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INTRODUCTION 

Obstructive urolithiasis is considered to be the most economically significant 

urinary tract disease of food animals, affecting intact and castrated male ruminants, swine 

and camelids.1  Urolithiasis is a common disease of animals fed high grain rations, with 

the most common stone compositions in this setting being struvite (magnesium 

ammonium phosphate) and apatite (calcium phosphate).2    

 Obstructive urolithiasis is reported to be the cause of morbidity in up to 20% of 

all feedlot wethers3 and was the fifth most common cause of death in two Colorado lamb 

feedlots.4   In the National Animal Health Monitoring System Sheep 2001 survey, 20% of 

all sheep operations reported at least one incident of urinary calculi in the previous three 

years and it was the fourth most reported disease entity.5  Additionally, affected animals 

are often breeding, show or pet animals with high monetary or emotional value. 

The first chapter of this document reviews the anatomy unique to the male 

ruminant.  The anatomy as it relates to the predisposition of these animals to obstructive 

urolithiasis, as well as its contribution to the challenge of case management, are also 

presented. 

 The second and third chapters present a review of the literature.  The second 

chapter is a review of the pathophysiology and prevention of obstructive urolithiasis.  The 

third chapter is a review of dietary cation anion difference (DCAD).  The strong ion 

difference theory, the basis of DCAD, is presented, along with a definition and brief 
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review of the traditional use of DCAD.  Reports involving use of DCAD in small 

ruminants with regards to acid-base balance and urine composition are then presented. 

 The remainder of the text describes a clinical investigation of the use of DCAD 

for the prevention certain risk factors of obstructive urolithiasis.  Various levels of DCAD 

were fed in order to evaluate the response of goats to each level. 

 

The purposes of this study were to: 

 Determine existence of variability of DCAD values in commercially available 

small ruminant diets. 

 Determine the correlation between DCAD level and urinary pH values in goats. 

 Determine a level of DCAD which produces urine with a pH of between 6.0 – 6.5. 

 Determine the urine dilution effect of various DCAD levels. 

 Evaluate the effect of DCAD level on blood pH. 

 Determine appropriate urine sampling times to monitor effectiveness of DCAD 

balancing. 

 

Hypotheses: 

 There is significant variability in DCAD level among prepared small ruminant 

feeds, which may contribute to difficulty in preventing urolithiasis with anionic 

salts. 

 The DCAD of a ration is positively correlated with urine pH, urine specific 

gravity and blood pH produced in goats.
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CHAPTER I 
 
 

ANATOMY 

 

The distal urinary tract of male ruminants differs significantly from that of males 

of other species.  The penis is sigmoid in arrangement, 6 with two major bends occurring 

between the urinary bladder and the distal glans penis.  The most proximal of these 

flexures is a common site of urethral obstruction by uroliths.1    

 The glans penis of the small ruminant also has a vermiform appendage, or urethral 

process, which is an extension of the urethra 2-4 cm beyond the distal end of the penis.6 It 

has a narrowed diameter6 compared to the more proximal portions of the urethra and also 

serves as a common location for obstruction.1 

 The male ruminant has an additional structure in the distal urinary tract which 

does not contribute to urethral obstruction, but rather complicates treatment of affected 

animals.  A urethral diverticulum is present distal to the ischial arch.6   When a urinary 

catheter is passed into the urethra in a retrograde manner from the glans in order to 

achieve a patent pathway for urine drainage and lavage of the urinary bladder, this 

diverticulum readily accepts the catheter, 6 rather than allowing the catheter to proceed up 

the urethra into the urinary bladder.
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CHAPTER II 
 
 

REVIEW OF THE LITERATURE 

UROLITHIASIS OF SMALL RUMINANTS 

 

PATHOPHYSIOLOGY OF CALCULOGENESIS 

 Uroliths are solid crystalline formations in the urine which are composed of 

organic matrix and organic and inorganic crystalloids.7   They are highly organized 

structures, usually with a grossly apparent nucleus surrounded by laminations when 

viewed in cross-section.7   The most common stone compositions in ruminants include 

magnesium ammonium phosphate (struvite), calcium phosphate (apatite) and calcium 

carbonate.1  Formation of a urolith is not consistent or predictable, as a wide variety of 

environmental, dietary and physiologic factors are believed to contribute to their 

incidence.8 

Urolith formation occurs as a two-step process beginning with the formation of an 

organic matrix followed by deposition of minerals on that matrix.1, 8-13 These two steps 

may occur in repeated sequence, resulting in lamellar formation within the calculus,9 

representing alternating periods of growth and reflecting changes in the environment of 

the urolith.    

The matrix is a highly insoluble complex of macromolecules with the ability to 

bind ions.  It extends throughout the urolith, acting as the skeleton of the urolith, yet 

many times composes less than 5% of the total stone weight.7, 9   In one study in sheep, 
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matrix averaged 13% of the total weight of uroliths.14  Stones which contain >65% 

matrix, and therefore little mineral content, are called matrix stones,7 and have been 

demonstrated to occur in sheep.15  It is therefore important to understand and prevent the 

formation of matrix as well as the mineral components. 

The formation of matrix, and uroliths as a whole, results from super-saturation of 

the urine by calculogenic crystalloids.7 Whether or not matrix appears pre-formed in 

urine or is formed from solutes in urine is not known.9 Many factors affect the super-

saturation status of urine including rate of renal excretion of crystalloids, negative water 

balance, urine pH and the presence or absence of crystallization inhibitors.7 

Matrix is isolated from uroliths by demineralization and attempts have been made 

to characterize its components.  In sheep, isolated matrix has included nitrogen, reducing 

sugars, hexosamine, mucopolysaccharides, and tyrosine along with various other amino 

acids and sugars, erythrocytes, leukocytes and epithelial cells.1,14  An additional 

component of matrix are lipids, primarily cholesterol, which have composed 2.5-12.5% 

of uroliths in cattle.16  Suture, tissue debris, blood clots or bacteria may also serve as 

nuclear components initiating urolith formation.7  Urinary tract infection and metaplasia 

of uroepithelium as a result of vitamin A deficiency, may contribute cells and protein for 

nuclear formation.1,14  Infection, however, is considered to be a minor factor in urolith 

formation in ruminants.   Sheep with urethral occlusion have negative urinary bladder 

cultures in most cases; while advanced cases may contain Streptococcus spp. or 

Escherichia coli.17 Ureaplasma spp. have been isolated from sheep with urolithiasis and 

isolates induce struvite sedimentation in cultures.  In lambs with experimental 

ureaplasmal infections, there was not a difference in the incidence of calculi, but 

infection significantly increased the total mass of calculi recovered.18 Ureaplasma spp. 
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do increase urine pH, 3, 18 a risk factor in urolith formation, but this did not increase 

incidence of urolithiasis in one study.18 Further, infection may cause renal damange, 16 

allowing macromolecules into be lost into urine.   

Proteins in the form of mucoproteins and amino acids make up a portion of matrix 

and therefore play a significant role in stone formation.  Urine peptides play an role in the 

formation of matrix and therefore the initiation of a calculus and have been shown to 

have a high affinity for organic ions, such as calcium and magnesium.13 The breakdown 

of normal urinary proteins is believed to be a contributor to matrix formation.14 

Biocolloids are large macromolecules present in urine and incorporated into uroliths. 

They are nondialyzable and may be divided into serum macromolecules, ovine urinary 

mucoprotein (OUM) and urine polyelectrolytes (UPE).9, 19, 20  It appears as though these 

mucoproteins originate in the renal tubules.14  This mucoprotein may not initiate crystal 

formation, but rather may act as a stabilizer for supersaturated solutions.21   

Urine polyelectrolytes are peptides which contain various quantities of inorganic 

ions.8  They are divided into small molecular weight UPE, which are peptides, and large 

molecular weight UPE, which are proteins and mucoproteins.13  Small molecular weight 

UPE have a higher binding capacity and can bind each other as well as larger molecular 

weight UPE when in solutions containing calcium and magnesium.13  Urine 

polyelectrolytes of animals on calculogenic diets have increased binding capacity for 

inorganic ions, with the relative order of decreasing affinity being calcium, magnesium, 

potassium and sodium.13  Elevated urine protein levels have been demonstrated in lambs 

which developed calculi compared to lambs which did not develop urinary calculi.  Half 

of this protein was mucoprotein.14, 22  Another study, however, showed the highest urine 

protein levels to occur in lambs with the lowest incidence of urolithiasis.8 
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The exact function of matrix is yet to be fully understood.  Proposed functions 

include provision of ion-binding groups allowing for epitatic growth of crystals, serving 

as a template or binding agent for uroliths or may protect from further calculus growth.7, 9   

Epitaxial growth occurs when one type of crystal grows on the surface of a different type 

of crystal and is an important concept as many uroliths are of mixed composition.7 

