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CHAPTER I 
 
 

INTRODUCTION 
 

 
                           Surface plasmon resonance (SPR) is a powerful technique for the 

detection and measurement of biomolecular interactions in real time. For the biology 

applications using SPR one of the interacting molecules is immobilized on the sensor 

surface as a capture probe while the other is passed over the surface in solution. An 

important advantage of this technique for biological applications is that it works in a label 

free environment. The most common biomolecule that is used as a capture probe for 

immobilization on the sensor surface is an antibody. In recent years aptamers have 

emerged as a promising substitute to antibodies. Aptamers are oligonucleotides that bind 

to target molecules in similar mechanisms to those of antibodies, with similar affinities 

and selectivities, but with added advantage of lower cost of production, ease of storage 

and also unlike antibodies aptamers can be produced against non- immunogenic targets. 

 

        Several SPR instruments are currently available commercially, each having their 

own advantages and disadvantages. The most common method of detection in SPR 

instruments uses either a linear diode array or charged coupled device. Recently a new 

detection system using a bi-cell photo detector has been introduced. This technique has 



 2 

many advantages over the existing commercial instruments. Bi-cell SPR can cancel out 

the most important noise that current measurement methods encounter, which is the 

variation in the ambient light as well as the changes due to laser intensity fluctuations. 

Another advantage of this technique is that it is reputed to have a hundred times more 

resolution (sensitivity) than the other SPR instruments, and it is much cheaper to produce 

than the commercially available SPR instruments.  

 

         Our experimental objective was to assess a bi-cell SPR instrument as a model 

system for use of aptamers as capture probes for SPR in diagnostic testing. Our results  

demonstrate that an aptamer can be used as a capture probe in a bi-cell SPR instrument 

and thus validate the use of  aptamers  as an alternative to antibodies in SPR instruments. 

Because of the ease of use, better resolution and lower cost, this technique has a 

tremendous potential for use as a diagnostic tool for many clinical diseases.  

 

  A literature review of SPR, the role of SPR in biomolecular interaction analysis, 

sensitivity of the instrument, ligand immobilization techniques and specificity of the 

ligand-anlayte interaction is presented. Also included are reviews on thrombin aptamer 

and bi-cell SPR.  The entire review is categorized under five different headings and the 

relative importance of each to my current research has been addressed.  
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                                                             CHAPTER II 
 
 

REVIEW OF LITERATURE 
 
 

Surface Plasmon Resonance 

 

Principle and Background 

 

             The surface plasmon resonance (SPR) phenomenon was first discovered by R.W. 

Wood in 1902 (1).  He observed the effect of surface plasmons on the intensity of light 

diffracted form metal gratings. The study of SPR phenomenon became popular in physics 

by the discovery that surface plasmons can be generated by attenuated total internal 

reflection of light, which was demonstrated by Kretshman and Otto (3). The interest in 

this physical phenomenon was further enhanced by the application of SPR phenomenon 

in biological science beginning in the late 1980s and early 1990s. 

     Surface plasmon resonance is a physical process, which occurs when a plane polarized 

light strikes a metal surface under total internal reflection (TIR) conditions. This TIR can 

be produced by passing a ray of light through a semi circular prism. When light strikes 

the prism it is diffracted and the light bends to the plane of the interface as it passes from 

the denser medium (prism) to the less dense medium (air) (Figure 1). As the angle of 
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incidence () increases the angle of out coming light also changes. At a critical angle of 

incidence of light, incoming light is reflected within the prism and this is called total 

internal reflection (TIR). At the TIR even though no light is coming out of the prism, the 

electric field of photons extends about a quarter of wavelength of (incident light) beyond 

the reflecting surface. This wave, is called evanescent wave (Figure 1), has maximum 

intensity at the interface, and decays exponentially away from the interface.  

 
 
 

  
Figure 1. Under TIR the evanescent wave is formed at the interface of glass and air.  
 

              When the reflecting surface of the prism is coated with a thin film of a noble 

metal the photons will interact with the free electron conste llations in the metal surface. 

The incidents photons are converted to surface plasmons (Figure 2). So surface plasmon 

resonance can be described as a quantum optical-electrical phenomenon arising from the 

interaction of light with a metal surface. In most cases the metal used is gold as it gives a 

SPR signal at convenient combinations of reflectance angle and wavelength. Also gold is 

comparatively chemically inert to solutions and solutes and can be easily applied in a 

variety of biochemical contexts (4). Under appropriate conditions, the plasmons in the 

conduction film resonantly couple with the light because their frequencies match. Since 

the energy is absorbed in this resonance, the reflected intensity I (Figure 2) decreases at 
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the angle at which SPR is occurring, and a black line or dip in the reflected light is 

observed (4).    

 

 
 
Figure 2. When a thin gold film is kept at the interface under TIR conditions, the some of 
the photons are taken up by the surface plasmons and a dip in the reflected light is  
produced. 
 
 
 
                  As this resonance environment is extremely sensitive to refractive index of the 

medium adjacent to the metal film, any adsorption of molecules on the metal surface or 

any conformational changes in the adsorbed molecules on the surface of the metal can be 

accurately and sensitively detected. This can be explained by the principle of 

conservation of momentum. The velocities of the plasmons change as the medium 

changes and as a result the momentum of these particles change. Since there is a change 

in momentum, the angle of incident light at which resonance occurs also changes. This 

change in angle can be measured precisely. An SPR, which uses this principle, is called 

an angular SPR and is the most commonly used method for SPR instruments. In our 

present study the bi-cell SPR instrument we are using makes use of this principle. In 

contrast if a fixed angle of incident light is used, the wavelength is varied until the 

resonance occurs, this type of SPR is called a spectral SPR and is not commonly used (5). 
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The SPR phenomenon and the resonance angle is determined by three factors; the metal, 

the wavelength of the incident light, and the medium adjacent to the metal surface.  

Metal 

            A variety of metallic elements satisfy this resonance condition. They include 

silver, gold, copper, aluminum, sodium, and indium. The metal must be free of oxides, 

sulphides and should not react to other molecules on exposure to atmosphere or liquid. Of 

these metals, gold is the most practical because it gives a strong and easy to measure SPR 

signal and is relatively chemically inert, but at the same time it can be made sufficiently 

reactive to accommodate coupling with wide variety of coating and functionalizing 

molecules including alkanethiol, dialkyl sulphide, and dialkyl disulphide derivatives. The 

best signal for the gold is obtained at a thickness of 50 nanometers (10). This thickness of 

the metal layer is of great importance because above an optimum, the dip in the reflected 

light becomes too shallow, and below the optimum, the dip becomes too broad for use in 

detection. 

Wavelength 

        SPR is a physical process that can occur when light of a particular wavelength 

strikes a metal film under total internal reflection conditions. To obtain a sharp dip, the 

light source should be monochromatic and plane-polarized. All light, which is not plane-

polarized, will contribute to the SPR and will increase the background intensity of the 

reflected light (10). The depth of the evanescent wave, which is useful for measurements, 

extends approximately 300nm from the sensor surface. In order to obtain a well-defined 

surface plasmon mode with the corresponding electro-magnetic field enhancement, an 
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excitation wavelength around 600nm is optimal for gold metal. This wavelength range 

falls in the visible and near- infrared parts of the spectrum and are particularly convenient 

because optical components and high performance detectors appropriate for this region 

are readily available. In our experiments a 5mW diode laser (λ = 670  nm , H itachi), d riven 

with a homemade laser controller, was collimated and then focused by a 14 mm local-

length lens through the prism onto the gold film.  

Medium 

                 The movement of the surface plasmons produced by the resonance, like the 

movements of any electrically charged particle, generates an electric field. The plasmons 

electrical field extends about 100nm perpendicularly above and below the metal surface. 

The interaction between the plasmons electrical field and the materia l matter within the 

field determines the resonance wavelength. Any change in the composition of the matter 

within the range of the plasmon field causes a change in wavelength of light that 

resonates with the plasmon. The magnitude of the change in the reso nance wavelength, 

the SPR shift, is directly proportional to the change in composition. In a sensor, the gold 

can be coated with capture probes like antibodies, receptors, or enzymes, which 

specifically interact with their target molecule. When the sensor is exposed to samples 

that contain the specific target molecule, the binding of the target to their cognate capture 

probe changes the composition of the medium at the surface and produces a SPR shift. 

The magnitude of the shift is proportional to the amount of binding.  By comparing the 

observed shift to a known calibration curve we can quantify the concentration of the 

analyte in the sample. 
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Application 

               Any change in refractive index or any change in the mass at the surface can give 

an SPR shift. This means that the SPR phenomenon is non-specific with respect to the 

molecular composition of the target. This may appear to be a limiting factor but it has the 

powerful advantage in that a highly specific interaction like antigen-antibody, enzyme–

substrate, or nucleic acid hybridization can be adapted to SPR measurement. One of the 

interacting pair is the capture probe and is attached to the gold surface, whereas the other 

is the analyte, which is usually exposed or passed over the probe in a flow cell. The shift 

in SPR angle is measured continuously to form a sensorgram as the target is flowed over 

and captured by the immobilized probe (Figure 3). SPR can be used as the basis for a 

sensor that is capable of sensitive and quantitative measurement of a broad spectrum of 

chemical and biological entities. It offers a number of important practical advantages 

over current analytical techniques. The time from sample application to reported result is 

limited only by the time the sample takes to reach the sensor surface, which can be in 

seconds. In most cases there is no need to pretreat the sample before its presentation to 

the sensor. Some of the potential areas of application include medical diagnostics, 

environmental monitoring, agriculture pesticide and antibiotic monitoring, food additive 

testing, military and civilian airborne biological and chemical agent testing, and real-time 

chemical and biological production process monitoring.  

  

 

 



 9 

 

Figure 3. Typical SPR biosensor platform. TIR is produced by the prism. The capture 
probe immobilized on the gold film which is contact with a flow cell through which the 
analyte can be flowed at a constant rate. The real time capture of the target is detected 
and plotted in a sensogram.  

