 26 & 26 & 30 \\ \hline 13 & 29 & 25 & 27 & 35 \\ \hline Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline \end{array}$		Exp	. 2 Mean	29	19	31	28
L. reuteri WB-75 $\begin{bmatrix} 1^{c} & 7 & 21 & 28 & 28 & 34 \\ 11 & 30 & 26 & 29 & 38 \\ \hline Exp. 1 Mean & 24 & 25 & 26 & 34 \\ 6 & 21 & 21 & 30 & 31 \\ 2^{d} & 9 & 23 & 28 & 20 & 19 \\ 10 & 35 & 26 & 36 & 25 \\ \hline Exp. 2 Mean & 26 & 25 & 29 & 25 \\ \hline Overall Mean & 25 & 25 & 28 & 30 \\ \hline \\ L. acidophilus L-23 & & & & & \\ 1^{c} & 6 & 25 & 25 & 26 & 31 \\ \hline Exp. 1 Mean & 25 & 25 & 26 & 31 \\ \hline \\ Exp. 1 Mean & 25 & 25 & 26 & 31 \\ \hline \\ C & 12 & 27 & 26 & 26 & 30 \\ \hline \\ C & 13 & 29 & 25 & 27 & 35 \\ \hline \\ Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline \end{bmatrix}$		Over	rall Mean	23	19	24	25
L. reuteri WB-75 $\begin{bmatrix} 1^{c} & 7 & 21 & 28 & 28 & 34 \\ 11 & 30 & 26 & 29 & 38 \\ \hline Exp. 1 Mean & 24 & 25 & 26 & 34 \\ 6 & 21 & 21 & 30 & 31 \\ 2^{d} & 9 & 23 & 28 & 20 & 19 \\ 10 & 35 & 26 & 36 & 25 \\ \hline Exp. 2 Mean & 26 & 25 & 29 & 25 \\ \hline Overall Mean & 25 & 25 & 28 & 30 \\ \hline \\ L. acidophilus L-23 & & & & & \\ 1^{c} & 6 & 25 & 25 & 26 & 31 \\ \hline Exp. 1 Mean & 25 & 25 & 26 & 31 \\ \hline \\ Exp. 1 Mean & 25 & 25 & 26 & 31 \\ \hline \\ C & 12 & 27 & 26 & 26 & 30 \\ \hline \\ C & 13 & 29 & 25 & 27 & 35 \\ \hline \\ Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline \end{bmatrix}$			4	20	21	22	30
L. reuteri WB-75 $\begin{bmatrix} 11 & 30 & 26 & 29 & 38 \\ Exp. 1 Mean & 24 & 25 & 26 & 34 \\ 6 & 21 & 21 & 30 & 31 \\ 2^d & 9 & 23 & 28 & 20 & 19 \\ 10 & 35 & 26 & 36 & 25 \\ \hline Exp. 2 Mean & 26 & 25 & 29 & 25 \\ \hline Overall Mean & 25 & 25 & 28 & 30 \\ \hline \\ I & 15 & 23 & 25 & 26 & 31 \\ 15 & 23 & 25 & 26 & 31 \\ \hline \\ Exp. 1 Mean & 25 & 25 & 26 & 32 \\ \hline \\ I & 27 & 26 & 26 & 30 \\ 2^d & 12 & 27 & 26 & 26 & 30 \\ \hline \\ I & 3 & 29 & 25 & 27 & 35 \\ \hline \\ Exp. 2 Mean & 26 & 25 & 28 & 32 \\ \hline \\ \end{array}$		1 ^c					
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		'					
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp					
$L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 2^{d} 9 23 28 20 1910$ 35 26 36 25 29 25 Overall Mean 26 25 29 25 25 28 30 5 28 23 28 34 1° 6 25 26 23 31 15 23 25 26 31 Exp. 1 Mean 25 25 26 32 7 22 23 30 30 2^{d} 12 27 26 26 30 13 29 25 27 35 Exp. 2 Mean 26 25 28 32	L. reuteri WB-75						
$L. acidophilus L-23$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ^d					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp					
L. acidophilus L-23 1^{c} 6 25 26 23 31 15 23 25 26 31 Exp. 1 Mean 25 25 26 32 7 22 23 30 30 2 ^d 12 27 26 26 30 13 29 25 27 35 Exp. 2 Mean 26 25 28 32							
L. acidophilus L-23 1^{c} 6 25 26 23 31 15 23 25 26 31 Exp. 1 Mean 25 25 26 32 7 22 23 30 30 2 ^d 12 27 26 26 30 13 29 25 27 35 Exp. 2 Mean 26 25 28 32			F	20	00	20	24
L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 L. acidophilus L-23 15 23 25 26 31 25 25 26 32 26 30 30 2 ^d 12 27 26 26 30 30 2 ^d 12 27 26 26 30 30 2 ^d 30 2 ^d 30 2 ^d 30 2 ^d 30 2 ^d 30 2 ^d 30 2 ^d 30 2 ^d 30 2 ^d 30 30 2 ^d 30 30 30 2 ^d 30 30 30 30 2 ^d 30 30 30 30 30 30 30 30 30 30		٨C					
Exp. 1 Mean 25 25 26 32 1 7 22 23 30 30 2 ^d 12 27 26 26 30 13 29 25 27 35 Exp. 2 Mean 26 25 28 32		1					
L. acidophilus L-23 2 ^d 12 27 26 26 30 13 29 25 27 35 Exp. 2 Mean 26 25 28 32		E.v.					
2 ^d 12 27 26 26 30 13 29 25 27 35 Exp. 2 Mean 26 25 28 32	L aaidanbilisa L OO	⊏xp					
13 29 25 27 35 Exp. 2 Mean 26 25 28 32	L. acidophilus L-23	od					
Exp. 2 Mean 26 25 28 32		2					
		F					
Overall Mean 26 25 27 32							
		Over	rall Mean	26	25	27	32

Table B34. Experiment 1 weekly HDL^a levels (mg/dL)

^aHDL - high-density lipoprotein

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		3	5	4	5	3
	1 ^c	8	8 7	3	5	6
		13	5	6	5	5
	Exp	. 1 Mean	6	4	5	5
Control		1	6	4	9	6
	2 ^d	3	8	3	11	8
		14	11	6	8	8
	Exp	. 2 Mean	8	4	9	7
		rall Mean	7	4	7	6
	T	2	7	4	8	4
	1 ^c	2	9	4 8	о 8	4 7
	1-	9 12				
	Evo	. 1 Mean	5 7	<u>4</u> 5	<u>6</u> 7	<u>5</u> 5
L. reuteri DS-33	Ехр	2 2	5	4	8	9
L. Teulen DS-33	2 ^d	2	8	4 8	8	9 7
	2	0 15	8 5	8 4	8 5	3
	Evo	. 2 Mean	6	5	7	6
		rall Mean	7	5	7	6
	Over		1	5	1	0
		1	7	5	5	5
	1 ^c	10	3	11	6	7
		14	5	5	3	10
	Exp	. 1 Mean	5	7	5	7
L. reuteri WB-74		4	8	5	6	7
	2 ^d	5	4	11	5	6
		11	15	5	9	6
	Exp	. 2 Mean	9	7	7	6
		rall Mean	7	7	6	7
		4	5	3	4	4
	1 ^c	4 7	5 8	6	4 6	4 6
	1	, 11	8 5	7	6	7
	Evo	. 1 Mean	6	5	5	6
L. reuteri WB-75	L vb	6	11	3	5	8
L. IGUIGH VID-IJ	2 ^d	9	8	6	6	6
	2	9 10	8	7	17	14
	Exp	. 2 Mean	9	5	9	9
		rall Mean	8	5	7	8
		5	6	4	4	6
	1 ^c	6	4	5	3	4
		15	5	4	5	5
	Exp	. 1 Mean	5	4	4	5
<i>L. acidophilus</i> L-23		7	8	4	10	9
	2 ^d	12	9	5	4	15
		13	11	4	5	16
	Evn	. 2 Mean	9	4	6	13
		rall Mean	7	4	5	9

Table B35. Study 1 weekly VLDL^a levels (mg/dL)

^aVLDL - very low-density lipoprotein

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b		Week 1	Week 2	Wook ?
Houthent	<u></u>	3	Day 0 0.534	0.585	0.708	Week 3 0.775
	1 ^c	8	0.324	0.374	0.708	0.775
	1					
	Evo	13 1 Moon	0.328	0.412	0.388	0.591
Control	Exp.	. 1 Mean		0.457	0.490	0.560
Control	2 ^d	1	0.379	0.345	0.334	0.370
	2°	3	0.481	0.358	0.317	0.358
	—	14	0.674	0.386	0.441	0.784
		. 2 Mean	0.511	0.363	0.364	0.504
	Over	all Mean	0.453	0.410	0.427	0.532
		2	0.357	0.442	0.378	0.445
	1 ^c	9	0.345	0.343	0.349	0.442
		12	0.623	0.530	0.829	0.903
	Exp.	. 1 Mean	0.441	0.438	0.519	0.597
L. reuteri DS-33		2	0.956	0.980	0.894	0.999
	2 ^d	8	0.812	0.800	0.725	0.502
	-	15	0.738	0.338	0.378	0.526
	Exp.	. 2 Mean	0.835	0.706	0.666	0.676
		all Mean	0.638	0.572	0.592	0.636
	1		0.000		0.001	0.000
		1	0.326	0.524	0.284	0.561
	1 ^c	10	0.552	0.685	0.585	0.534
		14	0.720	0.628	0.627	0.896
	Exp.	. 1 Mean	0.533	0.612	0.499	0.664
L. reuteri WB-74		4	0.348	0.551	0.379	0.358
	2 ^d	5	0.373	0.579	1.353	0.619
		11	0.978	1.289	0.674	1.414
	Exp.	. 2 Mean	0.566	0.806	0.802	0.797
		all Mean	0.549	0.709	0.650	0.730
		4	0.428	0.449	0.458	0.620
	1 ^c	7	0.716	0.870	0.680	0.955
		11	0.285	0.291	0.411	0.524
	Exp.	. 1 Mean	0.476	0.537	0.516	0.700
L. reuteri WB-75	L.	6	0.447	0.575	0.251	0.312
	2 ^d	9	0.367	0.346	0.323	0.250
		10	0.303	0.351	0.357	0.494
		. 2 Mean	0.372	0.424	0.310	0.352
	Over	all Mean	0.424	0.480	0.413	0.526
		5	0.531	0.420	0.287	0.516
	1 ^c	6	0.347	0.468	0.450	0.532
		15				
	Eva	. 1 Mean	0.324	0.517	0.337	0.330
	⊏xp.		0.400	0.469	0.358	0.459
L. acidophilus L-23	e d	7	0.842	0.593	0.732	0.898
	2 ^d	12	0.213	0.257	0.326	0.248
		13	0.236	0.189	0.199	0.332
	Exp.	. 2 Mean	0.430	0.346	0.419	0.493
		all Mean				

Table B36. Study 1 weekly IgA^a levels (mg/mL)

^algA - immunoglobulin A

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b			-	Marko
Treatment	Exp.	V	Day 0	Week 1	Week 2	Week 3
		3	4.447	8.336	7.110	7.098
	1 ^c	8	4.255	7.552	6.267	4.553
		13	6.107	3.990	5.283	9.335
- ·	Exp.	1 Mean	4.936	6.626	6.220	6.995
Control		1	12.300	9.677	10.570	9.195
	2 ^d	3	8.888	7.760	9.989	12.260
		14	12.370	11.600	16.240	7.057
		2 Mean	11.186	9.679	12.266	9.504
	Over	all Mean	8.061	8.153	9.243	8.250
		2	3.354	6.783	4.734	4.075
	1 ^c	9	6.687	5.692	6.274	5.112
	1 '	12	12.430	15.140	10.830	9.920
	Exp.		7.490	9.205	7.279	6.369
L. reuteri DS-33		2	10.920	7.985	10.330	11.470
	2 ^d	8	15.480	14.230	12.940	13.720
		15	9.515	13.080	11.830	4.178
	Exp	2 Mean	11.972	11.765	11.700	9.789
		all Mean	9.731			8.079
	Over		9.731	10.485	9.490	0.079
		1	4.289	6.648	8.324	5.113
	1°	10	4.528	8.136	6.692	5.970
		14	10.440	9.317	7.416	9.550
	Exp.	1 Mean	6.419	8.034	7.477	6.878
L. reuteri WB-74		4	9.837	9.342	8.771	9.874
	2 ^d	5	5.927	7.914	8.738	10.640
		11	12.130	12.240	9.198	9.277
	Exp.	2 Mean	9.298	9.832	8.902	9.930
	Over	all Mean	7.859	8.933	8.190	8.404
		4	0 700	0.4.40	44.000	7
	1 ^c	4	3.733	8.142	11.890	7.555
	1-	7	3.925	10.610	7.406	6.725
		11	6.373	5.591	5.974	5.317
	Exp.		4.677	8.114	8.423	6.532
L. reuteri WB-75	ba	6	11.410	10.650	12.320	14.080
	2 ^d	9	9.292	9.231	10.800	8.451
		10 2 Maan	10.020	7.416	7.549	7.629
		2 Mean	10.241	9.099	10.223	10.053
	Over	all Mean	7.459	8.607	9.323	8.293
		5	3.141	8.967	7.679	8.947
	1 ^c	6	8.110	9.651	6.711	6.532
		15	5.907	9.068	7.339	9.013
	Exp.		5.719	9.229	7.243	8.164
L. acidophilus L-23		7	10.460	9.412	8.522	12.690
L. acidophilus L-23	2 ^d	, 12	6.832	6.062	8.399	6.234
	_			13.210		
	Eva	13 2 Moon	10.420		12.780	16.300
		2 Mean all Mean	9.237 7.478	9.561	9.900 8.572	11.741
				9.395		9.953

Table B37. Study 1 weekly IgG^a levels (mg/mL)

^algG - immunoglobulin G

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		3	0.990	1.296	1.313	1.756
	1 ^c	8	1.292	1.394	0.958	1.463
	· ·	13	1.172	0.963	0.907	1.434
	Exp.	1 Mean	1.151	1.218	1.059	1.551
Control	<u> </u>	1	1.588	1.741	2.053	1.808
Control	2 ^d	3	3.237	2.908	2.696	2.513
	2	14	5.528	5.776	5.604	4.837
	Exp	2 Mean	3.451	3.475	3.451	3.053
		all Mean	2.301	2.346	2.255	2.302
	0.00	an moan	2.001	2.040	2.200	2.002
		2	1.813	1.312	1.242	1.072
	1 ^c	9	1.044	1.065	1.272	1.452
		12	1.953	1.516	1.143	1.544
	Exp.	1 Mean	1.603	1.298	1.219	1.356
L. reuteri DS-33		2	4.073	2.859	2.303	2.348
	2 ^d	8	4.248	2.570	2.333	2.298
	-	15	3.905	2.617	2.426	2.242
	Exp.	2 Mean	4.075	2.682	2.354	2.296
		all Mean	2.839	1.990	1.787	1.826
		1	1.039	1.562	1.235	0.856
	1 ^c	10	0.779	0.851	1.559	1.808
		14	1.986	2.968	1.523	2.044
	Exp.	1 Mean	1.268	1.794	1.439	1.569
L. reuteri WB-74		4	1.996	1.879	2.411	2.710
	2 ^d	5	1.522	2.249	2.025	2.552
		11	4.461	3.263	3.016	2.749
	Exp.	2 Mean	2.660	2.464	2.484	2.670
	Over	all Mean	1.964	2.129	1.962	2.120
		4	1.459	1.683	1.312	1.645
	1 ^c	7	2.037	1.255	1.156	1.643
		11	1.196	0.993	0.921	1.786
	Exp.	1 Mean	1.564	1.310	1.130	1.691
L. reuteri WB-75	۔ ۱	6	2.386	2.838	2.828	2.954
	2 ^d	9	3.821	2.152	2.342	2.085
		10	3.046	3.677	2.863	3.380
		2 Mean	3.084	2.889	2.678	2.806
	Overall Mean		2.324	2.100	1.904	2.249
		5	1 607	1 050	1 165	2 072
	A C	5	1.607	1.859	1.165	2.073
	1 ^c	6	1.872	1.395	1.285	1.621
		15 1 Maan	1.220	0.973	0.849	1.279
	Exp.	1 Mean	1.566	1.409	1.100	1.658
L. acidophilus L-23	4	7	2.507	1.738	1.609	1.746
	2 ^d	12	3.232	1.947	2.749	3.222
		13	2.036	1.711	1.652	2.585
	· -	~ • • •	2 502	1 700	2.003	2.518
	Exp.	2 Mean	2.592	1.799	2.005	2.510

Table B38. Study 1 weekly IgM^a levels (mg/mL)

^algM - immunoglobulin M

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

in	take (kg)		-
Treatment ^b	Exp. ^b	Pig ^b	FI ^c
		3	0.73
	1 ^d	8	0.75
		13	0.84
	Exp.	. 1 Mean	0.77
Control		1	0.89
	2 ^e	3	0.85
		14	0.88
	Exp.	. 2 Mean	0.88
	Over	all Mean	0.82
		2	0.24
	1 ^d	9	0.62
		12	0.71
	Exp.	. 1 Mean	0.52
L. reuteri DS-33		2	0.43
	2 ^e	8	0.90
		15	0.83
		. 2 Mean	0.72
	Over	all Mean	0.62
	1	4	0.47
	, d	1	0.47
	1 ^d	10	0.01
	-	14	0.76
	Exp.	. 1 Mean	0.41
L. reuteri WB-74	a f	4	0.72
	2 ^e	5	0.79
		11	0.90
		. 2 Mean	0.81
	Over	all Mean	0.61
		4	0.38
	1 ^d	7	0.47
		11	0.77
	Exp	. 1 Mean	0.54
L. reuteri WB-75		6	0.75
	2 ^e	9	0.82
	2	10	0.85
	Exp	. 2 Mean	0.81
		all Mean	0.67
	0.0	an mean	0.07
		5	0.31
	1 ^d	6	0.58
		15	0.67
	Exp		0.52
L. acidophilus L-23		7	0.80
	2 ^e	12	0.75
	_	13	0.85
	Exp	. 2 Mean	0.80
		all Mean	0.66
	0.101		0.00

Table B39. Study 1 overall LPS^a challenge feed intake (kg)

 $^{\rm b}\mbox{Description}$ of treatments, experiments, and pigs - see Table B2

^cFI - feed intake

^dExperiment 1 were barrows

Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-			
L. reuteri WB-74 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-24 L. acidophilus L-24 L. acidophilus L-24 L. acidophilus L-24 L. acid	Treatment	Exp. [°]					Hour 24
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$							24.31
Control Exp. 1 Mean 21.83 21.42 21.27 22.54 1 24.63 23.77 23.95 24.58 2 ^d 3 21.50 20.87 20.23 21.32 14 19.28 18.78 18.42 19.46 Exp. 2 Mean 21.80 21.14 20.87 21.77 Overall Mean 21.82 21.28 21.07 22.17 Overall Mean 21.82 21.28 21.07 22.17 1 ^c 9 21.41 21.23 20.77 21.77 12 26.49 25.40 25.13 26.31 Exp. 1 Mean 24.86 24.10 23.68 24.49 2 24.40 23.95 23.22 23.50 2 ^d 8 22.41 21.59 21.41 22.59 2 ^d 15 18.73 18.33 17.60 19.14 Exp. 2 Mean 21.85 21.29 20.74 21.74 Overall Mean 23.35 22.69 22.21 23.12 L. reuteri WB-74 I. reuteri WB-74 1 24.68 25.49 25.08 25.31 1 ^c 10 25.04 24.77 23.90 23.68 14 18.51 18.01 17.69 18.82 Exp. 1 Mean 22.74 22.76 22.23 22.60 2 ^d 5 20.87 20.59 20.00 21.23 11 21.05 20.46 19.60 20.68 Exp. 2 Mean 21.30 20.73 20.22 21.32 Overall Mean 22.02 21.74 21.22 21.96 L. reuteri WB-75 I. reuteri WB-75 1 4 24.58 24.13 23.72 23.59 1 ^c 7 22.23 21.86 21.77 22.59 11 22.86 22.50 21.95 23.86 Exp. 1 Mean 23.22 22.83 22.48 23.34 1 ^c 7 22.23 21.86 21.77 22.59 11 22.86 22.50 21.95 23.86 Exp. 1 Mean 23.22 21.83 22.48 23.34 1 ^c 7 22.23 21.86 21.77 22.59 11 22.86 22.50 21.95 23.86 Exp. 1 Mean 23.22 22.83 22.48 23.34 1 ^c 6 19.64 19.23 18.82 20.23 2 ^d 9 20.68 20.32 20.05 21.32 0 Verall Mean 23.22 22.83 22.48 23.34 1 ^c 6 19.64 19.23 18.82 20.23 2 ^d 9 20.68 20.32 20.05 21.32 0 Verall Mean 23.22 22.83 22.48 23.34 1 ^c 6 19.64 19.23 18.82 20.23 2 ^d 9 20.88 20.32 20.05 21.32 0 Verall Mean 23.22 22.85 22.32 22.04 22.95 10 22.14 21.77 21.41 22.41 Exp. 2 Mean 23.86 23.31 22.85 23.77 2 ^d 15 21.32 20.68 20.09 21.53 10 22.14 21.77 21.41 22.41 Exp. 1 Mean 23.86 23.31 22.85 23.77 2 ^d 13 25.04 24.58 23.77 25.08 Exp. 1 Mean 23.86 23.31 22.85 23.77 2 ^d 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 20.82 20.44 20.09 21.32 0 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 20.20 21.64 21.29 22.33 2 ^d 12 19.14 18.33 18.23 18.73 3 2 ^d 13 25.04 24.58 23.77 25.08 Exp		1 ^c		20.68			21.68
Control 2 ^d 3 2 ^d 3 21.50 20.87 20.23 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.32 21.3 21.3			13				21.64
2 ^d 3 21.50 20.87 20.23 21.32 14 19.28 18.78 18.42 19.46 Exp. 2 Mean 21.80 21.14 20.87 21.73 Overall Mean 21.82 21.28 21.07 22.17 Overall Mean 21.82 21.28 21.07 22.17 L. reuteri DS-33 1 ^c 9 26.67 25.67 25.13 25.40 2 26.49 25.40 25.13 26.31 26.31 26.31 2 24.40 23.95 23.22 23.50 23.22 23.50 2 ^d 8 22.41 21.59 21.41 22.59 21.74 21.85 21.29 20.74 21.74 22.74 22.69 22.11 23.12 2 ^d 8 22.41 21.59 21.41 25.53 11.83 17.60 18.82 1 1 ^c 10 25.04 24.77 23.90 23.68 14		Exp.	1 Mean	21.83	21.42	21.27	22.54
14 19.28 18.78 18.42 19.46 Exp. 2 Mean 21.80 21.14 20.87 21.79 Overall Mean 21.82 21.07 22.17 Overall Mean 21.82 21.07 22.17 1° 9 21.41 21.23 20.77 21.77 12 26.49 25.40 25.13 26.41 2 24.40 23.95 23.22 23.50 2 ^d 8 22.41 21.59 21.41 22.59 15 18.73 18.33 17.60 19.14 Exp. 2 Mean 21.85 21.29 20.74 21.74 Overall Mean 22.35 22.69 22.1 23.55 1° 10 25.04 24.77 23.90 23.68 Exp. 1 Mean 22.74 22.17 23.23 22.60 1 21.05 20.46 19.60 20.68 Exp. 1 Mean 22.02 21.77 22.59 11.21.05 <	Control		1	24.63	23.77	23.95	24.58
Exp. 2 Mean 21.80 21.14 20.87 21.79 Overall Mean 21.82 21.28 21.07 22.17 Overall Mean 21.82 21.28 21.07 22.17 1° 9 21.41 21.23 20.77 21.77 12 26.49 25.40 25.13 26.31 Exp. 1 Mean 24.86 24.10 23.68 24.49 2 24.40 23.95 23.22 23.55 2d 8 22.41 21.59 21.41 22.56 15 18.73 18.33 17.60 19.14 Exp. 2 Mean 21.85 21.29 20.74 21.74 Overall Mean 23.35 22.69 22.21 23.12 L. reuteri WB-74 1 24.68 25.49 25.08 25.31 1° 1 21.05 22.00 21.14 21.05 22.00 2d 5 20.87 20.59 20.00 21.23 2		2 ^d	3	21.50	20.87	20.23	21.32
Overall Mean 21.82 21.28 21.07 22.17 1° 2 26.67 25.67 25.13 25.40 1° 9 21.41 21.23 20.77 21.7 12 26.49 25.40 25.13 26.31 Exp. 1 Mean 24.86 24.10 23.68 24.49 2d 8 22.440 23.95 23.22 23.50 2d 8 22.41 21.59 21.41 22.59 2d 8 22.40 23.95 23.22 23.50 2d 8 22.41 21.59 21.41 22.59 15 18.73 18.33 17.60 19.44 23.65 14 18.51 18.01 17.69 18.82 1° 10 25.04 24.77 23.90 23.68 14 18.51 18.01 17.69 18.82 1 21.05 20.00 21.23 21.00 2d			14	19.28	18.78	18.42	19.46
L. reuteri DS-33 L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-74 L. reuteri WB-75 L. reuteri WB-75 L. acidophilus L-23 L. acidophilus L-2		Exp.	2 Mean	21.80	21.14	20.87	21.79
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 1^{c} & 9 & 21.41 & 21.23 & 20.77 & 21.77 \\ 12 & 26.49 & 25.40 & 25.13 & 26.31 \\ \hline Exp. 1 Mean & 24.86 & 24.10 & 23.68 & 24.49 \\ 2 & 24.40 & 23.95 & 23.22 & 23.50 \\ 2^{d} & 8 & 22.41 & 21.59 & 21.41 & 22.59 \\ \hline 15 & 18.73 & 18.33 & 17.60 & 19.14 \\ \hline Exp. 2 Mean & 21.85 & 21.29 & 20.74 & 21.74 \\ \hline Overall Mean & 23.35 & 22.69 & 22.21 & 23.12 \\ \hline 1^{c} & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ \hline 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ \hline Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.32 \\ \hline 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ \hline Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ \hline Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \hline L. reuteri WB-74 & 4 & 24.58 & 24.13 & 23.72 & 23.59 \\ \hline 1^{c} & 7 & 22.23 & 21.86 & 21.77 & 22.59 \\ \hline 11 & 22.86 & 22.50 & 21.95 & 23.86 \\ \hline Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ \hline L. reuteri WB-75 & 6 & 19.64 & 19.23 & 18.82 & 20.23 \\ \hline 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ \hline 10 & 22.14 & 21.77 & 21.41 & 22.41 \\ \hline Exp. 2 Mean & 20.82 & 20.44 & 20.09 & 21.32 \\ \hline 0 verall Mean & 22.02 & 21.64 & 21.29 & 22.33 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & F & F & F & F & F & F & F & F & F & $		Overa	all Mean	21.82	21.28	21.07	22.17
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{c} 1^{c} & 9 & 21.41 & 21.23 & 20.77 & 21.77 \\ 12 & 26.49 & 25.40 & 25.13 & 26.31 \\ \hline Exp. 1 Mean & 24.86 & 24.10 & 23.68 & 24.49 \\ 2 & 24.40 & 23.95 & 23.22 & 23.50 \\ 2^{d} & 8 & 22.41 & 21.59 & 21.41 & 22.59 \\ \hline 15 & 18.73 & 18.33 & 17.60 & 19.14 \\ \hline Exp. 2 Mean & 21.85 & 21.29 & 20.74 & 21.74 \\ \hline Overall Mean & 23.35 & 22.69 & 22.21 & 23.12 \\ \hline 1^{c} & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ \hline 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ \hline Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.32 \\ \hline 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ \hline Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ \hline Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \hline L. reuteri WB-74 & 4 & 24.58 & 24.13 & 23.72 & 23.59 \\ \hline 1^{c} & 7 & 22.23 & 21.86 & 21.77 & 22.59 \\ \hline 11 & 22.86 & 22.50 & 21.95 & 23.86 \\ \hline Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ \hline L. reuteri WB-75 & 6 & 19.64 & 19.23 & 18.82 & 20.23 \\ \hline 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ \hline 10 & 22.14 & 21.77 & 21.41 & 22.41 \\ \hline Exp. 2 Mean & 20.82 & 20.44 & 20.09 & 21.32 \\ \hline 0 verall Mean & 22.02 & 21.64 & 21.29 & 22.33 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & 7 & 21.86 & 23.31 & 22.85 & 23.72 \\ \hline L. acidophilus L-23 & F & F & F & F & F & F & F & F & F & $		-					
L. reuteri DS-33 L. reuteri DS-33 $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							25.40
L. reuteri DS-33 L. reuteri DS-33 2^{d} 8 22.41 21.59 21.41 22.59 2^{d} 8 22.41 21.59 21.41 22.59 15 18.73 18.33 17.60 19.14 Exp. 2 Mean 21.85 21.29 20.74 21.74 Overall Mean 23.35 22.69 22.21 23.12 1° 10 25.04 24.77 23.90 23.68 14 18.51 18.01 17.69 18.82 Exp. 1 Mean 22.74 22.76 22.23 22.60 2^{d} 5 20.87 20.59 20.00 21.23 11 21.05 20.46 19.60 20.68 Exp. 2 Mean 21.30 20.73 20.22 21.32 Overall Mean 22.02 21.74 21.77 23.90 2^{d} 5 20.87 20.59 20.00 21.23 11 21.05 20.46 19.60 20.68 Exp. 2 Mean 21.30 20.73 20.22 21.32 Overall Mean 22.02 21.74 22.76 22.23 22.60 2^{d} 5 20.87 20.59 20.00 21.23 11 21.05 20.46 19.60 20.68 Exp. 2 Mean 21.30 20.73 20.22 21.32 Overall Mean 22.02 21.74 21.72 23.59 1° 7 22.23 21.86 21.77 22.59 1° 7 22.23 21.86 21.77 22.59 1° 7 22.23 21.86 21.77 22.59 1° 7 22.23 21.86 21.77 22.59 2^{d} 9 20.68 20.32 20.05 21.32 Overall Mean 23.02 20.44 20.09 21.32 2^{d} 9 20.68 20.32 20.05 21.32 2^{d} 9 20.68 20.32 20.05 21.32 2^{d} 9 20.68 20.32 20.05 21.32 2^{d} 9 20.68 20.32 20.09 21.32 Overall Mean 22.02 21.64 21.29 22.33 2^{d} 9 20.68 20.32 20.09 21.32 10 22.14 21.77 21.41 22.41 Exp. 2 Mean 20.82 20.44 20.09 21.32 2^{d} 9 20.68 20.32 20.09 21.32 2^{d} 9 20.68 20.32 20.09 21.32 2^{d} 9 20.68 23.31 22.85 23.72 2^{d} 12 19.14 18.33 18.23 18.73 3^{2} 20.4 24.58 23.77 25.08 Exp. 1 Mean 23.86 23.31 22.85 23.72 2^{d} 12 19.14 18.33 18.23 18.73 3^{2} 5.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01		1 ^c	9	21.41		20.77	21.77
L. reuteri DS-33 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			12	26.49	25.40	25.13	26.31
$L. reuteri WB-74 = \begin{bmatrix} 2^d & 8 & 22.41 & 21.59 & 21.41 & 22.59 \\ 15 & 18.73 & 18.33 & 17.60 & 19.14 \\ Exp. 2 Mean & 21.85 & 21.29 & 20.74 & 21.74 \\ \hline Overall Mean & 23.35 & 22.69 & 22.21 & 23.12 \\ \hline Overall Mean & 23.35 & 22.69 & 22.21 & 23.12 \\ \hline 1 & 24.68 & 25.49 & 25.08 & 25.31 \\ 1^c & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ \hline Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^d & 5 & 20.87 & 20.59 & 20.00 & 21.23 \\ 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ \hline Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ \hline Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$		Exp.	1 Mean	24.86	24.10	23.68	24.49
$L. reuteri WB-74 = \begin{bmatrix} 15 & 18.73 & 18.33 & 17.60 & 19.14 \\ Exp. 2 Mean & 21.85 & 21.29 & 20.74 & 21.74 \\ Overall Mean & 23.35 & 22.69 & 22.21 & 23.12 \\ \hline \\ 1^{c} & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.23 \\ 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \end{bmatrix}$	L. reuteri DS-33		2	24.40	23.95	23.22	23.50
Exp. 2 Mean 21.85 21.29 20.74 21.74 Overall Mean 23.35 22.69 22.21 23.12 1 24.68 25.49 25.08 25.31 1° 10 25.04 24.77 23.90 23.68 14 18.51 18.01 17.69 18.82 Exp. 1 Mean 22.74 22.76 22.23 22.60 2d 5 20.87 20.59 20.00 21.32 2d 5 20.87 20.59 20.00 21.32 2d 5 20.87 20.59 20.00 21.32 2d 5 20.87 20.22 21.32 Overall Mean 22.02 21.74 21.22 21.96 Exp. 2 Mean 21.30 20.73 20.22 21.32 Overall Mean 23.02 21.42 21.95 23.68 Exp. 1 Mean 23.22 22.83 22.48 23.34 10 22.14 21.77 <td></td> <td>2^d</td> <td>8</td> <td>22.41</td> <td>21.59</td> <td>21.41</td> <td>22.59</td>		2 ^d	8	22.41	21.59	21.41	22.59
$L. reuteri WB-74 = \begin{bmatrix} 1 & 24.68 & 25.49 & 25.08 & 25.31 \\ 1^{c} & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.23 \\ 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \end{bmatrix}$ $L. reuteri WB-75 = \begin{bmatrix} 4 & 24.58 & 24.13 & 23.72 & 23.59 \\ 1^{c} & 7 & 22.23 & 21.86 & 21.77 & 22.59 \\ 11 & 22.86 & 22.50 & 21.95 & 23.86 \\ Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ 6 & 19.64 & 19.23 & 18.82 & 20.23 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 0 Verall Mean & 22.02 & 21.64 & 21.29 & 22.33 \\ \hline 10 & 22.14 & 21.77 & 21.41 & 22.41 \\ Exp. 2 Mean & 20.82 & 20.44 & 20.09 & 21.32 \\ 0 Verall Mean & 22.02 & 21.64 & 21.29 & 22.33 \\ \hline 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ Exp. 1 Mean & 23.86 & 23.31 & 22.85 & 23.72 \\ 2^{d} & 12 & 19.14 & 18.33 & 18.23 & 18.73 \\ \hline 13 & 25.04 & 24.58 & 23.77 & 25.08 \\ \hline Exp. 2 Mean & 22.01 & 21.38 & 21.20 & 22.01 \\ \hline \end{array}$			15	18.73	18.33	17.60	19.14
Overall Mean 23.35 22.69 22.21 23.12 1 24.68 25.49 25.08 25.31 1 ^c 10 25.04 24.77 23.90 23.68 14 18.51 18.01 17.69 18.82 Exp. 1 Mean 22.74 22.76 22.23 22.60 2 ^d 5 20.87 20.59 20.00 21.32 2 ^d 5 20.87 20.59 20.00 21.32 2 ^d 5 20.87 20.59 20.00 21.32 2 ^d 5 20.87 20.22 21.32 Overall Mean 22.02 21.74 21.22 21.96 2 ^d 5 20.87 20.22 21.32 Overall Mean 22.02 21.74 21.22 21.96 2 ^l 6 19.64 19.23 18.82 20.23 2 ^d 9 20.68 20.32 20.05 21.32 2 ^d 9		Exp.	2 Mean	21.85	21.29	20.74	21.74
L. reuteri WB-74 $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Overa	all Mean		22.69		23.12
L. reuteri WB-74 $ \begin{array}{c} 1^{\circ} & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.23 \\ 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ \hline Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ \hline Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ & & & & $		4					-
L. reuteri WB-74 $ \begin{array}{c} 1^{\circ} & 10 & 25.04 & 24.77 & 23.90 & 23.68 \\ 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ \hline Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.23 \\ 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ \hline Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ \hline Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & \\ & & & & $			1	24.68	25.49	25.08	25.31
L. reuteri WB-74 $ \begin{array}{c} 14 & 18.51 & 18.01 & 17.69 & 18.82 \\ Exp. 1 Mean & 22.74 & 22.76 & 22.23 & 22.60 \\ 4 & 22.00 & 21.14 & 21.05 & 22.04 \\ 2^{d} & 5 & 20.87 & 20.59 & 20.00 & 21.23 \\ 11 & 21.05 & 20.46 & 19.60 & 20.68 \\ \hline Exp. 2 Mean & 21.30 & 20.73 & 20.22 & 21.32 \\ \hline Overall Mean & 22.02 & 21.74 & 21.22 & 21.96 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & \\ & & & & $		1 ^c	10	25.04		23.90	
L. reuteri WB-74 $ \begin{array}{c} Exp. 1 Mean 22.74 22.76 22.23 22.60 \\ 4 22.00 21.14 21.05 22.04 \\ 2^d 5 20.87 20.59 20.00 21.23 \\ 11 21.05 20.46 19.60 20.68 \\ Exp. 2 Mean 21.30 20.73 20.22 21.32 \\ Overall Mean 22.02 21.74 21.22 21.96 \\ \hline 11 22.86 22.50 21.95 23.86 \\ Exp. 1 Mean 23.22 22.83 22.48 23.34 \\ 11 22.86 22.50 21.95 23.86 \\ Exp. 1 Mean 23.22 22.83 22.48 23.34 \\ 2^d 9 20.68 20.32 20.05 21.32 \\ 10 22.14 21.77 21.41 22.41 \\ Exp. 2 Mean 20.82 20.44 20.09 21.32 \\ 0verall Mean 22.02 21.64 21.29 22.33 \\ 0verall Mean 22.02 21.64 21.29 22.33 \\ 0verall Mean 23.86 23.31 22.85 23.72 \\ 15 21.32 20.68 20.09 21.50 \\ Exp. 1 Mean 23.86 23.31 22.85 23.72 \\ 2^d 12 19.14 18.33 18.23 18.73 \\ 13 25.04 24.58 23.77 25.08 \\ Exp. 2 Mean 22.01 21.38 21.20 22.01 \\ exp. 2 Mean 22.01 21.38 21.20 22.01 \\ exp. 2 Mean$							
L. reuteri WB-74 2^{d} 5 20.07 20.59 20.00 21.23 11 21.05 20.46 19.60 20.68 Exp. 2 Mean 21.30 20.73 20.22 21.32 Overall Mean 22.02 21.74 21.22 21.96 1^{c} 7 22.23 21.86 21.77 22.59 11 22.86 22.50 21.95 23.86 Exp. 1 Mean 23.22 22.83 22.48 23.34 2^{d} 9 20.68 20.32 20.05 21.32 2^{d} 9 20.68 20.32 20.05 21.32 10 22.14 21.77 21.41 22.41 Exp. 2 Mean 20.82 20.44 20.09 21.32 Overall Mean 22.02 21.64 21.29 22.33 10 22.14 21.77 21.41 22.41 Exp. 2 Mean 20.82 20.44 20.09 21.32 Overall Mean 22.02 21.64 21.29 22.33 10 22.14 21.77 21.41 22.41 Exp. 2 Mean 20.82 20.44 20.09 21.32 10 22.14 21.77 21.64 21.29 22.33 10 22.14 21.77 21.64 21.29 22.33 10 22.14 21.77 21.64 21.29 22.33 10 22.14 21.77 21.64 21.29 22.33 15 21.32 20.68 20.09 21.50 Exp. 1 Mean 23.86 23.31 22.85 23.72 15 21.32 20.68 20.09 21.50 Exp. 1 Mean 23.86 23.31 22.85 23.72 2^{d} 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.68 Exp. 2 Mean 22.01 21.38 21.20 22.01		Exp.					
$L. reuteri WB-75$ $L. acidophilus L-23$ $2^{d} 5 20.87 20.59 20.00 21.23 20.68 19.60 20.68 Exp. 2 Mean 21.30 20.73 20.22 21.32 20.22 21.32 20.24 21.32 20.25 21.74 21.22 21.96 20.25 21.74 21.22 21.96 20.25 21.74 21.22 21.96 20.25 21.95 23.86 21.77 22.28 22.83 22.48 23.34 2.26 22.50 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 21.95 23.86 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2$	L. reuteri WB-74						
$L. \ reuteri \ WB-75$ $L. \ acidophilus \ L-23$ $\frac{11}{22} 21.05 20.46 19.60 20.68 \\ Exp. 2 Mean 21.30 20.73 20.22 21.32 \\ 0verall Mean 22.02 21.74 21.22 21.96 \\ 22.02 21.74 21.22 21.96 \\ 22.02 21.74 21.22 21.96 \\ 23.72 23.59 \\ 11 22.86 22.50 21.95 23.86 \\ Exp. 1 Mean 23.22 22.83 22.48 23.34 \\ Exp. 1 Mean 23.22 22.83 22.48 23.34 \\ 6 19.64 19.23 18.82 20.23 \\ 2^{d} 9 20.68 20.32 20.05 21.32 \\ 10 22.14 21.77 21.41 22.41 \\ Exp. 2 Mean 20.82 20.44 20.09 21.32 \\ 0verall Mean 22.02 21.64 21.29 22.33 \\ 15 21.32 20.68 20.09 21.50 \\ Exp. 1 Mean 23.86 23.31 22.85 23.72 \\ 7 21.86 21.23 21.59 22.23 \\ 2^{d} 12 19.14 18.33 18.23 18.73 \\ 13 25.04 24.58 23.77 25.08 \\ Exp. 2 Mean 22.01 21.38 21.20 22.01 \\ 21.38 21.20 22.01 \\ 21.38 21.20 22.01 \\ 22.01 21.38 21.20 22.01 \\ 22.01 21.38 21.20 22.01 \\ 22.01 21.38 21.20 22.01 \\ 22.01 21.38 21.20 22.01 \\ 22.01 21.38 21.20 22.01 \\ 22.01 21.38 21.20 \\ 22.01 \\ 22.0$		2 ^d					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Exp					
L. reuteri WB-75 $\begin{bmatrix} 4 & 24.58 & 24.13 & 23.72 & 23.59 \\ 1^{c} & 7 & 22.23 & 21.86 & 21.77 & 22.59 \\ 11 & 22.86 & 22.50 & 21.95 & 23.86 \\ \hline Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ \hline Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 10 & 22.14 & 21.77 & 21.41 & 22.41 \\ \hline Exp. 2 Mean & 20.82 & 20.44 & 20.09 & 21.32 \\ \hline Overall Mean & 22.02 & 21.64 & 21.29 & 22.33 \\ \hline 0 & 22.95 & 22.32 & 22.04 & 22.95 \\ 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline & 1^{c} & 6 & 22.95 & 22.32 & 22.04 & 22.95 \\ \hline & 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline & Exp. 1 Mean & 23.86 & 23.31 & 22.85 & 23.72 \\ 2^{d} & 12 & 19.14 & 18.33 & 18.23 & 18.73 \\ \hline & 13 & 25.04 & 24.58 & 23.77 & 25.08 \\ \hline & Exp. 2 Mean & 22.01 & 21.38 & 21.20 & 22.01 \\ \hline \end{bmatrix}$							
L. reuteri WB-75 $\begin{bmatrix} 1^{c} & 7 & 22.23 & 21.86 & 21.77 & 22.59 \\ 11 & 22.86 & 22.50 & 21.95 & 23.86 \\ \hline Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ \hline 0 & 23.22 & 22.83 & 22.48 & 23.34 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 10 & 22.14 & 21.77 & 21.41 & 22.41 \\ \hline Exp. 2 Mean & 20.82 & 20.44 & 20.09 & 21.32 \\ \hline 0 & 0 & 0 & 0 & 21.64 & 21.29 & 22.33 \\ \hline 0 & 0 & 0 & 0 & 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline 1^{c} & 6 & 22.95 & 22.32 & 22.04 & 22.95 \\ \hline 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline Exp. 1 Mean & 23.86 & 23.31 & 22.85 & 23.72 \\ 2^{d} & 12 & 19.14 & 18.33 & 18.23 & 18.73 \\ \hline 13 & 25.04 & 24.58 & 23.77 & 25.08 \\ \hline Exp. 2 Mean & 22.01 & 21.38 & 21.20 & 22.01 \\ \hline \end{bmatrix}$		0101	an moan	22.02	21.14	21.22	21.00
L. reuteri WB-75 $\begin{bmatrix} 1^{c} & 7 & 22.23 & 21.86 & 21.77 & 22.59 \\ 11 & 22.86 & 22.50 & 21.95 & 23.86 \\ \hline Exp. 1 Mean & 23.22 & 22.83 & 22.48 & 23.34 \\ \hline 0 & 23.22 & 22.83 & 22.48 & 23.34 \\ 2^{d} & 9 & 20.68 & 20.32 & 20.05 & 21.32 \\ 10 & 22.14 & 21.77 & 21.41 & 22.41 \\ \hline Exp. 2 Mean & 20.82 & 20.44 & 20.09 & 21.32 \\ \hline 0 & 0 & 0 & 0 & 21.64 & 21.29 & 22.33 \\ \hline 0 & 0 & 0 & 0 & 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline 1^{c} & 6 & 22.95 & 22.32 & 22.04 & 22.95 \\ \hline 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline Exp. 1 Mean & 23.86 & 23.31 & 22.85 & 23.72 \\ 2^{d} & 12 & 19.14 & 18.33 & 18.23 & 18.73 \\ \hline 13 & 25.04 & 24.58 & 23.77 & 25.08 \\ \hline Exp. 2 Mean & 22.01 & 21.38 & 21.20 & 22.01 \\ \hline \end{bmatrix}$		1	4	24.58	24.13	23.72	23.59
$L. \ reuteri \ WB-75$ $= \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 ^c					
L. reuteri WB-75 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-			
L. reuteri WB-75 2^{d} 9 20.68 20.32 20.05 21.32 10 22.14 21.77 21.41 22.41 Exp. 2 Mean 20.82 20.44 20.09 21.32 Overall Mean 22.02 21.64 21.29 22.33 1^{c} 6 22.95 22.32 22.04 22.95 15 21.32 20.68 20.09 21.50 Exp. 1 Mean 23.86 23.31 22.85 23.72 2^{d} 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01		Exp.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I reuteri WB-75						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ^d					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Fyn	-				
$L. acidophilus L-23 \begin{bmatrix} 5 & 27.31 & 26.94 & 26.40 & 26.72 \\ 1^{\circ} & 6 & 22.95 & 22.32 & 22.04 & 22.95 \\ 15 & 21.32 & 20.68 & 20.09 & 21.50 \\ \hline Exp. 1 Mean & 23.86 & 23.31 & 22.85 & 23.72 \\ 7 & 21.86 & 21.23 & 21.59 & 22.23 \\ 2^{d} & 12 & 19.14 & 18.33 & 18.23 & 18.73 \\ 13 & 25.04 & 24.58 & 23.77 & 25.08 \\ \hline Exp. 2 Mean & 22.01 & 21.38 & 21.20 & 22.01 \\ \hline \end{array}$							
1° 6 22.95 22.32 22.04 22.95 15 21.32 20.68 20.09 21.50 Exp. 1 Mean 23.86 23.31 22.85 23.72 2d 7 21.86 21.23 21.59 22.23 2 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01		0,000		22.02	21.04	21.23	22.55
1° 6 22.95 22.32 22.04 22.95 15 21.32 20.68 20.09 21.50 Exp. 1 Mean 23.86 23.31 22.85 23.72 2d 7 21.86 21.23 21.59 22.23 2 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01		1	5	27 31	26 94	26 40	26 72
15 21.32 20.68 20.09 21.50 Exp. 1 Mean 23.86 23.31 22.85 23.72 7 21.86 21.23 21.59 22.23 2 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01		1 ^C					
Exp. 1 Mean 23.86 23.31 22.85 23.72 L. acidophilus L-23 7 21.86 21.23 21.59 22.23 2 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01							
L. acidophilus L-23 2 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01		Evn					
2 ^d 12 19.14 18.33 18.23 18.73 13 25.04 24.58 23.77 25.08 Exp. 2 Mean 22.01 21.38 21.20 22.01	L. acidophilus L-23	Ελρ.					
1325.0424.5823.7725.08Exp. 2 Mean22.0121.3821.2022.01		od					
Exp. 2 Mean 22.01 21.38 21.20 22.01		2					
		Ev-					
Overall Mean 22.94 22.35 22.02 22.87		-					
		Overa	ali iviean	22.94	22.35	22.02	22.87

Table B40. Study 1 LPS^a challenge swine weights (kg)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Troatmont ^b	Exp. ^b	Pig ^b	-					Hour 24
Treatment	Ехр.	- iy 3		Hour 1.5				
	1 ^c	3 8	39.63 39.07	39.41	40.18 39.74	39.63	39.68 39.18	39.46
	I			39.41		39.90		39.46
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75	Evo	13 1 Mean	38.91	39.18	40.24	40.40 39.98	39.74	39.18
	⊏xp.	1 iviean	39.20	<u>39.33</u> 40.13	40.05		39.53	39.37
	2 ^d	3	39.79 39.41	40.13 39.07	40.63 40.24	40.13 39.46	39.68 39.68	39.79 39.18
	2	3 14	39.41 39.52		40.24 40.35			
	Evo	2 Mean	39.52	40.13 39.78	40.35	40.40 40.00	40.02 39.79	39.46 39.48
	Overa	all Mean	39.39	39.55	40.23	39.99	39.66	39.42
		2	39.02	39.57	40.35	40.63	40.68	39.96
	1 ^c	9	38.85	39.35	40.40	39.90	39.90	39.07
		12	39.35	39.63	41.18	40.46	39.24	39.35
	Exp.	1 Mean	39.07	39.52	40.64	40.33	39.94	39.46
L. reuteri DS-33		2	39.52	39.85	40.90	40.52	40.96	40.29
	2 ^d	8	39.63	39.79	40.68	39.63	39.68	39.29
		15	39.68	39.57	40.07	40.29	39.68	39.18
	Exp.	2 Mean	39.61	39.74	40.55	40.15	40.11	39.59
	Overa	all Mean	39.34	39.63	40.60	40.24	40.02	39.53
	. 6	1	39.29	39.35	39.90	40.40	39.90	41.24
	1 ^c	10	39.41	39.46	40.35	40.35	41.24	39.02
		14	39.35	39.13	40.40	40.07	39.79	39.90
	Exp.	1 Mean	39.35	39.31	40.22	40.27	40.31	40.05
L. reuteri WB-74	- d	4	39.57	40.13	40.79	39.79	40.13	39.68
	2 ^d	5	39.57	40.90	41.01	39.57	39.63	39.24
		11	39.18	39.85	40.57	39.63	40.18	39.35
		2 Mean	39.44	40.29	40.79	39.66	39.98	39.42
	Overa	all Mean	39.40	39.80	40.51	39.97	40.15	39.74
		4	39.35	39.13	39.96	39.79	39.41	39.74
	1 ^c	7	39.57	39.46	40.57	40.29	40.02	39.41
		11	39.68	39.35	39.96	40.13	39.85	39.52
	Exp.	1 Mean	39.53	39.31	40.16	40.07	39.76	39.55
L. reuteri WB-75		6	39.35	39.18	39.57	39.41	39.35	39.24
	2 ^d	9	39.46	39.68	40.29	40.68	39.46	39.41
	_	10	39.57	40.74	40.90	39.85	40.02	39.79
	Exp.	2 Mean	39.46	39.87	40.26	39.98	39.61	39.48
		all Mean	39.50	39.59	40.21	40.02	39.68	39.52
	_	5	39.13	39.18	40.18	40.63	40.07	39.96
	1 ^c	6	39.35	39.52	40.40	40.57	40.07	39.57
		15	39.07	39.02	40.57	40.96	40.46	39.85
	Exp.	1 Mean	39.18	39.24	40.39	40.72	40.20	39.79
L. acidophilus L-23		7	39.63	39.41	40.46	40.74	39.46	39.07
	2 ^d	12	39.85	40.13	41.07	40.46	40.02	39.29
		13	39.18	39.29	40.29	39.41	39.52	39.46
				00.04	40.04	10 00	20.00	20.00
		2 Mean all Mean	39.55 39.37	39.61 39.42	40.61 40.50	40.20 40.46	39.66 39.93	39.28 39.53

Table B41. Study 1 hourly LPS^a challenge rectal temperatures (\mathfrak{C})

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	123	123	103	80	71	125
	1 ^c	8	120	100	89	78	55	86
		13	113	116	121	117	115	115
	Exp.	1 Mean	119	113	104	92	80	109
Control L. reuteri DS-33 L. reuteri WB-74		1	133	115	115	103	81	125
	2 ^d	3	140	103	78	99	74	101
		14	116	90	85	110	73	114
		2 Mean	130	103	93	104	76	113
	Over	all Mean	124	108	99	98	78	111
	1	2	130	126	111	64	102	139
	1 ^c	9	142	127	145	106	72	127
	'	12	124	116	93	47	70	90
	Exp.	1 Mean	132	123	116	72	81	119
L. reuteri DS-33		2	122	128	74	96	79	120
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75	2 ^d	8	106	113	93	105	103	106
		15	104	101	85	109	99	109
	Exp.	2 Mean	111	114	84	103	94	112
		all Mean	121	119	100	88	88	115
		1	113	116	150	84	74	128
	1 ^c	10	133	134	97	75	70	99
L. reuteri WB-74		14	90	89	80	58	56	105
	Exp.	1 Mean	112	113	109	72	67	111
	2 ^d	4	152	138	76	96	80	107
	2*	5	136	120	76	98	88	96
	Evo	11 2 Mean	<u>128</u> 139	<u>118</u> 125	<u>98</u> 83	<u>96</u> 97	<u>80</u> 83	<u>142</u> 115
						-		
	Overa	all Mean	125	119	96	85	75	113
		4	128	129	123	73	79	124
	1 ^c	7	121	119	121	70	62	124
		11	118	106	94	49	52	111
	Exp.	1 Mean	122	118	113	64	64	120
L. reuteri WB-75		6	111	78	88	102	76	113
	2 ^d	9	127	123	94	103	90	107
		10	145	120	91	114	110	121
	Exp.	2 Mean	128	107	91	106	92	114
	Over	all Mean	125	113	102	85	78	117
	1	5	118	119	123	46	83	114
	1 ^c	6	115	123	123	40 72	63 64	
		ь 15	115 125	123	126	72 93	64 72	133
	Evn	1 Mean						93
L aaidanhikus L 00	Exp.		119	<u>117</u>	122	70	73	113
L. acidopnilus L-23	2 ^d	7	131	92	91	116	62	113
	2	12	140	106	82	98	103	113
	<u> </u>	13	176	117	77	108	71	100
		2 Mean	149	105	83	107	79	109
	Over	all Mean	134	111	103	89	76	111

Table B42. Study 1 hourly LPS^a challenge glucose levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