In sheep, uroliths may appear as aggregates of microcalculi, containing 

phosphatic crystals and mucoprotein, cemented by an organic envelope, formed of 

mucoprotein.17,20  In the majority of cases of urolithiasis in feedlot sheep and cattle, 

phosphate crystals appear as packets of microcalculi.23  These microcalculi may serve as 

structural units for a single, larger stone.17  One study showed that matrix enclosed and 

cemented minerals and was therefore more important in cementing microcalculi together 

than in initiation of crystallization.14 

The presence of crystallization inhibitors are important to consider, as urine is 

normally a supersaturated solution.  Crystalloids are consistently maintained in solution 

in urine at higher concentrations than they could be held in water.  Normal urine is 

considered a metastable solution, whereby it is able to maintain more solutes in solution 

than would be predicted by the solubility of the solutes alone.7, 24 Metastability is the 

status between under-saturation and super-saturation, where the solution is saturated, but 

precipitation does not occur.  As the solution becomes increasingly saturated, it becomes 

unstable and the formation product precipitates out of solution and nucleation occurs.24   

Thus, these protective substances allow super-saturation without precipitation.  Organic 

acids, magnesium, inorganic pyrophosphate, urea, mucopolysaccharides, 

glycosaminoglycans, an RNA-like substance, and many unidentified substances are 

suspected to inhibit crystallization.7  The addition of calcium citrate to a calculogenic diet 
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reduced urine volume, but also reduced urine protein excretion, mucoprotein and 

tyrosine.14  These crystallization inhibitors have been identified as having a role in 

inhibition of calcium oxalate and calcium phosphate crystallization, but have not been 

definitively identified for struvite and silica uroliths.7,24  

 Three main theories exist to attempt to explain calculogenesis.  The first is the 

precipitation-crystallization theory which places highest importance on urine 

supersaturation and spontaneous precipitation by crystalloids, independent of matrix and 

crystallization inhibitors.7,24  It is believed that matrix is then incorporated into the 

growing calculus.7,24  The matrix nucleation theory sites pre-formed matrix presence in 

the urine as the culprit of calculogenesis.  Matrix forms from a nucleus which then allows 

binding by crystalloids for stone growth.7,24  The crystallization-inhibition theory states 

that calculogenesis occurs when crystallization inhibitor substances are present in 

inadequate quantities, and therefore require lower levels of super-saturation by 

calculogenic crystalloids to produce a urolith.7   

Once the nucleus is formed, to become a urolith, it must remain within the urinary 

tract and its environment must maintain continued and sufficient crystalloid 

supersaturation.7  If this occurs, deposition of inorganic minerals on the matrix or nucleus 

may occur.1,9-12  Salts make up greater than 95% of a stone’s weight9 and there is an 

intimate relationship between the mineral and matrix of uroliths.23  The major inorganic 

minerals deposited are magnesium, calcium and phosphate.25  Potassium and chloride 

play secondary roles and their presence may be more involved in inhibition of 

urolithiasis. 

An elevated level of phosphorus in the diet, with a calcium:phosphorus ratio less 

than 2:1 increases the excretion of phosphorus in the urine and provides an ion to bind to 



 

 9

organic matrix.1,3,11,12,25-28  Increasing the level of calcium in the diet markedly decreased 

the incidence of urolithiasis, probably due to competition with phosphorus for intestinal 

absorption and matrix binding.26  Ruminants excrete phosphorus primarily by saliva, 

where it is then swallowed and removed from the body in the feces.  This protects from 

phosphate calculi, but excessive dietary levels of phosphorus may saturate the salivary 

pathway, causing the excess to be excreted in the urine.1, 28 High phosphorus levels are 

present in the grains, particularly sorghum and wheat.1, 3, 29  Fresh urine samples of 

animals fed rations high in phosphates produce cloudy precipitates in vitro9 and 

phosphorus has the capacity to damage renal tubular epithelium, causing an increase in 

urinary proteins.14,30  

Consumption of high dietary magnesium has been shown to increase the 

incidence of struvite and apatite formation.1,3,12,28,31,32  Magnesium may act as an inhibitor 

of calcium-containing uroliths by competitive attachment to binding sites, but may 

predispose to magnesium-containing stones such as struvite.7  The contribution of 

magnesium to calculogenesis is not easily predictable.  Magnesium levels of 0.29% and 

0.86% in rations showed no difference in the incidence of urolithiasis.33 The contribution 

of dietary magnesium to urolithiasis may be aided by phosphorus.  The feeding of high 

magnesium, consistent with levels that would cause urolith formation, of 0.63% did not 

induce urolithiasis until phosphorus was concurrently raised to 0.52%.32  High urine and 

serum levels of magnesium and phosphorus and low serum calcium have been noted in 

wethers on a calculogenic diet.  Wethers that did not form calculi had lower serum 

phosphorus and magnesium, excreted more phosphorus and magnesium via the fecal 

route and less excretion of these minerals occurred through the urine.22 
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Chloride ions compete with magnesium and phosphate for binding sites on the 

matrix and decrease the incidence of urolith formation.10  They may therefore prevent 

nucleation, 12, 16, 34 but have also shown characteristics of inhibition of crystal growth, 8, 13 

through an inability to bind UPE directly.  The anionic components of uroliths tend to be 

larger molecules and are quite varied in their form and therefore may be more easily 

competed against for binding sites on matrix.10  

Potassium may have mixed effects on urolithiasis depending on level.  Studies 

have shown an increased incidence of stones with potassium supplementation, 10, 35 

decreased incidence,36 no effect,37 and no increase in incidence, but an increase in mass 

of stones recovered26.  This is due to the fact that potassium level relative to urolithiasis is 

curvilinear with highest levels of urolithiasis occurring at moderate levels of potassium in 

the diet.38   In one study, potassium supplementation did not change the incidence of 

calculi, but did increase the amount of calculi recovered in lambs.26,27  Potassium may 

compete with other ion binding sites on UPE in potassium-containing solutions.13   

A significant factor in availability of urolith components and their binding ability 

is urine pH1,11,28 although studies have shown conflicting results in urolith formation with 

regards to urine pH39,40.  Urolith formation may occur at both acid and alkaline urine pH, 

as evidenced by a study feeding phosphoric acid or potassium carbonate to induce acid or 

alkaline urine, respectively.  Animals under both conditions formed uroliths, but crystal 

growth rate is increased in alkaline conditions.40    

Struvite, apatite and calcium carbonate uroliths are known to precipitate in 

alkaline urine.7,11,12,24,28,41-43  Struvite crystallization occurs only at a pH range of 7.2 – 

8.4 and dissolution occurs at a pH of less than 6.5.42  Struvite had a 75% increase in 

solubility when the urine pH was reduced from 7.4 to 6.844 and struvite stones were 
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found to dissolve 35% faster when the urine pH was decreased from 6.5 – 5.7542.  Apatite 

stones develop at a urine pH of 6.5 – 7.5.45 

In sheep fed high levels of dietary phosphorus, the addition of the urinary acidifier 

ammonium chloride was found to prevent the increased incidence of calculi formation.39 

Thus it was concluded that pH was of greater importance than dietary phosphorus level in 

the development of urinary calculi.  An additional study showed that changes in the 

cations, sodium and potassium, and an anion, chloride, of a diet without corresponding 

changes in urine pH do not play a role in the prevention of urolithiaisis.35  Some sources 

state that cation anion balance which induces pH changes is likely to be more important 

than the pH itself.1,9 Anion source in the urine is very important as phosphate contributes 

to aggregation, while chloride reduces aggregation.9     

Matrix response to pH is not well understood.  Conflicting information exists as to 

whether UPE binds ions more easily at acid or alkaline pH, based on folding and 

availability of binding sites.13 Ovine urinary mucoprotein of matrix, in an alkaline 

environment, may lose its terminal polysaccharide moiety, increasing the ability for ion 

binding.20    

Total body water balance plays an important role in calculogenesis by its effects 

on urine volume.  Increased urine volume has two potential effects on the components of 

calculi: decreasing the level of saturation and precipitation of crystalloids and providing 

repeated removal of nuclear components.  Water deprivation3 and a negative body water 

balance contribute to the super-saturation and precipitation of crystalloids in urine. 

However, a decrease in water intake by 20% under normal voluntary intake did not alter 

incidence of urolithiasis.32 
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Time plays an important role in urolith formation and aggregation of calculi 

components occurs as urine composition changes.9  In dogs, uroliths have been 

experimentally formed within 2 weeks and dissolved in a similar time frame.7  In sheep, 

marked decreases in urine pH, increases in urine concentration and increases in urine 

calcium concentration occurred one hour after the initiation of feeding.46  Therefore, urine 

alterations of any time length may have a significant impact on urolith formation as well 

as destruction. 