 

                In recent years much research has been focused on different sensor platforms 

mainly targeting different applications areas and in providing solutions to specific 

applications requirements. The two main areas of current SPR biosensing applications is 

high throughput screening through multiple sensing channels and in the development of 

mobile SPR platforms for analysis of complex samples in field conditions.  

          One of the early interests for biochemists in SPR technology was in its ability to 

directly determine the separate association and dissociation rate constants of biochemical 

reactions.  These parameters are of great importance in classifying different molecules, 

especially antibodies. With the increasing demand in therapeutic as well as research field 

for both polyclonal and monoclonal antibodies, high throughput analysis to determine 

antibodies with the greatest affinity for their target molecules is needed. The real time 

kinetic analysis with no sample pre-treatment offered by the SPR technique is the ideal 
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choice for such analysis. The antibody is usually immobilized on the sensor surface and 

the antigen is passed over it in a flow cell. This type of immuno SPR is the most popular 

and a number of experiments have been done using this kind of sensor platform for 

calculating the binding parameters of interactants and also to detect the presence of the 

analyte. In one such study the rate constants for the interaction between cancer testis 

antigen NY-ESO-1 and its monoclonal antibody ES121 were accurately measured  using 

SPR (14). In another experiment a comparison was made between SPR and quartz crystal 

microbalance (QCM) which is another surface sensitive analytical device. In that study 

antibody to human IgE was immobilized on the sensor surface and IgE was the a nalyte. 

In this comparison, it was found that SPR is more than twice as sensitive as the QCM 

with better reproducibility and reliability (16). Several other comparison studies have 

been done between SPR and other common analytical techniques.  A comparison 

between SPR and chemiluminescent immunoassay was done regarding the binding of 

human ferritin and its monoclonal antibody in which the coefficient of correlation 

between the two techniques was found to be 0.991(17). This model was also proposed to 

be developed as a biosensor for detecting human ferritin, which is known as a non-

specific marker of the inflammatory processes and neoplasia.  

              In the area of SPR detection of a whole cell or an intact pathogen, very few 

studies have been done, as SPR technology is more suited for studying small molecular 

interactions. In one such study using SPR, antibodies against Salmonella typhimurium 

immobilized on sensor surface were able to detect the bacteria at levels of 102 to 109 CFU 

per ml (6). In another study by T.P Shevchnko et al, intact tobacco mosaic virus was 

detected using specific IgG immobilized on the sensor surface (18).  
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             SPR applications using other types of interactions include protein-DNA and 

DNA-DNA hybridization interactions. A SPR bioassay useful for the detecting 

transcription factors were described by James P. Brody et al, in which a mutated 

promotor sequence would bind to a transcription factor leading to inhibition of the 

transcription (8). In another study a highly sensitive flow injection SPR was described 

which could detect DNA hybridization at femtomolar range (7). Other biological 

applications of SPR include environmental monitoring as of carbaryl detection in natural 

water samples (15) and drug interaction studies, and screening of novel drug targets. Bio-

recognition events can be studied by mimicking the process as happening in biological 

system as described in the study in which a bio-recognition of G protein transducer and 

rhodopsin interaction occurring upon excitation by a particular wavelength of light (13).  

 

 

Ligand Immobilization 

 

          Most biological molecules have a high recognition power to bind with their 

interacting partners. This binding, which can be in the form of antigen-antibody, ligand-

receptor, enzyme-substrate, or hybridization reactions, is due to specific physical shape, 

electrostatic properties, and chemical binding that takes place between the two molecules. 

Such high affinity binding partners are usually employed in SPR analysis. However, most 

biological molecules also have a tendency to adsorb onto non-functionalized solid 

substrates which have not been derivatized with a specific capture probe (21). This type 

of interaction can produce high background noise and can interfere with the analysis. In 
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SPR instruments, one of the important factors which can hinder the sensitivity is this non-

specific binding.  

                  Self-assembled monolayers (SAMs) are described as ordered molecular 

assemblies formed by the adsorption of an active surfactant on a solid surface (25). 

SAMs of functionalized long-chain hydrocarbons are commonly used as building blocks 

in biosensor platforms and can diminish non-specific binding of the target to the sensor 

platform. SAMs also help to properly orient capture probes through a variety of coupling 

chemistries so that maximum contact with the analyte is possible. The most important 

discovery in this field was that alkanethiol SAMs on gold could be prepared by 

adsorption of di-n-alkyl disulphides from dilute solutions (27). Sulphur containing 

compounds like the alkanethiols have a strong affinity for the gold surface and the 

binding is thought to be to the oxidative addition of S-H bond and reductive elimination 

of molecular hydrogen, with the result that the thiol derivative is firmly bound to the gold 

crystal lattice. The capture probe is usually coupled to such SAM through a variety of 

binding chemistries including amine coupling, thiol coupling and non-covalent coupling 

methods (26). 

  Amine coupling of a capture probe to the alkane thiol SAM is done by coupling primary 

amines using N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide 

(NHS/EDC) coupling method. This coupling requires a free N-terminus or lysine residue 

on the capture probe. The thiolated alkanoicacid monolayer or the carboxy dextran 

surfaces (usually used in Biacore SPR) have free carboxylic groups and NHS/EDC 

activate these carboxylic groups making them more reactive to amino groups on the 
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capture probe. This kind of binding method is described in many SPR experiments. A 

tumor marker, IL-8, was detected using SPR by immobilizing anti IL-8 IgG on the sensor 

surface using such a method (23). In these types of reactions the excessive reactive 

carboxylic acid groups are usually blocked using ethanolamine. However, if the capture 

probe has a high concentration of lysine residues, the amino group on those residues may 

bind with reactive carboxylic acid group and this may diminish the proper orientation of 

the capture probe. 

                     In other methods of immobilizing biomolecules on sensor surfaces, 

especially antibodies, protein A is widely used. Protein A is a cell surface protein and has 

high specificity for the Fc portion of the immunoglobulin. In the SPR system used for 

detecting tobacco mosaic virus, an antibody against the virus was first immobilized on 

the protein A (18). In other systems, a concanavalin A is used. Concanavalin A is a lectin 

with affinity for carbohydrate moieties, and proteins with free carbohydrate groups can 

be attached to the sensor platform via immobilized ConA. In SPR detection of rhodopsin, 

ConA was immobilized on carboxy dextran monolayer on the gold through amine 

coupling (13). 

               Other common immobilization methods include cystamine-gluteraldehyde 

method wherein the capture probe is coupled to the gluteraldehyde by amine coupling 

(17) and biotin-streptavidin method where the biotinylated capture probe can be 

immobilized on to the streptavidin layer (8). In a novel technique polyhistidine– tagged 

tumor antigens were bound to a nickel-nitriloacetic acid functionalized surface (14).  
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                   In all these different methods, initial binding to the gold is through a sulphide, 

disulphide, or thiol group, and the capture probe is immobilized on these monolayers.  

All the above mentioned binding chemistries have their advantages and limitations, some 

may show better reusability of sensor surface as in cysteine-gluteraldehyde method and 

some may orient the ligand in the best conformation possible thereby increasing  

sensitivity as in the case of the nickel-nitriloacetic acid immobilization method.  

                       One commonly used method for immobilizing DNA on the gold surface is 

to immobilize biotinylated nucleic acid using streptavidin-biotin binding chemistry. 

Alternatively a direct immobilization can be used by modifying the DNA with a S-H 

group attached to the deoxyribose group on the 3 prime end of the nucleic acid and thus 

directly immobilizing it on to the gold. This method was utilized for the detection of 

oligonucleotide hybridization and gene analysis of Arabidopsis thaliana  leaf extract (7). 

This study demonstrated particularly high sensitivity which may be due to the bi-cell SPR 

technology used as well as the relatively high molecular mass target used. For small 

length oligos, the proper orientation of the probe may be extremely important especially 

when the interaction depends on special chemistry as in the case of aptamer and its target. 

In our present study, the DNA aptamer that we used was a 15mer oligonucleotide 

m od ified w ith a thio l gro up at the 3’ end. W e used 6 -mercapto hexanol, which is an 

alkanethiol, to form a SAM on the gold via a thiol linkage. This mercaptohexanol layer 

helps to block the remaining gold surface where the aptamer has not bound and also to 

elevate and properly orient the aptamer for analyte binding.  
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Aptamers  

 

             Aptamers are macromolecules composed of short, single strand nucleic acids, 

such as RNA or DNA molecules of a particular sequence which cause the oligo to 

assume a particular structure that complex with another target molecule, such as, a 

particular pro tein. T he w ord aptam er w as co ined form  the L atin ‘ap tus’, to fit (29). 

Aptamer was initially used to refer to RNA molecules that bind to a specific molecular 

target. The term was later extended to DNA molecules (30).  Aptamers are selected in 

vitro from random nucleotide libraries by multiple rounds of target screening and 

enrichment. This procedure was first developed by Craig Tuerk and Larry Gold and was 

named SELEX (Systematic Evolution of Ligands by EXponential enrichment) (28).  

 

SELEX 

 

             SELEX is a protocol for isolating high affinity ligands to a target protein from a 

pool of variant nucleic acid sequences (28). Although the initial use of SELEX involved 

the identification of sequence information crucial to naturally occurring protein-RNA 

interactions, it became apparent that this procedure could be used in the design of useful 

reagents (32). Thus, RNA ligands could be developed for proteins with the intent of 

inhibiting or otherwise affecting the function of target molecules. If the target molecules 

already have natural nucleic acid ligands, one would expect that SELEX could provide 
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ligands of higher affinity because: (a) nature may select against optimal affinity, (b) 

natural evolution conducts an incomplete survey of all possible sequences, or (c) 

overlapping sequence constraints, such as those of protein-coding sequences, introduce 

competing priorities over genetic drift to higher affinity sequences (32).  