$L. reuteri DS-33 = \begin{bmatrix} Exp.^{c} & Pig^{c} & Hour 0 & Hour 1.5 & Hour 3.0 & Hour 6.0 & Hour 12 & Hour 3.0 \\ 3 & 9 & 8 & 7 & 8 & 12 & 11 \\ 1^{d} & 8 & 7 & 7 & 7 & 9 & 11 & 11 \\ 13 & 8 & 8 & 8 & 7 & 8 & 10 & 11 \\ 1 & 1 & 7 & 7 & 7 & 7 & 11 & 111 \\ 2^{e} & 3 & 8 & 8 & 6 & 7 & 9 & 12 \\ 14 & 10 & 9 & 8 & 10 & 10 & 10 \\ \hline Exp. 2 Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 11 & 15 & 12 \\ 2^{e} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline L. reuteri DS-33 & \hline \\ L. reuteri WB-74 & \hline \\ L$
$L. reuteri \text{VB-74} = \begin{bmatrix} 1^{\text{d}} & 8 & 7 & 7 & 7 & 9 & 11 & 11 \\ 13 & 8 & 8 & 8 & 7 & 8 & 10 & 11 \\ 1 & 7 & 7 & 7 & 8 & 10 & 11 \\ 1 & 7 & 7 & 7 & 7 & 11 & 11 \\ 2^{\text{e}} & 3 & 8 & 8 & 6 & 7 & 9 & 12 \\ 14 & 10 & 9 & 8 & 10 & 10 & 10 \\ \hline & \text{Exp. 2 Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline & \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline & \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline & 2 & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline & 1^{\text{d}} & 9 & 9 & 9 & 9 & 11 & 15 & 12 \\ 2^{\text{e}} & 8 & 9 & 10 & 9 & 9 & 11 & 15 & 12 \\ 2^{\text{e}} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline & 15 & 9 & 9 & 8 & 10 & 13 & 16 \\ 2^{\text{e}} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline & 15 & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline & \text{Overall Mean} & 9 & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 1^{\text{d}} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline & 2^{\text{e}} & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ \hline & 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline & \text{Exp. 2 Mean} & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{array}$
$L. reuteri WB-74 = \begin{bmatrix} 13 & 8 & 8 & 7 & 8 & 10 \\ Exp. 1 Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ 1 & 7 & 7 & 7 & 7 & 11 & 11 \\ 2^9 & 3 & 8 & 8 & 6 & 7 & 9 & 12 \\ 14 & 10 & 9 & 8 & 10 & 10 & 10 \\ Exp. 2 Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline 0verall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline 0verall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ Exp. 1 Mean & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline 2^e & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 13 & 16 \\ 2^e & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline 15 & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline 0verall Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline 0verall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 11 & 13 & 11 \\ 4 & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline 2^e & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ \hline 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri \text{WB-74} = \begin{bmatrix} Exp. 1 Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ 1 & 7 & 7 & 7 & 7 & 11 & 11 \\ 2^8 & 3 & 8 & 8 & 6 & 7 & 9 & 12 \\ 14 & 10 & 9 & 8 & 10 & 10 & 10 \\ \hline Exp. 2 Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline 1^d & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline 1^d & 9 & 9 & 9 & 9 & 11 & 15 & 13 \\ \hline 2^8 & 8 & 9 & 10 & 9 & 9 & 11 & 15 & 12 \\ 2^8 & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline 2^e & 8 & 9 & 10 & 9 & 9 & 8 & 10 & 10 \\ \hline Overall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \end{bmatrix}$
$ \begin{array}{c} \mbox{Control} & \begin{array}{ccccccccccccccccccccccccccccccccccc$
$L. reuteri \text{WB-74} = \begin{bmatrix} 2^8 & 3 & 8 & 8 & 6 & 7 & 9 & 12 \\ 14 & 10 & 9 & 8 & 10 & 10 & 10 \\ \hline Exp. 2 \text{Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline 10 & 9 & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline 12 & 9 & 8 & 7 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 13 & 16 \\ 2^8 & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline \text{Exp. 2 Mean} & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline 0 & \text{Overall Mean} & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline L. reuteri \text{WB-74} & \begin{matrix} 1 & 8 & 7 & 9 & 9 & 11 & 13 & 11 \\ 1^d & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ 2^8 & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ \hline 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline \text{Exp. 2 Mean} & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{array}$
$L. reuteri \text{WB-74} = \begin{bmatrix} 14 & 10 & 9 & 8 & 10 & 10 & 10 \\ \hline Exp. 2 Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline Overall Mean & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline 0 Verall Mean & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ \hline 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 9 & 11 & 15 & 12 \\ \hline 2^{6} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ \hline 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline Exp. 2 Mean & 9 & 9 & 8 & 10 & 13 & 16 \\ \hline 2^{e} & 8 & 9 & 10 & 9 & 9 & 8 & 10 & 10 \\ \hline 0 Verall Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline 0 Verall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline L. reuteri \text{WB-74} & 1 & 8 & 7 & 9 & 9 & 11 & 13 & 11 \\ \hline L. reuteri \text{WB-74} & 4 & 14 & 15 & 10 & 11 & 11 & 12 \\ \hline 2^{e} & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ \hline 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri \text{WB-74} = \begin{bmatrix} \text{Exp. 2 Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 11 \\ \hline \text{Overall Mean} & 8 & 8 & 7 & 8 & 10 & 17 & 12 \\ 1^d & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline \text{Exp. 1 Mean} & 9 & 9 & 9 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 13 & 16 \\ 2^e & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline \text{Exp. 2 Mean} & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \text{Overall Mean} & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \text{L. reuteri WB-74} & 1 & 8 & 7 & 9 & 9 & 11 & 9 \\ \hline L. reuteri WB-74 & 4 & 14 & 15 & 10 & 11 & 11 & 12 \\ \hline \text{Exp. 1 Mean} & 9 & 9 & 9 & 10 & 11 & 10 \\ \hline \end{array}$
Overall Mean 8 7 8 10 11 1^d 9 9 9 11 11 14 12 1^d 9 9 9 11 11 14 12 1^2 9 8 7 11 15 13 Exp. 1 Mean 9 9 9 11 15 12 2^e 9 9 7 9 13 16 2^e 8 9 10 9 9 8 7 15 9 9 8 10 13 16 2^e 8 9 10 9 9 8 7 15 9 9 8 10 13 11 Overall Mean 9 9 8 10 13 13 14 10 7 7 7 10 13 13 14 12 </td
$L. reuteri DS-33 = \begin{bmatrix} 2 & 9 & 9 & 8 & 10 & 17 & 12 \\ 1^{d} & 9 & 9 & 9 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ \hline 12 & 9 & 8 & 7 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 11 & 15 & 12 \\ 2^{e} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline 2^{e} & 8 & 9 & 10 & 9 & 9 & 8 & 10 & 10 \\ \hline 0 \text{ Verall Mean } 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \end{bmatrix}$
$L. reuteri DS-33 = \begin{bmatrix} 1^d & 9 & 9 & 9 & 11 & 11 & 11 & 14 & 12 \\ 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ Exp. 1 Mean & 9 & 9 & 9 & 9 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 13 & 16 \\ 2^e & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline Exp. 2 Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline Overall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \\ L. reuteri WB-74 = \begin{bmatrix} 1 & 8 & 7 & 9 & 9 & 11 & 9 \\ 1^d & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 9 & 11 & 13 & 11 \\ 4 & 14 & 15 & 10 & 11 & 11 & 12 \\ 2^e & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri DS-33 = \begin{bmatrix} 12 & 9 & 8 & 7 & 11 & 15 & 13 \\ Exp. 1 Mean & 9 & 9 & 9 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 13 & 16 \\ 2^{6} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline Exp. 2 Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline Overall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \\ L. reuteri WB-74 = \begin{bmatrix} 1 & 8 & 7 & 9 & 9 & 11 & 9 \\ 1^{d} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 11 & 13 & 11 \\ 2^{6} & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri DS-33 = \begin{bmatrix} Exp. 1 Mean & 9 & 9 & 9 & 11 & 15 & 12 \\ 2 & 9 & 9 & 7 & 9 & 13 & 16 \\ 2^{e} & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline Exp. 2 Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline Overall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline \\ L. reuteri WB-74 = \begin{bmatrix} 1 & 8 & 7 & 9 & 9 & 11 & 9 \\ 1^{d} & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 11 & 13 & 11 \\ 4 & 14 & 15 & 10 & 11 & 11 & 12 \\ 2^{e} & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri DS-33 = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$L. reuteri WB-74 = \begin{bmatrix} 2^e & 8 & 9 & 10 & 9 & 9 & 8 & 7 \\ 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ \hline Exp. 2 Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline Overall Mean & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$
$L. reuteri WB-74 = \begin{bmatrix} 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ Exp. 2 Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline 0 \text{ Overall Mean} & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline 1 & 8 & 7 & 9 & 9 & 11 & 9 \\ 1^d & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ Exp. 1 Mean & 9 & 9 & 9 & 11 & 13 & 11 \\ \hline 2^e & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri WB-74 = \begin{bmatrix} 15 & 9 & 9 & 8 & 10 & 8 & 8 \\ Exp. 2 Mean & 9 & 9 & 8 & 9 & 10 & 10 \\ \hline 0 \text{ Overall Mean} & 9 & 9 & 8 & 10 & 13 & 11 \\ \hline 1 & 8 & 7 & 9 & 9 & 11 & 9 \\ 1^d & 10 & 7 & 7 & 7 & 10 & 13 & 13 \\ \hline 14 & 12 & 12 & 12 & 14 & 14 & 11 \\ \hline Exp. 1 Mean & 9 & 9 & 9 & 11 & 13 & 11 \\ \hline 2^e & 5 & 8 & 8 & 7 & 8 & 7 & 7 \\ \hline 11 & 9 & 9 & 9 & 10 & 14 & 12 \\ \hline Exp. 2 Mean & 10 & 11 & 9 & 10 & 11 & 10 \\ \hline \end{bmatrix}$
$L. reuteri WB-74 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
$L. reuteri WB-74 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
L. reuteri WB-74 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
14 12 12 12 14 14 11 Exp. 1 Mean 9 9 9 11 13 11 4 14 15 10 11 11 12 2 ^e 5 8 8 7 8 7 7 11 9 9 9 10 14 12 Exp. 2 Mean 10 11 9 10 11 10
Exp. 1 Mean 9 9 9 11 13 11 L. reuteri WB-74 4 14 15 10 11 11 12 2 ^e 5 8 8 7 8 7 7 11 9 9 9 10 14 12 Exp. 2 Mean 10 11 9 10 11 10
L. reuteri WB-74 4 14 15 10 11 11 12 2 ^e 5 8 8 7 8 7 7 11 9 9 9 10 14 12 Exp. 2 Mean 10 11 9 10 11 10
2 ^e 5 8 8 7 8 7 7 11 9 9 9 10 14 12 Exp. 2 Mean 10 11 9 10 11 10
11999101412Exp. 2 Mean10119101110
Exp. 2 Mean 10 11 9 10 11 10
Overall Mean 10 10 9 10 12 11
4 8 9 9 11 16 13
1 ^d 7 7 6 8 8 9 8
<u>11 6 6 8 12 14 10</u>
Exp. 1 Mean 7 7 8 10 13 10
L. reuteri WB-75 6 11 9 9 9 9 13
2 ^e 9 8 8 8 9 9 9
Exp. 2 Mean 9 8 8 9 8 10
Overall Mean 8 8 8 10 11 10
5 11 11 12 15 19 16
1^{d} 6 6 6 7 9 14 12
Exp. 1 Mean 7 7 8 11 15 13
L. acidophilus L-23 7 9 8 8 9 11 12
2 ^e 12 10 9 9 10 9 8
13 10 9 8 9 12 11
Exp. 2 Mean 10 9 8 9 11 10
Overall Mean 9 8 8 10 13 12

Table B43. Study 1 hourly LPS^a challenge BUN^b levels (mg/dL)

^bBUN - blood urea nitrogen

^bDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	1.0	1.0	0.9	1.0	1.4	1.2
	1 ^c	8	1.0	1.0	1.0	1.2	1.3	1.0
		13	1.1	1.1	1.1	1.2	1.5	1.2
	Exp.	1 Mean	1.0	1.0	1.0	1.1	1.4	1.1
Control L. reuteri DS-33 L. reuteri WB-74		1	1.1	1.0	1.2	1.2	1.4	1.2
	2 ^d	3	1.0	1.0	1.1	1.0	1.2	1.2
		14	1.1	0.9	0.8	1.2	1.4	1.2
		2 Mean	1.1	1.0	1.0	1.1	1.3	1.2
	Overa	all Mean	1.1	1.0	1.0	1.1	1.4	1.2
		2	1.1	1.1	1.2	1.3	1.6	1.6
	1 ^c	9	1.0	1.0	1.2	1.1	1.3	1.2
		12	0.9	0.9	0.8	1.2	1.3	1.0
	Exp.	1 Mean	1.0	1.0	1.1	1.2	1.4	1.3
		2	1.3	1.3	0.8	1.2	1.6	1.7
	2 ^d	8	1.0	1.1	1.1	1.3	1.2	1.1
		15	0.9	0.9	0.8	1.2	1.1	1.0
		2 Mean	1.1	1.1	0.9	1.2	1.3	1.3
	Overa	all Mean	1.0	1.1	1.0	1.2	1.4	1.3
		1	0.9	1.0	1.3	1.0	1.4	1.1
	1 ^c	10	1.0	1.0	0.9	1.3	1.3	1.3
L. reuteri WB-74		14	1.0	1.0	1.0	1.1	1.4	1.0
	Exp.	1 Mean	1.0	1.0	1.1	1.1	1.4	1.1
		4	1.7	1.6	0.9	1.5	1.5	1.4
	2 ^d	5	1.2	1.2	1.0	1.1	1.1	1.1
		11	1.1	1.1	1.0	1.3	1.6	1.2
		2 Mean	1.3	1.3	1.0	1.3	1.4	1.2
	Overa	all Mean	1.2	1.2	1.0	1.2	1.4	1.2
		4	1.1	1.1	1.1	1.1	1.3	1.5
	1 ^c	7	1.1	1.1	1.3	1.3	1.5	1.1
	-	11	1.0	1.0	1.2	1.2	1.5	1.0
	Exp.	1 Mean		1.1	1.2		1.4	1.2
L. reuteri WB-75		6	<u>1.1</u> 1.2	1.0	1.0	<u>1.2</u> 1.2	1.3	1.3
	2 ^d	9	1.2	1.3	1.0	1.2	1.4	1.3
		10	1.2	1.2	1.0	1.3	1.4	1.2
		2 Mean	1.2	1.2	1.0	1.2	1.4	1.3
	Overa	all Mean	1.1	1.1	1.1	1.2	1.4	1.2
	<u> </u>	5	1.1	1.2	1.3	1.4	1.5	1.2
	1 ^c	6	1.0	1.1	1.1	1.2	1.6	1.2
		15	0.9	0.9	1.0	1.2	1.3	1.0
	Exp.	1 Mean	1.0	1.1	1.1	1.3	1.5	1.1
L. acidophilus L-23		7	1.2	1.0	1.0	1.2	1.4	1.3
	2 ^d	12	1.4	1.2	1.1	1.4	1.5	1.1
	-	13	1.4	1.1	1.0	1.4	1.5	1.3
	Exp	2 Mean	1.3	1.1	1.0	1.3	1.5	1.2
		all Mean	1.2	1.1	1.1	1.3	1.5	1.2
			1.2	1.1	1.1	1.3	1.0	1.2

Table B44. Study 1 hourly LPS^a challenge creatinine levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	8.6	8.8	8.0	8.0	8.6	9.1
	1 ^d	8	6.4	6.6	7.1	7.7	8.4	11.3
		13	7.4	6.9	6.9	6.1	5.0	8.6
	Exp.	1 Mean	7.5	7.4	7.3	7.3	7.3	9.7
Control		1	6.3	6.7	5.5	5.5	8.0	8.8
	2 ^e	3	8.1	8.3	7.3	6.9	7.1	9.6
		14	8.9	10.3	9.3	8.1	7.1	8.6
	Exp.	2 Mean	7.8	8.4	7.4	6.8	7.4	9.0
	Overa	all Mean	7.6	7.9	7.4	7.1	7.4	9.3
		2	8.3	7.9	7.2	8.2	10.7	7.2
	1 ^d	9	8.7	9.1	9.1	10.0	10.2	10.4
		12	9.7	9.0	8.9	9.7	11.3	12.5
	Exp.	1 Mean	8.9	8.7	8.4	9.3	10.7	10.0
L. reuteri DS-33		2	6.6	7.1	7.7	7.3	8.1	9.5
	2 ^e	8	8.8	9.4	8.8	7.3	6.6	6.7
		15	10.0	10.1	10.5	7.8	7.7	8.0
	Exp.	2 Mean	8.5	8.9	9.0	7.5	7.5	8.1
	Overa	all Mean	8.7	8.8	8.7	8.4	9.1	9.1
	1							
	b.	1	8.8	7.7	7.2	8.8	7.7	7.9
	1 ^d	10	6.8	7.0	7.7	7.7	10.4	10.3
		14	12.0	12.0	12.1	12.5	10.4	10.5
	Exp.	1 Mean	9.2	8.9	9.0	9.7	9.5	9.6
L. reuteri VVB-74	O [®]	4	8.4	9.0	9.1	7.4	7.3	8.8
	2 ^e	5	6.2	7.1	7.3	7.2	6.6	7.0
	Evo	11 2 Maan	<u>7.8</u> 7.5	<u>8.5</u> 8.2	8.5 8.3	7.6 7.4	8.5 7.5	9.8
		2 Mean						8.5
	Overa	all Mean	8.3	8.6	8.7	8.5	8.5	9.1
-		4	7.2	7.7	8.0	9.5	12.0	9.1
	1 ^d	7	6.0	5.9	6.0	9.3 6.0	6.2	7.4
		, 11	5.7	6.1	6.9	10.1	9.5	10.1
	Exp	1 Mean	6.3	6.6	7.0	8.5	9.2	8.9
L reuteri WB-75	<u></u> ,	6	8.9	9.2	9.1	7.8	7.2	10.3
E. Toulon WE TO	2 ^e	9	6.6	6.7	7.5	7.0	6.5	7.3
	-	10	5.8	6.2	6.6	5.8	5.3	5.7
	Exp.	2 Mean	7.1	7.4	7.7	6.9	6.3	7.8
		all Mean	6.7	7.0	7.4	7.7	7.8	8.3
			0.1					0.0
		5	9.7	9.2	9.4	10.5	13.1	12.9
	1 ^d	6	5.4	5.8	6.6	8.0	8.8	10.1
		15	5.6	5.6	5.6	6.6	8.1	10.3
	Exp.	1 Mean	6.9	6.9	7.2	8.4	10.0	11.1
L. acidophilus L-23		7	7.1	8.5	8.0	7.8	7.9	9.9
	2 ^e	12	7.0	7.8	8.2	7.2	5.7	7.1
	-	13	6.7	8.5	8.3	6.8	7.6	8.5
	Exp	2 Mean	6.9	8.3	8.2	7.3	7.1	8.5
		all Mean						
			6.9	7.6	7.7	7.8	8.5	9.8

Table B45. Study 1 hourly LPS^a challenge BUN^b:creatinine ratio levels

^bBUN - blood urea nitrogen

 $^{\rm c}\textsc{Description}$ of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	-	Hour 1.5				Hour 24
		3	144	141	136	141	139	146
	1 ^c	8	143	141	137	139	129	130
		13	145	142	146	143	143	138
L. reuteri WB-74 L. reuteri WB-75	Exp.	. 1 Mean	144	141	140	141	137	138
		1	147	135	143	142	143	146
	2 ^d	3	136	131	111	138	140	144
		14	137	117	105	140	140	143
		. 2 Mean	140	128	120	140	141	144
	Over	all Mean	142	135	130	141	139	141
		2	145	143	140	143	141	150
	1 ^c	9	141	138	156	141	134	144
		12	142	139	128	141	136	134
	Exp.	. 1 Mean	143	140	141	142	137	143
L. reuteri DS-33	'	2	154	149	105	139	140	144
Control	2 ^d	8	129	132	125	140	141	144
		15	125	126	110	140	140	141
	Exp.	. 2 Mean	136	136	113	140	140	143
		all Mean	139	138	127	141	139	143
		1	143	142	168	141	139	141
	1°	10	150	141	129	142	131	136
		14	144	140	136	141	134	134
	Exp	. 1 Mean	146	141	144	141	135	137
L reuteri WB-74		4	152	151	106	139	141	142
E. Touton WB TT	2 ^d	5	149	142	117	140	140	145
	-	11	139	130	120	141	143	143
	Exp.	2 Mean	147	141	114	140	141	143
		all Mean	146	141	129	141	138	140
		4	146	144	146	142	140	152
	1 ^c	7	145	143	155	140	139	145
		11	143	139	157	139	135	137
	Exp.	. 1 Mean	145	142	153	140	138	145
L. reuteri WB-75	ad	6	148	122	129	141	143	144
	2 ^d	9	143	141	126	140	143	146
		10	144	137	<u>116</u> 124	142	144	147
		2 Mean	145	133		141	143	146
	Over	all Mean	145	138	138	141	141	145
		5	143	144	153	142	140	140
	1°	6	144	141	146	139	144	145
		15	142	139	145	144	136	134
	Exp.	. 1 Mean	143	141	148	142	140	140
L. acidophilus L-23		7	146	129	127	144	146	145
-	2 ^d	12	142	130	124	142	143	143
		13	149	125	113	142	142	145
	Exp.	2 Mean	146	128	121	143	144	144

Table B46. Study 1 hourly LPS^a challenge sodium levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	12.3	11.4	9.8	9.6	8.1	10.3
	1 ^c	8	10.8	10.2	11.4	10.0	8.8	9.8
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75		13	10.4	9.6	9.9	9.1	8.2	8.8
	Exp.	1 Mean	11.2	10.4	10.4	9.6	8.4	9.6
	1		10.0	9.2	9.5	10.1	9.2	9.8
	2 ^d	3	9.9	8.9	7.3	9.8	9.6	9.5
		14	9.6	8.4	8.5	8.9	8.5	8.9
		2 Mean	9.8	8.8	8.4	9.6	9.1	9.4
	Over	all Mean	10.5	9.6	9.4	9.6	8.7	9.5
		2	10.4	10.2	9.7	9.1	7.6	10.2
	1 ^c	9	11.7	9.9	10.0	9.0	7.5	9.3
		12	9.3	8.3	8.3	8.6	7.3	7.8
	Exp.	1 Mean	10.5	9.5	9.3	8.9	7.5	9.1
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75		2	10.2	10.2	7.2	9.0	9.7	7.9
	2 ^d	8	8.1	8.9	8.2	7.8	8.5	8.3
		15	8.8	8.4	7.6	9.0	9.2	8.3
	Exp.	2 Mean	9.0	9.2	7.7	8.6	9.1	8.2
		all Mean	9.8	9.3	8.5	8.8	8.3	8.6
		1	11.0	10.4	11.1	9.8	8.5	9.8
	1 ^c	10	13.0	10.4	9.9	10.0	9.0	9.0 9.1
	1	14	10.5	9.6	9.9 8.6	9.0	3.0 7.2	9.1 8.9
	Exp	1 Mean	11.5	10.2	9.9	9.6	8.2	9.3
L reuteri WB-74		4	10.0	9.1	8.1	8.4	8.9	8.0
E. ICUICH WE IT	2 ^d	5	9.7	8.6	7.9	8.6	8.4	8.3
	-	11	9.9	8.5	8.2	9.2	9.5	8.2
	Exp.	2 Mean	9.9	8.7	8.1	8.7	8.9	8.2
		all Mean	10.7	9.5	9.0	9.2	8.6	8.7
	1							
		4	10.8	9.5	9.9	9.4	8.0	9.5
	1 ^c	7	11.5	11.2	11.5	10.7	8.3	9.4
		11	9.6	9.0	10.1	10.5	7.4	8.7
	Exp.	1 Mean	10.6	9.9	10.5	10.2	7.9	9.2
L. reuteri WB-75	od	6	10.5	8.1	8.8	8.4	9.2	8.3
	2 ^d	9	9.1	9.1	8.6	9.3	9.4	9.2
		10 2 Maan	10.2	9.9	8.6	9.7	11.0	10.1
		2 Mean	9.9	9.0	8.7	9.1	9.9	9.2
	Overa	all Mean	10.3	9.5	9.6	9.7	8.9	9.2
		5	10.6	9.9	9.7	9.3	8.1	9.1
	1 ^c	6	10.9	9.9	9.7	9.8	8.7	9.0
		15	10.0	9.8	9.7	9.9	7.7	8.5
	Exp.	1 Mean	10.5	9.9	9.7	9.7	8.2	8.9
L. acidophilus L-23		7	10.4	8.8	9.2	9.5	9.8	9.2
-	2 ^d	12	9.0	8.9	9.9	10.0	9.9	8.3
		13	10.9	8.6	8.6	9.7	8.7	8.7
	Exp.	2 Mean	10.1	8.8	9.2	9.7	9.5	8.7

Table B47. Study 1 hourly LPS^a challenge potassium levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	106	106	101	102	103	112
	1 ^c	8	107	105	105	103	99	101
		13	107	106	109	104	105	103
L. reuteri WB-75	Exp.	1 Mean	107	106	105	103	102	105
	1		110	104	105	104	105	110
	2 ^d	3	104	99	84	103	104	109
		14	102	90	79	100	100	106
		2 Mean	105	98	89	102	103	108
	Over	all Mean	106	102	97	103	103	107
	1	0	400	404	407	400	400	440
	40	2	106	104	107	103	102	112
	1 ^c	9 12	109	105 102	113	103 102	100	110
	Evo	1∠ 1 Mean	104 106	102	<u>96</u> 105	102	<u>102</u> 101	<u>103</u> 108
I routori DS 22	Exp.	2	111	104	78	103	101	108
L. TEULETI DO-33	2 ^d	2 8	96	97	78 92	103	105	104
L. reuteri DS-33	²	8 15	96 97	97 95	92 84	100	104	107
	Exp	2 Mean	101	100	85	102	105	104
		all Mean	101	100	95	102	103	105
	0,000		104	102	30	102	105	107
		1	103	101	116	101	101	110
	1 ^c	10	109	103	97	103	102	106
L. reuteri WB-74		14	103	101	99	102	99	105
	Exp.	1 Mean	105	102	104	102	101	107
		4	111	111	80	100	103	107
	2 ^d	5	113	106	88	104	105	109
		11	106	98	88	103	103	107
		2 Mean	110	105	85	102	104	108
	Over	all Mean	108	103	95	102	102	107
	1	4	105	104	106	102	102	111
	1 ^c	4 7	103	104	115	102	102	109
	'	, 11	109	102	113	108	99	109
	Exp	1 Mean	104	102	111	104	101	110
L reuteri WB-75		6	100	93	99	103	101	106
	2 ^d	9	104	102	94	103	104	111
	-	10	105	102	86	102	105	108
	Exp.	2 Mean	106	99	93	102	104	108
		all Mean	106	102	102	104	103	109
		5	105	105	112	103	103	106
	1 ^c	6	107	104	108	104	102	108
		15	107	105	106	103	98	102
	Exp.	1 Mean	106	105	109	103	101	105
L. acidophilus L-23		7	108	97	96	103	104	110
	2 ^d	12	106	98	93	102	102	108
		13	112	95	86	101	102	105
	Exp.	2 Mean	109	97	92	102	103	108
	0	all Mean	108	101	100	103	102	107

Table B48. Study 1 hourly LPS^a challenge chloride levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

	Exp. ^b	Pig ^b	Hour 0	•		,	Hour 12	Hour 24
	1	3	23	26	26	29	27	26
	1 ^c	8	20	25	24	29	22	22
		13	21	25	23	23	23	23
Control Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75 L. acidophilus L-23	Exp.	1 Mean	21	25	24	27	24	24
		1	24	23	27	27	25	24
	2 ^d	3	20	22	21	23	26	27
		14	23	21	20	31	30	28
	Exp.	2 Mean	22	22	23	27	27	26
	Overa	all Mean	22	24	24	27	26	25
	<u> </u>	2	24	26	22	28	26	21
	1 ^c	9	16	25	30	29	25	20
		12	24	27	23	26	24	21
	Exp	1 Mean	21	26	25	28	25	21
	<u> </u>	2	29	20	20	26	26	29
	2 ^d	8	23	25	26	28	24	26
	-	15	21	25	23	27	26	27
	Exp.	2 Mean	24	26	23	27	25	27
L. reuteri WB-74		all Mean	23	26	24	27	25	24
	-							
		1	27	28	37	29	27	18
	1 ^c	10	21	27	22	27	20	20
		14	25	30	22	30	26	23
	Exp.	1 Mean	24	28	27	29	24	20
L. reuteri WB-74	- d	4	24	27	18	28	26	24
	2 ^d	5	18	23	23	27	25	27
		11	17	21	25 22	28	24	24
		2 Mean	20	24		28	25	25
	Overa	all Mean	22	26	25	28	25	23
		4	21	29	29	30	26	24
	1 ^c	7	19	19	27	20	23	20
		11	21	26	30	20	24	16
	Exp.	1 Mean	20	25	29	23	24	20
L. reuteri WB-75		6	27	23	26	30	29	28
	2 ^d	9	23	24	27	26	30	22
	L	10	21	21	22	28	24	24
		2 Mean	24	23	25	28	28	25
	Overa	all Mean	22	24	27	26	26	22
	1	5	22	25	29	27	24	23
	1 ^c	6	21	25	28	24	27	23
	'	15	19	24	27	23	26	24
	Exp	1 Mean	21	25	28	25	26	23
Lacidophilus 1-23	<u> </u>	7	24	23	24	26	25	24
	2 ^d	, 12	18	19	21	28	24	22
		13	15	17	19	26	26	25
	Exp.	2 Mean	19	20	21	27	25	24
		all Mean	20	22	25	26	25	24
	0.50							- 1

Table B49. Study 1 hourly LPS^a challenge carbon dioxide levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1 5	<u> </u>	Hour 6.0	Hour 12	Hour 24
Heatment	<u>слр.</u> Т	3	27.4	20.6	18.7	18.9	17.6	18.6
	1 ^c	8	26.0	20.0	20.0	16.8	17.0	17.3
	'	13	26.8	21.1	23.3	25.3	23.7	20.6
L. reuteri WB-74	Exp	1 Mean	26.7	20.9	20.7	20.3	19.5	18.8
	<u> </u>	1	24.1	17.8	20.6	20.3	22.2	22.2
	2 ^d	3	22.3	18.5	13.0	21.2	19.6	17.8
	<u> </u>	14	21.3	14.7	14.2	17.4	18.9	18.6
	Exp	2 Mean	22.6	17.0	15.9	20.0	20.2	19.5
		all Mean	24.7	19.0	18.3	20.0	19.9	19.2
	0101		27.7	10.0	10.0	20.2	10.0	10.2
		2	25.8	23.3	21.6	21.3	21.2	26.8
	1 ^c	9	27.4	18.0	23.3	18.2	16.2	24.0
		12	22.6	18.9	17.0	21.5	17.4	17.0
	Exp.	1 Mean	25.3	20.1	20.6	20.3	18.3	22.6
L. reuteri DS-33		2	24.7	21.4	14.3	18.8	18.4	19.2
	2 ^d	8	18.1	19.2	15.3	19.5	21.4	19.4
		15	16.1	14.6	11.3	19.6	17.8	18.0
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75	Exp.	2 Mean	19.6	18.4	13.6	19.3	19.2	18.9
	Overa	all Mean	22.5	19.2	17.1	19.8	18.7	20.7
		1	23.9	23.6	25.6	20.2	19.3	22.6
	1 ^c	10	23.9 32.4	23.0	20.2	20.2	19.3	19.1
L routori MR 74	'	10	32.4 25.9	18.7	20.2 22.9	22.0 17.7	16.6	19.1
	Evn	1 Mean	25.9	21.3	22.9	20.0	18.1	19.0
	<u></u> лр.	4	27.6	22.4	16.6	19.0	20.4	19.5
L. Teulen VID-14	2 ^d	5	27.2	22.4	14.4	17.8	18.0	17.8
	2	11	26.6	19.9	14.7	19.0	25.3	21.3
	Exp	2 Mean	20.0	21.2	15.2	18.6	21.2	19.5
		all Mean	27.3	21.2	19.1	19.3	19.7	19.3
	0.000		21.0	21.0	10.1	10.0	10.7	10.0
		4	30.5	20.9	21.2	19.6	19.6	26.8
	1 ^c	7	28.7	24.6	24.0	21.4	21.1	25.0
		11	27.9	20.7	24.0	26.1	20.1	21.2
	Exp.	1 Mean	29.0	22.1	23.1	22.4	20.3	24.3
L. reuteri WB-75		6	21.9	13.9	13.7	17.5	20.4	18.2
	2 ^d	9	25.7	24.0	14.6	20.2	18.9	21.6
		10	27.8	24.0	16.1	21.4	25.4	24.5
		2 Mean	25.1	20.6	14.8	19.7	21.6	21.4
	Overa	all Mean	27.1	21.4	18.9	21.0	20.9	22.9
	1	5	26.6	23.4	22.4	21.9	21.3	20.6
	1 ^c	5 6						
		ю 15	27.6	22.5	19.9	21.2	23.4	21.7
		1 Mean	26.3	19.9	21.8	27.4	20.0	17.1
L opidonkilus L 00	<u>Ε</u> χρ.		26.8	21.9	21.4	23.5	21.6	19.8
L. acidopnilus L-23	cd	7	23.2	17.1	16.1	23.9	26.6	20.7
	2 ^d	12	26.0	22.0	19.8	21.6	26.1	22.1
	<u> </u>	13	33.2	21.4	16.8	23.8	22.7	23.3
		2 Mean	27.5	20.2	17.6	23.1	25.1	22.0
	Overa	all Mean	27.2	21.1	19.5	23.3	23.4	20.9

Table B50. Study 1 hourly LPS^a challenge anion gap levels

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	10.4	9.9	8.4	8.7	9.3	10.1
	1 ^c	8	10.0	9.5	8.1	8.7	6.7	6.6
		13	11.0	10.5	10.4	9.7	10.5	9.5
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75	Exp.	1 Mean	10.5	10.0	9.0	9.0	8.8	8.7
	1		11.1	9.9	10.6	9.7	9.8	10.5
	2 ^d	3	9.2	8.7	7.3	9.0	9.4	10.5
		14	9.6	7.0	7.0	9.4	8.8	10.2
		2 Mean	10.0	8.5	8.3	9.4	9.3	10.4
	Over	all Mean	10.2	9.3	8.6	9.2	9.1	9.6
		2	10.9	10.6	9.2	9.3	10.8	11.3
	1 ^c	9	11.1	10.1	10.7	9.4	7.7	10.2
		12	10.7	10.4	8.1	9.3	8.2	7.8
	Exp.	1 Mean	10.9	10.4	9.3	9.3	8.9	9.8
L. reuteri DS-33		2	11.1	10.7	6.4	9.2	8.6	8.7
Control Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75 L. acidophilus L-23	2 ^d	8	8.5	9.2	8.3	9.2	9.4	10.3
		15	8.3	8.4	7.1	9.5	9.0	10.2
	Exp.	2 Mean	9.3	9.4	7.3	9.3	9.0	9.7
	Over	all Mean	10.1	9.9	8.3	9.3	9.0	9.8
	1	1	10.6	10.5	12.6	9.4	9.1	9.0
	1 ^c	10	11.5	10.5	7.4	9.4 9.5	9.1 6.3	9.0 8.5
	1	10	11.0	10.3		9.5 8.8	0.3 7.3	
	Exp	1 Mean	11.0	10.2	<u>9.1</u> 9.7	9.2	7.6	<u>8.6</u> 8.7
I reuteri WB-74	L,p.	4	11.6	11.5	6.8	8.9	8.6	9.8
L. reuteri WB-74	2 ^d	5	10.3	9.7	7.5	9.2	8.9	10.4
	<u> </u>	11	9.7	8.9	8.1	9.5	9.0	10.4
	Exp.	2 Mean	10.5	10.0	7.5	9.2	8.8	10.2
		all Mean	10.8	10.2	8.6	9.2	8.2	9.5
	_							
		4	10.8	10.2	9.3	9.3	9.2	9.8
	1 ^c	7	11.3	10.8	11.3	9.3	8.9	9.5
		11	11.1	10.2	11.1	9.4	8.5	7.9
	Exp.	1 Mean	11.1	10.4	10.6	9.3	8.9	9.1
L. reuteri WB-75		6	10.5	8.0	8.8	9.7	9.7	10.1
	2 ^d	9	10.6	10.1	8.4	9.6	9.6	11.1
		10	10.4	9.9	7.8	10.0	9.9	11.1
	-	2 Mean	10.5	9.3	8.3	9.8	9.7	10.8
	Over	all Mean	10.8	9.9	9.5	9.6	9.3	9.9
		5	11.0	10.7	10.3	9.4	8.6	9.1
	1 ^c	6	10.7	10.4	9.8	9.2	9.8	9.3
		15	10.6	10.1	9.7	9.4	7.9	7.9
	Exp.	1 Mean	10.8	10.4	9.9	9.3	8.8	8.8
L. acidophilus L-23		7	10.6	8.3	8.4	9.7	8.9	9.7
_ 20.000.000 2 20	2 ^d	, 12	9.8	8.6	8.3	8.9	8.7	9.7
	-	13	10.8	8.1	7.6	9.7	9.3	10.0
	Fyn	2 Mean	10.0	8.3	8.1	9.4	9.0	9.8
		all Mean	10.4					9.3
			10.0	9.4	9.0	9.4	8.9	9.0

Table B51. Study 1 hourly LPS^a challenge calcium levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b		Hour 1.5		-		Hour 24
		3	5.3	4.7	3.8	4.8	5.1	5.1
	1 ^c	8	5.1	4.7	4.2	4.4	3.3	2.7
		13	5.6	5.2	5.2	5.1	5.6	4.5
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75	Exp.	1 Mean	5.3	4.9	4.4	4.8	4.7	4.1
		1	5.5	4.3	5.1	5.0	5.2	5.3
	2 ^d	3	4.8	4.0	3.2	4.7	5.0	5.3
		14	4.8	3.3	3.3	4.7	4.9	5.1
		2 Mean	5.0	3.9	3.9	4.8	5.0	5.2
	Over	all Mean	5.2	4.4	4.1	4.8	4.9	4.7
		2	5.6	5.1	3.9	5.0	6.5	6.2
	1°	9	4.9	4.3	4.9	4.4	3.7	4.7
		12	5.3	5.0	3.8	5.2	4.4	3.7
	Exp.	1 Mean	5.3	4.8	4.2	4.9	4.9	4.9
Control L. reuteri DS-33 L. reuteri WB-74 L. reuteri WB-75		2	5.9	4.9	3.2	4.9	4.8	4.8
	2 ^d	8	3.9	3.8	3.7	4.5	4.8	4.9
		15	3.6	3.9	3.2	5.1	5.1	5.0
	Exp.	2 Mean	4.5	4.2	3.4	4.8	4.9	4.9
	Over	all Mean	4.9	4.5	3.8	4.9	4.9	4.9
		1	5.6	5.3	6.6	5.2	5.3	5.3
	1°	10	5.8	4.9	3.2	5.1	3.0	4.8
	'	14	5.7	5.2	4.5	5.1	4.5	4.2
	Exp.	1 Mean	5.7	5.1	4.8	5.1	4.3	4.8
L. reuteri WB-74		4	6.2	5.5	3.4	4.9	5.1	5.3
L. reuteri WB-74	2 ^d	5	5.5	4.9	3.9	5.0	5.0	5.2
	-	11	4.6	3.9	3.7	5.0	5.4	5.2
	Exp.	2 Mean	5.4	4.8	3.7	5.0	5.2	5.2
		all Mean	5.6	5.0	4.2	5.1	4.7	5.0
	r							
		4	5.2	4.5	4.2	4.8	4.6	5.6
	1 ^c	7	5.2	4.8	5.1	4.4	4.2	4.4
		11	5.6	5.1	5.8	5.2	4.7	3.4
	Exp.	1 Mean	5.3	4.8	5.0	4.8	4.5	4.5
L. reuteri WB-75	2 ^d	6	5.4	3.5	4.2	4.8	4.9	4.9
	2	9	4.7	4.5	3.9	4.8	4.9	5.1
	Evo	10 2 Mean	<u>5.0</u> 5.0	<u>4.4</u> 4.1	3.5 3.9	4.7	<u>5.3</u> 5.0	<u>5.4</u> 5.1
	Over	all Mean	5.2	4.5	4.5	4.8	4.8	4.8
		5	5.8	5.2	5.0	5.5	5.1	4.4
	1 ^c	6	5.3	4.9	4.7	4.8	5.7	4.4
		15	5.4	5.2	5.3	5.6	4.8	3.7
	Exp.	1 Mean	5.5	5.1	5.0	5.3	5.2	4.2
L. acidophilus L-23		7	5.6	4.2	4.1	5.5	5.4	5.4
	2 ^d	12	5.3	4.2	4.6	5.1	5.3	5.1
		13	6.3	4.3	3.8	5.4	5.5	5.7
	Exp	2 Mean	5.7	4.2	4.2	5.3	5.4	5.4
			•					

Table B52. Study 1 hourly LPS^a challenge total protein levels (g/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

	– h	-	-					
Treatment ^b	Exp. ^b	Pig ^b	Hour 0			Hour 6.0		
		3	3.5	2.9	2.3	3.0	3.1	3.2
	1 ^c	8	3.2	2.8	2.4	2.6	1.8	1.4
		13	3.2	2.9	2.8	2.9	3.1	2.4
	Exp.	1 Mean	3.3	2.9	2.5	2.8	2.7	2.3
Control	h	1	3.8	2.8	3.5	3.4	3.5	3.5
	2 ^d	3	2.7	2.2	1.7	2.7	2.8	2.8
		14	2.6	1.7	1.6	2.5	2.7	2.7
		2 Mean	3.0	2.2	2.3	2.9	3.0	3.0
	Overa	all Mean	3.2	2.6	2.4	2.9	2.8	2.7
		2	3.8	3.5	2.5	3.3	4.3	4.0
	1 ^c	9	3.4	2.7	3.2	2.9	2.2	3.0
		12	3.8	3.5	2.5	3.6	2.9	2.3
	Exp.	1 Mean	3.7	3.2	2.7	3.3	3.1	3.1
L. reuteri DS-33		2	3.8	3.2	1.8	3.1	2.9	2.8
	2 ^d	8	2.3	2.3	2.2	2.7	3.0	3.0
		15	2.0	2.2	1.7	3.1	3.1	2.9
	Exp.	2 Mean	2.7	2.6	1.9	3.0	3.0	2.9
	Overa	all Mean	3.2	2.9	2.3	3.1	3.1	3.0
		1	3.8	3.5	4.4	3.4	3.3	3.3
	1 ^c	10	4.3	3.4	2.0	3.5	1.8	3.0
		14	3.2	2.8	2.4	2.8	2.3	2.2
	Exp.	1 Mean	3.8	3.2	2.9	3.2	2.5	2.8
L. reuteri WB-74		4	3.5	3.0	1.7	2.6	2.7	2.7
	2 ^d	5	3.0	2.6	1.9	2.6	2.6	2.6
		11	3.0	2.5	2.3	3.4	3.7	3.3
	Exp.	2 Mean	3.2	2.7	2.0	2.9	3.0	2.9
	Overa	all Mean	3.5	3.0	2.5	3.1	2.7	2.9
		4	3.6	3.1	2.8	3.1	3.0	3.7
	1 ^c	7	3.4	3.0	3.2	2.8	2.6	2.6
		11	3.7	3.2	3.8	3.3	2.9	2.0
	Exp.	1 Mean	3.6	3.1	3.3	3.1	2.8	2.8
L. reuteri WB-75		6	3.4	2.0	2.5	2.9	3.1	2.9
	2 ^d	9	3.2	3.1	2.5	3.2	3.1	3.3
		10	2.9	2.6	2.0	2.7	3.1	3.1
		2 Mean	3.2	2.6	2.3	2.9	3.1	3.1
	Overa	all Mean	3.4	2.8	2.8	3.0	3.0	2.9
	1							
		5	4.2	3.7	3.6	3.8	3.5	2.9
	1 ^c	6	3.2	2.9	2.7	2.8	3.4	2.6
		15	3.4	3.2	3.3	3.7	2.9	2.1
	Exp.	1 Mean	3.6	3.3	3.2	3.4	3.3	2.5
L. acidophilus L-23		7	3.5	2.5	2.6	3.5	3.4	3.3
	2 ^d	12	2.9	2.1	2.4	2.8	3.0	2.7
		13	4.2	2.7	2.4	3.7	3.6	3.6
	· · · ·	2 Mean	3.5	2.4	2.5	3.3	3.3	3.2
	Overa	all Mean	3.6	2.9	2.8	3.4	3.3	2.9
	-							

Table B53. Study 1 hourly LPS^a challenge albumin levels (g/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b	Hour 0		-			Hour 24
Treatment	<u>слр.</u> Т					Hour 6.0		
	1 ^c	3 8	1.7	1.7	1.5	1.8	2.0	1.9
	1.	8 13	2.0 2.4	2.0 2.4	1.7	1.8 2.2	1.5 2.5	1.3
	Evo		2.4		2.4	1.9		2.1
Control	Exp.	<u>. 1 Mean</u> 1	2.0	2.0 1.5	<u>1.9</u> 1.6		2.0 1.7	1.8
Control	2 ^d	3	2.1	1.5	1.6	1.6 2.0	2.2	1.9 2.4
	2	3 14	2.1	1.6	1.5	2.0	2.2	2.4 2.4
	Evo	. 2 Mean	2.2	1.6	1.6	1.9	2.2	2.4
	-	all Mean	2.0	1.8	1.0	1.9	2.0	
	Over		2.0	1.0	1.7	1.9	2.0	2.0
		2	1.8	1.6	1.4	1.7	2.1	2.2
	1 ^c	9	1.5	1.6	1.7	1.5	1.5	1.7
	1	12	1.5	1.6	1.3	1.6	1.5	1.4
	Exp.	. 1 Mean	1.6	1.6	1.5	1.6	1.7	1.8
L. reuteri DS-33		2	2.1	1.8	1.4	1.8	1.9	2.0
	2 ^d	8	1.6	1.5	1.6	1.7	1.8	1.9
	-	15	1.6	1.7	1.5	2.0	2.0	2.1
	Exp.	. 2 Mean	1.8	1.7	1.5	1.8	1.9	2.0
		all Mean	1.7	1.6	1.5	1.7	1.8	1.9
		1	1.8	1.8	2.3	1.8	2.0	2.0
	1 ^c	10	1.5	1.4	1.1	1.6	1.2	1.8
		14	2.4	2.3	2.1	2.3	2.2	2.0
	Exp.	. 1 Mean	1.9	1.8	1.8	1.9	1.8	1.9
L. reuteri WB-74		4	2.7	2.5	1.7	2.3	2.3	2.6
	2 ^d	5	2.5	2.3	2.0	2.4	2.4	2.5
		11	1.5	1.4	1.4	1.6	1.7	1.9
	Exp.	. 2 Mean	2.2	2.1	1.7	2.1	2.1	2.3
	Over	all Mean	2.1	2.0	1.8	2.0	2.0	2.1
		4	1.6	1.4	1.4	1.6	1.6	1.9
	1 ^c	7	1.8	1.8	1.9	1.6	1.6	1.8
		11	1.9	1.8	2.1	1.9	1.8	1.4
	Exp.	. 1 Mean	1.8	1.7	1.8	1.7	1.7	1.7
L. reuteri WB-75		6	2.1	1.5	1.8	1.9	1.8	2.0
	2 ^d	9	1.5	1.4	1.5	1.6	1.7	1.8
		10	2.1	1.8	1.5	1.9	2.2	2.3
		. 2 Mean	1.9	1.6	1.6	1.8	1.9	2.0
	Over	all Mean	1.8	1.6	1.7	1.8	1.8	1.9
		5	1.6	1.5	1.4	1.7	1.6	1.5
	1 ^c	6	2.1	2.0	2.0	2.0	2.3	1.8
		15	2.0	2.0	2.0	1.9	2.0	1.6
	Exp.	. 1 Mean	1.9	1.8	1.8	1.9	2.0	1.6
L. acidophilus L-23		7	2.1	1.8	1.6	2.0	2.0	2.2
	2 ^d	12	2.4	2.1	2.2	2.3	2.4	2.4
		13	2.1	1.7	1.5	1.7	1.9	2.1
	Exp. 2 Mean			4.0	4.0	0.0	04	~ ~
		. 2 Mean all Mean	2.2	1.9	1.8	2.0	2.1	2.2

Table B54. Study 1 hourly LPS^a challenge globulin levels (g/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b		Hour 1.5				Hour 24
		3	2.0	1.7	1.6	1.7	1.6	1.7
	1 ^c	8	1.6	1.4	1.4	1.5	1.2	1.1
		13	1.4	1.2	1.1	1.3	1.3	1.2
	Exp. 1 Mean		1.7	1.4	1.4	1.5	1.4	1.3
Control		1	2.3	2.0	2.2	2.1	2.0	1.9
	2 ^d	3	1.3	1.2	1.2	1.3	1.2	1.2
		14	1.2	1.0	1.0	1.1	1.2	1.1
	Exp.	2 Mean	1.6	1.4	1.5	1.5	1.5	1.4
	Overa	all Mean	1.6	1.4	1.4	1.5	1.4	1.4
	1	2	2.2	2.2	1.8	1.9	2.0	1.8
	1 ^c	2	2.2	2.2 1.7	1.8	1.9	2.0 1.5	1.0
		12	2.2	2.2	1.9	2.2	1.9	1.7
	Evo	1 Mean	2.4	2.2	1.9	2.2	1.8	1.7
I routori DS-33	L.xp.	2	1.8	1.8	1.3	1.7	1.6	1.7
L. reuteri DS-33	2 ^d	8	1.5	1.5	1.4	1.6	1.0	1.6
		15	1.2	1.3	1.4	1.5	1.7	1.0
	Exp	2 Mean	1.5	1.5	1.3	1.6	1.6	1.5
		all Mean	1.9	1.8	1.6	1.8	1.7	1.6
	Overa		1.9	1.0	1.0	1.0	1.7	1.0
		1	2.1	2.0	1.9	1.9	1.6	1.6
	1°	10	2.8	2.4	1.9	2.2	1.6	1.7
		14	1.3	1.2	1.1	1.2	1.1	1.1
	Exp.	1 Mean	2.1	1.9	1.6	1.8	1.4	1.5
L. reuteri WB-74		4	1.3	1.2	1.0	1.1	1.2	1.1
	2 ^d	5	1.2	1.2	1.0	1.1	1.1	1.0
		11	2.0	1.8	1.7	2.1	2.2	1.8
	Exp.	2 Mean	1.5	1.4	1.2	1.4	1.5	1.3
	Overa	all Mean	1.8	1.6	1.4	1.6	1.5	1.4
		4	2.2	2.1	2.0	1.0	1.8	2.0
	1 ^c	4 7	2.2 1.9	2.1 1.7	2.0 1.6	1.9 1.7	1.6	2.0 1.5
	1	, 11	1.9	1.7	1.8	1.7	1.6	1.5
	Evo	1 Mean	2.0	1.8	1.8	1.7	1.7	1.4
L. reuteri WB-75	L^p.	6	1.6	1.4	1.4	1.6	1.7	1.5
L. Teulen VID-15	2 ^d	9	2.2	2.2	1.7	1.9	1.8	1.9
	2	10	1.4	1.4	1.3	1.4	1.5	1.3
	Evo	2 Mean	1.4	1.4	1.5	1.4	1.7	1.6
		all Mean	1.9	1.8	1.6	1.7	1.7	1.6
	Overa		1.9	1.0	1.0	1.7	1.7	1.0
		5	2.7	2.6	2.5	2.3	2.3	1.9
	1 ^c	6	1.5	1.4	1.4	1.4	1.5	1.5
		15	1.7	1.6	1.6	2.0	1.5	1.3
	Exp.	1 Mean	2.0	1.9	1.8	1.9	1.8	1.6
L. acidophilus L-23	I .	7	1.7	1.4	1.6	1.7	1.7	1.5
	2 ^d	12	1.2	1.0	1.1	1.2	1.3	1.1
		13	2.0	1.6	1.6	2.1	1.9	1.7
		2 Mean	1.6	1.3	1.4	1.7	1.6	1.4
	Overa	all Mean	1.8	1.6	1.6	1.8	1.7	1.5

Table B55. Study 1 hourly LPS^a challenge albumin:globulin ratio levels

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1 5	-	Hour 6.0	Hour 12	Hour 24
Trodunioni	<u>слр.</u>	3	52	57	53	81	94	50
	1 ^d	8	52	62	55 75	73	94 72	30 31
		13	55 54	56	75 59	68	72	38
	Evo	1 Mean	54	58	62	74	81	40
Control	Exp.	1	43	53	66	86	123	63
Control	2 ^e	3	43 39	33	32	62	70	54
	2	14	62	33 46	32 49	92	127	83
	Evp	2 Mean	48	40	49	80	107	67
		all Mean	51	51		77	94	
	Over		51	51	56	11	94	53
		2	50	65	47	81	140	77
	1 ^d	9	46	48	54	54	46	59
		12	53	60	49	90	80	37
	Exp.	1 Mean	50	58	50	75	89	58
L. reuteri DS-33		2	38	40	27	58	67	76
	2 ^e	8	43	44	56	79	86	72
	-	15	37	40	33	55	84	44
	Exp.	2 Mean	39	40	39	64	79	64
		all Mean	45	50	44	70	84	61
	0,000		10			10	01	01
		1	57	60	88	77	85	62
	1 ^d	10	50	57	50	86	62	73
		14	53	57	49	60	58	37
	Exp.	1 Mean	53	58	62	74	68	57
L. reuteri WB-74		4	56	52	43	100	176	102
	2 ^e	5	60	43	42	63	76	52
		11	52	72	81	143	161	108
	Exp.	2 Mean	56	56	55	102	138	87
	Overa	all Mean	55	57	59	88	103	72
	-							
		4	41	48	53	58	66	66
	1 ^d	7	59	75	87	91	105	87
		11	62	76	40	104	146	72
	Exp.	1 Mean	54	66	60	84	106	75
L. reuteri WB-75		6	59	36	49	51	55	44
	2 ^e	9	47	56	59	89	146	69
		10	44	56	56	96	126	79
		2 Mean	50	49	55	79	109	64
	Overa	all Mean	52	58	57	82	107	70
	<u>т</u>	5	70	74	77	00	70	6E
	1 ^d	5 6	70 45	71 56	77 61	83 70	79 102	65 52
	1			56	61		102	53
	Evo	15 1 Mean	77 64	83 70	90	104	97 93	48 55
L opidophilus L 00	⊨xp.				76	86		
L. acidophilus L-23	c ^e	7	45 65	34 52	42 76	49 108	64 140	45 97
	2 ^e	12 13	65 72	52	76 74	108	140 197	87
	Eve		72 61	<u>68</u> 51	74 64	124 94	187 130	98 77
		2 Mean						
	Overa	all Mean	62	61	70	90	112	66

Table B56. Study 1 hourly LPS^a challenge AST^b levels (U/L)

^bAST - aspartate aminotransferase

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

Treatment ^c	Exp. ^c	Pig ^c	-		-			
irealineil	⊏xp.			Hour 1.5				
	1 ^d	3	59	57	52	65 61	69 40	63
	1	8	59	57	53	61	49 70	39
		13	66 61	67	65	71	79	54
Operatural	Exp.	Exp. 1 Mean		60	57	66	66	52
Control	O [®]	1 3	34	34	35	39	49 25	40
	2 ^e		25	33	25	29	35	32
		14	59	48	47	62	72	70
		2 Mean	39	38	36	43	52	47
	Over	all Mean	50	49	46	55	59	50
		2	45	50	27	49	64	54
	1 ^d	2 9			37		64 55	
	1-	9 12	58	54	56 66	60 94	55	52
	Eve		81	80	66		81	60
L. reuteri DS-33	Exp.	1 Mean 2	61	61	53	68	67	55
	2 ^e	2 8	34 28	33 31	29 33	36 35	42 41	37 37
	2	8 15	28 29	31		35 34	41 42	37 34
	Evo	2 Mean	<u>29</u> 30	31	29 30	<u>34</u> 35	42	<u> </u>
	Over	all Mean	46	47	42	51	54	46
		1	65	65	74	68	73	63
	1 ^d	10	53	65 52	74 40	58	73 42	
	1	10 14	53 53					49 44
	Evp			51	45	57	52	
	⊏xp.	1 Mean 4	57 50	<u>56</u> 46	53 37	61	56	52
L. reuteri WB-74	2 ^e	4 5				48	58	54
	2	-	34	34	31	36 55	40	36
	Eve	11 2 Mean	41 42	40 40	40 36	55 46	<u>63</u> 54	<u>56</u> 49
		all Mean	42	40	45	<u>40</u> 54		
	Over		49	48	45	54	55	50
	1	4	46	46	11	E A	E E	EC
	1 ^d	4 7	46 50	46	44 59	54 56	55 54	56 40
	1		50	51 56	58 66	56 70	54 62	49 46
	Evo	11 1 Mean	52 49	<u>56</u> 51	66 56	70 60	62 57	46 50
I routori MP 75	⊑xp.	6	 54	42	47	50	57	49
L. reuteri WB-75	2 ^e	9	54 55	42 53	47 49	50 55	57 61	
	∠ _	9 10	55 30	53 31	49 31	55 37	43	56 39
	Evo	2 Mean	46	42	42	47	43 54	<u> </u>
		all Mean	40	42	42	<u>47</u> 54	55	48
	L Over		40	4/	49	54	55	49
		5	60	59	56	66	64	55
	1 ^d	5 6	60 42	59 46	56 44	66 50	64 57	55 45
		ь 15	42 71	46 76		50 82	57 76	45 56
	Evn	1 Mean	58	60	70 57	66	66	50
L poidonhilus L 22	⊏xp.	7	 					
L. acidophilus L-23	2 ^e	7 12		37 27	37 31	44 35	48 40	43 40
	2°		30	27	31 27	35	40 59	40 52
	F	13	41 37	36 33	37 35	45 41	58 49	52 45
		2 Mean						
	Over	all Mean	48	47	46	54	57	49

Table B57. Study 1 hourly LPS^a challenge ALT^b levels (U/L)

^bALT - alanine aminotransferase

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

			,				-,	
Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	226	210	179	210	289	206
	1 ^d	8	291	273	221	244	197	133
		13	247	247	239	220	289	186
	Exp.	1 Mean	255	243	213	225	258	175
Control		1	204	164	231	183	250	224
	2 ^e	3	156	138	112	150	195	195
		14	198	130	120	180	224	208
	Exp.	2 Mean	186	144	154	171	223	209
	Over	all Mean	220	194	184	198	241	192
	1		000	004	4.00	000	202	000
	b.	2	263	264	188	263	383	268
	1 ^d	9	230	208	236	200	195	196
		12	257	238	168	210	183	149
	Exp.	1 Mean	250	237	197	224	254	204
L. reuteri DS-33	- 9	2	188	172	99	152	233	284
	2 ^e	8	114	116	111	129	154	145
		15	93	96	84	124	118	119
	· · ·	2 Mean	132	128	98	135	168	183
	Over	all Mean	191	182	148	180	211	194
		1	263	265	321	230	293	206
	1 ^d	10	336	306	178	320	176	312
L. reuteri WB-74	1	14	315	301	259	279	237	190
	Exp	1 Mean	305	291	253	276	235	236
	<u></u> ,	4	247	232	127	199	222	200
	2 ^e	5	161	150	105	134	152	140
	2	11	231	193	174	229	273	255
	Evp	2 Mean	213	192	135	187	216	198
		all Mean	259	241	194	232	226	217
	0,00		200	241	134	252	220	217
		4	278	260	235	263	293	257
	1 ^d	7	207	219	226	191	246	199
		11	262	257	294	272	324	170
	Exp.	1 Mean	249	245	252	242	288	209
L. reuteri WB-75		6	252	169	198	224	262	233
	2 ^e	9	199	207	168	214	234	199
		10	212	194	139	195	228	214
	Exp.	2 Mean	221	190	168	211	241	215
	Over	all Mean	235	218	210	227	265	212
			000	000	4.00	005	0.10	470
	d d	5	229	209	188	205	242	176
	1 ^d	6	289	297	273	256	420	247
		15	166	184	196	194	176	105
	Exp.	1 Mean	228	230	219	218	279	176
L. acidophilus L-23	C ^A	7	197	153	148	188	232	208
	2 ^e	12	152	121	122	128	164	141
		13	196	135	113	175	224	216
		2 Mean	182	136	128	164	207	188
	Over	all Mean	205	183	173	191	243	182