 

DIETARY PREVENTATIVE MEASURES 

Due to the important role of metabolic by-products and minerals in the 

pathophysiology of urolithiasis, diet serves as a large contributor to urolithiasis and is 

therefore the primary focus of disease prevention.  Risk factors addressed in preventative 

strategies include high dietary phosphorus and magnesium, low dietary calcium, low 

fiber content of rations, low urine output and an alkaline urine pH. 

A reduction of phosphorus availability in the diet may be achieved by the 

avoidance of feeds with known high phosphorus content and the supplementation of 

calcium to reduce phosphorus availability.  Phosphorus should comprise greater than 

0.6% of the total ration28 and it is recommended that a 2:1 calcium:phosphorus ratio be 

achieved, by the use of calcium salts, if necessary1,3,12,15,25.  Calcium oversupplementation 

should be avoided as increased calcium excretion in the urine may contribute to calcium-

containing uroliths.1 Cereal grains, such as corn, milo and oats have increased levels of 

phosphorus in the presence of decreased calcium levels and should therefore be 

avoided.12 Grains also result in increased magnesium, phosphorus and peptides in the 

urine.1,3,29 



 

 13

A reduction in phosphorus excretion into the urine is also desirable.  Urine 

phosphorus excretion is greater in animals fed pelleted rations as compared to meal-type 

rations.36 This is due to a decrease in saliva production, and therefore a pathway for 

excess phosphorus excretion.  Increases in the roughage component of diets are important 

from this standpoint as they increase the amount of saliva that must be produced for 

proper mastication.28   

Particularly in the case of struvite stones, an increase in magnesium excretion into 

the urine is contributory to crystallization.  It is recommended that magnesium make up 

less than 0.6% of the total ration of ruminants.12  Magnesium is more available and 

absorbed more efficiently from concentrate rations than from roughage diets.28 

Increasing water intake and urine volume is an important preventive measure for 

urolithiasis.  Sources recommend the provision of adequate palatable water at desirable 

temperatures according to the ambient environment.1,3,12,15,28 Additionally, a reduction in 

urine output has been noted when sheep were changed from an alfalfa hay diet to a 

concentrate pellet,19 demonstrating a reduction in water intake for grain feeding over 

roughage feeding28.  Additionally, the feeding of intermittent meals may cause shunting 

of body water into the rumen due to increased osmotic pull from generated volatile fatty 

acids, resulting in a decrease in urine output.  This has led to the recommendation that 

ruminants be fed ad libitum to maintain urine output.1,28 

Due to an ability to alter acid-base balance and body water balance, salts have 

been widely used and recommended for the prevention of urolithiasis.  Anionic salts 

containing primarily chlorides have been popular and used extensively for the prevention 

of urolithiasis, as they induce acidic urine and an increase in water intake and 

diuresis.1,12,25,28  Chloride ion also prevents the binding of phosphates to the mucoprotein 
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matrix of the struvite structure.10,12  Chlorides with various cation attachments, namely 

NaCl, KCl, CaCl2 and NH4Cl, have traditionally been used to prevent calculi 

formation.8,35,37,39,48-51  Chloride content itself does not appear to prevent calculi 

formation alone, as there is variability with calculi incidence with the feeding of chloride 

salts.  In one study, ammonium chloride and calcium chloride were associated with 

reduced incidence of urolithiasis, while sodium chloride and potassium chloride 

increased the incidence in sheep.35 However, chloride excretion in the urine was found to 

be the only correlation of difference in incidence of urinary calculi on various salts.8  

Limiting absorption of phosphate while increasing urine chloride excretion are 

considered important factors in urolith prevention.8,9   

Many studies have compared various salts against each other as well as various 

levels of different salts.  Sodium chloride (NaCl) has been shown to increase urine 

volume at levels as low as 0.5% and 1.5%.39  Water intake, however, cannot be easily 

predicted as water intake did not change when NaCl levels were changed from 0.5% to 

3% in goats.47  NaCl at a level of 4% increased urine volume by nearly double other 

chloride salts, but these changes in urine volume did not correlate with a decreased 

incidence in calculi formation.35  NaCl did increase urinary phosphorus excretion, which 

was significant even at the higher urine volumes.35  This may have led to the lack of 

decreased incidence of urolithiasis.  On the other hand, NaCl at a level of 10% of the dry 

matter resulted in a 0% incidence of urolithiasis in another study while unsupplemented 

controls experienced a greater than 60% incidence.50 This level also increased water 

turnover, reduced serum protein and albumin, greatly increased urine volume and 

decreased urine pH in addition to significantly reducing urinary calculi formation.37  The 

primary difference in this incidence was found to be dilution of matrix components by 
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diuresis, although ionic action of the chloride may have also played a role.37 With the 

increase in urine volume with NaCl, there was also a decrease in urine hexosamine and 

protein.50  NaCl has been associated with decreased average daily gain and decreased 

ration palatability at levels as low as 4%29,35 and therefore, most sources recommend that 

it be added only at a rate of 1-4% to diets1,3,12,15.  

Potassium salts have shown potential to be more effective than sodium salts in the 

prevention of calculi.48  Potassium chloride, however, has been associated with increased 

incidence of urinary calculi and lowered average daily gain.35 Experimental rations 

designed to be calculogenic, containing high concentrate and K2HPO4 have been shown 

to increase serum mucoprotein levels in sheep.17 Potassium salts, therefore, are quite 

unpredictable and not typically recommended for urolithiasis prevention.   

Calcium chloride (CaCl2), fed at 1% of the diet increased urine volume by nearly 

double other chloride salts, but these changes in urine volume did not correlate with a 

decreased incidence in calculi formation.35 In another study, 1% reduced the incidence of 

urinary calculi and was the only calcium-containing salt which increased calcium 

excretion into the urine.35  When fed at a rate of 1.5%, CaCl2 reduced urinary calculi and 

urine pH, while 0.5% had no effect.39  Calcium carbonate at 2% of the diet, did not show 

a significant reduction in urinary calculi.35  Calcium salts, therefore, may be of value only 

to decrease phosphorus availability. 

Ammonium chloride (NH4Cl) has been administered to horses52, cats53-55, and 

ruminants39,48,49,56, with varied success at reducing urine pH and the rate of urolithiasis.  

NH4Cl may be preferred over other salts for growing animals as the ammonium may be 

used for metabolic processes, leaving chloride available to exert its urinary actions.9 

NH4Cl at 0.5% increased water intake, but also decreased feed consumption in sheep57, a 
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negative effect also noted at 1%35. Conversely, 0.5% in another study significantly 

decreased incidence of urolithiasis, while it increased feed efficiency.48 NH4Cl as 1% of 

the ration resulted in a significant reduction in the incidence of urinary calculi, increased 

urine calcium, showed a significant decrease in urine pH, but also lowered average daily 

gain.35  In one study, a significant decrease in urine pH to the acidic range was only 

achieved when NH4Cl was 1.5% of the diet.39  Historically, NH4Cl has been 

recommended and used in rations as a source of anion at a rate of 0.5 – 2% of the 

ration1,3,11,12,15,25,28,29 for at-risk ruminants.   

The role of urine pH in urolithiasis is well documented and various sources 

recommend urine pH goals of 5.5 to 6.029, <6.528 and <6.812,27, based on the solubilities 

of the common stone compositions.  This protective change in urine pH by grain may, 

however, be outweighed by the risk of their association with increased urine mucoprotein 

and phosphorus.1,3,11 Anionic salts, therefore, are added to alter urine pH, but show 

significant inconsistencies in their abilities to reduce urine pH, urine output and, 

ultimately, to prevent urolithasis.  The traditional addition of ammonium chloride or any 

other anionic feed additive as a simple percentage of the diet without consideration for 

the components of the total ration may lead to inconsistent and unsuccessful maintenance 

of low urinary pH.  The concept of DCAD states that with increased cations in the diet, 

alkalotic tendencies will occur.  Conversely, increased anions in the diet have acidifying 

potential.  Different commercial diets are commonly formulated using various 

commodities and these commodities are interchanged regularly in feed preparation based 

on availability.  If a feedstuff of a particular brand or batch of feed is higher in cations, or 

anionic salts are fed in conjunction with a high potassium forage,12,58,59 the DCAD of the 

diet will be raised and urinary acidification may not occur, despite the addition of the 
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standard dose of anions.  This one-dose-fits-all method may be the major cause of 

sporadic urolith formation in animals being fed anionic salts.  The use of DCAD 

balancing for goats and urolithiasis is mentioned as a recommendation in some 

sources,1,12,60 and it is recommended that high cation-containing feedstuffs such alfalfa 

and molasses should be avoided,12 but few controlled studies and no target DCAD levels 

currently exist.  In one study of goats on DCAD balanced diets, a DCAD level of 

70mEq/kg resulted in urine pH of around 5.5, a diet of 458 mEq/kg established a urine 

pH of 7.5-8.0 and a diet of 900 mEq/kg resulted in a urine pH of around 8.2.61  Another 

study which fed a DCAD level of 0 mEq/100g resulted in urine pH levels from 5.75 to 

5.85.60  Roughage diets typically produce urine with a pH of 7.8-8.5, while grain diets 

produce more acidic urine, between 5.2-7.0.28  
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CHAPTER III 
 

REVIEW OF THE LITERATURE 

DIETARY CATION ANION DIFFERENCE 

 

STRONG ION DIFFERENCE THEORY 

 The strong ion difference is a non-traditional approach to acid-base balance 

analysis formulated by Dr. Peter Stewart in the early 1980s.62,63  It counters the traditional 

approach, based on the Henderson-Hasselbach equation, by taking into account many 

factors which contribute to acid-base balance, rather than simply pH, PCO2 and  

HCO3
-.62-64  It is quite complicated in its original form and involves seven equations that 

can be combined as a single, 3rd order quadratic equation that can be solved for [H+].64  

This is much more complex than is required in the clinical setting and for a basic 

understanding of the physiology.  