 

Aptamer Chemistry  

 

            Aptamers range in size from approximately 6 to 40 kDa and some can assume 

complex three-dimensional structures produced by a combination of Watson–Crick and 

non-canonical intramolecular interactions (38). They bind to their targets with 

dissociation constant (KD) typically in the low nanomolar range and can distinguish 

enantiomers of small molecules or minor sequence variants of macromolecules with 

frequency several orders of magnitude in KD ratio. In contrast to proteins, nucleic acids 

are strikingly uniform in their hydrophilicity and low isoelectric point (pI). In spite of 

these limitations, hydrogen bonds and stacking interactions of their component bases 

provide a diverse toolbox of structural motifs (38). High-affinity nucleic acid–protein 

interactions require specific complementary contacts between functional groups on both 

the nucleic acid and the protein. Because the specific three-dimensional arrangement of 

complementary contact sites that mediate the protein-aptamer interaction are unlikely to 

be recapitulated in other proteins, aptamers are generally specific for their targets (20).  

Aptamers are different from antibodies, yet they mimic properties of antibodies in a 

variety of diagnostic formats (37). 
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Advantages of aptamers over antibodies: 

 

      Antibodies have been the primary choice for capture ligands in bioassays. But there 

are some inherent limitations of using antibodies in assays, which owe to the physical and 

chemical properties of these molecules and also to their manufacturing process.  The 

antibody identification process starts within an animal; therefore, antibody generation 

becomes difficult with molecules that are not well tolerated by animals, such as toxins 

(37). Furthermore, antibodies against molecules that are inherently less immunogenic are 

difficult to produce. By and large, the generation of hybridomas are restricted to rat and 

mouse, limiting the use of antibodies in therapeutic applications. Antibodies of non-

human origin have implications in diagnostic applications as well. Heterophilic 

antibodies (human antibodies that recognize antibodies of non-human origin) that exist in 

humans could potentially link a capture antibody with a detector antibody of non-human 

origin in the absence of the specific analyte, leading to false positive results (70). 

Rheumatoid factors and auto antibodies also interfere in immunoassays.  

 

                        Another disadvantage of monoclonal antibodies is that the identification 

and production technologies are laborious and could become very expensive in searches 

for rare antibodies that require screening of the death of cell lines. Typically, high yields 

of monoclonal antibodies are obtained by growing the hybridomas in the peritoneal 

cavities of animals and purifying the antibody from ascites fluid (37). Some hybridomas 

are difficult to grow in vivo, thus restricting this route of antibody production. The 

performance of the same antibody tends to vary from batch to batch, requiring 
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immunoassays to be reoptimized with each new batch of antibodies. Although the 

production of antibodies is subject to in vivo variations, the identification of antibodies is 

restricted by in vivo parameters (37). In other words, identification of antibodies that 

could recognize targets under conditions other than physiological conditions is not 

feasible. Antibodies are sensitive to temperature and undergo irreversible denaturation. 

They also have limited shelf life.  

 

         Aptamers are identified through an in vitro process that does not depend on 

animals, cells, or even in vivo conditions. As a result, the properties of aptamers have the 

potential to be changed on demand. Selection conditions can be manipulated to obtain 

aptamers with properties desirable for in vitro diagnostics. For example, aptamers that 

bind to a target in a non-physiological buffer and at non-physiological temperatures could 

be identified. Similarly, kinetic parameters, such as the kinetics of association –

dissociation rates of aptamers, have the potential to be changed as needed. Because 

animals or cells are not involved in aptamer identification, toxins as well as molecules 

that do not elicit good immune responses can be used to generate high-affinity aptamers. 

Another advantage of aptamers is that they are produced by chemical synthesis with 

extreme accuracy and reproducibility. They are purified under denaturing conditions to a 

very high degree of purity. Therefore, little to no batch-to-batch variation is expected in 

aptamer production.  

 

                    Reporter molecules such as fluorescein and binding molecules like biotin can 

be attached to aptamers at precise locations identified by the user. Functional groups that 
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allow subsequent derivatization of aptamers with other molecules can also be attached 

during the chemical synthesis of aptamers. Aptamers undergo denaturation, but the 

process is reversible. Once denatured, functional aptamers could be regenerated easily 

within minutes. They are stable to long-term storage and can be transported at ambient 

temperature (37). 

 

Applications of aptamers 

 

              The concept of using nucleic acids to bind to and inhibit the activities of target 

proteins grew out of early HIV gene therapy studies that employed RNA ligands, termed 

decoys, to competitively inhibit the activities of essential HIV proteins and in the process 

block viral replication (35). However, the therapeutic potential of aptamers depends on 

many issues. First, aptamers must interact tightly and specifically with their targets. The 

large size and surface area of nucleic acids is a decided advantage, in that they can 

potentially form many more interactions with targets than can smaller molecules. 

Similarly, the large size of aptamers gives them multiple opportunities to discriminate 

between epitopes on related proteins, and aptamers have been shown to distinguish 

between even closely related targets, such as protein kinase C (PKC) isozymes that are 

96% identical. Secondly, aptamers must specifically disrupt the function of their targets. 

Finally, aptamers must be able to not only disrupt the function of a particular target, but 

also inhibit or modify the metabolism associated with that target. For example, anti-

thrombin aptamers have been shown to block blood clotting (33).  Some of the 

disadvantages of using aptamers in therapeutics are that being an RNA or DNA 



 20 

molecules they are relatively susceptible to degradation by nucleases and will be unstable 

in sera or within cells. The development of stable nucleic acid aptamers now allows 

researchers to proceed to the more difficult problems of delivery and bioavailability. 

Also, the specificity of aptamers for their targets may ward off the systemic side effects 

often associated with pharmaceuticals; this same specificity may encourage the evolution 

of metabolic or viral resistance (36).  

   

Applications of aptamers in diagnosis assays and biosensors 

 

                     Because of their reputed robustness and high specificity for its target 

molecule, aptamers have great potential to be used in a variety of diagnostic assays. For 

instance, radio-labeled aptamers bound to a protein target can be separated from unbound 

aptamers with nitrocellulose filters that generally bind protein but not RNA or DNA. 

However, in a clinical setting, it would be preferable to avoid radioactive labels and 

extensive enzymatic manipulations. One way to simplify the detection of aptamer-protein 

complexes is to link the aptamer to an enzyme that has an activity that is easily assayed. 

An aptamer based detection system for the detection of binding of Francisella tulerensis 

subspecies japonica bacterial antigen, using a set of 25 DNA cocktail sequences by 

aptamer-linked immobilized sorbent assay (ALISA) was described by Jeevalatha and co-

workers (71). Here a biotin linked secondary aptamer was used in a sandwich manner and 

streptavidin conjugated horse radish peroxidase was used as the reporter enzyme. A 

detection limit of 1.7x 103 bacteria per ml was possible using this method and the 

detection limit for an assay suing antibodies for the same antigen was 6.9 x 103 bacteria 
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per ml. Capillary electrophoresis/ laser induced fluorescence assay was developed to 

detect flourescently labeled aptamers that was bound to HIV-reverse transcriptase 

enzyme (72). In another work alkaline phosphatase linked aptamers were used to detect 

bile acids (73). Other novel methods of using labeled aptamers include aptamer beacons 

for detection of thrombin (74) and pyrroquinoline quinine glucose dehydrogenase labeled 

aptamer for detection of thrombin. In the latter assay two aptamers against thrombin, the 

one discovered by Bock et al and the other discovered by Tasset et al which binds to 

thrombin at two different regions were used in a sandwich type assay.  

             Aptamers have also been used in a label free system, as in the case of detection of 

IgE (76) and HIV Tat proteins (77) using quartz crystal microbalance. Also ultrasensitive 

biosensors can be developed by combining aptamer and PCR technology. In one such 

report, a few hundred molecules of thrombin were detected using the DNA aptamer 

linked with 7 additional bases which functioned as template for PCR (78).  

 

Thrombin protein and thrombin aptamer 

 

               Thrombin is a serine protease responsible for the conversion of fibrinogen to 

fibrin, platelet activation, and the cleavage of coagulation factors V, VIII, XI, and XIII 

(33). The delicate balance between hemostasis and hemorrhage is maintained by a 

complex system of plasma, cellular, and endothelial factors. Coagulation, the normal 

process by which a fibrin clot is generated in response to a vascular injury, is to be 

distinguished from thrombosis, the pathological formation of clot in response to injury, 

stasis, or hypercoagulability. The latter is widespread in conditions such as acute 
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coronary syndrome, stroke, peripheral vascular disease, and deep vein thrombosis, and 

can also occur in response to iatrogenic vascular injury. The clinical demand for more 

and better antithrombotics, that inhibit the initial formation of the platelet plug, and 

anticoagulants, that inhibit the cascade of reactions leading to the crosslinking of fibrin, is 

testimony to the importance of this process. In addition, the variety of patients and 

scenarios in which such agents are utilized requires an array of inhibitors with different 

mechanisms, properties, and toxicity profiles (39). In addition to its role in blood 

coagulation, thrombin can act as a potent mitogen and can also exert a chemotactic effect 

on monocytes. Because of its pivotal role in both thrombosis and hemostasis, thrombin is 

a major target for anticoagulation and cardiovascular disease therapy (33).  

 

              Using a novel in vitro selection/amplification technique, a new class of thrombin 

inhibitors based on single-stranded DNA (ssDNA) oligonucleotides were identified by 

Bock et al (30). These thrombin inhibitors are the first example of the use of the SELEX 

technique to obtain ssDNA oligonucleotides that bind a target protein with no known 

specificity for nucleic acids. One oligonucleotide sequence, GGTTGGTGTGGTTGG 

(thrombin aptamer) was capable of nanomolar inhibition of fibrinogen cleavage at 

nanomolar concentrations in vitro and was shown to inhibit clot-bound thrombin and 

reduce arterial thrombus formation in an ex vivo whole artery angioplasty model (30). 