Table B58. Study 1 hourly LPS^a challenge ALKPhos^b levels (U/L)

^bALKPhos - alkaline phosphatase

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b				Hour 6.0 ^c	1	Hour 24 ^c
	1	3	0.2	0.3	0.3	0.6	1.0	0.1
	1 ^d	8	0.1	0.3	0.6	0.6	0.7	0.1
		13	0.1	0.1	0.2	0.2	0.8	0.1
	Exp	. 1 Mean	0.1	0.2	0.4	0.5	0.8	0.1
Control		1	0.2	0.2	0.2	0.2	0.9	0.1
	2 ^e	3	0.2	0.1	0.1	0.2	0.5	0.1
	_	14	0.1	0.1	0.1	0.2	0.8	0.1
	Exp	. 2 Mean	0.2	0.1	0.1	0.2	0.7	0.1
		all Mean	0.2	0.2	0.3	0.3	0.8	0.1
		2	0.2	0.3	0.3	0.6	0.8	0.3
	1 ^d	9	0.3	0.2	0.1	0.3	0.9	0.1
		12	0.2	0.2	0.1	0.5	0.5	0.1
	Exp	. 1 Mean	0.2	0.2	0.2	0.5	0.7	0.2
L. reuteri DS-33		2	0.2	0.1	0.1	0.1	0.6	0.1
	2 ^e	8	0.1	0.1	0.1	0.1	0.3	0.1
		15	0.1	0.2	0.1	0.1	0.3	0.1
		. 2 Mean	0.1	0.1	0.1	0.1	0.4	0.1
	Over	all Mean	0.2	0.2	0.1	0.3	0.6	0.1
		1	0.2	0.2	0.4	0.7	1.5	0.2
	1 ^d	10	0.3	0.2	0.1	0.5	0.4	0.9
		14	0.1	0.2	0.1	0.3	0.6	0.1
	Exp	. 1 Mean	0.2	0.2	0.2	0.5	0.8	0.4
L. reuteri WB-74		4	0.1	0.3	0.3	0.3	0.6	0.1
	2 ^e	5	0.2	0.1	0.1	0.2	0.4	0.1
		11	0.1	0.1	0.1	0.3	1.3	0.1
		. 2 Mean	0.1	0.2	0.2	0.3	0.8	0.1
	Over	all Mean	0.2	0.2	0.2	0.4	0.8	0.3
	1							
	, d	4	0.3	0.1	0.1	0.3	0.8	0.2
	1 ^d	7	0.2	0.4	0.5	0.8	1.0	0.1
		11 . 1 Mean	0.1	0.2	0.3	0.9	1.1	0.1
L reuteri MD 75	Exp	. 1 Mean 6	0.2	0.2	0.3	0.7	1.0 0.5	0.1
L. reuteri WB-75	2 ^e	9	0.3	0.1	0.1			0.1
	2	9 10	0.1	0.1 0.1	0.1 0.1	0.3 0.1	0.2 0.2	0.1 0.1
	Evo	. 2 Mean	0.1	0.1	0.1	0.1	0.2	0.1
		all Mean	0.2	0.1	0.1	0.2	0.6	0.1
	Over		0.2	0.2	0.2	0.4	0.0	0.1
	r –	5	0.3	0.2	0.2	0.3	0.6	0.1
	1 ^d	5 6	0.3	0.2	0.2	0.3	1.1	0.1
		15	0.2	0.2	0.2	0.3	0.7	0.1
	Eyn	. 1 Mean	0.1	0.2	0.2	0.3	0.7	0.1
L. acidophilus L-23		7	0.2	0.2	0.2	0.4	0.5	0.1
	2 ^e	, 12	0.1	0.1	0.1	0.3	0.3	0.1
	2	13	0.4	0.4	0.3	0.3	0.8	0.1
	Fyn	. 2 Mean	0.4	0.4	0.2	0.2	0.5	0.1
		all Mean	0.2	0.2	0.2	0.3	0.7	0.1
		an mean	0.2	0.2	0.2	0.5	0.7	0.1

Table B59. Study 1 hourly LPS^a challenge bili, total levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cAll 0.1 individual pig values were equal to <0.1

^dExperiment 1 were barrows

Treatment ^b	Exp. ^b	Pig ^b		Hour 1.5			,	Hour 24
		3	65	54	50	58	73	68
	1 ^c	8	88	76	62	65	50^{e}	50 ^e
		13	70	64	59	54	65	53
	Exp.	1 Mean	74	65	57	59	63	57
Control		1	95	67	85	75	79	89
	2 ^d	3	82	67	50^{e}	71	80	89
		14	83	52	50 ^e	63	77	87
	Exp.	2 Mean	87	62	62	70	79	88
		all Mean	81	63	59	64	71	73
		2	71	66	50	61	80	97
	1 ^c	9	59	50 ^e	50	50 ^e	50 ^e	59
		12	82	74	52	70	59	53
	Exp.	1 Mean	71	63	51	60	63	70
L. reuteri DS-33	ed	2	97	80	50 ^e	62	58	65
	2 ^d	8	81 50 ⁰	77	69	83	91	101
	<u> </u>	15	50 ^e	50	50°	52	57	66
		2 Mean	76	69	56	66	69	77
	Over	all Mean	73	66	54	63	66	74
		1	51	50 ^e	64	50	50 ^e	50 ^e
L. reuteri WB-74	1 ^c	10	83	65	50	62	50 ^e	70
	· ·	14	60	56	50 50	57	53	50 ^e
	Evn	1 Mean	65	57	55	56	51	57
	<u> </u>	4	101	87	50°	67	79	76
	2 ^d	4 5	76		50 ^e	63	79 71	
	2	5 11	76 72	66 57	50 51	63 73	71	76 72
	Exp	2 Mean	83	70	50	68	76	75
		all Mean	74	64	53	62	64	66
				-		-	-	
		4	81	68	58	65	60	86
	1 ^c	7	82	72	74	61	71	71
	<u> </u>	11	104	93	101	86	89	55
	Exp.	1 Mean	89	78	78	71	73	71
L. reuteri WB-75		6	84	50 ^e	58	61	57	64
	2 ^d	9	52	50 ^e	50 ^e	50 ^e	$50^{\rm e}$	53
		10	82	69	50 ^e	69	89	98
		2 Mean	73	56	53	60	65	72
	Over	all Mean	81	67	65	65	69	71
		5	89	81	71	74	72	72
	1 ^c	6	81	74	66	62	84	67
	'	15	79	76	70	69	58	50 ^e
	Fxn	1 Mean	83	77	69	68	71	63
L. acidophilus L-23		7	85	61	59	73	69	83
	2 ^d	12	86	68	66	68	81	84
		13	109	70	57	85	90	102
	Exp.	13 2 Mean	109 93	70 66	57 61	85 75	90 80	102 90

Table B60. Study 1 hourly LPS^a challenge cholesterol levels (mg/dL)

 $^{\mathrm{b}}\textsc{Description}$ of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

^dExperiment 2 were gilts

^eValues were equal to <50

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
	<u> </u>	3	15	25	16	27	120	29
	1°	8	30	26	21	18	55	25
	'	13	26	26	32	19	39	20
	Exp.	. 1 Mean	24	26	23	21	71	25
Control	r	1	28	23	23	15	46	57
	2 ^d	3	40	25	16	27	55	33
		14	42	23	27	18	41	32
	Exp.	2 Mean	37	24	22	20	47	41
		all Mean	30	25	23	21	59	33
		2	21	33	18	25	67	50
	1 ^c	9	37	31	23	19	65	36
		12	24	19	17	29	112	32
	Exp.	. 1 Mean	27	28	19	24	81	39
L. reuteri DS-33		2	44	38	27	21	28	53
	2 ^d	8	35	51	27	24	35	49
		15	15	16	12	11	30	27
	Exp.	. 2 Mean	31	35	22	19	31	43
	Over	all Mean	29	31	21	22	56	41
		1	23	34	45	26	76	22
	1 ^c	10	36	46	15	30	29	166
		14	52	52	53	69	155	31
	Exp.	. 1 Mean	37	44	38	42	87	73
L. reuteri WB-74		4	36	41	27	17	31	32
	2 ^d	5	28	13	10 ^e	13	19	18
		11	31	27	28	27	70	35
	Exp.	2 Mean	32	27	22	19	40	28
	Over	all Mean	34	36	30	30	63	51
		4	19	26	13	23	65	23
	1 ^c	7	28	42	39	35	142	33
		11	36	34	40	48	198	44
	Exp.	. 1 Mean	28	34	31	35	135	33
L. reuteri WB-75		6	41	14	18	18	29	33
	2 ^d	9	28	30	15	24	27	40
		10	68	32	17	19	32	55
		. 2 Mean	46	25	17	20	29	43
	Over	all Mean	37	30	24	28	82	38
		5	31	28	27	27	76	28
	1 ^c	6	20	25	21	22	143	25
		4 5	25	20	16	15	31	14
		15						
L. acidophilus L-23	Exp.	. 1 Mean	25 25	24	21	21	83	22
		. 1 Mean 7	25 44	24 25	21 26	21 24	83 34	40
L. acidoprillus L-23	Exp. 2 ^d	. 1 Mean 7 12	25 44 77	24 25 39	21 26 27	21 24 23	83 34 58	40 67
L. acidoprillus L-23	2 ^d	. 1 Mean 7 12 13	25 44 77 79	24 25 39 35	21 26 27 34	21 24 23 36	83 34 58 75	40 67 64
L. acidoprinus L-23	2 ^d Exp.	. 1 Mean 7 12	25 44 77	24 25 39	21 26 27	21 24 23	83 34 58	40 67

Table B61. Study 1 hourly LPS^a challenge triglyceride levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table B2

^cExperiment 1 were barrows

^dExperiment 2 were gilts

^eValue was equal to <10

	_ ^	^	··· / ·	J			/	
Treatment ^c	Exp. ^c	Pig ^c	Hour 0		Hour 3.0			
		3	24	21	17	18	22	18
	1 ^d	8	33	29	23	19	13	12
		13	24	22	21	14	13	14
	Exp.	1 Mean	27	24	20	17	16	15
Control		1	28	21	27	19	16	19
	2 ^e	3	25	20	16	19	18	21
		14	25	16	15	14	15	20
	Exp.	2 Mean	26	19	19	17	16	20
	Over	all Mean	27	22	20	17	16	17
	1				00	00	40	45
	b,	2	30	28	20	20	16	15
	1 ^d	9	25	21	21	13	11	16
		12	34	31	21	20	15	17
	Exp.	1 Mean	30	27	21	18	14	16
L. reuteri DS-33	c ^e	2	35	29	17	18	11	10
	2 ^e	8	28	27	23	22	20	26
		15 2 Maar	18	20	15	18	16	22
		2 Mean	27	25	18	19	16	19
	Over	all Mean	28	26	20	19	15	18
		1	18	17	21	11	10	7
	1 ^d	10	30	25	14	17	7	10
	'	14	18	17	14	13	, 10	10
	Exp.	1 Mean	22	20	16	14	9	10
L. reuteri WB-74		4	35	31	16	19	25	23
	2 ^e	5	22	19	13	16	19	21
	-	11	28	23	20	23	21	21
	Exp.	2 Mean	28	24	16	19	22	22
		all Mean	25	22	16	17	15	16
	!		-		-		-	-
		4	30	25	22	19	15	13
	1 ^d	7	34	31	31	21	20	14
		11	38	34	36	23	19	12
	Exp.	1 Mean	34	30	30	21	18	13
L. reuteri WB-75		6	31	20	24	20	13	17
	2 ^e	9	19	19	14	13	12	15
		10	25	21	15	18	21	25
		2 Mean	25	20	18	17	15	19
	Over	all Mean	30	25	24	19	17	16
	1		0.4	0.4	00	00		40
	h,	5	34	31	28	20	14	10
	1 ^d	6	31	28	26	17	20	16
		15	31	30	29	21	14	10
	Exp.	1 Mean	32	30	28	19	16	12
L. acidophilus L-23		7	30	21	20	22	13	19
	2 ^e	12	30	24	22	18	18	22
	<u> </u>	13	35	22	18	23	22	19
		2 Mean	32	22	20	21	18	20
	Over	all Mean	32	26	24	20	17	16

Table B62. Study 1 hourly LPS^a challenge HDL^b levels (mg/dL)

^bHDL - high-density lipoprotein

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

Control 3 3 5 3 5 24 1^d 8 6 5 4 4 11 13 5 5 6 4 8 Exp. 1 Mean 5 5 4 4 14 1 6 5 5 3 9 2^e 3 8 5 3 5 11 14 8 5 5 4 4 9 2^e 3 8 5 3 5 11 14 8 5 5 4 4 9 Overall Mean 6 5 4 4 12 1^d 9 7 6 5 4 13 1^d 9 7 6 5 4 13 12 5 4 3 6 22 Exp. 1 Mean 5 6 4 5 </th <th>6</th> <th>Hour 12</th> <th>Hour 6.0</th> <th>Hour 3.0</th> <th>Hour 1.5</th> <th>Hour 0</th> <th>Pig^c</th> <th>Exp.^c</th> <th>Treatment^c</th>	6	Hour 12	Hour 6.0	Hour 3.0	Hour 1.5	Hour 0	Pig ^c	Exp. ^c	Treatment ^c
Control 1^d 8 6 5 4 4 11 13 5 5 6 4 8 Exp. 1 Mean 5 5 4 4 14 1 6 5 5 3 9 2^e 3 8 5 3 5 11 14 8 5 5 4 4 9 Overall Mean 6 5 4 4 9 Overall Mean 6 5 4 4 12 Id 9 7 6 5 4 13 12 5 4 3 6 22 Exp. 1 Mean 5 6 4 5 16 L. reuteri DS-33 2 9 8 5 4 6 2 ^e 8 7 10 5 5 7 15 3 3 2 2 6 Exp. 2 Mean 6								<u> </u>	
Control $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5							1 d	
Exp. 1 Mean554414165539 2^6 38535111485548Exp. 2 Mean75449Overall Mean654412U24745131 ^d 976541312543622Exp. 1 Mean56452 ^e 87105571533226Exp. 2 Mean67446	4							1	
Control 1 6 5 5 3 9 2^6 3 8 5 3 5 11 14 8 5 5 4 8 Exp. 2 Mean 7 5 4 4 9 Overall Mean 6 5 4 4 12	5							Exp	
$L. reuteri DS-33 = 2^{6} - 3 - 8 - 5 - 3 - 5 - 11 - 14 - 8 - 5 - 5 - 4 - 4 - 9 - 12 - 12 - 12 - 12 - 12 - 12 - 12 $	11							L,	Control
$L. reuteri DS-33 = \begin{bmatrix} 14 & 8 & 5 & 5 & 4 & 8 \\ Exp. 2 Mean & 7 & 5 & 4 & 4 & 9 \\ \hline Overall Mean & 6 & 5 & 4 & 4 & 12 \\ \hline 0 Verall Mean & 6 & 5 & 4 & 4 & 12 \\ \hline 0 Verall Mean & 6 & 5 & 4 & 4 & 12 \\ \hline 1^d & 9 & 7 & 6 & 5 & 4 & 13 \\ 1^d & 9 & 7 & 6 & 5 & 4 & 13 \\ \hline 1^2 & 5 & 4 & 3 & 6 & 22 \\ \hline Exp. 1 Mean & 5 & 6 & 4 & 5 & 16 \\ \hline 2^e & 8 & 7 & 10 & 5 & 5 & 7 \\ \hline 15 & 3 & 3 & 2 & 2 & 6 \\ \hline Exp. 2 Mean & 6 & 7 & 4 & 4 & 6 \\ \hline \end{bmatrix}$	7	-					-	2 ^e	Control
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6						-	2	
$L. reuteri DS-33 = \begin{bmatrix} 2 & 4 & 7 & 4 & 5 & 13 \\ 1^d & 9 & 7 & 6 & 5 & 4 & 13 \\ 1^2 & 5 & 4 & 3 & 6 & 22 \\ \hline Exp. 1 Mean & 5 & 6 & 4 & 5 & 16 \\ 2^e & 8 & 7 & 10 & 5 & 5 & 7 \\ 15 & 3 & 3 & 2 & 2 & 6 \\ \hline Exp. 2 Mean & 6 & 7 & 4 & 4 & 6 \end{bmatrix}$	8							Exp.	
L. reuteri DS-33 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	7		4	4	5	6			
$L. reuteri DS-33 = \begin{bmatrix} 1^d & 9 & 7 & 6 & 5 & 4 & 13 \\ 12 & 5 & 4 & 3 & 6 & 22 \\ \hline Exp. 1 Mean & 5 & 6 & 4 & 5 & 16 \\ 2 & 9 & 8 & 5 & 4 & 6 \\ 2^e & 8 & 7 & 10 & 5 & 5 & 7 \\ 15 & 3 & 3 & 2 & 2 & 6 \\ \hline Exp. 2 Mean & 6 & 7 & 4 & 4 & 6 \end{bmatrix}$	<u> </u>	14	-	-	0	0	an mean	0.00	
$L. reuteri DS-33 = \begin{bmatrix} 1^d & 9 & 7 & 6 & 5 & 4 & 13 \\ 12 & 5 & 4 & 3 & 6 & 22 \\ \hline Exp. 1 Mean & 5 & 6 & 4 & 5 & 16 \\ 2 & 9 & 8 & 5 & 4 & 6 \\ 2^e & 8 & 7 & 10 & 5 & 5 & 7 \\ 15 & 3 & 3 & 2 & 2 & 6 \\ \hline Exp. 2 Mean & 6 & 7 & 4 & 4 & 6 \end{bmatrix}$	10	13	5	4	7	4	2		
L. reuteri DS-33 $\begin{array}{ c c c c c c c c c c c }\hline 12 & 5 & 4 & 3 & 6 & 22 \\ \hline Exp. 1 Mean & 5 & 6 & 4 & 5 & 16 \\ \hline 2 & 9 & 8 & 5 & 4 & 6 \\ 2^{e} & 8 & 7 & 10 & 5 & 5 & 7 \\ \hline 15 & 3 & 3 & 2 & 2 & 6 \\ \hline Exp. 2 Mean & 6 & 7 & 4 & 4 & 6 \end{array}$	7							1 ^d	
Exp. 1 Mean564516L. reuteri DS-33298546 2^{e} 87105571533226Exp. 2 Mean67446	6								
2 ^e 8 7 10 5 5 7 15 3 3 2 2 6 Exp. 2 Mean 6 7 4 4 6	8	16	5		6			Exp.	
2 ^e 8 7 10 5 5 7 15 3 3 2 2 6 Exp. 2 Mean 6 7 4 4 6	11	6		5					L. reuteri DS-33
15 3 2 2 6 Exp. 2 Mean 6 7 4 4 6	10		5		10		8	2 ^e	
	5	6				3	15		
	9	6	4	4	7	6	2 Mean	Exp.	
	8	11	4	4	6	6			
1 5 7 9 5 15	4	15	5	9	7	5	1		
1 ^d 10 7 9 3 6 6	33	6	6	3	9	7	10	1 ^d	
14 10 10 11 14 31	6	31	14	11	10	10	14		
	14						1 Mean	Exp.	
L. reuteri WB-74 4 7 8 5 3 6	6	6	3	5	8	7	4		L. reuteri WB-74
2 ^e 5 6 3 NA ^f 3 4	4	4	3	NA ^f	3	6	5	2 ^e	
11 6 5 3 5 14	7	14		3			11		
Exp. 2 Mean 6 5 4 4 8	6	8	4		5	6	2 Mean	Exp.	
Overall Mean 7 7 6 6 13	10	13	6	6	7	7	all Mean	Over	
4 4 5 3 5 13	5	13	5	3	5	4	4		
1 ^d 7 6 8 8 7 28	7	28	7	8	8	6	7	1 ^d	
11 7 7 8 10 40	9	40	10	8	7	7	11		
Exp. 1 Mean 6 7 6 7 27	7	27	7	6	7	6	1 Mean	Exp.	
L. reuteri WB-75 6 8 3 4 4 6	7	6	4	4	3	8	-		L. reuteri WB-75
2 ^e 9 6 6 3 5 5	8	5	5	3	6	6	9	2 ^e	
	11		4						
Exp. 2 Mean 9 5 3 4 6	9	6	4	3	5	9	2 Mean	Exp.	
Overall Mean 8 6 5 6 16	8	16	6	5	6	8	all Mean	Over	
5 6 6 5 5 15	6								
1 ^d 6 4 5 4 4 29	5							1 ^d	
15 5 4 3 3 6	3								
Exp. 1 Mean 5 5 4 4 17	5							Exp.	
L. acidophilus L-23 7 9 5 5 5 13	8							_	L. acidophilus L-23
	10							2 ^e	
	13	15							
	19								
Overall Mean 9 6 5 5 15		13	6	5	7				

Table B63. Study 1 hourly LPS^a challenge VLDL^b levels (mg/dL)

^bVLDL - very low-density lipoprotein

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

^eExperiment 2 were gilts

^fNA - not analyzed

				challenge	, ig, t ioto	io (iiig/iiii_)		
Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		3	0.775	0.722	0.513	0.276	0.148	0.407
	1 ^d	8	0.313	0.326	0.387	0.145	0.196	0.160
		13	0.591	0.510	0.416	0.197	0.181	0.262
	Exp.	1 Mean	0.560	0.519	0.438	0.206	0.175	0.276
Control		1	0.370	0.379	0.327	0.327	0.449	0.366
	2 ^e	3	0.358	0.345	0.299	0.250	0.289	0.522
		14	0.784	0.717	0.644	0.443	0.453	0.409
	Exp.	2 Mean	0.504	0.480	0.423	0.340	0.397	0.432
		all Mean	0.532	0.500	0.431	0.273	0.286	0.354
		2	0.445	0.418	0.385	0.191	0.178	0.221
	1 ^d	9	0.442	0.385	0.439	0.155	0.255	0.317
		12	0.903	0.787	0.836	0.257	0.245	0.331
	Exp.	1 Mean	0.597	0.530	0.553	0.201	0.226	0.290
L. reuteri DS-33		2	0.999	0.706	0.611	0.369	0.711	0.692
	2 ^e	8	0.502	0.615	0.321	0.659	0.504	0.528
		15	0.526	0.369	0.601	0.374	0.380	0.360
	Exp.	2 Mean	0.676	0.564	0.511	0.467	0.532	0.527
	Overa	all Mean	0.636	0.547	0.532	0.334	0.379	0.408
		1	0.561	0.406	0.326	0.186	0.238	0.364
	1 ^d	10	0.534	0.513	0.510	0.258	0.200	0.258
		14	0.896	0.516	0.134	0.244	0.266	0.320
	Exp.	1 Mean	0.664	0.478	0.323	0.229	0.234	0.314
L. reuteri WB-74		4	0.358	0.293	0.270	0.236	0.273	0.275
	2 ^e	5	0.619	0.921	0.941	0.811	0.691	0.482
		11	1.414	0.736	0.672	1.003	0.601	1.101
	Exp.	2 Mean	0.797	0.650	0.628	0.684	0.522	0.619
	Overa	all Mean	0.730	0.564	0.475	0.456	0.378	0.467
		4	0.620	0.528	0.371	0.234	0.229	0.400
	1 ^d	7	0.955	0.886	1.335	0.248	0.307	0.309
		11	0.524	0.371	0.467	0.224	0.188	0.208
	Exp.	1 Mean	0.700	0.595	0.724	0.235	0.241	0.306
L. reuteri WB-75		6	0.312	0.303	0.189	0.309	0.229	0.209
	2 ^e	9	0.250	0.227	0.197	0.352	0.270	0.282
		10	0.494	0.502	0.298	0.421	0.556	0.483
	Exp.	2 Mean	0.352	0.344	0.228	0.361	0.351	0.324
	Overa	all Mean	0.526	0.469	0.476	0.298	0.296	0.315
		5	0.516	0.503	0.787	0.202	0.201	0.239
	1 ^d	6	0.532	0.516	0.617	0.261	0.271	0.271
		15	0.330	0.886	0.126	0.157	0.158	0.203
	Exp.	1 Mean	0.459	0.635	0.510	0.207	0.210	0.238
L. acidophilus L-23		7	0.898	0.689	0.662	0.889	0.648	0.527
	2 ^e	, 12	0.248	0.307	0.461	0.335	0.293	0.259
	<u> </u>	13	0.332	0.210	0.457	0.216	0.225	0.228
	Evo	2 Mean	0.332			0.216	0.225	
				0.402	0.527			0.338
	Overa	all Mean	0.476	0.519	0.518	0.343	0.299	0.288

Table B64. Study 1 hourly LPS^a challenge IgA^b levels (mg/mL)

^bIgA - immunoglobulin A

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

						-		
Treatment ^c	Exp. ^c	Pig ^c	Hour 0			Hour 6.0		
	d	3	7.098	4.851	5.984	5.690	5.391	4.415
	1 ^d	8	4.553	4.389	5.342	5.943	3.495	4.430
		13	9.335	6.526	5.452	3.331	2.914	3.783
	Exp.	1 Mean	6.995	5.255	5.593	4.988	3.933	4.209
Control		1	9.195	3.158	2.574	2.713	2.903	2.791
	2 ^e	3	12.260	2.667	2.901	2.484	2.678	4.861
		14	7.057	6.119	11.460	5.604	5.559	4.444
	Exp.	2 Mean	9.504	3.981	5.645	3.600	3.713	4.032
	Overa	all Mean	8.250	4.618	5.619	4.294	3.823	4.121
		2	4.075	2.871	6.292	3.031	2.652	1.373
	1 ^d	9	5.112	4.343	4.516	2.298	3.571	3.090
		12	9.920	9.851	7.329	9.218	5.706	6.114
	Exp.	1 Mean	6.369	5.688	6.046	4.849	3.976	3.526
L. reuteri DS-33		2	11.470	4.250	2.900	4.082	3.122	3.803
	2 ^e	8	13.720	4.315	2.944	12.710	4.368	3.185
		15	4.178	4.111	9.400	3.185	2.759	3.171
	Exp.	2 Mean	9.789	4.225	5.081	6.659	3.416	3.386
	Overa	all Mean	8.079	4.957	5.564	5.754	3.696	3.456
		1	5.113	7.037	6.290	5.249	4.465	3.579
	1 ^d	10	5.970	5.942	5.181	3.548	2.878	4.428
		14	9.550	9.666	6.159	6.689	3.719	4.932
	Exp.	1 Mean	6.878	7.548	5.877	5.162	3.687	4.313
L. reuteri WB-74		4	9.874	2.450	2.349	3.358	2.403	2.671
	2 ^e	5	10.640	2.676	2.597	7.979	2.634	2.403
		11	9.277	2.610	2.745	3.538	2.421	2.805
	Exp.	2 Mean	9.930	2.579	2.564	4.958	2.486	2.626
	Overa	all Mean	8.404	5.064	4.220	5.060	3.087	3.470
		4	7.555	7.019	6.795	6.269	4.919	5.771
	1 ^d	7	6.725	8.659	5.192	8.857	9.453	5.219
		11	5.317	6.509	7.466	3.188	3.479	2.574
	Exp.	1 Mean	6.532	7.396	6.484	6.105	5.950	4.521
L. reuteri WB-75		6	14.080	3.889	2.906	7.718	2.934	2.602
	2 ^e	9	8.451	2.484	2.152	2.416	2.572	1.928
		10	7.629	2.586	2.067	2.088	2.448	2.083
	Exp.	2 Mean	10.053	2.986	2.375	4.074	2.651	2.204
	Overa	all Mean	8.293	5.191	4.430	5.089	4.301	3.363
		5	8.947	9.675	8.350	8.342	6.768	6.286
	1 ^d	6	6.532	6.101	5.932	7.125	5.255	4.158
		15	9.013	6.703	5.899	6.526	5.144	3.841
	Exp.	1 Mean	8.164	7.493	6.727	7.331	5.722	4.762
L. acidophilus L-23		7	12.690	5.148	4.895	9.644	4.312	3.655
	2 ^e	, 12	6.234	1.849	5.219	1.682	2.433	2.798
	<u> </u>	13	16.300	2.794	9.928	9.909	2.401	2.889
	Evn	2 Mean	11.741	3.264	<u>9.928</u> 6.681	7.078	3.049	3.114
	Overa	all Mean	9.953	5.378	6.704	7.205	4.386	3.938

Table B65. Study 1 hourly LPS^a challenge IgG^b levels (mg/mL)

^aLPS - Escherichia coli O111:B4 lipopolysaccharide

^bIgG - immunoglobulin G

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

^eExperiment 2 were gilts

Treatment ^e Exp. ^c Pig ^c Hour 0 Hour 1.5 Hour 3.0 Hour 1.2 Hour 2.4 1 ^d 3 1.756 1.755 1.829 1.125 1.294 1.561 1.079 2 13 1.434 1.964 1.840 0.682 0.689 1.056 Control 1 0.920 0.316 0.257 0.271 0.290 0.279 2 ^d 3 1.226 0.267 0.290 0.248 0.268 0.444 Exp. 1 Mean 1.251 1.050 1.138 0.695 0.744 0.813 Qverall Mean 1.251 1.050 1.138 0.695 0.865 0.865 L. reuteri DS-33 2 1.072 1.064 1.094 0.937 0.356 0.381 0.312 0.338 2 ^d 1.972 0.425 0.290 0.408 0.312 0.338 1 ^d 9 1.452 1.240 0.877 0.602 0.865 <t< th=""><th></th><th></th><th></th><th></th><th>challenge</th><th></th><th></th><th></th><th></th></t<>					challenge				
L. reuteri VB-74 1 1 1.463 1.281 1.286 1.078 L. reuteri WB-74 1 1 1.964 1.840 0.682 0.689 1.078 L. reuteri WB-74 1 0.920 0.246 0.228 0.228 0.228 0.268 0.486 L. reuteri WB-75 1 0.920 0.248 0.268 0.486 L. reuteri WB-74 1.050 1.146 0.560 0.556 0.444 Exp. 2 Mean 0.950 0.398 0.565 0.360 0.371 0.403 Overall Mean 1.251 1.050 1.138 0.695 0.744 0.816 12 1.544 2.020 1.550 0.806 0.969 0.915 Exp. 1 Mean 1.356 1.426 1.214 0.837 1.110 0.816 28 8 1.372 0.432 0.290 0.408 0.312 0.338 Overall Mean 1.167 0.927 0.627 0.602 0.317	I reatment [®]	Exp.°	-						
Control		đ							
Control Exp. 1 Mean 1.551 1.701 1.711 1.029 1.117 1.233 2 ^e 3 1.226 0.267 0.271 0.290 0.279 2 ^e 3 1.226 0.267 0.227 0.290 0.248 0.2680 0.446 Exp.2 Mean 0.950 0.398 0.565 0.360 0.371 0.403 Overall Mean 1.251 1.050 1.38 0.695 0.744 0.818 L reuteri DS-33 2 1.072 1.064 1.094 0.987 0.966 0.865 2 ¹ 9 1.452 1.194 0.998 0.837 1.110 0.816 12 1.544 2.020 1.550 0.408 0.312 0.380 2 ^e 8 1.372 0.432 0.294 1.271 0.437 0.319 2 ^e 1 0.856 1.329 1.552 1.147 1.177 1.235 L reuteri WB-74 0.979		1 ^u							
Control 1 0.920 0.316 0.257 0.271 0.290 0.248 0.268 0.486 14 0.706 0.612 1.146 0.566 0.566 0.444 Exp. 2 Mean 0.950 0.398 0.565 0.360 0.371 0.403 Overall Mean 1.251 1.050 1.138 0.695 0.744 0.818 L reuteri DS-33 1 2 1.072 1.064 1.094 0.987 0.956 0.865 Exp. 1 Mean 1.356 1.426 1.214 0.877 1.012 0.868 2* 1.147 0.425 0.290 0.408 0.317 0.310 Exp. 1 Mean 1.356 1.426 1.214 0.877 0.317 0.3380 2* 1.414 0.418 0.411 0.940 0.319 0.276 0.317 Exp. 2 Mean 0.979 0.423 0.580 0.666 0.342 0.328 2* 1.0 1.80									
2 ^e 3 1.226 0.287 0.290 0.248 0.268 0.484 Exp. 2 Mean 0.950 0.398 0.555 0.360 0.371 0.403 Overall Mean 1.251 1.050 1.138 0.695 0.744 0.818 L. reuteri DS-33 2 1.072 1.064 1.094 0.987 0.956 0.865 1 ^d 9 1.452 1.194 0.998 0.837 1.110 0.816 12 1.542 1.020 1.550 0.808 0.969 0.915 Exp. 1 Mean 1.356 1.426 0.290 0.408 0.312 0.380 2 ^e 8 1.372 0.425 0.290 0.408 0.312 0.330 2 ^e 8 1.372 0.425 0.294 1.217 0.432 0.331 2 ^e 8 1.372 0.423 0.508 0.666 0.342 0.339 0.verall Mean 1.167 0.924 0.861		Exp.	1 Mean				1.029		
14 0.706 0.612 1.146 0.560 0.556 0.341 0.403 Overall Mean 1.251 1.050 1.138 0.695 0.744 0.818 Overall Mean 1.251 1.050 1.138 0.695 0.744 0.818 Overall Mean 1.251 1.050 1.138 0.695 0.744 0.818 L. reuteri DS-33 1 2 1.072 1.064 1.094 0.987 0.956 0.865 2 1.147 0.425 0.290 0.408 0.312 0.386 2 1.147 0.425 0.294 1.271 0.437 0.319 15 0.418 0.411 0.940 0.319 0.276 0.317 Exp. 1 Mean 1.167 0.924 0.861 0.772 0.677 0.602 1 0.856 1.329 1.552 1.147 1.177 1.235 1 0.8	Control								
Exp. 2 Mean 0.950 0.398 0.565 0.360 0.371 0.403 Overall Mean 1.251 1.050 1.138 0.685 0.744 0.818 Image: Construction of the system of the		2 ^e							0.486
Overall Mean 1.251 1.050 1.138 0.695 0.744 0.818 L. reuteri DS-33 1 ^d 2 1.072 1.064 1.094 0.987 0.956 0.865 L. reuteri DS-33 1 ^d 9 1.452 1.194 0.998 0.837 1.110 0.816 2 1.544 2.020 1.550 0.808 0.999 0.915 Exp. 1 Mean 1.356 1.426 0.290 0.408 0.312 0.380 2 ^a 8 1.372 0.432 0.294 0.217 0.437 0.319 15 0.418 0.411 0.924 0.861 0.772 0.602 Exp. 1 Mean 1.167 0.924 0.861 0.772 0.602 14 2.044 1.869 1.650 1.708 1.117 1.773 14 2.044 1.869 1.650 1.708 1.118 1.050 1.537 L. reuteri WB-74 4 0.987 0.285					0.612		0.560	0.556	0.444
L. reuteri DS-33 1 ^d 2 1.072 1.064 1.094 0.987 0.956 0.865 L. reuteri DS-33 1 ^d 9 1.452 1.194 0.998 0.837 1.110 0.816 2 1.147 0.425 0.200 1.650 0.808 0.969 0.915 Exp. 1 Mean 1.356 1.426 1.214 0.877 1.012 0.860 2 ^e 8 1.372 0.432 0.294 1.271 0.437 0.312 Exp. 2 Mean 0.979 0.423 0.508 0.666 0.342 0.339 Overall Mean 1.167 0.924 0.861 0.772 0.602 1 0.856 1.329 1.552 1.147 1.177 1.235 1 ^d 10 1.808 1.751 1.633 1.056 1.522 1.723 14 2.0441 1.869 1.940 1.150 0.821 1.652 L. reuteri WB-74 0.987 0.245		Exp.	2 Mean	0.950	0.398	0.565	0.360	0.371	0.403
1 ^d 9 1.452 1.194 0.998 0.837 1.110 0.816 12 1.544 2.020 1.550 0.808 0.969 0.915 Exp. 1 Mean 1.356 1.426 1.214 0.877 1.012 0.865 2 1.147 0.425 0.290 0.408 0.312 0.380 2 ^e 8 1.372 0.432 0.294 1.271 0.437 0.319 15 0.418 0.411 0.940 0.361 0.772 0.677 0.602 Texp. 2 Mean 0.979 0.423 0.508 0.666 0.342 0.339 Overall Mean 1.167 0.924 0.861 0.772 0.677 0.602 1 ^d 10 1.808 1.751 1.633 1.056 1.152 1.738 L. reuteri WB-74 1 0.987 0.245 0.235 0.336 0.240 0.261 L. reuteri WB-75 1 4 1.645 <t< td=""><td></td><td>Overa</td><td>all Mean</td><td>1.251</td><td>1.050</td><td>1.138</td><td>0.695</td><td>0.744</td><td>0.818</td></t<>		Overa	all Mean	1.251	1.050	1.138	0.695	0.744	0.818
1 ^d 9 1.452 1.194 0.998 0.837 1.110 0.816 12 1.544 2.020 1.550 0.808 0.969 0.915 Exp. 1 Mean 1.356 1.426 1.214 0.877 1.012 0.865 2 1.147 0.425 0.290 0.408 0.312 0.380 2 ^e 8 1.372 0.432 0.294 1.271 0.437 0.319 15 0.418 0.411 0.940 0.361 0.772 0.677 0.602 Texp. 2 Mean 0.979 0.423 0.508 0.666 0.342 0.339 Overall Mean 1.167 0.924 0.861 0.772 0.677 0.602 1 ^d 10 1.808 1.751 1.633 1.056 1.152 1.738 L. reuteri WB-74 1 0.987 0.245 0.235 0.336 0.240 0.261 L. reuteri WB-75 1 4 1.645 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
$L. reuteri DS-33 = \begin{bmatrix} 12 & 1.544 & 2.020 & 1.550 & 0.808 & 0.969 & 0.915 \\ Exp. 1 Mean & 1.356 & 1.426 & 1.214 & 0.877 & 1.012 & 0.865 \\ 2 & 1.147 & 0.425 & 0.290 & 0.408 & 0.312 & 0.380 \\ 2^8 & 8 & 1.372 & 0.432 & 0.294 & 1.271 & 0.437 & 0.319 \\ 15 & 0.418 & 0.411 & 0.940 & 0.319 & 0.276 & 0.317 \\ Exp. 2 Mean & 0.979 & 0.423 & 0.508 & 0.666 & 0.342 & 0.339 \\ \hline \\ Overall Mean & 1.167 & 0.924 & 0.861 & 0.772 & 0.677 & 0.602 \\ \hline \\ Uverall Mean & 1.167 & 0.924 & 0.861 & 0.772 & 0.677 & 0.602 \\ \hline \\ L. reuteri WB-74 & 1 & 0.856 & 1.329 & 1.552 & 1.147 & 1.177 & 1.235 \\ 1^4 & 0.987 & 0.245 & 0.235 & 0.336 & 0.240 & 0.267 \\ 2^6 & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline \\ Exp. 2 Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline \\ Overall Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline \\ \hline \\ L. reuteri WB-75 & 4 & 1.465 & 1.306 & 1.712 & 0.766 & 0.776 & 0.947 \\ 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline \\ Exp. 1 Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.226 \\ \hline \\ \hline \\ L. acidophilus L-23 & 5 & 0.275 & 0.515 & 0.490 & 0.906 \\ \hline \\ L. acidophilus L-23 & 7 & 1.269 & 0.515 & 0.490 & 0.906 \\ \hline \\ \hline \\ L. acidophilus L-23 & 7 & 1.269 & 0.515 & 0.490 & 0.906 \\ \hline \\ \hline \\ L. acidophilus L-23 & 7 & 1.269 & 0.515 & 0.490 & 0.906 \\ \hline \\ \hline \\ \hline \\ \hline \\ L. 2^9 & 1.20a & 0.623 & 0.185 & 0.522 & 0.168 & 0.243 & 0.280 \\ \hline \\ $				1.072	1.064	1.094	0.987	0.956	0.865
L. reuteri DS-33		1 ^d	9	1.452	1.194	0.998	0.837	1.110	0.816
$ \begin{array}{c c} L. \ reuteri {\rm DS-33} \\ \hline \begin{array}{c} 2 & 1.147 & 0.425 & 0.290 & 0.408 & 0.312 & 0.380 \\ 2^6 & 8 & 1.372 & 0.432 & 0.294 & 1.271 & 0.437 & 0.319 \\ 15 & 0.418 & 0.411 & 0.940 & 0.319 & 0.276 & 0.317 \\ \hline \hline {\rm Exp. 2 Mean} & 0.979 & 0.423 & 0.508 & 0.666 & 0.342 & 0.339 \\ \hline \hline {\rm Overall Mean} & 1.167 & 0.924 & 0.861 & 0.772 & 0.677 & 0.602 \\ \hline \hline {\rm I} & 1 & 0.856 & 1.329 & 1.552 & 1.147 & 1.177 & 1.235 \\ 1^d & 10 & 1.808 & 1.751 & 1.633 & 1.056 & 1.152 & 1.723 \\ 14 & 2.044 & 1.869 & 1.940 & 1.150 & 0.821 & 1.652 \\ \hline {\rm Exp. 1 Mean} & 1.569 & 1.650 & 1.708 & 1.118 & 1.050 & 1.537 \\ 2^6 & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.263 \\ \hline {\rm Overall Mean} & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline \hline \\ L. \ reuteri {\rm WB-75} & \begin{array}{c} 4 & 1.645 & 1.366 & 1.712 & 0.766 & 0.776 & 0.947 \\ 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.09 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline {\rm Exp. 1 Mean} & 1.691 & 1.331 & 1.296 & 1.077 & 0.297 & 0.024 \\ \hline & 6 & 1.408 & 0.389 & 0.291 & 0.772 & 0.293 & 0.260 \\ 2^6 & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.226 \\ \hline \\ \hline \\ L. \ acidophilus L-23 & \begin{array}{c} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline \\ \hline \\ \hline \\ L. \ acidophilus L-23 & \begin{array}{c} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline \\ $			12	1.544	2.020	1.550	0.808	0.969	0.915
$L. reuteri WB-74 = \begin{bmatrix} 2^8 & 8 & 1.372 & 0.432 & 0.294 & 1.271 & 0.437 & 0.319 \\ 15 & 0.418 & 0.411 & 0.940 & 0.319 & 0.276 & 0.317 \\ \hline Exp. 2 Mean & 0.979 & 0.423 & 0.508 & 0.666 & 0.342 & 0.339 \\ \hline Overall Mean & 1.167 & 0.924 & 0.861 & 0.772 & 0.677 & 0.602 \\ \hline & & & & & & & & & & & & & & & & & &$		Exp.	1 Mean	1.356	1.426	1.214	0.877	1.012	0.865
$L. reuteri WB-74 = \begin{bmatrix} 15 & 0.418 & 0.411 & 0.940 & 0.319 & 0.276 & 0.317 \\ Exp. 2 Mean & 0.979 & 0.423 & 0.508 & 0.666 & 0.342 & 0.339 \\ \hline 0 Verall Mean & 1.167 & 0.924 & 0.861 & 0.772 & 0.677 & 0.602 \\ \hline & & & & & & & & & & & & & & & & & &$	L. reuteri DS-33		2	1.147	0.425	0.290	0.408	0.312	0.380
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 ^e	8	1.372	0.432	0.294	1.271	0.437	0.319
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			15	0.418	0.411	0.940	0.319	0.276	0.317
$L. reuteri WB-74 = \begin{bmatrix} 4 & 1.645 & 1.366 & 1.712 & 0.772 & 0.677 & 0.602 \\ \hline & & & & & & & & & & & & & & & & & &$		Exp.	2 Mean						
$L. \ reuteri \ WB-74 = \begin{bmatrix} 1 & 0.856 & 1.329 & 1.552 & 1.147 & 1.177 & 1.235 \\ 1^d & 10 & 1.808 & 1.751 & 1.633 & 1.056 & 1.152 & 1.723 \\ 14 & 2.044 & 1.869 & 1.940 & 1.150 & 0.821 & 1.652 \\ \hline Exp. 1 \ Mean & 1.569 & 1.650 & 1.708 & 1.118 & 1.050 & 1.537 \\ 2^e & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 0 & 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline Exp. 2 \ Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline Overall \ Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline & 11 & 0.728 & 0.261 & 0.776 & 0.947 \\ 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline Exp. 1 \ Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ 10 & 0.763 & 0.259 & 0.207 & 0.203 & 0.260 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline Exp. 2 \ Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline Overall \ Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline L. \ acidophilus \ L-23 & \hline 1 & Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ \hline 2^e & 12 & 0.623 & 0.155 & 0.490 & 0.964 & 0.431 & 0.366 \\ 2^e & 12 & 0.623 & 0.155 & 0.490 & 0.964 & 0.431 & 0.366 \\ 2^e & 12 & 0.623 & 0.155 & 0.522 & 0.168 & 0.243 & 0.280 \\ \hline & 3 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline & Exp. 2 \ Mean & 1.174 & 0.326 & 0.668 & 0.708 & 0.305 & 0.311 \\ \hline \end{array}$		Overa	all Mean	1.167	0.924				
$L. reuteri WB-74 = \begin{bmatrix} 1^d & 10 & 1.808 & 1.751 & 1.633 & 1.056 & 1.152 & 1.723 \\ 14 & 2.044 & 1.869 & 1.940 & 1.150 & 0.821 & 1.652 \\ \hline Exp. 1 Mean & 1.569 & 1.650 & 1.708 & 1.118 & 1.050 & 1.537 \\ 2^e & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline Exp. 2 Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline Overall Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline \end{bmatrix} \\ \hline \\ L. reuteri WB-75 = \begin{bmatrix} 4 & 1.645 & 1.366 & 1.712 & 0.766 & 0.776 & 0.947 \\ 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline \\ Exp. 1 Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.772 & 0.293 & 0.260 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.741 & 0.581 & 0.612 \\ \hline \\ \hline \\ L. acidophilus L-23 & \begin{bmatrix} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline \\ \hline \\ Exp. 1 Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ 13 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline \\ \hline \end{array}$		•							
$L. reuteri WB-74 = \begin{bmatrix} 1^d & 10 & 1.808 & 1.751 & 1.633 & 1.056 & 1.152 & 1.723 \\ 14 & 2.044 & 1.869 & 1.940 & 1.150 & 0.821 & 1.652 \\ \hline Exp. 1 Mean & 1.569 & 1.650 & 1.708 & 1.118 & 1.050 & 1.537 \\ 2^e & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline Exp. 2 Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline Overall Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline \end{bmatrix} \\ \hline \\ L. reuteri WB-75 = \begin{bmatrix} 4 & 1.645 & 1.366 & 1.712 & 0.766 & 0.776 & 0.947 \\ 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline \\ Exp. 1 Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.772 & 0.293 & 0.260 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.741 & 0.581 & 0.612 \\ \hline \\ \hline \\ L. acidophilus L-23 & \begin{bmatrix} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline \\ \hline \\ Exp. 1 Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ 13 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline \\ \hline \end{array}$			1	0.856	1.329	1.552	1.147	1.177	1.235
$L. \ reuteri \ WB-74 = \begin{bmatrix} 14 & 2.044 & 1.869 & 1.940 & 1.150 & 0.821 & 1.652 \\ Exp. 1 \ Mean & 1.569 & 1.650 & 1.708 & 1.118 & 1.050 & 1.537 \\ 4 & 0.987 & 0.245 & 0.235 & 0.336 & 0.240 & 0.267 \\ 2^{e} & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline Exp. 2 \ Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline Overall \ Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline \end{bmatrix} \\ \hline \\ L. \ reuteri \ WB-75 = \begin{bmatrix} 4 & 1.645 & 1.366 & 1.712 & 0.766 & 0.776 & 0.947 \\ 1^{d} & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline \\ Exp. 1 \ Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ 11 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline \\ 2^{e} & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline \\ Exp. 2 \ Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline \\ Overall \ Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline \\ L. \ acidophilus \ L-23 & \begin{bmatrix} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^{d} & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline \\ \hline \\ Exp. 1 \ Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ \hline \\ 2^{e} & 12 & 0.623 & 0.185 & 0.522 & 0.168 & 0.243 & 0.280 \\ \hline \\ \hline \\ \hline \\ Rep & 2 \ Mean & 1.174 & 0.326 & 0.668 & 0.708 & 0.305 & 0.311 \\ \hline \end{array}$		1 ^d	10						
$L. reuteri WB-74 = \begin{bmatrix} Exp. 1 Mean 1.569 & 1.650 & 1.708 & 1.118 & 1.050 & 1.537 \\ 4 & 0.987 & 0.245 & 0.235 & 0.336 & 0.240 & 0.267 \\ 2^6 & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline Exp. 2 Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline Overall Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline & & & & & & & & & & & & & & & & & &$				2.044	1.869	1.940		0.821	
$ \begin{array}{c} L. \ reuteri \ {\sf WB-74} \\ L. \ reuteri \ {\sf WB-74} \\ L. \ reuteri \ {\sf WB-74} \\ \hline \begin{array}{c} 2^6 & 5 & 1.064 & 0.245 & 0.235 & 0.336 & 0.240 & 0.267 \\ 2^6 & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ \hline 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Exp.							
$L. reuteri WB-75 = \begin{bmatrix} 2^{e} & 5 & 1.064 & 0.268 & 0.260 & 0.798 & 0.263 & 0.240 \\ 11 & 0.928 & 0.261 & 0.275 & 0.354 & 0.242 & 0.281 \\ \hline Exp. 2 Mean & 0.993 & 0.258 & 0.256 & 0.496 & 0.249 & 0.263 \\ \hline Overall Mean & 1.281 & 0.954 & 0.982 & 0.807 & 0.649 & 0.900 \\ \hline & & & & & & & & & & & & & & & & & &$	L. reuteri WB-74	I							
$L. \ reuteri \ WB-75 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 ^e							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_							
$L. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Exp.							
$L. \ reuteri \ WB-75 = \begin{bmatrix} 4 & 1.645 & 1.366 & 1.712 & 0.766 & 0.776 & 0.947 \\ 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline Exp. 1 \ Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ 6 & 1.408 & 0.389 & 0.291 & 0.772 & 0.293 & 0.260 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline Exp. 2 \ Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline Overall \ Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline \\ L. \ acidophilus \ L-23 = \begin{bmatrix} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline \\ Exp. 1 \ Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ L. \ acidophilus \ L-23 = \begin{bmatrix} 7 & 1.269 & 0.515 & 0.490 & 0.964 & 0.431 & 0.366 \\ 2^e & 12 & 0.623 & 0.185 & 0.522 & 0.168 & 0.243 & 0.280 \\ 13 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline \\ Exp. 2 \ Mean & 1.174 & 0.326 & 0.668 & 0.708 & 0.305 & 0.311 \\ \hline \end{array}$									
$L. \ reuteri \ WB-75 = \begin{bmatrix} 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline Exp. 1 \ Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ \hline 0 & 6 & 1.408 & 0.389 & 0.291 & 0.772 & 0.293 & 0.260 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline Exp. 2 \ Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline 0 \ Verall \ Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline Exp. 1 \ Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ \hline 2^e & 12 & 0.623 & 0.185 & 0.522 & 0.168 & 0.243 & 0.280 \\ \hline 13 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline Exp. 2 \ Mean & 1.174 & 0.326 & 0.668 & 0.708 & 0.305 & 0.311 \\ \hline \end{array}$					0.000	0.002	0.001	0.0.0	0.000
$L. \ reuteri \ WB-75 = \begin{bmatrix} 1^d & 7 & 1.643 & 1.319 & 1.111 & 1.811 & 1.109 & 0.904 \\ 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ \hline Exp. 1 \ Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ \hline 0 & 6 & 1.408 & 0.389 & 0.291 & 0.772 & 0.293 & 0.260 \\ 2^e & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline Exp. 2 \ Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline 0 \ Verall \ Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline Exp. 1 \ Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ \hline 2^e & 12 & 0.623 & 0.185 & 0.522 & 0.168 & 0.243 & 0.280 \\ \hline 13 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline Exp. 2 \ Mean & 1.174 & 0.326 & 0.668 & 0.708 & 0.305 & 0.311 \\ \hline \end{array}$			4	1.645	1.366	1.712	0.766	0.776	0.947
$L. \ reuteri \ WB-75 = \begin{bmatrix} 11 & 1.786 & 1.308 & 1.064 & 0.645 & 0.808 & 1.161 \\ Exp. 1 \ Mean & 1.691 & 1.331 & 1.296 & 1.074 & 0.897 & 1.004 \\ & 6 & 1.408 & 0.389 & 0.291 & 0.772 & 0.293 & 0.260 \\ 2^{e} & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ & 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline Exp. 2 \ Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline Overall \ Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline & & & & & & & & & & & & & & & & & &$		1 ^d							
$L. \ reuteri \ WB-75 \qquad \qquad$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp.							
$L. acidophilus L-23 \begin{bmatrix} 2^{6} & 9 & 0.845 & 0.248 & 0.215 & 0.242 & 0.257 & 0.193 \\ 10 & 0.763 & 0.259 & 0.207 & 0.209 & 0.245 & 0.208 \\ \hline Exp. 2 Mean & 1.005 & 0.299 & 0.238 & 0.407 & 0.265 & 0.220 \\ \hline Overall Mean & 1.348 & 0.815 & 0.767 & 0.741 & 0.581 & 0.612 \\ \hline & & & & & & & & & & & & & & & & & &$	L. reuteri WB-75								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ^e	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-							
$L. acidophilus L-23 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Exp.							
$L. acidophilus L-23 \begin{bmatrix} 5 & 2.073 & 2.528 & 4.021 & 1.415 & 1.343 & 1.485 \\ 1^d & 6 & 1.621 & 1.621 & 2.240 & 0.883 & 0.841 & 0.783 \\ 15 & 1.279 & 1.583 & 1.167 & 1.312 & 0.655 & 0.726 \\ \hline Exp. 1 Mean & 1.658 & 1.911 & 2.476 & 1.203 & 0.946 & 0.998 \\ 7 & 1.269 & 0.515 & 0.490 & 0.964 & 0.431 & 0.366 \\ 2^e & 12 & 0.623 & 0.185 & 0.522 & 0.168 & 0.243 & 0.280 \\ \hline 13 & 1.630 & 0.279 & 0.993 & 0.991 & 0.240 & 0.289 \\ \hline Exp. 2 Mean & 1.174 & 0.326 & 0.668 & 0.708 & 0.305 & 0.311 \\ \hline \end{bmatrix}$									
1 ^d 6 1.621 2.240 0.883 0.841 0.783 15 1.279 1.583 1.167 1.312 0.655 0.726 Exp. 1 Mean 1.658 1.911 2.476 1.203 0.946 0.998 2 ^e 7 1.269 0.515 0.490 0.964 0.431 0.366 2 ^e 12 0.623 0.185 0.522 0.168 0.243 0.289 Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311		0,000		1.540	0.015	0.707	0.741	0.501	0.012
1 ^d 6 1.621 2.240 0.883 0.841 0.783 15 1.279 1.583 1.167 1.312 0.655 0.726 Exp. 1 Mean 1.658 1.911 2.476 1.203 0.946 0.998 2 ^e 7 1.269 0.515 0.490 0.964 0.431 0.366 2 ^e 12 0.623 0.185 0.522 0.168 0.243 0.289 Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311			5	2.073	2,528	4,021	1.415	1.343	1.485
15 1.279 1.583 1.167 1.312 0.655 0.726 Exp. 1 Mean 1.658 1.911 2.476 1.203 0.946 0.998 L. acidophilus L-23 7 1.269 0.515 0.490 0.964 0.431 0.366 2 ^e 12 0.623 0.185 0.522 0.168 0.243 0.289 13 1.630 0.279 0.993 0.991 0.240 0.289 Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311		1 ^d							
Exp. 1 Mean 1.658 1.911 2.476 1.203 0.946 0.998 L. acidophilus L-23 7 1.269 0.515 0.490 0.964 0.431 0.366 2 ^e 12 0.623 0.185 0.522 0.168 0.243 0.280 13 1.630 0.279 0.993 0.991 0.240 0.289 Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311									
L. acidophilus L-23 2 ^e 12 0.623 0.185 0.490 0.964 0.431 0.366 2 ^e 12 0.623 0.185 0.522 0.168 0.243 0.280 13 1.630 0.279 0.993 0.991 0.240 0.289 Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311		Evo							
2 ^e 12 0.623 0.185 0.522 0.168 0.243 0.280 13 1.630 0.279 0.993 0.991 0.240 0.289 Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311	L opidonhilitin L OC	⊑xp.							
131.6300.2790.9930.9910.2400.289Exp. 2 Mean1.1740.3260.6680.7080.3050.311	L. acidopnilus L-23	2 ⁰							
Exp. 2 Mean 1.174 0.326 0.668 0.708 0.305 0.311		2°							
Overall Mean 1.416 1.119 1.572 0.956 0.626 0.655				1.174	0.326	0.668	0.708	0.305	0.311
		Overa	all Mean	1.416	1.119	1.572	0.956	0.626	0.655

Table B66. Study 1 hourly LPS^a challenge IgM^b levels (mg/mL)

^aLPS - Escherichia coli O111:B4 lipopolysaccharide

^bIgM - immunoglobulin M

^cDescription of treatments, experiments, and pigs - see Table B2

^dExperiment 1 were barrows

^eExperiment 2 were gilts

APPENDIX C

STUDY 2 RAW DATA

	010	/	
Treatment ^b	Exp.	Day 0	Day 3 or 4
Control	1	0.92	1.20
Control	2	1.27	1.45
L. reuteri DS-36	1	8.02	7.94
L. Teulen DS-30	2	7.96	7.83
L. reuteri DS-37	1	8.14	8.19
L. Teulen DS-ST	2	7.95	7.91
L. reuteri WB-72	1	7.98	7.60
L. Teulen WD-12	2	7.95	6.63
L. reuteri WB-76	1	8.04	7.59
	2	8.04	6.62

Table C1. Study 2 treatment counts of lactobacilli^a (Log₁₀ cfu/mL)

^aPlated on deMan, Rogasa, Sharpe agar (MRSA)