 In a biological system, electroneutrality must be maintained and there is 

conservation of mass.62 Therefore, the number of moles of cations equals the number of 

moles of anions62 and [H+] x [OH-] = 1x10-14  65. Therefore, the body regulates acid and 

base such that when there are increased cations added to plasma, there is a compensatory 

increase in OH- and a decrease in H+.  Conversely, when there is an increase in anions 

added to plasma, there is a compensatory decrease in OH- and an increase in H+.65  

 The strong ion difference theory states that acid base balance is determined by 

three independent variables and two dependent variables.  The independent variables are 
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strong ion difference [SID], PCO2 and total weak acids [ATOT].  The dependent variables, 

which do not determine acid-base balance directly, are pH and bicarbonate.  This is in 

contrast to the traditional approach.62-64 

 The PCO2 is analogous to the respiratory component of the traditional approach 

and with increases in PCO2 there is respiratory acidosis and with decreases, a respiratory 

alkalosis.62-64
 

The ATOT represents the sum of the activity of the non-volatile weak acids in 

solution.  This includes albumin, globulin and phosphate, with albumin the being the 

primary contributor.  Increases in albumin result in decreases in bicarbonate and 

increases in H+.  Decreases in albumin result in increasing bicarbonate and decreasing 

H+.62-64 

The strong ions are primarily Na+, K+, Ca++, Mg++, Cl-,  S=, P---.64,65  They only 

alter the SID if they are absorbed into the systemic circulation and therefore their relative 

bioavailability must be considered when analyzing each ion and its effect on acid base 

balance.  They primarily enter the gastrointestinal system, therefore making diet the 

primary determinant of SID. These ions are then regulated by the kidneys, being excreted 

and resorbed to maintain electroneutrality and conserve mass.  The organic acids, such as 

lactate, ketoacids and volatile fatty acids, are undissociated and are quickly metabolized 

by the liver, resulting in a small effect on pH.65  The formula for the SID is, based on 

measured plasma levels, (Na+ + K+) – (Cl-+lactate).62,63  Additional constituents are 

generally not considered as they are frequently not measured or are typically 

inconsequential in the clinical setting.  When the SID increases, there is a compensatory 

increase in bicarbonate and metabolic alkalosis occurs.  With decreases in SID, a 

metabolic acidosis is created. 
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DCAD DEFINED AND TRADITIONAL USE 

Dietary cation anion difference is defined as the difference between the 

summation of the major biologic cations and anions of a diet.  It is traditionally illustrated 

as [(Na+K)-(C1+S)], expressed in mEq/kg, mEq/lb or mEq/100g of feed.66  Additional 

formulas have been proposed,66 including (Na + K + 0.15 Ca + 0.15 Mg) – (Cl + 0.20 S + 

0.30 P), which accounts for additional ions and their relative bioavailability. 

The DCAD is primarily controlled by adding physiologic anions, generally 

chlorides and sulfates, to a ration.  As stated in the strong ion difference theory, this 

addition of anions will result in an increase in extracellular hydrogen ions and induction 

of a metabolic acidosis.  The higher the DCAD, or excess of cations, the more 

alkalogenic the diet.  This method of ration formulation is primarily utilized for transition 

dairy cows as a means of prevention for milk fever.66-69   Milk fever is a clinical condition 

where dairy cows become hypocalcemic immediately post-partum as a result of increased 

calcium demand at the initiation of milk production.  Metabolic acidosis increases the 

available extracellular pool of calcium by improving the activity of parathyroid hormone 

and vitamin D.  This results in an increase in intestinal absorption of calcium and an 

increase in calcium resorption from the bone.  The appropriate level of metabolic acidosis 

is achieved when cattle consume a diet of DCAD level -150 mEq/kg to -50 mEq/kg65, 

which is associated with significantly decreased incidence of milk fever.   

One of the problems associated with DCAD balancing is that different 

commercial diets are commonly formulated using various commodities and these 

commodities are interchanged regularly in feed preparation based on cost and 

availability.  If a particular brand or batch of feed is higher in cations, or fed in 

conjunction with a high potassium forage12,58,59, the DCAD of the diet will be altered and 
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will not induce metabolic acidosis to the desired degree, rendering the preventive 

measure ineffective.  Feed analysis for every batch is not practical from an economic or 

time standpoint.  Physiologically, the excess H+ in the extracellular fluid as a result of 

lower DCAD is excreted by the kidney to maintain electroneutrality, producing urine of a 

lower pH.12,65  Therefore, measuring urine pH is the most suitable assessment of DCAD 

effectiveness70, due to its simplicity and reliability59.  For milk fever prevention, it is 

recommended that Holsteins should have a urine pH of 6.0-7.0, with Jersey cattle having 

a urine pH of 5.5-6.0, for ideal acidogenic potential of the diet.66 The relationship of 

DCAD and urine pH in dairy cattle is represented by a hyperbolic curve where a DCAD 

of –150 to –50 mEq/kg produces urine pH between 5.5 – 6.0 and DCAD above 

+200mEq/kg produces a urine pH of 8.0 – 8.5 in a plateau effect.66  

 

DCAD USE IN SMALL RUMINANTS 

 ACID-BASE BALANCE 

 In small ruminants as well as other species, with decreasing DCAD of a diet, and 

therefore an increase in anions, a systemic hyperchloremic, hyponatremic metabolic 

acidosis is produced.61,71-73  Higher DCAD levels result in subclinical hypernatremic, 

hypochloremic metabolic alkalosis, while the lower DCAD levels resulted in a 

subclinical hyperchloremic, hyponatremic metabolic acidosis.61,73  

 In periparturient ewes fed various DCAD levels, -88.5 mEq/kg resulted in a lower 

blood pH the two days prior to and after lambing, as compared with +164.5 and +272.6 

mEq/kg, but this difference was only significant on the day of parturition.  Blood 

bicarbonate and pCO2 were unaffected by treatment, although anion gap was higher for 

the anionic group two weeks after initiation of diet.  Blood pH, although lowered, 
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remained within the normal range for sheep and increased quickly after removal of 

anions.71 

 Peripartum ewes fed diets of DCAD -4.1, +29.1 and +82.3 mEq/100g, showed no 

significant difference in blood pH during lactation.72 This lack of change in blood pH was 

likely due to the minimal differences in the range of DCAD levels fed in this study.  

Increasing the range led to significantly increased blood pH in 3 month old lambs as 

DCAD increased from 0 to 600 mEq/kg.74  In lambs, blood pH increased with increasing 

DCAD from +100 to +700 mEq/kg.  DCAD levels of +100, +300, +500 and +700 

mEq/kg corresponded to blood pH levels of 7.39, 7.45, 7.43 and 7.44.  The PCO2 was 

increased for the +100 mEq/kg group and blood bicarbonate and base excess increased 

with increasing DCAD.75  Anionic supplement fed with oat or grass hay at a level of 0 

mEq/100g significantly decreased blood pH, bicarbonate and base deficit 12-13 and 27-

28 days after supplementation.60 

 In pregnant and lactating does fed diets of +0.7, +45.8 and +90 mEq/100g, rumen 

fluid H+ was increased by the +0.7 mEq/100g diet.  The rumen fluid pH of pregnancy 

and lactation periods for +0.7 mEq/100g were 6.1 and 6.3, for +45.8 mEq/100g rumen 

fluid pH were 6.6 and 6.6 and for +90 mEq/100g values were 6.7 and 6.6.61 

 There is no question that blood pH trends can be predicted with changes in DCAD 

level. It appears, although, that a relatively wide range of DCAD levels must be fed in 

order to achieve statistically significant changes in blood pH. This demonstrates the 

ability and priority of the renal and respiratory systems to compensate for alterations in 

systemic pH.   
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URINE PARAMETERS 

URINE PH 

Changes in acid base balance of the body are often directly reflected with changes 

in urine pH.  As with blood pH, urine pH tends to positively correlate with DCAD level.  