Recent in vivo studies in cynomolgus monkeys have shown the thrombin aptamer to be a 

potent anticoagulant with a rapid onset of action and a short half- life (33). Unlike hirudin 

and other active site thrombin inhibitors, the thrombin aptamer does not inhibit the 

cleavage of small chromogenic amide substrates indicating that the aptamer does not bind 
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directly to the active site of thrombin. However, distinct from the catalytic center of 

thrombin are two highly basic regions that form secondary binding sites on the surface of 

the molecule. These sites are important for thrombin specificity in interactions with 

several macromolecular substrates and receptors. One site, the anion-binding exosite, 

contributes to a tight, specific complex with fibrinogen.  The second site, the putative 

heparin recognition site, contributes to the significant increase of thrombin inactivation 

by antithrombin III in the presence of heparin. Considering the polyanionic nature o f the 

nucleic acid phosphodiester backbone, these basic sites on thrombin, shown to interact 

with acidic regions of other thrombin-binding molecules, are likely targets for thrombin 

aptamer binding. 

 

                        Various studies have been done to determine the structure of the thrombin 

aptamer. The oligonucleotide folds into a unimolecular quadruplex in the DNA-thrombin 

complex containing two G-quartets linked by two TT loops at one end and a TGT loop at 

the other end in the X –ray structure (34).  Solution NMR structures of the 15-mer have 

also been determined (31), where the quartet structure is essentially the same as that 

found in the complex. However, the TT loops span the narrow grooves while the TGT 

loop spans the wide groove in the NMR structure while the opposite occurs in the 

complex. The difference thus appears to be a reversal in strand polarity between the two. 

These two structures are referred to as the NMR and the   X – ray structures (Figure 4). 
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Figure 4. The double quartet structure of thrombin aptamer showing both NMR and X 
ray structures. 
 

 

                                          Sensitivity and Specificity of SPR 

 

               High sensitivity is an essential requirement of any bioassay instrument. In the 

case of SPR the detection of the analyte is directly proportional to the molecular mass of 

the analyte. As a result sensitivity decreases as the molecular mass of the analyte 

decreases.  In general in SPR instruments the sensitivity is in the range of micromolar to 

nanomolar range for analytes, which are greater than 1000 Da, and in millimolar range 

for analytes less than 1000 Da (60). The sensitivity is also increased by the affinity 

between the interacting molecules. A greater affinity results in increased number of 

analytes being bound to capture probes which in turn increases the mass at the surface 

leading to enhanced sensitivity. Several strategies to increase the sensitivity of SPR 
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instruments have been tried, which include better orientation of capture probes or 

amplification of ligand binding events by sandwich type assays and using high affinity 

probes. In the SPR instrumentation itself, there are several areas, which could increase 

sensitivity. These include using different light detection systems, like charged coupled 

device, linear diode arrays or bi-cell photodetectors. Decreasing the noise in the 

instrument, optimizing the flow channel volume and maintaining optimum flow speed 

can also increase the sensitivity of SPR instruments.  

 

Orientation and density of the probe 

 

                           Forming a monolayer on the gold surface serves not only for a proper 

binding of the capture probe, but also to orient the probe in a way that the binding area of 

the probe is properly exposed to the analyte in the solution. Each of the immobilization 

techniques discussed earlier has some specific advantages, which is suited to the specific 

experimental purpose. The nickel-nitriloacetic chemistry for immobilizing his-tagged 

ligands helps in orienting the ligand in a homogenous fashion, which is very important in 

the binding of the ligand with the analyte.  Also this kind of surface chemistry confers a 

hydrated environment through hydrogen bonding of water to the triethylene glycol 

molecules and thus helps in preventing protein denaturation and non-specific binding 

(14). In the cystamine-gluteraldehyde immobilization chemistry, the free amine groups of 

the ligand b ind  to the activated gluteraldehyde b y form ing a S chiff’s base. T he stro ng 

bonding by the disulphides in cystamine to  the go ld  surface and  the S chiff’s base 

formation between the gluteraldehyde and the ligand provides a very strong 
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immobilization chemistry, and this greatly increased the reusability of sensor chip after 

repeated regeneration cycles. Ten cycles of measurements could be performed on the 

same sensor surface and the operating stability of the sensor was 15 days (17). In the SPR 

study of G protein receptor coupling, bovine rhodopsin was bound to the ConA lectin, 

which was first immobilized on the carboxymethyl dextran sensor chip. This method 

helped in uniformly orienting the rhodopsin molecules so that the cytoplasmic domain of 

the receptor had access to a coupling G protein (13).  

 

                The amount of immobilized ligand also leads to better sensitivity. This aspect 

was specifically addressed in the SPR detection system developed for the detection of 

small plant viruses (18). In this study the concentration of the antibody was important. It 

was found that for proper quantification of the virus, the concentration of epitopes on the 

virus should be greater than the concentration of the IgG used and the concentration of 

the IgG should be greater than the concentration of the virus itself. Proper ligand density 

is also important in immobilizing DNA on the sensor surface. Closely packed, high 

density DNA regions may lead to weak binding with the protein analytes or may lead to 

non-specific binding with proteins. Therefore proper spacing between these DNA ligands 

is essential in increasing the sensitivity and specificity. Using a streptavidin linker layer 

to immobilize biotinylated double stranded DNAs on a planar gold surface has been 

shown to produce adequate spacing for the binding proteins (47). In studying protein-

DNA interactions by SPR, the streptavidin was bound to SAMs on the gold surface, 

which was composed of biotin and ethylene glycol terminated alkanethiols. The ethylene 

glycol terminated alkanethiols functioned as spacer and also prevented non-specific 
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adsorption (61). In our present study single stranded DNA aptamer was first immobilized 

on the gold surface via thiol linkage and then mercaptohexanol was adsorbed on the same 

surface. The mercaptohexanol also binds to the gold via a thiol group. It has been shown 

that the mercaptohexanol also displaces some of the non-specifically tethered DNA 

probes and also binds to vacant gold surface. The mercaptohexanol thus acts as a spacer 

and also helps in preventing the non-specific binding. It has also been shown that nearly 

100% of the tethered DNA probes hybridize with complementary strand and the spacing 

helps in extending the probe by 1nm into the surrounding buffer solution (11).  

 

Ligand enhancement 

 

             Ligand enhancement is important particularly for detecting low molecular mass 

analytes. The detection can be increased by a second molecule, which binds to the analyte 

in a sandwich assay. Biotin labeled oligonucleotide was shown to hybridize to DNA 

immobilized on gold and subsequent hybridization of streptavidin to the biotinylated 

oligo enhanced the detection limit (62). Two mouse monoclonal antibodies against IL-8 

were used in a similar SPR sandwich assay, and the sensitivity limit was increased 

making possible the detection of 2.5 picomolar IL-8 (23). In another format, conjugating 

the analyte with a larger molecular mass substance can increase detection. In a study by 

Seves and Schasfoort, it was shown that latex particles coated with antigen was bound to 

antibody on the sensor surface, thus improving the sensitivity of SPR immunoassay for 

human chorionic gonadotropin (63). Inhibition assays here has also been shown to 

increase the sensitivity. For this strategy, analyte is immobilized on the sensor surface, 
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and the sample containing the analyte is mixed with known concentrations of the 

antibody and passed over the sensor surface. The SPR signal is inversely proportional to 

the concentration of the analyte. Using this format carbaryl concentration as low as 2.7 

g per liter was detected in a study aimed at developing a SPR biosensor for pesticides in 

water (15). Also a similar format was used to detect warfarin in plasma filtrate with a 

detection limit of 2 g per liter (20). 

Instrumentation 

                            The flow cell volume, flow rate and the type of light detection play a 

role in the sensitivity of SPR instruments. The flow rate influences the response time of 

the sensor (12). A syringe pump attached to the flow cell can deliver a precise and 

constant flow with minimal fluctuation. An optimum flow rate is essential for proper  

binding and also to minimize the drift in SPR signal. In some of the new SPR instruments 

multiple flow cells are being used, which helps in high throughput analysis and also the 

flow cells can function as reference channels and thus can eliminate the bulk effect and 

non-specific adsorption.  

                       Increasing the angular resolution of SPR instruments can also enhance 

sensitivity of SPR instruments. Angular resolution can be described in terms of the 

smallest detectable change in refractive index of the analyte. The resolution is usually 10-

2 to 10-3 degrees for SPR instruments. This means that a change in 10-3 degrees in SPR 

angle could be detected. Two widely used detection systems for SPR are charged coupled 

device and linear diode array. The limitations of these methods include laser intensity 

fluctuations and thermal and mechanical drift (45). In 1999 N. J. Tao et al described a bi-
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cell SPR instrument using a bi-cell photodetector SPR instrument, which increases the 

angular resolution to 10-5 degrees (42). In another study using the bi-cell SPR 

oligonucleotide hybridization at femtomolar level was detected (7). In our present study 

we used a bi-cell SPR instrument (Nomadics Inc, Stillwater, OK). This highly sensitive 

detection system has been shown to cancel out any light intensity changes in the laser or 

in the ambient environment. 

 

Bi-cell SPR 

                   Most of the SPR instruments that are currently in use have a typical angular 

resolution of 0.01° to 0.001°, which means that analytes causing 0.01° to 0.001° change 

in the angle of reflected light can be detected. For higher angular resolution, a large 

distance between the prism and the photodetector is required. Unfortunately, this change 

makes the instruments design too bulky and more susceptible to mechanical noise and 

thermal drift which also increases the response time of the instrument. Mechanical 

movements can be avoided by fixing the photodetector at an angle near resonance and 

measuring the intensity change in the reflection due to SPR angular shift. A major 

advantage of this approach is that the response time is only limited by the photodetector 

and the associated electronics, which can be as fast as nanoseconds. A drawback, 

however, is that the relationship between the intensity and the resonance angle is 

sensitively dependent on the angle at which the photodetector is fixed. Major limitations 

in the resolution of the method come from the intensity fluctuation in the laser and from 

thermal and mechanical drift in the setup. Another widely used attenuated total internal 
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reflection (ATR) -based method is to replace the collimated incident light in the above 

design with a convergent beam that covers a range of incident angles. The reflections 

from different incident angles are collected simultaneously with a linear diode array 

(LDA) or charge coupled device (CCD). This method involves no mechanical 

movements, but simultaneous detection of many channels (of the LDA) slows down the 

response time. The typical angular resolution obtained for this method is 0.01° to 0.001°. 