^bIdeal count for treatments was 8.00 log₁₀ cfu/mL

		Exp. 1	Crate	Exp. 2	Crate
Study	Treatment ^a	Pig ^b	Number	Pig ^c	Number
		7-6	3	22-10	13
	Control	17-4	15	28-10	10
		1-8	1	17-4	5
		4-6	2	26-10	14
	L. reuteri DS-36	7-4	4	17-13	8
		11-1	10	27-13	2
		1-2	5	21-12	11
2	L. reuteri DS-37	4-2	11	28-11	6
		5-1	6	27-11	4
		7-3	7	25-8	15
	L. reuteri WB-72	14-3	8	21-11	7
		21-6	9	17-8	3
		1-3	12	17-6	12
	L. reuteri WB-76	7-1	13	13-10	9
		14-4	14	25-13	1

Table C2. Swine assignments for study 2 feeding lactobacilli cultures

^aAll treatments were fed 10 mL twice a day; Lactobacilli concentrations fed were 1 x 10^9 cfu/mL

^bExperiment 1 were all gilts (n=15)

^cExperiment 2 were all barrows (n=15)

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	8.26	10.43	13.34	17.33
	1 ^b	10	8.62	11.34	15.24	18.51
		13	10.80	13.52	16.69	19.96
	Exp.		9.22	11.76	15.09	18.60
Control		1	7.71	9.80	13.15	16.24
Control	2 ^c	3	11.88	12.88	16.06	19.78
	2	15	7.80	8.53	11.70	15.33
	Exp	2 Mean	9.13	10.40	13.64	17.12
		all Mean	9.18	11.18	14.47	17.96
			0.10			11.00
		2	7.53	9.89	12.97	15.88
	1 ^b	8	8.44	11.61	15.24	19.32
		14	10.43	14.33	18.51	22.41
	Exp.	1 Mean	8.80	11.94	15.57	19.20
L. reuteri DS-36		2	11.43	13.88	17.33	20.50
	2 ^c	4	10.52	12.25	15.88	20.23
		10	5.90	7.17	9.98	13.79
	Exp.	2 Mean	9.28	11.10	14.39	18.17
		all Mean	9.01	11.58	15.07	18.76
		4	7.94	11.79	15.42	18.42
	1 ^b	6	9.16	12.34	15.33	19.78
		11	9.71	12.88	15.51	19.05
	Exp.	1 Mean	8.94	12.34	15.42	19.08
L. reuteri DS-37		5	11.07	11.79	13.88	16.87
	2 ^c	6	7.80	8.44	11.88	14.61
		11	9.25	10.66	13.34	16.24
	Exp.	2 Mean	9.37	10.30	13.03	15.91
	Over	all Mean	9.12	11.46	14.40	17.72
	-					
	h	3	8.89	11.79	14.97	18.60
	1 ^b	7	8.89	12.25	15.69	19.50
		15	8.71	10.89	14.06	16.51
	Exp.	1 Mean	8.83	11.64	14.91	18.20
L. reuteri WB-72		7	11.25	13.20	16.87	19.96
	2 ^c	8	7.17	8.16	10.98	14.61
		9	9.07	10.52	13.43	16.51
		2 Mean	9.16	10.63	13.76	17.02
	Over	all Mean	8.97	11.21	14.42	17.70
		1	0.00	10.00	10.07	17.00
	1 ^b	1	8.26	10.80	13.97	17.69
	17	9	8.98	11.61	14.79	17.51
		12 1 Maan	10.07	14.06	17.24	20.96
	Exp.		9.10	12.16	15.33	18.72
L. reuteri WB-76	-C	12	10.52	11.70	14.97	17.96
	2 ^c	13	9.98	11.34	14.83	18.51
		14	7.80	9.53	13.52	17.33
		2 Mean	9.43	10.86	14.44	17.93
		all Mean	9.24	11.60	14.95	18.38

Table C3. Study 2 weekly swine weights (kg)

^bExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Week 1	0,	Weeks
Treatment	Exp.			Week 2	Week 3
	40	5	0.27	0.41	0.80
	1 ^c	10	0.34	0.56	0.65
		13	0.34	0.45	0.65
	Exp	. 1 Mean	0.32	0.48	0.70
Control		1	0.30	0.48	0.39
	2 ^d	3	0.14	0.45	0.46
		15	0.10	0.45	0.45
		. 2 Mean	0.18	0.46	0.43
	Over	all Mean	0.25	0.47	0.57
		2	0.29	0.44	0.58
	1 ^c	8	0.40	0.52	0.82
	-	14	0.49	0.60	0.78
	Exp	. 1 Mean	0.39	0.52	0.73
L. reuteri DS-36		2	0.35	0.49	0.40
	2 ^d	4	0.25	0.52	0.54
		10	0.18	0.40	0.48
	Exp	. 2 Mean	0.26	0.47	0.47
		all Mean	0.33	0.49	0.60
			0.40	0.50	0.00
	40	4	0.48	0.52	0.60
	1 ^c	6	0.40	0.43	0.89
		11	0.40	0.38	0.71
	Exp	. 1 Mean	0.43	0.44	0.73
L. reuteri DS-37	- d	5	0.10	0.30	0.37
	2 ^d	6	0.09	0.49	0.34
		11	0.20	0.38	0.36
		. 2 Mean	0.13	0.39	0.36
	Over	all Mean	0.28	0.42	0.55
		3	0.36	0.45	0.73
	1 ^c	7	0.42	0.49	0.76
		15	0.27	0.45	0.49
	Exp	. 1 Mean	0.35	0.47	0.66
L. reuteri WB-72		7	0.28	0.52	0.39
	2 ^d	8	0.14	0.40	0.45
		9	0.21	0.41	0.39
	Exp	. 2 Mean	0.21	0.45	0.41
	Over	all Mean	0.28	0.46	0.53
		1	0.32	0.45	0.74
	1 ^c	9	0.32	0.45	0.54
		12	0.50	0.45	0.74
	Fyn	. 1 Mean	0.38	0.45	0.68
L. reuteri WB-76	Lγρ	. 1 iviean 12	0.38	0.43	0.00
L. IGUIGII VVD-10	2 ^d	12	0.17	0.47	0.37
	2 ×	13	0.19	0.50	0.40
	Evo	. 2 Mean	0.25	0.57	0.48
					-
	I Over	all Mean	0.29	0.48	0.56

Table C4. Study 2 weekly ADG^a (kg)

^aADG - average daily gain

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Week 1	Week 2	Week
ricalinent	<u>ь</u> лр.	5 Fig	0.46	0.74	1.20
	1 ^c	10	0.58	0.89	1.20
		13	0.56	0.89	1.19
	Evo	. 1 Mean	0.58		1.19
Control	Схр	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.53	0.79	0.69
Control	2 ^d	3			
	2		0.36	0.69	0.73
		15 2 Maan	0.26	0.63	0.69
		. 2 Mean		0.67	0.70
	Over	all Mean	0.44	0.73	0.95
		2	0.55	0.71	1.02
	1 ^c	8	0.72	0.86	1.38
		14	0.82	0.95	1.34
	Exp	. 1 Mean	0.70	0.84	1.25
L. reuteri DS-36		2	0.55	0.80	0.72
	2 ^d	4	0.48	0.71	0.71
	-	10	0.34	0.63	0.72
	Exp	. 2 Mean	0.46	0.72	0.72
		all Mean	0.58	0.78	0.98
		4	0.70	0.85	1.07
	1 ^c	6	0.63	0.78	1.30
L. reuteri DS-37		11	0.71	0.72	1.14
	Exp	. 1 Mean	0.68	0.78	1.17
		5	0.33	0.55	0.57
	2 ^d	6	0.38	0.54	0.66
		11	0.44	0.60	0.64
	Exp	. 2 Mean	0.38	0.56	0.62
	Over	all Mean	0.53	0.67	0.90
	т <u> </u>	3	0.70	0.81	1.23
	1 ^c	3 7	0.70	0.81	
		7 15			1.25
	Eve		0.47	0.73	1.03 1.17
L routori MD 70	⊢	. 1 Mean 7	0.63	0.79	
L. reuteri WB-72	2 ^d	8	0.52	0.70	0.69
	2	8 9			0.70
	Eve	9 . 2 Mean	0.36	0.52	0.70
		all Mean	0.37	0.60	0.70
			0.00	0.09	0.83
		1	0.62	0.73	1.30
	1 ^c	9	0.66	0.76	1.07
		12	0.73	0.86	1.17
				0 70	1.18
	Exp	. 1 Mean	0.67	0.79	1.10
L. reuteri WB-76	· · ·	. 1 Mean 12	0.67	0.79	0.69
L. reuteri WB-76	Exp 2 ^d				
L. reuteri WB-76	· · ·	12	0.32	0.69	0.69
L. reuteri WB-76	2 ^d	12 13	0.32 0.37	0.69 0.72	0.69 0.69

Table C5. Study 2 weekly ADFI^a (kg)

^aADFI - average daily feed intake

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Week 1	Week 2	Week 3
		5	1.67	1.77	1.50
	1 [°]	10	1.70	1.60	1.84
	'	13	1.66	1.67	1.83
	Exp	. 1 Mean	1.68	1.68	1.72
Control		1	1.42	1.41	1.79
Control	2 ^d	3	2.55	1.52	1.57
	-	15	2.46	1.39	1.52
	Exp	. 2 Mean	2.14	1.44	1.63
		all Mean	1.91	1.56	1.68
			4.00		. = 0
		2	1.88	1.61	1.76
	1 ^c	8	1.82	1.66	1.69
		14	1.68	1.59	1.72
	Exp	. 1 Mean	1.79	1.62	1.72
L. reuteri DS-36		2	1.57	1.63	1.82
	2 ^d	4	1.95	1.37	1.30
		10	1.86	1.57	1.51
	Exp	. 2 Mean	1.79	1.52	1.54
	Over	all Mean	1.79	1.57	1.63
		4	1.44	1.65	1.79
	1 ^c	6	1.59	1.81	1.46
L. reuteri DS-37	1 '	11	1.79	1.92	1.61
	Evn	. 1 Mean	1.61	1.79	1.62
	Слр	5	3.17	1.83	1.51
	2 ^d	6	4.20	1.10	1.93
	2	11	2.20	1.56	1.35
	Evn	. 2 Mean	3.19	1.50	1.73
		all Mean	2.40	1.65	1.68
	-				
		3	1.92	1.79	1.69
	1 ^c	7	1.75	1.67	1.64
		15	1.73	1.61	2.09
	Exp	. 1 Mean	1.80	1.69	1.81
L. reuteri WB-72		7	1.88	1.33	1.78
	2 ^d	8	1.52	1.44	1.55
		9	1.71	1.61	2.09
		. 2 Mean	1.70	1.46	1.81
	Over	all Mean	1.75	1.58	1.81
		1	1.94	1.61	1.74
	1 ^c	9	2.00	1.68	1.96
		12	1.45	1.90	1.57
	Exp	. 1 Mean	1.80	1.73	1.76
L. reuteri WB-76		12	1.88	1.49	1.86
	2 ^d	13	1.88	1.45	1.51
		14	1.68	1.25	1.49
	Fyn	. 2 Mean	1.81	1.40	1.62
		all Mean	1.81	1.56	1.69
			1.01	1.00	1.09

Table C6. Study 2 weekly F:G ratio^a

^aF:G - feed to gain

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^a Exp. ^a Pig ^a ADG ^b ADFI ^c F:						
		5	0.50	0.80	1.63	
	1 ^e	10	0.52	0.89	1.71	
		13	0.48	0.84	1.72	
	Exp	. 1 Mean	0.50	0.84	1.69	
Control		1	0.39	0.60	1.55	
Control	2 ^f	3	0.35	0.59	1.67	
	2	15	0.34	0.53	1.56	
	Exp	. 2 Mean	0.36	0.57	1.59	
		all Mean	0.43	0.71	1.64	
	- -	_				
		2	0.44	0.76	1.74	
	1 ^e	8	0.58	0.99	1.72	
		14	0.62	1.03	1.66	
	Exp.	. 1 Mean	0.55	0.93	1.71	
L. reuteri DS-36		2	0.41	0.69	1.68	
	2 ^f	4	0.44	0.63	1.44	
		10	0.35	0.56	1.59	
		. 2 Mean	0.40	0.63	1.57	
	Over	all Mean	0.47	0.78	1.64	
	1	4	0.53	0.87	1.61	
	1 ^e	6	0.57	0.90	1.60	
		11	0.37	0.90	1.76	
L. reuteri DS-37	Evo	. 1 Mean	0.43	0.88	1.66	
		5	0.35	0.48	1.83	
L. Teuteri DS-ST	2 ^f	6	0.20	0.53	1.72	
	2	11	0.32	0.56	1.77	
	Evo		0.32	0.50	1.77	
		Exp. 2 Mean Overall Mean		0.32	1.72	
	Over		0.41	0.70	1.72	
		3	0.51	0.91	1.79	
	1 ^e	7	0.56	0.93	1.68	
		15	0.41	0.74	1.80	
	Exp	. 1 Mean	0.49	0.86	1.76	
L. reuteri WB-72		7	0.40	0.64	1.61	
	2 ^f	8	0.33	0.50	1.51	
		9	0.34	0.52	1.57	
	Exp.	. 2 Mean	0.35	0.55	1.56	
	Over	all Mean	0.42	0.71	1.66	
		1	0.50	0.88	1.75	
	1 ^e	9	0.30	0.83	1.87	
		9 12	0.44 0.57	0.83	1.67	
	Evo	⊥∠ . 1 Mean	0.57	0.92	1.62	
I routori MD 76	⊏xp.	. 1 Mean 12	0.30	0.88	1.75	
L. reuteri WB-76	2 ^f	12				
	2	13	0.38 0.43	0.59 0.61	1.55 1.42	
	Eve					
		2 Mean	0.38	0.59	1.56	
	Over	all Mean	0.44	0.73	1.65	

Table C7. Study 2 overall growth and performance (kg)

^bADG - average daily gain

^cADFI - average daily feed intake

^dF:G - feed to gain ratio

^eExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week
	<u>г</u>	5	7.65	5.76	3.85	5.53
	1 ^c	10	7.23	5.49	6.49	6.28
		13	6.80	7.38	6.08	4.43
	Exp	. 1 Mean	7.23	6.21	5.47	5.41
Control		1	4.20	4.20	4.00	5.28
	2 ^d	3	7.20	6.78	8.60	6.34
	_	15	8.04	6.96	6.43	6.68
	Exp	2 Mean	6.48	5.98	6.34	6.10
		all Mean	6.86	6.10	5.91	5.76
		2	7.20	6.59	5.95	4.38
	1 ^c	2	7.20 8.65	6.20	5.95 5.52	4.30 6.87
		o 14	6.80	6.20 6.52	5.52 7.46	5.83
	Evo	. 1 Mean				
L. reuteri DS-36			7.55	6.44 4.95	6.31 5.71	5.69
L. Teulen DS-36	2 ^d	2 4	6.77 7.89	4.95 7.75	5.71 6.58	7.11
	2 ×	4 10			6.58 7.34	5.78 7.79
	Evo	. 2 Mean	8.18 7.61	7.40	6.54	
				6.70		6.89
	Over	all Mean	7.58	6.57	6.43	6.29
		4	6.18	6.00	5.23	7.36
	1 ^c	6	6.18	5.53	6.85	4.54
		11	7.30	7.53	5.53	6.11
	Exp.	. 1 Mean	6.55	6.35	5.87	6.01
L. reuteri DS-37		5	5.73	7.71	7.62	8.65
	2 ^d	6	7.96	7.76	6.08	8.26
		11	6.60	6.72	6.80	6.81
	Exp	. 2 Mean	6.76	7.40	6.83	7.91
	Over	all Mean	6.66	6.88	6.35	6.96
		3	8.79	6.32	7.59	5.48
	1 ^c	7	5.53	7.79	6.36	3.45
		, 15	6.08	6.71	4.61	6.38
	Exp	. 1 Mean	6.80	6.94	6.19	5.10
L. reuteri WB-72		7	8.23	6.85	6.15	6.41
	2 ^d	8	6.91	9.04	7.08	8.18
		9	7.00	8.15	6.08	5.81
	Exp	2 Mean	7.38	8.01	6.43	6.80
		all Mean	7.09	7.47	6.31	5.95
		1	6.59	8.11	7.57	6.38
	1 ^c	9	6.59 7.57	6.11 5.75	7.57 5.11	0.30 7.54
		9 12	7.57 7.49	5.75 5.48	5.11 6.08	7.54 6.45
	Exp		7.49		6.08	6.45
L. reuteri WB-76	⊏xp.			6.45		
L. IEULEII VVB-10	2 ^d	12	5.72	6.71	4.20	6.58
	2-	13 14	7.89	7.04	6.49	7.85
	Ev.	14 . 2 Mean	5.85	6.61	6.28	5.89
		all Mean	6.49 6.85	6.79	5.66 5.96	6.77
			6 86	6.62	5 96	6.78

Table C8. Study 2 weekly fecal counts of coliforms^a (Log₁₀ cfu/mL)

^aPlated on violet red bile agar (VRBA)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
	· ·	5	9.72	9.40	10.23	9.59
	1 ^c	10	9.98	9.40	9.74	9.53
		13	9.72	9.58	9.96	9.97
	Exp.	1 Mean	9.81	9.46	9.98	9.70
Control		1	8.11	9.53	9.72	10.00
	2 ^d	3	9.75	9.70	10.11	9.72
	_	15	9.76	9.68	10.04	9.38
	Exp.	2 Mean	9.21	9.64	9.96	9.70
		all Mean	9.51	9.55	9.97	9.70
		2	8.99	9.11	8.93	9.04
	1 ^c	8	9.57	9.11	9.92	9.43
		14	9.81	9.36	9.11	9.41
	Exp.	1 Mean	9.46	9.20	9.32	9.30
L. reuteri DS-36	ب	2	9.83	9.51	9.99	9.28
	2 ^d	4	9.15	9.65	9.93	9.67
		10	9.64	9.15	9.79	8.62
		2 Mean	9.54	9.43	9.90	9.19
	Over	all Mean	9.50	9.32	9.61	9.24
		4	9.04	9.40	9.59	9.89
	1 ^c	6	9.54 9.54	9.40 9.40	9.86	9.64
		11	9.54 9.76			
	Evp	1 Mean		8.94	9.56 9.67	9.41
	Exp.		9.45	9.25		9.65
L. reuteri DS-37	2 ^d	5	9.81	9.54	9.74	8.41
	2	6	9.49	9.08	9.65	9.79
	Evo	11 2 Maan	9.89	9.56	10.00	9.58
		2 Mean	9.73	9.39	9.80	9.26
	Over	all Mean	9.59	9.32	9.73	9.45
		3	9.81	9.51	9.36	9.40
	1 ^c	7	9.28	8.89	9.49	9.11
		15	9.48	9.04	9.51	9.72
	Exp.	1 Mean	9.52	9.14	9.45	9.41
L. reuteri WB-72		7	9.92	10.11	9.76	9.45
	2 ^d	8	10.15	9.88	9.86	9.58
		9	9.65	9.69	9.26	9.89
	Exp.	2 Mean	9.91	9.89	9.62	9.64
		all Mean	9.71	9.52	9.54	9.52
			0 77	0.00	0.45	0.00
		1	9.77	9.66	8.15	9.38
	1 ^c	9	10.00	9.68	9.89	9.52
		12	9.40	9.15	9.53	9.51
	Exp.	1 Mean	9.72	9.50	9.19	9.47
L. reuteri WB-76	4	12	10.18	9.38	9.26	9.89
	2 ^d	13	9.38	9.34	9.11	9.97
		14	9.98	9.43	9.98	9.60
		2 Mean	9.84	9.38	9.45	9.82
	I Over	all Mean	9.78	9.44	9.32	9.64

Table C9. Study 2 weekly fecal counts of lactobacilli^a (Log₁₀ cfu/mL)

^aPlated on *Lactobacillus* selection agar (LBSA)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week
riodinoni		5	4.08	5.74	4.59	4.53
	1 ^c	10	4.41	4.34	4.80	5.49
	1 '	13	5.66	6.04	5.81	5.68
	Evn	1 Mean	5.37	5.07	5.07	5.23
Control	L	1	4.00	4.46	4.00	4.00
Control	2 ^d	3	4.00	4.48	4.00	4.00
	2	15	4.45	4.00	4.48	4.43
	Exp	2 Mean	4.15	4.31	4.16	4.14
		all Mean	4.43	4.84	4.61	4.69
	0.0	an mean	1.10	1.01	1.01	1.00
		2	4.00	4.00	4.45	4.00
	1 ^c	8	4.38	4.67	4.00	4.38
		14	4.38	4.00	4.74	4.00
	Exp.		4.25	4.22	4.40	4.13
L. reuteri DS-36		2	4.00	4.00	4.00	4.00
	2 ^d	4	4.59	4.00	4.00	4.00
	_	10	6.04	4.51	6.08	4.57
	Exp.	2 Mean	4.88	4.17	4.69	4.19
		all Mean	4.57	4.20	4.55	4.16
			-	-		-
		4	4.00	4.41	5.34	4.00
	1 ^c	6	4.74	4.00	4.00	4.00
		11	4.00	5.69	4.67	4.66
	Exp.		4.56	4.25	4.18	4.85
L. reuteri DS-37		5	4.00	4.00	4.38	4.77
	2 ^d	6	4.00	4.00	4.30	4.64
		11	4.00	4.00	4.74	5.48
	Exp. 2	2 Mean	4.32	4.23	4.56	5.15
	Over	all Mean	4.44	4.24	4.37	5.00
	-					
		3	4.00	4.00	4.67	5.54
	1 ^c	7	5.90	5.58	4.45	4.54
		15	4.00	4.11	4.79	5.79
	Exp.	1 Mean	4.63	4.56	4.64	5.29
L. reuteri WB-72		7	4.00	4.00	4.00	4.00
	2 ^d	8	4.00	4.51	4.00	4.53
		9	7.34	4.00	4.34	4.38
		2 Mean	5.11	4.17	4.11	4.30
	Over	all Mean	4.87	4.37	4.38	4.80
		4	4.04	4.00	4.00	4.00
		1	4.64	4.00	4.00	4.00
	1 ^c	9	4.45	4.00	4.00	6.08
		12	4.58	4.75	4.54	4.46
	Exp.	1 Mean	4.56	4.25	4.18	4.85
L. reuteri WB-76	- d	12	4.41	4.00	5.68	6.18
	2 ^d	13	4.48	4.68	4.00	4.68
		14	4.08	4.00	4.00	4.59
		2 Mean	4.32	4.23	4.56	5.15
	Over	all Mean	4.44	4.24	4.37	5.00

Table C10. Study 2 weekly fecal counts of Campylobacter^a (Log₁₀ cfu/mL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	+	+	+	+
	1 [°]	10	+	+	+	+
		13	+	+	+	+
	Ex	o. 1 Mean	3	3	3	3
Control		1	-	+	-	-
	2 ^d	3	-	+	-	-
		15	+	-	+	+
	Ex	o. 2 Mean	1	1	1	1
		erall Mean	4	5	4	4
	•					
		2	-	-	+	-
	1 ^c	8	+	+	-	+
	· ·	14	+	-	+	_
	Fx	p. 1 Mean	2	1		1
L. reuteri DS-36		2	-	-	-	-
2 501011 20 00	2 ^d	4	+	-	-	-
	<u> </u>	4 10	+	+	-	+
	Ev	p. 2 Mean	2	_		 1
	Uve	erall Mean	4	2	3	2
	- <u>r</u>					
		4	-	+	+	-
	1°	6	+	-	-	-
		11	-	+	+	+
	Ex	p. 1 Mean	1	2	2	1
L. reuteri DS-37		5	-	-	+	+
	2 ^d	6	-	-	+	+
		11	-	+	+	+
	Ex	p. 2 Mean	0	1	+ + + 3 - - + 1 4 - + - + 2 - - + 1 3 - - + + 2 - - + + 2 - - + + 2 - - + + 1 3 - - + + 1 - 3 - - + + 1 - - - + + 1 - - - + + - - - -	3
	Ove	erall Mean	1	3	5	4
	•					
		3	-	+	+	+
	1 ^c	7	+	+		+
		15	-	+		+
	Fx	p. 1 Mean	1	3		3
L. reuteri WB-72		7	+	-	-	-
	2 ^d	8	-	+	-	+
		9	+	-		+
	Fv	p. 2 Mean	2	1		2
		erall Mean	3	4		5
	000		3	4	4	5
	T	1				
	1 ^c	-	+	-	-	-
	1	9	+	-	-	+
	<u> </u>	12	+	+		+
	Ex	p. 1 Mean	3	1		2
L. reuteri WB-76		12	+	-	+	+
	2 ^d	13	+	+	-	+
		14	+	-	-	+
		p. 2 Mean	3	1	1	3
	Ove	erall Mean	6	2	2	5

Table C11. Study 2 testing of weekly fecal cultures of Campylobacter positives^a

 $^{\mathrm{b}}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

		positive	es"			
Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	+	+	+	+
	1 ^c		+	+	+	+
			+	+	+	+
	Ex				3	3
Control		-	+	+	-	-
	2ª		-	+	+	+
			+	+	+	+
						2
	Ove	erall Mean	5	6	5	5
	6					+
	10			+		+
						+
	EX					3
L. reuteri DS-36	od				-	+
	2				-	+
		-				+ 3
			-		2	
	Ove	erali Mean	6	6	4	6
		4				
	40					+
	1-					+
	Ev					+ 3
L. reuteri DS-37			-			+
L. Teulen DS-ST	ad					+
	2		- -			+
	Ev		2			3
					-	6
	000		5	0	0	0
		3	+	+	+	+
	1 ^c	7				+
		15				+
	Ex	p. 1 Mean	3	3	3	3
L. reuteri WB-72		7	+	+	+	+
	2 ^d	8	+	+	+	+
		9	+	-	+	+
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3			
		-	3 3 3 5 $+$ $+$ $+$ 3 $+$ $+$ $+$ 3 3 3 3 1 $+$ $+$ $+$ 3 $ +$ $+$ 5 $+$ $+$ $+$ 5 $ +$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$ $+$ $+$ 4 $+$	6		
	•					
		1	+	+	+	+
	1 ^c	9	+	+	+	+
			+	+	+	+
	Ex	p. 1 Mean	3	3	3	3
L. reuteri WB-76		12	+	+	+	+
	2 ^d	13	+	+	+	+
		14	+	+		+
	Ex	p. 2 Mean	3	3	2	3
		erall Mean	6	6	5	6

Table C12. Study 2 testing of weekly fecal enrichment cultures of *Campylobacter* positives^a

 $^{\mathrm{b}}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

		positive	esª			
Treatment ^b	Exp. ^b	Pig⁵	Day 0	Week 1	Week 2	Week 3
		5	-	-	-	-
	1 ^c	10	-	-	-	-
		13	-	-	-	-
	Exp	o. 1 Mean	0	0	0	0
Control		1	-	-	-	-
	2 ^d		-	-	-	-
			-	-	-	-
			0	0	0	0
	Ove	erall Mean	0	0	0	0
	- 1					
			-	-	-	-
	1°		-	-	-	-
				-	-	-
	EX			0		0
L. reuteri DS-36	ed			-	-	-
	2ª		+	-	-	-
			-	-	-	-
				-	-	0
	Ove	erali Mean	1	0	0	0
		4				
	4.6		-	-	-	-
	1°		-	-	-	-
	Eve		-	-	-	-
	EX		-	0	0	0
L. reuteri DS-37	od		-	-	-	-
	2		-	-	-	-
	Ev		-	-	-	0
				-		0
	000		0	0	0	0
		3	-		-	-
	1 ⁰		-	-	_	_
	'		-	-	-	-
	Exi		0	0	0	0
L. reuteri WB-72		7	-	-	-	-
	2 ^d	-	-	-	-	-
	1 -	9	-	-	-	-
	B-72 = B-76 = Exp.b Pigb Day 0 5 - 1 1c 10 - 1 13 - 2 Exp. 1 Mean 0 1 - 2d 3 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	0	0	0	0	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0			
		1	-	-	-	-
	1°	9	+	+	-	+
			-	-	-	-
	Exi		1	1	0	1
L. reuteri WB-76	'				-	-
	2 ^d		-	-	-	-
			-	-	-	-
	Evi		0	0	0	0
		5. Z Micun				

Table C13. Study 2 testing of weekly fecal enrichment cultures of Salmonella positives^a

 $^{\mathrm{b}}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		1	-	-	-	-
Control	2 ^c	3	-	-	-	-
Control		15	-	-	-	-
		Mean	0	0	0	0
		2	-	-	-	-
L. reuteri DS-36	2 ^c	4	-	-	-	-
L. Toulon DO 50		10	-	-	-	-
		Mean	0	0	0	0
		5	-	-	-	-
L. reuteri DS-37	2 ^c	6	-	-	-	-
E. Toulon DO OT		11	-	-	-	-
		Mean	0	0	0	0
		7	-	-	-	-
L. reuteri WB-72	2 ^c	8	-	-	-	-
		9	-	-	-	-
		Mean	0	0	0	0
		12	-	-	-	-
L. reuteri WB-76	2 ^c	13	-	-	-	-
		14	-	-	-	-
		Mean	0	0	0	0

Table C14. Study 2 experiment 2 testing of weekly fecal enrichment cultures of *Escherichia coli* O157:H7 positives^a

^bDescription of treatments, experiments, and pigs - see Table C2

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	111	109	100	136
	1 ^b	10	109	121	119	137
		13	130	93	99	108
	Exp.	. 1 Mean	117	108	106	127
Control	· · ·	1	98	95	109	102
	2 ^c	3	87	84	120	86
	-	15	93	91	114	106
	Exp.	. 2 Mean	93	90	114	98
		all Mean	105	99	110	113
	•					
		2	121	104	100	108
	1 ^b	8	99	98	106	116
		14	104	103	105	108
	Exp	. 1 Mean	108	102	104	111
L. reuteri DS-36		2	97	91	115	98
	2 ^c	4	103	95	122	111
	1	10	128	93	114	101
	Exp	. 2 Mean	109	93	117	103
		all Mean	109	97	110	107
				-	-	-
		4	118	124	136	132
	1 ^b	6	126	113	98	127
		11	110	110	99	126
	Exp	. 1 Mean	118	116	111	128
L. reuteri DS-37	· ·	5	90	76	145	99
	2 ^c	6	100	101	104	102
	_	11	168	105	121	109
	Exp	. 2 Mean	119	94	123	103
		all Mean	119	105	117	116
		3	158	125	115	118
	1 ^b	7	109	107	96	116
		15	113	93	111	103
	Exp	. 1 Mean	127	108	107	112
L. reuteri WB-72		7	102	107	127	117
	2 ^c	8	91	88	109	97
	1 -	9	98	86	113	94
	Exp	. 2 Mean	97	94	116	103
		all Mean	112	101	112	108
	0.01		4		116	
		1	166	106	107	129
	1 ^b	9	119	117	115	117
	'	12	114	119	113	116
	Fyn	. 1 Mean	133	114	112	121
I routori MR 76		12	101	94	131	102
L. ICULCII VVD-10	2 ^c	12				
	2		116	87	134	106
	<u> </u>	14	103	90	121	101
. reuteri DS-37		. 2 Mean	107	90	129	103
reuteri DS-37		all Mean	120	102	120	112

Table C15. Study 2 weekly glucose levels (mg/dL)

^bExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	11	7	8	9
	1 ^c	10	13	10	12	10
		13	9	9	8	7
	Exp	. 1 Mean	11	9	9	9
Control		1	7	9	8	6
	2 ^d	3	7	7	8	6
		15	10	9	8	10
	Exp	. 2 Mean	8	8	8	7
	Over	all Mean	10	9	9	8
	-	2	10	10	9	8
	1 ^c	8	15	10	10	9
		14	10	11	9	10
	Exp	. 1 Mean	12	11	9	9
L. reuteri DS-36	,p	2	8	8	11	9
	2 ^d	4	8	6	9	10
	1 -	10	4	5	6	6
. reuteri DS-36	Exp	. 2 Mean	7	6	9	8
		all Mean	9	9	9	9
	16	4	12	11	9	9
	1 ^c	6	8	8	8	11
		11	11	13	12	13
	Exp	. 1 Mean	10	11	10	11
L. reuteri DS-37	2 ^d	5	7	5	6	6
	2	6 11	6 9	5	7	7 16
	Evo	. 2 Mean	 7	<u>10</u> 7	<u>11</u> 8	10
		all Mean	9	9	9	
	0/6		9	9	9	10
		3	9	9	7	9
	1 ^c	7	11	10	10	10
		15	11	12	10	11
	Exp	. 1 Mean	10	10	9	10
L. reuteri WB-72		7	9	7	7	10
	2 ^d	8	7	9	7	7
		9	10	8	9	7
. reuteri DS-37 . reuteri WB-72		. 2 Mean	9	8	8	8
	Over	all Mean	10	9	8	9
		1	8	8	9	11
	1 ^c	9	10	11	11	12
		12	11	11	10	12
	Exp	. 1 Mean	10	10	10	12
L. reuteri WB-76		12	6	5	11	6
	2 ^d	13	9	4	10	8
	1	14	9	9	9	12
	Exp	. 2 Mean	8	6	10	9

Table C16. Study 2 weekly BUN^a levels (mg/dL)

^aBUN - blood urea nitrogen

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^a		Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	0.9	0.9	0.9	1.0
	1 ^b	10	1.0	1.0	1.0	1.0
		13	0.9	1.2	1.1	1.0
	Exp.	. 1 Mean	0.9	1.0	1.0	1.0
Control		1	1.3	1.1	1.1	1.1
	2 ^c	3	1.3	1.3	1.4	1.3
		15	1.2	1.3	1.1	1.3
			1.3	1.2	1.2	1.2
	Over	all Mean	1.1	1.1	1.1	1.1
		2	0.8	1.0	0.9	0.9
	1 ^b		1.0	1.0	0.9	1.1
			1.0	1.1	1.0	1.0
	Exp.		0.9	1.0	0.9	1.0
L. reuteri DS-36		2	1.2	1.2	1.4	1.3
	2 ^c	4	1.1	1.1	1.3	1.2
		10	1.0	0.8	0.8	0.9
	Exp.	. 2 Mean	1.1	1.0	1.2	1.1
	$ \begin{array}{r} 5 \\ 1^{b} & 10 \\ 13 \\ Exp. 1 Mean \\ 1 \\ 2^{c} & 3 \\ 15 \\ Exp. 2 Mean \\ Overall Mean \\ \hline 0 Verall Mean \\ 2 \\ 2^{c} & 4 \\ 10 \\ Exp. 1 Mean \\ 0 Verall Mean \\ 11 \\ Exp. 2 Mean \\ 0 Verall Mean \\ 0 Veran \\ 0 Veran \\ $	1.0	1.0	1.1	1.1	
		1	0.9	1.0	1.0	1.1
	1 ^b		0.9	0.8	0.9	0.9
	'		0.9	1.2	1.3	1.4
	Exp.		0.9	1.0	1.1	1.1
L. reuteri DS-37			1.3	1.2	1.4	1.3
	2°		1.2	1.2	1.3	1.4
	_	11	1.5	1.2	1.5	1.2
	Exp.	. 2 Mean	1.3	1.2	1.4	1.3
			1.1	1.1	1.2	1.2
		3	0.9	1.1	1.0	1.1
	1 ^b		1.0	1.0	1.0	1.0
			1.0	1.2	1.2	0.9
	Exp.		1.0	1.1	1.1	1.0
L. reuteri WB-72			1.1	1.3	1.1	1.3
	2 ^c		1.0	1.1	1.0	0.9
	_		1.0	0.9	1.0	0.9
	Exp.	. 2 Mean	1.0	1.1	1.0	1.0
			1.0	1.1	1.1	1.0
		1	1.0	0.9	1.2	1.1
	1 ^b		1.0	1.1	1.1	1.1
			1.0	0.9	1.0	1.2
	Fyn		1.0	1.0	1.1	1.1
L. reuteri WB-76			1.0	1.1	1.1	1.1
L. IEULEII VVD-10	°,00		1.2	0.8	1.4	1.1
	2					
			0.9	1.1	1.2	1.1
			1.1	1.0	1.3	1.1
	Over	all Mean	1.1	1.0	1.2	1.1

Table C17. Study 2 weekly creatinine levels (mg/dL)

^bExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	12.0	7.8	8.2	9.2
	1 ^c	10	13.8	10.0	11.6	10.0
		13	10.1	7.8	6.9	6.6
	Exp	. 1 Mean	12.0	8.5	8.9	8.6
Control		1	5.6	7.9	7.1	5.8
	2 ^d	3	5.2	5.4	5.5	4.9
		15	7.8	6.9	7.4	7.8
	Exp	. 2 Mean	6.2	6.7	6.7	6.2
	Over	all Mean	9.1	7.6	7.8	7.4
		2	12.2	10.6	9.6	8.4
	1 ^c	8	14.5	11.0	10.3	8.3
		14	10.2	10.1	9.0	9.7
	Exp	. 1 Mean	12.3	10.6	9.6	8.8
L. reuteri DS-36		2	6.7	6.4	7.7	7.2
	2 ^d	4	7.6	5.5	6.6	8.1
		10				7.0
	Exp	. 2 Mean		6.1		7.4
		all Mean	9.2	8.3	8.4	8.1
	-					
	. 0	4				8.0
	1 ^c	6				12.3
		11				9.7
	Exp	. 1 Mean				10.0
L. reuteri DS-37	od	5				4.8
	2 ^d	6				5.3
	- Euro	<u>11</u>				13.2
		. 2 Mean				7.8
	Over	all Mean	8.7	8.3	7.5	8.9
		3	10.7	8.3	7.1	7.9
	1 ^c	7	11.0	9.8	9.9	9.2
		15	10.8	9.8	8.4	12.2
	Exp	. 1 Mean	10.8	9.3	8.5	9.8
L. reuteri WB-72	│ . [─]	7	7.5	5.3	6.3	7.2
	2 ^d	8	6.9		7.3	7.3
		9	10.1	8.8	8.8	7.7
		. 2 Mean				7.4
	Over	all Mean	9.5	9.2 8.3 8.4 14.1 11.4 9.1 9.5 10.9 9.4 12.3 10.8 9.1 12.0 11.0 9.2 5.2 4.1 4.2 5.1 4.1 5.5 5.8 8.3 7.6 5.4 5.5 5.8 8.7 8.3 7.5 10.7 8.3 7.1 11.0 9.8 9.9 10.8 9.8 8.4 10.8 9.3 8.5 7.5 5.3 6.3 6.9 7.9 7.3 10.1 8.8 8.8 8.2 7.3 7.5	8.0	8.6
		1	8.2	9.2	7.9	10.5
	1 ^c	9				10.2
						11.5
		12	11.1	12.0		
	Exp	12 . 1 Mean				
l reuteri WR-76	Exp	. 1 Mean	9.7	10.4	9.4	10.7
L. reuteri WB-76		. 1 Mean 12	9.7 5.1	10.4 4.8	9.4 7.8	10.7 5.5
	Exp 2 ^d	. 1 Mean 12 13	9.7 5.1 7.2	10.4 4.8 5.4	9.4 7.8 8.0	10.7 5.5 7.2
L. reuteri WB-76	2 ^d	. 1 Mean 12	9.7 5.1	10.4 4.8	9.4 7.8	10.7 5.5

Table C18. Study 2 weekly BUN^a:creatinine ratio levels

^aBUN - blood urea nitrogen

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Control	2 ^c <u>Exp.</u> 1 ^b Exp. 2 ^c <u>Exp.</u> Overa 1 ^b	Pig ^a 5 10 13 1 Mean 1 3 5 2 Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean all Mean 4 6 11 1 Mean	Day 0 137 137 136 137 135 141 139 138 138 138 138 138 135 135 135 135 135 137 136 135 137 136	Week 1 137 137 139 138 135 142 137 138 138 138 138 139 136 138 130 135 137 138 138 137 138 138 138 138 138 138 138 138 138 138	Week 2 138 140 139 139 133 159 143 145 142 142 140 137 139 139 145 156 139 147 143 143 143	Week 141 139 141 140 134 140 135 136 138 143 140 137 140 137 140 137 139 135 137 139 135 137
L. reuteri DS-36	Exp. 2 ^c Exp. Overa 1 ^b Exp. 2 ^c Exp. Overa 1 ^b	13 1 Mean 1 3 15 2 Mean all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	136 137 135 141 139 138 138 138 135 135 135 135 137 136 137 136 137 136 137 136 137 136	137 139 138 135 142 137 138 138 138 138 138 138 139 136 138 130 135 137 138 137	140 139 133 159 143 145 145 142 140 137 139 139 145 156 139 147 143 139	139 141 140 134 135 136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	Exp. 2 ^c Exp. Overa 1 ^b Exp. 2 ^c Exp. Overa 1 ^b	13 1 Mean 1 3 15 2 Mean all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	136 137 135 141 139 138 138 138 135 135 135 135 137 136 137 136 137 136 137 136 137 136	139 138 135 142 137 138 138 138 138 138 131 138 138 139 136 138 130 135 137 138 137	139 139 133 159 143 145 142 140 137 139 139 139 145 140 137 139 145 156 139 147 143 139 139	141 140 134 140 135 136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	2 ^c <u>Exp.</u> 1 ^b Exp. 2 ^c <u>Exp.</u> Overa 1 ^b	1 Mean 1 3 15 2 Mean all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	137 135 141 139 138 138 138 137 134 137 136 137 136 137 136 137 136 137 136 137 136 137 136	138 135 142 137 138 138 138 138 138 138 138 138 139 136 138 130 135 137 138 137	139 133 159 143 145 142 140 137 139 139 145 156 139 147 143	140 134 140 135 136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	2 ^c <u>Exp.</u> 1 ^b Exp. 2 ^c <u>Exp.</u> Overa 1 ^b	1 3 15 <u>2 Mean</u> all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	135 141 139 138 138 138 135 135 135 135 137 134 137 136 135 135 137	135 142 137 138 138 138 141 138 138 139 136 138 130 135 137 138 137	133 159 143 145 142 140 137 139 139 145 156 139 147 143	134 140 135 136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	Exp. Overa 1 ^b Exp. 2 ^c Exp. Overa 1 ^b	3 15 2 Mean all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	141 139 138 138 138 135 135 135 135 139 137 134 137 136 135 135 137	142 137 138 138 141 138 138 139 136 138 130 135 137 138 137	159 143 145 142 140 137 139 139 145 156 139 147 143 139	140 135 136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	Exp. Overa 1 ^b Exp. 2 ^c Exp. Overa 1 ^b	15 <u>2 Mean</u> all Mean 2 8 14 1 Mean 2 4 10 <u>2 Mean</u> all Mean 4 6 11	139 138 138 136 135 135 135 137 136 137 136 137 136 137 136 137 136	137 138 138 141 138 138 139 136 138 130 135 137 138 137	143 145 142 140 137 139 139 145 156 139 147 143 139	135 136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	Overa 1 ^b Exp. 2 ^c Exp. Overa 1 ^b	2 Mean all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	138 138 136 135 135 135 139 137 134 137 136 135 137	138 138 141 138 138 139 136 138 130 135 137 138 137	145 142 140 137 139 139 145 156 139 147 143 139	136 138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	Overa 1 ^b Exp. 2 ^c Exp. Overa 1 ^b	all Mean 2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	138 136 135 135 135 139 137 134 137 136 135 137	138 141 138 138 139 136 138 130 135 137 138 137	142 140 137 139 139 145 156 139 147 143 139	138 143 140 137 140 137 139 135 137 139
L. reuteri DS-36	1 ^b Exp. 2 ^c Exp. Overa	2 8 14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	136 135 135 135 139 137 134 137 136 135 137	141 138 138 139 136 138 130 135 137 138 137	140 137 139 139 145 156 139 147 143 139	143 140 137 140 137 139 135 137 139
L. reuteri DS-36	Exp. 2 ^c Exp. Overa	8 14 2 4 10 2 Mean all Mean 4 6 11	135 135 139 137 134 137 136 136 135 137	138 139 136 138 130 135 137 137 138 137	137 139 139 145 156 139 147 143 139	140 137 140 137 139 135 137 139
L. reuteri DS-36	Exp. 2 ^c Exp. Overa	14 1 Mean 2 4 10 2 Mean all Mean 4 6 11	135 135 139 137 134 137 136 136 135 137	138 139 136 138 130 135 137 138 137	139 139 145 156 139 147 143 139	137 140 137 139 135 137 139
L. reuteri DS-37	2 ^c Exp. Overa 1 ^b	1 Mean 2 4 10 2 Mean all Mean 4 6 11	135 139 137 134 137 136 136 135 137	139 136 138 130 135 137 138 137	139 145 156 139 147 143 139	140 137 139 135 137 139
L. reuteri DS-37	2 ^c Exp. Overa 1 ^b	2 4 10 2 Mean all Mean 4 6 11	139 137 134 137 136 135 135 137	136 138 130 135 137 138 137	145 156 139 147 143 139	137 139 135 137 139
L. reuteri DS-37	Exp. Overa 1 ^b	4 10 2 Mean all Mean 4 6 11	137 134 137 136 135 137	138 130 135 137 138 137	156 139 147 143 	139 135 137 139
L. reuteri DS-37	Exp. Overa 1 ^b	10 2 Mean all Mean 4 6 11	134 137 136 135 137	130 135 137 138 137	139 147 143 139	135 137 139
L. reuteri DS-37	Overa	2 Mean all Mean 4 6 11	137 136 135 137	135 137 138 137	147 143 139	137 139
L. reuteri DS-37	Overa	all Mean 4 6 11	136 135 137	137 138 137	143 139	139
L. reuteri DS-37	1 ^b	4 6 11	135 137	138 137	139	
L. reuteri DS-37		6 11	137	137		142
L. reuteri DS-37		6 11	137	137		142
L. reuteri DS-37		11			138	
	Exp.		136			140
	Exp.	1 Mean		138	141	141
		-	136	138	139	141
	- 0	5	138	131	165	138
	2 ^c	6	137	134	143	133
		11	134	136	152	133
		2 Mean	136	134	153	135
	Overa	all Mean	136	136	146	138
		3	139	136	139	143
	1 ^b	7	141	137	137	139
	-	15	137	140	137	138
	Exp.	1 Mean	139	138	138	140
L. reuteri WB-72		7	137	141	138	138
	2 ^c	8	135	136	137	139
		9	141	139	154	138
	Exp.	2 Mean	138	139	143	138
		all Mean	138	138	140	139
	. h	1	136	137	140	146
	1 ^b	9	138	138	139	142
		12	138	140	140	141
	Exp.	1 Mean	137	138	140	143
L. reuteri WB-76		12	147	136	155	135
	2 ^c	13	144	119	160	136
		14	137	138	149	137
	Exp.	2 Mean	143	131	155	136
		all Mean	140	135	147	140

Table C19. Study 2 weekly sodium levels (mEq/L)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	8.8	9.2	11.0	10.6
	1 ^b	10	8.5	9.3	9.2	10.7
		13	8.4	7.5	8.3	9.0
	Exp.	1 Mean	8.6	8.7	9.5	10.1
Control		1	10.2	8.3	8.7	8.9
	2 ^c	3	11.2	9.2	9.4	9.9
		15	10.5	10.4	10.2	10.8
	Exp.	2 Mean	10.6	9.3	9.4	9.9
	Over	all Mean	9.6	9.0	9.5	10.0
		2	8.4	9.1	9.2	8.9
	1 ^b	8	9.1	8.7	8.3	8.8
	1	14	8.6	8.4	8.4	9.5
	Exp	1 Mean	8.7	8.7	8.6	9.1
L. reuteri DS-36	L∧p.	2	9.8	9.7	9.3	9.1
	2 ^c	4	9.0 13.1	9.7	9.3 10.9	9.2 9.3
	<u> </u>	4 10	10.5	9.3 9.2	8.8	9.3 9.2
	Fyn	2 Mean	11.1	9.2	9.7	9.2
		all Mean	9.9	9.4	9.7	9.2
			3.3	3.1	3.2	J.Z
		4	7.4	8.5	10.3	9.7
	1 ^b	6	7.2	8.0	9.8	9.7
		11	9.3	8.4	10.2	8.6
	Exp.	1 Mean	8.0	8.3	10.1	9.3
L. reuteri DS-37		5	10.8	9.3	10.0	11.5
	2 ^c	6	11.2	11.3	9.4	9.3
		11	10.4	8.6	9.7	10.6
	Exp.	2 Mean	10.8	9.7	9.7	10.5
	Over	all Mean	9.4	9.0	9.9	9.9
		3	9.1	8.7	10.4	10.0
	1 ^b	7	9.7	8.2	9.4	9.0
	'	, 15	9.2	8.9	9.9	9.5
	Exp	1 Mean	9.3	8.6	9.9	9.5
L. reuteri WB-72		7	10.2	9.9	8.7	10.2
·····	2 ^c	8	12.0	10.2	9.3	10.3
	-	9	9.5	9.7	10.1	10.2
	Exp.	2 Mean	10.6	9.9	9.4	10.2
		all Mean	10.0	9.3	9.6	9.9
		1	0.6	0.0	10.6	10.4
	1 ^b	1	9.6	9.0	10.6	
	1	9	9.2	9.2	10.4	11.3
		12 1 Maan	7.4	7.2	9.4	8.0
	⊨xp.	1 Mean	8.7	8.5	10.1	9.9
L. reuteri WB-76		12	10.4	10.1	10.5	11.5
	2 ^c	13	11.9	9.5	9.6	10.5
reuteri DS-37		14	9.4	8.0	8.8	8.8
	Exp.	2 Mean	10.6	9.2	9.6	10.3
	-	all Mean				

Table C20. Study 2 weekly potassium levels (mEq/L)