It has been suggested that, with regards to urolithiasis, the DCAD of the total diet may 

influence urine pH, altering the efficacy of NH4Cl in the management of ruminant 

urolithiasis.1  Several studies using DCAD in small ruminants have reported urine pH as a 

secondary finding.  

High calcium diets were fed with DCAD levels of -27, +61 and +284 mEq/kg and 

+63, +218 and +343 mEq/kg with normal calcium levels.  Urine pH for -27 mEq/kg was 

significantly lower (7.69) than that for the higher DCAD levels (8.85, 8.57) for high 

calcium diets.  For normal calcium diets, no differences were noted between urine pH of 

various DCAD levels (8.75, 8.57, 8.35).76  

In intact bucks fed a commercial anion supplement on grass or oat hay to achieve 

0 mEq/100g, the supplement significantly decreased urine pH from control period, 8.03,  

to 5.75 on days 12-13 and to 5.85 on days 27-28 of supplementation.  This demonstrates 

a potential trend for anionic supplementation to allow urine pH to trend upward with 

time.  Three of eight goats on grass hay increased urine pH by >0.4 units between the 12-

13 and 27-28 day samplings, while 3 of 8 on oat hay decreased their urine pH during the 

same sampling periods.60  

In pregnant and lactating does fed diets of +0.7, +45.8 and +90 mEq/100g Urine 

pH values for +0.7 mEq/100g were 5.59 and 5.46, for +45.8 mEq/100g were 7.59 and 

8.01 and for +90 mEq/100g were 8.11 and 8.28 for pregnancy and lactation sampling 

periods, respectively. The low DCAD group had reduced urine bicarbonate excretion, 
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increases in net acid excretion and the presence of titratable acids in small amounts in the 

urine.61 

In lambs, urine pH increased with increasing DCAD from +100 to +700 mEq/kg.  

DCAD levels of +100, +300, +500 and +700 mEq/kg corresponded to urine pH levels of 

6.87. 8.45, 8.57 and 8.60.75 Urine pH was 1.3 units higher (8.9 versus 7.6) in animals fed 

+250 mEq/kg over a -100 mEq/kg diet 12-14 days after initiation.  This difference 

increased to 2.0 pH units (8.2 versus 6.2) 17-19 days after diet initiation.77 

Peripartum ewes fed diets of DCAD -4.1, +29.1 and +82.3 mEq/100g respectively 

produced urine of pH 5.16, 8.23 and 8.63 during pregnancy and 4.98, 8.47 and 8.75 

during lactation.72  A comparison of -12, +30, +76 and +133 mEq/kg diets fed to adult 

sheep had no significant effect on fecal or urinary pH.78 

Decreasing DCAD does decrease urine pH, although findings are often 

inconsistent across studies.  Direct studies demonstrating  urine pH as it relates to DCAD 

level, without confounding ration formulations or physiologic status, are lacking.       

 

URINE CONCENTRATION AND WATER INTAKE 

Some studies using DCAD formulation in small ruminants have evaluated urine 

dilution and water intake as a result of the diet.  Water intake, urine volume and rumen 

fluid dilution in goats were increased by +90 mEq/100g diet over that produced by +0.7 

and +45.8 mEq/100g, particularly during pregnancy.61  This is likely due to the increase 

of sodium availability via addition of sodium hydroxide61 or sodium bicarbonate to the 

rations to increase DCAD27. 

 Anionic supplement fed to goats with oat or grass hay at a level of 0 mEq/100g 

significantly increased water intake and urine volume at the start of supplementation and 
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days 27-28 after initiation. This may be difficult to interpret as urine production of 

animals on oat hay was significantly higher on oat hay than on grass hay prior to anionic 

supplementation.  Six of 8 goats decreased urine creatinine with anionic supplementation, 

suggesting urine dilution, although urine specific gravity was not determined.60 

These studies demonstrate that the addition of salts, either to raise or lower 

DCAD level, may result in the production of more voluminous and dilute urine.  There 

are no studies which determine whether DCAD effect of urine volume correlates to a 

reduction in urolithiasis. 

 

URINE MINERAL CONTENT 

 In a study of peripartum ewes fed diets with DCAD levels of -4.1, +29.1 and 

+82.3 mEq/100g, there were no differences noted in urine levels of phosphorus. The -4.1 

mEq/100g group experienced higher urine excretion of calcium than did the higher two 

groups.72  Similarly, in 10 month old lambs fed diets of -100 and +250 mEq/kg, the lower 

diet resulted in seven times more loss of calcium in the urine, while phosphorus excretion 

was not affected.77 

 In a simulated calcium loss study using infusion of ethylene glycolbis tetraacetic 

acid (EGTA), DCAD treatment levels of -127, +35 and +339 mEq/kg were fed during 

eucalcemia and -147, +68, and +429 mEq/kg during infusion.  Both lower DCAD levels 

increased urinary excretion of isotope-labelled calcium during eucalcemia, with less 

difference during the calcium loss phase.  Low DCAD levels increased urinary excretion 

of calcium with no changes in calcium balance.79 

 Anionic supplement fed with oat or grass hay at a level of 0 mEq/100g altered 

urinary fractional excretion of macrominerals.60 Urine samples were taken prior to 
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anionic supplementation and 12-13 and 27-28 days after anionic supplementation was 

initiated. Fractional excretion of sodium was significantly higher in the middle collection 

period compared to the early and late samples.  Fractional excretion of potassium was 

increased during the late collection time as compared to early and middle collection 

times.  Fractional excretion of chloride and calcium were increased during the middle and 

late sampling periods.  Increased chloride excretion may prove useful in the prevention of 

urolithiasis due to the role of chloride in the inhibition of calculi formation.  There were 

no differences in iron or magnesium.  Fractional excretion of phosphorus increased in late 

compared to the early sampling period and fractional excretion of sulfur was increased in 

the late sampling period. 

 Comparing DCAD levels of -2.14 and 71.35 mEq/100g in does with simulated 

calcium loss using EGTA, the anionic diet increased urinary excretion of calcium during 

the eucalcemic period.  During the hypocalcemic period, calcium loss in urine was 

increased and calcium absorption was higher while on the anionic diet.  Cation excess 

induced alkalosis which decreases calcium absorption and calcium excretion via urine.73 

 High calcium diets fed with DCAD levels of -27, +61 and +284 mEq/kg and +63, 

+218 and +343 mEq/kg were fed with normal calcium levels to sheep.  Reducing DCAD 

reduced calcium retention by increasing excretion of urinary calcium.  Urine excretion of 

phosphorus for +218 mEq/kg was significantly lower than for +343 mEq/kg.  Urine 

excretion of calcium for +284 mEq/kg was significantly lower than other high calcium 

diets, and for +343 mEq/kg, urine calcium excretion was significantly lower than other 

normal calcium diets.  Urine excretion of magnesium was significantly higher for -27 

mEq/kg, while urine excretion of sodium was lower for -27 mEq/kg and for chloride was 

higher for +61 and +218 mEq/kg diets.76 
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The establishment of a target DCAD in goats could potentially increase 

effectiveness of urinary acidification as well as prevent over acidification of diets, which 

may be equally undesirable.  In a study of Jersey cattle and another in lambs, animals fed 

ammonium salts were slower to consume their entire ration than those on a control ration, 

suggesting reduced palatability of the ammonium salts.39,80  In studies in small ruminants, 

there are varying effects of DCAD on feed intake.  Some studies75 show that DMI 

increases with increasing DCAD, while others72,76,81 show no difference in feed intake by 

DCAD level.  Ammonium chloride has resulted in reduced feed consumption and weight 

gain.35,39,57  There is also evidence of bone loss due to long-term ingestion of acidified 

diets.r,71,73,74,76,82 In humans, gastrointestinal irritation is a side effect of ammonium 

chloride administration.42  For these reasons, it would be advantageous to establish a 

target DCAD which effectively acidifies and dilutes the urine for prevention of 

urolithiasis, yet avoids harmful side effects of over-administration.  The notation of 

temporal relationship from the start of DCAD treatment until optimal pH reduction 

occurs would provide additional assistance to those attempting to treat and prevent 

recurrence of clinical urolithiasis. 
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CHAPTER IV 

 
METHODOLOGY 

 

VARIOUS DCAD LEVELS OF SMALL RUMINANT FEEDS 

Before the initiation of the clinical trial, a survey was taken of several small 

ruminant feeds to determine DCAD levels of the prepared feeds.  Companies were 

contacted and asked to provide mineral analyses for feeds sold for small ruminant use.    

Responses were obtained from three companies on seven feeds.  Two additional feeds 

were obtained locally and mineral analysis performed.  Using the equation, [(Na+K)-

(Cl+S)] in mEq/kg of feed, the DCAD level for each feed was calculated. 