As in the method with a rotating prism, high angular resolution of this method requires a 

large distance between the prism and the photodetector. In 1999, N. J. Tao and 

collaborators described a new bi-cell SPR detection method that that was able to achieve 

an angular resolution of 0.00001° and time response of 1 µs (42). The method has several 

additional features, which include simplicity, good linearity, compactness, and immunity 

to ambient light. 

Bi-cell SPR instrumentation 

           In bi-cell SPR instruments a plano-cylindrical lens is used as the prism to create 

the total internal reflection. On the prism the sensor surface which is usually 50nm gold 

coated coverslip is placed using a matching fluid with the same refractive index as that of 

the prism. The gold surface is usually decontaminated by Piranha solution or hydrogen 

flame. Collimated laser light is focused on the gold film through the prism. Light 

reflected from the prism is detected using a bi-cell photo detector which was mounted on 

a precision translation stage. The photocurrents from the two cells of the bi-cell detector 

(A and B) are converted to voltages with a homemade circuit. The circuit also calculates 

the differential, A-B, and the sum, A+B, signals, which is then sent to a PC computer 

equipped with a 16-bit data acquisition board.  Before each measurement the prism is 
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rotated so that there was a dark line located at the center of the laser beam. The dark line 

is due to the absorption of the light by the surface plasmon, which occurs at the angle of 

resonance. The reflected light falling onto the two cells of the photodetector is then 

balanced by adjusting the photodetector position with the translation stage until A-B 

approached zero. Because of the high sensitivity of the method, drift in the A-B signal 

due to mechanical stress was clearly visible immediately after alignment but it settles 

down typically over a period of 15–30 min when all the screws were properly tightened. 

The ratio of the differential to sum signals, which is linearly proportional to the SPR 

angular shift, is obtained numerically by dividing A-B with A+B (42). 

 

Sensitivity of bi-cell SPR 

            Errors in the ATR-based SPR methods come mainly from three sources; laser 

intensity fluctuation, mechanical vibration and thermal drift; and noise in the 

photodetector; and its electronics. The intensity fluctuation in a typical diode or HeNe 

laser is between 0.1% and 1% which is a serious source of errors in the methods based on 

detecting the ATR intensity. This problem is greatly reduced in the bi-cell SPR design 

because the common mode noise in the laser intensity is subtracted out in the differential 

signal. The measurement of the ratio of the differential to the sum signals further reduces 

errors due to the intensity fluctuation. The detection of the differential signal also makes 

the present model largely immune to noise due to ambient background light. These 

advantages are not shared by the methods using either a single cell or an array of 

photodetectors. Noise in the photodetector and its electronics is another source of errors 

in all the ATR-based methods. In the bi-cell SPR instrument, the noise in A-B due to the 
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photodetector and electronics has been calculated to be very low, so the resolution 

achieved is clearly not limited by the noise. Another source of errors comes from 

mechanical vibrations and thermal drift in the systems and depends on the design of each 

system. This is the dominant source of errors in the bi-cell SPR instrument. It can be 

minimized by placing the laser diode, prism, and bi-cell photodetector close together on 

an optical breadboard, which can be placed on a vibration- isolated plate used for a 

scanning tunneling microscope.  

 

            Taking advantage of a sensitive SPR instrument using a bi-cell photodetector, J. 

H. Fendler and coworkers readily observed pH-dependent differences in the reflectivity 

of a mercapto propionic acid surface assembled monolayer on a gold substrate and 

elucidated the rate of mercapto propionic acid self-assembly (43). Additionally, in this 

experiment time-resolved SPR measurements were performed using the 635 nm incident 

wavelength (using a 5 mW diode Power Technologies laser) and a bi-cell photodiode 

detector (Hamamatsu). The photocurrents, from the two photocells, were converted to 

voltages, and collected on a computer. It was found that the method provides an accurate, 

time-resolved detection with high angular resolution ~ 0.0001deg and fast time response 

~1 µs. All the SPR experiments reported in the experiment were performed at room 

temperature (43). 
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CHAPTER III 
 

APTAMER MEDIATED THROMBIN CAPTURE IN SERUM 
 
 

Abstract  
 

 
         A novel bi-cell surface plasmon resonance (SPR) spectrometer was demonstrated to 

detect protein capture by specific binding with an immobilized aptamer.  SPR is 

increasingly being used to detect a variety of target- ligand interactions in real time with 

high sensitivity and no labeling or tagging required.  Our SPR spectrometer consisted of a 

gold surface, to which the capture probe was attached, a diode laser as the light source, a 

prism to focus the light on the gold, and a bi-cell photodetector. The resonance angle, 

where maximum energy from the light waves is transferred to the gold as electromagnet 

waves called plasmons, changes with capture of a target molecule at the gold surface and 

is detected by the photodetector.  Reported herein is the novel use of an aptamer as a 

capture probe. Aptamers are oligonucleotides whose secondary structure specifies its 

affinity to bind structurally and electrostatically to non-nucleic acid targets.  In this case, 

a thro m b in aptam er (5 ’-GGTTGGTGTGGTTGG-3’) w ith a thio l linker w as attached to  

the gold by a covalent thiolate bond, allowing it to be available for binding to thrombin, a 

serine protease, in aqueous samples. The liquid samples were passed through a low 

volume flow cell resting on the gold surface.  Following the construction and 

optimization of the bi-cell SPR platform, two experiments were performed: (1) the 

thrombin aptamer was used as a hybridization probe with the complementary and non-
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complementary oligonucleotides to demonstrate immobilization and functionality of the 

oligonucleotide capture probe, and (2) thrombin capture was performed using the 

thrombin aptamer as capture probe. A misaptamer, nucleotide content identical to the 

aptam er b ut w ith a d ifferent seq uence: (5’-TGG GTT GGG TTG GTT TT-3’) 

immobilized to the gold served as the negative control.  Factor X, another serine protease, 

was used as a target control for these experiments.  Our SPR spectrometer was able to 

detect the hybridization of 5 picomoles of complementary oligonucleotide target and the 

capture of 1 picomole of thrombin with specificity for the protein and low background 

without reaching its limit of detection. We also investigated the affinity of the aptamer 

for prothrombin, which was detected at 2 picomole  of prothrombin with the thrombin 

aptamer. Using serum samples, the capture of 1 picomole of thrombin was detected. 

However use of serum samples was associated with significant background drift. 

Strategies to reduce this background drift was explored. We conclude that the bi-cell SPR 

platform with an aptamer as a capture probe can be used as a highly sensitive real-time, 

label- free biosensor model for the detection of biomolecules in diagnostically relevant 

samples. 

 
 

Introduction 
 
 
 

              Surface Plasmon Resonance spectroscopy is being increasingly used as a real 

time label free system for the detection of biomolecular interactions. Initially the use of 

this technique was to study the chemical kinetics of various biomolecular interactions. 

However, in the past few years with better techniques of immobilizing biomolecules on 
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sensor surface, thus making the interaction free from any non-specific binding, the SPR 

instrument is used in detection of various biomolecules.  

 

                     The advantages of this method of detection include real-time, label- free 

binding with specificity and sensitivity in the femtomoles range. In SPR instruments the 

sensor surface chemistry is of outmost importance. The most common biomolecules that 

is being used as capture ligands are monoclonal antibodies. However, limiting the sensor 

platform to just an antibody based immobilization chemistry has its limitations. Some of 

the biomolecular targets may not be immunogenic and an antibody cannot be produced 

against such targets. Also the stability of antibody and variation between different 

batches of the same monoclonal antibody can be problematic in a biosensor application.  

Aptamers, which are composed of oligonucleotides such as RNA or DNA have in recent 

years emerged as a substitute for antibodies. As these molecules are produced in vitro by 

a process called SELEX (Systematic Evolution of Ligands by Exponential Enrichment) 

there is very little variation between batches. Aptamers have high specificity for their 

target molecule and potentially can be produced against any molecule. Another advantage 

of aptamers are that they are chemically stable and can be boiled or frozen without loss of 

activity. Because they are synthetically made molecules they are amenable to a variety of 

chemical modification for specific applications.  

 

                 In our study we have used the thrombin aptamer as our capture probe on the 

biosensor surface. The SELEX procedure has been used to create both a RNA (19) and a 

DNA (11) aptamer against human alpha thrombin. Thrombin is a multifunctional serine 
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protease with both coagulant and anticoagulant properties. The 15mer DNA thrombin 

aptamer is the most studied aptamer. Griffin et al (1993) have studied the 

pharmacological activities of this aptamer in cynomolgus monkeys and found that the 

aptamer increased the plasma prothrombin time and in ex vivo model it inhibited platelet 

aggregation (18). Thrombin aptamer have been shown to have high affinity for its target 

molecule which is the serine protease thrombin (18). We used the 15mer DNA thrombin 

aptam er, w hich w as chem ically m od ified w ith a thio l gro up attached to the 3’ end o f the 

oligonucleotide. The thio group allowed coupling of the aptamer to the gold surface by a 

thiol linkage. 

   
                      One of the most common problems associated with the biosensor 

application is the non-specific binding of non-target biomolecules to the sensor surface. 