^bExperiment 1 were gilts

L. reuteri DS-36 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri W	Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
$L. reuteri DS-37 \\ L. reuteri WB-72 \\ L. reuteri WB-72 \\ L. reuteri WB-76 \\ L. reuteri $							
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 ^b					
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
Control 1 101 102 101 99 2^{c} 3 107 105 118 104 15 101 103 105 102 Exp. 2 Mean 102 104 106 103 0 Overall Mean 102 104 106 103 1b 8 100 104 101 101 1c reuteri DS-36 2 102 104 103 102 2 104 100 103 101 102 102 100 102 2c 104 105 117 105 102 102 102 102 2c 104 105 101 102 105 102 0 100 99 103 106 105 102 10 100 103 106 105 102 102 102 10 102 102 104 <		Exp					
L. reuteri DS-37 = L. reuteri WB-72 = L. reuteri WB-72 = L. reuteri WB-76 = L. reuteri	Control						
15 101 103 105 102 Exp. 2 Mean 103 103 108 102 Overall Mean 102 104 106 103 10 104 103 102 104 103 102 10 104 104 103 102 100 102 14 97 102 100 102 102 100 102 14 97 102 100 103 101 102 10 100 103 101 102 105 100 10 100 99 105 100 102 102 102 10 100 103 101 109 102 102 102 102 10 100 103 106 105 102 102 102 102 10 10 103 106 105 102 102 103 106 105 </td <td>Control</td> <td>2^c</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Control	2 ^c					
Exp. 2 Mean 103 103 108 102 Overall Mean 102 104 106 103 Image: Construction of the system of		-					
Overall Mean 102 104 106 103 Image: constraint of the system of the sys		Exp					
L. reuteri DS-36 2 102 104 103 102 L. reuteri DS-36 1 ^b 8 100 104 101 101 2 104 100 103 101 102 2 104 100 106 101 2 ^c 4 105 105 117 105 10 100 99 105 100 102 102 102 0 100 99 103 106 105 102 111 102 102 102 102 102 103 101 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri							
L. reuteri DS-36 L. reuteri DS-36 $\frac{14}{2}$ 97 102 100 102 Exp. 1 Mean 100 103 101 102 2 104 100 106 101 2^{c} 4 105 105 117 105 10 100 99 105 100 Exp. 2 Mean 103 101 109 102 Overall Mean 101 102 105 102 $\frac{4}{2}$ 99 103 106 105 11 101 102 106 104 Exp. 1 Mean 100 103 106 105 11 102 102 106 104 Exp. 1 Mean 100 103 106 105 11 102 102 112 103 Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 110 103 Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 110 103 Exp. 2 Mean 101 100 102 105 106 1^{b} 7 103 102 105 106 1^{b} 7 103 102 105 106 1^{b} 7 102 108 104 103 2^{c} 8 98 102 100 102 2^{c} 8 98 102 100 102 2^{c} 9 104 103 111 101 Exp. 2 Mean 101 104 105 102 0verall Mean 102 103 104 103 2^{c} 9 104 103 111 01 Exp. 2 Mean 101 104 105 102 0verall Mean 102 103 104 103 2^{c} 13 99 104 104 105 2^{c} 13 008 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102							102
L. reuteri DS-36 L. reuteri DS-36 $ \begin{array}{c} Exp. 1 Mean 100 103 101 102 \\ 2 & 104 100 106 101 \\ 2^{c} 4 105 105 117 105 \\ 10 100 99 105 100 \\ Exp. 2 Mean 103 101 109 102 \\ \hline 0 Verall Mean 101 102 105 102 \\ \hline 0 Verall Mean 101 102 106 105 \\ 11 101 102 106 104 \\ Exp. 1 Mean 100 103 106 105 \\ 11 101 102 106 104 \\ \hline 12^{c} 6 99 104 107 105 \\ 5 102 97 121 104 \\ 2^{c} 6 99 101 106 97 \\ 11 102 102 112 103 \\ \hline 12^{c} 6 99 101 106 97 \\ 11 00 113 101 \\ \hline 0 Verall Mean 100 102 110 103 \\ \hline 10 0 Verall Mean 100 102 110 103 \\ \hline L. reuteri WB-72 \\ L. reuteri WB-72 \\ L. reuteri WB-76 \\ \begin{array}{c} 1 & 9 & 10 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 9 & 99 \\ 1 & 104 & 103 \\ \hline 10 & 102 \\ \hline 10 & 103 \\ \hline 10 & 102 \\ \hline 10 & 103 \\ \hline 10 & 102 \\ \hline 10 & 102 \\ \hline 10 & 103 \\ \hline 10 & 102 \\ \hline 10 $		1 ^b	8			101	
L. reuteri DS-36 L. reuteri DS-36 2^{c} 4 105 105 117 105 10 100 99 105 100 Exp. 2 Mean 103 101 109 102 Overall Mean 101 102 105 102 10^{b} 6 99 104 107 105 11 101 102 106 104 Exp. 1 Mean 100 103 106 105 1^{b} 6 99 104 107 105 11 101 102 106 104 Exp. 1 Mean 100 103 106 105 2^{c} 6 99 101 106 97 11 102 102 112 103 Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 110 103 Exp. 2 Mean 101 100 102 110 103 1^{b} 7 103 102 105 106 15 99 104 102 103 Exp. 1 Mean 102 102 104 104 2^{c} 8 98 102 100 102 9 104 103 111 101 Exp. 2 Mean 101 104 103 2^{c} 8 98 102 100 102 9 104 103 111 101 Exp. 2 Mean 101 104 103 Exp. 1 Mean 102 103 104 103 1^{b} 7 103 104 103 101 Exp. 2 Mean 101 104 105 102 Overall Mean 102 103 104 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 106 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 Exp. 2 Mean 107 100 114 102				97	102	100	102
L. reuteri WB-72 $L. reuteri WB-72$ $L. reuteri WB-72$ $L. reuteri WB-76$ $L. reuteri$		Exp	. 1 Mean	100	103	101	102
$L. reuteri WB-72$ $L. reuteri WB-72$ $L. reuteri WB-76$ $L. reuteri WB-76$ $L. reuteri WB-76$ $L. reuteri WB-76$ $\frac{10}{1^{b}} \frac{10}{10^{b}} \frac{100}{100} \frac{100}{10} 10$	L. reuteri DS-36						
Exp. 2 Mean 103 101 109 102 Overall Mean 101 102 105 102 4 99 103 106 105 1 ^b 6 99 104 107 105 11 101 102 106 104 Exp. 1 Mean 100 103 106 105 11 101 102 102 104 107 10 102 97 121 104 105 11 102 102 112 103 106 105 2 ^c 6 99 101 106 97 111 102 102 112 103 2 ^c 6 99 101 106 103 101 104 103 0 10 ^t 7 103 102 105 106 15 99 104 102 103 101 102 2 ^c		2 ^c	4				105
Overall Mean 101 102 105 102 4 99 103 106 105 1 ^b 6 99 104 107 105 11 101 102 106 104 Exp. 1 Mean 100 103 106 105 5 102 97 121 104 2 ^c 6 99 101 106 97 11 102 102 112 103 101 2 ^c 6 99 101 106 97 11 102 102 112 103 Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 103 106 1 ^b 7 103 102 104 104 2 ^c 8 98 102 100 102 2 ^c 8 98 102 100 102 2 ^c				100	99	105	100
L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. r		Exp	. 2 Mean	103	101	109	102
L. reuteri DS-37 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Over	all Mean	101	102	105	102
L. reuteri DS-37 L. reuteri DS-37 1^{b} 6 99 104 107 105 11 101 102 106 104 Exp. 1 Mean 100 103 106 105 5 102 97 121 104 2^{c} 6 99 101 106 97 11 102 102 112 103 Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 110 103 1^{b} 7 103 102 105 106 15 99 104 102 103 Exp. 1 Mean 102 102 104 104 2^{c} 8 98 102 100 102 9 104 103 111 101 Exp. 2 Mean 101 104 105 102 9 104 103 101 1^{b} 9 99 104 104 103 2^{c} 8 98 102 100 102 9 104 103 101 104 103 2^{c} 8 98 102 100 102 9 104 103 111 001 Exp. 1 Mean 102 103 104 103 2^{c} 13 99 105 103 107 1^{b} 9 99 104 104 105 12 99 103 106 103 Exp. 1 Mean 99 104 104 105 2^{c} 13 108 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102					100		
L. reuteri DS-37 L. reuteri DS-37 $ \begin{array}{c} 11 & 101 & 102 & 106 & 104 \\ \hline Exp. 1 Mean & 100 & 103 & 106 & 105 \\ 5 & 102 & 97 & 121 & 104 \\ 2^{c} & 6 & 99 & 101 & 106 & 97 \\ 11 & 102 & 102 & 112 & 103 \\ \hline Exp. 2 Mean & 101 & 100 & 113 & 101 \\ \hline Overall Mean & 100 & 102 & 110 & 103 \\ 1^{b} & 7 & 103 & 102 & 105 & 106 \\ 15 & 99 & 104 & 102 & 103 \\ \hline Exp. 1 Mean & 102 & 102 & 104 & 104 \\ 2^{c} & 8 & 98 & 102 & 100 & 102 \\ \hline P & 104 & 103 & 111 & 101 \\ \hline Exp. 2 Mean & 101 & 104 & 103 \\ 2^{c} & 8 & 98 & 102 & 100 & 102 \\ \hline Overall Mean & 102 & 103 & 104 & 103 \\ \hline L. reuteri WB-72 $ L. reuteri WB-76 $ \begin{array}{c} 1 & 99 & 105 & 103 & 107 \\ 1^{b} & 9 & 99 & 104 & 104 & 105 \\ \hline 12 & 99 & 103 & 106 & 103 \\ \hline Exp. 1 Mean & 99 & 104 & 104 & 105 \\ \hline 12 & 99 & 103 & 106 & 103 \\ \hline Exp. 1 Mean & 99 & 104 & 104 & 105 \\ \hline 12 & 109 & 101 & 114 & 103 \\ \hline 2^{c} & 13 & 108 & 93 & 118 & 103 \\ \hline 2^{c} & 13 & 108 & 93 & 118 & 103 \\ \hline 14 & 103 & 105 & 111 & 101 \\ \hline Exp. 2 Mean & 107 & 100 & 114 & 102 \\ \end{array} $, h					
L. reuteri DS-37 $ \begin{array}{c} Exp. 1 Mean 100 103 106 105 \\ 5 102 97 121 104 \\ 2^{c} 6 99 101 106 97 \\ 11 102 102 112 103 \\ Exp. 2 Mean 101 100 113 101 \\ Overall Mean 100 102 110 103 \\ 100 102 110 103 \\ 101 104 103 \\ 105 106 \\ 15 99 104 102 105 106 \\ 15 99 104 102 103 \\ Exp. 1 Mean 102 102 104 104 \\ 103 12 105 106 \\ 15 99 104 102 103 \\ Exp. 1 Mean 102 102 104 104 \\ 2^{c} 8 98 102 100 102 \\ 9 104 103 111 101 \\ Exp. 2 Mean 101 104 105 102 \\ 0verall Mean 102 103 104 103 \\ 2^{c} 8 98 102 100 102 \\ 9 104 103 111 001 \\ Exp. 2 Mean 101 104 105 102 \\ 0verall Mean 102 103 104 103 \\ 11 01 \\ Exp. 1 Mean 99 104 104 105 \\ 12 99 103 106 103 \\ Exp. 1 Mean 99 104 104 104 \\ 105 103 \\ 12 99 103 106 103 \\ Exp. 1 Mean 99 104 104 104 \\ 105 103 \\ 12 99 103 106 103 \\ Exp. 1 Mean 99 104 104 104 \\ 105 103 \\ 12 99 103 106 103 \\ Exp. 2 Mean 107 100 114 101 \\ Exp. 2 Mean 107 100 114 102 \\ 101 \\ 14 103 105 111 101 \\ Exp. 2 Mean 107 100 114 102 \\ 102 \\ 104 104 102 \\ 104 104 102 \\ 104 104 104 \\ 105 \\ 111 101 \\ Exp. 2 Mean 107 100 114 102 \\ 104 104 \\ 105 \\ 111 101 \\ Exp. 2 Mean 107 100 114 102 \\ 102 \\ 104 104 102 \\ 104 104 102 \\ 104 104 104 \\ 105 \\ 114 100 \\ 104 105 \\ 114 102 \\ 105 111 101 \\ 101 \\ $		15					
L. reuteri DS-37 2° 6 99 101 106 97 11 102 102 112 103 Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 110 103 1° 7 103 101 104 103 1° 7 103 102 105 106 15 99 104 102 103 Exp. 1 Mean 102 102 104 104 2° 8 98 102 100 102 9 104 103 111 101 Exp. 2 Mean 101 104 105 102 Overall Mean 102 103 104 103 1° 9 99 104 103 111 01 Exp. 2 Mean 101 104 105 102 0° 8 99 104 104 105 102 1° 9 99 104 104 105 102 0° 8 99 104 104 105 103 1° 9 99 104 104 106 1° 9 99 104 104 105 Exp. 1 Mean 99 104 104 105 1° 12 109 101 114 103 2° 13 108 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102							
$L. reuteri WB-72$ $L. reuteri WB-76$ $\frac{2^{c}}{11} 6 99 101 106 97 112 103 101 100 113 101 0verall Mean 100 102 110 103 101 0verall Mean 100 102 110 103 104 103 15 99 104 102 105 106 15 99 104 102 103 104 104 103 2^{c} 8 98 102 100 102 9 104 103 111 101 Exp. 2 Mean 101 104 105 102 0verall Mean 102 103 104 103 105 111 101 104 105 102 103 104 104 105 102 103 106 103 104 103 104 103 104 103 105 111 101 104 105 103 104 103 105 111 101 104 105 111 101 105 111 101 105 111 101 105 111 101 10$		Exp					
$L. reuteri WB-72$ $L. reuteri WB-76$ $\frac{11}{10} \frac{111}{10} \frac{111}$	L. reuteri DS-37						
Exp. 2 Mean 101 100 113 101 Overall Mean 100 102 110 103 1^{b} 7 103 102 105 106 1^{b} 7 103 102 104 102 103 L. reuteri WB-72 7 102 108 104 103 2^{c} 8 98 102 100 102 2^{c} 8 98 102 100 102 9 104 103 111 101 104 105 102 9 104 103 111 101 104 105 102 Overall Mean 102 103 104 103 107 1^{b} 9 99 104 104 106 12 99 103 106 103 12 99 103 106 103 2^{c} 13 108 93 </td <td></td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td>		20					
L. reuteri WB-72 $L. reuteri WB-76$ $L. reuteri WB-76$ $L. reuteri WB-76$ $Verall Mean 100 102 110 104 103 110 104 103 102 105 106 15 99 104 102 103 104 104 104 102 103 111 101 104 105 102 102 104 104 103 111 101 104 105 102 103 104 103 111 101 104 105 102 103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 106 103 104 104 106 12 99 104 104 106 12 99 103 106 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 104 104 105 102 103 106 103 105 103 106 103 104 103 105 103 105 103 104 103 105 103 105 103 104 103 105 103 104 103 105 103 105 103 104 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 105 105 105 105 105 105 105 105 105$							
L. reuteri WB-72 L. reuteri WB-76 L. reuteri WB-76 $\begin{array}{c} 3 & 103 & 101 & 104 & 103 \\ 1^{b} & 7 & 103 & 102 & 105 & 106 \\ 15 & 99 & 104 & 102 & 103 \\ 15 & 99 & 104 & 102 & 103 \\ 102 & 108 & 104 & 103 \\ 2^{c} & 8 & 98 & 102 & 100 & 102 \\ 9 & 104 & 103 & 111 & 101 \\ Exp. 2 Mean & 101 & 104 & 105 & 102 \\ 0 Verall Mean & 102 & 103 & 104 & 103 \\ 1^{b} & 9 & 99 & 104 & 104 & 106 \\ 12 & 99 & 103 & 106 & 103 \\ Exp. 1 Mean & 99 & 104 & 104 & 105 \\ 2^{c} & 13 & 108 & 93 & 118 & 103 \\ 14 & 103 & 105 & 111 & 101 \\ Exp. 2 Mean & 107 & 100 & 114 & 102 \end{array}$							
L. reuteri WB-72 $\frac{1^{b}}{15} \frac{7}{99} \frac{103}{102} \frac{105}{102} \frac{106}{103} \frac{102}{104} \frac{102}{104} \frac{103}{104} \frac{104}{104} \frac{103}{104} \frac{103}{104} \frac{103}{104} \frac{103}{104} \frac{103}{102} \frac{100}{102} \frac{100}{9} \frac{104}{104} \frac{103}{101} \frac{111}{101} \frac{101}{104} \frac{105}{102} \frac{102}{103} \frac{104}{104} \frac{103}{103} \frac{104}{103} \frac{103}{104} \frac{103}{105} \frac{103}{104} \frac{103}{103} \frac{104}{104} \frac{103}{105} \frac{12}{103} \frac{106}{103} \frac{103}{104} \frac{12}{103} \frac{108}{93} \frac{93}{118} \frac{113}{103} \frac{14}{104} \frac{103}{105} \frac{111}{111} \frac{101}{101} \frac{14}{102} \frac{102}{103} \frac{105}{101} \frac{114}{101} \frac{102}{102} \frac{105}{103} \frac{111}{101} \frac{101}{114} \frac{102}{102} \frac{105}{103} \frac{111}{101} \frac{101}{114} \frac{102}{102} \frac{100}{101} \frac{114}{101} \frac{102}{102} \frac{100}{101} \frac{114}{102} \frac{100}{101} \frac{100}{114} \frac{100}{102} \frac{100}{101} \frac{100}{114} \frac{100}{10$		Over	all Mean	100	102	110	103
L. reuteri WB-72 $\frac{1^{b}}{15} \frac{7}{99} \frac{103}{102} \frac{105}{102} \frac{106}{103} \frac{102}{104} \frac{102}{104} \frac{103}{104} \frac{104}{104} \frac{103}{104} \frac{103}{104} \frac{103}{104} \frac{103}{104} \frac{103}{102} \frac{100}{102} \frac{100}{9} \frac{104}{104} \frac{103}{101} \frac{111}{101} \frac{101}{104} \frac{105}{102} \frac{102}{103} \frac{104}{104} \frac{103}{103} \frac{104}{103} \frac{103}{104} \frac{103}{105} \frac{103}{104} \frac{103}{103} \frac{104}{104} \frac{103}{105} \frac{12}{103} \frac{106}{103} \frac{103}{104} \frac{12}{103} \frac{108}{93} \frac{93}{118} \frac{113}{103} \frac{14}{104} \frac{103}{105} \frac{111}{111} \frac{101}{101} \frac{14}{102} \frac{102}{103} \frac{105}{101} \frac{114}{101} \frac{102}{102} \frac{105}{103} \frac{111}{101} \frac{101}{114} \frac{102}{102} \frac{105}{103} \frac{111}{101} \frac{101}{114} \frac{102}{102} \frac{100}{101} \frac{114}{101} \frac{102}{102} \frac{100}{101} \frac{114}{102} \frac{100}{101} \frac{100}{114} \frac{100}{102} \frac{100}{101} \frac{100}{114} \frac{100}{10$			3	103	101	104	103
L. reuteri WB-72 $\frac{15 99 104 102 103}{Exp. 1 Mean 102 102 104 104} 103}{2^c 8 98 102 100 102} 104 103}{2^c 8 98 102 100 102} 100 102}{9 104 103 111 101} 104 105 102} 0verall Mean 102 103 104 103} 107 108 104 103 107 108 104 103 107 106 103 107 106 103 106 103} 107 108 99 104 104 104 105 103 107 108 104 104 105 103 107 108 103 106 103 107 100 114 103 105 111 101 104 105 103 107 100 114 103 105 111 101 104 105 103 107 100 114 103 105 111 101 104 105 103 107 100 114 102 103 105 111 101 104 105 103 107 100 114 103 105 111 101 102 103 105 111 101 103 105 111 101 102 103 105 111 101 103 105 110 103 105 110 103 105 110 103 105 110 103 105 110 103 105 110 103 105 110 103 105 110 103 105 103 103 105 103 103 105 103 103 10$		1 ^b					
L. reuteri WB-72 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1					
L. reuteri WB-72 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Fxn					
$L. reuteri WB-76 = \begin{bmatrix} 2^{c} & 8 & 98 & 102 & 100 & 102 \\ 9 & 104 & 103 & 111 & 101 \\ Exp. 2 Mean & 101 & 104 & 105 & 102 \\ \hline 0 Verall Mean & 102 & 103 & 104 & 103 \\ \hline 1^{b} & 9 & 99 & 104 & 104 & 106 \\ 12 & 99 & 103 & 106 & 103 \\ Exp. 1 Mean & 99 & 104 & 104 & 105 \\ 12 & 109 & 101 & 114 & 103 \\ 2^{c} & 13 & 108 & 93 & 118 & 103 \\ 14 & 103 & 105 & 111 & 101 \\ Exp. 2 Mean & 107 & 100 & 114 & 102 \\ \hline \end{bmatrix}$	L. reuteri WB-72						
$L. reuteri WB-76 = \begin{bmatrix} 9 & 104 & 103 & 111 & 101 \\ Exp. 2 Mean & 101 & 104 & 105 & 102 \\ \hline 0 Verall Mean & 102 & 103 & 104 & 103 \\ \hline 1^b & 9 & 99 & 104 & 104 & 106 \\ 12 & 99 & 103 & 106 & 103 \\ Exp. 1 Mean & 99 & 104 & 104 & 105 \\ 12 & 109 & 101 & 114 & 103 \\ 2^c & 13 & 108 & 93 & 118 & 103 \\ 14 & 103 & 105 & 111 & 101 \\ Exp. 2 Mean & 107 & 100 & 114 & 102 \\ \hline \end{bmatrix}$		2°					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$L. reuteri WB-76 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fxn	-				
$L. reuteri WB-76 = \begin{bmatrix} 1 & 99 & 105 & 103 & 107 \\ 1^{b} & 9 & 99 & 104 & 104 & 106 \\ 12 & 99 & 103 & 106 & 103 \\ Exp. 1 Mean & 99 & 104 & 104 & 105 \\ 12 & 109 & 101 & 114 & 103 \\ 2^{c} & 13 & 108 & 93 & 118 & 103 \\ 14 & 103 & 105 & 111 & 101 \\ Exp. 2 Mean & 107 & 100 & 114 & 102 \end{bmatrix}$							
$L. reuteri WB-76 = \begin{bmatrix} 1^b & 9 & 99 & 104 & 104 & 106 \\ 12 & 99 & 103 & 106 & 103 \\ \hline Exp. 1 Mean & 99 & 104 & 104 & 105 \\ 12 & 109 & 101 & 114 & 103 \\ 2^c & 13 & 108 & 93 & 118 & 103 \\ 14 & 103 & 105 & 111 & 101 \\ \hline Exp. 2 Mean & 107 & 100 & 114 & 102 \\ \hline \end{bmatrix}$							
12 99 103 106 103 Exp. 1 Mean 99 104 104 105 12 109 101 114 103 2 ^c 13 108 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102							107
Exp. 1 Mean 99 104 104 105 L. reuteri WB-76 12 109 101 114 103 2 ^c 13 108 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102		1 ^b		99			106
L. reuteri WB-76 2 ^c 13 108 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102				99	103	106	103
2 ^c 13 108 93 118 103 14 103 105 111 101 Exp. 2 Mean 107 100 114 102		Exp	. 1 Mean	99	104	104	105
14 103 105 111 101 Exp. 2 Mean 107 100 114 102	L. reuteri WB-76		12	109	101	114	103
14 103 105 111 101 Exp. 2 Mean 107 100 114 102		2 ^c				118	103
Exp. 2 Mean 107 100 114 102							
	. reuteri DS-37 . reuteri WB-72	Exp					
				103	100	109	102

Table C21. Study 2 weekly chloride levels (mEq/L)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	27	25	18	25
	1 ^b	10	25	21	21	20
		13	27	27	28	26
	Exp	. 1 Mean	26	24	22	24
Control		1	24	23	23	28
	2 ^c	3	24	25	27	23
		15	25	22	27	25
	Exp	. 2 Mean	24	23	26	25
	Over	all Mean	25	24	24	25
				07		
	, h				23	25
	1				26	30
					29	24
	Exp				26	26
L. reuteri DS-36	-				26	26
	2				24	23
					26	27
					25	25
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	26	26		
		4	28	25	18	26
	1 ^b				22	25
					24	24
	Exp				21	25
L. reuteri DS-37					32	21
E. routon Do or	2°				27	26
	-				29	23
	Exp				29	23
				24	25	24
	-					
				26	22	27
	1 [⊳]			25	21	24
				22	23	24
	Ехр	. 1 Mean		24	22	25
L. reuteri WB-72	1	-		20	19	24
	2 ^c			26	27	25
				26	31	27
			24	24	26	25
	Over	all Mean	25	24	24	25
		1	21	24	23	29
	1 b				23 23	29 25
					23 25	25 26
	Evn					
L routori MD 70					<u>24</u> 30	<u>27</u> 23
L. reuteri WB-76	^ C					
	2				31	26
					28	28
			25	24	30	26
		all Mean	25	25	27	26

Table C22. Study 2 weekly carbon dioxide levels (mEq/L)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
ricatilient	<u> </u>	5	19.2	17.6	26.6	21.6
	1 ^b	10	17.7	19.7	20.0	21.0
	'	13	19.5	17.7	19.0	21.7
	Exp		18.8	18.3	22.8	21.0
Control		<u>1</u>	19.8	18.0	17.7	15.8
Control	2 ^c	3	21.6	21.6	23.6	22.9
	2	15	23.4	21.0	23.0 21.4	20.0
	Evo	. 2 Mean	23.4	20.4	20.9	19.6
		all Mean	20.2	19.4	20.9	20.6
	0761		20.2	19.4	21.0	20.0
		2	20.0	20.7	22.6	24.2
	1 ^b	8	19.4	18.8	19.2	18.0
		14	19.7	19.5	18.4	20.6
	Exp	. 1 Mean	19.7	19.7	20.1	20.9
L. reuteri DS-36		2	21.3	18.9	22.6	19.6
	2 ^c	4	25.4	19.0	26.5	19.9
		10	24.9	15.6	17.4	17.1
	Exp	. 2 Mean	23.9	17.8	22.2	18.9
		all Mean	21.8	18.8	21.1	19.9
	•					
		4	15.0	19.4	25.2	21.2
	1 ^b	6	14.8	15.5	19.4	19.1
		11	18.4	16.3	21.5	21.0
	Exp	. 1 Mean	16.1	17.1	22.0	20.4
L. reuteri DS-37	2 ^c	5	23.8	18.9	21.1	25.1
		6	22.4	24.1	20.2	19.2
		11	28.5	17.8	20.4	17.6
	Exp	. 2 Mean	24.9	20.3	20.6	20.6
	Over	all Mean	20.5	18.7	21.3	20.5
	1	0	00.0	47.0	00.0	00.4
	1 ^b	3	23.2	17.9	23.2	23.1
	1~	7	21.7	18.1	20.6	17.3
		15 1 Moon	21.9	22.2	22.7	19.9
I routori MD 70	⊢ xp.	. 1 Mean	22.3	19.4	22.2	20.1
L. reuteri WB-72	2 ^c	7	21.4	22.6	23.3	20.5
	2	8	23.1	18.2	19.1	21.7
	Evo	9 2 Moon	24.0	20.1	<u>22.7</u> 21.7	21.3 21.2
		. 2 Mean	22.8	20.3		
	Over	all Mean	22.6	19.9	21.9	20.6
		1	24.4	18.0	23.9	20.8
	1 ^b	9	20.9	18.4	22.6	22.5
		12	20.5	17.1	18.9	20.3
	Exp	. 1 Mean	21.9	17.8	21.8	20.0
L. reuteri WB-76		12	22.5	18.8	21.7	20.9
	2 ^c	12	22.5	15.0	20.7	17.7
	2 ×					
		14 2 Maan	19.4	14.5	19.4	16.8
		. 2 Mean	21.5	16.1	20.6	18.5
	i Over	all Mean	21.7	17.0	21.2	19.8

Table C23. Study 2 weekly anion gap levels

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	10.6	10.4	10.0	10.3
	1 ^b	10	10.5	10.6	10.6	10.4
		13	10.8	10.7	9.8	9.9
	Exp	. 1 Mean	10.6	10.6	10.1	10.2
Control		1	9.8	10.1	10.6	10.4
	2 ^c	3	10.7	10.4	12.6	10.6
		15	10.7	9.9	10.7	10.8
	Exp	. 2 Mean	10.4	10.1	11.3	10.6
	Over	all Mean	10.5	10.4	10.7	10.4
		2	9.8	10.5	10.4	10.2
	1 ^b	8	9.8 9.8	9.8	10.4	10.2
	1	o 14	9.8 10.8	9.8 10.9	10.3	9.8
	Evo	. 1 Mean				
I routori DC 26	⊨_zp		10.1	10.4	10.3	10.2
L. reuteri DS-36	2 ^c	2 4	10.9 10.0	10.9 10.5	11.6 12.1	10.8
	2	-		10.5		10.8
	Eve	10 2 Moon	10.0	9.6	10.5	10.3
		. 2 Mean	10.3	10.3	11.4	10.6
	Over	all Mean	10.2	10.4	10.9	10.4
		4	10.6	10.8	10.4	10.7
	1 ^b	6	10.5	11.5	10.0	10.6
		11	10.1	10.0	9.9	10.1
	Exp	. 1 Mean	10.4	10.8	10.1	10.5
L. reuteri DS-37	2 ^c	5	10.7	9.0	12.3	10.5
		6	10.7	10.8	11.5	10.5
		11	9.6	10.4	11.9	10.2
	Exp	. 2 Mean	10.3	10.1	11.9	10.4
	Over	all Mean	10.4	10.4	11.0	10.4
		3	10.5	10.6	10.0	10.6
	1 ^b	3 7	10.5	10.0	9.6	
		7 15	10.5	10.3	9.6 10.2	10.4 9.9
	Evn	. 1 Mean	10.5		9.9	
L. reuteri WB-72	L xp	7	10.8	<u>10.3</u> 10.5	<u>9.9</u> 10.5	<u>10.3</u> 10.7
	2 ^c	8	10.9	10.5	10.3	10.7
	_	9	10.6	10.0	11.9	10.9
	Evn	. 2 Mean	10.8	10.0	10.9	10.8
		all Mean				
	Over		10.8	10.3	10.4	10.6
		1	10.7	10.4	10.1	11.1
	1 ^b	9	10.7	10.5	10.1	10.5
		12	10.5	10.1	9.9	10.3
	Exp	. 1 Mean	10.6	10.3	10.0	10.6
L. reuteri WB-76		12	11.2	10.3	11.9	10.9
	2 ^c	13	11.7	9.0	12.2	10.4
	1 -	14	10.9	10.6	11.6	11.0
	Fyn	. 2 Mean	11.3	10.0	11.9	10.8
		all Mean				
	Over		11.0	10.2	11.0	10.7

Table C24. Study 2 weekly calcium levels (mEq/L)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		5	4.1	4.3	4.7	5.2
	1 ^b	10	4.5	4.4	4.7	4.9
		13	4.6	4.7	4.8	5.2
	Exp	. 1 Mean	4.4	4.5	4.7	5.1
Control		1	4.8	4.2	4.5	4.6
	2 ^c	3	4.9	5.0	6.0	5.4
		15	4.8	4.9	5.1	5.0
	Exp	. 2 Mean	4.8	4.7	5.2	5.0
	Over	all Mean	4.6	4.6	5.0	5.1
		2	4.5	4.7	5.1	5.4
	1 ^b	2	4.5 4.5	4.7	4.6	5.4 5.1
	1	14	4.5	4.5	4.0 4.9	5.2
	Evo	. 1 Mean		4.5		5.2
L. reuteri DS-36		2	<u>4.6</u> 5.1	<u>4.5</u> 5.2	<u>4.9</u> 5.6	5.2
L. Teulett D3-30	2 ^c	2 4	5.1 5.4	5.2 4.2	5.0 5.0	5.4 4.4
	2	4 10	5.4 4.8	4.2 4.3	5.0 4.5	4.4 4.8
	Evo	. 2 Mean	<u>4.0</u> 5.1	4.5	<u>4.5</u> 5.0	4.0
		all Mean				
	Over		4.9	4.5	5.0	5.1
		4	4.1	4.3	4.9	5.1
	1 ^b	6	4.3	4.4	4.6	4.9
		11	4.2	4.6	4.8	4.9
	Exp	. 1 Mean	4.2	4.4	4.8	5.0
L. reuteri DS-37		5	5.1	4.4	5.9	5.4
	2 ^c	6	5.0	5.2	4.8	4.9
		11	4.2	4.8	5.8	4.8
	Exp	. 2 Mean	4.8	4.8	5.5	5.0
		all Mean	4.5	4.6	5.1	5.0
		3	4.8	4.8	5.0	5.6
	1 ^b	3 7	4.0 4.4	4.0	5.0 4.4	5.0 4.9
	Evn	15 . 1 Mean	4.6	4.8	4.8	4.8
L. reuteri WB-72		7	<u>4.6</u> 5.2	<u>4.6</u> 5.2	5.0	<u>5.1</u> 5.3
	2 ^c	8	5.2 5.0	5.2 4.4	5.0 4.8	5.3
	2	9	3.0 4.6	4.4	4.8 5.7	5.3
	Fyn	. 2 Mean	4.0	4.7	5.2	5.3
		all Mean	4.8	4.7	5.0	5.2
		1	4.6	4.3	4.6	5.3
	1 ^b	9	4.8	4.8	5.0	5.5
		12	4.7	4.8	5.1	5.3
	Exp	. 1 Mean	4.7	4.6	4.9	5.4
L. reuteri WB-76	1	12	5.2	4.8	6.0	5.9
	2 ^c	13	5.3	3.9	5.9	4.6
	1	14	4.0	3.9	4.9	4.8
	Exp	. 2 Mean	4.8	4.2	5.6	5.1

Table C25. Study 2 weekly total protein levels (g/dL)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		5	2.5	2.4	2.9	3.1
	1 ^b	10	2.4	2.4	2.7	3.0
		13	2.8	2.6	2.6	2.9
	Exp	Exp. 1 Mean		2.5	2.7	3.0
Control		1	2.4	2.1	2.4	2.6
	2 ^c	3	2.8	2.8	3.3	3.2
		15	2.5	2.8	3.0	3.1
	Exp	. 2 Mean	2.6	2.6	2.9	3.0
	Over	all Mean	2.6	2.5	2.8	3.0
		2	2.7	3.0	3.3	3.3
	1 ^b	8	2.5	2.6	2.8	3.3
	1	14	2.8	2.0	3.4	3.6
	Exp	. 1 Mean	2.0	2.8	3.2	3.4
L. reuteri DS-36		2	2.7	3.0	3.3	3.4
	2 ^c	4	3.3	2.5	3.2	2.8
		10	3.3 2.4	2.3	2.6	3.1
	Fyn	. 2 Mean	2.9	2.6	3.0	3.0
		all Mean	2.8	2.7	3.1	3.2
			2.0	2.1	0.1	0.2
		4	2.5	3.0	3.4	3.6
	1 ^b	6	2.2	2.3	2.6	2.9
		11	2.5	2.6	2.8	2.9
	Exp	. 1 Mean	2.4	2.6	2.9	3.1
L. reuteri DS-37		5	2.8	2.2	3.1	3.1
	2 ^c	6	2.8	2.8	2.5	2.6
		11	2.2	2.5	2.9	2.4
		. 2 Mean	2.6	2.5	2.8	2.7
	Over	all Mean	2.5	2.6	2.9	2.9
		3	3.1	3.0	3.4	3.6
	1 ^b	7	2.7	2.6	2.8	3.1
		15	2.6	2.8	2.5	2.6
	Exp	. 1 Mean	2.8	2.8	2.9	3.1
L. reuteri WB-72		7	3.1	3.1	3.0	3.4
	2 ^c	8	2.9	2.5	2.6	3.2
		9	2.9	2.6	3.1	3.2
		. 2 Mean	3.0	2.7	2.9	3.3
	Over	all Mean	2.9	2.8	2.9	3.2
		1	2.6	2.3	2.8	3.3
	1 ^b	9	2.0 3.0	2.3	2.8 3.2	3.3
		9 12	3.0 2.8	2.0 2.8	3.2 3.0	3.3 3.2
	Fyn	. 1 Mean	2.8	2.0	3.0	3.2
L. reuteri WB-76		12	3.0	2.6	3.8	3.5
	2 ^c	12	3.0 3.2	2.0	3.8	2.8
	<u> </u>	13	3.2 2.4	2.1	3.0	3.0
	1					
	Fyn	. 2 Mean	2.9	2.3	3.5	3.1

Table C26. Study 2 weekly albumin levels (g/dL)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		5	1.7	1.9	1.8	2.1
	1 ^b	10	2.1	2.0	1.9	1.9
		13	1.8	2.2	2.2	2.3
	Exp	. 1 Mean	1.9	2.0	2.0	2.1
Control		1	2.4	2.1	2.2	2.0
	2 ^c	3	2.2	2.2	2.7	2.2
		15	2.2	2.1	2.1	1.9
	Exp	. 2 Mean	2.3	2.1	2.3	2.0
	Over	all Mean	2.1	2.1	2.2	2.1
		2	1.8	1.6	1.8	2.1
	1 ^b	8	2.0	1.7	1.8	1.8
	1	14	2.0 1.9	1.7	1.6	1.6
	Evo	. 1 Mean	1.9	1.7	1.7	1.8
routori DC 26	⊏xρ	2 2	2.2	2.3	2.3	2.3
L. reuteri DS-36	2 ^c	2 4	2.2 2.1	2.3 1.6	2.3 1.8	2.3 1.7
	2	4 10	2.1 2.4	1.6 2.1	1.8	1.7
	Evo	. 2 Mean	2.4	2.1	2.0	1.7
	Over	all Mean	2.1	1.8	1.9	1.9
		4	1.6	1.3	1.5	1.6
	1 ^b	6	2.1	2.1	2.0	2.0
		11	1.7	2.0	2.1	2.0
	Exp	. 1 Mean	1.8	1.8	1.9	1.9
L. reuteri DS-37		5	2.3	2.2	2.8	2.3
	2 ^c	6	2.3	2.4	2.3	2.3
		11	1.9	2.3	2.9	2.4
	Exp	. 2 Mean	2.2	2.3	2.7	2.3
	Over	all Mean	2.0	2.1	2.3	2.1
		3	1.8	1.8	1.6	2.0
	1 ^b	7	1.7	1.7	1.6	1.8
		, 15	2.0	2.0	2.2	2.2
	Fyn	. 1 Mean	1.8	1.8	1.8	2.2
L. reuteri WB-72	L AP	7	2.1	2.1	2.0	1.9
	2 ^c	8	2.1	1.9	2.2	2.1
	<u> </u>	9	1.7	2.1	2.2	2.1
	Fxn	. 2 Mean	2.0	2.0	2.3	2.2
	Overall Mean					··
	-	all Mean	1.9	1.9	2.0	2.0
	-	all Mean	1.9	1.9	2.0	2.0
	-	all Mean 1	1.9 2.0	1.9 1.9	2.0	2.0
	-					
	Over	1	2.0	1.9	1.8	2.0
	Over	1 9	2.0 1.8	1.9 2.0	1.8 1.9	2.0 2.2
L. reuteri WB-76	Over	1 9 12	2.0 1.8 2.0	1.9 2.0 2.0	1.8 1.9 2.1	2.0 2.2 2.1
L. reuteri WB-76	Over 1 ^b Exp	1 9 12 . 1 Mean	2.0 1.8 2.0 1.9	1.9 2.0 2.0 2.0	1.8 1.9 2.1 1.9 2.3	2.0 2.2 2.1 2.1
L. reuteri WB-76	Over	1 9 12 . 1 Mean 12	2.0 1.8 2.0 1.9 2.2	1.9 2.0 2.0 2.0 2.1	1.8 1.9 2.1 1.9	2.0 2.2 2.1 2.1 2.3
L. reuteri WB-76	Over 1 ^b Exp 2 ^c	1 9 12 . 1 Mean 12 13	2.0 1.8 2.0 1.9 2.2 2.1	1.9 2.0 2.0 2.0 2.1 1.7	1.8 1.9 2.1 1.9 2.3 2.1	2.0 2.2 2.1 2.1 2.3 1.8

Table C27. Study 2 weekly globulin levels (g/dL)

^bExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week
		5	1.5	1.3	1.5	1.4
	1 ^b	10	1.1	1.2	1.4	1.6
		13	1.5	1.2	1.2	1.2
	Exp	. 1 Mean	1.4	1.2	1.4	1.4
Control		1	1.0	1.0	1.1	1.3
	2 ^c	3	1.3	1.2	1.2	1.4
		15	1.1	1.3	1.4	1.6
		. 2 Mean	1.1	1.2	1.2	1.4
	Over	all Mean	1.3	1.2	1.3	1.4
		2	1.5	1.8	1.8	1.6
	1 ^b	8	1.3	1.5	1.6	1.8
		14	1.5	1.7	1.6	2.2
	Exp	. 1 Mean	1.4	1.7	1.7	1.9
L. reuteri DS-36		2	1.3	1.3	1.5	1.4
	2 ^c	4	1.6	1.5	1.8	1.7
		10	1.0	1.0	1.4	1.8
	Exp	. 2 Mean	1.3	1.3	1.6	1.6
		all Mean	1.4	1.5	1.6	1.8
		4	1.6	2.3	2.3	2.3
	1 ^b	4 6	1.0	2.3 1.1	2.3 1.3	2.3 1.4
	1.	11	1.1	1.1	1.3	1.4
	Evo	. 1 Mean	1.4	1.5	1.5	1.5
L. reuteri DS-37	Ľ∧ρ	5	1.4	1.0	1.0	1.7
L. Teulen DO-51	2 ^c	6	1.2	1.1	1.1	1.1
	2	11	1.2	1.1	1.0	1.0
	Exp	. 2 Mean	1.2	1.1	1.1	1.1
		all Mean	1.3	1.3	1.4	1.4
		3	1.7	1.7	2.1	1.8
	1 ^b	7	1.6	1.5	1.8	1.8
		15	1.3	1.4	1.2	1.2
	Exp	. 1 Mean	1.5	1.5	1.7	1.6
L. reuteri WB-72		7	1.4	1.5	1.5	1.8
	2 ^c	8	1.4	1.3	1.2	1.6
		9	1.7	1.2	1.2	1.4
	-	. 2 Mean	1.5	1.3	1.3	1.6
	Over	all Mean	1.5	1.4	1.5	1.6
		1	1.3	1.2	1.6	1.6
	1 ^b	9	1.6	1.4	1.7	1.5
		12	1.4	1.4	1.4	1.6
	Exp	. 1 Mean	1.4	1.3	1.6	1.6
L. reuteri WB-76		12	1.3	1.3	1.7	1.5
	2 ^c	13	1.5	1.2	1.8	1.5
		14	1.4	1.4	1.6	1.8
		. 2 Mean	1.4	1.3	1.7	1.6
		all Mean	1.4	1.3	1.6	1.6

Table C28. Study 2 weekly albumin:globulin ratio levels

^bExperiment 1 were gilts

					L)	
Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	96	74	54	45
	1 ^c	10	95	63	53	49
		13	70	151	85	54
	Exp	. 1 Mean	87	96	64	49
Control		1	76	48	69	50
	2 ^d	3	54	43	84	49
		15	95	61	74	64
	Exp	. 2 Mean	75	51	76	54
	Over	all Mean	81	73	70	52
					47	
		2	79	79	47	43
	1 ^c	8	60	75	59	47
		14	62	63	74	63
	Exp	. 1 Mean	67	72	60	51
L. reuteri DS-36	4	2	41	52	51	43
	2 ^d	4	536	42	54	48
		10	49	50	49	48
		. 2 Mean	209	48	51	46
	Over	all Mean	138	60	56	49
		4	66	72	69	51
	1 ^c	6	77	101	82	65
		11	72	61	48	47
	Evo	. 1 Mean	72	78	66	54
L. reuteri DS-37	Lvb	5	60	59	 54	<u> </u>
L. Teulen DS-ST	2 ^d	6	70	59 65	114	50 50
	2	11	66	51	75	46
	Evo	. 2 Mean	65	58	81	40
		all Mean	69		74	52
	Over		09	68	74	52
		3	188	72	58	50
	1 ^c	7	54	83	97	45
		15	86	80	75	57
	Exp	. 1 Mean	109	78	77	51
L. reuteri WB-72		7	54	45	45	43
	2 ^d	8	68	45	47	45
		9	87	54	60	50
	Exp	. 2 Mean	70	48	51	46
		all Mean	90	63	64	48
		1	62	102	70	67
	1 ^c	9	58	85	64	45
	<u> </u>	12	77	68	56	53
	Exp	. 1 Mean	66	85	63	55
L. reuteri WB-76	L .	12	48	49	59	53
	2 ^d	13	101	48	81	100
		14	65	52	67	55
		. 2 Mean	71	50	69	69
		all Mean	69	67	66	62

Table C29. Study 2 weekly AST^a levels (U/L)

^aAST - aspartate aminotransferase

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

	bie 030. 3	-			L)	
Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	55	41	42	39
	1 ^c	10	80	65	61	61
		13	68	51	61	56
	Exp	. 1 Mean	68	52	55	52
Control		1	51	41	53	46
	2 ^d	3	48	45	53	44
		15	67	52	64	69
		. 2 Mean	55	46	57	53
	Over	rall Mean	62	49	56	53
	1	2	53	69	61	47
	1 ^c	2	53 53	65	52	47 59
	I	0 14	43	54	52 55	59 56
	Evo	. 1 Mean	50	63	56	54
L. reuteri DS-36		2	39	48	52	43
	2 ^d	4	39 83	40 47	52 50	43 59
	<u> </u>	4 10	45	33	39	46
	Evo	. 2 Mean	56	43	47	49
		rall Mean	53	53	52	52
	0.6		55	55	52	52
		4	65	60	52	56
	1 ^c	6	80	59	73	74
		11	57	64	54	62
	Exp	. 1 Mean	67	61	60	64
L. reuteri DS-37		5	44	50	77	75
	2 ^d	6	56	73	68	60
		11	45	60	57	58
	Exp	. 2 Mean	48	61	67	64
	Over	rall Mean	58	61	64	64
	1	3	59	56	49	48
	1 ^c	3 7	59 54	50 67	49 60	40 66
		7 15	54 71	67 52	60 61	70
	Evo	. 1 Mean	61	52 58	57	61
L. reuteri WB-72		7	53	46	50	60
L. TOULON WD-12	2 ^d	8	58	40 51	50 51	48
	<u> </u>	9	61	46	53	40
	Fxn	. 2 Mean	57	48	51	52
		rall Mean	59	53	54	57
		1	50	46	56	63
	1 ^c	9	51	49	44	39
		12	76	56	49	62
	Exp	. 1 Mean	59	50	50	55
L. reuteri WB-76		12	35	38	56	47
	2 ^d	13	66	49	72	52
		4.4	50	54	66	63
		14	59			
		. 2 Mean rall Mean	59 53	47	65	54 54

Table C30. Study 2 weekly ALT^a levels (U/L)

^aALT - alanine aminotransferase

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	417	342	218	273
	1 ^c	10	299	237	209	219
		13	343	264	223	239
	Exp	. 1 Mean	353	281	217	244
Control	F	1	237	242	222	217
	2 ^d	3	462	230	216	178
	-	15	295	155	185	159
	Exp	. 2 Mean	331	209	208	185
		all Mean	342	245	212	214
			070	447	202	007
		2	379	417	303	267
	1 ^c	8	218	205	140	177
		14	325	257	259	193
	Exp	. 1 Mean	307	293	234	212
L. reuteri DS-36	4	2	344	243	254	236
	2 ^d	4	461	328	244	197
		10	473	274	336	343
		. 2 Mean	426	282	278	259
	Over	all Mean	367	287	256	236
		4	304	294	211	202
	1 ^c	6	352	422	222	243
		11	261	273	158	187
	Exp	. 1 Mean	306	330	100	211
L. reuteri DS-37		5	263	190	249	191
	2 ^d	6	293	228	190	171
	-	11	409	304	241	179
	Fxn	. 2 Mean	322	241	227	180
		all Mean	314	285	212	196
			0.40	057	004	000
		3	340	357	231	283
	1 ^c	7	252	239	178	189
		15	386	274	212	235
	Exp	. 1 Mean	326	290	207	236
L. reuteri WB-72	- d	7	296	202	164	121
	2 ^d	8	263	169	170	146
		9	303	138	124	146
		. 2 Mean	287	170	153	138
	Over	all Mean	307	230	180	187
		1	402	298	244	286
	1 ^c	9	244	163	132	142
		12	292	256	200	219
	Exp	. 1 Mean	313	239	192	216
L. reuteri WB-76		12	214	213	253	172
	2 ^d	13	615	203	327	236
		14	324	236	210	186
	Exp	. 2 Mean	384	217	263	198
		all Mean	349	228	228	207
			-	-	-	-

Table C31. Study 2 weekly ALKPhos^a levels (U/L)

^aALKPhos - alkaline phosphatase

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0 ^b	Week 1 ^b	Week 2 ^b	Week 3 ^b
		5	0.2	0.1	0.3	0.1
	1 ^c	10	0.2	0.1	0.2	0.2
		13	0.2	0.2	0.1	0.1
	Exp	. 1 Mean	0.2	0.1	0.2	0.1
Control		1	0.1	0.1	0.3	0.1
	2 ^d	3	0.2	0.1	0.2	0.1
		15	0.2	0.1	0.1	0.1
		. 2 Mean	0.2	0.1	0.2	0.1
	Over	rall Mean	0.2	0.1	0.2	0.1
		2	0.3	0.2	0.1	0.2
	1 ^c	8	0.1	0.1	0.1	0.1
		14	0.2	0.2	0.1	0.6
	Exp	. 1 Mean	0.2	0.2	0.1	0.3
L. reuteri DS-36		2	0.1	0.1	0.1	0.1
	2 ^d	4	1.3	0.1	0.1	0.1
		10	0.2	0.1	0.1	0.2
	Exp	. 2 Mean	0.5	0.1	0.1	0.1
		rall Mean	0.4	0.1	0.1	0.2
						<u> </u>
		4	0.1	0.2	0.1	0.1
	1 ^c	6	0.1	0.1	0.2	0.1
		11	0.2	0.1	0.1	0.1
	Exp	. 1 Mean	0.1	0.1	0.1	0.1
L. reuteri DS-37	2 ^d	5	0.2	0.1	0.2	0.3
		6	0.2	0.2	0.1	0.1
		11	0.2	0.1	0.1	0.1
		. 2 Mean	0.2	0.1	0.1	0.2
	Over	rall Mean	0.2	0.1	0.1	0.1
		3	0.4	0.2	0.1	0.1
	1 ^c	7	0.1	0.1	0.1	0.1
		15	0.2	0.2	0.2	0.1
	Exp	. 1 Mean	0.2	0.2	0.1	0.1
L. reuteri WB-72		7	0.4	0.2	0.1	0.1
	2 ^d	8	0.2	0.1	0.1	0.1
		9	0.1	0.1	0.1	0.1
		. 2 Mean	0.2	0.1	0.1	0.1
	Over	rall Mean	0.2	0.2	0.1	0.1
		1	0.2	0.1	0.1	0.3
	1 ^c	9	0.2	0.1	0.1	0.3
		9 12	0.2	0.1	0.2	0.2
	Evo	. 1 Mean	0.1	0.1	0.1	0.1
l routori MR_76	L xp	. 1 iviean 12	0.2	0.1	0.1	0.2
L. reuteri WB-76	2 ^d	12	0.1	0.2	0.2	0.4
		10	0.2	0.1		
	-	1/	02	01	01	01
		14 . 2 Mean	0.2	0.1	0.1	0.1

Table C32. Study 2 weekly bili, total levels (mg/dL)

^bAll 0.1 individual pig values were equal to <0.1

^cExperiment 1 were gilts

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	54	64	74	88
	1 ^b	10	58	62	75	84
		13	63	65	69	85
	Exp	. 1 Mean	58	64	73	86
Control		1	53	56	73	77
	2 ^c	3	68	92	87	90
		15	76	74	92	70
		. 2 Mean	66	74	84	79
	Ove	rall Mean	62	69	78	82
		2	50 ^d	50 ^d	87	84
	1 ^b	8	67	63	81	84
		14	78	65	89	89
	Exp	. 1 Mean	65	59	86	86
L. reuteri DS-36		2	71	89	80	95
	2 ^c	4	50 ^d	56	67	57
		10	76	84	71	81
	Exc	. 2 Mean	66	76	73	78
		rall Mean	65	68	79	82
			Fod	= od		
		4	50 ^d	50 ^d	60	73
	1 ^b	6	50	50 ^d	52	50
		11	50 ^d	60	55	64
	Exp	. 1 Mean	50	53	56	62
L. reuteri DS-37	2 ^c	5	52	53	89	85
		6	72	94	70	84
		11	55	84	75	72
	Exp	. 2 Mean	60	77	78	80
	Ove	rall Mean	55	65	67	71
		3	59	62	76	90
	1 ^b	7	63	59	81	84
		15	87	73	77	87
	Exp	. 1 Mean	70	65	78	87
L. reuteri WB-72		7	59	80	68	68
	2 ^c	8	61	50 ^d	76	71
		9	54	50 ^d	81	70
	Fyr	. 2 Mean	58	60	75	70
		rall Mean	64	62	77	78
		1	78	65	80	90
	1 ^b	9	78	65 73	80 73	90 86
		9 12	78 53	63	73 77	00 78
	Evr	. 1 Mean	70	67	77	85
	LX4	12	70	93	103	97
L. reuteri WB-76	-					
	2 ^c	13	50 ^d	59	91	68
		14	50 ^d	50 ^d	50 ^d	50 ^d
		. 2 Mean	57	67	81	72
	Ove	rall Mean	63	67	79	78

Table C33. Study 2 weekly cholesterol levels (mg/dL)

^bExperiment 1 were gilts

^cExperiment 2 were barrows

^bValues were equal to <50

Treatment ^a	Exp. ^a	Pig ^a	Day 0	Week 1	Week 2	Week 3
		5	27	11	28	31
	1 ^b	10	27	30	31	42
		13	30	32	44	39
	Exp	. 1 Mean	28	24	34	37
Control		1	59	43	45	50
	2 ^c	3	34	51	73	41
		15	70	48	50	62
	Exp	. 2 Mean	54	47	56	51
	Over	all Mean	41	36	45	44
		2	43	44	79	35
	1 ^b	8	61	17	18	18
		14	34	43	38	43
	Evn	. 1 Mean	46	35	45	32
L. reuteri DS-36	Ľ∧ρ	2	51	44	40	51
reaterr D0-00	2 ^c	4	35	35	40 29	38
		4 10	35 41	31	29 32	27
	Evo	. 2 Mean	41	37	34	39
		all Mean	42		39	
	Over		44	36	39	35
		4	26	18	41	36
	1 ^b	6	41	18	23	29
		11	32	30	38	37
	Exp	. 1 Mean	33	22	34	34
L. reuteri DS-37		5	41	29	42	48
	2 ^c	6	44	49	35	32
	-	11	91	39	40	47
	Exp	. 2 Mean	59	39	39	42
		all Mean	46	31	37	38
	_					
	, h	3	27	25	32	29
	1 ^b	7	27	22	26	24
	<u> </u>	15	48	35	32	45
	Exp	. 1 Mean	34	27	30	33
. reuteri WB-72	-0	7	30	42	27	36
	2 ^c	8	39	37	31	37
	<u> </u>	9	33	25	33	37
		. 2 Mean all Mean	34 34	35	30	37
	Over		34	31	30	35
		1	50	31	48	39
	1 ^b	9	25	29	51	46
	1	12	32	22	22	20
	Evo	. 1 Mean	36	27	40	35
L. reuteri WB-76		12	38	48	70	69
L. reuteri WB-76	2°		38 27	48 24	70 48	69 33
L. reuteri WB-76		12			48	
L. reuteri WB-76	2 ^c	12 13	27	24		33

Table C34. Study 2 weekly triglyceride levels (mg/dL)

^aDescription of treatments, experiments, and pigs - see Table C2

^bExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
		5	24	27	26	32
	1 ^c	10	22	25	31	28
		13	28	21	23	27
	Exp	. 1 Mean	25	24	27	29
Control		1	22	24	26	30
	2 ^d	3	27	38	28	33
		15	31	31	37	31
	Exp	. 2 Mean	27	31	30	31
	Over	rall Mean	26	28	29	30
		2	17	14	27	26
	1 ^c	8	28	27	31	30
		14	35	28	36	31
	Exp	. 1 Mean	27	23	31	29
L. reuteri DS-36		2	29	36	32	35
	2 ^d	4	11	25	26	24
	2	10	31	31	20	30
	Exp	. 2 Mean	24	31	29	30
		rall Mean	25	27	30	29
	000		25	21		23
		4	21	16	23	26
	1 ^c	6	21	14	16	17
		11	21	27	23	26
	Exp	. 1 Mean	21	19	21	23
L. reuteri DS-37		5	22	23	41	42
	2 ^d	6	31	39	25	31
		11	24	34	26	26
	Exp	. 2 Mean	26	32	31	33
	Over	rall Mean	23	26	26	28
		3	26	24	27	32
	1 ^c	7	25	22	25	24
		, 15	31	26	26	27
	Fxn	. 1 Mean	27	20	26	28
L. reuteri WB-72	p	7	25	31	29	27
	2 ^d	8	24	16	26	27
	-	9	22	16	28	27
	Exp	. 2 Mean	24	21	28	27
		rall Mean	26	23	27	27
						~~
	<u>^</u>	1	28	21	26	26
	1 ^c	9	34	26	30	30
		12	21	23	28	25
	Exp	. 1 Mean	28	23	28	27
L. reuteri WB-76	4	12	28	38	36	37
	2 ^d	13	16	22	31	24
		14	17	23	19	19
		. 2 Mean	20	28	29	27
		rall Mean	24	26	28	27

Table C35. Study 2 weekly HDL^a levels (mg/dL)

^aHDL - high-density lipoprotein

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0		Week 2	Week 3
		5	5	2	6	6
	1 ^c	10	5	6	6	8
		13	6	6	9	8
	Exp	. 1 Mean	5	5	7	7
Control		1	12	9	9	10
	2 ^d	3	7	10	15	8
		15	14	10	10	12
	Exp	. 2 Mean	11	10	11	10
	Over	all Mean	8	7	9	9
		2	9	9	16	7
	1 ^c	8	12	3	4	4
	1	14	7	9	8	9
	Exp	. 1 Mean	9	7	9	7
L. reuteri DS-36	Слр	2	10	9	8	10
E. Touton DO 00	2 ^d	4	7	7	6	8
	2	10	8	6	6	5
	Exp	. 2 Mean	8	7	7	8
		all Mean	9	7	8	7
	0101		5	1	0	1
		4	5	4	8	7
	1 ^c	6	8	4	5	6
		11	6	6	8	7
	Exp	. 1 Mean	6	5	7	7
L. reuteri DS-37		5	8	6	8	10
	2 ^d	6	9	10	7	6
		11	18	8	8	9
		. 2 Mean	12	8	8	8
	Over	all Mean	9	6	7	8
		3	5	5	6	6
	1 ^c	7	5	4	5	5
	-	15	8	7	6	9
	Exp	. 1 Mean	6	5	6	7
L. reuteri WB-72		7	6	8	5	7
			0	0	0	
	2 ^d	-		8 7		7
	2 ^d	8 9	8 7		6 7	
		8 9	8	7	6	7
	 Exp	8	8 7	7 5	6 7	7 7
	 Exp	8 9 . 2 Mean rall Mean	8 7 7 7	7 5 7 6	6 7 6 6	7 7 7 7
	Exp Over	8 9 . 2 Mean all Mean	8 7 7 7 10	7 5 7 6 6	6 7 6 6 10	7 7 7 7 8
	 Exp	8 9 . 2 Mean all Mean 1 9	8 7 7 7 10 5	7 5 7 6 6 6 6	6 7 6 6 10 10	7 7 7 7 8 9
	Exp Over	8 9 . 2 Mean rall Mean 1 9 12	8 7 7 7 10 5 6	7 5 7 6 6 6 6 4	6 7 6 6 10 10 4	7 7 7 7 8 9 4
	Exp Over	8 9 . 2 Mean all Mean 1 9 12 . 1 Mean	8 7 7 7 10 5 6 7	7 5 7 6 6 6 6 4 5	6 7 6 10 10 4 8	7 7 7 7 8 9 4 7
L. reuteri WB-76	1 ^c Exp	8 9 . 2 Mean all Mean 1 9 12 . 1 Mean 12	8 7 7 7 10 5 6 7 8	7 5 7 6 6 6 4 5 10	6 7 6 10 10 4 8 14	7 7 7 7 8 9 4 7 14
	Exp Over	8 9 . 2 Mean 1 Mean 12 . 1 Mean 12 13	8 7 7 7 10 5 6 7 8 5	7 5 7 6 6 4 5 10 5	6 7 6 10 10 4 8 14 10	7 7 7 7 8 9 4 7 14 7
	1 ^c Exp 2 ^d	8 9 . 2 Mean all Mean 1 9 12 . 1 Mean 12	8 7 7 7 10 5 6 7 8	7 5 7 6 6 6 4 5 10	6 7 6 10 10 4 8 14	7 7 7 7 8 9 4 7 14

Table C36. Study 2 weekly VLDL^a levels (mg/dL)

^aVLDL - very low-density lipoprotein

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Day 0	Week 1	Week 2	Week 3
ricamon		5	0.274	0.331	0.397	0.257
	1 ^c	10	0.330	0.267	0.259	0.265
		13	0.253	0.282	0.331	0.205
	Exp	1 Mean	0.285	0.293	0.329	0.305
Control	<u></u>	1	0.265	0.361	0.329	0.275
Control	2 ^d	3	0.231	0.368	0.550	0.269
	2	15	0.231	0.368	0.372	0.209
	Evo	2 Mean	0.270	0.399	0.372	0.426
		all Mean	0.278	0.346	0.385	0.351
	Over		0.270	0.540	0.303	0.551
		2	0.240	0.303	0.225	0.306
	1 ^c	8	0.253	0.337	0.392	0.350
		14	0.180	0.255	0.340	0.249
	Exp.	1 Mean	0.224	0.298	0.319	0.302
L. reuteri DS-36		2	0.263	0.777	0.922	0.389
	2 ^d	4	0.733	0.556	0.718	0.368
		10	0.344	0.332	0.519	0.490
	Exp.	2 Mean	0.447	0.555	0.720	0.416
		all Mean	0.335	0.426	0.519	0.359
	-					
		4	0.276	0.283	0.353	0.245
	1 ^c	6	0.525	0.270	0.266	0.275
		11	0.202	0.251	0.411	0.349
	Exp.	. 1 Mean	0.334	0.268	0.344	0.290
L. reuteri DS-37		5	0.496	0.619	0.811	0.273
	2 ^d	6	0.505	0.554	0.861	0.705
		11	0.516	0.745	0.698	0.400
	Exp.	2 Mean	0.506	0.639	0.790	0.459
	Over	all Mean	0.420	0.453	0.567	0.374
	-		0.000	0.000	0.000	0.040
	16	3	0.226	0.303	0.268	0.340
	1 ^c	7	0.259	0.244	0.351	0.253
		15	0.254	0.165	0.398	0.275
	Exp.	1 Mean	0.246	0.237	0.339	0.289
L. reuteri WB-72	cd	7	0.525	0.520	0.892	0.624
	2 ^d	8	0.175	0.213	0.594	0.267
		9	0.310	0.653	0.959	0.264
		2 Mean	0.337	0.462	0.815	0.385
	Over	all Mean	0.291	0.350	0.577	0.337
		1	0.333	0.355	0.266	0.424
	1 ^c	9	0.393	0.461	0.343	0.371
		9 12	0.393	0.401	0.343	0.371
	Evo	1 Mean				
	Exp.		0.326	0.370	0.306	0.355
L. reusteri WB-76	cd	12	0.314	0.499	0.781	0.359
	2 ^d	13	0.466	0.734	0.965	0.301
		14	0.226	0.543	0.494	0.554
		2 Mean	0.336	0.592	0.747	0.405
	Over	all Mean	0.331	0.481	0.526	0.380

Table C37. Study 2 weekly IgA^a levels (mg/mL)