Table 1:  DCAD Levels of Various Small Ruminant Feeds   

Feed Company Feed DCAD (mEq/kg) 

Evergreen Mills™ Goat Feed -125 to -165 

Hubbard Feeds™ 14% Lamb Finisher -29.8 

Hubbard Feeds™ 17% Lamb Ration -10.4 

Stillwater A&M™ Sheep and Goat Feed 12.16 

Hubbard Feeds™ 17% Sheep/Goat ShowFeed 14.2 

Hubbard Feeds™ 14% Goat Crunch 45.1 

Hubbard Feeds™ 20% Lamb Starter 47.4 

Purina Mills, Inc.™ Goat Chow® 70.9 

OSU Feed Mill SH004 121.831 
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ANIMALS 

 Animals and procedures used in this study were approved by the Oklahoma State 

University Institutional Animal Care and Use Committee.  Twenty four adult 

Boer/Spanish crossbred goat wethers were utilized in a completely randomized design.  

The goats ranged in age from 17 to 18 months and body weights ranged from 36.5 kg to 

44.5 kg with a mean body weight of 42.9 kg.   

 Inclusion in the study was based on normal results from complete physical 

examination, venous blood gas analysis,a packed cell volume,b total protein 

determination,c blood urea nitrogen,d and glucose levele.  Urinalyses on free-catch 

samples, including pH,f dipstick analysis,g including detection for the presence of 

glucose, ketones, protein and occult blood, urine specific gravity,c and microscopic 

sediment examination after centrifugation were also normal for inclusion.  Albendazoleh 

(10mg/kg, PO) was administered to each animal once included in the study.   

 Prior to the start of the study, goats were sedated with xylazine hydrochloridei 

(0.1 mg/kg, IM) and restrained in lateral recumbency.  The fiber around the preputial 

orifice was surgically clipped and cleaned.  Medical specimen vial lidsj were prepared by 

drilling a 3.5 cm diameter circle in the center of the lid, with six small pairs of holes 

drilled around the circumference of the remaining lid.  The lids were then sutured to the 

skin by the small paired holes around the preputial orifice, centering the large opening 

around the preputial orifice, with the threads in a ventral position.  Fiber over the ventral 

midcervical region overlying the jugular veins was clipped to facilitate venipuncture and 

nylon collars were fitted to each goat. 
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 Goats were randomly assigned using a randomization software programk to four 

treatment groups, corresponding to DCAD levels -150 mEq/kg, -75 mEq/kg , 0 mEq/kg 

and +75 mEq/kg of feed, each consisting of six goats. 

 

FACILITIES 

 Goats were randomly assigned to four indoor, concrete stalls, with one goat from 

each treatment group in each stall.  The stalls measured 2.46m by 3.51m and were bedded 

with pine shavings.  A five gallon bucket with a cutout in the side was placed in each 

corner of all stalls and had a small rope with a clip affixed to provide individual restraint 

for goats at feeding times.  Each stall contained one large tub which provided ad libitum 

access to fresh water.   

 

FEEDING 

 A basal ration was formulated using pelleted feedl and ground prairie hay.  During 

the treatment phase, feed-grade ammonium chloridem was administered to goats at the 

time of feeding to attain DCAD levels of the total ration appropriate for the assigned 

treatment group. 

 The pelleted ration consisted of 60% ground corn, 10% soybean meal, 25% 

ground alfalfa, 1% sodium chloride, 5% molasses, 1% limestone and 0.1% decoquinate, 

mixed and pelleted as a single batch.  Prairie hay was ground to a fiber length of 2.5 cm.  

National Research Council (NRC) requirements83 for metabolizable energy (ME) and 

crude protein (CP) were determined for this class of goats to be 0.04 Mcal/kg and 1.6 

g/kg, respectively.  The goats were limit-fed to meet seventy five percent of the energy 

requirement daily, divided into two feedings, based on individual weight.  Twenty-five 
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percent of the daily NRC ME requirement was met by the hay, with the remaining 50% 

met by the pelleted feed.  Based on published values, the estimated ME of the pelleted 

feed was 2.796 Mcal/kg with a CP of 152 g/kg.  The hay had an estimated ME of 1.91 

Mcal/kg and a CP of 6.6%.  The goats received an average of 0.108 kg hay and 0.147 kg 

pellets per feeding, equivalent to a dry matter intake of 1.20% of body weight daily.   

 The pelleted feed and a composite sample of the hay were analyzed for mineral 

content by nitric acid digestion, followed by simultaneous determination of mineral 

analytes using optical emission spectrometryn as specified in previous publicationso,p. 

The DCAD levels of the pellets and ground hay, using the equation [(Na+K)-(Cl+S)], 

were determined to be +119.14 mEq/kg and +139.13 mEq/kg, respectively, resulting in a 

total basal ration DCAD of +125.68 mEq/kg.  The mineral analyses for the feeds were 

entered into a ration formulation software programq and the proportion of hay, pellet, and 

ammonium chloride determined to formulate the total ration necessary to achieve 

treatment DCAD level for each goat. 

Table 2:  Mineral Analysis of Basal Ration 

Feed P (%) Ca (%) K (%) Mg (%) Na (%) S (%) Cl (%) 

Hay 0.058 0.414 0.701 0.22 0.002 0.065 0.00224 

Pellets 0.283 0.589 0.870 0.144 0.430 0.172 0.65 

  

Table 3:  Ration Composition Percentage As-Fed by Treatment Group 

Group Hay Pelleted Feed NH4Cl 

-150 mEq/kg 41.80% 56.73% 1.47% 

-75 mEq/kg 41.97% 56.96% 1.07% 

0 mEq/kg 42.14% 57.19% 0.68% 

+75 mEq/kg 42.31% 57.42% 0.29% 
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Table 4:  Mean Ammonium Chloride Dose per Feeding by Treatment Group 

Group NH4Cl 

-150 mEq/kg 3.69 g 

-75 mEq/kg 2.75 g 

0 mEq/kg 1.74 g 

+75 mEq/kg 0.70 g 

 

On days -6 to 0, the acclimation period of the study, goats were fed divided 

individual basal rations twice daily, twelve hours apart.  This was accomplished by 

restraining each goat by collar to a feed bucket in the home stall, providing the individual 

ration, and releasing the goats once all animals had completely consumed their ration.   

 On days 1-7, the treatment phase of the study period, goats were fed as during the 

acclimation period.  As each goat completed his ration, a dose of ammonium chloride 

was dissolved in 50 mL of deionized water and administered via esophageal feeder to 

ensure full intake.  No additional sources of salt or mineral were provided. 

 

SAMPLING  

 On day 0, urine was collected by placing a 120 mL specimen vial into the 

specimen cup lid situated around the prepuce.  Venous blood was obtained by jugular 

venipuncture and analyses of the urine and blood performed as previously for inclusion in 

the study.  Additionally, electrolyte analysis was performed on blood on a handheld 

blood analyzera.  Goats continued into the study period based on normal findings from 

this examination. 

 On days 1-7 of the study period, urine samples were collected during five three-

hour sampling periods.  Sampling periods were hours -3 to -1, 1-3, 5-7, 9-11 and 13-15 



 

 33

relative to the morning feeding.  These five sampling periods were denoted 1-5, 

respectively. These samples were obtained by specimen cup and, at the time of voluntary 

urination, cups were collected and sealed.   Venous blood samples were obtained by 

jugular venipuncture at the time of voluntary urination on days 1, 3, 5 and 7 during 

sampling period 3, 5-7 hours after the morning feeding.  These samples were placed in 

tubes containing lithium heparin and situated in an icebath.   

 Urine samples were analyzed within 20 minutes of collection and were analyzed 

for pH via pH meterf and urine specific gravity via refractometerc.  Heparinized venous 

blood samples were analyzed within one hour of collection for determination of blood pH 

using a handheld chemistry analyzer.a The final urine sample collected on day 7 was also 

subjected to dipstick examinationg to assess continued urinary tract health.  All 

instrumentation was calibrated according to manufacturer’s instructions immediately 

prior to analysis of each batch of samples.   

 

STATISTICAL ANALYSIS  

 All statistical analyses were performed using SAS5 statistical software.s  

The experiment was a one-way treatment structure with four levels, corresponding to 

DCAD levels -150 mEq/kg, -75 mEq/kg , 0 mEq/kg and +75 mEq/kg of feed, and 

repeated measures taken at the beginning of the study and every day for the following 

seven days.  Within each day after the start of the experiments, there were repeated 

measures taken at five times during the day, -3 to -1, 1-3, 5-7, 9-11 and 13-15 hours 

relative to the morning feeding, corresponding to sampling periods labeled 1-5.  Ananysis 

of covariance (ANCOVA) methods were used in the analysis of urine pH, urine specific 

gravity and blood pH.  A repeated measures analysis was performed to examine the 
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correlation structures among days and times within days.  For all response variables the 

times within days were adequately modeled by a compound symmetry covariance 

structure.   Additionally, a baseline measurement (day 0) of the three response variables 

for each subject was incorporated into the analysis as a covariate, and unequal slopes 

models were adopted for each of the three response variables.   