This non -specific binding can be explained as the tendency of biomolecules to physically 

adsorb on to a solid substrate without specific receptor recognition interaction (16). Self 

Assembled Monolayers (SAM) of sulfur containing compounds like alkanethiols, dialkyl 

sulphides and dialkyl disulphides on noble metal surfaces have been extensively studied 

and have been shown to prevent the non-specific interactions. However, most of the 

surface chemistry studies have been based on gold surface due to its inert character. The 

structure of these SAMs has been well established and detailed (17). SAMs of 

alkanethiols on gold formed by adsorption of a long chained alkanethiol (XCH2-SH, 

n=11-18) have been shown to prevent non-specific binding.  In our experiment, to 

prevent any non-specific adsorption on to the gold surface, a 6-mercapto-1-hexanol SAM 

was adsorbed on to the gold. This six carbon alkanethiol monolayer not only prevents the 
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non-specific adsorption, but it also purported to lift the aptamer from the gold surface 

which in turn will increase the efficiency of binding with the target molecule (7).  

 

                    SPR instruments use the total internal reflection of light off of a metal 

surface, usually gold, to detect the capture of a target molecule. At total internal 

reflection, the light waves are reflected, but there is a small amount of energy transferred 

from the waves to the metal surface, resulting in electromagnetic waves within the metal 

called plasmons.  Additional binding to the surface increases the mass of the surface, 

changing the refractive index and ultimately the resonance angle.  The resonance angle is 

the angle at which the greatest amount of energy is being transferred to the plasmons, and 

appears as a dark line (dip) in the reflected light.  There are many different instruments 

being used with SPR, including flow injector cells, to deliver the target, and bi-cell 

photodetectors that measure the shift in the resonance angle by dividing the difference in 

light waves detected by the two cells, by the sum of the two cells (A-B)/(A+B).  

Compared to instruments using single-cell detectors that can detect binding around the 

nano-molar range, bi-cell detectors have been shown to detect hybridization in the femto-

molar range with specificity (2). This novel method of detection by using the ratio 

between the differential to the total sum of light not only make the bi-cell SPR more 

sensitive but also cancels out the noise which arise due ambient light variation and laser 

intensity fluctuations.  

 

                     In this study we combined this bi-cell SPR and aptamer technology to create 

a biosensor that detects the capture of thrombin by its aptamer, in low levels with 
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specificity for the protein.  Nomadics, Inc. (Stillwater, OK) has developed a SPR 

instrument with a bi-cell photodetector equipped with a teflon flow cell. We used this  

novel bi-cell SPR instrument for our experiment (Figure1). The 15mer DNA aptamer was 

m od ified w ith a thio gro up o n its 3’ end, and it w as tethered to the go ld surface b y its S -H 

m od ified 3’ end. A fter the o ligo m o no layer w as fo rm ed o n the go ld, a S A M  m o no layer of 

mercaptohexanol was accomplished by binding the mercaptohexanol to the surface of the 

gold by thiolate bonds. The Tris EDTA buffer was spiked with the thrombin or with 

factor X as a negative control. The targets in the solution were introduced to the flow cell 

sequentially and capture was be detected. The ability of the thrombin aptamer to detect 

prothrombin was also investigated. Five hundred femtomoles of thrombin and two 

picomoles of prothrombin were detected in Tris EDTA buffer.  Experiments to study the 

inter-day and intra-day variations were conducted. After optimizing the experimental 

protocols, capture of thrombin in diagnostically relevant samples was assessed using the 

thrombin aptamer. Using this model, one picomole of thrombin was detected in fetal 

bovine serum, but we were not able get rid of the background drift which was seen on 

flowing the serum through the flow cell. This work demonstrates that an aptamer can be 

used as a capture probe in bi-cell SPR with high specificity and sensitivity of detection 

and this model could be used as real time label free detection system which can easily be 

used in a clinical setting more and affordable compared to the commercially available 

SPR instruments. 
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Materials and Methods 

 
 
 

 
Materials 
                     
                         The thio linked DNA thrombin aptamer, its complimentary sequence and 

a misaptamer with thio group were purchased from Integrated DNA Technology 

(Coralville, IA) (Table 1). Human -thrombin and prothrombin was purchased from 

Enzyme Research Laboratories (South Bend, IN).  Optical fluid (LS-5252) from 

L ightspan (W areham , M A ), C leland’s R ed uctacryl R eagent fro m  C alb iochem , M icrosp in 

G-25 columns from Amersham Biosciences (Pittsburg, PA), Microcon YM-3 centrifuge 

filter devices from Millipore (Burlington, MA), 97% 6-Mercapto-1-hexanol from Aldrich 

(St Louise, MO), distilled deionized water from Cellgro. Defined fetal bovine was bought 

from HyClone (South Logan,UT). All other materials for buffers, bovine serum albumin 

and Tween 20 were purchased from Sigma Aldrich.  

 

Thrombin aptamer with the linker 5’ G G T  T G T  T G T  G G T  T G G  A A / 
3ThioMC3-D /3 ’ 

Misaptamer with the linker 5’ T G G  G T T  G G G  T T G  G T T  T T / 
3ThioMC3-D /3 ’ 

Complementary strand of thrombin 
aptamer 

5’ T T C  C A A  C C A  C A C  C A A  C C  3’ 

Non-complementary strand 
 

5’ A A A  C C C  A A C  C C A  A C C  C A  3’ 
 

 
Table.1. The thrombin aptamer and the misaptamer was modified with a thio group using 
the 3’ thio linker. T w o ad enine and tw o thiam ine bases w ere attached to  the 3’ end o f the 
aptamer and the misaptamer respectively, which acted as a spacer.  
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Coating gold on the cover slips 

                     C lean F isherb rand 18’x18’ B K -7 glass cover slips (Fisher Scientific) were 

washed in soap solution, isopropanol and acetone, each for 10 minutes and then air dried. 

Coverslips were first coated with chromium at 2nm thickness using a bench top sputter 

coater from Denton Vacuum (Moorestown, NJ). The 2nm chromium coating helps in 

proper attachment of the gold film on to the glass cover slips. Then gold was coated at 

50nm thickness. Proper thickness of the gold coating is very important because thickness 

of more than 50nm or less than 50nm will cause the SPR resonance dip to be narrow or 

broader which in turn affect detection.  

Coating the aptamer on the gold            

 

               First the gold coated slips were cleaned in freshly prepared Piranha solution for 

10 minutes on a rocker to remove any impurities. The Piranha solution is made of 

concentrated sulphuric acid and 30% hydrogen peroxide in the ratio 7:3. The cover slips 

are then rinsed with double deionized water and ethanol, two times each and air dried.  

         The oligos, the aptamer and the misaptamer was supplied as disulfides. To prepare 

these for use, the disulfide bonds were reduced with a dithiothrietol (DTT) coated beads 

(Reductacryl, Calbiochem Inc.). The beads were first resuspended with the oligos in Tris-

EDTA, pH 7.5. A ratio of 1 mg oligo with 50 mg resin was used to ensure complete 

reduction and were stirred or agitated at room temperature for 15 minutes.  Reductacryl 

beads were removed using a G-25 Micro Spin Column and centrifuged for 3 minutes at 

735 rcf. The beads stayed in the column and the oligo (aptamer) were taken in a tube. In 
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order to debuffer the solution, the oligos were added to Microcon YM-3 filter and 

centrifuged at 14,000 rcf for 30 minutes. The filtrate was discarded and  KH2PO4 (1M, 

pH 7) was added to the other side of the filter, and again centrifuged at 1000 rcf for 4 

minutes by keeping the filter tube inverted and the solution was collected  and made up to 

50μ L  by add ing K H 2PO4. T he 50μ L  o f p urified o ligo is coated o n the P iranha cleaned  

gold slip and incubated for 4 hours at room temperature. The aptamers used also had two 

extra bases at the 3’ end, w hich functio ned  as a spacer arm. The functionalized surface 

was then cleaned with double deionized water and air-dried. For the control experiments 

a misaptamer, which is a 15 mer with identical nucleotide content to the thrombin 

aptamer but in a scrambled sequence, was used by attaching to the gold surface as 

described above for the thrombin aptamer.  

Coating mercaptohexanol on the gold 

 

                  Following coating the oligo on the gold, the gold surface was further modified 

by a mercaptohexanol monolayer (SH-(CH2)6-OH) SAM. For this a 20mM 

mercaptohexanol was coated on to the gold for two hours at room temperature. In SPR 

experiments its important that the immobilized probe has a high target recognition ability, 

the tethering of the substrate must be engineered so that it does not interfere with their 

ability to hybridize or attach to the target molecule. The non-specific adsorption of the 

probe DNA at site other than the thiol group is minimized by a co-adsorbing 

mercaptohexenol, a short alkane thiol molecule, that also attaches to gold through a thiol 

group. The mercaptohexanol displaces the oligos which are not bound to gold via a thiol 

linkage and also occupies the vacant spaces on the gold which are not filled by the oligo. 
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It is been also proved that mercaptohexenol treatments lifts the probe backbone from the 

gold surface, leaving them anchored solely through the thiol-derivatized end (7).  

SPR Instrumentation 
 
                   
   A prototype of the bi-cell SPR was made by Nomadics Inc. (Stillwater, OK). The 

specifications of the prism, laser, photodetector and the electronics are as follows. A 

picture of the prototype is shown in Fig 1.  

 

 

Figure 1. Home made bi-cell SPR instrument (Nomadics Inc, Stillwater,  OK). A. Laser 
source. B. Prism holder with the prism. C. Flow cell. D. Bi-cell photodetector. E. 
Transition stage for adjusting the photodetector. 
 
 
 670 nm, 4 mW variable focus diode laser module (Coherent) 
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 BK7 Plano-semi-cylindrical prism (Melles Griot, 01LCP004) 

 4 l Teflon sample flow cell with 5mm2 exposure. (Nomadics, Inc) 

 Bi-cell photosensitive detector (Hamamatsu, S2721-02) mounted on a precision linear 

translation stage (Parker Hannifin, model 3946) 

 Circuit to convert the photocurrents to voltages (Nomadics, Inc.)  