^algA - immunoglobulin A

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b			-	Meaks
Treatment	Exp.	U	Day 0	Week 1	Week 2	Week 3
	1 ^c	5	4.714	5.255	9.217	11.400
	1*	10	3.983	4.395	7.284	5.711
		13	4.656	3.302	6.603	8.725
	Exp.	1 Mean	4.451	4.317	7.701	8.612
Control	-d	1	4.003	3.446	2.879	5.412
	2 ^d	3	3.875	4.724	5.258	7.629
		15	3.109	3.358	3.058	4.619
		2 Mean	3.662	3.843	3.732	5.887
	Over	all Mean	4.057	4.080	5.717	7.249
		2	2.228	3.510	2.734	7.230
	1 ^c	8	3.711	4.391	8.733	7.151
		14	5.402	3.983	5.607	6.105
	Exp.	1 Mean	3.780	3.961	5.691	6.829
L. reuteri DS-36		2	4.266	4.764	3.885	8.239
2. 1001011 20 00	2 ^d	4	3.094	2.594	1.928	2.855
	2	10	9.864	3.518	3.632	4.275
	Exp	2 Mean	5.741	3.625	3.148	5.123
		all Mean	4.761	3.793	4.420	5.976
	0,00		4.701	5.795	4.420	5.970
		4	3.187	1.937	4.053	14.350
	1 ^c	6	3.341	4.058	9.454	10.440
		11	2.890	4.546	8.365	6.990
	Exp.	1 Mean	3.139	3.514	7.291	10.593
L. reuteri DS-37		5	5.700	4.829	4.982	5.754
	2 ^d	6	3.566	4.128	2.826	6.289
		11	6.325	3.040	4.068	4.879
	Exp.	2 Mean	5.197	3.999	3.959	5.641
	Over	all Mean	4.168	3.756	5.625	8.117
	1	2	0.000	4 0 0 7	5 500	0.000
	1 ^c	3 7	6.020	4.887	5.529	9.288
	1-		2.741	1.710	4.170	5.221
		15 1 Maan	3.994	2.095	5.927	8.523
L routori MD 70	⊏xp.	1 Mean	4.252	2.897	5.209	7.677
L. reuteri WB-72	2 ^d	7	4.261	3.399	3.566	6.921
	2	8	4.250	3.255	5.210	5.905
	-	9 2 Maan	2.796	2.593	3.539	4.614
		2 Mean	3.769	3.082	4.105	5.813
	Over	all Mean	4.010	2.990	4.657	6.745
		1	3.294	3.461	3.672	4.790
	1 ^c	9	5.447	4.742	8.704	7.474
		12	2.532	4.676	5.868	8.149
	Exp	1 Mean	3.758	4.293	6.081	6.804
L. reusteri WB-76	<u></u> ,	12	3.705	1.868	3.992	6.076
L. IGUSIGIT VVD-TO	2 ^d	12	4.974	7.241	3.842	4.930
	2 ×					
		14 2 Maan	2.172	2.187	4.311	4.271
	Exp.	2 Mean	3.617	3.765	4.048	5.092
	<u>^</u>	all Mean	3.687	4.029	5.065	5.948

Table C38. Study 2 weekly IgG^a levels (mg/mL)

^algG - immunoglobulin G

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b			,	Week 2
Trealment	⊑xp.	<u>- Pig</u> 5	Day 0	Week 1 1.843	Week 2	Week 3
	1 ^c	-	1.040		2.009	1.639
	1 1	10	1.569	1.936	1.898	2.067
	Evo	13 . 1 Mean	1.539	2.779	2.562	3.407
Control	Exp.		1.383	2.186	2.156	2.371
Control	2 ^d	1	2.887	0.904	0.795	1.124
	2	3	2.522	1.343	1.697	1.818
	Evo	15 2 Maan	1.137	1.523	1.224	1.222
		2 Mean	2.182	1.257	1.239	1.388
	Over	all Mean	1.782	1.721	1.697	1.880
		2	1.584	2.342	1.971	1.586
	1 ^c	8	1.021	1.166	1.163	1.147
	· ·	14	1.306	1.418	1.395	1.621
	Exp.	1 Mean	1.304	1.642	1.510	1.451
L. reuteri DS-36		2	2.357	1.654	2.520	1.665
2. /04/01/ 20 00	2 ^d	4	2.014	1.908	1.901	1.531
	-	10	1.694	0.966	1.127	0.305
	Exp.	2 Mean	2.022	1.509	1.849	1.167
		all Mean	1.663	1.576	1.680	1.309
	0.0.	an mean	1.000	1.070	1.000	1.000
		4	1.727	1.246	1.486	2.479
	1 ^c	6	1.864	2.590	2.028	1.993
		11	0.673	1.756	1.855	1.865
	Exp.	. 1 Mean	1.421	1.864	1.790	2.112
L. reuteri DS-37		5	1.192	1.131	2.025	1.250
	2 ^d	6	2.436	3.073	2.797	3.025
		11	2.122	1.835	2.985	1.289
	Exp.	. 2 Mean	1.917	2.013	2.602	1.855
	Over	all Mean	1.669	1.939	2.196	1.984
	_					
		3	0.957	1.614	2.686	2.559
	1 ^c	7	1.041	1.246	1.313	1.700
		15	1.735	2.697	2.763	1.883
	Exp.	1 Mean	1.244	1.852	2.254	2.047
L. reuteri WB-72	_ d	7	1.496	1.635	1.581	1.633
	2 ^d	8	1.159	1.111	2.910	0.833
		9	1.166	1.922	2.004	0.871
		2 Mean	1.274	1.556	2.165	1.112
	Over	all Mean	1.259	1.704	2.210	1.580
		1	2.431	2.228	3.297	2.138
	1 ^c	9	0.941	1.709	1.396	1.215
		9 12	1.118	2.624	2.220	2.636
	Evn	. 1 Mean				
L rougtori MD 70			1.497	2.187	2.304	1.996
L. reusteri WB-76	2 ^d	12	1.765	0.836	1.510	1.247
	2	13	1.841	2.265	2.743	2.332
	<u> </u>	14	1.005	1.314	1.552	1.209
		2 Mean	1.537	1.472	1.935	1.596
	Over	all Mean	1.517	1.829	2.120	1.796

Table C39. Study 2 weekly IgM^a levels (mg/mL)

^algM - immunoglobulin M

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b Exp. ^b Pig ^b Fi ^c 5 0.56 1 ^d 10 0.82 13 0.64 Exp. 1 Mean 0.68 1 0.74 2 ^e 3 0.55 15 0.49 Exp. 2 Mean 0.60 Overall Mean 0.64 0.49 Exp. 2 Mean 0.60 Overall Mean 0.64 0.49 0.64 0.60 L. reuteri DS-36 2 0.89 2 ^e 4 0.45 10 0.38 Exp. 2 Mean 0.67 0.38 0.60 L. reuteri DS-36 2 0.89 2 ^e 4 0.45 10 0.38 Exp. 2 Mean 0.67 0.60 L. reuteri DS-37 5 0.47 1 0.36 Exp. 1 Mean 0.65 5 0.47 1 0.85 Exp. 1 Mean 0.65 5 0.47 1 0.85 Exp. 2 Mean 0.60 0verall Mean 0.62 7 </th <th colspan="11">intake (kg)</th>	intake (kg)										
Control $\begin{array}{c} 1^{d} & 10 & 0.82 \\ 13 & 0.64 \\ \hline 1 & 0.74 \\ 2^{e} & 3 & 0.55 \\ 15 & 0.49 \\ \hline Exp. 2 Mean & 0.60 \\ \hline Overall Mean & 0.64 \\ \hline \\ \\ \hline \\ L. reuteri DS-36 \\ \hline \\ L. reuteri DS-36 \\ \hline \\ \\ \\ L. reuteri DS-37 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Treatment ^b	Exp. ^b	Pig ^b	FI ^c							
Control $ \begin{array}{c} 13 & 0.64 \\ Exp. 1 Mean & 0.68 \\ 1 & 0.74 \\ 2^{e} & 3 & 0.55 \\ 15 & 0.49 \\ Exp. 2 Mean & 0.60 \\ \hline \hline Overall Mean & 0.64 \\ \hline \\ L. reuteri DS-36 \\ L. reuteri DS-36 \\ L. reuteri DS-37 \\ L. reuteri DS-37 \\ L. reuteri WB-72 \\ L. reuteri WB-72 \\ L. reuteri WB-76 \\ L. reuteri WB-76 \\ \begin{array}{c} 13 & 0.64 \\ Exp. 1 Mean & 0.67 \\ \hline \hline 1^{d} & 8 & 0.86 \\ 14 & 0.80 \\ \hline Exp. 1 Mean & 0.77 \\ 2 & 0.89 \\ 2^{e} & 4 & 0.45 \\ 10 & 0.38 \\ \hline Exp. 2 Mean & 0.67 \\ \hline \hline 0 & 0 \\ \hline 0 & 0 \\ \hline 1^{d} & 6 & 0.86 \\ 11 & 0.36 \\ \hline Exp. 2 Mean & 0.67 \\ \hline 0 \\ \hline 0 \\ \hline 1^{d} & 6 \\ 1^{d} \\ 7 \\ 0.46 \\ 15 \\ 1^{d} \\ 7 \\ 9 \\ 0.87 \\ \hline \hline 1^{d} \\ 9 \\ \hline 1^{d} \\ 9 \\ \hline 1^{d} \\ 1^{d} \\ 9 \\ \hline 1^{d} \\ 9 \\ \hline 1^{d} \\ 1^{d} \\ 1^{d} \\ 9 \\ \hline 1^{d} \\ 1^$			5	0.56							
Control $ \begin{array}{c} Exp. 1 Mean 0.68 \\ 1 0.74 \\ 2^{e} 3 0.55 \\ 15 0.49 \\ Exp. 2 Mean 0.60 \\ Overall Mean 0.64 \\ \hline \\ L. reuteri DS-36 \\ L. reuteri DS-36 \\ L. reuteri DS-36 \\ L. reuteri DS-36 \\ L. reuteri DS-37 \\ L. reuteri US-37 \\ L. reuteri US-72 \\ L. reuteri US-72 \\ L. reuteri US-72 \\ L. reuteri US-72 \\ L. reuteri US-74 \\ L. reuteri US-76 \\ L. reute$		1 ^d	10	0.82							
Control $ \begin{array}{c} $			13	0.64							
$L. reuteri DS-36 = \begin{bmatrix} 2^e & 3 & 0.55 \\ 15 & 0.49 \\ Exp. 2 Mean & 0.60 \\ \hline Overall Mean & 0.64 \\ \hline 0 \\ \hline 1^d & 8 & 0.86 \\ 14 & 0.80 \\ \hline 14 & 0.80 \\ \hline 2 & 0.89 \\ 2^e & 4 & 0.45 \\ 10 & 0.38 \\ \hline 2 \\ e^e & 4 & 0.45 \\ 10 & 0.38 \\ \hline Exp. 1 Mean & 0.67 \\ \hline 0 $		Exp.	. 1 Mean	0.68							
$L. reuteri DS-36 = \begin{bmatrix} 15 & 0.49 \\ Exp. 2 Mean & 0.60 \\ \hline Overall Mean & 0.64 \\ \hline \\ 1^d & 8 & 0.86 \\ 14 & 0.80 \\ \hline \\ 14 & 0.80 \\ \hline \\ Exp. 1 Mean & 0.77 \\ 2 & 0.89 \\ 2^e & 4 & 0.45 \\ 10 & 0.38 \\ \hline \\ Exp. 2 Mean & 0.57 \\ \hline \\ Overall Mean & 0.67 \\ \hline \\ \hline \\ Verall Mean & 0.65 \\ \hline \\ 1^d & 6 & 0.86 \\ 11 & 0.36 \\ \hline \\ Exp. 1 Mean & 0.65 \\ \hline \\ 2^e & 6 & 0.47 \\ 11 & 0.85 \\ \hline \\ Exp. 2 Mean & 0.65 \\ \hline \\ 0 Verall Mean & 0.62 \\ \hline \\ \hline \\ L. reuteri WB-72 \\ \hline \\ L. reuteri WB-72 \\ \hline \\ L. reuteri WB-76 \\ \hline \\ L. reuteri WB-76 \\ \hline \\ L. reuteri WB-76 \\ \hline \\ \end{bmatrix} $	Control		1	0.74							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 ^e	3	0.55							
Overall Mean 0.64 2 0.67 1 ^d 8 0.86 14 0.80 Exp. 1 Mean 0.77 2 0.89 2^e 4 10 0.38 Exp. 2 Mean 0.57 Overall Mean 0.67 Image: specific stress spec			15	0.49							
L. reuteri DS-36 L. reuteri DS-36 $ \begin{array}{c} 1^{d} & 8 & 0.86 \\ & 14 & 0.80 \\ \hline Exp. 1 Mean & 0.77 \\ 2 & 0.89 \\ 2^{e} & 4 & 0.45 \\ 10 & 0.38 \\ \hline Exp. 2 Mean & 0.57 \\ \hline Overall Mean & 0.67 \\ \hline \end{array} $ L. reuteri DS-37 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri WB-		Exp.	. 2 Mean	0.60							
L. reuteri DS-36 $ \begin{array}{c} 1^{d} & 8 & 0.86 \\ & 14 & 0.80 \\ \hline Exp. 1 Mean & 0.77 \\ 2 & 0.89 \\ 2^{e} & 4 & 0.45 \\ & 10 & 0.38 \\ \hline Exp. 2 Mean & 0.57 \\ \hline \hline \hline \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$		Over	all Mean	0.64							
L. reuteri DS-36 $ \begin{array}{c} 1^{d} & 8 & 0.86 \\ & 14 & 0.80 \\ \hline Exp. 1 Mean & 0.77 \\ 2 & 0.89 \\ 2^{e} & 4 & 0.45 \\ & 10 & 0.38 \\ \hline Exp. 2 Mean & 0.57 \\ \hline \hline \hline \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$											
L. reuteri DS-36 L. reuteri DS-36 $ \begin{array}{c} 14 & 0.80 \\ Exp. 1 Mean & 0.77 \\ 2 & 0.89 \\ 2^{e} & 4 & 0.45 \\ 10 & 0.38 \\ Exp. 2 Mean & 0.57 \\ \hline 0 Verall Mean & 0.67 \\ \hline 0 Verall Mean & 0.67 \\ \hline 1 & 6 & 0.86 \\ 11 & 0.36 \\ \hline Exp. 1 Mean & 0.65 \\ \hline 1 & 0.85 \\ \hline Exp. 2 Mean & 0.60 \\ \hline 0 Verall Mean & 0.62 \\ \hline \hline 1 & 0.85 \\ \hline Exp. 2 Mean & 0.60 \\ \hline 0 Verall Mean & 0.62 \\ \hline \hline 1 & 0.46 \\ 15 & 0.73 \\ \hline \hline L. reuteri WB-72 \\ \hline 1 & 0.81 \\ 1^{d} & 9 & 0.57 \\ \hline \hline 0 Verall Mean & 0.61 \\ \hline \hline L. reuteri WB-76 \\ \hline 1 & 0.81 \\ 1^{d} & 9 & 0.77 \\ \hline 2^{e} & 13 & 0.24 \\ \hline 1 & 0.35 \\ \hline \end{array} $											
L. reuteri DS-36 Exp. 1 Mean 0.77 2 0.89 2e 4 0.45 10 0.38 Exp. 2 Mean 0.57 Overall Mean 0.67 0 verall Mean 0.67 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri WB-76 L. reuteri WB-76 Description L. reuteri WB-76 Description L. reuteri DS-36 Description Exp. 1 Mean 0.66 2e 8 0.27 9 0.87 Exp. 2 Mean 0.61 Description Description L. reuteri WB-76 Description L. reuteri WB-76 Description Descrip		1 ^a									
L. reuteri DS-36 2^{e} 4 0.45 10 0.38 Exp. 2 Mean 0.57 Overall Mean 0.67 10^{d} 6 0.86 11 0.36 Exp. 1 Mean 0.65 L. reuteri DS-37 2^{e} 6 0.47 2^{e} 6 0.47 11 0.85 Exp. 2 Mean 0.60 Overall Mean 0.62 2^{e} 8 0.27 9 0.87 Exp. 2 Mean 0.66 2^{e} 8 0.27 9 0.87 Exp. 2 Mean 0.61 2^{e} 8 0.27 9 0.87 Exp. 2 Mean 0.61 L. reuteri WB-76 1^{d} 9 0.57 12 0.89 Exp. 1 Mean 0.76 1^{2} 0.77 2^{e} 13 0.24 14 0.03 Exp. 2 Mean 0.35											
L. reuteri WB-72 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp.		0.77							
L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri	L. reuteri DS-36										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2 ^e	-								
$L. reuteri DS-37 = \begin{bmatrix} 0 & 0.67 \\ 4 & 0.73 \\ 1^{d} & 6 & 0.86 \\ 11 & 0.36 \\ Exp. 1 Mean & 0.65 \\ 5 & 0.47 \\ 2^{e} & 6 & 0.47 \\ 11 & 0.85 \\ Exp. 2 Mean & 0.60 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 $			10								
L. reuteri DS-37 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Exp.	. 2 Mean	0.57							
$L. reuteri DS-37 = \begin{bmatrix} 1^{d} & 6 & 0.86 \\ 11 & 0.36 \\ Exp. 1 Mean & 0.65 \\ 5 & 0.47 \\ 2^{e} & 6 & 0.47 \\ 11 & 0.85 \\ Exp. 2 Mean & 0.60 \\ \hline 0 Verall Mean & 0.62 \\ \hline 0 Verall Mean & 0.66 \\ \hline 15 & 0.73 \\ Exp. 1 Mean & 0.66 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 12 & 0.89 \\ \hline 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ 14 & 0.03 \\ \hline 2xp. 2 Mean & 0.35 \\ \hline \end{bmatrix}$		Over	all Mean	0.67							
$L. reuteri DS-37 = \begin{bmatrix} 1^{d} & 6 & 0.86 \\ 11 & 0.36 \\ Exp. 1 Mean & 0.65 \\ 5 & 0.47 \\ 2^{e} & 6 & 0.47 \\ 11 & 0.85 \\ Exp. 2 Mean & 0.60 \\ \hline 0 Verall Mean & 0.62 \\ \hline 0 Verall Mean & 0.66 \\ \hline 15 & 0.73 \\ Exp. 1 Mean & 0.66 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 12 & 0.89 \\ \hline 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ 14 & 0.03 \\ \hline 2xp. 2 Mean & 0.35 \\ \hline \end{bmatrix}$											
L. reuteri DS-37 L. reuteri DS-37 $ \begin{array}{c} 11 & 0.36 \\ Exp. 1 Mean & 0.65 \\ 5 & 0.47 \\ 2^{e} & 6 & 0.47 \\ 11 & 0.85 \\ Exp. 2 Mean & 0.60 \\ \hline 0 Verall Mean & 0.62 \\ \hline \\ $											
L. reuteri DS-37 $ \begin{array}{c} Exp. 1 Mean 0.65 \\ 5 0.47 \\ 2^{e} 6 0.47 \\ 11 0.85 \\ Exp. 2 Mean 0.60 \\ Overall Mean 0.62 \\ \hline $ $ \begin{array}{c} 3 0.78 \\ 1^{d} 7 0.46 \\ 15 0.73 \\ \hline Exp. 1 Mean 0.66 \\ \hline 2^{e} 8 0.27 \\ 9 0.87 \\ \hline Exp. 2 Mean 0.57 \\ \hline 0verall Mean 0.61 \\ \hline $ $ \begin{array}{c} 1 & 0.81 \\ 1^{d} 9 0.57 \\ \hline 12 0.89 \\ \hline Exp. 1 Mean 0.76 \\ \hline 12 0.77 \\ 2^{e} 13 0.24 \\ \hline 14 0.03 \\ \hline Exp. 2 Mean 0.35 \\ \hline \end{array} $		1 ^d	6								
L. reuteri DS-37 2^{e} 6 0.47 2^{e} 6 0.47 11 0.85 Exp. 2 Mean 0.60 Overall Mean 0.62											
$L. reuteri WB-72 = \begin{bmatrix} 2^{e} & 6 & 0.47 \\ 11 & 0.85 \\ Exp. 2 Mean & 0.60 \\ \hline 0 Verall Mean & 0.62 \\ \hline 0 Verall Mean & 0.62 \\ \hline 0 Verall Mean & 0.62 \\ \hline 0 Verall Mean & 0.66 \\ 15 & 0.73 \\ \hline 1^{d} & 7 & 0.46 \\ 15 & 0.73 \\ \hline 0 Verall Mean & 0.66 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline 2^{e} & 8 & 0.27 \\ \hline 0 Verall Mean & 0.61 \\ \hline 0 Verall Mean & 0.61 \\ \hline 0 Verall Mean & 0.76 \\ \hline 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ \hline 14 & 0.03 \\ \hline 0 Veral Mean & 0.35 \\ \hline 0 Veral Mean & 0.35 \\ \hline 0 Veral Mean & 0.76 \\ \hline 0 Veral M$		Exp.	. 1 Mean	0.65							
L. reuteri WB-72 L. reuteri WB-76 L. reu	L. reuteri DS-37		5								
Exp. 2 Mean 0.60 Overall Mean 0.62 Id 3 0.78 1 ^d 7 0.46 15 0.73 Exp. 1 Mean 0.66 2 ^e 8 0.27 9 0.87 Exp. 2 Mean 0.57 Overall Mean 0.61 To see 10.57 Dverall Mean 0.61 To see 11 L. reuteri WB-76 L. reuteri WB-76 1 0.87 Exp. 1 Mean 0.76 L. reuteri WB-76		2 ^e		-							
Overall Mean 0.62 3 0.78 1 ^d 7 0.46 15 0.73 Exp. 1 Mean 0.66 2 ^e 8 0.27 9 0.87 Exp. 2 Mean 0.57 Overall Mean 0.61 L. reuteri WB-76 1 0.81 1 ^d 9 0.57 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35				0.85							
$L. reuteri WB-72 = \begin{bmatrix} 3 & 0.78 \\ 1^{d} & 7 & 0.46 \\ 15 & 0.73 \end{bmatrix}$ $Exp. 1 Mean & 0.66 \\ 7 & 0.56 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline Exp. 2 Mean & 0.57 \\ \hline Overall Mean & 0.61 \end{bmatrix}$ $L. reuteri WB-76 = \begin{bmatrix} 1 & 0.81 \\ 1^{d} & 9 & 0.57 \\ 12 & 0.89 \\ \hline Exp. 1 Mean & 0.76 \\ 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ 14 & 0.03 \\ \hline Exp. 2 Mean & 0.35 \end{bmatrix}$		Exp.	. 2 Mean	0.60							
L. reuteri WB-72 $ \begin{array}{c} 1^{d} & 7 & 0.46 \\ & 15 & 0.73 \\ \hline Exp. 1 Mean & 0.66 \\ 7 & 0.56 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline Exp. 2 Mean & 0.57 \\ \hline Overall Mean & 0.61 \\ \hline \\ L. reuteri WB-76 & 1 & 0.81 \\ 1^{d} & 9 & 0.57 \\ \hline 12 & 0.89 \\ \hline Exp. 1 Mean & 0.76 \\ \hline 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ \hline 14 & 0.03 \\ \hline Exp. 2 Mean & 0.35 \\ \hline \end{array} $		Over	0.62								
L. reuteri WB-72 $ \begin{array}{c} 1^{d} & 7 & 0.46 \\ & 15 & 0.73 \\ \hline Exp. 1 Mean & 0.66 \\ 7 & 0.56 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline Exp. 2 Mean & 0.57 \\ \hline Overall Mean & 0.61 \\ \hline \\ L. reuteri WB-76 & 1 & 0.81 \\ 1^{d} & 9 & 0.57 \\ \hline 12 & 0.89 \\ \hline Exp. 1 Mean & 0.76 \\ \hline 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ \hline 14 & 0.03 \\ \hline Exp. 2 Mean & 0.35 \\ \hline \end{array} $		1									
L. reuteri WB-72 $ \begin{array}{c} 15 & 0.73 \\ Exp. 1 Mean & 0.66 \\ 7 & 0.56 \\ 2^{e} & 8 & 0.27 \\ 9 & 0.87 \\ \hline Exp. 2 Mean & 0.57 \\ \hline Overall Mean & 0.61 \\ \hline \\ L. reuteri WB-76 \\ \begin{array}{c} 1 & 0.81 \\ 1^{d} & 9 & 0.57 \\ 12 & 0.89 \\ \hline Exp. 1 Mean & 0.76 \\ 12 & 0.77 \\ 2^{e} & 13 & 0.24 \\ 14 & 0.03 \\ \hline Exp. 2 Mean & 0.35 \\ \hline \end{array} $											
L. reuteri WB-72 Exp. 1 Mean 0.66 7 0.56 2 ^e 8 0.27 9 0.87 Exp. 2 Mean 0.57 Overall Mean 0.61 L. reuteri WB-76 L. reuteri WB-76 Exp. 1 Mean 0.76 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		1 [°]	-	0.46							
L. reuteri WB-72 2^{e} 8 0.27 9 0.87 Exp. 2 Mean 0.57 Overall Mean 0.61 L. reuteri WB-76 L. reuteri WB-76 1^{d} 9 0.57 12 0.89 Exp. 1 Mean 0.76 12 0.77 2^{e} 13 0.24 14 0.03 Exp. 2 Mean 0.35			15	0.73							
2 ^e 8 0.27 9 0.87 Exp. 2 Mean 0.57 Overall Mean 0.61 I 0.87 I 0.87 I 0.87 I 0.81 1 0.81 1 0.81 1 0.89 Exp. 1 Mean 0.76 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		Exp.									
9 0.87 Exp. 2 Mean 0.57 Overall Mean 0.61 1 0.81 1 ^d 9 0.57 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35	L. reuteri WB-72		7								
L. reuteri WB-76 L. reuteri W		2 ^e	8	0.27							
Overall Mean 0.61 1 0.81 1 ^d 9 0.57 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35			9								
L. reuteri WB-76		Exp	2 Mean								
L. reuteri WB-76 1 ^d 9 0.57 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		Over	all Mean	0.61							
L. reuteri WB-76 1 ^d 9 0.57 12 0.89 Exp. 1 Mean 0.76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		1									
L. reuteri WB-76 L. reuteri WB-76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		لہ									
Exp. 1 Mean 0.76 L. reuteri WB-76 12 0.77 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		1 [°]									
L. reuteri WB-76 2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35											
2 ^e 13 0.24 14 0.03 Exp. 2 Mean 0.35		Exp.									
14 0.03 Exp. 2 Mean 0.35	L. reuteri WB-76										
Exp. 2 Mean 0.35		2 ^e									
-											
Overall Mean 0.55				0.35							
		Over	all Mean	0.55							

Table C40. Study 2 overall LPS^a challenge feed intake (kg)

 $^{\rm b}\mbox{Description}$ of treatments, experiments, and pigs - see Table C2

^cFI - feed intake

^dExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 6.0	Hour 12	Hour 24
riodinoni	 	5	17.33	16.51	16.24	16.60
	1 ^c	10	18.51	17.92	17.78	19.23
		13	19.96	19.41	19.37	20.50
	Exp	1 Mean	18.60	17.95	17.80	18.78
Control	<u> </u>	1	16.24	15.97	15.51	17.28
Control	2 ^d	3	19.78	19.69	19.14	19.41
	2	15	15.33	14.97	14.79	16.33
	Exp	2 Mean	17.12	16.87	16.48	17.67
		all Mean	17.86	17.41	17.14	18.23
			11.00			10.20
		2	15.88	15.33	15.06	15.79
	1 ^c	8	19.32	18.82	18.37	19.91
		14	22.41	21.91	22.00	22.72
	Exp.	1 Mean	19.20	18.69	18.48	19.47
L. reuteri DS-36		2	20.50	20.14	19.87	21.27
	2 ^d	4	20.23	20.50	19.32	20.05
		10	13.79	13.52	13.24	13.83
	Exp.	2 Mean	18.17	18.05	17.48	18.39
		all Mean	18.69	18.37	17.98	18.93
		4	18.42	17.92	17.42	18.64
	1 ^c	6	19.78	19.23	19.14	20.50
		11	19.05	18.33	18.28	18.87
	Exp.	1 Mean	19.08	18.49	18.28	19.34
L. reuteri DS-37		5	16.87	16.87	16.87	16.78
	2 ^d	6	14.61	14.70	14.42	14.97
		11	16.24	15.97	15.42	17.06
	Exp.	2 Mean	15.91	15.85	15.57	16.27
	Over	all Mean	17.49	17.17	16.93	17.80
		3	18.60	18.14	17.96	18.78
	1 ^c	7	19.50	19.01	19.28	19.41
		15	16.51	16.06	15.83	17.19
	Exp.	1 Mean	18.20	17.74	17.69	18.46
L. reuteri WB-72		7	19.96	19.87	19.23	19.69
	2 ^d	8	14.61	14.51	13.70	13.88
		9	16.51	16.24	15.79	17.42
		2 Mean	17.02	16.87	16.24	16.99
	Over	all Mean	17.61	17.30	16.96	17.73
	_	1	17.69	17.42	16.96	17.74
	1 ^c	9	17.51	17.15	16.87	17.92
	<u> </u>	12	20.96	20.32	19.82	21.00
	Exp.		18.72	18.29	17.89	18.88
L. reuteri WB-76	بر د	12	17.96	17.69	17.64	19.50
	2 ^d	13	18.51	18.05	17.78	18.51
	<u> </u>	14	17.33	16.78	16.51	16.60
	-	2 Mean	17.93	17.51	<u>17.31</u> 17.60	18.20
		all Mean	18.33	17.90		18.54

Table C41. Study 2 LPS^a challenge swine weights (kg)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b						Hour 24
Treatment	 I	5	39.24	Hour 1.5 40.29	40.96	40.52		39.63
	1 ^c	5 10	39.24 38.79	40.29 39.79	40.90	40.52 39.68	40.18 39.07	39.03 39.46
	1	12	38.79 39.24	39.79 39.46	40.52 39.90	39.08 39.02	39.07 39.63	
	Evo	1 Mean		39.46	40.46	<u>39.02</u> 39.74		<u>39.24</u> 39.44
Control	Exp.	1 101earr	39.09 39.29	40.13	40.40	39.74	<u>39.63</u> 39.24	40.13
Control	2 ^d	3	39.29 39.41	40.13 39.79	40.90 40.46	39.90 40.85	39.24 41.01	40.13
	2	15	39.41 39.18	38.85	40.40	40.85 39.96	39.79	40.08 39.57
	Evo	2 Mean	39.18	39.59	40.64	40.24	40.02	40.13
		all Mean						
	Overa		39.19	39.72	40.55	39.99	39.82	39.78
		2	38.96	39.57	40.24	39.74	39.90	39.85
	1 ^c	8	39.13	39.90	40.02	39.79	39.57	39.41
		14	39.41	40.68	40.96	40.52	39.57	39.29
	Exp.	1 Mean	39.16	40.05	40.40	40.02	39.68	39.52
L. reuteri DS-36		2	39.13	39.57	39.90	39.35	39.90	40.07
	2 ^d	4	39.68	40.07	40.79	40.40	40.79	40.40
		10	39.57	40.29	40.90	40.63	40.52	40.02
	Exp.	2 Mean	39.46	39.98	40.53	40.13	40.40	40.16
	Overa	all Mean	39.31	40.02	40.47	40.07	40.04	39.84
	1	4	00.74	00.50	40.40	00.70	00.74	00.05
	46	4	38.74	39.52	40.18	39.79	39.74	39.35
	1 ^c	6	39.07	39.29	40.52	39.35	39.29	39.41
		11	39.35	40.24	40.46	40.13	40.52	39.46
	Exp.	1 Mean	39.05	39.68	40.39	39.76	39.85	39.41
L. reuteri DS-37	2 ^d	5	39.29	39.79	40.13	40.18	40.02	39.96
	2	6	39.07	39.18	39.85	39.74	39.63	39.96
	- Eve	11 2 Mean	39.41 39.26	39.29 39.42	40.29 40.09	40.46 40.13	39.35 39.66	<u>39.35</u> 39.76
		all Mean						
	Overa		39.16	39.55	40.24	39.94	39.76	39.58
		3	39.18	39.74	40.85	40.57	39.96	39.68
	1 ^c	7	39.13	39.90	40.52	39.85	40.40	39.29
		15	38.96	38.24	40.29	39.68	39.85	39.68
	Exp.	1 Mean	39.09	39.29	40.55	40.03	40.07	39.55
L. reuteri WB-72		7	38.96	39.52	40.63	40.90	40.74	40.40
	2 ^d	8	38.79	40.02	40.52	40.13	39.74	39.57
		9	39.07	39.29	39.57	38.85	39.35	39.57
	Exp.	2 Mean	38.94	39.61	40.24	39.96	39.94	39.85
	Overa	all Mean	39.02	39.45	40.39	40.00	40.01	39.70
	1	4	00.10	00.00	10.05	00.05	00	
		1	39.18	39.68	40.35	39.35	39.57	39.85
	1 ^c	9	39.07	39.63	40.79	39.74	39.68	39.35
		12	39.07	39.29	39.79	40.29	39.63	39.46
	Exp.	1 Mean	39.11	39.53	40.31	39.79	39.63	39.55
L. reuteri WB-76	od	12	38.79	39.96	40.52	39.68	39.52	39.79
	2 ^d	13	39.24	39.96	40.79	40.52	40.07	39.79
	F	14	39.24	39.35	40.40	40.74	40.07	39.85
		2 Mean	39.09	39.76	40.57	40.31	39.89	39.81
	I Overa	all Mean	39.10	39.65	40.44	40.05	39.76	39.68

Table C42. Study 2 hourly LPS^a challenge rectal temperatures ($^{\circ}$ C)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	136	143	143	96	79	122
	1 ^c	10	137	140	141	120	74	118
	· ·	13	108	110	133	103	52	114
	Exp.	1 Mean	127	131	139	106	68	118
Control		1	102	114	99	91	68	116
	2 ^d	3	86	104	92	69	68	104
	2	15	106	117	101	111	98	103
	Exp.	2 Mean	98	112	97	90	78	108
		all Mean	113	121	118	98	73	113
	0.0		110		110	00	10	110
		2	108	114	116	98	63	103
	1 ^c	8	116	126	161	121	93	124
		14	108	106	132	84	57	114
	Exp.	1 Mean	111	115	136	101	71	114
L. reuteri DS-36		2	98	99	96	103	84	113
	2 ^d	4	111	110	113	110	95	108
		10	101	110	98	72	71	124
	Exp.	2 Mean	103	106	102	95	83	115
	Over	all Mean	107	111	119	98	77	114
		4	400	100	1.40	400	<u> </u>	400
	1 ^c	4	132	120	142	122	68	120
	1-	6	127	122	131	94	61	114
	E.m.	11	126	127	136	115	99	99
	Exp.	1 Mean	128	123	136	110	76	111
L. reuteri DS-37	2 ^d	5	99	100	104	102	73	110
	2°	6	102	98	94	102	76	137
	E.m.	11	<u>109</u> 103	104	98	112	87	119
		Exp. 2 Mean Overall Mean		101	99	105	79	122
	Over	all Mean	116	112	118	108	77	117
	1	3	118	141	155	89	76	113
	1 ^c	7	116	108	135	114	73	120
		15	103	96	105	79	57	91
	Exp.	1 Mean	112	115	132	94	69	108
L. reuteri WB-72		7	117	107	114	133	102	115
	2 ^d	8	97	113	94	77	51	153
	-	9	94	101	94	89	62	112
	Exp.	2 Mean	103	107	101	100	72	127
		all Mean	108	111	116	97	70	117
	0.01							
		1	129	122	140	98	72	142
	1 ^c	9	117	123	130	113	81	104
		12	116	125	157	141	103	123
	Exp.	1 Mean	121	123	142	117	85	123
L. reuteri WB-76		12	102	102	98	65	63	113
	2 ^d	13	106	119	100	77	69	103
		14	101	99	94	77	76	78
	Exp.	2 Mean	103	107	97	73	69	98
		all Mean	112	115	120	95	77	111
	0.01		114	110	120	00		

Table C43. Study 2 hourly LPS^a challenge glucose levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	, Hour 12	Hour 24
		5	9	9	9	10	13	12
	1 ^d	10	10	11	11	10	11	15
		13	7	6	7	7	11	12
	Exp.	1 Mean	9	9	9	9	12	13
Control	. 1		6	7	7	9	12	8
	2 ^e	3	6	7	7	11	15	15
		15	10	10	10	8	8	8
	Exp.	2 Mean	7	8	8	9	12	10
	Overa	all Mean	8	8	9	9	12	12
		2	8	8	9	9	12	10
	1 ^d	8	9	9	10	9	8	11
		14	10	10	10	10	14	10
	Exp.	1 Mean	9	9	10	9	11	10
L. reuteri DS-36	_	2	9	9	10	10	10	11
	2 ^e	4	10	10	10	9	7	11
		10	6	7	7	10	16	11
		2 Mean	8	9	9	10	11	11
	Overa	all Mean	9	9	9	10	11	11
		4	9	9	10	9	9	11
	1 ^d	4 6	9 11	9 11		9 10	9 10	11
	1	11	13	14	12 14	10	10	10
	Evn	1 Mean	13	14	14	13	12	10
L. reuteri DS-37	∟лр.	5	6	6	7	7	10	13
L. Teulen DO-ST	2 ^e	6	7	8	8	10	13	11
	2	11	, 16	15	16	15	10	9
	Exp	2 Mean	10	10	10	11	11	11
	Overall Mean		10	11	11	11	11	11
	0.000		10					<u> </u>
		3	9	8	9	8	13	11
	1 ^d	7	10	10	10	10	9	10
	-	15	11	11	11	10	12	14
	Exp.	1 Mean	10	10	10	9	11	12
L. reuteri WB-72		7	10	9	9	10	9	11
	2 ^e	8	7	7	7	8	12	15
		9	7	8	8	8	9	10
	Exp.	2 Mean	8	8	8	9	10	12
	Overa	all Mean	9	9	9	9	11	12
	, d	1	11	11	11	12	17	15
	1 ^d	9	12	12	12	11	11	14
	<u> </u>	12	12	12	12	11	8	12
	Exp.	1 Mean	12	12	12	11	12	14
L. reuteri WB-76	<u>^</u>	12	6	6	6	7	13	15
	2 ^e	13	8	8	8	8	10	10
		14	12	12	12	12	12	8
		2 Mean	9	9	9	9	12	11
	Over:	all Mean	10	10	10	10	12	12

Table C44. Study 2 hourly LPS^a challenge BUN^b levels (mg/dL)

^bBUN - blood urea nitrogen

 $^{\rm c}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	1.0	1.0	1.2	1.0	1.4	1.1
	1 ^c	10	1.0	1.1	1.3	1.2	1.1	1.1
		13	1.0	1.0	1.2	1.1	1.1	1.1
	Exp.	1 Mean	1	1.0	1.2	1.1	1.2	1.1
Control		1	1.1	1.1	1.2	1.2	1.5	1.3
	2 ^d	3	1.3	1.4	1.4	1.7	1.6	1.6
		15	1.3	1.3	1.3	1.4	1.2	1.0
		2 Mean	1.2	1.3	1.3	1.4	1.4	1.3
	Over	all Mean	1.1	1.2	1.3	1.3	1.3	1.2
	T	2	0.9	0.9	1.0	0.9	1.0	0.9
	1 ^c	8	1.1	1.0	1.3	1.0	1.0	1.0
		14	1.0	1.1	1.1	1.1	1.3	1.0
	Exp.	1 Mean	1.0	1.0	1.1	1.0	1.1	1.0
L. reuteri DS-36		2	1.3	1.3	1.3	1.3	1.5	1.3
	2 ^d	4	1.2	1.2	1.2	1.3	1.2	1.4
		10	0.9	0.8	1.0	<u>1.1</u> 1.2	1.3	1.0
		2 Mean	1.1	1.1	1.2		1.3	1.2
	Over	all Mean	1.1	1.1	1.2	1.1	1.2	1.1
		4	1.1	1.1	1.2	1.2	1.2	1.1
	1 ^c	6	0.9	0.9	1.0	0.9	1.0	1.0
		11	1.4	1.2	1.5	1.3	1.3	1.1
	Exp.	1 Mean	1.1	1.1	1.2	1.1	1.2	1.1
L. reuteri DS-37		5	1.3	1.2	1.3	1.4	1.2	1.3
	2 ^d	6	1.4	1.4	1.5	1.6	1.4	1.3
		11	1.2	1.2	1.3	1.5	1.2	1.1
		2 Mean	1.3	1.3	1.4	1.5	1.3	1.2
	Over	all Mean	1.2	1.2	1.3	1.3	1.2	1.2
	1	3	1.1	1.2	1.4	1.2	1.5	1.3
	1°	7	1.0	1.1	1.2	1.1	1.1	1.1
	· ·	15	0.9	0.9	1.0	0.9	1.1	1.0
	Exp.	1 Mean	1.0	1.1	1.2	1.1	1.2	1.1
L. reuteri WB-72		7	1.3	1.3	1.4	1.6	1.3	1.4
	2 ^d	8	0.9	0.9	1.0	1.1	1.3	1.3
		9	0.9	0.9	1.0	1.0	1.1	1.0
	Exp.	2 Mean	1.0	1.0	1.1	1.2	1.2	1.2
	Over	all Mean	1.0	1.1	1.2	1.2	1.2	1.2
	1	1	1.1	1.0	1.2	1.0	1.3	1.1
	1°	9	1.1	1.1	1.2	1.1	1.1	1.1
	'	12	1.2	1.0	1.1	1.1	1.1	1.1
	Exp	1 Mean	1.1	1.0	1.2	1.1	1.2	1.1
L. reuteri WB-76		12	1.1	1.1	1.2	1.2	1.5	1.3
	2 ^d	12	1.1	1.1	1.2	1.2	1.3	1.3
		13	1.1	1.1	1.2	1.2	1.4	1.3
	Evo	2 Mean	1.1	1.1	1.2	1.2	1.2	1.1
		all Mean						
			1.1	1.1	1.2	1.2	1.3	1.2

Table C45. Study 2 hourly LPS^a challenge creatinine levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	9.2	9.4	8.0	9.4	9.9	10.7
	1 ^d	10	10.0	9.7	8.6	8.8	9.3	13.5
	-	13	6.6	6.3	5.7	6.8	9.4	11.2
	Exp.	1 Mean	8.6	8.5	7.4	8.3	9.5	11.8
Control		1	5.8	6.0	6.2	7.1	8.2	6.3
	2 ^e	3	4.9	4.9	5.1	6.7	9.6	9.6
		15	7.8	7.8	7.5	5.9	6.4	7.8
	Exp.	2 Mean	6.2	6.2	6.3	6.6	8.1	7.9
	Overa	all Mean	7.4	7.4	6.9	7.5	8.8	9.9
		2	8.4	9.1	8.7	9.6	12.1	10.7
	1 ^d	8	8.3	9.7	7.6	9.2	8.3	11.0
		14	9.7	8.8	8.8	9.6	10.4	9.5
	Exp.	1 Mean	8.8	9.2	8.4	9.5	10.3	10.4
L. reuteri DS-36		2	7.2	7.0	7.3	7.7	6.3	8.6
	2 ^e	4	8.1	8.2	7.7	6.6	6.2	7.8
		10	7.0	8.2	6.8	9.1	12.7	10.7
		2 Mean	7.4	7.8	7.3	7.8	8.4	9.0
	Over	all Mean	8.1	8.5	7.8	8.6	9.3	9.7
		4	0.0	0.0	0.0	7.0	7.0	0.7
	1 ^d	4	8.0	8.6	8.0	7.3	7.2	9.7
	1	6 11	12.3	13.1	11.6	10.9	10.2	11.6
	Evo		<u>9.7</u> 10.0	<u>11.4</u> 11.0	9.3	<u>10.1</u> 9.4	<u>9.1</u> 8.8	9.8
L. reuteri DS-37	Exp.	5	4.8	5.2	<u>9.6</u> 5.1	<u>9.4</u> 5.2	8.5	10.4
L. Teuleri DS-37	2 ^e	5 6	4.8 5.3	5.2 5.7	5.1 5.7	5.2 6.0	8.5 8.7	9.7 8.1
	2	11	13.2	12.3	12.1	10.2	8.4	8.1
	Evp	2 Mean	7.8	7.7	7.6	7.1	8.5	8.6
		all Mean	8.9	9.4	8.6	8.3	8.7	9.5
	0,00		0.9	9.4	0.0	0.5	0.7	9.0
		3	7.9	6.8	6.3	6.7	8.3	8.9
	1 ^d	7	9.2	9.2	8.3	8.6	8.6	9.2
	-	15	12.2	11.6	11.0	10.4	10.3	13.1
	Exp.	1 Mean	9.8	9.2	8.5	8.6	9.1	10.4
L. reuteri WB-72		7	7.2	7.3	6.6	6.2	7.2	8.0
	2 ^e	8	7.3	7.6	7.4	7.4	9.3	11.1
		9	7.7	8.5	8.1	8.2	8.4	10.3
	Exp.	2 Mean	7.4	7.8	7.4	7.3	8.3	9.8
	Over	all Mean	8.6	8.5	8.0	7.9	8.7	10.1
	- 1							
		1	10.5	11.3	9.9	11.4	12.8	14.1
	1 ^d	9	10.2	10.7	9.9	9.6	9.9	13.1
		12	11.5	12.2	11.0	9.7	7.5	11.2
	Exp.	1 Mean	10.7	11.4	10.3	10.2	10.1	12.8
L. reuteri WB-76		12	5.5	5.1	4.5	5.8	8.9	11.7
	2 ^e	13	7.2	6.9	6.7	6.5	6.9	7.8
		14	10.6	10.8	9.9	9.6	10.4	7.5
	Exp.	2 Mean	7.8	7.6	7.0	7.3	8.7	9.0
	Over	all Mean	9.3	9.5	8.7	8.8	9.4	10.9

Table C46. Study 2 hourly LPS^a challenge BUN^b:creatinine ratio levels

^bBUN - blood urea nitrogen

 $^{\rm c}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

Control	Exp. ^b 1 ^c Exp. 2 ^d	Pig ^b 5 10 13 1 Mean	Hour 0 141 139 141	138 141	Hour 3.0 149 151	141 143	141	Hour 24 141
Control	Exp.	10 13 1 Mean	139	141				141
Control	Exp.	13 1 Mean					138	141
Control		1 Mean	141	140	151	143	139	141
Control			140	140	150	144	139	140
	2 ^d	1	134	137	138	143	139	139
	2	3	140	141	142	164	138	139
		15	135	138	137	136	141	138
	Evn		135	139	139	147	138	130
	Exp. 2 Mean Overall Mean		138	139	145	145	139	140
	Overa		130	139	140	140	139	141
		2	143	140	148	136	140	142
	1 ^c	8	140	138	156	141	139	139
		14	137	139	145	137	138	138
F	Exp.	1 Mean	140	139	150	138	139	140
L. reuteri DS-36		2	137	139	139	145	139	140
	2 ^d	4	139	140	146	148	139	144
		10	135	135	138	137	133	136
	Exp.	2 Mean	137	138	141	143	137	140
F		II Mean	139	139	145	141	138	140
		4	142	141	152	143	141	140
	1 ^c	6	140	140	152	134	139	140
L		11	141	140	152	142	142	144
L	Exp.	1 Mean	141	140	152	140	141	141
L. reuteri DS-37		5	138	137	143	146	139	139
	2 ^d	6	133	136	139	144	132	138
L		11	133	134	134	140	134	137
		2 Mean	135	136	139	143	135	138
	Overa	II Mean	138	138	145	142	138	140
		3	143	145	151	137	140	143
	1 ^c	7	139	140	152	142	138	143
	I	, 15	139	139	144	134	138	140
	Exp	1 Mean	140	139	144	134	139	140
L. reuteri WB-72	<u>- ^p</u> .	7	138	138	139	152	139	141
	2 ^d	8	139	137	138	137	137	137
	~	9	138	140	139	135	139	137
F	Exp	2 Mean	138	138	139	141	137	138
F		Il Mean	139	140	144	140	138	140
I								
		1	146	141	148	139	141	144
	1 ^c	9	142	138	148	139	138	141
		12	141	139	148	147	142	141
	Exp.	1 Mean	143	139	148	142	140	142
L. reuteri WB-76		12	135	137	139	140	138	140
	2 ^d	13	136	139	140	140	136	139
		14	137	137	139	135	139	139
F	Exp.	2 Mean	136	138	139	138	138	139
		II Mean	140	139	144	140	139	141

Table C47. Study 2 hourly LPS^a challenge sodium levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	10.6	9.7	9.4	8.9	7.6	8.2
	1 ^c	10	10.7	9.1	9.6	9.0	7.4	8.9
		13	9.0	8.6	9.2	8.0	8.0	8.9
	Exp.	Exp. 1 Mean		9.1	9.4	8.6	7.7	8.7
Control		1	8.9	8.1	9.1	8.7	7.3	8.5
	2 ^d	3	9.9	9.5	9.3	11.0	8.0	8.7
		15	10.8	10.2	10.6	9.8	8.8	9.9
	Exp.	2 Mean	9.9	9.3	9.7	9.8	8.0	9.0
	Overa	all Mean	10.0	9.2	9.5	9.2	7.9	8.9
	_							
		2	8.9	8.3	9.0	8.5	8.0	8.8
	1 ^c	8	8.8	9.0	8.8	7.5	7.2	9.5
		14	9.5	8.6	8.8	8.0	7.5	8.5
	Exp.	1 Mean	9.1	8.6	8.9	8.0	7.6	8.9
L. reuteri DS-36	L .	2	9.2	8.6	9.9	10.3	8.6	8.2
	2 ^d	4	9.3	9.0	10.5	9.3	8.1	8.6
	<u> </u>	10	9.2	8.8	8.7	8.1	6.8	7.6
		2 Mean	9.2	8.8	9.7	9.2	7.8	8.1
	Overa	all Mean	9.2	8.7	9.3	8.6	7.7	8.5
	T	4	9.7	8.8	9.8	9.1	7.9	8.6
	1 ^c	6	9.7 9.7	8.8	9.0 9.2	8.3	7.2	8.3
	1 '	11	9.7 8.6	9.4	9.2 8.7	7.8	8.0	8.0
	Exp	1 Mean	9.3	9.0	9.2	8.4	7.7	8.3
L. reuteri DS-37	LAP.	5	11.5	9.4	10.1	9.5	8.3	8.3
L. reater DO-57	2 ^d	6	9.3	9.3	10.1	9.7	7.6	9.7
	2	11	10.6	9.6	9.6	9.1	7.1	8.9
	Exp.	2 Mean	10.5	9.4	9.9	9.4	7.7	9.0
		all Mean	9.9	9.2	9.6	8.9	7.7	8.6
				-				
		3	10.0	10.0	9.2	8.9	7.7	8.9
	1 ^c	7	9.0	8.7	8.2	7.6	7.0	7.8
		15	9.5	9.0	9.5	8.8	7.3	8.6
	Exp.	1 Mean	9.5	9.2	9.0	8.4	7.3	8.4
L. reuteri WB-72		7	10.2	8.7	10.9	10.1	8.1	9.0
	2 ^d	8	10.3	9.6	8.8	9.3	7.6	9.2
		9	10.2	9.1	9.3	9.0	8.0	9.7
		2 Mean	10.2	9.1	9.7	9.5	7.9	9.3
	Overa	all Mean	9.9	9.2	9.3	9.0	7.6	8.9
	1	1	10.4	10.4	9.8	8.9	7.5	8.6
	1 ^c	9	11.3	9.6	9.0 11.2	9.5	8.1	8.8
		9 12	8.0	9.0 7.8	10.4	9.5 8.5	7.3	8.0
	Eyn	1 Mean	9.9	9.3	10.4	9.0	7.6	8.5
L. reuteri WB-76	<u>∟p</u> .	12	<u>9.9</u> 11.5					
L. IEULEII WD-10	2 ^d			9.1	9.9	9.9	7.6 7.5	9.0
	2	13	10.5	9.6	9.5	8.1	7.5	8.2
		14	8.8	7.8	9.4	8.0	7.4	7.4
		2 Mean	10.3	8.8	9.6	8.7	7.5	8.2
	Overa	all Mean	10.1	9.1	10.0	8.8	7.6	8.3

Table C48. Study 2 hourly LPS^a challenge potassium levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b			Hour 2.0		/	Hour 24
Treatment	Exp.	<u> </u>	Hour 0			Hour 6.0		
	1°	5	105	104	105	105	103	103
	1-	10	107	107	106	104	105	105
		13	102	102	103	101	100	103
Control	Exp.	1 Mean	105	104	105	103	103	104
Control	2 ^d	1 3	99	102	102	104	102	103
	2		104	105	103	120	99 100	106
	Evp	15 2 Mean	102 102	<u>102</u> 103	<u>105</u> 103	<u>101</u> 108	<u>100</u> 100	<u>105</u> 105
	Overa	all Mean	103	104	104	106	102	104
		2	102	103	104	102	102	105
	1 ^c	8	101	102	106	98	102	103
	'	14	102	102	100	103	102	104
	Exp	1 Mean	102	103	105	100	100	104
L. reuteri DS-36	<u> </u>	2	102	102	102	107	100	103
	2 ^d	4	105	102	113	110	100	105
	-	10	100	103	100	100	99	100
	Exp.	2 Mean	102	104	105	106	101	103
		all Mean	102	103	105	103	101	103
			-				-	
		4	105	104	106	104	104	102
	1 ^c	6	105	107	109	105	105	102
		11	104	109	109	105	105	109
	Exp.	1 Mean	105	107	108	105	105	104
L. reuteri DS-37		5	104	104	106	111	99	106
	2 ^d	6	97	99	100	105	94	103
		11	103	101	103	107	103	102
	Exp.	2 Mean	101	101	103	108	99	104
	Overa	all Mean	103	104	106	106	102	104
	1		100	400	101	101	100	10.1
	16	3	103	106	104	101	100	104
	1 ^c	7	106	106	108	104	104	107
	Evo	15 1 Moon	103	104	100	101	102	104
L routori M/D 70	Exp.	1 Mean 7	104	<u>105</u> 103	104	102	102	105
L. reuteri WB-72	2 ^d	8	103 102	103	107 103	114 99	103 99	103 101
	2	о 9	102	101	103	99 97		
	Evo	2 Mean	101	101	100	103	<u>101</u> 101	<u>101</u> 102
		all Mean						
	Over		103	104	104	103	102	103
		1	107	107	105	101	101	106
	1 ^c	9	106	105	105	102	104	107
		12	103	106	104	102	100	103
	Exp.	1 Mean	105	106	105	102	102	105
L. reuteri WB-76		12	103	101	101	104	97	102
	2 ^d	13	103	103	103	105	101	106
	-	14	100	103	104	100	102	100
	Fyn	2 Mean	101	103	104	101	102	107
		all Mean	102	102	103	103	100	105
			104	104	104	105	101	100

Table C49. Study 2 hourly LPS^a challenge chloride levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	-			Hour 12	Hour 24
	· ·	5	25	24	27	21	24	29
	1 ^c	10	20	23	28	24	22	26
		13	26	28	31	31	24	26
	Exp.	1 Mean	24	25	29	25	23	27
Control	Ľ	1		27	25	28	24	22
	2 ^d	3	28 23	21	27	29	26	24
	-	15	25	25	24	26	26	24
	Exp.	2 Mean	25	24	25	28	25	23
		all Mean	25	25	27	27	24	25
-								
		2	25	27	27	20	27	27
	1 ^c	8	30	25	30	26	26	26
		14	24	28	27	24	23	25
	Exp.	1 Mean	26	27	28	23	25	26
L. reuteri DS-36		2	26	27	28	30	28	26
	2 ^d	4	23	22	21	25	25	26
		10	27	23	26	27	24	27
	Exp.	2 Mean	25	24	25	27	26	26
	Overa	all Mean	26	25	27	25	26	26
	-							
		4	26	23	29	25	25	28
	1 ^c	6	25	24	26	22	25	31
		11	24	23	27	27	24	26
	Exp.	1 Mean	25	23	27	25	25	28
L. reuteri DS-37		5	21	26	26	25	28	24
	2 ^d	6	26	26	28	28	28	18
		11	23	23	24	26	24	18
		2 Mean	23	25	26	26	27	20
	Overa	all Mean	24	24	27	26	26	24
	1	2	07	22	20	24	24	25
	1 ^c	3 7	27	23	28	24	24	25
	1-		24	25	27	26	24	24
	- Eve	15	24	26	28	20	22	26
L. reuteri WB-72	Exp.	1 Mean 7	25	25	28	23	23	25
L. IEULEII WD-12	2 ^d	8	24	26	22	29	23	25
	2	о 9	25	24	23	28	26 26	20
	- Eve		27 25	28	26	26	26	24
		2 Mean		26	24	28	25	23
	Overa	all Mean	25	25	26	26	24	24
		1	29	23	28	26	27	27
	1 ^c	9	25	24	29	24	24	26
		12	26	23	23	30	27	29
	Exp.	1 Mean	27	23	27	27	26	27
L. reuteri WB-76		12	23	26	25	26	27	22
	2 ^d	13	26	24	28	25	25	25
	<u> </u>	14	28	24	23	25	25	23
	Exp	2 Mean	26	25	25	25	26	23
		all Mean	26	23	26	26	26	25
	0,000		20	27	20	20	20	20

Table C50. Study 2 hourly LPS^a challenge carbon dioxide levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

k		-		e onalion	ge anien g			
Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	
		5	21.6	20.1	26.4	24.4	22.0	16.7
	1 ^c	10	21.7	19.7	25.3	24.4	18.2	19.7
		13	21.8	18.4	26.9	20.1	23.0	19.0
	Exp.	1 Mean	21.7	19.4	26.2	23.0	21.1	18.5
Control		1	15.8	17.0	19.3	18.9	17.4	22.5
	2 ^d	3	22.9	23.9	20.7	25.3	21.2	22.5
		15	20.0	21.5	18.3	19.1	23.0	19.5
		2 Mean	19.6	20.8	19.4	21.1	20.5	21.5
	Over	all Mean	20.6	20.1	22.8	22.0	20.8	20.0
	-							
		2	24.2	18.6	25.9	22.6	19.1	18.8
	1 ^c	8	18.0	20.0	28.5	24.2	18.5	19.0
		14	20.6	16.6	22.6	18.4	21.7	17.4
	Exp.	1 Mean	20.9	18.4	25.7	21.7	19.8	18.4
L. reuteri DS-36		2	19.6	18.6	18.3	18.5	19.2	19.2
	2 ^d	4	19.9	21.0	22.1	22.0	18.7	21.5
		10	17.1	18.5	19.9	18.7	17.5	16.1
		2 Mean	18.9	19.4	20.1	19.7	18.5	18.9
	Over	all Mean	19.9	18.9	22.9	20.7	19.1	18.7
	-							
		4	21.2	22.4	27.3	23.7	19.6	18.7
	1 ^c	6	19.1	17.4	25.8	15.6	16.6	15.8
		11	21.0	17.5	25.1	17.6	21.5	17.2
	Exp.	1 Mean	20.4	19.1	26.1	19.0	19.2	17.2
L. reuteri DS-37		5	25.1	17.3	21.1	20.0	19.4	17.4
	2 ^d	6	19.2	20.4	21.3	20.5	17.8	27.4
		11	17.6	19.5	17.6	17.0	13.8	25.5
		2 Mean	20.6	19.1	20.0	19.2	17.0	23.4
	Over	all Mean	20.5	19.1	23.0	19.1	18.1	20.3
	-							
		3	23.1	26.4	28.3	20.4	24.1	23.8
	1 ^c	7	17.3	18.2	25.8	20.1	17.1	17.2
		15	19.9	18.0	25.3	22.4	21.9	18.4
	Exp.	1 Mean	20.1	20.9	26.5	21.0	21.0	19.8
L. reuteri WB-72	ed	7	20.5	18.0	20.1	19.4	19.2	20.7
	2 ^d	8	21.7	21.0	19.8	19.6	20.0	24.6
		9	21.3	20.4	23.2	20.8	19.5	21.5
		2 Mean	21.2	19.8	21.0	19.9	19.6	22.3
	Over	all Mean	20.6	20.3	23.8	20.5	20.3	21.0
	1	1	20.0	04.4	25.0	20.0	20.0	20.4
		1	20.8	21.1	25.6	20.8	20.8	20.4
	1 ^c	9	22.5	19.0	26.2	23.1	17.7	17.2
		12	20.3	18.4	31.4	23.7	22.3	16.4
	Exp.	1 Mean	21.2	19.5	27.7	22.5	20.3	18.0
L. reuteri WB-76	4	12	20.9	19.5	23.0	19.4	21.9	24.3
	2 ^d	13	17.7	21.6	18.2	18.3	17.4	16.2
						4 - 0	40.0	470
		14	16.8	17.8	21.1	17.0	19.2	17.0
		14 2 Mean all Mean	16.8 18.5	17.8 19.6	21.1 20.8	17.0 18.2	19.2 19.5	17.0