Comparisons of DCAD levels, days and time within days were performed at 

specified values of the covariate in each of the three analyses.  For urine pH, the 

comparisons were done at the baseline covariate of 8.0.  For urine specific gravity, 

baseline covariates of 1.000 to 1.060 were selected.  For blood pH, comparisons were 

made using the baseline covariate values of 7.40 and 7.45.
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CHAPTER V 

RESULTS 

 

All goats originally included in the study met health criteria for continuance in the 

study at the end of the acclimation period.  Each goat fully consumed the individual 

ration daily in the acclimation and study periods and received the full dosage of 

ammonium chloride during the study period.  No negative health effects were noted in 

any goat during the trial and urine dipstick analysis at the end of the treatment phase 

indicated no adverse effects on the urinary tract as a result of the study.     

 All blood samples were obtained and successfully analyzed.  Eight hundred thirty 

eight urine samples were obtained during the trial phase.  Two goats each failed to urinate 

once during an allotted time period.  One goat was in treatment group 0 mEq/kg and no 

sample was obtained in the 1-3 hour sampling period on day six.  The other goat was in 

treatment group -75 mEq/kg with no sample obtained during the 9-11 hour sampling 

period of day 7.   These samples represent missing data points. 

Four urine samples were obtained after the three hour sampling period had ended.  

These included a goat in the +75 mEq/kg group during the 9-11 hour sampling period on 

day 3, a goat in the -150 mEq/kg group during the 1-3 hour sampling period on day 5, a 

goat in the +75 mEq/kg group in the 1-3 hour sampling period of day 6, and one goat in 

treatment group 0 mEq/kg during the 9-11 hour sampling period on day 6.  Each of these 
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samples were obtained within 15 minutes after the sampling period had ended and 

were therefore analyzed and included as data. 

All blood samples were obtained and successfully analyzed. 

 

URINE PH 

 There was a significant three-way interaction of group, day and time for urine pH 

(p=0.0137).  There was no significant group effect on day 1 for time periods 1-4 

(p>0.4810).  Starting sampling period 5 of day 1 (p=0.0064) and continuing through day 

7, at all time periods (p<0.0001), significant differences existed among groups.  This 

initial difference was due to a difference between the -150 mEq/kg and +75 mEq/kg 

groups (p=0.0005).     

The urine pH from each sampling period 1-5 was compared with the daily mean 

of each treatment group in order to determine which time frame after feeding urine 

samples should be obtained in order to monitor overall effectiveness of DCAD level.  

Frequency testing of the 28 intervals for each time period was performed to detect the 

presence of the daily mean of a group being within the confidence intervals of each of the 

sampling periods.  The 95% confidence intervals (CI) of sampling periods 1 and 5 

contained the daily mean 82.14% and 64.28% of the time.  Sampling period 2 contained 

the daily mean 92.86% of the time.  Sampling period 3, 5-7 hours after feeding and 

ammonium chloride administration, captured the value of the daily mean 100% of the 

time, more frequently than the remainder of the time periods.   

Time period effects were not equal among groups and as the days on the DCAD 

balanced ration progressed, the urine pH values across time periods within the day 

became less significantly different.  Also, with increasing DCAD level, more days were 
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required for sampling period differences to become non-significant.  At a baseline pH of 

8.0, for DCAD level -150 mEq/kg, urine pH values were significantly different among 

time periods on days 1 (p<0.0001) and 2 (p<0.0001).  On days 3-7, there were not 

significant differences across sampling times (p>0.2399).  For DCAD level -75 mEq/kg, 

differences were only significant until day 3, for DCAD level 0 mEq/kg, differences were 

significant until day 5.  For +75 mEq/kg, sampling time was not significant for days 1 

and 3 of the study, but differences were significant for the remainder of the study.   

Table 5: Variation of Urine pH Across Sampling Periods Day 1 
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Table 6:  Variation of Urine pH Across Sampling Periods Day 7 
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 Tests were performed to determine if urine pH values leveled off for DCAD 

during the study.  Post-hoc analysis of the means showed that urine pH had not leveled 

off by day 3 (p=0.0079).  On day 4, at time period 3, all groups leveled off (p=0.0999).  

For days 4-7, there is no significant fluctuation in the urine pH response (p=0.0999).  Not 

all treatment levels leveled off at the same pH, each group maintained its own plateau. 

 Ninety five percent confidence intervals were calculated for each group’s daily 

mean using a baseline urine pH of 8.0 to determine achievement of the target urine pH of 

6.0 to 6.5.  In the table below, the daily mean upper confidence limit (UCL) and lower 

confidence limit (LCL) values are reported. 
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Table 7:  95% Confidence Interval Values for Daily Mean Urine pH by Group 

Group LCL <6.0  

 UCL <6.0 

LCL <6.0 

UCL 6.0-6.5 

LCL <6.0 

UCL >6.5 

LCL 6.0-6.5 

UCL >6.5 

LCL >6.5 

 UCL >6.5 

-150 mEq/kg Days 3-7  Day 2  Day 1 

-75 mEq/kg Days 6-7 Days 4-5 Days 2-3  Day 1 

0 mEq/kg   Days 5-7 Day 4 Days 1-3 

+75 mEq/kg     Days 1-7 

LCL – lower confidence limit; UCL – upper confidence limit 

 

 The +75 mEq/kg group never achieved urine pH levels within the target range.  

The 0 mEq/kg group had measured values of days 1-3 that remained above the target 

range, with day 4 falling around the upper limit.  Days 5-7, the CI for this group fully 

included the target range.  For the -75 mEq/kg, day 1 was fully above the target range, 

days 2-3 fully contained the target range, days 4-5 fell around the lower limit of the target 

and the remaining 2 days fell fully below the target range.  For -150 mEq/kg, the mean of 

day 1 fell above the target range, day 2 fully encompassed the target range and days 3-7 

fell fully below 6.0. 

 At DCAD levels of -150 mEq/kg and -75mEq/kg, a urine pH of 6.0 – 6.5 was 

achieved two days after initiation of the treatment diet at the time of the 5-7 hour urine 

sampling.  DCAD level 0 mEq/kg resulted in urine pH levels between 6.0 – 6.5 on day 5 

of the treatment period, while urine pH levels at DCAD level +75 mEq/kg remained 

above 6.5 during the seven day trial period.  By the end of the trial period, treatment 

levels -150 mEq/kg and -75 mEq/kg resulted in urine pH levels below the target range.   
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Table 8:  Time Period 3 Group Mean Urine pH Values by Group and Day 
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Urine Specific Gravity 

 Using ANCOVA with baseline USG used as covariates in the analysis, there was 

a significant difference in group response based on baseline USG (p<0.0001).  There was 

also significant interaction between day and time period, and analyses using time period 

C were performed, as performed for urine pH.  At baseline USG of 1.000 for time 3, no 

significant difference among days were found (p=0.2844)  There were no significant 

differences between the four treatment levels in USG produced from baseline USG levels 

of 1.000 to 1.059.  At a baseline USG of 1.060, a significant difference occur between the 

-150 mEq/kg and -75 mEq/kg group (p=0.05).  At this baseline, -150 mEq/kg had an 

estimated USG of 1.0346, while -75 mEq/kg had an estimate of 1.0502.  The 0 mEq/kg 

and +75 mEq/kg USG were estimated at 1.0421 and 1.0422, respectively. 
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Blood pH 

ANCOVA analysis of blood pH was performed using the day 0 blood pH as a 

covariate.  Blood pH was significantly linearly related to the baseline blood pH 

(p=0.0062).  The influence of baseline blood pH is the same across all groups and all 

days.  There is no significant interaction between group and day (p= 0.5754) and no 

significant day effect (p= 0.6212).  There is, however a significant group effect 

(p<0.0001), which would remain the same at any baseline blood pH that falls within the 

normal range.  When group means were calculated using other baseline blood pH levels 

of 7.40 and 7.45, the group differences remained the same.  The following table indicates 

the blood pH means for each group in response to baseline pH of 7.40 and 7.45.      