 A 12-bit National Instruments AD/DA board (PCI 6071) was use to collect the SPR 

signal. 

 Control and data collection software is programmed with LabView for Windows 6.0  

 

 Bi-cell SPR  

                    The aptamer immobilized gold coated cover slips were placed on to the BK- 

7 planocylindrical prism. A drop of optical fluid with the same refractive index as that of 

the prism and glass cover slip was placed between the prism and the cover slip so that the 

cover slip would not slide off.  With the cover slip thus attached to the prism, the prism 

with cover slip on top was placed on a rotating holder.  An injection flow cell was then 

placed on top of the prism and adjustment screws tightened. The flow cell has two ports, 

one in port through, which samples can be introduced, and one out port, which is 

connected to a volume rate controlled syringe pump. By adjusting the knob on the 

syringe pump a constant flow with desired flow rate can be maintained through the flow 

cell. At the start of the experiment, the Tris EDTA buffer was flown through the flow cell 

at a rate of 10 µl per min. The laser is then focused on to the prism, and then the prism 

was rotated till a dark line or dip was seen in the reflected light. Once the dip was clearly 

focused, all the screws on the prism holder were tightened. The bi-cell photodetector 
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which was mounted on a transition stage and the detector was placed in position in such 

away that the dip falls in between the two photocells. This procedure can be easily done 

by looking on the Labview screen on the monitor (Figure 2). The two photocells which 

were named A and B and as the dip falls in the exact middle of the two cells the light 

falling on the two cells will be same and on the monitor A-B will be zero.  After focusing 

the dip in between the two photocells the screws on the photocell transition stage were 

also tightened. 

 

Figure 2. The computer window showing the Labview software screen (National 
Instruments). The smaller windows showing the different channels including total light 
falling on the photocells(A+B), differential sum of the lights (A-B) and the SPR shift (A-
B)/(A+B). 
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Capture of Aptamer Compliment Using Bi-cell SPR 

 

                     After the bi-cell SPR was set up, Tris-EDTA buffer (10mM Tris, 1mM 

EDTA, 5mM MgCl2, pH 7.6) was flowed through the flow cell at 10µl per minute. The 

flow was maintained up to 10 to 20 minutes for the drift to settle and a stable base- line 

was reached on the Labview monitor.  Then 5 picomoles of aptamer complement in Tris 

EDTA buffer was passed through the flow cell at the same flow rate. Change in SPR 

angle shift was calculated using the formula, SPR Shift = A-B/A+B which is the ratio of 

differential sum of the light falling on the two photo cells to the total light falling on the 

cells. This change was detected by the photocells and converted to electrical signals, 

amplified and the data collected was calculated using the Labview software. The data 

consists of the angle shift at each time frame. For each experiment the data was recorded 

for period of 10 minutes. The resulting data was plotted on an excel graph with time in 

seconds on the X-axis and SPR angle shift on the Y-axis. A 5 picomole non-

complementary DNA sequence was used as the negative control. The sequences for the 

aptamer, aptamer complement and the non-complement is given in Table 1.  

Capture of Human α-Thrombin using Bi-cell SPR 

 

                      To prepare the analyte, α-thrombin, it was thawed at room temperature for 

1 to 2 hours. After the bi-cell SPR was set up Tris-EDTA buffer (Tris 10mM, EDTA 

1mM.  pH 8.0) was introduced through the flow cell at a rate of 10µl per minute. This 

flow rate was experimentally determined, and was found to give a high level of binding 

with minimum detection time lag. The flow was maintained for 10 to 20 minutes until a 
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stable base- line was reached on the Labview monitor.  Then 1 picomole of thrombin was 

passed through the flow cell at the same flow rate. Change in SPR angle shift was 

calculated using the formula, SPR Shift = A-B/A+B. The data consists of the angle shift 

at each time frame. For each experiment the data was recorded for period of 10 minutes. 

The resulting data was plotted on an excel graph with time in seconds on the X-axis and 

SPR angle shift on the Y-axis. One picomole factor X, which is a serine protease with 

molecular weight of 58800 Da, was used as the negative control. The same experiment 

was repeated by using a gold sensor which did not have the aptamer immobilized on it 

and contained only the mercaptohexanol monolayer. As another negative control the 

immobilized  misaptamer gold sensor was used to capture both the factor X and thrombin 

and the SPR shift was calculated.  

SPR Using Human Prothrombin 

                      To prepare the analyte, prothrombin, it was thawed at room temperature for 

1 to 2 hours. After the bi-cell SPR was set up Tris-EDTA buffer (Tris 10mM, EDTA 

1mM.  pH 8.0) was flown through the flow cell at 10µl per minute. The flow was 

maintained up to 10 to 20 minutes for the drift to settle and a stable base- line was reached 

on the Labview monitor.  Then 2 picomole of prothrombin (MW 72000 kDa) was passed 

through the flow cell at the same flow rate. Change in SPR angle shift was calculated 

using the formula, SPR Shift = A-B/A+B and data handled and assessed as described 

above. 
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Intra-day and Inter-day Variations in the Thrombin Capture 

 

                      In order to calculate the intra-day and inter-day variations in thrombin 

capture, three concentrations of thrombin, 0.5, 1 and 2 picomoles were used.  To 

calculate the inter day variation, all the three concentrations were passed over the same 

gold sensor surface and the data was collected. Three different experiments with different 

gold sensor surfaces were done on the same day and the data from the three independent 

experiments were plotted on a graph and coefficient of regression and the coefficient of 

variations between were calculated.  For calculating the intra-day variations three 

independent experiments were done on three separate days and the data was similar ly 

plotted and r² value and CV was calculated.  

 

Capture of Human α-Thrombin in serum 

 

In order to assess whether a more complex biological media could be used in the bi-cell 

SPR, we extended the experiment by using the analytes spiked in serum. Defined fetal 

bovine serum (FBS) was thawed at room temperature and 10% FBS was made in Tris 

EDTA. We spiked the different concentrations of the analyte in the 10% FBS. For the 

SPR run we first introduce the 10% FBS through the flow cell at 10µl per minute for 45 

minutes and then introduced the spiked samples. The change in SPR shift was measured 

and plotted on the sensorgram. In order to resolve the problems encountered with base-

line drift, while using the serum samples, the sensor surface was first blocked with 1% 
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BSA. In addition different dilutions of the serum in Tris EDTA buffer were tried to see 

whether it had any affect on the base- line drift. The addition of 0.05% Tween 20 to the 

sample was also assessed for reduction, of any non-specific adsorption of serum 

components to the sensor surface.  Finally to assess whether the flow channel had any 

effect on the base- line drift, the flow cell was replaced by a well of 0.5ml volume with an 

effective exposed sensor surface area of 2mm². The samples were introduced in the well 

by gently dropping the analytes into the well. As the analyte settles on the surface the 

SPR shift was measured. 

 

Results 

 

 
          To optimize the binding environment and to minimize the time required to reach a 

stable base-line, several flow rates were tested.  It was found that at a flow rate of 10 l 

per minute, the maximum SPR shift on binding experiments was observed. This rate was 

reasonably fast, and analytes could be initially detected in three minutes. Three minutes is 

the time required by the sample to reach the sensor surface from the point of sample 

injection. A base- line with minimum drift was obtained in about 10 to 15 minutes at this 

flow rate. 

 

Hybridization of the Oligonucleotide Target 

                       In the hybridization reaction, 5 picomole of complementary DNA could 

detected using the thrombin aptamer as a hybridization probe (Figure 3.). As a control the 

SPR signal shift was also monitored by passing a non-complimentary sequence over the 
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same sensor surface. In another experiment the sensor surface, which did not have the 

aptamer immobilized on it and which had only the mercaptohexanol monolayer on it was 

used and the signal shift for both the complementary and the non-complementary 

sequence was measured. In both these control experiments any deviation from the base- 

line was not observed. The absence of any shift with the controls confirmed the presence 

of the immobilized aptamer on the gold coated cover slips.  

Hybridization of 5 pmole of aptamer and its complement 
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Fig.3. Hybridization of 5 picomole of aptamer complement detected around 3 minutes. 
No signal could be measured for the non-complementary sequence. 
 

Thrombin Capture using Bi-cell SPR 

                      Using the bi-cell SPR instrument, a detection range in femtomoles amounts 

of thrombin was observed. The lowest level of detection was 250 femtomoles of 

thrombin capture in a Tris EDTA buffer.  However detection level was consistent in a 

range from 500 femtomoles to 2 picomoles range. For both the 500 femtomoles and 1 
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picomole thrombin capture, a consistent level of binding was observed. (Figure 4 and 

Figure 5). As controls, the factor X protein, which is another serine protease like the 

thrombin, with a little higher molecular weight than the thrombin molecule. No binding 

was observed with 500 femtomoles, 1 picomole or the 2 picomole of Factor X with the 

thrombin aptamer. This demonstrates that the binding between the thrombin aptamer and 

its target the thrombin molecule is highly specific.  In another SPR run, the thrombin was 

flowed over a gold sensor with just the mercaptohexanol monolayer on it and also the 

thrombin was also passed over the sensor surface with another 15mer oligonucleotide 

strand immobilized on it. This oligonucleotide had the same guanine and thiamine bases 

similar to that of the thrombin aptamer but arranged in a scrambled sequence. In both the 

control experiments any change in the SPR angle shift was not observed.  

 
                                                                                                                                                                                                                                                                   
                               
 
 
 
 
 
 
 
 
 
 
                                                                                                                      
 
 
 
 
 
 
 
Figure 4. Capture of 1 picomole of thrombin using the thrombin aptamer detected just 
around 4 minutes. There was no significant SPR shift with the controls, which included 
factor X, capture using mercaptohexanol layer and misaptamer. 
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Figure 5. Capture of 500 femtomoles of thrombin using the thrombin aptamer detected 
just around 4 minutes. There was no significant SPR shift with the controls, which 
included factor X, capture using mercaptohexanol layer and misaptamer. 
 