Table C51. Study 2 hourly LPS^a challenge anion gap levels

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

$L. reuteri DS-36 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
13 9.9 9.7 13.9 10.0 7.5 10.0 Exp. 1 Mean 10.2 9.8 13.9 10.6 7.9 9.8 2 ^d 3 10.6 10.7 10.5 11.4 8.9 9.1 2 ^d 3 10.6 10.7 10.5 11.4 8.9 9.8 2 ^d 3 10.6 10.4 9.8 9.2 10.3 Overall Mean 10.4 10.2 12.1 10.2 8.6 10.1 Exp. 2 Mean 10.6 10.3 14.6 12.0 8.8 10.8 14 9.8 10.1 12.1 8.5 7.8 10.0 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 10 10.3 9.8 10.6 10.7 9.9 10.8 2 ^d 4 10.7			5						
Control Exp. 1 Mean 10.2 9.8 13.9 10.6 7.9 9.8 2 ^d 3 10.6 10.7 10.5 11.4 9.0 9.7 15 10.8 10.5 10.3 9.6 9.8 10.1 Exp. 2 Mean 10.6 10.6 10.4 9.8 9.2 10.3 Overall Mean 10.4 10.2 12.1 10.2 8.6 10.1 L. reuteri DS-36 1 ^c 8 10.6 10.3 14.6 12.0 8.8 10.8 2 ^d 4 10.8 10.6 10.7 10.7 8.9 10.0 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 0 10.3 9.8 10.6 10.1 10.5 9.4		1 ^c	10	10.4	10.1	15.1	12.7	8.2	10.3
Control 1 10.4 10.5 10.3 8.4 8.9 11.2 2 ^d 3 10.6 10.7 10.5 11.4 9.0 9.7 15 10.8 10.5 10.3 9.6 9.8 10.1 Exp. 2 Mean 10.6 10.4 10.2 12.1 10.2 8.6 10.1 Exp. 2 Mean 10.6 10.4 10.2 12.1 10.2 8.6 10.1 L. reuteri DS-36 1 ^c 8 10.6 10.3 14.6 12.0 8.8 10.8 2 ^d 4 10.8 9.8 10.1 7.9 9.0 10.8 2 ^d 4 10.8 9.8 10.1 7.9 8.3 9.3 2 ^d 4 10.8 9.8 10.1 7.9 8.3 9.3 2 ^d 4 10.7 10.5 15.0 11.1 8.6 10.2 10 10.3 14.4 8.2 8.8			13	9.9	9.7	13.9	10.0	7.5	10.0
L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-76 L. reuteri		Exp.	Exp. 1 Mean		9.8	13.9	10.6	7.9	9.8
15 10.8 10.5 10.3 9.6 9.8 10.1 Exp. 2 Mean 10.6 10.4 9.8 12.1 10.2 8.6 10.1 Overall Mean 10.4 10.2 12.1 10.2 8.6 10.1 L. reuteri DS-36 1° 8 10.6 10.3 14.6 8.3 8.2 9.6 1° 8 10.6 10.3 14.6 8.3 10.0 Exp. 1 Mean 10.2 10.1 13.4 9.6 8.3 10.1 2 ^d 10.8 10.6 10.7 10.7 9.9 10.8 2 ^d 10.3 9.8 10.1 7.9 8.3 10.0 10.3 9.8 10.1 7.9 9.3 9.3 10.6 10.5 15.0 11.1 8.6 10.2 11.0 10.5 15.0 11.1 8.6 10.2 1. 10.5 10.5 10.3 14.4 10.2 8.0	Control								
Exp. 2 Mean 10.6 10.6 10.4 9.8 9.2 10.3 Overall Mean 10.4 10.2 12.1 10.2 8.6 10.1 I 2 10.2 9.8 13.6 8.3 8.2 9.6 1 ⁶ 8 10.6 10.3 14.6 12.0 8.8 10.8 14 9.8 10.1 12.1 8.5 7.8 10.0 Exp. 1 Mean 10.2 10.1 13.4 9.6 8.3 10.1 2 ^d 4 10.8 9.8 10.6 10.7 10.7 9.9 10.8 2 ^d 4 10.6 10.1 10.5 9.4 9.0 10.0 Overall Mean 10.4 10.1 12.0 9.5 8.7 10.1 L. reuteri DS-37 1 ⁶ 6 10.5 10.5 11.1 8.6 10.2 L. reuteri DS-37 1 ⁶ 10.5 10.2 14.6 9.8 8.7		2 ^d							
Overall Mean 10.4 10.2 12.1 10.2 8.6 10.1 L. reuteri DS-36 1° 8 10.2 9.8 13.6 8.3 8.2 9.6 L. reuteri DS-36 1° 8 10.1 12.1 8.5 7.8 10.0 Exp. 1Mean 10.2 10.1 13.4 9.6 8.3 10.1 2 10.8 10.6 10.7 10.7 9.9 10.8 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 10 10.3 9.8 10.1 10.5 9.4 9.0 10.0 Overall Mean 10.4 10.1 12.0 9.5 8.7 10.1 Verall Mean 10.5 10.3 14.4 8.2 8.8 10.2 11 10.1 9.8 14.4 10.2 8.0 9.7 2 ^d 6 10.5 10.2 14.6 9.8 8.7 9.6 <									
L. reuteri DS-36 1° 2 10.2 9.8 13.6 8.3 8.2 9.6 1° 8 10.6 10.3 14.6 12.0 8.8 10.0 Exp. 1 Mean 10.2 10.1 13.4 9.6 8.3 10.0 2 10.8 10.6 10.7 10.7 9.9 10.8 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 2 ^d 4 10.8 9.8 10.6 9.7 8.9 10.0 10 10.3 9.8 10.1 7.9 8.3 9.3 Exp. 2 Mean 10.6 10.1 10.5 9.4 9.0 10.0 Overall Mean 10.5 10.2 14.6 9.8 8.5 10.0 11 10.5 10.5 10.1 10.5 9.9 9.1 9.5 2 ^d 6 10.5 10.8 9.8 8.5 10.0 2 ^d <td></td> <td></td> <td></td> <td></td> <td>10.6</td> <td></td> <td></td> <td></td> <td></td>					10.6				
$L. reuteri DS-36 = \begin{bmatrix} 1^{\circ} & 8 & 10.6 & 10.3 & 14.6 & 12.0 & 8.8 & 10.8 \\ 14 & 9.8 & 10.1 & 12.1 & 8.5 & 7.8 & 10.0 \\ \hline Exp. 1 Mean & 10.2 & 10.1 & 13.4 & 9.6 & 8.3 & 10.1 \\ 2 & 10.8 & 10.6 & 10.7 & 10.7 & 9.9 & 10.8 \\ 2^{d} & 4 & 10.8 & 9.8 & 10.6 & 9.7 & 8.9 & 10.0 \\ 10 & 10.3 & 9.8 & 10.1 & 7.9 & 8.3 & 9.3 \\ \hline Exp. 2 Mean & 10.6 & 10.1 & 10.5 & 9.4 & 9.0 & 10.0 \\ \hline Overall Mean & 10.4 & 10.1 & 12.0 & 9.5 & 8.7 & 10.1 \\ \hline 0 & 10.3 & 9.8 & 10.4 & 8.2 & 8.8 & 10.2 \\ 1^{\circ} & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 1^{\circ} & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 1^{\circ} & 6 & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ \hline Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.2 & 14.6 & 9.8 & 8.7 & 9.6 \\ \hline 11 & 10.2 & 10.2 & 9.8 & 9.6 & 9.3 & 10.6 \\ \hline Exp. 2 Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline L. reuteri WB-72 & 1^{\circ} & 10.7 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ \hline L. reuteri WB-76 & 1^{\circ} & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ I^{\circ} & 11 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline Exp. 2 Mean & 10.8 & 10.7 & 10.7 & 9.2 & 9.4 & 9.8 \\ \hline \end{bmatrix}$		Over	all Mean	10.4	10.2	12.1	10.2	8.6	10.1
$L. reuteri DS-36 = \begin{bmatrix} 1^{\circ} & 8 & 10.6 & 10.3 & 14.6 & 12.0 & 8.8 & 10.8 \\ 14 & 9.8 & 10.1 & 12.1 & 8.5 & 7.8 & 10.0 \\ \hline Exp. 1 Mean & 10.2 & 10.1 & 13.4 & 9.6 & 8.3 & 10.1 \\ 2 & 10.8 & 10.6 & 10.7 & 10.7 & 9.9 & 10.8 \\ 2^{d} & 4 & 10.8 & 9.8 & 10.6 & 9.7 & 8.9 & 10.0 \\ 10 & 10.3 & 9.8 & 10.1 & 7.9 & 8.3 & 9.3 \\ \hline Exp. 2 Mean & 10.6 & 10.1 & 10.5 & 9.4 & 9.0 & 10.0 \\ \hline Overall Mean & 10.4 & 10.1 & 12.0 & 9.5 & 8.7 & 10.1 \\ \hline 0 & 10.3 & 9.8 & 10.4 & 8.2 & 8.8 & 10.2 \\ 1^{\circ} & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 1^{\circ} & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 1^{\circ} & 6 & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ \hline Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.2 & 14.6 & 9.8 & 8.7 & 9.6 \\ \hline 11 & 10.2 & 10.2 & 9.8 & 9.6 & 9.3 & 10.6 \\ \hline Exp. 2 Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline L. reuteri WB-72 & 1^{\circ} & 10.7 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ \hline L. reuteri WB-76 & 1^{\circ} & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ I^{\circ} & 1 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ I^{\circ} & 11 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline Exp. 2 Mean & 10.8 & 10.7 & 10.7 & 9.2 & 9.4 & 9.8 \\ \hline \end{bmatrix}$			2	10.2	9.8	13.6	8.3	8.2	9.6
$L. reuteri DS-36 = \begin{bmatrix} 14 & 9.8 & 10.1 & 12.1 & 8.5 & 7.8 & 10.0 \\ Exp. 1 Mean & 10.2 & 10.1 & 13.4 & 9.6 & 8.3 & 10.1 \\ 2 & 10.8 & 10.6 & 10.7 & 10.7 & 9.9 & 10.8 \\ 2^d & 4 & 10.8 & 9.8 & 10.6 & 9.7 & 8.9 & 10.0 \\ 10 & 10.3 & 9.8 & 10.1 & 7.9 & 8.3 & 9.3 \\ Exp. 2 Mean & 10.6 & 10.1 & 10.5 & 9.4 & 9.0 & 10.0 \\ \hline Overall Mean & 10.4 & 10.1 & 12.0 & 9.5 & 8.7 & 10.1 \\ \hline \\ L. reuteri DS-37 = \begin{bmatrix} 4 & 10.7 & 10.5 & 15.0 & 11.1 & 8.6 & 10.2 \\ 1^c & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 11 & 10.1 & 9.8 & 14.4 & 10.2 & 8.0 & 9.7 \\ Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ \hline \\ 2^d & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^d & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^d & 6 & 10.5 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline \\ \hline \\ L. reuteri DS-37 = \begin{bmatrix} 3 & 10.6 & 10.6 & 14.1 & 7.9 & 7.2 & 10.2 \\ 1^c & 7 & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline \\ \hline \\ L. reuteri WB-72 = \begin{bmatrix} 3 & 10.6 & 10.6 & 14.1 & 7.9 & 7.2 & 10.2 \\ 1^c & 7 & 10.4 & 10.4 & 14.6 & 10.4 & 8.2 & 9.8 \\ 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline \\ Exp. 1 Mean & 10.3 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ \hline \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.0 \\ 1^c & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^c & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.4 \\ Exp. 2 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ 1.4 & 11.0 & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.4 \\ Exp. 2 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \\ L. reuteri WB-76 & 12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \\ \\ L. reuteri WB-76 & I2 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		1 ^C							
$L. reuteri DS-36 = \begin{bmatrix} Exp. 1 Mean & 10.2 & 10.1 & 13.4 & 9.6 & 8.3 & 10.1 \\ 2 & 10.8 & 10.6 & 10.7 & 10.7 & 9.9 & 10.8 \\ 2^d & 4 & 10.8 & 9.8 & 10.6 & 9.7 & 8.9 & 10.0 \\ 10 & 10.3 & 9.8 & 10.1 & 7.9 & 8.3 & 9.3 \\ \hline Exp. 2 Mean & 10.6 & 10.1 & 10.5 & 9.4 & 9.0 & 10.0 \\ \hline Overall Mean & 10.4 & 10.1 & 12.0 & 9.5 & 8.7 & 10.1 \\ \hline Verall Mean & 10.4 & 10.1 & 12.0 & 9.5 & 8.7 & 10.1 \\ \hline Verall Mean & 10.4 & 10.5 & 15.0 & 11.1 & 8.6 & 10.2 \\ 1^c & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 11 & 10.1 & 9.8 & 14.4 & 10.2 & 8.0 & 9.7 \\ \hline Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ \hline S & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^d & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^d & 6 & 10.5 & 10.3 & 10.4 & 9.8 & 8.7 & 9.6 \\ \hline Exp. 2 Mean & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline & & & & & & & & & & & & & & & & & &$		1 '							
		Exp.							
$L. reuteri WB-72 = \begin{bmatrix} 2^d & 4 & 10.8 & 9.8 & 10.6 & 9.7 & 8.9 & 10.0 \\ 10 & 10.3 & 9.8 & 10.1 & 7.9 & 8.3 & 9.3 \\ \hline Exp. 2 Mean & 10.6 & 10.1 & 10.5 & 9.4 & 9.0 & 10.0 \\ \hline Overall Mean & 10.4 & 10.1 & 12.0 & 9.5 & 8.7 & 10.1 \\ \hline 0 & 10.3 & 14.4 & 10.2 & 9.5 & 8.7 & 10.1 \\ \hline 1^c & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 11 & 10.1 & 9.8 & 14.4 & 10.2 & 8.0 & 9.7 \\ \hline Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ \hline 2^d & 6 & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ \hline 2^d & 6 & 10.5 & 10.5 & 10.8 & 9.9 & 9.1 & 9.5 \\ 2^d & 6 & 10.5 & 10.5 & 10.8 & 9.8 & 8.7 & 9.6 \\ 11 & 10.2 & 10.2 & 9.8 & 9.6 & 9.3 & 10.6 \\ \hline Exp. 2 Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline \\ L. reuteri WB-72 & \begin{bmatrix} 3 & 10.6 & 10.6 & 14.1 & 7.9 & 7.2 & 10.2 \\ 1^c & 7 & 10.4 & 10.4 & 10.4 & 10.4 & 8.2 & 9.8 \\ 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline \\ Exp. 1 Mean & 10.3 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ \hline \\ Qverall Mean & 10.8 & 10.7 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ 2^d & 8 & 10.9 & 10.7 & 10.4 & 9.8 & 9.8 & 10.0 \\ \hline \\ \hline \\ L. reuteri WB-72 & \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.0 \\ 0verall Mean & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline \\ Qverall Mean & 10.6 & 9.8 & 13.1 & 9.8 & 9.7 & 10.3 \\ \hline \\ L. reuteri WB-76 & \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^c & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \\ \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \\ L. reuteri WB-76 & \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^c & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ \hline \\ \hline \\ \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \\ \\ \\ \\ \\ \\ L. reuteri WB-76 & \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^c & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	L. reuteri DS-36								
Image: constraint of the system Image: constra		2 ^d	_						
$L. reuteri WB-72 = \underbrace{\begin{array}{c cccccccccccccccccccccccccccccccccc$									
L. reuteri DS-37 $L. reuteri DS-37$ $L. reuteri WB-72$ $L. reuteri WB-72$ $L. reuteri WB-76$ $L. reuteri$		Exp.							
$L. reuteri DS-37 = \begin{bmatrix} 1^{\circ} & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 11 & 10.1 & 9.8 & 14.4 & 10.2 & 8.0 & 9.7 \\ \hline Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ 5 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 11 & 10.2 & 10.2 & 9.8 & 9.6 & 9.3 & 10.6 \\ \hline Exp. 2 Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline \end{bmatrix} \\ L. reuteri WB-72 = \begin{bmatrix} 3 & 10.6 & 10.6 & 14.1 & 7.9 & 7.2 & 10.2 \\ 1^{\circ} & 7 & 10.4 & 10.4 & 14.6 & 10.4 & 8.2 & 9.8 \\ 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline \end{bmatrix} \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ 2^{d} & 8 & 10.9 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ 2^{d} & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline \end{bmatrix} \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.9 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ \begin{bmatrix} 12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ 2^{d} & 13 & 10.4 & 10.7 & 10.5 & 9.2 & 9.1 & 9.4 \\ 14 & 11.0 & 10.6 & 10.5 & 8.7 & 9.4 & 9.6 \\ \hline \end{bmatrix} \\ \end{bmatrix} $		Over	all Mean	10.4	10.1	12.0	9.5	8.7	10.1
$L. reuteri DS-37 = \begin{bmatrix} 1^{\circ} & 6 & 10.6 & 10.3 & 14.4 & 8.2 & 8.8 & 10.2 \\ 11 & 10.1 & 9.8 & 14.4 & 10.2 & 8.0 & 9.7 \\ \hline Exp. 1 Mean & 10.5 & 10.2 & 14.6 & 9.8 & 8.5 & 10.0 \\ 5 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{d} & 6 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 11 & 10.2 & 10.2 & 9.8 & 9.6 & 9.3 & 10.6 \\ \hline Exp. 2 Mean & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline Overall Mean & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline \end{bmatrix} \\ L. reuteri WB-72 = \begin{bmatrix} 3 & 10.6 & 10.6 & 14.1 & 7.9 & 7.2 & 10.2 \\ 1^{\circ} & 7 & 10.4 & 10.4 & 14.6 & 10.4 & 8.2 & 9.8 \\ 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline \end{bmatrix} \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.3 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ 2^{d} & 8 & 10.9 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ 2^{d} & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline \end{bmatrix} \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.9 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline \end{bmatrix} \\ \begin{bmatrix} 12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ 2^{d} & 13 & 10.4 & 10.7 & 10.5 & 9.2 & 9.1 & 9.4 \\ 14 & 11.0 & 10.6 & 10.5 & 8.7 & 9.4 & 9.6 \\ \hline \end{bmatrix} \\ \end{bmatrix} $			4	40.7	40.5	45.0			40.0
$L. \ reuteri \ {\rm DS-37} \\ L. \ reuteri \ {\rm DS-37} \\ \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4.6							
$L. reuteri DS-37$ $Exp. 1 Mean 10.5 10.2 14.6 9.8 8.5 10.0 5 10.5 10.1 10.5 9.9 9.1 9.5 2d 6 10.5 10.5 10.8 9.8 8.7 9.6 11 10.2 10.2 9.8 9.6 9.3 10.6 Exp. 2 Mean 10.4 10.3 10.4 9.8 9.0 9.9 Overall Mean 10.4 10.2 12.5 9.8 8.8 10.0 I^{c} 7 10.4 10.4 10.4 14.6 10.4 8.2 9.8 15 9.9 9.6 12.6 6.8 8.3 9.7 Exp. 1 Mean 10.3 10.2 13.8 8.4 7.9 9.9 16 10.9 10.7 10.6 10.7 9.3 9.7 2d 8 10.9 10.7 10.6 10.7 9.3 9.7 2d 8 10.9 10.7 10.4 9.8 9.8 10.0 9 10.8 10.8 11.0 9.8 9.8 10.4 Exp. 2 Mean 10.6 10.5 12.2 9.2 8.8 10.0 0 Verall Mean 10.6 10.5 12.2 9.2 8.8 10.0 1c 9 10.5 9.7 15.5 10.5 7.4 9.7 12 10.3 9.8 13.8 12.1 9.4 10.3 Exp. 1 Mean 10.6 9.8 14.1 10.6 8.5 10.1 1. reuteri WB-76 12 10.9 10.8 11.1 9.8 9.7 10.3 2d 13 10.4 10.7 10.5 9.2 9.1 9.4 14 11.0 10.6 10.5 8.7 9.4 9.6 Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8 (10 10 10 10 10 10 10 10 10 10 10 10 10 1$		1-							
$L. \ reuteri \ \text{DS-37} \\ L. \ reuteri \ \text{DS-37} \\ \hline \begin{array}{c} 2^{\text{d}} & 5 & 10.5 & 10.1 & 10.5 & 9.9 & 9.1 & 9.5 \\ 2^{\text{d}} & 6 & 10.5 & 10.5 & 10.8 & 9.8 & 8.7 & 9.6 \\ \hline 11 & 10.2 & 10.2 & 9.8 & 9.6 & 9.3 & 10.6 \\ \hline \hline \text{Exp. 2 Mean} & 10.4 & 10.3 & 10.4 & 9.8 & 9.0 & 9.9 \\ \hline \hline \text{Overall Mean} & 10.4 & 10.2 & 12.5 & 9.8 & 8.8 & 10.0 \\ \hline \hline \text{Overall Mean} & 10.4 & 10.4 & 10.4 & 14.6 & 10.4 & 8.2 & 9.8 \\ \hline 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline \text{Exp. 1 Mean} & 10.3 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ \hline 2^{\text{d}} & 8 & 10.9 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ \hline 2^{\text{d}} & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ \hline 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline \text{Exp. 2 Mean} & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline 0 \text{ Overall Mean} & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline 0 \text{ Overall Mean} & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline L. \ reuteri \ \text{WB-76} & \begin{array}{c} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ \hline 1^{\text{c}} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline \text{Exp. 1 Mean} & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline 12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ \hline 2^{\text{d}} & 13 & 10.4 & 10.7 & 10.5 & 9.2 & 9.1 & 9.4 \\ \hline 14 & 11.0 & 10.6 & 10.5 & 8.7 & 9.4 & 9.6 \\ \hline \text{Exp. 2 Mean} & 10.8 & 10.7 & 10.7 & 9.2 & 9.4 & 9.8 \\ \hline \end{array}$		Evo							
$L. reuteri WB-72 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L routori DS 27								
$L. reuteri WB-72 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L. Teulen DS-ST	2 ^d	-						
$L. reuteri WB-72 = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$		2							
$L. reuteri WB-72 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$		Exp							
$L. reuteri WB-72$ $L. reuteri WB-72$ $L. reuteri WB-76$ $L. reuteri WB-76$ $\frac{3 & 10.6 & 10.6 & 14.1 & 7.9 & 7.2 & 10.2 \\ 1^{c} & 7 & 10.4 & 10.4 & 14.6 & 10.4 & 8.2 & 9.8 \\ 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline Exp. 1 Mean & 10.3 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ \hline 7 & 10.7 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ 2^{d} & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ \hline 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline Exp. 2 Mean & 10.8 & 10.7 & 10.7 & 10.1 & 9.6 & 10.0 \\ \hline Overall Mean & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline L. reuteri WB-76$ $\frac{12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ 2^{d} & 13 & 10.4 & 10.7 & 10.5 & 9.2 & 9.1 & 9.4 \\ 14 & 11.0 & 10.6 & 10.5 & 8.7 & 9.4 & 9.6 \\ \hline Exp. 2 Mean & 10.8 & 10.7 & 10.7 & 9.2 & 9.4 & 9.8 \\ \hline \end{array}$									
$L. \ reuteri \ WB-72 = \begin{bmatrix} 1^{c} & 7 & 10.4 & 10.4 & 14.6 & 10.4 & 8.2 & 9.8 \\ 15 & 9.9 & 9.6 & 12.6 & 6.8 & 8.3 & 9.7 \\ \hline Exp. 1 \ Mean & 10.3 & 10.2 & 13.8 & 8.4 & 7.9 & 9.9 \\ 7 & 10.7 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ 2^{d} & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline Exp. 2 \ Mean & 10.8 & 10.7 & 10.7 & 10.1 & 9.6 & 10.0 \\ \hline Overall \ Mean & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{c} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ \hline 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ \hline Exp. 1 \ Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ \hline 1^{c} & 12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ 2^{d} & 13 & 10.4 & 10.7 & 10.5 & 9.2 & 9.1 & 9.4 \\ \hline 14 & 11.0 & 10.6 & 10.5 & 8.7 & 9.4 & 9.6 \\ \hline Exp. 2 \ Mean & 10.8 & 10.7 & 10.7 & 9.2 & 9.4 & 9.8 \\ \hline \end{array}$									
$L. reuteri WB-72$ $L. reuteri WB-72$ $L. reuteri WB-72$ $\frac{15}{2^{d}} \begin{array}{c} 9.9 \\ 9.9 \\ 7 \\ 10.7 \\ 10.7 \\ 10.7 \\ 10.7 \\ 10.7 \\ 10.7 \\ 10.7 \\ 10.6 \\ 10.7 \\ 10.4 \\ 9.7 \\ 9.8 \\ 9.8 \\ 10.0 \\ 9 \\ 10.8 \\ 10.9 \\ 10.8 \\ 11.0 \\ 9.8 \\ 9.8 \\ 10.4 \\ 9.8 \\ 9.8 \\ 10.4 \\ 10.7 \\ 10.7 \\ 10.1 \\ 9.8 \\ 9.8 \\ 10.4 \\ 10.0 \\ 10.9 \\ 10.8 \\ 10.0 \\ 10.5 \\ 12.2 \\ 9.2 \\ 8.8 \\ 10.0 \\ 10.0 \\ 10.1 \\ 9.8 \\ 10.0 \\ 10.1 \\ 9.8 \\ 10.1 \\ 10.1 \\ 9.8 \\ 10.2 \\ 10.2 \\ 10.3 \\ 12 \\ 10.3 \\ 9.8 \\ 13.8 \\ 12.1 \\ 9.4 \\ 10.3 \\ 12 \\ 10.3 \\ 9.8 \\ 13.8 \\ 12.1 \\ 9.4 \\ 10.3 \\ 10.4 \\ 10.7 \\ 10.5 \\ 9.2 \\ 9.1 \\ 9.4 \\ 14 \\ 11.0 \\ 10.6 \\ 10.5 \\ 8.7 \\ 9.4 \\ 9.6 \\ 12 \\ 10.9 \\ 10.8 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 10.7 \\ 10.7 \\ 10.7 \\ 9.2 \\ 9.4 \\ 9.8 \\ 10.7 \\ 1$						14.1			
$L. reuteri WB-72$ $Exp. 1 Mean 10.3 10.2 13.8 8.4 7.9 9.9$ $7 10.7 10.7 10.6 10.7 9.3 9.7$ $2^{d} 8 10.9 10.7 10.4 9.7 9.8 10.0$ $9 10.8 10.8 11.0 9.8 9.8 10.4$ $Exp. 2 Mean 10.8 10.7 10.7 10.1 9.6 10.0$ $Overall Mean 10.6 10.5 12.2 9.2 8.8 10.0$ $V = 12 10.3 9.8 13.8 12.1 9.4 10.3$ $Exp. 1 Mean 10.6 9.8 14.1 10.6 8.5 10.1$ $L. reuteri WB-76$ $12 10.9 10.8 11.1 9.8 9.7 10.3$ $2^{d} 13 10.4 10.7 10.5 9.2 9.1 9.4$ $14 11.0 10.6 10.5 8.7 9.4 9.6$ $Exp. 2 Mean 10.8 10.7 10.7 10.7 9.2 9.4 9.8$		1 ^c	7						
$L. \ reuteri \ WB-72 = \begin{bmatrix} 7 & 10.7 & 10.7 & 10.6 & 10.7 & 9.3 & 9.7 \\ 2^d & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline Exp. 2 \ Mean & 10.8 & 10.7 & 10.7 & 10.1 & 9.6 & 10.0 \\ \hline Overall \ Mean & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline \\ & & & & & & & & & & & & & & & & &$									
$L. reuteri WB-76 = \begin{bmatrix} 2^d & 8 & 10.9 & 10.7 & 10.4 & 9.7 & 9.8 & 10.0 \\ 9 & 10.8 & 10.8 & 11.0 & 9.8 & 9.8 & 10.4 \\ \hline Exp. 2 Mean & 10.8 & 10.7 & 10.7 & 10.1 & 9.6 & 10.0 \\ \hline Overall Mean & 10.6 & 10.5 & 12.2 & 9.2 & 8.8 & 10.0 \\ \hline & & & & & & & & & & & & & & & & \\ \hline & & & &$		Exp.							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L. reuteri WB-72	- d							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2ª							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$L. reuteri WB-76 = \begin{bmatrix} 1 & 11.1 & 10.0 & 12.9 & 9.3 & 8.8 & 10.2 \\ 1^{\circ} & 9 & 10.5 & 9.7 & 15.5 & 10.5 & 7.4 & 9.7 \\ 12 & 10.3 & 9.8 & 13.8 & 12.1 & 9.4 & 10.3 \\ Exp. 1 Mean & 10.6 & 9.8 & 14.1 & 10.6 & 8.5 & 10.1 \\ 12 & 10.9 & 10.8 & 11.1 & 9.8 & 9.7 & 10.3 \\ 2^{d} & 13 & 10.4 & 10.7 & 10.5 & 9.2 & 9.1 & 9.4 \\ 14 & 11.0 & 10.6 & 10.5 & 8.7 & 9.4 & 9.6 \\ Exp. 2 Mean & 10.8 & 10.7 & 10.7 & 9.2 & 9.4 & 9.8 \end{bmatrix}$									
$L. \ reuteri \ WB-76 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Over	all Mean	10.6	10.5	12.2	9.2	8.8	10.0
1° 9 10.5 9.7 15.5 10.5 7.4 9.7 12 10.3 9.8 13.8 12.1 9.4 10.3 Exp. 1 Mean 10.6 9.8 14.1 10.6 8.5 10.1 12 10.9 10.8 11.1 9.8 9.7 10.3 2 ^d 13 10.4 10.7 10.5 9.2 9.1 9.4 14 11.0 10.6 10.5 8.7 9.4 9.6 Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8			1	11.1	10.0	12.9	9.3	8.8	10.2
12 10.3 9.8 13.8 12.1 9.4 10.3 L. reuteri WB-76 Exp. 1 Mean 10.6 9.8 14.1 10.6 8.5 10.1 2 ^d 13 10.4 10.7 10.5 9.2 9.1 9.4 14 11.0 10.6 10.5 8.7 9.4 9.6 Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8		1 ^c	9						9.7
Exp. 1 Mean 10.6 9.8 14.1 10.6 8.5 10.1 L. reuteri WB-76 12 10.9 10.8 11.1 9.8 9.7 10.3 2 ^d 13 10.4 10.7 10.5 9.2 9.1 9.4 14 11.0 10.6 10.5 8.7 9.4 9.6 Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8									
L. reuteri WB-76 2 ^d 12 10.9 10.8 11.1 9.8 9.7 10.3 2 ^d 13 10.4 10.7 10.5 9.2 9.1 9.4 14 11.0 10.6 10.5 8.7 9.4 9.6 Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8		Exp.							
2 ^d 13 10.4 10.7 10.5 9.2 9.1 9.4 14 11.0 10.6 10.5 8.7 9.4 9.6 Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8	L. reuteri WB-76								
1411.010.610.58.79.49.6Exp. 2 Mean10.810.710.79.29.49.8		2 ^d	13						
Exp. 2 Mean 10.8 10.7 10.7 9.2 9.4 9.8									
		Exp.							
				10.7	10.3	12.4	9.9	9.0	9.9

Table C52. Study 2 hourly LPS^a challenge calcium levels (mEq/L)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b		Hour 1.5		-		Hour 24
		5	5.2	4.7	6.5	4.7	5.3	5.0
	1 ^c	10	4.9	4.4	7.6	6.4	4.5	4.8
		13	5.2	4.8	7.4	5.8	5.0	5.1
	Exp.	1 Mean	5.1	4.6	7.2	5.6	4.9	5.0
Control		1	4.6	4.4	4.4	4.3	4.2	4.5
	2 ^d	3	5.4	5.0	5.1	5.9	5.0	5.1
		15	5.0	4.5	4.1	3.9	4.5	4.3
		2 Mean	5.0	4.6	4.5	4.7	4.6	4.6
	Over	all Mean	5.1	4.6	5.9	5.2	4.8	4.8
		2	5.4	4.5	7.2	4.1	4.5	4.9
	1 ^c	8	5.1	4.7	7.7	6.3	4.7	5.2
		14	5.2	4.9	6.4	4.5	4.7	4.9
	Exp.	1 Mean		4.7	7.1	5.0	4.6	5.0
L. reuteri DS-36		2	5.4	5.2	5.2	5.5	5.5	5.2
	2	4	4.4	4.2	4.2	4.3	4.3	4.2
		10	4.8	4.4	4.4	4.3	4.2	4.2
	Exp.	2 Mean	4.9	4.6	4.6	4.7	4.7	4.5
		all Mean	5.1	4.7	5.9	4.8	4.7	4.8
		4	5.1	4.9	7.5	5.7	4.8	5.0
	1 ^c	6	4.9	4.6	6.9	3.5	4.3	4.9
	· ·	11	4.9	4.4	7.3	4.8	4.1	4.7
	Exp.	1 Mean	5.0	4.6	7.2	4.7	4.4	4.9
L. reuteri DS-37		5	5.4	4.7	4.9	4.6	4.7	4.5
	2	6	4.9	4.8	4.9	4.6	4.6	4.7
		11	4.8	4.7		4.3	4.4	4.5
	Exp.	2 Mean	5.0	4.7	4.7	4.5	4.6	4.6
		all Mean	5.0	4.7	6.0	4.6	4.5	4.7
				5.0		1.0	47	
		3	5.6	5.2	7.7	4.0	4.7	5.2
	1 ^c	7	4.9	4.5	7.5	5.4	4.5	4.6
		15	4.8	4.3	6.3	3.6	4.7	4.3
	Exp.	1 Mean	5.1	4.7	7.2	4.3	4.6	4.7
L. reuteri WB-72		7	5.3	5.0	4.8	4.9	4.6	4.7
	2	8	5.3	5.1	4.4	4.6	4.9	4.9
	Evo	9 2 Mean	<u>5.3</u> 5.3	<u>4.9</u> 5.0	4.9 4.7	<u>4.7</u> 4.7	<u>5.1</u> 4.9	4.9 4.8
		all Mean						
	L Over		5.2	4.8	5.9	4.5	4.8	4.8
		1	5.3	4.4	6.3	4.7	5.0	4.8
	1 ^c	9	5.5	5.0	8.3	5.4	4.3	5.1
		12	5.3	4.9	7.1	6.9	5.8	5.2
L. reuteri WB-76	Exp.	1 Mean	5.4	4.8	7.2	5.7	5.0	5.0
			5.9	5.1	5.3	4.8	5.2	5.1
L. reuteri WB-76		12	5.9	0.1				
L. reuteri WB-76	2 ^d	12 13	5.9 4.6	4.8	4.7	4.4	4.3	4.3
L. reuteri WB-76	2 ^d							
L. reuteri WB-76		13	4.6	4.8	4.7	4.4	4.3	4.3

Table C53. Study 2 hourly LPS^a challenge total protein levels (g/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

		-	-				-	
Treatment ^b	Exp. ^b	Pig ^b	Hour 0			Hour 6.0		
		5	3.1	2.7	4.0	2.9	3.1	2.7
	1 ^c	10	3.0	2.7	4.9	4.2	2.7	2.8
		13	2.9	2.6	4.4	3.3	2.8	2.8
	Exp.	1 Mean	3.0	2.7	4.4	3.5	2.9	2.8
Control		1	2.6	2.5	2.6	2.4	2.3	2.6
	2 ^d	3	3.2	2.9	3.0	3.5	2.8	2.8
		15	3.1	2.8	2.5	2.5	2.8	2.5
		2 Mean	3.0	2.7	2.7	2.8	2.6	2.6
	Over	all Mean	3.0	2.7	3.6	3.1	2.8	2.7
		2	3.3	2.7	4.6	2.6	2.8	2.9
	1 ^c	8	3.3	3.1	5.4	4.4	3.1	3.3
		14	3.6	3.3	4.6	3.1	3.2	3.3
	Exp.	1 Mean	3.4	3.0	4.9	3.4	3.0	3.2
L. reuteri DS-36		2	3.1	3.1	3.1	3.2	3.2	3.1
	2 ^d	4	2.8	2.6	2.7	2.7	2.6	2.6
		10	3.1	2.8	2.8	2.7	2.6	2.5
	Exp.	2 Mean	3.0	2.8	2.9	2.9	2.8	2.7
	Over	all Mean	3.2	2.9	3.9	3.1	2.9	3.0
		4	3.6	3.3	5.3	4.0	3.2	3.3
	1 ^c	6	2.9	2.7	4.3	2.0	2.5	2.8
		11	2.9	2.5	4.5	3.0	2.4	2.7
	Exp.	1 Mean	3.1	2.8	4.7	3.0	2.7	2.9
L. reuteri DS-37		5	3.1	2.7	2.7	2.7	2.6	2.4
	2 ^d	6	2.6	2.6	2.6	2.5	2.4	2.5
		11	2.4	2.4	2.2	2.3	2.2	2.4
		2 Mean	2.7	2.6	2.5	2.5	2.4	2.4
	Over	all Mean	2.9	2.7	3.6	2.8	2.6	2.7
		3	3.6	3.4	5.3	2.6	3.2	3.4
	1 ^c	7	3.1	2.9	4.9	3.6	2.9	2.9
		15	2.6	2.3	3.7	2.0	2.6	2.4
	Exp.	1 Mean	3.1	2.9	4.6	2.7	2.9	2.9
L. reuteri WB-72	Ŀ	7	3.4	3.1	3.1	3.2	2.9	2.9
	2 ^d	8	3.2	3.3	2.8	2.9	2.9	3.0
	<u> </u>	9	3.2	2.9	2.9	2.8	3.0	2.8
		2 Mean	3.3	3.1	2.9	3.0	2.9	2.9
	Over	all Mean	3.2	3.0	3.8	2.9	2.9	2.9
	_	1	3.3	2.8	4.5	3.0	3.2	2.8
	1 ^c	9	3.3	2.8	5.4	3.4	2.6	3.0
	<u> </u>	12	3.2	3.0	4.8	4.6	3.6	3.2
	I Evn	1 Mean	3.3	2.9	4.9	3.7	3.1	3.0
L. reuteri WB-76	L,p.		-					
L. reuteri WB-76		12	3.5	3.1	3.3	3.0	3.1	3.1
L. reuteri WB-76	2 ^d	12 13	2.8	2.8	2.8	2.6	2.4	2.5
L. reuteri WB-76	2 ^d	12 13 14	2.8 3.0	2.8 2.8	2.8 2.7	2.6 2.5	2.4 2.7	2.5 2.6
L. reuteri WB-76	2 ^d Exp.	12 13	2.8	2.8	2.8	2.6	2.4	2.5

Table C54. Study 2 hourly LPS^a challenge albumin levels (g/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

	- h							
Treatment ^b	Exp. ^b	Pig⁵		Hour 1.5				
		5	2.1	1.9	2.5	1.9	2.2	2.2
	1 ^c	10	1.9	1.7	2.7	2.2	1.8	1.9
		13	2.3 2.1	2.2	3.1	2.5	2.2	2.3
	Exp.	Exp. 1 Mean		1.9	2.8	2.2	2.1	2.1
Control		1	2.0	1.9	1.8	1.9	1.9	1.9
	2 ^d	3	2.2	2.1	2.1	2.4	2.2	2.3
		15	1.9	1.7	1.6	1.4	1.7	1.8
		2 Mean	2.0	1.9	1.8	1.9	1.9	2.0
	Over	all Mean	2.1	1.9	2.3	2.1	2.0	2.1
		2	0.1	1.0	0.5	1 5	17	2.0
	4 C		2.1	1.8	2.5	1.5	1.7	2.0
	1 ^c	8	1.8	1.6	2.4	1.9	1.6	1.9
	Evo	14 1 Maan	1.6	1.6	1.7	1.4	1.4	1.5
L. reuteri DS-36	Exp.	1 Mean 2	1.8 2.3	1.7 2.1	2.2 2.1	1.6 2.3	1.6 2.3	1.8 2.1
L. Teulen DS-30	2 ^d	2 4	2.3 1.7	2.1 1.6	2.1 1.4	2.3 1.6	2.3 1.6	1.6
	2	4 10	1.7	1.6	1.4	1.6	1.6	1.0
	Evn	2 Mean	1.9	1.8	1.0	1.8	1.8	1.7
		all Mean	1.9	1.7		1.7	1.7	1.8
	Over		1.9	1.7	2.0	1.7	1.7	1.8
		4	1.6	1.6	2.2	1.7	1.6	1.7
	1 ^c	6	2.0	1.9	2.5	1.4	1.8	2.1
		11	2.0	1.9	2.8	1.9	1.7	2.0
	Exp.	1 Mean	1.9	1.8	2.5	1.7	1.7	1.9
L. reuteri DS-37		5	2.3	2.0	2.1	2.0	2.1	2.1
	2 ^d	6	2.3	2.2	2.2	2.1	2.2	2.2
	_	11	2.4	2.3	2.0	2.0	2.2	2.1
	Exp.	2 Mean	2.3	2.2	2.1	2.0	2.2	2.1
		all Mean	2.1	2.0	2.3	1.9	1.9	2.0
		3	2.0	1.7	2.4	1.3	1.5	1.8
	1 ^c	7	1.8	1.7	2.6	1.8	1.6	1.7
		15	2.2	2.0	2.6	1.6	2.0	2.0
	Exp.	1 Mean	2.0	1.8	2.5	1.6	1.7	1.8
L. reuteri WB-72		7	1.9	1.9	1.7	1.8	1.7	1.8
	2 ^d	8	2.1	1.9	1.6	1.7	1.9	2.0
		9	2.2	2.0	2.0	2.0	2.1	2.1
	Exp.	2 Mean	2.1	1.9	1.8	1.8	1.9	2.0
	Over	all Mean	2.0	1.9	2.2	1.7	1.8	1.9
		1	2.0	1.7	1.8	1.7	1.9	2.0
	1 ^c	9	2.2	2.0	2.9	2.0	1.8	2.1
		12	2.1	1.8	2.4	2.3	2.2	2.0
	Exp.	1 Mean	2.1	1.8	2.4	2.0	2.0	2.0
L. reuteri WB-76		12	2.3	2.0	2.0	1.8	2.1	2.0
	2 ^d	13	1.8	1.9	1.8	1.7	1.8	1.8
		14	1.7	1.7	1.5	1.4	1.6	1.7
		2 Mean	1.9	1.9	1.8	1.6	1.8	1.8
	Over	all Mean	2.0	1.9	2.1	1.8	1.9	1.9

Table C55. Study 2 hourly LPS^a challenge globulin levels (g/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	1.4	1.4	1.6	1.5	1.4	1.2
	1 ^c	10	1.6	1.5	1.8	2.0	1.5	1.5
		13	1.2	1.2	1.4	1.3	1.3	1.3
	Exp.	Exp. 1 Mean		1.4	1.6	1.6	1.4	1.3
Control		1	1.3	1.3	1.5	1.2	1.2	1.3
	2 ^d	3	1.4	1.4	1.4	1.5	1.3	1.3
		15	1.6	1.6	1.6	1.7	1.6	1.4
	Exp.	2 Mean	1.4	1.4	1.5	1.5	1.4	1.3
	Overa	all Mean	1.4	1.4	1.6	1.5	1.4	1.3
		2	1.6	1.5	1.8	1.7	1.6	1.4
	1 ^c	8	1.8	1.9	2.3	2.3	1.9	1.7
		14	2.2	2.0	2.7	2.2	2.2	2.2
	Exp	1 Mean	1.9	1.8	2.3	2.1	1.9	1.8
L. reuteri DS-36		2	1.4	1.4	1.5	1.4	1.4	1.5
	2 ^d	4	1.7	1.7	1.9	1.7	1.6	1.7
	-	10	1.8	1.8	1.8	1.7	1.6	1.5
	Exp.	2 Mean	1.6	1.6	1.7	1.6	1.5	1.6
		all Mean	1.8	1.7	2.0	1.8	1.7	1.7
		4	2.3	2.0	2.4	2.3	2.1	1.9
	1 ^c	6	1.4	1.4	1.7	1.4	1.3	1.3
		11	1.5	1.4	1.6	1.6	1.4	1.3
	Exp.	1 Mean	1.7	1.6	1.9	1.8	1.6	1.5
L. reuteri DS-37		5	1.3	1.3	1.3	1.4	1.2	1.1
	2 ^d	6	1.1	1.2	1.2	1.2	1.1	1.2
		11	1.0	1.1	1.1	1.1	1.0	1.1
		2 Mean	1.1	1.2	1.2	1.2	1.1	1.1
	Overa	all Mean	1.4	1.4	1.6	1.5	1.4	1.3
		3	1.8	2.0	2.2	2.0	2.1	1.8
	1 ^c	7	1.8	1.7	1.9	1.9	1.8	1.8
		15	1.2	1.2	1.5	1.2	1.3	1.2
	Exp.	1 Mean	1.6	1.6	1.9	1.7	1.7	1.6
L. reuteri WB-72		7	1.8	1.7	1.8	1.8	1.7	1.6
	2 ^d	8	1.6	1.7	1.8	1.7	1.5	1.5
		9	1.4	1.5	1.5	1.4	1.4	1.3
	Exp.	2 Mean	1.6	1.6	1.7	1.6	1.5	1.5
	Overa	all Mean	1.6	1.6	1.8	1.7	1.6	1.5
	-	4	1.0	1.0	0.0	4 7	4 7	4.4
	1 ^c	1	1.6	1.6	2.6	1.7	1.7	1.4
	¹	9 12	1.5 1.6	1.5	1.9	1.7	1.5	1.4 1.6
	Evo	1 Mean	1.6 1.6	<u>1.7</u> 1.6	2.0 2.2	1.9 1.8	<u>1.7</u> 1.6	<u>1.6</u> 1.5
L. reuteri WB-76	Exp.	12 12	1.6	1.6	1.6	1.8	1.6	1.5
L. IEULEII WD-10	2 ^d	12	1.5	1.5	1.6	1.6	1.5	1.6
		13	1.5	1.5	1.6	1.5	1.5	1.4
	Evn	2 Mean	1.6	1.6	1.0	1.6	1.6	1.5
		all Mean	1.6	1.6	1.7	1.0	1.6	1.5
	Overa		1.0	0.1	1.9	1.7	1.0	1.0

Table C56. Study 2 hourly LPS^a challenge albumin:globulin ratio levels

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment ^c	Exp. ^c	Pig ^c	Hour 0			. ,	Hour 12	Hour 24
		5	45	55	93	80	126	85
	1 ^d	10	49	53	104	100	89	81
		13	54	59	100	90	117	112
	Exp.	1 Mean	49	56	99	90	111	93
Control		1	50	57	67	66	87	70
	2 ^e	3	49	56	60	89	102	101
		15	64	56	70	82	126	119
	Exp.	2 Mean	54	56	66	79	105	97
		all Mean	52	56	82	85	108	95
	-							
		2	43	45	75	46	96	51
	1 ^d	8	47	61	97	100	98	85
		14	63	64	130	85	101	69
	Exp.	1 Mean	51	57	101	77	98	68
L. reuteri DS-36		2	43	49	58	74	77	65
	2 ^e	4	48	52	60	66	91	65
		10	48	54	54	64	66	61
		2 Mean	46	52	57	68	78	64
	Overa	all Mean	49	54	79	73	88	66
		4	51	58	94	78	69	50
	1 ^d	6	65	50 62	94 98	78 54	69	68
		11	47	61	98 98	54 70	69 64	61
	Evo	1 Mean	54	60	98	67	67	60
L. reuteri DS-37	L.xp.	5	50	51	52	62	77	83
L. Teuteri DO-57	2 ^e	6	50 50	63	74	90	122	94
	2	11	46	59	54	69	87	54 75
	Evo	2 Mean	40	58	60	74	95	84
		Overall Mean		59	78	71	81	72
	0,000		52		70	71	01	12
		3	50	66	123	79	175	96
	1 ^d	7	45	51	95	77	81	61
		15	57	61	93	60	70	52
	Exp.	1 Mean	51	59	104	72	109	70
L. reuteri WB-72		7	43	42	68	59	64	55
	2 ^e	8	45	64	63	71	97	65
		9	50	49	52	51	71	56
		2 Mean	46	52	61	60	77	59
	Overa	all Mean	48	56	82	66	93	64
	-	4	07	74	100	00	105	00
	1 ^d	1	67	74	100	83	105	69 70
	¹	9	45 52	53	99	81 87	101	76
	Ev.~	12	53	55	82	87	74	52
	⊨xp.	1 Mean	55	61	94	84	93	66
L. reuteri WB-76	oe	12	53 100	42	49 121	62	84 156	53 160
	2 ^e	13 14	100 55	110 55	121 57	128	156	169
	Ev-	2 Mean	<u>55</u> 69	<u>55</u> 69	57 76	64 85	76 105	60 94
		2 Mean						
	l Overa	an mean	62	65	85	84	99	80

Table C57. Study 2 hourly LPS^a challenge AST^b levels (U/L)

^bAST - aspartate aminotransferase

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

		-	-		-			
Treatment ^c	Exp. ^c	Pig ^c		Hour 1.5				
		5	39	38	50	45	50	43
	1 ^d	10	61	57	90	78	64	61
		13	56	57	78	65	64	66
	Exp.	1 Mean	52	51	73	63	59	57
Control		1	46	50	49	49	54	47
	2 ^e	3	44	47	46	54	53	52
		15	69	71	67	68	74	69
	Exp.	2 Mean	53	56	54	57	60	56
	Overa	all Mean	53	53	63	60	60	56
			47	40		40	= 4	50
	, d	2	47	48	62	46	54	58
	1 ^d	8	59	56	77	72	61	61
		14	56	53	62	52	57	54
	Exp.	1 Mean	54	52	67	57	57	58
L. reuteri DS-36		2	43	42	45	45	46	43
	2 ^e	4	59	57	59	59	60	54
		10	46	44	43	48	49	40
		2 Mean	49	48	49	51	52	46
	Overa	all Mean	52	50	58	54	55	52
		4	56	55	77	65	58	54
	1 ^d	6	50 74	55 71		57		
		11	62	57	90	57 64	66 56	68 57
	Eve	1 Mean			84			57
	Exp.	5	64	61	84	62	60	60
L. reuteri DS-37	O [®]	-	75	69 62	69 62	70	73	70
	2 ^e	6	60	62	63 50	63	69	63
		11	58	62	56	58	61	58
		2 Mean	64	64	63	64	68	64
	Overa	all Mean	64	63	73	63	64	62
		3	48	50	68	49	59	58
	1 ^d	7	66	65	93	74	69	66
	'	, 15	70	65	85	54	70	61
	Fxn	1 Mean	61	60	82	59	66	62
L. reuteri WB-72		7	60	60	61	61	62	58
	2 ^e	8	48	54	47	51	60	52
		9	49	50	47	51	55	46
	Exp	2 Mean	52	55	52	54	59	52
		all Mean	57	57	67	57	63	57
							-	
		1	63	62	75	65	69	62
	1 ^d	9	39	41	57	44	43	46
		12	62	59	77	78	66	56
	Exp.	1 Mean	55	54	70	62	59	55
L. reuteri WB-76		12	47	46	47	48	49	46
	2 ^e	13	52	53	56	58	58	53
		14	63	59	58	58	63	51
	Exp.	2 Mean	54	53	54	55	57	50
	Overa	all Mean	54	53	62	59	58	52

Table C58. Study 2 hourly LPS^a challenge ALT^b levels (U/L)

^bALT - alanine aminotransferase

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

T	F 0	-						
Treatment ^c	Exp. ^c	Pig ^c	Hour 0			Hour 6.0		
	d	5	273	253	359	235	296	234
	1 ^d	10	219	204	375	279	201	206
		13	239	229	362	254	226	226
. .	Exp.	1 Mean	244	229	365	256	241	222
Control		1	217	216	214	191	240	206
	2 ^e	3	178	171	174	190	198	168
		15	159	159	153	137	162	128
		2 Mean	185	182	180	173	200	167
	Over	all Mean	214	205	273	214	221	195
		2	267	225	357	176	229	223
	1 ^d	8	177	161	265	199	148	154
	1 '	14	193	216	264	164	184	193
	Exp	1 Mean	212	201	295	180	187	190
L. reuteri DS-36		2	236	236	233	226	257	214
	2	4	197	187	194	179	182	145
	<u> </u>	10	343	293	371	327	334	258
	Exp.	2 Mean	259	239	263	244	258	206
		all Mean	236	220	279	212	222	198
	0.0		200		2.0			
		4	202	199	322	217	206	173
	1 ^d	6	243	235	354	152	229	231
		11	187	159	306	186	147	153
	Exp.	1 Mean	211	198	327	185	194	186
L. reuteri DS-37		5	191	177	177	170	168	130
	2	6	171	174	186	157	160	141
		11	179	180	172	161	177	165
	Exp.	2 Mean	180	177	178	163	168	145
	Over	all Mean	196	187	253	174	181	166
		<u> </u>	202	206	405	100	200	200
	1 ^d	3 7	283	306	425	188	289	299
	1		189	182	310	205	183	160
	Evo	15 1 Mean	235	212	323 353	148 180	243 238	201 220
L. reuteri WB-72	⊏xp.	7	236 121	233 127	<u> </u>	180	109	
L. IEULEII VVD-IZ	2	8	146	127	141	143	109 197	98 224
	<u>ک</u>	8	146 146	140	139	143	197	224 121
	Evn	9 2 Mean	146	139	139	125	156	148
		all Mean	187	184	242	129	196	140
	0.101		101			100	100	101
		1	286	222	357	248	332	264
	1 ^d	9	142	138	230	131	118	126
		12	219	213	306	275	246	199
	Exp.	1 Mean	216	191	298	218	232	196
L. reuteri WB-76		12	172	163	191	162	199	166
	2 ^e	13	236	235	255	216	246	229
		14	186	200	193	154	199	177
	Exp.	2 Mean	198	199	213	177	215	191
	Over	all Mean	207	195	255	198	223	194

Table C59. Study 2 hourly LPS^a challenge ALKPhos^b levels (U/L)