 

Table 9:  Blood pH Estimated Means by Group and Baseline Blood pH 

Group Baseline Blood pH Estimated Group Mean 

-150 mEq/kg 7.40 7.3582a 

-75 mEq/kg 7.40 7.4057b 

0 mEq/kg 7.40 7.4187b 

+75 mEq/kg 7.40 7.4233b 

-150 mEq/kg 7.45 7.3761a 

-75 mEq/kg 7.45 7.4237b 

0 mEq/kg 7.45 7.4367b 

+75 mEq/kg 7.45 7.4412b 

 

Values within the same baseline pH with the same superscript are not significantly 

different (α=0.05) 
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 The -75 mEq/kg, 0 mEq/kg and +75 mEq/kg DCAD levels experienced similar 

blood pH responses and were not significantly different from each other.  The -150 

mEq/kg DCAD group had significantly lower blood pH levels than did the remaining 

treatment levels. 

Table 10:  Group Mean Blood pH Values by Group and Day 
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CHAPTER VI 

DISCUSSION 

 

The use of a pelleted feed with roughage comprising a minority percentage of the 

total ration is both a risk factor for calculogenesis and is typical feeding practice of small 

ruminants in our practice area.  The percentage of ammonium chloride used to lower the 

basal ration used in this study fell within the recommended 0.5-2%1,3,11,12,15,25,28,29 for 

three of the four levels.  The three levels, -75, 0 and -150 mEq/kg, where the percentage 

was within this range, 0.68 - 1.47%, achieved urine pH levels in and around the target 

range.  These percentages, therefore, are appropriate for use in rations which have a basal 

DCAD similar to this one of +126.68 mEq/kg.  Rations with DCAD levels significantly 

above or below this ration, similar to those shown in Table 1, in combination with equal 

proportions of ammonium chloride, may result in under- or over- acidification.     

 Samples were taken five times daily at three hour intervals in order to determine a 

time interval for urine sampling would be a reliable predictor of DCAD effectiveness.  It 

is not known for the prevention of urolithiasis if urine pH must remain consistently below 

a threshold for the majority of the day, if the mean throughout the day should fall below a 

threshold or if a single point low nadir is desirable.  Analysis for this study was 

performed to determine which sampling period best represented the mean throughout the 

day, as a representation of the urine pH activity throughout the day.  Time period 3, 5-7
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hours after the initial feeding and salt administration was found to best represent the daily 

mean.  Time period 2, 1-3 hours after feeding, represented the mean 92.86% of the time, 

only slightly less than did time 3 at 100%, and may be used for sampling if it is more 

convenient or improves producer compliance.  It is advisable that goats consuming 

DCAD balanced rations be sampled either 5-7 hours or 1-3 hours after feeding to monitor 

acidification. 

 The data indicates that after a number of days on a DCAD balanced ration, 

sampling time becomes less important as there is less difference between values achieved 

at different intervals.  For -150 mEq/kg, day 3, sampling at any sampling interval would 

reveal a value that was not significantly different than values obtained at any other of the 

sampling intervals.  This was also true for -75 mEq/kg beginning day 4 and for 0 mEq/kg 

beginning day 6.  For +75 mEq/kg, the latter days of the study remained significantly 

different across sampling times.  Therefore, urine pH sampling at 5-7 hours after the first 

feeding of the day may only be required for a few days after initiation of a DCAD 

balanced diet, followed by less stringent time requirements for sampling in latter days. 

 In animals clinically affected by urolithiasis, once the acute obstruction is 

relieved, additional stones or mineral residue may remain in the urinary bladder.  These 

patients are frequently treated with anionic salts or other acidifiers as part of their initial 

treatment to dissolve this residue.  It may seem that there would be reason to start such 

animals out at a very low DCAD to achieve acidification quickly, then increase the 

DCAD to a more biologically sound level.  The data in this experiment indicates that 

acidification occurs very quickly, the second day for -75 mEq/kg and the fifth day for 0 

mEq/kg.  These represent reasonable time frames to urine acidification to the target range 
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of 6.0 to 6.5 for clinical cases as well as the remainder of the herd or flock from which 

the animal originates. 

 The DCAD levels tested here, relative to each other, induced predictable 

responses in urine pH values.  They are, however, somewhat different than those obtained 

from other studies,60,72,75,76,77 although these specific DCAD levels have not been directly 

tested in this class of animals.  The +75 mEq/kg DCAD level produced urine pH levels 

which never achieved a urine pH between 6.0 to 6.5 throughout the course of the study. 

The 0 mEq/kg achieved a 95% CI which included the upper portion of the target range on 

day 4 and encompassed the target pH range for the final three days of the study.  The -75 

mEq/kg encompassed the target range on days 2 and 3 of the study, included the lower 

portion of the target range on days 4 and 5, but fell entirely below 6.0 for the final 2 days 

of the study.  The -150 mEq/kg group encompassed the target range on day 2 of the 

study, but fell below 6.0 for the remainder of the study.  Maintaining a urine pH below 

6.0 consistently over time may represent significant alterations in acid-base balance, as in 

this study at the -150 mEq/kg level, with significantly low blood pH.    

For the majority of USG baselines, there were no significant differences noted in 

values obtained among the groups.  Only at a baseline of 1.060 was a difference noted 

between -150 mEq/kg and -75 mEq/kg.  This counters the widely-held theory that 

increased salt in the diet significantly decreases urine concentration.  While no studies 

specifically measure USG with relation to DCAD, one study showed that 6 of 8 goats 

significantly decreased their urine creatinine at a 0 mEq/100g level as compared to a 

forage diet only60.  The two groups with the highest salt intake group (-150 mEq/kg  

and -75 mEq/kg) were significantly different from each other, but neither were 

significantly different than the remaining two groups with the lowest salt intake.  The -75 
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mEq/kg actually trended higher than the levels which required a lower salt mass, towards 

the end of the study.  This likely reflects the large variability among individuals within 

the group (data not shown) and a non-linear response of USG to salt intake.  Urine 

dilution may not be a predictable effect of various levels of DCAD.   

 Blood pH was significantly lower for the -150 mEq/kg group than for other 

groups.  It also fell below published normal values for the goat of 7.42 to 7.46.84  

Acidemia associated with this level of feeding for a prolonged period of time may induce 

harmful effects, such as decreased feed intake and weight gain35,39,57 or bone 

lossr,71,73,74,76,82.  The remaining groups produced blood pH levels that were the same and 

within the normal range,84 indicating that they produce responses in acid-base balance 

that are biologically sound and do not overwhelm compensatory mechanisms.   

  A significantly educed blood pH and over-acidified urine make the -150 mEq/kg 

DCAD level inappropriate for use in goats.  A DCAD of -75 mEq/kg also resulted in 

over-acidified urine and +75 mEq/kg inadequately acidified the urine of goats.  The 0 

mEq/kg resulted in achievement of the target urine pH without significantly reduced 

blood pH.  The range of values where adequate acidification without over-acidification 

occurs falls between -75 mEq/kg and +75 mEq/kg of feed.  Based on the DCAD levels 

tested here, 0 mEq/kg appears to be the most appropriate target DCAD for reduction of 

urine pH in goats for the prevention of urolithiasis.
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Footnotes 

a. i-STAT® EC8+, Abbott Laboratories, Abbott Park, IL. 

b. Fisherbrand® Capiliary Tubes, Fisher Scientific, Pittsburgh, PA. 

c. Reichert® Veterinary Refractometer 10438, Cambridge Instrument Inc., Buffalo, 

NY. 

d. Azostix® Bayer Corporation, Elkhart, IN. 

e. Medisense® Precision QID, Abbott Laboratories, Bedford, MA.  

f. Cardy Twin® pH Meter, Spectrum Technologies, Plainfield, IL. 

g. Multistix® Bayer Corporation, Elkhart, IN.  

h. Valbazen® Suspension, 11.36% albendazole, Exton, PA.  

i. X-Ject SA,® 20mg/mL xylazine, Vetus, Farmers Branch, TX. 

j. Non-sterile urine cups, Med-Vet International, Libertyville, IL. 

k. Dallal, GE. Radomization.com. Available at: http://www.randomization.com.  

Accessed September 20, 2004. 

l. Formula SH010.  Oklahoma State University Feed Mill, Stillwater, OK. 

m. Ammonium chloride, Prince Agri Products, Inc., Quincy, IL.  

n. Spectro Ciros ICP, Spectro Analytical Instruments GmbH and Co. KG, Kleve, 

Germany.  

o. Soil Science Society of America.  Soil Testing and Plant Analysis. 3rd ed. 

Madison Wisconsin. 1990:404-411.
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p. Western States Laboratory Proficiency Testing Program.  Soil and Plant 

Analytical Methods.  Ver. 4.00. 1997: 117-119. 

q. Galyean ML. Texas Tech University Beef Cattle Diet Formation Program. 

Available at: http://www.afs.ttu.edu/home/mgalyean/. Accessed: June 2004.  

r. MacLeay JM, et al.  Effect of a diet low in cation-anion balance (DCAB) on bone 

mineral density in mature ovariectomized ewes.  Am Coll Vet Intern Med 

Abstracts; 2002:338(45). 

s. SAS, version 9, SAS Institute, Inc. Cary, NC 2003.
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