 
Prothrombin Capture using Bi-cell SPR 
 
 
                    Two picomoles of prothrombin was detected with the thrombin aptamer as a 

capture probe using the bi-cell SPR instrument (Figure 6). A comparison was done 

between the levels of binding of both thrombin and prothrombin, and it was observed that 

the binding of prothrombin was slightly less than half the binding value of thrombin. 

However, a consistent level of binding with less than 2 picomoles of prothrombin was not 

obtained. It was also seen that with the prothrombin the sensor surface was easily 

saturated and multiple runs could not be made on the same sensor surface. As with other 

experiments any binding with the negative controls was not detected.  
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Figure 6. Capture of 2 picomole of prothrombin compared to the same amount of 
thrombin. No signals were detected for the 2 picomole factor X and for the control using 
misaptamer. 
 
 
 
Intra-day and Inter-day Variations  
 
                              In order to calculate the variations in thrombin capture, both inter-day 

as well as the intra-day experiments with three thrombin concentrations namely, 500 

femtomoles, 1 picomole and 2 picomole was done.  For the intra-day calculations three 

experiments were done on the same day with three different sensor surfaces, and the data 

was calculated. The mean value for each of the three concentrations was plotted on a 

graph, and r² was calculated and had a value of 0.9992 (Figure 7). The CV for the intra-

day variation of 500 femtomoles thrombin capture was found to be 12.21% (Table 2).  

         For the inter-day calculation, three independent experiments were done on separate 

sensor surfaces on three different days. The data was taken and the mean value of the 
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three experiments was plotted on a graph and the r² value was found to be 0.9898. (Figure 

8). The CV for the inter-day variations was of 500 femtomoles thrombin capture was 

found to be 12.43% (Table 3). For both these experiments a concentration of greater than 

2000 femtomoles were found to be not linear.  
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Figure 7. Intraday variation calculated by doing SPR runs on three different sensor 
surface on the same day. r² value =0.9992. . The error bars showing one standard 
deviation from the mean value of 3 measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table.2. The table showing SPR shift and CV of 500,1000 and 2000 femtomoles of 
thrombin intra-day variation experiments.  

Intraday variation 
Concentration of  
Thrombin 
(femtomoles) 

  
   1 

 
      2 

 
    3 

 
 CV (%) 

 
    500 

 
0.024 
 

 
0.025 
 

 
0.03 
 

 
12.2104 
 

 
   1000 

 
0.047 
 

 
0.055 
 

 
0.06 
 

 
12.1426 
 

 
    2000 

 
0.08 
 

 
0.12 
 

 
0.11 
 

 
20.1394 
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Inter-day variation

R2 = 0.9898
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Figure 8. Inter-day variation calculated by doing SPR runs on three different sensor 
surface on the same day. r² value =0.9898. The error bars showing one standard deviation 
from the mean value of 3 measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table.3. The table showing SPR shift and CV of 500, 1000 and 2000 femtomoles of 
thrombin inter-day variation experiments 
 
 
 

Inter-day variation 
Concentration of  
Thrombin 
(femtomoles) 

 
Day 1 

 
Day 2 

 
Day 3 

 
 CV (%) 

 
    500 

 
0.028 
 

 
0.026 
 

 
0.033 
 

 
12.43 
 

 
   1000 

 
0.065 
 

 
0.06 
 

 
0.05 
 

 
13.0945 
 

 
   2000 

 
0.183 
 

 
0.14 
 

 
0.13 
 

 
18.6093 
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Thrombin Capture using Bi-cell SPR 
 
 
                                     The capture of 1 picomole of thrombin spiked in 10% FBS was 

detected using the same bi-cell SPR model (Figure 9). A constant base-line drift was 

observed during SPR experiments using 10% FBS as the running buffer. The drift would 

almost settle after 45 minutes of run time, but we could not completely get rid of the drift. 

The experiments with 0.05% tween 20 being added to the serum or blocking of the sensor 

surface with 1% BSA did not reduce the drift. It was also found that the drift was not due 

to the flow rate or the flow cell as experiments with a SPR using a well instead of a flow 

cell also produced similar drifts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Capture of 1 picomole of thrombin using the thrombin aptamer, detected just 
around 4 minutes. The SPR run was calculated for 5 minutes. There was no significant 
SPR shift with the controls, which included factor X, capture using mercaptohexanol 
layer and misaptamer. 
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Discussion 
 
 
 
 
                                  The capture of 500 femtomoles of thrombin in Tris EDTA buffer 

and 1 picomole of thrombin in 10% FBS using the thrombin aptamer as capture ligand 

was possible using the bi-cell SPR instrument. The first experiment was to determine 

whether the 15 mer DNA aptamer was properly immobilized on the gold coated cover 

slips. In order to prove this, a hybridization reaction was done by introducing a 

complementary strand of DNA aptamer through the flow cell. Five picomoles of 

complementary strand could be detected and no SPR signal was observed for 5 picomoles 

of a non-complementary strand. Any binding was not observed when the complementary 

strand was passed over a gold surface with just the mercaptohexanol on it. This 

experiment demonstrated that the aptamer was properly immobilized on the gold surface 

and also that the complementary DNA strand was not binding non-specifically to the 

mercaptohexanol or the gold surface.  

 

               For capture of thrombin in buffer, Tris EDTA buffer with a pH of 8 was used. A 

couple of different buffers were tested, but the Tris EDTA buffer was found to show the 

best sensitivity with minimum amount of non-specific binding. It has been shown 

previously that the ions in the buffer would influence the interactions (22). The limit of 

detection was 250 femtomoles of thrombin using this buffer. The linearity in binding was 

observed for a concentration ranging from 500 to 2000 femtomoles. The specificity of the 
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thrombin aptamer for its target molecule, the thrombin protein was demonstrated in the 

control experiments. No SPR shift was observed for the same amounts of factor X using 

the aptamer capture probe. Factor X is a serine protease similar to thrombin with a 

molecular weight of 58000 Da, which is slightly higher than the thrombin (37000 Da). 

Also the results from the mercaptohexanol functionalized and the misaptamer 

immobilized sensor surface indicated that the thrombin protein was not binding to the 

sensor surface non-specifically. 

 
                         Minimum variations in the detection levels between experiments and high 

reproducibility of the results is an important factor in biosensor applications. In the 

experiments with the variability in detection, linearity in binding for the concentrations 

ranging from 500 to 2000 femtomoles was obtained. The r² value for intra day and inter-

day binding was 0.9922 and 0.9898 respectively. The coefficient of variation for 500 

femtomoles was 12.21% and 12.43% for intraday and inter-day calculation. However, for 

higher concentrations the coefficient of variation was high. This may be due to the fact 

that the lowest concentration was first flowed and then introduced the higher thrombin 

concentrations over the same surface sequentially and for each run the available receptors 

for binding may become lesser and lesser, so we may not be getting the true value for 

subsequent binding. A better value could be obtained by using different sensor surface for 

each run or by using a regeneration solution by which all the previously bound molecules 

could be displaced. But for the current study the main objective was to find whether an 

aptamer could be used as a capture ligand in a bi-cell SPR and we were able to prove that 

part. 
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                     To explore whether the thrombin aptamer could detect p rothrombin in a bi-

cell SPR instrument, an SPR run with prothrombin in Tris EDTA buffer was used as the 

analyte. In the coagulation cascade prothrombin (72000Da) is cleaved into thrombin 

(37000Da) and two other smaller fragments by activated factor X, factor V and 

phospholipids (21). The bi-cell SPR could detect the binding of 2 picomoles of 

prothrombin using the thrombin aptamer as the capture probe. A comparison between the 

levels of binding was done and it was observed that prothrombin showed less than half 

the SPR shift when compared to the same concentration of thrombin. It has been shown 

previously that prothrombin has less affinity to the thrombin aptamer with a KD value of 

50nM while the KD value for thrombin is 2nM (20). The level of binding that was 

observed for prothrombin in this experiment may be due to a combination of less affinity 

for the aptamer and also high molecular weight of prothrombin.  

   

                        Finally the study was extended to see whether media could be used in the 

bi-cell SPR model. SPR phenomenon should not be affected by the complex media as it 

measures the refractive index changes of the solvent that takes place at the surface like a 

binding of molecules to the surface (19). A number of SPR studies have been done using 

complex solvents including saliva, cerebrospinal fluid and serum with varying results. A 

constant base- line drift in sensorgram was observed while introducing the serum through 

the flow cell.  This drift would almost settle in 45 minutes, but a stable base- line was 

never reached. This was the case with different dilutions of serum. Several methods were 

tested to prevent the non-specific adsorption, including using Tween 20, which is a 

nonionic surfactant and spreading agent and is commonly used to prevent noon-specific 
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protein interactions. Bovine serum albumin was also used to block the gold surface. 

Neither of the above methods could reduce the non-specific adsorption. In order to find 

whether the flow cell or the flow rate was causing the drift we d id a SPR with a well 

functionalized on the sensor surface, wherein the analyte is added into a miniature well 

having a volume of 0.5 ml and as the analyte settles on the sensor surface the angle shift 

could be calculated. In the well-SPR also the same constant drift was observed. This 

problem could be overcome by comparing the angle shift of the sample in serum to the 

angle shift of the serum in a reference channel simultaneously. But this was beyond the 

scope of the current objective.  

 
             In conclusion, it was able to prove that an aptamer could be used as a capture 

probe in a bi-cell SPR instrument with high sensitivity and specificity of detection. This 

real-time label free biosensor model can be easily adapted to a clinical setting and is 

much less costly than the commercially available instruments. This model has a great 

potential to be used for the detection of various biomolecules in a clinical setting.  
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