^bALKPhos - alkaline phosphatase

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
	0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1 0.1 0.1 0.1 0.1 0.1 0.1
Control $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1 0.1 0.1 0.1 0.1 0.1
$L. reuteri DS-36 = \begin{bmatrix} 2^{e} & 3 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 15 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline Exp. 2 Mean & 0.1 & 0.1 & 0.1 & 0.2 & 0.4 \\ \hline Overall Mean & 0.1 & 0.1 & 0.2 & 0.3 & 0.6 \\ \hline \\ & & & & & & & & & & & & & & & & &$	0.1 0.1 0.1 0.1 0.1
$L. reuteri DS-36 = \begin{bmatrix} 15 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ Exp. 2 Mean & 0.1 & 0.1 & 0.1 & 0.2 & 0.4 \\ \hline Overall Mean & 0.1 & 0.1 & 0.2 & 0.3 & 0.6 \\ \hline \\ 1^d & 8 & 0.1 & 0.1 & 0.2 & 0.1 & 0.2 \\ 1^d & 8 & 0.1 & 0.1 & 0.2 & 0.1 & 0.2 \\ 14 & 0.6 & 0.1 & 0.6 & 0.2 & 0.7 \\ \hline \\ Exp. 1 Mean & 0.3 & 0.1 & 0.4 & 0.1 & 0.5 \\ 2 & 0.1 & 0.1 & 0.1 & 0.3 & 0.3 \\ 2^e & 4 & 0.1 & 0.1 & 0.1 & 0.3 & 0.3 \\ 2^e & 4 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline \\ Exp. 2 Mean & 0.1 & 0.2 & 0.2 & 0.4 & 0.4 \\ \hline \\ Overall Mean & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \hline \\ L. reuteri DS-37 = \begin{bmatrix} 4 & 0.1 & 0.1 & 0.4 & 0.2 & 0.6 \\ 1^d & 6 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ 11 & 0.1 & 0.2 & 0.2 & 0.1 & 0.3 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline \\ Exp. 2 Mean & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline \\ 2^e & 6 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.3 & 0.1 & 0.3 \\ \hline \\ $	0.1 0.1 0.1 0.1
$L. reuteri DS-36 = \begin{bmatrix} Exp. 2 Mean & 0.1 & 0.1 & 0.1 & 0.2 & 0.4 \\ \hline Overall Mean & 0.1 & 0.1 & 0.2 & 0.3 & 0.6 \\ \hline 0.1 & 0.1 & 0.2 & 0.3 & 0.1 & 0.5 \\ 1^d & 8 & 0.1 & 0.1 & 0.2 & 0.1 & 0.2 \\ 14 & 0.6 & 0.1 & 0.6 & 0.2 & 0.7 \\ \hline 0.1 & 0.1 & 0.1 & 0.6 & 0.2 & 0.7 \\ \hline 0.2 & 0.1 & 0.1 & 0.1 & 0.4 & 0.1 & 0.5 \\ 2 & 0.1 & 0.1 & 0.1 & 0.1 & 0.5 \\ 2^e & 4 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline 0.2 & 0.3 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline 0.2 & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \hline 0.2 & 0.1 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ \hline 1 & 0.1 & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline 0.2 & 0.3 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.1 & 0.5 \\ \hline 11 & 0.1 & 0.3 & 0.1 & 0.2 & 0.1 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.1 & 0.1 & 0.2 & 0.1 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.1 & 0.2 \\ \hline 0.2 & 0.2 & 0.1 & 0.1 & 0.4 \\ \hline 0.2 & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline 0.2 & 0.2 & 0.2 & 0$	0.1 0.1 0.1
$L. reuteri DS-36 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 3 & 0 & 0 & 6 \\ 1^{d} & 8 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 2 \\ 14 & 0 & 6 & 0 & 1 & 0 & 6 & 0 & 2 & 0 & 7 \\ \hline 14 & 0 & 6 & 0 & 1 & 0 & 6 & 0 & 2 & 0 & 7 \\ \hline 14 & 0 & 6 & 0 & 1 & 0 & 6 & 0 & 2 & 0 & 7 \\ \hline 14 & 0 & 6 & 0 & 1 & 0 & 1 & 0 & 6 & 0 & 2 & 0 & 7 \\ \hline 15 & 2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 5 \\ 2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 3 & 0 & 3 \\ 2^{e} & 4 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 2 \\ \hline 10 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 9 & 0 & 8 \\ \hline 10 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 9 & 0 & 8 \\ \hline 10 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 9 & 0 & 8 \\ \hline 10 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 9 & 0 & 8 \\ \hline 10 & 0 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 3 & 0 & 5 \\ \hline 11 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 3 \\ \hline 11 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 3 \\ \hline 11 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 10 & 1 & 0 & 3 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 10 & 1 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 1 \\ \hline 10 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 1 \\ \hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	0.1
$L. reuteri DS-36 = \begin{bmatrix} 2 & 0.2 & 0.1 & 0.3 & 0.1 & 0.5 \\ 1^{d} & 8 & 0.1 & 0.1 & 0.2 & 0.1 & 0.2 \\ 14 & 0.6 & 0.1 & 0.6 & 0.2 & 0.7 \\ \hline Exp. 1 Mean & 0.3 & 0.1 & 0.4 & 0.1 & 0.5 \\ 2 & 0.1 & 0.1 & 0.1 & 0.3 & 0.3 \\ 2^{e} & 4 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline Exp. 2 Mean & 0.1 & 0.2 & 0.2 & 0.4 & 0.4 \\ \hline Overall Mean & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \end{bmatrix}$	0.1
$L. \ reuteri \ {\rm DS}{-}36 \qquad \qquad$	
$L. \ reuteri \ {\rm DS}{-}36 \qquad \qquad$	
$L. reuteri DS-36 = \begin{bmatrix} 14 & 0.6 & 0.1 & 0.6 & 0.2 & 0.7 \\ \hline Exp. 1 Mean & 0.3 & 0.1 & 0.4 & 0.1 & 0.5 \\ 2 & 0.1 & 0.1 & 0.1 & 0.1 & 0.3 & 0.3 \\ 2^{e} & 4 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline Exp. 2 Mean & 0.1 & 0.2 & 0.2 & 0.4 & 0.4 \\ \hline Overall Mean & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \hline \\ \\ L. reuteri DS-37 = \begin{bmatrix} 4 & 0.1 & 0.1 & 0.4 & 0.2 & 0.6 \\ 1^{d} & 6 & 0.1 & 0.1 & 0.4 & 0.2 & 0.6 \\ 1^{d} & 6 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ 11 & 0.1 & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$L. reuteri DS-36 = \begin{bmatrix} Exp. 1 Mean & 0.3 & 0.1 & 0.4 & 0.1 & 0.5 \\ 2 & 0.1 & 0.1 & 0.1 & 0.3 & 0.3 \\ 2^e & 4 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline \\ Exp. 2 Mean & 0.1 & 0.2 & 0.2 & 0.4 & 0.4 \\ \hline \\ Overall Mean & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \hline \\ I^d & 6 & 0.1 & 0.1 & 0.4 & 0.2 & 0.6 \\ 1^d & 6 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ \hline \\ I^d & 6 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ \hline \\ I^d & 6 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ \hline \\ I^e & 6 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline \\ Exp. 1 Mean & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline \\ 2^e & 6 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline \\ Exp. 2 Mean & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline \\ Exp. 2 Mean & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline \\ Overall Mean & 0.1 & 0.2 & 0.2 & 0.1 & 0.3 \\ \hline \\ \hline \\ \hline \\ \hline \\ I^d & 7 & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 \\ \hline \\ \end{bmatrix}$	0.1
$ \begin{array}{c} \text{L. reuteri DS-36} \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0.1
$L. reuteri DS-37 = \begin{bmatrix} 2^e & 4 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ \hline Exp. 2 Mean & 0.1 & 0.2 & 0.2 & 0.4 & 0.4 \\ \hline Overall Mean & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ L. reuteri DS-37 & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & $	0.1
$L. reuteri DS-37 = \begin{bmatrix} 10 & 0.2 & 0.3 & 0.4 & 0.9 & 0.8 \\ Exp. 2 Mean & 0.1 & 0.2 & 0.2 & 0.4 & 0.4 \\ \hline 0 \text{ Overall Mean} & 0.2 & 0.1 & 0.3 & 0.3 & 0.5 \\ \hline 1^d & 6 & 0.1 & 0.1 & 0.4 & 0.2 & 0.6 \\ 1^d & 6 & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ \hline 11 & 0.1 & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline Exp. 1 Mean & 0.1 & 0.1 & 0.3 & 0.1 & 0.3 \\ \hline 5 & 0.3 & 0.1 & 0.1 & 0.1 & 0.1 \\ 2^e & 6 & 0.1 & 0.1 & 0.1 & 0.1 & 0.5 \\ \hline 11 & 0.1 & 0.3 & 0.1 & 0.2 & 0.1 \\ \hline Exp. 2 Mean & 0.2 & 0.2 & 0.1 & 0.1 \\ \hline 0 \text{ Overall Mean} & 0.1 & 0.2 & 0.2 & 0.1 & 0.3 \\ \hline 1^d & 7 & 0.1 & 0.1 & 0.4 & 0.2 & 1.0 \\ \hline 1^d & 7 & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 \\ \hline \end{bmatrix}$	0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1
$L. reuteri DS-37 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1
$L. \ reuteri \ \text{DS-37} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1
$L. \ reuteri \ {\sf DS-37} \qquad \qquad \begin{array}{ccccccccccccccccccccccccccccccccc$	0.1
$L. \ reuteri \ \text{DS-37} \qquad \qquad \begin{array}{ccccccccccccccccccccccccccccccccc$	0.1
$L. \ reuteri \ \text{DS-37} \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1
Exp. 2 Mean 0.2 0.2 0.1 0.1 0.2 Overall Mean 0.1 0.2 0.2 0.1 0.3 Image: 1 to 1 t	0.2
Overall Mean 0.1 0.2 0.2 0.1 0.3 3 0.1 0.1 0.4 0.2 1.0 1 ^d 7 0.1 0.1 0.3 0.1 0.4	0.1
3 0.1 0.1 0.4 0.2 1.0 1 ^d 7 0.1 0.1 0.3 0.1 0.4	0.1
1 ^d 7 0.1 0.1 0.3 0.1 0.4	0.1
1 ^d 7 0.1 0.1 0.3 0.1 0.4	
	0.1
	0.1
15 0.1 0.1 0.3 0.1 0.5	0.1
Exp. 1 Mean 0.1 0.1 0.3 0.1 0.6	0.1
L. reuteri WB-72 7 0.1 0.1 0.2 0.1 0.4	0.1
2 ^e 8 0.1 0.6 0.2 0.1 0.7	0.2
9 0.1 0.1 0.1 0.1 0.2	0.1
Exp. 2 Mean 0.1 0.3 0.2 0.1 0.4	0.1
Overall Mean 0.1 0.2 0.3 0.1 0.5	0.1
	0.1
1 0.3 0.4 0.2 0.2 0.9	0.1
1 ^d 9 0.2 0.1 0.4 0.1 0.3	0.1
	0.1
Exp. 1 Mean 0.2 0.2 0.3 0.2 0.5	0.1
L. reuteri WB-76 12 0.4 0.1 0.2 0.2 0.5	0.1
2 ^e 13 0.1 0.2 0.1 0.4 1.0	0.2
Exp. 2 Mean 0.2 0.1 0.1 0.2 0.6	0.5
Overall Mean 0.2 0.2 0.2 0.2 0.5	

Table C60. Study 2 hourly LPS^a challenge bili, total levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

 $^{\rm c}\text{All}$ 0.1 individual pig values were equal to <0.1

^dExperiment 1 were gilts

Treatment ^b	Exp. ^b	Pig ^b		Hour 1.5				Hour 24
		5	88	55	107	66	73	74
	1 ^c	10	84	73	124	101	70	77
		13	85	75	122	90	85	86
	Exp.	1 Mean	86	68	118	86	76	79
Control		1	77	68	68	56	62	66
	2 ^d	3	90	79	78	73	55	69
		15	70	60	50 ^e	50 ^e	50 ^e	53
	Exp.	2 Mean	79	69	63	60	56	63
		all Mean	82	68	92	73	66	71
		2	84	69	109	50 ^e	56	71
	1 ^c	8	84	73	118	90	71	72
		14	89	91	110	70	75	84
	Exp.	1 Mean	86	78	112	70	67	76
L. reuteri DS-36		2	95	90	89	85	83	73
	2 ^d	4	57	52	52	50 ^e	50 ^e	$50^{\rm e}$
		10	81	67	70	58	59	58
	Exp.	2 Mean	78	70	70	64	64	60
		all Mean	82	74	91	67	66	68
		4	73	67	103	43	56	61
	1 ^c	6	50 ^e	50 ^e	73	50 ^e	53	56
		11	64	50	95	52	50 ^e	53
	Exp.	1 Mean	62	56	90	48	53	57
L. reuteri DS-37		5	85	75	71	50	50 ^e	50 ^e
	2 ^d	6	84	80	79	65	69	66
	_	11	72	70	62	55	59	68
	Exp.	2 Mean	80	75	71	57	64	61
		all Mean	71	65	81	53	57	59
					-		-	
		3	90	84	120	53	77	82
	1 ^c	7	84	79	129	87	71	72
		15	87	77	113	52	74	65
	Exp.	1 Mean	87	80	121	64	74	73
L. reuteri WB-72		7	68	64	55	50 ^e	50 ^e	50 ^e
	2 ^d	8	71	61	52	50 ^e	50 ^e	63
	1 -	9	70	61	58	50 ^e	57	50 ^e
	Evo	9 2 Mean	70	62	55	50	52	54
		all Mean	78	71	88	57	63	64
			10	/ 1	00	51	00	
		1	90	67	102	75	84	72
	1 ^c	9	86	76	116	65	55	71
	1	12	78	73	105	88	77	81
	Exp.	1 Mean	85	72	108	76	72	75
L. reuteri WB-76		12	97	85	87	67	75	61
	2 ^d	13	68	67	65	53	52	68
		14	50 ^e	67				
	Fxn	2 Mean	72	67	67	57	59	65
		all Mean	78	70	88	66	66	70
			10	10	00	00	00	10

Table C61. Study 2 hourly LPS^a challenge cholesterol levels (mg/dL)

 $^{\mathrm{b}}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

^dExperiment 2 were barrows

^eValues were equal to <50

Treatment ^b	Exp. ^b	Pig ^b	-	Hour 1.5			-	Hour 24
	<u>_,,p.</u>	5	31	25	40	19	51	25
	1 ^c	10	42	33	45	30	48	31
		13	39	48	65	56	111	41
	Exp	1 Mean	37	35	50	35	70	32
Control		1	50	34	33	31	91	69
Control	2 ^d	3	41	33	35	46	71	45
	2	15	62	48	50	34	47	57
	Exp	2 Mean	51	38	39	37	70	57
		all Mean	44	37	45	36	70	45
	01010			01	10	00	10	10
		2	35	30	40	17	51	23
	1 ^c	8	18	17	33	14	18	23
		14	43	34	38	27	79	73
	Exp.	1 Mean	32	27	37	19	49	40
L. reuteri DS-36		2	51	43	44	48	59	43
	2 ^d	4	38	33	25	25	35	28
		10	27	33	46	38	68	27
	Exp.	2 Mean	39	36	38	37	54	33
	Overa	all Mean	35	32	38	28	52	36
		4	36	28	45	26	40	35
	1 ^c	6	29	21	35	14	52	23
		11	37	26	39	18	18	28
	Exp.	1 Mean	34	25	40	19	37	29
L. reuteri DS-37		5	48	53	45	26	38	29
	2 ^d	6	32	36	28	23	47	28
		11	47	42	31	23	34	58
	Exp.	2 Mean	42	44	35	24	40	38
	Overa	all Mean	38	34	37	22	38	34
		3	29	36	51	16	91	34
	1 ^c	7	24	32	39	20	30	14
		15	45	35	52	27	56	40
	Exp.	1 Mean	33	34	47	21	59	29
L. reuteri WB-72	ed	7	36	24	24	24	31	24
	2 ^d	8	37	40	29	31	61	52
		9	37	26	31	25	55	35
		2 Mean	37	30	28	27	49	37
	Overa	all Mean	35	32	38	24	54	33
	1	1	39	17	39	24	99	31
	1 ^c	9	39 46	29	39 52	24 11	99 20	28
		9 12	46 20	29 20	52 25	18	20 27	28 20
	Evn	1 Mean	35	20	39	18	49	20
L. reuteri WB-76	Lxp.	12	<u> </u>	56	<u> </u>	38	49 114	35
L. TEULETT VVD-10	2 ^d	12	33	36 34	52 35	38 29	42	35 29
	[∠]	13	33 40	34 28	35 30	29 23	42 44	29 62
	Fyn	2 Mean	40	39	30	30	67	42
		all Mean	47	39	39	24	58	34
	Uvera		41	31	29	24	50	54

Table C62. Study 2 hourly LPS^a challenge triglyceride levels (mg/dL)

^bDescription of treatments, experiments, and pigs - see Table C2

^cExperiment 1 were gilts

Treatment" Exp.* Pig" Pig" Hour 0 Hour 1.5 Hour 3.0 Hour 6.0 Hour 2.4 1 ^d 10 28 24 45 29 21 26 Control 1 ^d 10 28 24 45 29 21 26 2 1 30 28 26 16 18 26 2 1 33 30 28 21 11 11 Exp. 2 Mean 31 27 23 15 16 17 Exp. 2 Mean 30 27 31 21 17 20 0verall Mean 30 27 31 31 30 28 24 14 31 32 39 20 17 21 L. reuteri DS-36 2 35 33 31 30 28 24 2 ^e 4 24 23 20 17 15 Overall Mean 29				ou) <u>_</u> . o	enanonge		olo (/	
Control $ \begin{array}{c} 1^{4} \ 10 \ 28 \ 24 \ 45 \ 29 \ 21 \ 26 \ 28 \ 24 \ 22 \ 25 \ 28 \ 24 \ 23 \ 21 \ 11 \ 11 \ 11 \ 11 \ 11 \ 11$	Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
Control 13 27 25 28 24 22 25 Exp. 1 Mean 29 25 37 24 19 23 2 ^e 3 33 30 28 26 16 18 26 2 ^e 3 33 30 28 21 11 11 15 16 17 15 16 17 Exp. 2 Mean 30 27 31 21 17 20 1 ^d 8 30 26 44 27 21 24 1 ^d 8 30 26 44 27 21 24 1 ^d 13 32 39 20 17 21 2 35 33 31 30 28 24 14 2 ^e 4 26 23 26 17 15 10 30 27 27 20 17 16						37	18		17
Control $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 ^d	10	28	24	45	29	21	26
Control 1 30 28 26 16 18 26 2 ^e 3 33 30 28 21 11 11 15 31 27 23 15 16 17 Exp. 2 Mean 31 28 26 17 15 18 Overall Mean 30 27 31 21 17 20 L. reuteri DS-36 2 26 20 33 13 11 14 1 ^d 8 30 26 44 27 21 24 14 31 32 39 20 17 21 2 ^e 4 24 23 22 14 19 9 10 30 25 27 17 13 11 Exp. 2 Mean 30 27 20 17 18 L. reuteri DS-37 4 26 21 38 17 10 16				27	25	28	24	22	25
2 ^e 3 33 30 28 21 11 11 15 31 27 23 15 16 17 Exp. 2 Mean 31 28 26 17 15 18 Overall Mean 30 27 31 21 17 20 Image: Construct Struct		Exp.	1 Mean						
15 31 27 23 15 16 17 Exp. 2 Mean 31 28 26 17 15 18 Overall Mean 30 27 31 21 17 20 Image: Constraint of the stress of the stre	Control		-						
$L. reuteri DS-36 = \begin{bmatrix} Exp. 2 Mean & 31 & 28 & 26 & 17 & 15 & 18 \\ \hline Overall Mean & 30 & 27 & 31 & 21 & 17 & 20 \\ \hline 17 & 21 & 17 & 20 & 19 & 26 \\ 14 & 31 & 32 & 39 & 20 & 19 & 26 \\ \hline 14 & 31 & 32 & 39 & 20 & 19 & 26 \\ \hline 14 & 31 & 32 & 39 & 20 & 17 & 21 \\ 2 & 35 & 33 & 31 & 30 & 28 & 24 \\ 2^{e} & 4 & 24 & 23 & 22 & 14 & 11 & 9 \\ \hline 10 & 30 & 25 & 27 & 17 & 13 & 11 \\ \hline Exp. 2 Mean & 30 & 27 & 27 & 20 & 17 & 15 \\ \hline Overall Mean & 29 & 26 & 39 & 20 & 17 & 15 \\ \hline Overall Mean & 29 & 27 & 33 & 20 & 17 & 18 \\ \hline 1^{d} & 6 & 17 & 15 & 24 & 10 & 16 & 19 \\ 11 & 26 & 21 & 38 & 17 & 10 & 16 \\ \hline Exp. 1 Mean & 23 & 20 & 33 & 16 & 14 & 17 \\ \hline 1^{d} & 6 & 17 & 15 & 24 & 10 & 16 & 19 \\ 11 & 26 & 21 & 38 & 17 & 10 & 16 \\ \hline Exp. 2 Mean & 33 & 30 & 29 & 19 & 13 & 13 \\ Overall Mean & 28 & 25 & 31 & 18 & 13 \\ \hline 0 & 11 & 26 & 24 & 22 & 17 & 14 & 20 \\ \hline Exp. 2 Mean & 33 & 30 & 29 & 19 & 13 & 13 \\ \hline Overall Mean & 28 & 25 & 31 & 18 & 13 \\ \hline \\ L. reuteri WB-72 & \begin{bmatrix} 3 & 32 & 30 & 43 & 16 & 19 & 26 \\ 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ \hline Exp. 1 Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ \hline \\ L. reuteri WB-76 & \begin{bmatrix} 1 & 26 & 19 & 29 & 18 & 12 & 9 \\ 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ \hline Exp. 1 Mean & 27 & 25 & 30 & 16 & 14 & 15 \\ \hline \\ L. reuteri WB-76 & \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 12 & 37 & 34 & 35 & 22 & 23 & 17 \\ 2^{e} & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ \hline 14 & 19 & 12 & 37 & 34 & 35 & 22 & 23 & 17 \\ 2^{e} & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ \hline 14 & 19 & 26 & 24 & 22 & 16 & 112 \\ \hline Exp. 2 Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{array}$		2 ^e							
Overall Mean 30 27 31 21 17 20 I 2 26 20 33 11 14 1 ^d 8 30 26 44 27 21 24 14 31 32 39 20 17 21 24 14 31 32 39 20 17 21 24 2 35 33 31 30 28 24 2 ^e 4 24 23 22 14 11 9 10 30 25 27 17 13 11 Exp. 2 Mean 29 27 33 20 17 18 1 ^d 6 17 15 24 10 16 19 1 26 21 38 17 10 16 Exp. 1 Mean 23 20 33 16 14 17				31	27	23	15		17
L. reuteri DS-36 L. reuteri DS-37 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri W		Exp.	2 Mean	31	28	26	17	15	18
L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri WB		Overa	all Mean	30	27	31	21	17	20
L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-37 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-72 L. reuteri WB-76 L. reuteri WB									
L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-36 L. reuteri DS-37 L. reuteri DS-3 L. reuteri DS-37 L. reuteri DS-37 L. reuteri DS-37 L. reuteri DS-37 L. reuteri DS-3 L. reuteri DS-37 L. reuteri DS-37 L. reuteri DS-3 L. reuteri DS-37 L. reuteri DS-37									
L. reuteri DS-36 Exp. 1 Mean 29 26 39 20 17 21 2 35 33 31 30 28 24 2 ^e 4 24 23 22 14 11 9 10 30 25 27 17 13 111 Exp. 2 Mean 30 27 27 20 17 15 Overall Mean 29 27 33 20 17 18 4 26 23 36 20 15 17 1 ^d 6 17 15 24 10 16 19 11 26 21 38 17 10 16 Exp. 1 Mean 23 20 33 16 14 17 5 42 37 36 23 13 9 2 ^e 6 31 29 29 18 12 9 11 26 24 22 17 14 20 Exp. 2 Mean 33 30 29 19 13 13 Overall Mean 28 25 31 18 13 15 L. reuteri WB-72 L. reuteri WB-76 L. reuteri WB-76 L. reuteri WB-76 L. reuteri WB-76 L. reuteri WB-76 L. reuteri WB-76		1 ^d	8						24
L. reuteri DS-36 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$				31		39			26
2 ^e 4 24 23 22 14 11 9 10 30 25 27 17 13 11 Exp. 2 Mean 30 27 27 20 17 15 Overall Mean 29 27 33 20 17 18 Image: Constraint of the stress		Exp.							21
10 30 25 27 17 13 11 Exp. 2 Mean 30 27 27 20 17 15 Overall Mean 29 27 33 20 17 18 Image: Constraint of the system of the syst	L. reuteri DS-36								
Exp. 2 Mean 30 27 27 20 17 15 Overall Mean 29 27 33 20 17 18 Image: Constraint of the stress of		2 ^e							
Overall Mean 29 27 33 20 17 18 V 1 ^d 6 17 15 24 10 16 19 1 ^d 6 17 15 24 10 16 19 11 26 21 38 17 10 16 19 Exp. 1 Mean 23 20 33 16 14 17 5 42 37 36 23 13 9 2 ^e 6 31 29 29 18 12 9 11 26 24 22 17 14 20 Exp. 2 Mean 33 30 29 19 13 13 Overall Mean 28 25 31 18 13 15 L. reuteri WB-72 7 27 26 23 16 9 7 2 ^e 8 27 22									
L. reuteri DS-37 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									15
$L. reuteri DS-37 = \begin{bmatrix} 1^{d} & 6 & 17 & 15 & 24 & 10 & 16 & 19 \\ 11 & 26 & 21 & 38 & 17 & 10 & 16 \\ \hline Exp. 1 Mean & 23 & 20 & 33 & 16 & 14 & 17 \\ 5 & 42 & 37 & 36 & 23 & 13 & 9 \\ 2^{e} & 6 & 31 & 29 & 29 & 18 & 12 & 9 \\ 11 & 26 & 24 & 22 & 17 & 14 & 20 \\ \hline Exp. 2 Mean & 33 & 30 & 29 & 19 & 13 & 13 \\ \hline Overall Mean & 28 & 25 & 31 & 18 & 13 & 15 \\ \hline \\ L. reuteri WB-72 = \begin{bmatrix} 3 & 32 & 30 & 43 & 16 & 19 & 26 \\ 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ \hline Exp. 1 Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ 2^{e} & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline \\ L. reuteri WB-72 = \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline \\ 2^{e} & 13 & 24 & 23 & 322 & 22 & 317 \\ 2^{e} & 13 & 24 & 23 & 22 & 22 & 317 \\ 2^{e} & 13 & 24 & 23 & 22 & 22 & 317 \\ 2^{e} & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ \hline & 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline \\ \hline Exp. 2 Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{array}$		Over	all Mean	29	27	33	20	17	18
$L. reuteri DS-37 = \begin{bmatrix} 1^{d} & 6 & 17 & 15 & 24 & 10 & 16 & 19 \\ 11 & 26 & 21 & 38 & 17 & 10 & 16 \\ \hline Exp. 1 Mean & 23 & 20 & 33 & 16 & 14 & 17 \\ 5 & 42 & 37 & 36 & 23 & 13 & 9 \\ 2^{e} & 6 & 31 & 29 & 29 & 18 & 12 & 9 \\ 11 & 26 & 24 & 22 & 17 & 14 & 20 \\ \hline Exp. 2 Mean & 33 & 30 & 29 & 19 & 13 & 13 \\ \hline Overall Mean & 28 & 25 & 31 & 18 & 13 & 15 \\ \hline \\ L. reuteri WB-72 = \begin{bmatrix} 3 & 32 & 30 & 43 & 16 & 19 & 26 \\ 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ \hline Exp. 1 Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ 2^{e} & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline \\ L. reuteri WB-72 = \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline \\ 2^{e} & 13 & 24 & 23 & 322 & 22 & 317 \\ 2^{e} & 13 & 24 & 23 & 22 & 22 & 317 \\ 2^{e} & 13 & 24 & 23 & 22 & 22 & 317 \\ 2^{e} & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ \hline & 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline \\ \hline Exp. 2 Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{array}$		1							
L. reuteri DS-37 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
L. reuteri DS-37 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 ^a							
L. reuteri DS-37 L. reuteri DS-37 2^{e} 6 31 29 29 18 12 9 11 26 24 22 17 14 20 Exp. 2 Mean 33 30 29 19 13 13 Overall Mean 28 25 31 18 13 15 									
$L. reuteri WB-72 = \begin{cases} 2^8 & 6 & 31 & 29 & 29 & 18 & 12 & 9 \\ 11 & 26 & 24 & 22 & 17 & 14 & 20 \\ \hline Exp. 2 Mean & 33 & 30 & 29 & 19 & 13 & 13 \\ \hline Overall Mean & 28 & 25 & 31 & 18 & 13 & 15 \\ \hline \\ & & & & & & & & & & & & & & & & &$		Exp.							
11 26 24 22 17 14 20 Exp. 2 Mean 33 30 29 19 13 13 Overall Mean 28 25 31 18 13 15 Image: Constraint of the stress of the stre	L. reuteri DS-37		-						
$L. reuteri WB-72 = \begin{bmatrix} Exp. 2 Mean & 33 & 30 & 29 & 19 & 13 & 13 \\ \hline Overall Mean & 28 & 25 & 31 & 18 & 13 & 15 \\ \hline 0verall Mean & 28 & 25 & 31 & 18 & 13 & 15 \\ \hline 1^d & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ \hline 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ \hline Exp. 1 Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ \hline 2^e & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ \hline 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2^e & 8 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2^e & 8 & 27 & 24 & 22 & 16 & 14 & 15 \\ \hline 0verall Mean & 27 & 25 & 30 & 16 & 14 & 15 \\ \hline \\ L. reuteri WB-76 = \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^d & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 12 & 37 & 34 & 35 & 22 & 23 & 17 \\ 2^e & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ \hline 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline Exp. 2 Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{bmatrix}$		2 ^e							
Overall Mean 28 25 31 18 13 15 Image: Amount of the system of the									
$L. reuteri WB-72 = \begin{bmatrix} 1 & 3 & 32 & 30 & 43 & 16 & 19 & 26 \\ 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ Exp. 1 Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ 7 & 27 & 26 & 23 & 16 & 9 & 7 \\ 2^{e} & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2 & 2^{e} & 8 & 27 & 25 & 30 & 16 & 14 & 15 \\ \hline 0 & 0 & 0 & 27 & 25 & 30 & 16 & 14 & 15 \\ \hline 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ \hline 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 2 & Exp. 1 Mean & 27 & 23 & 34 & 20 & 19 & 21 \\ \hline 1^{e} & 12 & 37 & 34 & 35 & 22 & 23 & 17 \\ 2^{e} & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ \hline 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline Exp. 2 Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{bmatrix}$								-	
$L. \ reuteri \ WB-72 = \begin{bmatrix} 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ Exp. 1 \ Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ 7 & 27 & 26 & 23 & 16 & 9 & 7 \\ 2^{e} & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2 & 2 & 2 & 21 & 15 & 9 & 15 \\ 0 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2 & 2 & 2 & 21 & 15 & 9 & 15 \\ \hline 0 & 27 & 24 & 22 & 16 & 12 & 12 \\ \hline 0 & 27 & 24 & 22 & 16 & 14 & 15 \\ \hline 0 & 27 & 25 & 30 & 16 & 14 & 15 \\ \hline 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 2 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 2 & 26 & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline Exp. 2 \ Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{bmatrix}$		Over	all Mean	28	25	31	18	13	15
$L. \ reuteri \ WB-72 = \begin{bmatrix} 1^{d} & 7 & 24 & 23 & 37 & 20 & 14 & 12 \\ 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ Exp. 1 \ Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ 7 & 27 & 26 & 23 & 16 & 9 & 7 \\ 2^{e} & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2 & 2 & 2 & 21 & 15 & 9 & 15 \\ 0 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline 2 & 2 & 2 & 21 & 15 & 9 & 15 \\ \hline 0 & 27 & 24 & 22 & 16 & 12 & 12 \\ \hline 0 & 27 & 24 & 22 & 16 & 14 & 15 \\ \hline 0 & 27 & 25 & 30 & 16 & 14 & 15 \\ \hline 1^{d} & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 2 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline 2 & 26 & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline Exp. 2 \ Mean & 27 & 25 & 24 & 14 & 14 & 12 \\ \hline \end{bmatrix}$									
$L. \ reuteri \ WB-72 = \begin{bmatrix} 15 & 27 & 24 & 36 & 15 & 17 & 15 \\ Exp. 1 \ Mean & 28 & 26 & 39 & 17 & 17 & 18 \\ 7 & 27 & 26 & 23 & 16 & 9 & 7 \\ 2^8 & 8 & 27 & 22 & 21 & 15 & 9 & 15 \\ 9 & 27 & 24 & 22 & 16 & 18 & 13 \\ \hline Exp. 2 \ Mean & 27 & 24 & 22 & 16 & 12 & 12 \\ \hline Overall \ Mean & 27 & 25 & 30 & 16 & 14 & 15 \\ \end{bmatrix}$									
L. reuteri WB-72 $Exp. 1 Mean 28 26 39 17 17 18 7 18 7 27 26 23 16 9 7 7 28 9 27 24 22 16 18 13 13 15 9 15 9 15 9 15 9 15 9 15 9 15$		1 ^a							
$L. \ reuteri \ WB-72$ $L. \ reuteri \ WB-72$ $P = P = P = P = P = P = P = P = P = P =$									
2 ^e 8 27 22 21 15 9 15 9 27 24 22 16 18 13 Exp. 2 Mean 27 24 22 16 12 12 Overall Mean 27 25 30 16 14 15 Image: Comparison of the system 1 26 19 29 19 20 16 1 ^d 9 30 26 40 19 17 24 12 25 23 33 23 19 24 Exp. 1 Mean 27 23 34 20 19 21 L. reuteri WB-76 12 37 34 35 22 23 17 2 ^e 13 24 23 22 12 9 9 14 19 18 16 9 10 11 Exp. 2 Mean 27 25 24 14		Exp.							
9 27 24 22 16 18 13 Exp. 2 Mean 27 24 22 16 12 12 Overall Mean 27 25 30 16 14 15 Image: Constraint of the system 1 26 19 29 19 20 16 1d 9 30 26 40 19 17 24 12 25 23 33 23 19 24 Exp. 1 Mean 27 23 34 20 19 21 L. reuteri WB-76 12 37 34 35 22 23 17 2 ^e 13 24 23 22 12 9 9 14 19 18 16 9 10 11 Exp. 2 Mean 27 25 24 14 14 12	L. reuteri WB-72		-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 ^e	-						
Overall Mean272530161415 1 261929192016 1^d 9302640191724 12 252333231924Exp. 1 Mean272334201921 12 373435222317 2^e 132423221299 14 19181691011Exp. 2 Mean272524141412									
$L. reuteri WB-76 = \begin{bmatrix} 1 & 26 & 19 & 29 & 19 & 20 & 16 \\ 1^d & 9 & 30 & 26 & 40 & 19 & 17 & 24 \\ 12 & 25 & 23 & 33 & 23 & 19 & 24 \\ \hline Exp. 1 Mean & 27 & 23 & 34 & 20 & 19 & 21 \\ 12 & 37 & 34 & 35 & 22 & 23 & 17 \\ 2^e & 13 & 24 & 23 & 22 & 12 & 9 & 9 \\ 14 & 19 & 18 & 16 & 9 & 10 & 11 \\ \hline Exp. 2 Mean & 27 & 25 & 24 & 14 & 14 & 12 \end{bmatrix}$									
L. reuteri WB-76 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Over	all Mean	27	25	30	16	14	15
L. reuteri WB-76 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1							
12 25 23 33 23 19 24 Exp. 1 Mean 27 23 34 20 19 21 12 37 34 35 22 23 17 2 ^e 13 24 23 22 12 9 9 14 19 18 16 9 10 11 Exp. 2 Mean 27 25 24 14 14 12		بہ ا							
Exp. 1 Mean 27 23 34 20 19 21 L. reuteri WB-76 12 37 34 35 22 23 17 2 ^e 13 24 23 22 12 9 9 14 19 18 16 9 10 11 Exp. 2 Mean 27 25 24 14 14 12		1ª							
L. reuteri WB-76 2 ^e 13 24 23 22 12 9 9 14 19 18 16 9 10 11 Exp. 2 Mean 27 25 24 14 14 12									
2 ^e 13 24 23 22 12 9 9 14 19 18 16 9 10 11 Exp. 2 Mean 27 25 24 14 14 12		Exp.							
1419181691011Exp. 2 Mean272524141412	L. reuteri WB-76	_							
Exp. 2 Mean 27 25 24 14 14 12		2 ^e							
Overall Mean 27 24 29 17 16 17									
		Over	all Mean	27	24	29	17	16	17

Table C63. Study 2 hourly LPS^a challenge HDL^b levels (mg/dL)

^bHDL - high-density lipoprotein

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	6	5	8	4	10	5
	1 ^d	10	8	7	9	6	10	6
		13	8	10	13	11	22	8
	Exp.	1 Mean	7	7	10	7	14	6
Control		1	10	7	7	6	18	14
	2 ^e	3	8	7	7	9	14	9
		15	12	10	10	7	9	11
	Exp.	2 Mean	10	8	8	7	14	11
		all Mean	9	8	9	7	14	9
	•							
		2	7	6	8	3	10	5
	1 ^d	8	4	3	7	3	4	5
		14	9	7	8	5	16	15
	Exp.	1 Mean	7	5	8	4	10	8
L. reuteri DS-36		2	10	9	9	10	12	9
	2 ^e	4	8	7	5	5	7	6
		10	5	7	9	8	14	5
	Exp.	2 Mean	8	8	8	8	11	7
	Overa	all Mean	7	7	8	6	11	8
		4	7	6	9	5	8	7
	1 ^d	6	6	4	7	3	10	5
		11	7	5	8	4	4	6
	Exp.	1 Mean	7	5	8	4	7	6
L. reuteri DS-37		5	10	11	9	5	8	6
	2 ^e	6	6	7	6	5	9	6
		11	9	8	6	5	7	12
		2 Mean	8	9	7	5	8	8
	Overa	all Mean	8	7	8	5	8	7
		3	6	7	10	3	18	7
	1 ^d	7	5	6	8	4	6	3
		15	9	7	10	5	11	8
	Exp.	1 Mean	7	7	9	4	12	6
L. reuteri WB-72	•	7	7	5	5	5	6	5
	2 ^e	8	7	8	6	6	12	10
		9	7	5	6	5	11	7
		2 Mean	7	6	6	5	10	7
	Overa	all Mean	7	6	8	5	11	7
	1			^	<u> </u>		00	
	. н	1	8	3	8	5	20	6
	1 ^d	9	9	6	10	2	4	6
		12	4	4	5	4	5	4
	Exp.	1 Mean	7	4	8	4	10	5
L. reuteri WB-76	C ^P	12	14	11	10	8	23	7
	2 ^e	13	7	7	7	6	8	6
		14	8	6	6	5	9	12
		2 Mean	10	8	8	6	13	8
	Overa	all Mean	8	6	8	5	12	7

Table C64. Study 2 hourly LPS^a challenge VLDL^b levels (mg/dL)

^bVLDL - very low-density lipoprotein

 $^{\rm c}\textsc{Description}$ of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

		-	-					
Treatment ^c	Exp. ^c	Pig ^c	Hour 0			Hour 6.0		
	1 ^d	5	0.257	0.281	0.406	0.347	0.302	1.147
	1°	10	0.265	0.254	0.301	0.278	0.418	0.692
	E.m.	13	0.305	0.265	0.315	0.285	0.443	2.095
Control	Exp.	1 Mean	0.275	0.267	0.341	0.304	0.387	1.311
Control	2	1	0.261	0.366	0.455	0.288	0.359	0.669
	2 ^e	3	0.269	0.308	0.541	0.405	0.586	0.773
		15 2 Mean	0.749	0.577	0.463	0.515 0.403	0.621	0.558
		all Mean		0.417	0.486		0.522	0.666
	Overa		0.351	0.342	0.414	0.353	0.455	0.989
		2	0.306	0.256	0.299	0.305	0.247	0.635
	1 ^d	8	0.350	0.283	0.410	0.575	0.283	0.985
		14	0.249	0.547	0.305	0.249	0.385	0.596
	Exp.	1 Mean	0.302	0.362	0.338	0.376	0.305	0.739
L. reuteri DS-36		2	0.389	0.496	1.054	0.634	0.621	0.550
	2 ^e	4	0.368	0.760	0.662	0.592	0.548	0.825
	-	10	0.490	0.544	0.393	0.685	0.652	0.594
	Exp.	2 Mean	0.416	0.600	0.703	0.637	0.607	0.656
		all Mean	0.359	0.481	0.521	0.506	0.456	0.697
		4	0.245	0.307	0.332	0.281	0.251	0.372
	1 ^d	6	0.275	0.243	0.369	0.303	0.202	0.543
		11	0.349	0.227	0.264	0.259	0.373	0.425
	Exp.	1 Mean	0.290	0.259	0.322	0.281	0.275	0.447
L. reuteri WB-37		5	0.273	0.448	0.607	0.373	0.658	0.494
	2 ^e	6	0.705	0.403	0.924	0.564	0.633	0.585
		11	0.400	0.524	0.501	0.472	0.976	0.804
	Exp.	2 Mean	0.459	0.458	0.677	0.470	0.756	0.628
	Overa	all Mean	0.374	0.359	0.499	0.375	0.515	0.537
			0.040	0.074	0.055	<u> </u>		0.400
	h	3	0.340	0.274	0.255	0.237	0.232	0.406
	1 ^d	7	0.253	0.242	0.411	0.318	0.287	0.528
	Eve	15 1 Moon	0.275	0.368	0.349	0.309	0.486	0.516
L router: MD 70	⊨ zp.	1 Mean	0.289	0.295	0.338	0.288	0.335	0.483
L. reuteri WB-72	2 ^e	7	0.624	0.429	0.671	0.480	0.780	0.678
	2	8 9	0.267	0.361	0.413	0.381	0.283	0.412
	Evo	9 2 Mean	0.264	0.657	0.723	0.657	0.766 0.610	0.556 0.549
					0.602			
	Uvera	all Mean	0.337	0.388	0.470	0.397	0.472	0.516
		1	0.424	0.343	0.377	0.244	0.401	1.049
	1 ^d	9	0.371	0.286	0.404	0.323	1.150	0.988
	1	12	0.271	0.200	0.307	0.278	0.846	0.429
	Fxn	1 Mean	0.355	0.282	0.363	0.282	0.799	0.822
L. reuteri WB-76	<u> </u>	12	0.359	0.359	0.382	0.504	0.819	0.643
L. IEULEII WD-10	2 ^e	12	0.359			0.504 0.647		
				0.540	0.544		0.795	0.467
		14	0.554	0.356	0.399	0.538	0.558	0.538
		2 Mean	0.405	0.418	0.441	0.563	0.724	0.549
	Overa	all Mean	0.380	0.350	0.402	0.422	0.761	0.686

Table C65. Study 2 hourly LPS^a challenge IgA^b levels (mg/mL)

^bIgA - immunoglobulin A

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

				onanonge	.ge .ere			
Treatment ^c	Exp. ^c	Pig ^c	Hour 0	Hour 1.5	Hour 3.0	Hour 6.0	Hour 12	Hour 24
		5	11.400	9.382	8.735	5.075	5.407	10.670
	1 ^d	10	5.711	5.570	3.627	2.264	8.491	8.146
		13	8.725	8.299	4.744	4.600	10.560	11.780
	Exp.	1 Mean	8.612	7.750	5.702	3.980	8.153	10.199
Control		1	5.412	4.980	6.991	3.399	4.848	3.995
	2 ^e	3	7.629	5.873	9.679	9.447	8.110	4.525
		15	4.619	7.344	3.338	3.602	3.824	7.021
	Exp.	2 Mean	5.887	6.066	6.669	5.483	5.594	5.180
		all Mean	7.249	6.908	6.186	4.731	6.873	7.690
		2	7.230	4.696	5.100	3.120	2.626	10.050
	1 ^d	8	7.151	6.224	3.314	3.305	3.811	9.885
		14	6.105	5.037	3.618	4.055	7.231	14.530
	Exp.	1 Mean	6.829	5.319	4.011	3.493	4.556	11.488
L. reuteri DS-36		2	8.239	4.749	6.155	5.647	4.516	4.762
	2 ^e	4	2.855	2.990	2.860	3.016	2.657	12.370
	_	10	4.275	4.261	3.282	4.742	4.040	5.887
	Exp.	2 Mean	5.123	4.000	4.099	4.468	3.738	7.673
		all Mean	5.976	4.660	4.055	3.981	4.147	9.581
		4	14.350	5.018	4.942	3.469	2.920	7.345
	1 ^d	6	10.440	7.728	7.539	4.375	4.714	11.720
		11	6.990	6.440	3.450	3.786	8.247	7.573
	Exp.	1 Mean	10.593	6.395	5.310	3.877	5.294	8.879
L. reuteri WB-37		5	5.754	5.333	6.484	3.817	4.358	7.669
	2 ^e	6	6.289	5.421	7.026	4.078	4.411	6.745
	_	11	4.879	5.441	3.537	5.341	5.504	8.963
	Exp.	2 Mean	5.641	5.398	5.682	4.412	4.758	7.792
		all Mean	8.117	5.897	5.496	4.144	5.026	8.336
		3	9.288	6.321	5.128	3.632	3.579	8.962
	1 ^d	7	5.221	4.277	3.452	3.365	4.744	6.985
		15	8.523	5.110	3.538	4.964	11.690	8.056
	Exp.	1 Mean	7.677	5.236	4.039	3.987	6.671	8.001
L. reuteri WB-72		7	6.921	6.973	7.330	4.482	3.905	7.148
	2 ^e	8	5.905	6.152	6.635	4.012	3.622	8.934
		9	4.614	5.415	4.316	4.082	5.161	8.585
	Exp.	2 Mean	5.813	6.180	6.094	4.192	4.229	8.222
		all Mean	6.745	5.708	5.067	4.090	5.450	8.112
		1	4.790	6.120	5.198	2.809	3.037	6.137
	1 ^d	9	7.474	10.640	4.376	3.114	11.300	12.830
		12	8.149	8.775	4.069	4.393	8.973	12.470
	Exp	1 Mean	6.804	8.512	4.548	3.439	7.770	10.479
L. reuteri WB-76		12	6.076	6.556	4.018	4.232	6.088	7.635
	2 ^e	13	4.930	5.735	3.890	4.647	4.837	7.604
	<u> </u>	13	4.930	5.086				
	Eva	2 Mean			2.816	3.695	7.899	5.997
			5.092	5.792	3.575	4.191	6.275	7.079
	Overa	all Mean	5.948	7.152	4.061	3.815	7.022	8.779

Table C66. Study 2 hourly LPS^a challenge IgG^b levels (mg/mL)

^bIgG - immunoglobulin G

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

						-		
Treatment ^c	Exp. ^c	Pig ^c	Hour 0			Hour 6.0		Hour 24
		5	1.639	1.438	1.647	0.931	0.993	2.117
	1 ^d	10	2.067	1.989	1.392	1.100	3.765	3.989
		13	3.407	2.825	2.242	1.576	4.647	5.249
	Exp.	1 Mean	2.371	2.084	1.760	1.202	3.135	3.785
Control		1	1.124	0.850	0.831	0.758	1.042	1.538
	2 ^e	3	1.818	1.445	1.263	3.817	2.009	2.123
		15	1.222	1.271	1.197	1.186	1.378	1.498
	Exp.	2 Mean	1.388	1.189	1.097	1.920	1.476	1.720
	Overa	all Mean	1.880	1.636	1.429	1.561	2.306	2.752
		2	1.586	1.493	1.648	0.945	0.990	3.699
	1 ^d	8	1.147	1.194	0.674	0.506	0.786	2.022
		14	1.621	1.442	1.066	0.847	2.679	2.852
	Exp.	1 Mean	1.451	1.376	1.129	0.766	1.485	2.858
L. reuteri DS-36		2	1.665	1.267	1.260	1.877	1.841	1.293
	2 ^e	4	1.531	1.091	1.270	1.703	1.932	1.939
		10	0.305	0.875	0.922	1.123	2.321	1.363
	Exp.	2 Mean	1.167	1.078	1.151	1.568	2.031	1.532
	Overa	all Mean	1.309	1.227	1.140	1.167	1.758	2.195
		4	2.479	1.837	1.840	1.131	1.130	3.287
	1 ^d	6	1.993	1.897	1.644	0.974	1.220	3.386
		11	1.865	1.444	0.903	0.864	2.499	2.512
	Exp.	1 Mean	2.112	1.726	1.462	0.990	1.616	3.062
L. reuteri WB-37		5	1.250	0.895	0.967	0.840	0.980	1.120
	2 ^e	6	3.025	2.722	1.605	2.821	4.033	2.731
		11	1.289	1.057	1.371	3.370	2.121	1.897
	Exp.	2 Mean	1.855	1.558	1.314	2.344	2.378	1.916
	Overa	all Mean	1.984	1.642	1.388	1.667	1.997	2.489
		3	2.559	1.446	1.264	0.937	0.994	2.604
	1 ^d	7	1.700	1.557	1.313	1.222	1.164	3.136
		15	1.883	1.737	1.337	1.487	6.008	3.468
	Exp.	1 Mean	2.047	1.580	1.305	1.215	2.722	3.069
L. reuteri WB-72		7	1.633	1.632	1.185	1.501	1.621	1.695
	2 ^e	8	0.833	0.681	0.582	0.856	0.670	1.027
		9	0.871	1.004	1.358	1.447	1.960	1.525
	Exp.	2 Mean	1.112	1.106	1.042	1.268	1.417	1.416
	Overa	all Mean	1.580	1.343	1.173	1.242	2.069	2.243
		1	2.138	2.947	2.815	1.656	1.704	7.571
	1 ^d	9	1.215	1.515	0.855	0.632	2.488	3.156
		12	2.636	2.844	1.627	1.401	3.629	4.427
	Exp.	1 Mean	1.996	2.435	1.766	1.230	2.607	5.051
L. reuteri WB-76		12	1.247	1.026	1.158	1.331	1.911	1.552
-	2 ^e	13	2.332	1.878	2.348	2.376	2.820	2.906
	1 -	14	1.209	1.133	0.981	1.214	2.127	1.449
	Fyn	2 Mean	1.596	1.346	1.496	1.640	2.286	1.969
		all Mean						
	Uvera		1.796	1.891	1.631	1.435	2.447	3.510

Table C67. Study 2 hourly LPS a challenge IgM b levels (mg/mL)

^bIgM - immunoglobulin M

^cDescription of treatments, experiments, and pigs - see Table C2

^dExperiment 1 were gilts

APPENDIX D

ADAPTED BLOOD VALUES OF SWINE

Analyte	Units	Ranges	Reference(s) ^a
Glucose	mg/dL	81.72 - 150.00	1, 2, 3, 4, 6, 7
BUN ^b	mg/dL	8.70 - 30.00	1, 2, 3, 4, 5, 7
Creatinine	mg/dL	0.91 - 2.70	2, 4, 5
BUN:Creatinie ratio		NA ^c	
Sodium	mEq/L	133 - 165	1, 3, 7
Potassium	mEq/L	4.8 - 7.2	1, 2, 3, 7
Chloride	mEq/L	93 - 109	1, 2, 3, 6, 7
Carbon dioxide	mEq/L	20.9 - 26.1	1
Anion gap		16.8 - 19.4	3
Calcium	mg/dL	9.4 - 12.5	2, 3, 4, 5, 6, 8
Total protein	g/dL	4.40 - 8.90	2, 3, 4, 5, 7
Albumin	g/dL	2.2 - 7.6	2, 3, 4, 5, 7
Globulin	g/dL	5.29 - 6.43	2
Albumin:Globulin ratio		0.6 - 1.4	2, 4
AST ^d	U/L	25.0 - 134.5	2, 3, 4, 5
ALT ^e	U/L	18.0 - 46.6	2, 4, 5
ALKPhos ^f	U/L	88 - 689	3, 4, 5, 7
Bili, total	mg/dL	0.0363 - 1.000	2, 3, 4, 5, 7

Table D1. Adapted complete metabolic profile values for swine

^aNumbers refer to refernces listed on next page.

^bBUN - blood urea nitrogen

^cNA - Not Available

^dAST - aspartate aminotransferase

^eALT - alanine aminotransferase

^fALKPhos - alkaline phosphatase

REFERENCES

- 1. Ethridge, R. D., R. W. Seerley, and R. D. Wyatt. 1984. The effect of diet on performance, digestibility, blood composition and intestinal microflora of weaned pigs. *J. Anim. Sci.* 58:1396-1402.
- Kaneko, J. J., 1989. Appendixes, p. 877-901. *In.* J. J. Kaneko (ed.), Clinical biochemistry of domestic animals. Academic Press, Inc., San Diego, CA.
- Lindemann, M. D., D. J. Blodgett, E. T. Kornegay, and G. G Schurig. 1993. Potential ameliorators of aflatoxicosis in weanling/growing swine. *J. Anim. Sci.* 71:171-178.
- 4. Mersmann, H. J. and W. G. Pond. 2001. Hematology and blood serum constituents, p. 560-584. *In* W. G. Pond and H. J. Mersmann (eds), Biology of the domestic pig. Cornell University Press, Ithaca, NY.
- 5. Odink, J., J. F. M. Smeets, I. J. R. Visser, H. Sandman, and J. M. A. Snijders. 1990. Hematological and clinicochemical profiles of healthy swine and swine with inflammatory processes. *J. Anim. Sci.* 68:163-170.
- Swamy, H. V. L. N., T. K. Smith, E. J. MacDonald, H. J. Boermans, and E. J. Squires. 2008. Effects of feeding a blend of grains naturally contaminated with *Fusarium* mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. *J. Anim. Sci.* 80:3257-3267.
- 7. Tumbleson, M. E., and P. R. Kalish. 1972. Serum biological and hematological parameters in crossbred swine from birth through eight weeks of age. *Can. J. Comp. Med.* 36:202-209.
- 8. White, L. A., M. C. Newman, G. L. Cromwell, and M. D. Lindemann. 2002. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. *J. Anim. Sci.* 80:2619-2628.

Analyte	Units	Ranges	Reference(s) ^a
Cholesterol	mg/dL	51.69 - 145.00	1, 2, 3, 4, 5
Triglycerides	mg/dL	27.11 - 28.49	5
HDL [♭]	mg/dL	8.83 - 12.17	5
VLDL ^c	mg/dL	5.33 - 5.61	5

Table D2. Adapted lipid panel values for swine

^aNumbers refer to refernces listed on next page.

^bHDL - high-density lipoprotein

^cVLDL - very low-density lipoprotein

REFERENCES

- 1. Kaneko, J. J., 1989. Appendixes, p. 877-901. *In.* J. J. Kaneko (ed.), Clinical biochemistry of domestic animals. Academic Press, Inc., San Diego, CA.
- 2. Mersmann, H. J. and W. G. Pond. 2001. Hematology and blood serum constituents, p. 560-584. *In* W. G. Pond and H. J. Mersmann (eds), Biology of the domestic pig. Cornell University Press, Ithaca, NY.
- Odink, J., J. F. M. Smeets, I. J. R. Visser, H. Sandman, and J. M. A. Snijders. 1990. Hematological and clinicochemical profiles of healthy swine and swine with inflammatory processes. *J. Anim. Sci.* 68:163-170.
- 4. Tumbleson, M. E., and P. R. Kalish. 1972. Serum biological and hematological parameters in crossbred swine from birth through eight weeks of age. *Can. J. Comp. Med.* 36:202-209.
- 5. Yu, I. T., C. C. Ju, J. Lin, H. L. Wu, and H. T. Yen. 2004. Effects of probiotics and selenium combination on the immune and blood cholesterol concentration of pigs. *J. Anim. Feed. Sci.* 13:625-634.

Table D3. Adapted immunoglobulins for swine

lg ^a	Units	Range	Reference(s) ^b
IgA ^c	mg/mL	0.369 - 0.609	1, 2
IgG ^d	mg/mL	4.980 - 7.904	1, 2
IgM ^e	mg/mL	1.735 - 4.440	1, 2

^alg - Immunoglobulin

^bNumbers refer to refernces listed on next page.

^clgA - Immunoglobulin A

^dlgG - Immunoglobulin G

^elgM - Immunoglobulin M

REFERENCES

- Swamy, H. V. L. N., T. K. Smith, E. J. MacDonald, H. J. Boermans, and E. J. Squires. 2008. Effects of feeding a blend of grains naturally contaminated with *Fusarium* mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. *J. Anim. Sci.* 80:3257-3267.
- 2. White, L. A., M. C. Newman, G. L. Cromwell, and M. D. Lindemann. 2002. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. *J. Anim. Sci.* 80:2619-2628.

VITA

MEGAN RENÉ BIBLE

Candidate for the Degree of

Master of Science

Thesis: INFLUENCE OF DIFFERENT CULTURES OF LACTOBACILLI ON GROWTH AND PERFORMANCE, BLOOD CHEMISTRY AND IMMUNE RESPONSE OF NURSERY PIGS

Major Field: Food Science

Biographical:

- Personal Data: Born in Okmulgee, OK, September 22, 1981, the daughter of Dennis Stuckey, Jr. and Lisa Mitchell. Married to Josh Bible on May 17, 2003.
- Education: Graduated from Weleetka High School, Weleetka, OK, in May, 2000; Received an Associate of Science degree in Animal Science from Northeastern A&M College in May, 2002; Received a Bachelors of Science degree in Animal Science from Oklahoma State University in May, 2005; Completed the requirements for the Master of Science in Food Science at Oklahoma State University, Stillwater, Oklahoma in May, 2009.
- Experience: Student lab assistant at Northeastern A&M College, 2001-2002; Research Assistant/Teaching Assistant at Oklahoma State University, 2005-Present.
- Professional Memberships: Institute of Food Technologists (IFT), Sigma Xi: The Scientific Research Society, American Society of Animal Science (ASAS), American Dairy Science Association (ADSA)

Name: Megan René Bible

Date of Degree: May, 2009

Institution: Oklahoma State University

Location: Stillwater, Oklahoma

Title of Study: INFLUENCE OF DIFFERENT CULTURES OF LACTOBACILLI ON PERFORMANCE, BLOOD CHEMISTRY, AND IMMUNE RESPONSE OF NURSERY PIGS

Pages in Study: 244 Candidate for the Degree of Master of Science

Major Field: Food Science

- Scope and Method of Study: The purpose was to investigate the effects of different cultures of lactobacilli on performance along with blood chemistry and immune response in nursery pigs. A total of sixty crossbred nursery pigs were divided into two studies with a control group and four treatment groups per experiment. This resulted in a total of eight different cultures being tested. Growth and performance was measured for each pigs as well as various blood chemistry analytes and serum immunoglobulins. Also, the subsequent effects of the cultures following a lipopolysaccharide challenge were tested where immunoglobulins, rectal temperatures, and blood chemistry were monitored.
- Findings and Conclusions: The results for each study were highly variable. Cultures *L. reuteri* DS-33 and DS-36 and *L. acidophilus* L-23 tended to cause a more efficient feed conversion. Culture L-23 caused a higher total serum protein level than observed in the control group. Pigs fed culture DS-33 had a higher AST level than did the control group. The serum levels of IgA, IgG, and IgM were increased during the feeding period by the cultures WB-74, L-23, and WB-72, respectively. Pigs fed DS-37 had lower levels of serum triglyceride, VLDL, and total bilirubin at hour 12 post challenge as well as a lower temperature at hour 3.0 post challenge than did the control pigs. Albumin:globulin ratio was lower in the control pigs when compared to pigs fed cultures DS-36 and WB-76 at hour 3.0 post challenge.